1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Analysis/BlockFrequencyInfo.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ProfileSummaryInfo.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/KnownBits.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Transforms/Utils/BuildLibCalls.h" 39 #include "llvm/Transforms/Utils/SizeOpts.h" 40 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 static cl::opt<bool> 45 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 46 cl::init(false), 47 cl::desc("Enable unsafe double to float " 48 "shrinking for math lib calls")); 49 50 //===----------------------------------------------------------------------===// 51 // Helper Functions 52 //===----------------------------------------------------------------------===// 53 54 static bool ignoreCallingConv(LibFunc Func) { 55 return Func == LibFunc_abs || Func == LibFunc_labs || 56 Func == LibFunc_llabs || Func == LibFunc_strlen; 57 } 58 59 /// Return true if it is only used in equality comparisons with With. 60 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 61 for (User *U : V->users()) { 62 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 63 if (IC->isEquality() && IC->getOperand(1) == With) 64 continue; 65 // Unknown instruction. 66 return false; 67 } 68 return true; 69 } 70 71 static bool callHasFloatingPointArgument(const CallInst *CI) { 72 return any_of(CI->operands(), [](const Use &OI) { 73 return OI->getType()->isFloatingPointTy(); 74 }); 75 } 76 77 static bool callHasFP128Argument(const CallInst *CI) { 78 return any_of(CI->operands(), [](const Use &OI) { 79 return OI->getType()->isFP128Ty(); 80 }); 81 } 82 83 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 84 if (Base < 2 || Base > 36) 85 // handle special zero base 86 if (Base != 0) 87 return nullptr; 88 89 char *End; 90 std::string nptr = Str.str(); 91 errno = 0; 92 long long int Result = strtoll(nptr.c_str(), &End, Base); 93 if (errno) 94 return nullptr; 95 96 // if we assume all possible target locales are ASCII supersets, 97 // then if strtoll successfully parses a number on the host, 98 // it will also successfully parse the same way on the target 99 if (*End != '\0') 100 return nullptr; 101 102 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 103 return nullptr; 104 105 return ConstantInt::get(CI->getType(), Result); 106 } 107 108 static bool isOnlyUsedInComparisonWithZero(Value *V) { 109 for (User *U : V->users()) { 110 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 111 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 112 if (C->isNullValue()) 113 continue; 114 // Unknown instruction. 115 return false; 116 } 117 return true; 118 } 119 120 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 121 const DataLayout &DL) { 122 if (!isOnlyUsedInComparisonWithZero(CI)) 123 return false; 124 125 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 126 return false; 127 128 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 129 return false; 130 131 return true; 132 } 133 134 static void annotateDereferenceableBytes(CallInst *CI, 135 ArrayRef<unsigned> ArgNos, 136 uint64_t DereferenceableBytes) { 137 const Function *F = CI->getCaller(); 138 if (!F) 139 return; 140 for (unsigned ArgNo : ArgNos) { 141 uint64_t DerefBytes = DereferenceableBytes; 142 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 143 if (!llvm::NullPointerIsDefined(F, AS) || 144 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 145 DerefBytes = std::max(CI->getDereferenceableOrNullBytes( 146 ArgNo + AttributeList::FirstArgIndex), 147 DereferenceableBytes); 148 149 if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) < 150 DerefBytes) { 151 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 152 if (!llvm::NullPointerIsDefined(F, AS) || 153 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 154 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 155 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 156 CI->getContext(), DerefBytes)); 157 } 158 } 159 } 160 161 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, 162 ArrayRef<unsigned> ArgNos) { 163 Function *F = CI->getCaller(); 164 if (!F) 165 return; 166 167 for (unsigned ArgNo : ArgNos) { 168 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef)) 169 CI->addParamAttr(ArgNo, Attribute::NoUndef); 170 171 if (CI->paramHasAttr(ArgNo, Attribute::NonNull)) 172 continue; 173 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 174 if (llvm::NullPointerIsDefined(F, AS)) 175 continue; 176 177 CI->addParamAttr(ArgNo, Attribute::NonNull); 178 annotateDereferenceableBytes(CI, ArgNo, 1); 179 } 180 } 181 182 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 183 Value *Size, const DataLayout &DL) { 184 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 185 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 186 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 187 } else if (isKnownNonZero(Size, DL)) { 188 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 189 const APInt *X, *Y; 190 uint64_t DerefMin = 1; 191 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 192 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 193 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 194 } 195 } 196 } 197 198 //===----------------------------------------------------------------------===// 199 // String and Memory Library Call Optimizations 200 //===----------------------------------------------------------------------===// 201 202 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 203 // Extract some information from the instruction 204 Value *Dst = CI->getArgOperand(0); 205 Value *Src = CI->getArgOperand(1); 206 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 207 208 // See if we can get the length of the input string. 209 uint64_t Len = GetStringLength(Src); 210 if (Len) 211 annotateDereferenceableBytes(CI, 1, Len); 212 else 213 return nullptr; 214 --Len; // Unbias length. 215 216 // Handle the simple, do-nothing case: strcat(x, "") -> x 217 if (Len == 0) 218 return Dst; 219 220 return emitStrLenMemCpy(Src, Dst, Len, B); 221 } 222 223 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 224 IRBuilderBase &B) { 225 // We need to find the end of the destination string. That's where the 226 // memory is to be moved to. We just generate a call to strlen. 227 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 228 if (!DstLen) 229 return nullptr; 230 231 // Now that we have the destination's length, we must index into the 232 // destination's pointer to get the actual memcpy destination (end of 233 // the string .. we're concatenating). 234 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 235 236 // We have enough information to now generate the memcpy call to do the 237 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 238 B.CreateMemCpy( 239 CpyDst, Align(1), Src, Align(1), 240 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 241 return Dst; 242 } 243 244 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 245 // Extract some information from the instruction. 246 Value *Dst = CI->getArgOperand(0); 247 Value *Src = CI->getArgOperand(1); 248 Value *Size = CI->getArgOperand(2); 249 uint64_t Len; 250 annotateNonNullNoUndefBasedOnAccess(CI, 0); 251 if (isKnownNonZero(Size, DL)) 252 annotateNonNullNoUndefBasedOnAccess(CI, 1); 253 254 // We don't do anything if length is not constant. 255 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 256 if (LengthArg) { 257 Len = LengthArg->getZExtValue(); 258 // strncat(x, c, 0) -> x 259 if (!Len) 260 return Dst; 261 } else { 262 return nullptr; 263 } 264 265 // See if we can get the length of the input string. 266 uint64_t SrcLen = GetStringLength(Src); 267 if (SrcLen) { 268 annotateDereferenceableBytes(CI, 1, SrcLen); 269 --SrcLen; // Unbias length. 270 } else { 271 return nullptr; 272 } 273 274 // strncat(x, "", c) -> x 275 if (SrcLen == 0) 276 return Dst; 277 278 // We don't optimize this case. 279 if (Len < SrcLen) 280 return nullptr; 281 282 // strncat(x, s, c) -> strcat(x, s) 283 // s is constant so the strcat can be optimized further. 284 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 285 } 286 287 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 288 Function *Callee = CI->getCalledFunction(); 289 FunctionType *FT = Callee->getFunctionType(); 290 Value *SrcStr = CI->getArgOperand(0); 291 annotateNonNullNoUndefBasedOnAccess(CI, 0); 292 293 // If the second operand is non-constant, see if we can compute the length 294 // of the input string and turn this into memchr. 295 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 296 if (!CharC) { 297 uint64_t Len = GetStringLength(SrcStr); 298 if (Len) 299 annotateDereferenceableBytes(CI, 0, Len); 300 else 301 return nullptr; 302 if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 303 return nullptr; 304 305 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 306 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 307 B, DL, TLI); 308 } 309 310 // Otherwise, the character is a constant, see if the first argument is 311 // a string literal. If so, we can constant fold. 312 StringRef Str; 313 if (!getConstantStringInfo(SrcStr, Str)) { 314 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 315 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 316 return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 317 return nullptr; 318 } 319 320 // Compute the offset, make sure to handle the case when we're searching for 321 // zero (a weird way to spell strlen). 322 size_t I = (0xFF & CharC->getSExtValue()) == 0 323 ? Str.size() 324 : Str.find(CharC->getSExtValue()); 325 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 326 return Constant::getNullValue(CI->getType()); 327 328 // strchr(s+n,c) -> gep(s+n+i,c) 329 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 330 } 331 332 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 333 Value *SrcStr = CI->getArgOperand(0); 334 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 335 annotateNonNullNoUndefBasedOnAccess(CI, 0); 336 337 // Cannot fold anything if we're not looking for a constant. 338 if (!CharC) 339 return nullptr; 340 341 StringRef Str; 342 if (!getConstantStringInfo(SrcStr, Str)) { 343 // strrchr(s, 0) -> strchr(s, 0) 344 if (CharC->isZero()) 345 return emitStrChr(SrcStr, '\0', B, TLI); 346 return nullptr; 347 } 348 349 // Compute the offset. 350 size_t I = (0xFF & CharC->getSExtValue()) == 0 351 ? Str.size() 352 : Str.rfind(CharC->getSExtValue()); 353 if (I == StringRef::npos) // Didn't find the char. Return null. 354 return Constant::getNullValue(CI->getType()); 355 356 // strrchr(s+n,c) -> gep(s+n+i,c) 357 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 358 } 359 360 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 361 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 362 if (Str1P == Str2P) // strcmp(x,x) -> 0 363 return ConstantInt::get(CI->getType(), 0); 364 365 StringRef Str1, Str2; 366 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 367 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 368 369 // strcmp(x, y) -> cnst (if both x and y are constant strings) 370 if (HasStr1 && HasStr2) 371 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 372 373 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 374 return B.CreateNeg(B.CreateZExt( 375 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 376 377 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 378 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 379 CI->getType()); 380 381 // strcmp(P, "x") -> memcmp(P, "x", 2) 382 uint64_t Len1 = GetStringLength(Str1P); 383 if (Len1) 384 annotateDereferenceableBytes(CI, 0, Len1); 385 uint64_t Len2 = GetStringLength(Str2P); 386 if (Len2) 387 annotateDereferenceableBytes(CI, 1, Len2); 388 389 if (Len1 && Len2) { 390 return emitMemCmp(Str1P, Str2P, 391 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 392 std::min(Len1, Len2)), 393 B, DL, TLI); 394 } 395 396 // strcmp to memcmp 397 if (!HasStr1 && HasStr2) { 398 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 399 return emitMemCmp( 400 Str1P, Str2P, 401 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 402 TLI); 403 } else if (HasStr1 && !HasStr2) { 404 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 405 return emitMemCmp( 406 Str1P, Str2P, 407 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 408 TLI); 409 } 410 411 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 412 return nullptr; 413 } 414 415 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 416 Value *Str1P = CI->getArgOperand(0); 417 Value *Str2P = CI->getArgOperand(1); 418 Value *Size = CI->getArgOperand(2); 419 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 420 return ConstantInt::get(CI->getType(), 0); 421 422 if (isKnownNonZero(Size, DL)) 423 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 424 // Get the length argument if it is constant. 425 uint64_t Length; 426 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 427 Length = LengthArg->getZExtValue(); 428 else 429 return nullptr; 430 431 if (Length == 0) // strncmp(x,y,0) -> 0 432 return ConstantInt::get(CI->getType(), 0); 433 434 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 435 return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI); 436 437 StringRef Str1, Str2; 438 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 439 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 440 441 // strncmp(x, y) -> cnst (if both x and y are constant strings) 442 if (HasStr1 && HasStr2) { 443 StringRef SubStr1 = Str1.substr(0, Length); 444 StringRef SubStr2 = Str2.substr(0, Length); 445 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 446 } 447 448 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 449 return B.CreateNeg(B.CreateZExt( 450 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 451 452 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 453 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 454 CI->getType()); 455 456 uint64_t Len1 = GetStringLength(Str1P); 457 if (Len1) 458 annotateDereferenceableBytes(CI, 0, Len1); 459 uint64_t Len2 = GetStringLength(Str2P); 460 if (Len2) 461 annotateDereferenceableBytes(CI, 1, Len2); 462 463 // strncmp to memcmp 464 if (!HasStr1 && HasStr2) { 465 Len2 = std::min(Len2, Length); 466 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 467 return emitMemCmp( 468 Str1P, Str2P, 469 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 470 TLI); 471 } else if (HasStr1 && !HasStr2) { 472 Len1 = std::min(Len1, Length); 473 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 474 return emitMemCmp( 475 Str1P, Str2P, 476 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 477 TLI); 478 } 479 480 return nullptr; 481 } 482 483 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 484 Value *Src = CI->getArgOperand(0); 485 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 486 uint64_t SrcLen = GetStringLength(Src); 487 if (SrcLen && Size) { 488 annotateDereferenceableBytes(CI, 0, SrcLen); 489 if (SrcLen <= Size->getZExtValue() + 1) 490 return emitStrDup(Src, B, TLI); 491 } 492 493 return nullptr; 494 } 495 496 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 497 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 498 if (Dst == Src) // strcpy(x,x) -> x 499 return Src; 500 501 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 502 // See if we can get the length of the input string. 503 uint64_t Len = GetStringLength(Src); 504 if (Len) 505 annotateDereferenceableBytes(CI, 1, Len); 506 else 507 return nullptr; 508 509 // We have enough information to now generate the memcpy call to do the 510 // copy for us. Make a memcpy to copy the nul byte with align = 1. 511 CallInst *NewCI = 512 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 513 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 514 NewCI->setAttributes(CI->getAttributes()); 515 NewCI->removeAttributes(AttributeList::ReturnIndex, 516 AttributeFuncs::typeIncompatible(NewCI->getType())); 517 return Dst; 518 } 519 520 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 521 Function *Callee = CI->getCalledFunction(); 522 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 523 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 524 Value *StrLen = emitStrLen(Src, B, DL, TLI); 525 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 526 } 527 528 // See if we can get the length of the input string. 529 uint64_t Len = GetStringLength(Src); 530 if (Len) 531 annotateDereferenceableBytes(CI, 1, Len); 532 else 533 return nullptr; 534 535 Type *PT = Callee->getFunctionType()->getParamType(0); 536 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 537 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 538 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 539 540 // We have enough information to now generate the memcpy call to do the 541 // copy for us. Make a memcpy to copy the nul byte with align = 1. 542 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 543 NewCI->setAttributes(CI->getAttributes()); 544 NewCI->removeAttributes(AttributeList::ReturnIndex, 545 AttributeFuncs::typeIncompatible(NewCI->getType())); 546 return DstEnd; 547 } 548 549 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) { 550 Function *Callee = CI->getCalledFunction(); 551 Value *Dst = CI->getArgOperand(0); 552 Value *Src = CI->getArgOperand(1); 553 Value *Size = CI->getArgOperand(2); 554 annotateNonNullNoUndefBasedOnAccess(CI, 0); 555 if (isKnownNonZero(Size, DL)) 556 annotateNonNullNoUndefBasedOnAccess(CI, 1); 557 558 uint64_t Len; 559 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 560 Len = LengthArg->getZExtValue(); 561 else 562 return nullptr; 563 564 // strncpy(x, y, 0) -> x 565 if (Len == 0) 566 return Dst; 567 568 // See if we can get the length of the input string. 569 uint64_t SrcLen = GetStringLength(Src); 570 if (SrcLen) { 571 annotateDereferenceableBytes(CI, 1, SrcLen); 572 --SrcLen; // Unbias length. 573 } else { 574 return nullptr; 575 } 576 577 if (SrcLen == 0) { 578 // strncpy(x, "", y) -> memset(x, '\0', y) 579 Align MemSetAlign = 580 CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne(); 581 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign); 582 AttrBuilder ArgAttrs(CI->getAttributes().getParamAttrs(0)); 583 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 584 CI->getContext(), 0, ArgAttrs)); 585 return Dst; 586 } 587 588 // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4) 589 if (Len > SrcLen + 1) { 590 if (Len <= 128) { 591 StringRef Str; 592 if (!getConstantStringInfo(Src, Str)) 593 return nullptr; 594 std::string SrcStr = Str.str(); 595 SrcStr.resize(Len, '\0'); 596 Src = B.CreateGlobalString(SrcStr, "str"); 597 } else { 598 return nullptr; 599 } 600 } 601 602 Type *PT = Callee->getFunctionType()->getParamType(0); 603 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 604 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 605 ConstantInt::get(DL.getIntPtrType(PT), Len)); 606 NewCI->setAttributes(CI->getAttributes()); 607 NewCI->removeAttributes(AttributeList::ReturnIndex, 608 AttributeFuncs::typeIncompatible(NewCI->getType())); 609 return Dst; 610 } 611 612 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 613 unsigned CharSize) { 614 Value *Src = CI->getArgOperand(0); 615 616 // Constant folding: strlen("xyz") -> 3 617 if (uint64_t Len = GetStringLength(Src, CharSize)) 618 return ConstantInt::get(CI->getType(), Len - 1); 619 620 // If s is a constant pointer pointing to a string literal, we can fold 621 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 622 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 623 // We only try to simplify strlen when the pointer s points to an array 624 // of i8. Otherwise, we would need to scale the offset x before doing the 625 // subtraction. This will make the optimization more complex, and it's not 626 // very useful because calling strlen for a pointer of other types is 627 // very uncommon. 628 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 629 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 630 return nullptr; 631 632 ConstantDataArraySlice Slice; 633 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 634 uint64_t NullTermIdx; 635 if (Slice.Array == nullptr) { 636 NullTermIdx = 0; 637 } else { 638 NullTermIdx = ~((uint64_t)0); 639 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 640 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 641 NullTermIdx = I; 642 break; 643 } 644 } 645 // If the string does not have '\0', leave it to strlen to compute 646 // its length. 647 if (NullTermIdx == ~((uint64_t)0)) 648 return nullptr; 649 } 650 651 Value *Offset = GEP->getOperand(2); 652 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 653 Known.Zero.flipAllBits(); 654 uint64_t ArrSize = 655 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 656 657 // KnownZero's bits are flipped, so zeros in KnownZero now represent 658 // bits known to be zeros in Offset, and ones in KnowZero represent 659 // bits unknown in Offset. Therefore, Offset is known to be in range 660 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 661 // unsigned-less-than NullTermIdx. 662 // 663 // If Offset is not provably in the range [0, NullTermIdx], we can still 664 // optimize if we can prove that the program has undefined behavior when 665 // Offset is outside that range. That is the case when GEP->getOperand(0) 666 // is a pointer to an object whose memory extent is NullTermIdx+1. 667 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 668 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 669 NullTermIdx == ArrSize - 1)) { 670 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 671 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 672 Offset); 673 } 674 } 675 } 676 677 // strlen(x?"foo":"bars") --> x ? 3 : 4 678 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 679 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 680 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 681 if (LenTrue && LenFalse) { 682 ORE.emit([&]() { 683 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 684 << "folded strlen(select) to select of constants"; 685 }); 686 return B.CreateSelect(SI->getCondition(), 687 ConstantInt::get(CI->getType(), LenTrue - 1), 688 ConstantInt::get(CI->getType(), LenFalse - 1)); 689 } 690 } 691 692 // strlen(x) != 0 --> *x != 0 693 // strlen(x) == 0 --> *x == 0 694 if (isOnlyUsedInZeroEqualityComparison(CI)) 695 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), 696 CI->getType()); 697 698 return nullptr; 699 } 700 701 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 702 if (Value *V = optimizeStringLength(CI, B, 8)) 703 return V; 704 annotateNonNullNoUndefBasedOnAccess(CI, 0); 705 return nullptr; 706 } 707 708 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 709 Module &M = *CI->getModule(); 710 unsigned WCharSize = TLI->getWCharSize(M) * 8; 711 // We cannot perform this optimization without wchar_size metadata. 712 if (WCharSize == 0) 713 return nullptr; 714 715 return optimizeStringLength(CI, B, WCharSize); 716 } 717 718 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 719 StringRef S1, S2; 720 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 721 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 722 723 // strpbrk(s, "") -> nullptr 724 // strpbrk("", s) -> nullptr 725 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 726 return Constant::getNullValue(CI->getType()); 727 728 // Constant folding. 729 if (HasS1 && HasS2) { 730 size_t I = S1.find_first_of(S2); 731 if (I == StringRef::npos) // No match. 732 return Constant::getNullValue(CI->getType()); 733 734 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 735 "strpbrk"); 736 } 737 738 // strpbrk(s, "a") -> strchr(s, 'a') 739 if (HasS2 && S2.size() == 1) 740 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 741 742 return nullptr; 743 } 744 745 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 746 Value *EndPtr = CI->getArgOperand(1); 747 if (isa<ConstantPointerNull>(EndPtr)) { 748 // With a null EndPtr, this function won't capture the main argument. 749 // It would be readonly too, except that it still may write to errno. 750 CI->addParamAttr(0, Attribute::NoCapture); 751 } 752 753 return nullptr; 754 } 755 756 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 757 StringRef S1, S2; 758 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 759 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 760 761 // strspn(s, "") -> 0 762 // strspn("", s) -> 0 763 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 764 return Constant::getNullValue(CI->getType()); 765 766 // Constant folding. 767 if (HasS1 && HasS2) { 768 size_t Pos = S1.find_first_not_of(S2); 769 if (Pos == StringRef::npos) 770 Pos = S1.size(); 771 return ConstantInt::get(CI->getType(), Pos); 772 } 773 774 return nullptr; 775 } 776 777 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 778 StringRef S1, S2; 779 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 780 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 781 782 // strcspn("", s) -> 0 783 if (HasS1 && S1.empty()) 784 return Constant::getNullValue(CI->getType()); 785 786 // Constant folding. 787 if (HasS1 && HasS2) { 788 size_t Pos = S1.find_first_of(S2); 789 if (Pos == StringRef::npos) 790 Pos = S1.size(); 791 return ConstantInt::get(CI->getType(), Pos); 792 } 793 794 // strcspn(s, "") -> strlen(s) 795 if (HasS2 && S2.empty()) 796 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 797 798 return nullptr; 799 } 800 801 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 802 // fold strstr(x, x) -> x. 803 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 804 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 805 806 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 807 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 808 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 809 if (!StrLen) 810 return nullptr; 811 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 812 StrLen, B, DL, TLI); 813 if (!StrNCmp) 814 return nullptr; 815 for (User *U : llvm::make_early_inc_range(CI->users())) { 816 ICmpInst *Old = cast<ICmpInst>(U); 817 Value *Cmp = 818 B.CreateICmp(Old->getPredicate(), StrNCmp, 819 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 820 replaceAllUsesWith(Old, Cmp); 821 } 822 return CI; 823 } 824 825 // See if either input string is a constant string. 826 StringRef SearchStr, ToFindStr; 827 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 828 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 829 830 // fold strstr(x, "") -> x. 831 if (HasStr2 && ToFindStr.empty()) 832 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 833 834 // If both strings are known, constant fold it. 835 if (HasStr1 && HasStr2) { 836 size_t Offset = SearchStr.find(ToFindStr); 837 838 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 839 return Constant::getNullValue(CI->getType()); 840 841 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 842 Value *Result = castToCStr(CI->getArgOperand(0), B); 843 Result = 844 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 845 return B.CreateBitCast(Result, CI->getType()); 846 } 847 848 // fold strstr(x, "y") -> strchr(x, 'y'). 849 if (HasStr2 && ToFindStr.size() == 1) { 850 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 851 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 852 } 853 854 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 855 return nullptr; 856 } 857 858 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 859 if (isKnownNonZero(CI->getOperand(2), DL)) 860 annotateNonNullNoUndefBasedOnAccess(CI, 0); 861 return nullptr; 862 } 863 864 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 865 Value *SrcStr = CI->getArgOperand(0); 866 Value *Size = CI->getArgOperand(2); 867 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 868 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 869 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 870 871 // memchr(x, y, 0) -> null 872 if (LenC) { 873 if (LenC->isZero()) 874 return Constant::getNullValue(CI->getType()); 875 } else { 876 // From now on we need at least constant length and string. 877 return nullptr; 878 } 879 880 StringRef Str; 881 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 882 return nullptr; 883 884 // Truncate the string to LenC. If Str is smaller than LenC we will still only 885 // scan the string, as reading past the end of it is undefined and we can just 886 // return null if we don't find the char. 887 Str = Str.substr(0, LenC->getZExtValue()); 888 889 // If the char is variable but the input str and length are not we can turn 890 // this memchr call into a simple bit field test. Of course this only works 891 // when the return value is only checked against null. 892 // 893 // It would be really nice to reuse switch lowering here but we can't change 894 // the CFG at this point. 895 // 896 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 897 // != 0 898 // after bounds check. 899 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 900 unsigned char Max = 901 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 902 reinterpret_cast<const unsigned char *>(Str.end())); 903 904 // Make sure the bit field we're about to create fits in a register on the 905 // target. 906 // FIXME: On a 64 bit architecture this prevents us from using the 907 // interesting range of alpha ascii chars. We could do better by emitting 908 // two bitfields or shifting the range by 64 if no lower chars are used. 909 if (!DL.fitsInLegalInteger(Max + 1)) 910 return nullptr; 911 912 // For the bit field use a power-of-2 type with at least 8 bits to avoid 913 // creating unnecessary illegal types. 914 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 915 916 // Now build the bit field. 917 APInt Bitfield(Width, 0); 918 for (char C : Str) 919 Bitfield.setBit((unsigned char)C); 920 Value *BitfieldC = B.getInt(Bitfield); 921 922 // Adjust width of "C" to the bitfield width, then mask off the high bits. 923 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 924 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 925 926 // First check that the bit field access is within bounds. 927 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 928 "memchr.bounds"); 929 930 // Create code that checks if the given bit is set in the field. 931 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 932 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 933 934 // Finally merge both checks and cast to pointer type. The inttoptr 935 // implicitly zexts the i1 to intptr type. 936 return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"), 937 CI->getType()); 938 } 939 940 // Check if all arguments are constants. If so, we can constant fold. 941 if (!CharC) 942 return nullptr; 943 944 // Compute the offset. 945 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 946 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 947 return Constant::getNullValue(CI->getType()); 948 949 // memchr(s+n,c,l) -> gep(s+n+i,c) 950 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 951 } 952 953 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 954 uint64_t Len, IRBuilderBase &B, 955 const DataLayout &DL) { 956 if (Len == 0) // memcmp(s1,s2,0) -> 0 957 return Constant::getNullValue(CI->getType()); 958 959 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 960 if (Len == 1) { 961 Value *LHSV = 962 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 963 CI->getType(), "lhsv"); 964 Value *RHSV = 965 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 966 CI->getType(), "rhsv"); 967 return B.CreateSub(LHSV, RHSV, "chardiff"); 968 } 969 970 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 971 // TODO: The case where both inputs are constants does not need to be limited 972 // to legal integers or equality comparison. See block below this. 973 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 974 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 975 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 976 977 // First, see if we can fold either argument to a constant. 978 Value *LHSV = nullptr; 979 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 980 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 981 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 982 } 983 Value *RHSV = nullptr; 984 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 985 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 986 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 987 } 988 989 // Don't generate unaligned loads. If either source is constant data, 990 // alignment doesn't matter for that source because there is no load. 991 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 992 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 993 if (!LHSV) { 994 Type *LHSPtrTy = 995 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 996 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 997 } 998 if (!RHSV) { 999 Type *RHSPtrTy = 1000 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 1001 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 1002 } 1003 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1004 } 1005 } 1006 1007 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 1008 // TODO: This is limited to i8 arrays. 1009 StringRef LHSStr, RHSStr; 1010 if (getConstantStringInfo(LHS, LHSStr) && 1011 getConstantStringInfo(RHS, RHSStr)) { 1012 // Make sure we're not reading out-of-bounds memory. 1013 if (Len > LHSStr.size() || Len > RHSStr.size()) 1014 return nullptr; 1015 // Fold the memcmp and normalize the result. This way we get consistent 1016 // results across multiple platforms. 1017 uint64_t Ret = 0; 1018 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 1019 if (Cmp < 0) 1020 Ret = -1; 1021 else if (Cmp > 0) 1022 Ret = 1; 1023 return ConstantInt::get(CI->getType(), Ret); 1024 } 1025 1026 return nullptr; 1027 } 1028 1029 // Most simplifications for memcmp also apply to bcmp. 1030 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1031 IRBuilderBase &B) { 1032 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1033 Value *Size = CI->getArgOperand(2); 1034 1035 if (LHS == RHS) // memcmp(s,s,x) -> 0 1036 return Constant::getNullValue(CI->getType()); 1037 1038 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1039 // Handle constant lengths. 1040 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1041 if (!LenC) 1042 return nullptr; 1043 1044 // memcmp(d,s,0) -> 0 1045 if (LenC->getZExtValue() == 0) 1046 return Constant::getNullValue(CI->getType()); 1047 1048 if (Value *Res = 1049 optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL)) 1050 return Res; 1051 return nullptr; 1052 } 1053 1054 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1055 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1056 return V; 1057 1058 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1059 // bcmp can be more efficient than memcmp because it only has to know that 1060 // there is a difference, not how different one is to the other. 1061 if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) { 1062 Value *LHS = CI->getArgOperand(0); 1063 Value *RHS = CI->getArgOperand(1); 1064 Value *Size = CI->getArgOperand(2); 1065 return emitBCmp(LHS, RHS, Size, B, DL, TLI); 1066 } 1067 1068 return nullptr; 1069 } 1070 1071 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1072 return optimizeMemCmpBCmpCommon(CI, B); 1073 } 1074 1075 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1076 Value *Size = CI->getArgOperand(2); 1077 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1078 if (isa<IntrinsicInst>(CI)) 1079 return nullptr; 1080 1081 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1082 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1083 CI->getArgOperand(1), Align(1), Size); 1084 NewCI->setAttributes(CI->getAttributes()); 1085 NewCI->removeAttributes(AttributeList::ReturnIndex, 1086 AttributeFuncs::typeIncompatible(NewCI->getType())); 1087 return CI->getArgOperand(0); 1088 } 1089 1090 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1091 Value *Dst = CI->getArgOperand(0); 1092 Value *Src = CI->getArgOperand(1); 1093 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1094 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1095 StringRef SrcStr; 1096 if (CI->use_empty() && Dst == Src) 1097 return Dst; 1098 // memccpy(d, s, c, 0) -> nullptr 1099 if (N) { 1100 if (N->isNullValue()) 1101 return Constant::getNullValue(CI->getType()); 1102 if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0, 1103 /*TrimAtNul=*/false) || 1104 !StopChar) 1105 return nullptr; 1106 } else { 1107 return nullptr; 1108 } 1109 1110 // Wrap arg 'c' of type int to char 1111 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1112 if (Pos == StringRef::npos) { 1113 if (N->getZExtValue() <= SrcStr.size()) { 1114 B.CreateMemCpy(Dst, Align(1), Src, Align(1), CI->getArgOperand(3)); 1115 return Constant::getNullValue(CI->getType()); 1116 } 1117 return nullptr; 1118 } 1119 1120 Value *NewN = 1121 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1122 // memccpy -> llvm.memcpy 1123 B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN); 1124 return Pos + 1 <= N->getZExtValue() 1125 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1126 : Constant::getNullValue(CI->getType()); 1127 } 1128 1129 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1130 Value *Dst = CI->getArgOperand(0); 1131 Value *N = CI->getArgOperand(2); 1132 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1133 CallInst *NewCI = 1134 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1135 // Propagate attributes, but memcpy has no return value, so make sure that 1136 // any return attributes are compliant. 1137 // TODO: Attach return value attributes to the 1st operand to preserve them? 1138 NewCI->setAttributes(CI->getAttributes()); 1139 NewCI->removeAttributes(AttributeList::ReturnIndex, 1140 AttributeFuncs::typeIncompatible(NewCI->getType())); 1141 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1142 } 1143 1144 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1145 Value *Size = CI->getArgOperand(2); 1146 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1147 if (isa<IntrinsicInst>(CI)) 1148 return nullptr; 1149 1150 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1151 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1152 CI->getArgOperand(1), Align(1), Size); 1153 NewCI->setAttributes(CI->getAttributes()); 1154 NewCI->removeAttributes(AttributeList::ReturnIndex, 1155 AttributeFuncs::typeIncompatible(NewCI->getType())); 1156 return CI->getArgOperand(0); 1157 } 1158 1159 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1160 Value *Size = CI->getArgOperand(2); 1161 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1162 if (isa<IntrinsicInst>(CI)) 1163 return nullptr; 1164 1165 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1166 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1167 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1168 NewCI->setAttributes(CI->getAttributes()); 1169 NewCI->removeAttributes(AttributeList::ReturnIndex, 1170 AttributeFuncs::typeIncompatible(NewCI->getType())); 1171 return CI->getArgOperand(0); 1172 } 1173 1174 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1175 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1176 return emitMalloc(CI->getArgOperand(1), B, DL, TLI); 1177 1178 return nullptr; 1179 } 1180 1181 //===----------------------------------------------------------------------===// 1182 // Math Library Optimizations 1183 //===----------------------------------------------------------------------===// 1184 1185 // Replace a libcall \p CI with a call to intrinsic \p IID 1186 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1187 Intrinsic::ID IID) { 1188 // Propagate fast-math flags from the existing call to the new call. 1189 IRBuilderBase::FastMathFlagGuard Guard(B); 1190 B.setFastMathFlags(CI->getFastMathFlags()); 1191 1192 Module *M = CI->getModule(); 1193 Value *V = CI->getArgOperand(0); 1194 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1195 CallInst *NewCall = B.CreateCall(F, V); 1196 NewCall->takeName(CI); 1197 return NewCall; 1198 } 1199 1200 /// Return a variant of Val with float type. 1201 /// Currently this works in two cases: If Val is an FPExtension of a float 1202 /// value to something bigger, simply return the operand. 1203 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1204 /// loss of precision do so. 1205 static Value *valueHasFloatPrecision(Value *Val) { 1206 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1207 Value *Op = Cast->getOperand(0); 1208 if (Op->getType()->isFloatTy()) 1209 return Op; 1210 } 1211 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1212 APFloat F = Const->getValueAPF(); 1213 bool losesInfo; 1214 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1215 &losesInfo); 1216 if (!losesInfo) 1217 return ConstantFP::get(Const->getContext(), F); 1218 } 1219 return nullptr; 1220 } 1221 1222 /// Shrink double -> float functions. 1223 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1224 bool isBinary, bool isPrecise = false) { 1225 Function *CalleeFn = CI->getCalledFunction(); 1226 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1227 return nullptr; 1228 1229 // If not all the uses of the function are converted to float, then bail out. 1230 // This matters if the precision of the result is more important than the 1231 // precision of the arguments. 1232 if (isPrecise) 1233 for (User *U : CI->users()) { 1234 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1235 if (!Cast || !Cast->getType()->isFloatTy()) 1236 return nullptr; 1237 } 1238 1239 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1240 Value *V[2]; 1241 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1242 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1243 if (!V[0] || (isBinary && !V[1])) 1244 return nullptr; 1245 1246 // If call isn't an intrinsic, check that it isn't within a function with the 1247 // same name as the float version of this call, otherwise the result is an 1248 // infinite loop. For example, from MinGW-w64: 1249 // 1250 // float expf(float val) { return (float) exp((double) val); } 1251 StringRef CalleeName = CalleeFn->getName(); 1252 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1253 if (!IsIntrinsic) { 1254 StringRef CallerName = CI->getFunction()->getName(); 1255 if (!CallerName.empty() && CallerName.back() == 'f' && 1256 CallerName.size() == (CalleeName.size() + 1) && 1257 CallerName.startswith(CalleeName)) 1258 return nullptr; 1259 } 1260 1261 // Propagate the math semantics from the current function to the new function. 1262 IRBuilderBase::FastMathFlagGuard Guard(B); 1263 B.setFastMathFlags(CI->getFastMathFlags()); 1264 1265 // g((double) float) -> (double) gf(float) 1266 Value *R; 1267 if (IsIntrinsic) { 1268 Module *M = CI->getModule(); 1269 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1270 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1271 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1272 } else { 1273 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1274 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs) 1275 : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs); 1276 } 1277 return B.CreateFPExt(R, B.getDoubleTy()); 1278 } 1279 1280 /// Shrink double -> float for unary functions. 1281 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1282 bool isPrecise = false) { 1283 return optimizeDoubleFP(CI, B, false, isPrecise); 1284 } 1285 1286 /// Shrink double -> float for binary functions. 1287 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1288 bool isPrecise = false) { 1289 return optimizeDoubleFP(CI, B, true, isPrecise); 1290 } 1291 1292 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1293 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1294 if (!CI->isFast()) 1295 return nullptr; 1296 1297 // Propagate fast-math flags from the existing call to new instructions. 1298 IRBuilderBase::FastMathFlagGuard Guard(B); 1299 B.setFastMathFlags(CI->getFastMathFlags()); 1300 1301 Value *Real, *Imag; 1302 if (CI->getNumArgOperands() == 1) { 1303 Value *Op = CI->getArgOperand(0); 1304 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1305 Real = B.CreateExtractValue(Op, 0, "real"); 1306 Imag = B.CreateExtractValue(Op, 1, "imag"); 1307 } else { 1308 assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); 1309 Real = CI->getArgOperand(0); 1310 Imag = CI->getArgOperand(1); 1311 } 1312 1313 Value *RealReal = B.CreateFMul(Real, Real); 1314 Value *ImagImag = B.CreateFMul(Imag, Imag); 1315 1316 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1317 CI->getType()); 1318 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); 1319 } 1320 1321 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1322 IRBuilderBase &B) { 1323 if (!isa<FPMathOperator>(Call)) 1324 return nullptr; 1325 1326 IRBuilderBase::FastMathFlagGuard Guard(B); 1327 B.setFastMathFlags(Call->getFastMathFlags()); 1328 1329 // TODO: Can this be shared to also handle LLVM intrinsics? 1330 Value *X; 1331 switch (Func) { 1332 case LibFunc_sin: 1333 case LibFunc_sinf: 1334 case LibFunc_sinl: 1335 case LibFunc_tan: 1336 case LibFunc_tanf: 1337 case LibFunc_tanl: 1338 // sin(-X) --> -sin(X) 1339 // tan(-X) --> -tan(X) 1340 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1341 return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X)); 1342 break; 1343 case LibFunc_cos: 1344 case LibFunc_cosf: 1345 case LibFunc_cosl: 1346 // cos(-X) --> cos(X) 1347 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1348 return B.CreateCall(Call->getCalledFunction(), X, "cos"); 1349 break; 1350 default: 1351 break; 1352 } 1353 return nullptr; 1354 } 1355 1356 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) { 1357 // Multiplications calculated using Addition Chains. 1358 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1359 1360 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1361 1362 if (InnerChain[Exp]) 1363 return InnerChain[Exp]; 1364 1365 static const unsigned AddChain[33][2] = { 1366 {0, 0}, // Unused. 1367 {0, 0}, // Unused (base case = pow1). 1368 {1, 1}, // Unused (pre-computed). 1369 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1370 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1371 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1372 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1373 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1374 }; 1375 1376 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1377 getPow(InnerChain, AddChain[Exp][1], B)); 1378 return InnerChain[Exp]; 1379 } 1380 1381 // Return a properly extended integer (DstWidth bits wide) if the operation is 1382 // an itofp. 1383 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) { 1384 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1385 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1386 // Make sure that the exponent fits inside an "int" of size DstWidth, 1387 // thus avoiding any range issues that FP has not. 1388 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); 1389 if (BitWidth < DstWidth || 1390 (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) 1391 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth)) 1392 : B.CreateZExt(Op, B.getIntNTy(DstWidth)); 1393 } 1394 1395 return nullptr; 1396 } 1397 1398 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1399 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 1400 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 1401 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 1402 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1403 AttributeList Attrs; // Attributes are only meaningful on the original call 1404 Module *Mod = Pow->getModule(); 1405 Type *Ty = Pow->getType(); 1406 bool Ignored; 1407 1408 // Evaluate special cases related to a nested function as the base. 1409 1410 // pow(exp(x), y) -> exp(x * y) 1411 // pow(exp2(x), y) -> exp2(x * y) 1412 // If exp{,2}() is used only once, it is better to fold two transcendental 1413 // math functions into one. If used again, exp{,2}() would still have to be 1414 // called with the original argument, then keep both original transcendental 1415 // functions. However, this transformation is only safe with fully relaxed 1416 // math semantics, since, besides rounding differences, it changes overflow 1417 // and underflow behavior quite dramatically. For example: 1418 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1419 // Whereas: 1420 // exp(1000 * 0.001) = exp(1) 1421 // TODO: Loosen the requirement for fully relaxed math semantics. 1422 // TODO: Handle exp10() when more targets have it available. 1423 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1424 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1425 LibFunc LibFn; 1426 1427 Function *CalleeFn = BaseFn->getCalledFunction(); 1428 if (CalleeFn && 1429 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1430 StringRef ExpName; 1431 Intrinsic::ID ID; 1432 Value *ExpFn; 1433 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 1434 1435 switch (LibFn) { 1436 default: 1437 return nullptr; 1438 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1439 ExpName = TLI->getName(LibFunc_exp); 1440 ID = Intrinsic::exp; 1441 LibFnFloat = LibFunc_expf; 1442 LibFnDouble = LibFunc_exp; 1443 LibFnLongDouble = LibFunc_expl; 1444 break; 1445 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1446 ExpName = TLI->getName(LibFunc_exp2); 1447 ID = Intrinsic::exp2; 1448 LibFnFloat = LibFunc_exp2f; 1449 LibFnDouble = LibFunc_exp2; 1450 LibFnLongDouble = LibFunc_exp2l; 1451 break; 1452 } 1453 1454 // Create new exp{,2}() with the product as its argument. 1455 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1456 ExpFn = BaseFn->doesNotAccessMemory() 1457 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1458 FMul, ExpName) 1459 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1460 LibFnLongDouble, B, 1461 BaseFn->getAttributes()); 1462 1463 // Since the new exp{,2}() is different from the original one, dead code 1464 // elimination cannot be trusted to remove it, since it may have side 1465 // effects (e.g., errno). When the only consumer for the original 1466 // exp{,2}() is pow(), then it has to be explicitly erased. 1467 substituteInParent(BaseFn, ExpFn); 1468 return ExpFn; 1469 } 1470 } 1471 1472 // Evaluate special cases related to a constant base. 1473 1474 const APFloat *BaseF; 1475 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1476 return nullptr; 1477 1478 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 1479 if (match(Base, m_SpecificFP(2.0)) && 1480 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 1481 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1482 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1483 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI, 1484 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1485 B, Attrs); 1486 } 1487 1488 // pow(2.0 ** n, x) -> exp2(n * x) 1489 if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1490 APFloat BaseR = APFloat(1.0); 1491 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1492 BaseR = BaseR / *BaseF; 1493 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1494 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1495 APSInt NI(64, false); 1496 if ((IsInteger || IsReciprocal) && 1497 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1498 APFloat::opOK && 1499 NI > 1 && NI.isPowerOf2()) { 1500 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1501 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1502 if (Pow->doesNotAccessMemory()) 1503 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1504 FMul, "exp2"); 1505 else 1506 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1507 LibFunc_exp2l, B, Attrs); 1508 } 1509 } 1510 1511 // pow(10.0, x) -> exp10(x) 1512 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1513 if (match(Base, m_SpecificFP(10.0)) && 1514 hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1515 return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f, 1516 LibFunc_exp10l, B, Attrs); 1517 1518 // pow(x, y) -> exp2(log2(x) * y) 1519 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 1520 !BaseF->isNegative()) { 1521 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 1522 // Luckily optimizePow has already handled the x == 1 case. 1523 assert(!match(Base, m_FPOne()) && 1524 "pow(1.0, y) should have been simplified earlier!"); 1525 1526 Value *Log = nullptr; 1527 if (Ty->isFloatTy()) 1528 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 1529 else if (Ty->isDoubleTy()) 1530 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 1531 1532 if (Log) { 1533 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 1534 if (Pow->doesNotAccessMemory()) 1535 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1536 FMul, "exp2"); 1537 else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) 1538 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1539 LibFunc_exp2l, B, Attrs); 1540 } 1541 } 1542 1543 return nullptr; 1544 } 1545 1546 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1547 Module *M, IRBuilderBase &B, 1548 const TargetLibraryInfo *TLI) { 1549 // If errno is never set, then use the intrinsic for sqrt(). 1550 if (NoErrno) { 1551 Function *SqrtFn = 1552 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1553 return B.CreateCall(SqrtFn, V, "sqrt"); 1554 } 1555 1556 // Otherwise, use the libcall for sqrt(). 1557 if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) 1558 // TODO: We also should check that the target can in fact lower the sqrt() 1559 // libcall. We currently have no way to ask this question, so we ask if 1560 // the target has a sqrt() libcall, which is not exactly the same. 1561 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1562 LibFunc_sqrtl, B, Attrs); 1563 1564 return nullptr; 1565 } 1566 1567 /// Use square root in place of pow(x, +/-0.5). 1568 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 1569 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1570 AttributeList Attrs; // Attributes are only meaningful on the original call 1571 Module *Mod = Pow->getModule(); 1572 Type *Ty = Pow->getType(); 1573 1574 const APFloat *ExpoF; 1575 if (!match(Expo, m_APFloat(ExpoF)) || 1576 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1577 return nullptr; 1578 1579 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 1580 // so that requires fast-math-flags (afn or reassoc). 1581 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 1582 return nullptr; 1583 1584 // If we have a pow() library call (accesses memory) and we can't guarantee 1585 // that the base is not an infinity, give up: 1586 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 1587 // errno), but sqrt(-Inf) is required by various standards to set errno. 1588 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 1589 !isKnownNeverInfinity(Base, TLI)) 1590 return nullptr; 1591 1592 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1593 if (!Sqrt) 1594 return nullptr; 1595 1596 // Handle signed zero base by expanding to fabs(sqrt(x)). 1597 if (!Pow->hasNoSignedZeros()) { 1598 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1599 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1600 } 1601 1602 // Handle non finite base by expanding to 1603 // (x == -infinity ? +infinity : sqrt(x)). 1604 if (!Pow->hasNoInfs()) { 1605 Value *PosInf = ConstantFP::getInfinity(Ty), 1606 *NegInf = ConstantFP::getInfinity(Ty, true); 1607 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1608 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1609 } 1610 1611 // If the exponent is negative, then get the reciprocal. 1612 if (ExpoF->isNegative()) 1613 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1614 1615 return Sqrt; 1616 } 1617 1618 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1619 IRBuilderBase &B) { 1620 Value *Args[] = {Base, Expo}; 1621 Type *Types[] = {Base->getType(), Expo->getType()}; 1622 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types); 1623 return B.CreateCall(F, Args); 1624 } 1625 1626 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 1627 Value *Base = Pow->getArgOperand(0); 1628 Value *Expo = Pow->getArgOperand(1); 1629 Function *Callee = Pow->getCalledFunction(); 1630 StringRef Name = Callee->getName(); 1631 Type *Ty = Pow->getType(); 1632 Module *M = Pow->getModule(); 1633 bool AllowApprox = Pow->hasApproxFunc(); 1634 bool Ignored; 1635 1636 // Propagate the math semantics from the call to any created instructions. 1637 IRBuilderBase::FastMathFlagGuard Guard(B); 1638 B.setFastMathFlags(Pow->getFastMathFlags()); 1639 // Evaluate special cases related to the base. 1640 1641 // pow(1.0, x) -> 1.0 1642 if (match(Base, m_FPOne())) 1643 return Base; 1644 1645 if (Value *Exp = replacePowWithExp(Pow, B)) 1646 return Exp; 1647 1648 // Evaluate special cases related to the exponent. 1649 1650 // pow(x, -1.0) -> 1.0 / x 1651 if (match(Expo, m_SpecificFP(-1.0))) 1652 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1653 1654 // pow(x, +/-0.0) -> 1.0 1655 if (match(Expo, m_AnyZeroFP())) 1656 return ConstantFP::get(Ty, 1.0); 1657 1658 // pow(x, 1.0) -> x 1659 if (match(Expo, m_FPOne())) 1660 return Base; 1661 1662 // pow(x, 2.0) -> x * x 1663 if (match(Expo, m_SpecificFP(2.0))) 1664 return B.CreateFMul(Base, Base, "square"); 1665 1666 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1667 return Sqrt; 1668 1669 // pow(x, n) -> x * x * x * ... 1670 const APFloat *ExpoF; 1671 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 1672 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 1673 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1674 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1675 // additional fmul. 1676 // TODO: This whole transformation should be backend specific (e.g. some 1677 // backends might prefer libcalls or the limit for the exponent might 1678 // be different) and it should also consider optimizing for size. 1679 APFloat LimF(ExpoF->getSemantics(), 33), 1680 ExpoA(abs(*ExpoF)); 1681 if (ExpoA < LimF) { 1682 // This transformation applies to integer or integer+0.5 exponents only. 1683 // For integer+0.5, we create a sqrt(Base) call. 1684 Value *Sqrt = nullptr; 1685 if (!ExpoA.isInteger()) { 1686 APFloat Expo2 = ExpoA; 1687 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1688 // is no floating point exception and the result is an integer, then 1689 // ExpoA == integer + 0.5 1690 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1691 return nullptr; 1692 1693 if (!Expo2.isInteger()) 1694 return nullptr; 1695 1696 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1697 Pow->doesNotAccessMemory(), M, B, TLI); 1698 if (!Sqrt) 1699 return nullptr; 1700 } 1701 1702 // We will memoize intermediate products of the Addition Chain. 1703 Value *InnerChain[33] = {nullptr}; 1704 InnerChain[1] = Base; 1705 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1706 1707 // We cannot readily convert a non-double type (like float) to a double. 1708 // So we first convert it to something which could be converted to double. 1709 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1710 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1711 1712 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1713 if (Sqrt) 1714 FMul = B.CreateFMul(FMul, Sqrt); 1715 1716 // If the exponent is negative, then get the reciprocal. 1717 if (ExpoF->isNegative()) 1718 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1719 1720 return FMul; 1721 } 1722 1723 APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false); 1724 // powf(x, n) -> powi(x, n) if n is a constant signed integer value 1725 if (ExpoF->isInteger() && 1726 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 1727 APFloat::opOK) { 1728 return createPowWithIntegerExponent( 1729 Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo), M, B); 1730 } 1731 } 1732 1733 // powf(x, itofp(y)) -> powi(x, y) 1734 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 1735 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1736 return createPowWithIntegerExponent(Base, ExpoI, M, B); 1737 } 1738 1739 // Shrink pow() to powf() if the arguments are single precision, 1740 // unless the result is expected to be double precision. 1741 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 1742 hasFloatVersion(Name)) { 1743 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, true)) 1744 return Shrunk; 1745 } 1746 1747 return nullptr; 1748 } 1749 1750 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 1751 Function *Callee = CI->getCalledFunction(); 1752 AttributeList Attrs; // Attributes are only meaningful on the original call 1753 StringRef Name = Callee->getName(); 1754 Value *Ret = nullptr; 1755 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 1756 hasFloatVersion(Name)) 1757 Ret = optimizeUnaryDoubleFP(CI, B, true); 1758 1759 Type *Ty = CI->getType(); 1760 Value *Op = CI->getArgOperand(0); 1761 1762 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize 1763 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize 1764 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 1765 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1766 if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) 1767 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 1768 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1769 B, Attrs); 1770 } 1771 1772 return Ret; 1773 } 1774 1775 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 1776 // If we can shrink the call to a float function rather than a double 1777 // function, do that first. 1778 Function *Callee = CI->getCalledFunction(); 1779 StringRef Name = Callee->getName(); 1780 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1781 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1782 return Ret; 1783 1784 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 1785 // the intrinsics for improved optimization (for example, vectorization). 1786 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 1787 // From the C standard draft WG14/N1256: 1788 // "Ideally, fmax would be sensitive to the sign of zero, for example 1789 // fmax(-0.0, +0.0) would return +0; however, implementation in software 1790 // might be impractical." 1791 IRBuilderBase::FastMathFlagGuard Guard(B); 1792 FastMathFlags FMF = CI->getFastMathFlags(); 1793 FMF.setNoSignedZeros(); 1794 B.setFastMathFlags(FMF); 1795 1796 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 1797 : Intrinsic::maxnum; 1798 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 1799 return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) }); 1800 } 1801 1802 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 1803 Function *LogFn = Log->getCalledFunction(); 1804 AttributeList Attrs; // Attributes are only meaningful on the original call 1805 StringRef LogNm = LogFn->getName(); 1806 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 1807 Module *Mod = Log->getModule(); 1808 Type *Ty = Log->getType(); 1809 Value *Ret = nullptr; 1810 1811 if (UnsafeFPShrink && hasFloatVersion(LogNm)) 1812 Ret = optimizeUnaryDoubleFP(Log, B, true); 1813 1814 // The earlier call must also be 'fast' in order to do these transforms. 1815 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 1816 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 1817 return Ret; 1818 1819 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 1820 1821 // This is only applicable to log(), log2(), log10(). 1822 if (TLI->getLibFunc(LogNm, LogLb)) 1823 switch (LogLb) { 1824 case LibFunc_logf: 1825 LogID = Intrinsic::log; 1826 ExpLb = LibFunc_expf; 1827 Exp2Lb = LibFunc_exp2f; 1828 Exp10Lb = LibFunc_exp10f; 1829 PowLb = LibFunc_powf; 1830 break; 1831 case LibFunc_log: 1832 LogID = Intrinsic::log; 1833 ExpLb = LibFunc_exp; 1834 Exp2Lb = LibFunc_exp2; 1835 Exp10Lb = LibFunc_exp10; 1836 PowLb = LibFunc_pow; 1837 break; 1838 case LibFunc_logl: 1839 LogID = Intrinsic::log; 1840 ExpLb = LibFunc_expl; 1841 Exp2Lb = LibFunc_exp2l; 1842 Exp10Lb = LibFunc_exp10l; 1843 PowLb = LibFunc_powl; 1844 break; 1845 case LibFunc_log2f: 1846 LogID = Intrinsic::log2; 1847 ExpLb = LibFunc_expf; 1848 Exp2Lb = LibFunc_exp2f; 1849 Exp10Lb = LibFunc_exp10f; 1850 PowLb = LibFunc_powf; 1851 break; 1852 case LibFunc_log2: 1853 LogID = Intrinsic::log2; 1854 ExpLb = LibFunc_exp; 1855 Exp2Lb = LibFunc_exp2; 1856 Exp10Lb = LibFunc_exp10; 1857 PowLb = LibFunc_pow; 1858 break; 1859 case LibFunc_log2l: 1860 LogID = Intrinsic::log2; 1861 ExpLb = LibFunc_expl; 1862 Exp2Lb = LibFunc_exp2l; 1863 Exp10Lb = LibFunc_exp10l; 1864 PowLb = LibFunc_powl; 1865 break; 1866 case LibFunc_log10f: 1867 LogID = Intrinsic::log10; 1868 ExpLb = LibFunc_expf; 1869 Exp2Lb = LibFunc_exp2f; 1870 Exp10Lb = LibFunc_exp10f; 1871 PowLb = LibFunc_powf; 1872 break; 1873 case LibFunc_log10: 1874 LogID = Intrinsic::log10; 1875 ExpLb = LibFunc_exp; 1876 Exp2Lb = LibFunc_exp2; 1877 Exp10Lb = LibFunc_exp10; 1878 PowLb = LibFunc_pow; 1879 break; 1880 case LibFunc_log10l: 1881 LogID = Intrinsic::log10; 1882 ExpLb = LibFunc_expl; 1883 Exp2Lb = LibFunc_exp2l; 1884 Exp10Lb = LibFunc_exp10l; 1885 PowLb = LibFunc_powl; 1886 break; 1887 default: 1888 return Ret; 1889 } 1890 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 1891 LogID == Intrinsic::log10) { 1892 if (Ty->getScalarType()->isFloatTy()) { 1893 ExpLb = LibFunc_expf; 1894 Exp2Lb = LibFunc_exp2f; 1895 Exp10Lb = LibFunc_exp10f; 1896 PowLb = LibFunc_powf; 1897 } else if (Ty->getScalarType()->isDoubleTy()) { 1898 ExpLb = LibFunc_exp; 1899 Exp2Lb = LibFunc_exp2; 1900 Exp10Lb = LibFunc_exp10; 1901 PowLb = LibFunc_pow; 1902 } else 1903 return Ret; 1904 } else 1905 return Ret; 1906 1907 IRBuilderBase::FastMathFlagGuard Guard(B); 1908 B.setFastMathFlags(FastMathFlags::getFast()); 1909 1910 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 1911 LibFunc ArgLb = NotLibFunc; 1912 TLI->getLibFunc(*Arg, ArgLb); 1913 1914 // log(pow(x,y)) -> y*log(x) 1915 if (ArgLb == PowLb || ArgID == Intrinsic::pow) { 1916 Value *LogX = 1917 Log->doesNotAccessMemory() 1918 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 1919 Arg->getOperand(0), "log") 1920 : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs); 1921 Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul"); 1922 // Since pow() may have side effects, e.g. errno, 1923 // dead code elimination may not be trusted to remove it. 1924 substituteInParent(Arg, MulY); 1925 return MulY; 1926 } 1927 1928 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 1929 // TODO: There is no exp10() intrinsic yet. 1930 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 1931 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 1932 Constant *Eul; 1933 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 1934 // FIXME: Add more precise value of e for long double. 1935 Eul = ConstantFP::get(Log->getType(), numbers::e); 1936 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 1937 Eul = ConstantFP::get(Log->getType(), 2.0); 1938 else 1939 Eul = ConstantFP::get(Log->getType(), 10.0); 1940 Value *LogE = Log->doesNotAccessMemory() 1941 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 1942 Eul, "log") 1943 : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs); 1944 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 1945 // Since exp() may have side effects, e.g. errno, 1946 // dead code elimination may not be trusted to remove it. 1947 substituteInParent(Arg, MulY); 1948 return MulY; 1949 } 1950 1951 return Ret; 1952 } 1953 1954 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 1955 Function *Callee = CI->getCalledFunction(); 1956 Value *Ret = nullptr; 1957 // TODO: Once we have a way (other than checking for the existince of the 1958 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 1959 // condition below. 1960 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 1961 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1962 Ret = optimizeUnaryDoubleFP(CI, B, true); 1963 1964 if (!CI->isFast()) 1965 return Ret; 1966 1967 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1968 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 1969 return Ret; 1970 1971 // We're looking for a repeated factor in a multiplication tree, 1972 // so we can do this fold: sqrt(x * x) -> fabs(x); 1973 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 1974 Value *Op0 = I->getOperand(0); 1975 Value *Op1 = I->getOperand(1); 1976 Value *RepeatOp = nullptr; 1977 Value *OtherOp = nullptr; 1978 if (Op0 == Op1) { 1979 // Simple match: the operands of the multiply are identical. 1980 RepeatOp = Op0; 1981 } else { 1982 // Look for a more complicated pattern: one of the operands is itself 1983 // a multiply, so search for a common factor in that multiply. 1984 // Note: We don't bother looking any deeper than this first level or for 1985 // variations of this pattern because instcombine's visitFMUL and/or the 1986 // reassociation pass should give us this form. 1987 Value *OtherMul0, *OtherMul1; 1988 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1989 // Pattern: sqrt((x * y) * z) 1990 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 1991 // Matched: sqrt((x * x) * z) 1992 RepeatOp = OtherMul0; 1993 OtherOp = Op1; 1994 } 1995 } 1996 } 1997 if (!RepeatOp) 1998 return Ret; 1999 2000 // Fast math flags for any created instructions should match the sqrt 2001 // and multiply. 2002 IRBuilderBase::FastMathFlagGuard Guard(B); 2003 B.setFastMathFlags(I->getFastMathFlags()); 2004 2005 // If we found a repeated factor, hoist it out of the square root and 2006 // replace it with the fabs of that factor. 2007 Module *M = Callee->getParent(); 2008 Type *ArgType = I->getType(); 2009 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 2010 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 2011 if (OtherOp) { 2012 // If we found a non-repeated factor, we still need to get its square 2013 // root. We then multiply that by the value that was simplified out 2014 // of the square root calculation. 2015 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 2016 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 2017 return B.CreateFMul(FabsCall, SqrtCall); 2018 } 2019 return FabsCall; 2020 } 2021 2022 // TODO: Generalize to handle any trig function and its inverse. 2023 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) { 2024 Function *Callee = CI->getCalledFunction(); 2025 Value *Ret = nullptr; 2026 StringRef Name = Callee->getName(); 2027 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 2028 Ret = optimizeUnaryDoubleFP(CI, B, true); 2029 2030 Value *Op1 = CI->getArgOperand(0); 2031 auto *OpC = dyn_cast<CallInst>(Op1); 2032 if (!OpC) 2033 return Ret; 2034 2035 // Both calls must be 'fast' in order to remove them. 2036 if (!CI->isFast() || !OpC->isFast()) 2037 return Ret; 2038 2039 // tan(atan(x)) -> x 2040 // tanf(atanf(x)) -> x 2041 // tanl(atanl(x)) -> x 2042 LibFunc Func; 2043 Function *F = OpC->getCalledFunction(); 2044 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 2045 ((Func == LibFunc_atan && Callee->getName() == "tan") || 2046 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 2047 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 2048 Ret = OpC->getArgOperand(0); 2049 return Ret; 2050 } 2051 2052 static bool isTrigLibCall(CallInst *CI) { 2053 // We can only hope to do anything useful if we can ignore things like errno 2054 // and floating-point exceptions. 2055 // We already checked the prototype. 2056 return CI->hasFnAttr(Attribute::NoUnwind) && 2057 CI->hasFnAttr(Attribute::ReadNone); 2058 } 2059 2060 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2061 bool UseFloat, Value *&Sin, Value *&Cos, 2062 Value *&SinCos) { 2063 Type *ArgTy = Arg->getType(); 2064 Type *ResTy; 2065 StringRef Name; 2066 2067 Triple T(OrigCallee->getParent()->getTargetTriple()); 2068 if (UseFloat) { 2069 Name = "__sincospif_stret"; 2070 2071 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2072 // x86_64 can't use {float, float} since that would be returned in both 2073 // xmm0 and xmm1, which isn't what a real struct would do. 2074 ResTy = T.getArch() == Triple::x86_64 2075 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2076 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2077 } else { 2078 Name = "__sincospi_stret"; 2079 ResTy = StructType::get(ArgTy, ArgTy); 2080 } 2081 2082 Module *M = OrigCallee->getParent(); 2083 FunctionCallee Callee = 2084 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); 2085 2086 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2087 // If the argument is an instruction, it must dominate all uses so put our 2088 // sincos call there. 2089 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2090 } else { 2091 // Otherwise (e.g. for a constant) the beginning of the function is as 2092 // good a place as any. 2093 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2094 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2095 } 2096 2097 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2098 2099 if (SinCos->getType()->isStructTy()) { 2100 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2101 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2102 } else { 2103 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2104 "sinpi"); 2105 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2106 "cospi"); 2107 } 2108 } 2109 2110 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) { 2111 // Make sure the prototype is as expected, otherwise the rest of the 2112 // function is probably invalid and likely to abort. 2113 if (!isTrigLibCall(CI)) 2114 return nullptr; 2115 2116 Value *Arg = CI->getArgOperand(0); 2117 SmallVector<CallInst *, 1> SinCalls; 2118 SmallVector<CallInst *, 1> CosCalls; 2119 SmallVector<CallInst *, 1> SinCosCalls; 2120 2121 bool IsFloat = Arg->getType()->isFloatTy(); 2122 2123 // Look for all compatible sinpi, cospi and sincospi calls with the same 2124 // argument. If there are enough (in some sense) we can make the 2125 // substitution. 2126 Function *F = CI->getFunction(); 2127 for (User *U : Arg->users()) 2128 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2129 2130 // It's only worthwhile if both sinpi and cospi are actually used. 2131 if (SinCalls.empty() || CosCalls.empty()) 2132 return nullptr; 2133 2134 Value *Sin, *Cos, *SinCos; 2135 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 2136 2137 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2138 Value *Res) { 2139 for (CallInst *C : Calls) 2140 replaceAllUsesWith(C, Res); 2141 }; 2142 2143 replaceTrigInsts(SinCalls, Sin); 2144 replaceTrigInsts(CosCalls, Cos); 2145 replaceTrigInsts(SinCosCalls, SinCos); 2146 2147 return nullptr; 2148 } 2149 2150 void LibCallSimplifier::classifyArgUse( 2151 Value *Val, Function *F, bool IsFloat, 2152 SmallVectorImpl<CallInst *> &SinCalls, 2153 SmallVectorImpl<CallInst *> &CosCalls, 2154 SmallVectorImpl<CallInst *> &SinCosCalls) { 2155 CallInst *CI = dyn_cast<CallInst>(Val); 2156 2157 if (!CI || CI->use_empty()) 2158 return; 2159 2160 // Don't consider calls in other functions. 2161 if (CI->getFunction() != F) 2162 return; 2163 2164 Function *Callee = CI->getCalledFunction(); 2165 LibFunc Func; 2166 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 2167 !isTrigLibCall(CI)) 2168 return; 2169 2170 if (IsFloat) { 2171 if (Func == LibFunc_sinpif) 2172 SinCalls.push_back(CI); 2173 else if (Func == LibFunc_cospif) 2174 CosCalls.push_back(CI); 2175 else if (Func == LibFunc_sincospif_stret) 2176 SinCosCalls.push_back(CI); 2177 } else { 2178 if (Func == LibFunc_sinpi) 2179 SinCalls.push_back(CI); 2180 else if (Func == LibFunc_cospi) 2181 CosCalls.push_back(CI); 2182 else if (Func == LibFunc_sincospi_stret) 2183 SinCosCalls.push_back(CI); 2184 } 2185 } 2186 2187 //===----------------------------------------------------------------------===// 2188 // Integer Library Call Optimizations 2189 //===----------------------------------------------------------------------===// 2190 2191 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 2192 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 2193 Value *Op = CI->getArgOperand(0); 2194 Type *ArgType = Op->getType(); 2195 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2196 Intrinsic::cttz, ArgType); 2197 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 2198 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 2199 V = B.CreateIntCast(V, B.getInt32Ty(), false); 2200 2201 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 2202 return B.CreateSelect(Cond, V, B.getInt32(0)); 2203 } 2204 2205 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 2206 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 2207 Value *Op = CI->getArgOperand(0); 2208 Type *ArgType = Op->getType(); 2209 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2210 Intrinsic::ctlz, ArgType); 2211 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 2212 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 2213 V); 2214 return B.CreateIntCast(V, CI->getType(), false); 2215 } 2216 2217 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 2218 // abs(x) -> x <s 0 ? -x : x 2219 // The negation has 'nsw' because abs of INT_MIN is undefined. 2220 Value *X = CI->getArgOperand(0); 2221 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 2222 Value *NegX = B.CreateNSWNeg(X, "neg"); 2223 return B.CreateSelect(IsNeg, NegX, X); 2224 } 2225 2226 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 2227 // isdigit(c) -> (c-'0') <u 10 2228 Value *Op = CI->getArgOperand(0); 2229 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 2230 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 2231 return B.CreateZExt(Op, CI->getType()); 2232 } 2233 2234 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 2235 // isascii(c) -> c <u 128 2236 Value *Op = CI->getArgOperand(0); 2237 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 2238 return B.CreateZExt(Op, CI->getType()); 2239 } 2240 2241 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 2242 // toascii(c) -> c & 0x7f 2243 return B.CreateAnd(CI->getArgOperand(0), 2244 ConstantInt::get(CI->getType(), 0x7F)); 2245 } 2246 2247 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 2248 StringRef Str; 2249 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2250 return nullptr; 2251 2252 return convertStrToNumber(CI, Str, 10); 2253 } 2254 2255 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) { 2256 StringRef Str; 2257 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2258 return nullptr; 2259 2260 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 2261 return nullptr; 2262 2263 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2264 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 2265 } 2266 2267 return nullptr; 2268 } 2269 2270 //===----------------------------------------------------------------------===// 2271 // Formatting and IO Library Call Optimizations 2272 //===----------------------------------------------------------------------===// 2273 2274 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2275 2276 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 2277 int StreamArg) { 2278 Function *Callee = CI->getCalledFunction(); 2279 // Error reporting calls should be cold, mark them as such. 2280 // This applies even to non-builtin calls: it is only a hint and applies to 2281 // functions that the frontend might not understand as builtins. 2282 2283 // This heuristic was suggested in: 2284 // Improving Static Branch Prediction in a Compiler 2285 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2286 // Proceedings of PACT'98, Oct. 1998, IEEE 2287 if (!CI->hasFnAttr(Attribute::Cold) && 2288 isReportingError(Callee, CI, StreamArg)) { 2289 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 2290 } 2291 2292 return nullptr; 2293 } 2294 2295 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2296 if (!Callee || !Callee->isDeclaration()) 2297 return false; 2298 2299 if (StreamArg < 0) 2300 return true; 2301 2302 // These functions might be considered cold, but only if their stream 2303 // argument is stderr. 2304 2305 if (StreamArg >= (int)CI->getNumArgOperands()) 2306 return false; 2307 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2308 if (!LI) 2309 return false; 2310 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2311 if (!GV || !GV->isDeclaration()) 2312 return false; 2313 return GV->getName() == "stderr"; 2314 } 2315 2316 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 2317 // Check for a fixed format string. 2318 StringRef FormatStr; 2319 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2320 return nullptr; 2321 2322 // Empty format string -> noop. 2323 if (FormatStr.empty()) // Tolerate printf's declared void. 2324 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2325 2326 // Do not do any of the following transformations if the printf return value 2327 // is used, in general the printf return value is not compatible with either 2328 // putchar() or puts(). 2329 if (!CI->use_empty()) 2330 return nullptr; 2331 2332 // printf("x") -> putchar('x'), even for "%" and "%%". 2333 if (FormatStr.size() == 1 || FormatStr == "%%") 2334 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 2335 2336 // Try to remove call or emit putchar/puts. 2337 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 2338 StringRef OperandStr; 2339 if (!getConstantStringInfo(CI->getOperand(1), OperandStr)) 2340 return nullptr; 2341 // printf("%s", "") --> NOP 2342 if (OperandStr.empty()) 2343 return (Value *)CI; 2344 // printf("%s", "a") --> putchar('a') 2345 if (OperandStr.size() == 1) 2346 return emitPutChar(B.getInt32(OperandStr[0]), B, TLI); 2347 // printf("%s", str"\n") --> puts(str) 2348 if (OperandStr.back() == '\n') { 2349 OperandStr = OperandStr.drop_back(); 2350 Value *GV = B.CreateGlobalString(OperandStr, "str"); 2351 return emitPutS(GV, B, TLI); 2352 } 2353 return nullptr; 2354 } 2355 2356 // printf("foo\n") --> puts("foo") 2357 if (FormatStr.back() == '\n' && 2358 FormatStr.find('%') == StringRef::npos) { // No format characters. 2359 // Create a string literal with no \n on it. We expect the constant merge 2360 // pass to be run after this pass, to merge duplicate strings. 2361 FormatStr = FormatStr.drop_back(); 2362 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2363 return emitPutS(GV, B, TLI); 2364 } 2365 2366 // Optimize specific format strings. 2367 // printf("%c", chr) --> putchar(chr) 2368 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 2369 CI->getArgOperand(1)->getType()->isIntegerTy()) 2370 return emitPutChar(CI->getArgOperand(1), B, TLI); 2371 2372 // printf("%s\n", str) --> puts(str) 2373 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 2374 CI->getArgOperand(1)->getType()->isPointerTy()) 2375 return emitPutS(CI->getArgOperand(1), B, TLI); 2376 return nullptr; 2377 } 2378 2379 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 2380 2381 Function *Callee = CI->getCalledFunction(); 2382 FunctionType *FT = Callee->getFunctionType(); 2383 if (Value *V = optimizePrintFString(CI, B)) { 2384 return V; 2385 } 2386 2387 // printf(format, ...) -> iprintf(format, ...) if no floating point 2388 // arguments. 2389 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2390 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2391 FunctionCallee IPrintFFn = 2392 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2393 CallInst *New = cast<CallInst>(CI->clone()); 2394 New->setCalledFunction(IPrintFFn); 2395 B.Insert(New); 2396 return New; 2397 } 2398 2399 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2400 // arguments. 2401 if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) { 2402 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2403 auto SmallPrintFFn = 2404 M->getOrInsertFunction(TLI->getName(LibFunc_small_printf), 2405 FT, Callee->getAttributes()); 2406 CallInst *New = cast<CallInst>(CI->clone()); 2407 New->setCalledFunction(SmallPrintFFn); 2408 B.Insert(New); 2409 return New; 2410 } 2411 2412 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2413 return nullptr; 2414 } 2415 2416 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 2417 IRBuilderBase &B) { 2418 // Check for a fixed format string. 2419 StringRef FormatStr; 2420 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2421 return nullptr; 2422 2423 // If we just have a format string (nothing else crazy) transform it. 2424 Value *Dest = CI->getArgOperand(0); 2425 if (CI->getNumArgOperands() == 2) { 2426 // Make sure there's no % in the constant array. We could try to handle 2427 // %% -> % in the future if we cared. 2428 if (FormatStr.find('%') != StringRef::npos) 2429 return nullptr; // we found a format specifier, bail out. 2430 2431 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2432 B.CreateMemCpy( 2433 Dest, Align(1), CI->getArgOperand(1), Align(1), 2434 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2435 FormatStr.size() + 1)); // Copy the null byte. 2436 return ConstantInt::get(CI->getType(), FormatStr.size()); 2437 } 2438 2439 // The remaining optimizations require the format string to be "%s" or "%c" 2440 // and have an extra operand. 2441 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2442 CI->getNumArgOperands() < 3) 2443 return nullptr; 2444 2445 // Decode the second character of the format string. 2446 if (FormatStr[1] == 'c') { 2447 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2448 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2449 return nullptr; 2450 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2451 Value *Ptr = castToCStr(Dest, B); 2452 B.CreateStore(V, Ptr); 2453 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2454 B.CreateStore(B.getInt8(0), Ptr); 2455 2456 return ConstantInt::get(CI->getType(), 1); 2457 } 2458 2459 if (FormatStr[1] == 's') { 2460 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2461 // strlen(str)+1) 2462 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2463 return nullptr; 2464 2465 if (CI->use_empty()) 2466 // sprintf(dest, "%s", str) -> strcpy(dest, str) 2467 return emitStrCpy(Dest, CI->getArgOperand(2), B, TLI); 2468 2469 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 2470 if (SrcLen) { 2471 B.CreateMemCpy( 2472 Dest, Align(1), CI->getArgOperand(2), Align(1), 2473 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 2474 // Returns total number of characters written without null-character. 2475 return ConstantInt::get(CI->getType(), SrcLen - 1); 2476 } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) { 2477 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 2478 // Handle mismatched pointer types (goes away with typeless pointers?). 2479 V = B.CreatePointerCast(V, Dest->getType()); 2480 Value *PtrDiff = B.CreatePtrDiff(V, Dest); 2481 return B.CreateIntCast(PtrDiff, CI->getType(), false); 2482 } 2483 2484 bool OptForSize = CI->getFunction()->hasOptSize() || 2485 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2486 PGSOQueryType::IRPass); 2487 if (OptForSize) 2488 return nullptr; 2489 2490 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2491 if (!Len) 2492 return nullptr; 2493 Value *IncLen = 2494 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2495 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen); 2496 2497 // The sprintf result is the unincremented number of bytes in the string. 2498 return B.CreateIntCast(Len, CI->getType(), false); 2499 } 2500 return nullptr; 2501 } 2502 2503 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 2504 Function *Callee = CI->getCalledFunction(); 2505 FunctionType *FT = Callee->getFunctionType(); 2506 if (Value *V = optimizeSPrintFString(CI, B)) { 2507 return V; 2508 } 2509 2510 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2511 // point arguments. 2512 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2513 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2514 FunctionCallee SIPrintFFn = 2515 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2516 CallInst *New = cast<CallInst>(CI->clone()); 2517 New->setCalledFunction(SIPrintFFn); 2518 B.Insert(New); 2519 return New; 2520 } 2521 2522 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2523 // floating point arguments. 2524 if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) { 2525 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2526 auto SmallSPrintFFn = 2527 M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf), 2528 FT, Callee->getAttributes()); 2529 CallInst *New = cast<CallInst>(CI->clone()); 2530 New->setCalledFunction(SmallSPrintFFn); 2531 B.Insert(New); 2532 return New; 2533 } 2534 2535 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 2536 return nullptr; 2537 } 2538 2539 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 2540 IRBuilderBase &B) { 2541 // Check for size 2542 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2543 if (!Size) 2544 return nullptr; 2545 2546 uint64_t N = Size->getZExtValue(); 2547 // Check for a fixed format string. 2548 StringRef FormatStr; 2549 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2550 return nullptr; 2551 2552 // If we just have a format string (nothing else crazy) transform it. 2553 if (CI->getNumArgOperands() == 3) { 2554 // Make sure there's no % in the constant array. We could try to handle 2555 // %% -> % in the future if we cared. 2556 if (FormatStr.find('%') != StringRef::npos) 2557 return nullptr; // we found a format specifier, bail out. 2558 2559 if (N == 0) 2560 return ConstantInt::get(CI->getType(), FormatStr.size()); 2561 else if (N < FormatStr.size() + 1) 2562 return nullptr; 2563 2564 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2565 // strlen(fmt)+1) 2566 B.CreateMemCpy( 2567 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2568 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2569 FormatStr.size() + 1)); // Copy the null byte. 2570 return ConstantInt::get(CI->getType(), FormatStr.size()); 2571 } 2572 2573 // The remaining optimizations require the format string to be "%s" or "%c" 2574 // and have an extra operand. 2575 if (FormatStr.size() == 2 && FormatStr[0] == '%' && 2576 CI->getNumArgOperands() == 4) { 2577 2578 // Decode the second character of the format string. 2579 if (FormatStr[1] == 'c') { 2580 if (N == 0) 2581 return ConstantInt::get(CI->getType(), 1); 2582 else if (N == 1) 2583 return nullptr; 2584 2585 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2586 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2587 return nullptr; 2588 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2589 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2590 B.CreateStore(V, Ptr); 2591 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2592 B.CreateStore(B.getInt8(0), Ptr); 2593 2594 return ConstantInt::get(CI->getType(), 1); 2595 } 2596 2597 if (FormatStr[1] == 's') { 2598 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2599 StringRef Str; 2600 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2601 return nullptr; 2602 2603 if (N == 0) 2604 return ConstantInt::get(CI->getType(), Str.size()); 2605 else if (N < Str.size() + 1) 2606 return nullptr; 2607 2608 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(3), 2609 Align(1), ConstantInt::get(CI->getType(), Str.size() + 1)); 2610 2611 // The snprintf result is the unincremented number of bytes in the string. 2612 return ConstantInt::get(CI->getType(), Str.size()); 2613 } 2614 } 2615 return nullptr; 2616 } 2617 2618 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 2619 if (Value *V = optimizeSnPrintFString(CI, B)) { 2620 return V; 2621 } 2622 2623 if (isKnownNonZero(CI->getOperand(1), DL)) 2624 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2625 return nullptr; 2626 } 2627 2628 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 2629 IRBuilderBase &B) { 2630 optimizeErrorReporting(CI, B, 0); 2631 2632 // All the optimizations depend on the format string. 2633 StringRef FormatStr; 2634 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2635 return nullptr; 2636 2637 // Do not do any of the following transformations if the fprintf return 2638 // value is used, in general the fprintf return value is not compatible 2639 // with fwrite(), fputc() or fputs(). 2640 if (!CI->use_empty()) 2641 return nullptr; 2642 2643 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2644 if (CI->getNumArgOperands() == 2) { 2645 // Could handle %% -> % if we cared. 2646 if (FormatStr.find('%') != StringRef::npos) 2647 return nullptr; // We found a format specifier. 2648 2649 return emitFWrite( 2650 CI->getArgOperand(1), 2651 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 2652 CI->getArgOperand(0), B, DL, TLI); 2653 } 2654 2655 // The remaining optimizations require the format string to be "%s" or "%c" 2656 // and have an extra operand. 2657 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2658 CI->getNumArgOperands() < 3) 2659 return nullptr; 2660 2661 // Decode the second character of the format string. 2662 if (FormatStr[1] == 'c') { 2663 // fprintf(F, "%c", chr) --> fputc(chr, F) 2664 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2665 return nullptr; 2666 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2667 } 2668 2669 if (FormatStr[1] == 's') { 2670 // fprintf(F, "%s", str) --> fputs(str, F) 2671 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2672 return nullptr; 2673 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2674 } 2675 return nullptr; 2676 } 2677 2678 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 2679 Function *Callee = CI->getCalledFunction(); 2680 FunctionType *FT = Callee->getFunctionType(); 2681 if (Value *V = optimizeFPrintFString(CI, B)) { 2682 return V; 2683 } 2684 2685 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2686 // floating point arguments. 2687 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2688 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2689 FunctionCallee FIPrintFFn = 2690 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2691 CallInst *New = cast<CallInst>(CI->clone()); 2692 New->setCalledFunction(FIPrintFFn); 2693 B.Insert(New); 2694 return New; 2695 } 2696 2697 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2698 // 128-bit floating point arguments. 2699 if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) { 2700 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2701 auto SmallFPrintFFn = 2702 M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf), 2703 FT, Callee->getAttributes()); 2704 CallInst *New = cast<CallInst>(CI->clone()); 2705 New->setCalledFunction(SmallFPrintFFn); 2706 B.Insert(New); 2707 return New; 2708 } 2709 2710 return nullptr; 2711 } 2712 2713 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 2714 optimizeErrorReporting(CI, B, 3); 2715 2716 // Get the element size and count. 2717 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2718 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2719 if (SizeC && CountC) { 2720 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2721 2722 // If this is writing zero records, remove the call (it's a noop). 2723 if (Bytes == 0) 2724 return ConstantInt::get(CI->getType(), 0); 2725 2726 // If this is writing one byte, turn it into fputc. 2727 // This optimisation is only valid, if the return value is unused. 2728 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2729 Value *Char = B.CreateLoad(B.getInt8Ty(), 2730 castToCStr(CI->getArgOperand(0), B), "char"); 2731 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2732 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2733 } 2734 } 2735 2736 return nullptr; 2737 } 2738 2739 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 2740 optimizeErrorReporting(CI, B, 1); 2741 2742 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2743 // requires more arguments and thus extra MOVs are required. 2744 bool OptForSize = CI->getFunction()->hasOptSize() || 2745 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2746 PGSOQueryType::IRPass); 2747 if (OptForSize) 2748 return nullptr; 2749 2750 // We can't optimize if return value is used. 2751 if (!CI->use_empty()) 2752 return nullptr; 2753 2754 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2755 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2756 if (!Len) 2757 return nullptr; 2758 2759 // Known to have no uses (see above). 2760 return emitFWrite( 2761 CI->getArgOperand(0), 2762 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2763 CI->getArgOperand(1), B, DL, TLI); 2764 } 2765 2766 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 2767 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2768 if (!CI->use_empty()) 2769 return nullptr; 2770 2771 // Check for a constant string. 2772 // puts("") -> putchar('\n') 2773 StringRef Str; 2774 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 2775 return emitPutChar(B.getInt32('\n'), B, TLI); 2776 2777 return nullptr; 2778 } 2779 2780 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 2781 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 2782 return B.CreateMemMove(CI->getArgOperand(1), Align(1), CI->getArgOperand(0), 2783 Align(1), CI->getArgOperand(2)); 2784 } 2785 2786 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2787 LibFunc Func; 2788 SmallString<20> FloatFuncName = FuncName; 2789 FloatFuncName += 'f'; 2790 if (TLI->getLibFunc(FloatFuncName, Func)) 2791 return TLI->has(Func); 2792 return false; 2793 } 2794 2795 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2796 IRBuilderBase &Builder) { 2797 LibFunc Func; 2798 Function *Callee = CI->getCalledFunction(); 2799 // Check for string/memory library functions. 2800 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2801 // Make sure we never change the calling convention. 2802 assert( 2803 (ignoreCallingConv(Func) || 2804 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) && 2805 "Optimizing string/memory libcall would change the calling convention"); 2806 switch (Func) { 2807 case LibFunc_strcat: 2808 return optimizeStrCat(CI, Builder); 2809 case LibFunc_strncat: 2810 return optimizeStrNCat(CI, Builder); 2811 case LibFunc_strchr: 2812 return optimizeStrChr(CI, Builder); 2813 case LibFunc_strrchr: 2814 return optimizeStrRChr(CI, Builder); 2815 case LibFunc_strcmp: 2816 return optimizeStrCmp(CI, Builder); 2817 case LibFunc_strncmp: 2818 return optimizeStrNCmp(CI, Builder); 2819 case LibFunc_strcpy: 2820 return optimizeStrCpy(CI, Builder); 2821 case LibFunc_stpcpy: 2822 return optimizeStpCpy(CI, Builder); 2823 case LibFunc_strncpy: 2824 return optimizeStrNCpy(CI, Builder); 2825 case LibFunc_strlen: 2826 return optimizeStrLen(CI, Builder); 2827 case LibFunc_strpbrk: 2828 return optimizeStrPBrk(CI, Builder); 2829 case LibFunc_strndup: 2830 return optimizeStrNDup(CI, Builder); 2831 case LibFunc_strtol: 2832 case LibFunc_strtod: 2833 case LibFunc_strtof: 2834 case LibFunc_strtoul: 2835 case LibFunc_strtoll: 2836 case LibFunc_strtold: 2837 case LibFunc_strtoull: 2838 return optimizeStrTo(CI, Builder); 2839 case LibFunc_strspn: 2840 return optimizeStrSpn(CI, Builder); 2841 case LibFunc_strcspn: 2842 return optimizeStrCSpn(CI, Builder); 2843 case LibFunc_strstr: 2844 return optimizeStrStr(CI, Builder); 2845 case LibFunc_memchr: 2846 return optimizeMemChr(CI, Builder); 2847 case LibFunc_memrchr: 2848 return optimizeMemRChr(CI, Builder); 2849 case LibFunc_bcmp: 2850 return optimizeBCmp(CI, Builder); 2851 case LibFunc_memcmp: 2852 return optimizeMemCmp(CI, Builder); 2853 case LibFunc_memcpy: 2854 return optimizeMemCpy(CI, Builder); 2855 case LibFunc_memccpy: 2856 return optimizeMemCCpy(CI, Builder); 2857 case LibFunc_mempcpy: 2858 return optimizeMemPCpy(CI, Builder); 2859 case LibFunc_memmove: 2860 return optimizeMemMove(CI, Builder); 2861 case LibFunc_memset: 2862 return optimizeMemSet(CI, Builder); 2863 case LibFunc_realloc: 2864 return optimizeRealloc(CI, Builder); 2865 case LibFunc_wcslen: 2866 return optimizeWcslen(CI, Builder); 2867 case LibFunc_bcopy: 2868 return optimizeBCopy(CI, Builder); 2869 default: 2870 break; 2871 } 2872 } 2873 return nullptr; 2874 } 2875 2876 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2877 LibFunc Func, 2878 IRBuilderBase &Builder) { 2879 // Don't optimize calls that require strict floating point semantics. 2880 if (CI->isStrictFP()) 2881 return nullptr; 2882 2883 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 2884 return V; 2885 2886 switch (Func) { 2887 case LibFunc_sinpif: 2888 case LibFunc_sinpi: 2889 case LibFunc_cospif: 2890 case LibFunc_cospi: 2891 return optimizeSinCosPi(CI, Builder); 2892 case LibFunc_powf: 2893 case LibFunc_pow: 2894 case LibFunc_powl: 2895 return optimizePow(CI, Builder); 2896 case LibFunc_exp2l: 2897 case LibFunc_exp2: 2898 case LibFunc_exp2f: 2899 return optimizeExp2(CI, Builder); 2900 case LibFunc_fabsf: 2901 case LibFunc_fabs: 2902 case LibFunc_fabsl: 2903 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2904 case LibFunc_sqrtf: 2905 case LibFunc_sqrt: 2906 case LibFunc_sqrtl: 2907 return optimizeSqrt(CI, Builder); 2908 case LibFunc_logf: 2909 case LibFunc_log: 2910 case LibFunc_logl: 2911 case LibFunc_log10f: 2912 case LibFunc_log10: 2913 case LibFunc_log10l: 2914 case LibFunc_log1pf: 2915 case LibFunc_log1p: 2916 case LibFunc_log1pl: 2917 case LibFunc_log2f: 2918 case LibFunc_log2: 2919 case LibFunc_log2l: 2920 case LibFunc_logbf: 2921 case LibFunc_logb: 2922 case LibFunc_logbl: 2923 return optimizeLog(CI, Builder); 2924 case LibFunc_tan: 2925 case LibFunc_tanf: 2926 case LibFunc_tanl: 2927 return optimizeTan(CI, Builder); 2928 case LibFunc_ceil: 2929 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2930 case LibFunc_floor: 2931 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2932 case LibFunc_round: 2933 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2934 case LibFunc_roundeven: 2935 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 2936 case LibFunc_nearbyint: 2937 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2938 case LibFunc_rint: 2939 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2940 case LibFunc_trunc: 2941 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2942 case LibFunc_acos: 2943 case LibFunc_acosh: 2944 case LibFunc_asin: 2945 case LibFunc_asinh: 2946 case LibFunc_atan: 2947 case LibFunc_atanh: 2948 case LibFunc_cbrt: 2949 case LibFunc_cosh: 2950 case LibFunc_exp: 2951 case LibFunc_exp10: 2952 case LibFunc_expm1: 2953 case LibFunc_cos: 2954 case LibFunc_sin: 2955 case LibFunc_sinh: 2956 case LibFunc_tanh: 2957 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 2958 return optimizeUnaryDoubleFP(CI, Builder, true); 2959 return nullptr; 2960 case LibFunc_copysign: 2961 if (hasFloatVersion(CI->getCalledFunction()->getName())) 2962 return optimizeBinaryDoubleFP(CI, Builder); 2963 return nullptr; 2964 case LibFunc_fminf: 2965 case LibFunc_fmin: 2966 case LibFunc_fminl: 2967 case LibFunc_fmaxf: 2968 case LibFunc_fmax: 2969 case LibFunc_fmaxl: 2970 return optimizeFMinFMax(CI, Builder); 2971 case LibFunc_cabs: 2972 case LibFunc_cabsf: 2973 case LibFunc_cabsl: 2974 return optimizeCAbs(CI, Builder); 2975 default: 2976 return nullptr; 2977 } 2978 } 2979 2980 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 2981 // TODO: Split out the code below that operates on FP calls so that 2982 // we can all non-FP calls with the StrictFP attribute to be 2983 // optimized. 2984 if (CI->isNoBuiltin()) 2985 return nullptr; 2986 2987 LibFunc Func; 2988 Function *Callee = CI->getCalledFunction(); 2989 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 2990 2991 SmallVector<OperandBundleDef, 2> OpBundles; 2992 CI->getOperandBundlesAsDefs(OpBundles); 2993 2994 IRBuilderBase::OperandBundlesGuard Guard(Builder); 2995 Builder.setDefaultOperandBundles(OpBundles); 2996 2997 // Command-line parameter overrides instruction attribute. 2998 // This can't be moved to optimizeFloatingPointLibCall() because it may be 2999 // used by the intrinsic optimizations. 3000 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 3001 UnsafeFPShrink = EnableUnsafeFPShrink; 3002 else if (isa<FPMathOperator>(CI) && CI->isFast()) 3003 UnsafeFPShrink = true; 3004 3005 // First, check for intrinsics. 3006 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 3007 if (!IsCallingConvC) 3008 return nullptr; 3009 // The FP intrinsics have corresponding constrained versions so we don't 3010 // need to check for the StrictFP attribute here. 3011 switch (II->getIntrinsicID()) { 3012 case Intrinsic::pow: 3013 return optimizePow(CI, Builder); 3014 case Intrinsic::exp2: 3015 return optimizeExp2(CI, Builder); 3016 case Intrinsic::log: 3017 case Intrinsic::log2: 3018 case Intrinsic::log10: 3019 return optimizeLog(CI, Builder); 3020 case Intrinsic::sqrt: 3021 return optimizeSqrt(CI, Builder); 3022 case Intrinsic::memset: 3023 return optimizeMemSet(CI, Builder); 3024 case Intrinsic::memcpy: 3025 return optimizeMemCpy(CI, Builder); 3026 case Intrinsic::memmove: 3027 return optimizeMemMove(CI, Builder); 3028 default: 3029 return nullptr; 3030 } 3031 } 3032 3033 // Also try to simplify calls to fortified library functions. 3034 if (Value *SimplifiedFortifiedCI = 3035 FortifiedSimplifier.optimizeCall(CI, Builder)) { 3036 // Try to further simplify the result. 3037 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 3038 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 3039 // Ensure that SimplifiedCI's uses are complete, since some calls have 3040 // their uses analyzed. 3041 replaceAllUsesWith(CI, SimplifiedCI); 3042 3043 // Set insertion point to SimplifiedCI to guarantee we reach all uses 3044 // we might replace later on. 3045 IRBuilderBase::InsertPointGuard Guard(Builder); 3046 Builder.SetInsertPoint(SimplifiedCI); 3047 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) { 3048 // If we were able to further simplify, remove the now redundant call. 3049 substituteInParent(SimplifiedCI, V); 3050 return V; 3051 } 3052 } 3053 return SimplifiedFortifiedCI; 3054 } 3055 3056 // Then check for known library functions. 3057 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 3058 // We never change the calling convention. 3059 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3060 return nullptr; 3061 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 3062 return V; 3063 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 3064 return V; 3065 switch (Func) { 3066 case LibFunc_ffs: 3067 case LibFunc_ffsl: 3068 case LibFunc_ffsll: 3069 return optimizeFFS(CI, Builder); 3070 case LibFunc_fls: 3071 case LibFunc_flsl: 3072 case LibFunc_flsll: 3073 return optimizeFls(CI, Builder); 3074 case LibFunc_abs: 3075 case LibFunc_labs: 3076 case LibFunc_llabs: 3077 return optimizeAbs(CI, Builder); 3078 case LibFunc_isdigit: 3079 return optimizeIsDigit(CI, Builder); 3080 case LibFunc_isascii: 3081 return optimizeIsAscii(CI, Builder); 3082 case LibFunc_toascii: 3083 return optimizeToAscii(CI, Builder); 3084 case LibFunc_atoi: 3085 case LibFunc_atol: 3086 case LibFunc_atoll: 3087 return optimizeAtoi(CI, Builder); 3088 case LibFunc_strtol: 3089 case LibFunc_strtoll: 3090 return optimizeStrtol(CI, Builder); 3091 case LibFunc_printf: 3092 return optimizePrintF(CI, Builder); 3093 case LibFunc_sprintf: 3094 return optimizeSPrintF(CI, Builder); 3095 case LibFunc_snprintf: 3096 return optimizeSnPrintF(CI, Builder); 3097 case LibFunc_fprintf: 3098 return optimizeFPrintF(CI, Builder); 3099 case LibFunc_fwrite: 3100 return optimizeFWrite(CI, Builder); 3101 case LibFunc_fputs: 3102 return optimizeFPuts(CI, Builder); 3103 case LibFunc_puts: 3104 return optimizePuts(CI, Builder); 3105 case LibFunc_perror: 3106 return optimizeErrorReporting(CI, Builder); 3107 case LibFunc_vfprintf: 3108 case LibFunc_fiprintf: 3109 return optimizeErrorReporting(CI, Builder, 0); 3110 default: 3111 return nullptr; 3112 } 3113 } 3114 return nullptr; 3115 } 3116 3117 LibCallSimplifier::LibCallSimplifier( 3118 const DataLayout &DL, const TargetLibraryInfo *TLI, 3119 OptimizationRemarkEmitter &ORE, 3120 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 3121 function_ref<void(Instruction *, Value *)> Replacer, 3122 function_ref<void(Instruction *)> Eraser) 3123 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 3124 UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {} 3125 3126 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 3127 // Indirect through the replacer used in this instance. 3128 Replacer(I, With); 3129 } 3130 3131 void LibCallSimplifier::eraseFromParent(Instruction *I) { 3132 Eraser(I); 3133 } 3134 3135 // TODO: 3136 // Additional cases that we need to add to this file: 3137 // 3138 // cbrt: 3139 // * cbrt(expN(X)) -> expN(x/3) 3140 // * cbrt(sqrt(x)) -> pow(x,1/6) 3141 // * cbrt(cbrt(x)) -> pow(x,1/9) 3142 // 3143 // exp, expf, expl: 3144 // * exp(log(x)) -> x 3145 // 3146 // log, logf, logl: 3147 // * log(exp(x)) -> x 3148 // * log(exp(y)) -> y*log(e) 3149 // * log(exp10(y)) -> y*log(10) 3150 // * log(sqrt(x)) -> 0.5*log(x) 3151 // 3152 // pow, powf, powl: 3153 // * pow(sqrt(x),y) -> pow(x,y*0.5) 3154 // * pow(pow(x,y),z)-> pow(x,y*z) 3155 // 3156 // signbit: 3157 // * signbit(cnst) -> cnst' 3158 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 3159 // 3160 // sqrt, sqrtf, sqrtl: 3161 // * sqrt(expN(x)) -> expN(x*0.5) 3162 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 3163 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 3164 // 3165 3166 //===----------------------------------------------------------------------===// 3167 // Fortified Library Call Optimizations 3168 //===----------------------------------------------------------------------===// 3169 3170 bool 3171 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 3172 unsigned ObjSizeOp, 3173 Optional<unsigned> SizeOp, 3174 Optional<unsigned> StrOp, 3175 Optional<unsigned> FlagOp) { 3176 // If this function takes a flag argument, the implementation may use it to 3177 // perform extra checks. Don't fold into the non-checking variant. 3178 if (FlagOp) { 3179 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 3180 if (!Flag || !Flag->isZero()) 3181 return false; 3182 } 3183 3184 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 3185 return true; 3186 3187 if (ConstantInt *ObjSizeCI = 3188 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 3189 if (ObjSizeCI->isMinusOne()) 3190 return true; 3191 // If the object size wasn't -1 (unknown), bail out if we were asked to. 3192 if (OnlyLowerUnknownSize) 3193 return false; 3194 if (StrOp) { 3195 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 3196 // If the length is 0 we don't know how long it is and so we can't 3197 // remove the check. 3198 if (Len) 3199 annotateDereferenceableBytes(CI, *StrOp, Len); 3200 else 3201 return false; 3202 return ObjSizeCI->getZExtValue() >= Len; 3203 } 3204 3205 if (SizeOp) { 3206 if (ConstantInt *SizeCI = 3207 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 3208 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 3209 } 3210 } 3211 return false; 3212 } 3213 3214 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 3215 IRBuilderBase &B) { 3216 if (isFortifiedCallFoldable(CI, 3, 2)) { 3217 CallInst *NewCI = 3218 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3219 Align(1), CI->getArgOperand(2)); 3220 NewCI->setAttributes(CI->getAttributes()); 3221 NewCI->removeAttributes(AttributeList::ReturnIndex, 3222 AttributeFuncs::typeIncompatible(NewCI->getType())); 3223 return CI->getArgOperand(0); 3224 } 3225 return nullptr; 3226 } 3227 3228 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 3229 IRBuilderBase &B) { 3230 if (isFortifiedCallFoldable(CI, 3, 2)) { 3231 CallInst *NewCI = 3232 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3233 Align(1), CI->getArgOperand(2)); 3234 NewCI->setAttributes(CI->getAttributes()); 3235 NewCI->removeAttributes(AttributeList::ReturnIndex, 3236 AttributeFuncs::typeIncompatible(NewCI->getType())); 3237 return CI->getArgOperand(0); 3238 } 3239 return nullptr; 3240 } 3241 3242 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 3243 IRBuilderBase &B) { 3244 if (isFortifiedCallFoldable(CI, 3, 2)) { 3245 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 3246 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 3247 CI->getArgOperand(2), Align(1)); 3248 NewCI->setAttributes(CI->getAttributes()); 3249 NewCI->removeAttributes(AttributeList::ReturnIndex, 3250 AttributeFuncs::typeIncompatible(NewCI->getType())); 3251 return CI->getArgOperand(0); 3252 } 3253 return nullptr; 3254 } 3255 3256 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 3257 IRBuilderBase &B) { 3258 const DataLayout &DL = CI->getModule()->getDataLayout(); 3259 if (isFortifiedCallFoldable(CI, 3, 2)) 3260 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3261 CI->getArgOperand(2), B, DL, TLI)) { 3262 CallInst *NewCI = cast<CallInst>(Call); 3263 NewCI->setAttributes(CI->getAttributes()); 3264 NewCI->removeAttributes( 3265 AttributeList::ReturnIndex, 3266 AttributeFuncs::typeIncompatible(NewCI->getType())); 3267 return NewCI; 3268 } 3269 return nullptr; 3270 } 3271 3272 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 3273 IRBuilderBase &B, 3274 LibFunc Func) { 3275 const DataLayout &DL = CI->getModule()->getDataLayout(); 3276 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 3277 *ObjSize = CI->getArgOperand(2); 3278 3279 // __stpcpy_chk(x,x,...) -> x+strlen(x) 3280 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 3281 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3282 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3283 } 3284 3285 // If a) we don't have any length information, or b) we know this will 3286 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3287 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3288 // TODO: It might be nice to get a maximum length out of the possible 3289 // string lengths for varying. 3290 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 3291 if (Func == LibFunc_strcpy_chk) 3292 return emitStrCpy(Dst, Src, B, TLI); 3293 else 3294 return emitStpCpy(Dst, Src, B, TLI); 3295 } 3296 3297 if (OnlyLowerUnknownSize) 3298 return nullptr; 3299 3300 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3301 uint64_t Len = GetStringLength(Src); 3302 if (Len) 3303 annotateDereferenceableBytes(CI, 1, Len); 3304 else 3305 return nullptr; 3306 3307 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 3308 Value *LenV = ConstantInt::get(SizeTTy, Len); 3309 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 3310 // If the function was an __stpcpy_chk, and we were able to fold it into 3311 // a __memcpy_chk, we still need to return the correct end pointer. 3312 if (Ret && Func == LibFunc_stpcpy_chk) 3313 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 3314 return Ret; 3315 } 3316 3317 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 3318 IRBuilderBase &B) { 3319 if (isFortifiedCallFoldable(CI, 1, None, 0)) 3320 return emitStrLen(CI->getArgOperand(0), B, CI->getModule()->getDataLayout(), 3321 TLI); 3322 return nullptr; 3323 } 3324 3325 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 3326 IRBuilderBase &B, 3327 LibFunc Func) { 3328 if (isFortifiedCallFoldable(CI, 3, 2)) { 3329 if (Func == LibFunc_strncpy_chk) 3330 return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3331 CI->getArgOperand(2), B, TLI); 3332 else 3333 return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3334 CI->getArgOperand(2), B, TLI); 3335 } 3336 3337 return nullptr; 3338 } 3339 3340 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 3341 IRBuilderBase &B) { 3342 if (isFortifiedCallFoldable(CI, 4, 3)) 3343 return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3344 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI); 3345 3346 return nullptr; 3347 } 3348 3349 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 3350 IRBuilderBase &B) { 3351 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 3352 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 3353 return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3354 CI->getArgOperand(4), VariadicArgs, B, TLI); 3355 } 3356 3357 return nullptr; 3358 } 3359 3360 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3361 IRBuilderBase &B) { 3362 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3363 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 3364 return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs, 3365 B, TLI); 3366 } 3367 3368 return nullptr; 3369 } 3370 3371 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3372 IRBuilderBase &B) { 3373 if (isFortifiedCallFoldable(CI, 2)) 3374 return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI); 3375 3376 return nullptr; 3377 } 3378 3379 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3380 IRBuilderBase &B) { 3381 if (isFortifiedCallFoldable(CI, 3)) 3382 return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3383 CI->getArgOperand(2), B, TLI); 3384 3385 return nullptr; 3386 } 3387 3388 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3389 IRBuilderBase &B) { 3390 if (isFortifiedCallFoldable(CI, 3)) 3391 return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3392 CI->getArgOperand(2), B, TLI); 3393 3394 return nullptr; 3395 } 3396 3397 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3398 IRBuilderBase &B) { 3399 if (isFortifiedCallFoldable(CI, 3)) 3400 return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3401 CI->getArgOperand(2), B, TLI); 3402 3403 return nullptr; 3404 } 3405 3406 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3407 IRBuilderBase &B) { 3408 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3409 return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3410 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI); 3411 3412 return nullptr; 3413 } 3414 3415 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3416 IRBuilderBase &B) { 3417 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3418 return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3419 CI->getArgOperand(4), B, TLI); 3420 3421 return nullptr; 3422 } 3423 3424 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 3425 IRBuilderBase &Builder) { 3426 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3427 // Some clang users checked for _chk libcall availability using: 3428 // __has_builtin(__builtin___memcpy_chk) 3429 // When compiling with -fno-builtin, this is always true. 3430 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3431 // end up with fortified libcalls, which isn't acceptable in a freestanding 3432 // environment which only provides their non-fortified counterparts. 3433 // 3434 // Until we change clang and/or teach external users to check for availability 3435 // differently, disregard the "nobuiltin" attribute and TLI::has. 3436 // 3437 // PR23093. 3438 3439 LibFunc Func; 3440 Function *Callee = CI->getCalledFunction(); 3441 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3442 3443 SmallVector<OperandBundleDef, 2> OpBundles; 3444 CI->getOperandBundlesAsDefs(OpBundles); 3445 3446 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3447 Builder.setDefaultOperandBundles(OpBundles); 3448 3449 // First, check that this is a known library functions and that the prototype 3450 // is correct. 3451 if (!TLI->getLibFunc(*Callee, Func)) 3452 return nullptr; 3453 3454 // We never change the calling convention. 3455 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3456 return nullptr; 3457 3458 switch (Func) { 3459 case LibFunc_memcpy_chk: 3460 return optimizeMemCpyChk(CI, Builder); 3461 case LibFunc_mempcpy_chk: 3462 return optimizeMemPCpyChk(CI, Builder); 3463 case LibFunc_memmove_chk: 3464 return optimizeMemMoveChk(CI, Builder); 3465 case LibFunc_memset_chk: 3466 return optimizeMemSetChk(CI, Builder); 3467 case LibFunc_stpcpy_chk: 3468 case LibFunc_strcpy_chk: 3469 return optimizeStrpCpyChk(CI, Builder, Func); 3470 case LibFunc_strlen_chk: 3471 return optimizeStrLenChk(CI, Builder); 3472 case LibFunc_stpncpy_chk: 3473 case LibFunc_strncpy_chk: 3474 return optimizeStrpNCpyChk(CI, Builder, Func); 3475 case LibFunc_memccpy_chk: 3476 return optimizeMemCCpyChk(CI, Builder); 3477 case LibFunc_snprintf_chk: 3478 return optimizeSNPrintfChk(CI, Builder); 3479 case LibFunc_sprintf_chk: 3480 return optimizeSPrintfChk(CI, Builder); 3481 case LibFunc_strcat_chk: 3482 return optimizeStrCatChk(CI, Builder); 3483 case LibFunc_strlcat_chk: 3484 return optimizeStrLCat(CI, Builder); 3485 case LibFunc_strncat_chk: 3486 return optimizeStrNCatChk(CI, Builder); 3487 case LibFunc_strlcpy_chk: 3488 return optimizeStrLCpyChk(CI, Builder); 3489 case LibFunc_vsnprintf_chk: 3490 return optimizeVSNPrintfChk(CI, Builder); 3491 case LibFunc_vsprintf_chk: 3492 return optimizeVSPrintfChk(CI, Builder); 3493 default: 3494 break; 3495 } 3496 return nullptr; 3497 } 3498 3499 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3500 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3501 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 3502