1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is a utility pass used for testing the InstructionSimplify analysis.
11 // The analysis is applied to every instruction, and if it simplifies then the
12 // instruction is replaced by the simplification.  If you are looking for a pass
13 // that performs serious instruction folding, use the instcombine pass instead.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DiagnosticInfo.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Transforms/Utils/BuildLibCalls.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 static cl::opt<bool>
40     ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden,
41                    cl::desc("Treat error-reporting calls as cold"));
42 
43 static cl::opt<bool>
44     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
45                          cl::init(false),
46                          cl::desc("Enable unsafe double to float "
47                                   "shrinking for math lib calls"));
48 
49 
50 //===----------------------------------------------------------------------===//
51 // Helper Functions
52 //===----------------------------------------------------------------------===//
53 
54 static bool ignoreCallingConv(LibFunc::Func Func) {
55   return Func == LibFunc::abs || Func == LibFunc::labs ||
56          Func == LibFunc::llabs || Func == LibFunc::strlen;
57 }
58 
59 /// Return true if it only matters that the value is equal or not-equal to zero.
60 static bool isOnlyUsedInZeroEqualityComparison(Value *V) {
61   for (User *U : V->users()) {
62     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
63       if (IC->isEquality())
64         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
65           if (C->isNullValue())
66             continue;
67     // Unknown instruction.
68     return false;
69   }
70   return true;
71 }
72 
73 /// Return true if it is only used in equality comparisons with With.
74 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
75   for (User *U : V->users()) {
76     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
77       if (IC->isEquality() && IC->getOperand(1) == With)
78         continue;
79     // Unknown instruction.
80     return false;
81   }
82   return true;
83 }
84 
85 static bool callHasFloatingPointArgument(const CallInst *CI) {
86   return any_of(CI->operands(), [](const Use &OI) {
87     return OI->getType()->isFloatingPointTy();
88   });
89 }
90 
91 /// \brief Check whether the overloaded unary floating point function
92 /// corresponding to \a Ty is available.
93 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
94                             LibFunc::Func DoubleFn, LibFunc::Func FloatFn,
95                             LibFunc::Func LongDoubleFn) {
96   switch (Ty->getTypeID()) {
97   case Type::FloatTyID:
98     return TLI->has(FloatFn);
99   case Type::DoubleTyID:
100     return TLI->has(DoubleFn);
101   default:
102     return TLI->has(LongDoubleFn);
103   }
104 }
105 
106 //===----------------------------------------------------------------------===//
107 // String and Memory Library Call Optimizations
108 //===----------------------------------------------------------------------===//
109 
110 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
111   // Extract some information from the instruction
112   Value *Dst = CI->getArgOperand(0);
113   Value *Src = CI->getArgOperand(1);
114 
115   // See if we can get the length of the input string.
116   uint64_t Len = GetStringLength(Src);
117   if (Len == 0)
118     return nullptr;
119   --Len; // Unbias length.
120 
121   // Handle the simple, do-nothing case: strcat(x, "") -> x
122   if (Len == 0)
123     return Dst;
124 
125   return emitStrLenMemCpy(Src, Dst, Len, B);
126 }
127 
128 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
129                                            IRBuilder<> &B) {
130   // We need to find the end of the destination string.  That's where the
131   // memory is to be moved to. We just generate a call to strlen.
132   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
133   if (!DstLen)
134     return nullptr;
135 
136   // Now that we have the destination's length, we must index into the
137   // destination's pointer to get the actual memcpy destination (end of
138   // the string .. we're concatenating).
139   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
140 
141   // We have enough information to now generate the memcpy call to do the
142   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
143   B.CreateMemCpy(CpyDst, Src,
144                  ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1),
145                  1);
146   return Dst;
147 }
148 
149 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
150   // Extract some information from the instruction.
151   Value *Dst = CI->getArgOperand(0);
152   Value *Src = CI->getArgOperand(1);
153   uint64_t Len;
154 
155   // We don't do anything if length is not constant.
156   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
157     Len = LengthArg->getZExtValue();
158   else
159     return nullptr;
160 
161   // See if we can get the length of the input string.
162   uint64_t SrcLen = GetStringLength(Src);
163   if (SrcLen == 0)
164     return nullptr;
165   --SrcLen; // Unbias length.
166 
167   // Handle the simple, do-nothing cases:
168   // strncat(x, "", c) -> x
169   // strncat(x,  c, 0) -> x
170   if (SrcLen == 0 || Len == 0)
171     return Dst;
172 
173   // We don't optimize this case.
174   if (Len < SrcLen)
175     return nullptr;
176 
177   // strncat(x, s, c) -> strcat(x, s)
178   // s is constant so the strcat can be optimized further.
179   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
180 }
181 
182 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
183   Function *Callee = CI->getCalledFunction();
184   FunctionType *FT = Callee->getFunctionType();
185   Value *SrcStr = CI->getArgOperand(0);
186 
187   // If the second operand is non-constant, see if we can compute the length
188   // of the input string and turn this into memchr.
189   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
190   if (!CharC) {
191     uint64_t Len = GetStringLength(SrcStr);
192     if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
193       return nullptr;
194 
195     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
196                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
197                       B, DL, TLI);
198   }
199 
200   // Otherwise, the character is a constant, see if the first argument is
201   // a string literal.  If so, we can constant fold.
202   StringRef Str;
203   if (!getConstantStringInfo(SrcStr, Str)) {
204     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
205       return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI),
206                          "strchr");
207     return nullptr;
208   }
209 
210   // Compute the offset, make sure to handle the case when we're searching for
211   // zero (a weird way to spell strlen).
212   size_t I = (0xFF & CharC->getSExtValue()) == 0
213                  ? Str.size()
214                  : Str.find(CharC->getSExtValue());
215   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
216     return Constant::getNullValue(CI->getType());
217 
218   // strchr(s+n,c)  -> gep(s+n+i,c)
219   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
220 }
221 
222 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
223   Value *SrcStr = CI->getArgOperand(0);
224   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
225 
226   // Cannot fold anything if we're not looking for a constant.
227   if (!CharC)
228     return nullptr;
229 
230   StringRef Str;
231   if (!getConstantStringInfo(SrcStr, Str)) {
232     // strrchr(s, 0) -> strchr(s, 0)
233     if (CharC->isZero())
234       return emitStrChr(SrcStr, '\0', B, TLI);
235     return nullptr;
236   }
237 
238   // Compute the offset.
239   size_t I = (0xFF & CharC->getSExtValue()) == 0
240                  ? Str.size()
241                  : Str.rfind(CharC->getSExtValue());
242   if (I == StringRef::npos) // Didn't find the char. Return null.
243     return Constant::getNullValue(CI->getType());
244 
245   // strrchr(s+n,c) -> gep(s+n+i,c)
246   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
247 }
248 
249 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
250   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
251   if (Str1P == Str2P) // strcmp(x,x)  -> 0
252     return ConstantInt::get(CI->getType(), 0);
253 
254   StringRef Str1, Str2;
255   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
256   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
257 
258   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
259   if (HasStr1 && HasStr2)
260     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
261 
262   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
263     return B.CreateNeg(
264         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
265 
266   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
267     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
268 
269   // strcmp(P, "x") -> memcmp(P, "x", 2)
270   uint64_t Len1 = GetStringLength(Str1P);
271   uint64_t Len2 = GetStringLength(Str2P);
272   if (Len1 && Len2) {
273     return emitMemCmp(Str1P, Str2P,
274                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
275                                        std::min(Len1, Len2)),
276                       B, DL, TLI);
277   }
278 
279   return nullptr;
280 }
281 
282 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
283   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
284   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
285     return ConstantInt::get(CI->getType(), 0);
286 
287   // Get the length argument if it is constant.
288   uint64_t Length;
289   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
290     Length = LengthArg->getZExtValue();
291   else
292     return nullptr;
293 
294   if (Length == 0) // strncmp(x,y,0)   -> 0
295     return ConstantInt::get(CI->getType(), 0);
296 
297   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
298     return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
299 
300   StringRef Str1, Str2;
301   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
302   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
303 
304   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
305   if (HasStr1 && HasStr2) {
306     StringRef SubStr1 = Str1.substr(0, Length);
307     StringRef SubStr2 = Str2.substr(0, Length);
308     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
309   }
310 
311   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
312     return B.CreateNeg(
313         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
314 
315   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
316     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
317 
318   return nullptr;
319 }
320 
321 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
322   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
323   if (Dst == Src) // strcpy(x,x)  -> x
324     return Src;
325 
326   // See if we can get the length of the input string.
327   uint64_t Len = GetStringLength(Src);
328   if (Len == 0)
329     return nullptr;
330 
331   // We have enough information to now generate the memcpy call to do the
332   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
333   B.CreateMemCpy(Dst, Src,
334                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1);
335   return Dst;
336 }
337 
338 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
339   Function *Callee = CI->getCalledFunction();
340   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
341   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
342     Value *StrLen = emitStrLen(Src, B, DL, TLI);
343     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
344   }
345 
346   // See if we can get the length of the input string.
347   uint64_t Len = GetStringLength(Src);
348   if (Len == 0)
349     return nullptr;
350 
351   Type *PT = Callee->getFunctionType()->getParamType(0);
352   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
353   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
354                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
355 
356   // We have enough information to now generate the memcpy call to do the
357   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
358   B.CreateMemCpy(Dst, Src, LenV, 1);
359   return DstEnd;
360 }
361 
362 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
363   Function *Callee = CI->getCalledFunction();
364   Value *Dst = CI->getArgOperand(0);
365   Value *Src = CI->getArgOperand(1);
366   Value *LenOp = CI->getArgOperand(2);
367 
368   // See if we can get the length of the input string.
369   uint64_t SrcLen = GetStringLength(Src);
370   if (SrcLen == 0)
371     return nullptr;
372   --SrcLen;
373 
374   if (SrcLen == 0) {
375     // strncpy(x, "", y) -> memset(x, '\0', y, 1)
376     B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
377     return Dst;
378   }
379 
380   uint64_t Len;
381   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
382     Len = LengthArg->getZExtValue();
383   else
384     return nullptr;
385 
386   if (Len == 0)
387     return Dst; // strncpy(x, y, 0) -> x
388 
389   // Let strncpy handle the zero padding
390   if (Len > SrcLen + 1)
391     return nullptr;
392 
393   Type *PT = Callee->getFunctionType()->getParamType(0);
394   // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
395   B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1);
396 
397   return Dst;
398 }
399 
400 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
401   Value *Src = CI->getArgOperand(0);
402 
403   // Constant folding: strlen("xyz") -> 3
404   if (uint64_t Len = GetStringLength(Src))
405     return ConstantInt::get(CI->getType(), Len - 1);
406 
407   // If s is a constant pointer pointing to a string literal, we can fold
408   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
409   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
410   // We only try to simplify strlen when the pointer s points to an array
411   // of i8. Otherwise, we would need to scale the offset x before doing the
412   // subtraction. This will make the optimization more complex, and it's not
413   // very useful because calling strlen for a pointer of other types is
414   // very uncommon.
415   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
416     if (!isGEPBasedOnPointerToString(GEP))
417       return nullptr;
418 
419     StringRef Str;
420     if (getConstantStringInfo(GEP->getOperand(0), Str, 0, false)) {
421       size_t NullTermIdx = Str.find('\0');
422 
423       // If the string does not have '\0', leave it to strlen to compute
424       // its length.
425       if (NullTermIdx == StringRef::npos)
426         return nullptr;
427 
428       Value *Offset = GEP->getOperand(2);
429       unsigned BitWidth = Offset->getType()->getIntegerBitWidth();
430       APInt KnownZero(BitWidth, 0);
431       APInt KnownOne(BitWidth, 0);
432       computeKnownBits(Offset, KnownZero, KnownOne, DL, 0, nullptr, CI,
433                        nullptr);
434       KnownZero.flipAllBits();
435       size_t ArrSize =
436              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
437 
438       // KnownZero's bits are flipped, so zeros in KnownZero now represent
439       // bits known to be zeros in Offset, and ones in KnowZero represent
440       // bits unknown in Offset. Therefore, Offset is known to be in range
441       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
442       // unsigned-less-than NullTermIdx.
443       //
444       // If Offset is not provably in the range [0, NullTermIdx], we can still
445       // optimize if we can prove that the program has undefined behavior when
446       // Offset is outside that range. That is the case when GEP->getOperand(0)
447       // is a pointer to an object whose memory extent is NullTermIdx+1.
448       if ((KnownZero.isNonNegative() && KnownZero.ule(NullTermIdx)) ||
449           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
450            NullTermIdx == ArrSize - 1))
451         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
452                            Offset);
453     }
454 
455     return nullptr;
456   }
457 
458   // strlen(x?"foo":"bars") --> x ? 3 : 4
459   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
460     uint64_t LenTrue = GetStringLength(SI->getTrueValue());
461     uint64_t LenFalse = GetStringLength(SI->getFalseValue());
462     if (LenTrue && LenFalse) {
463       Function *Caller = CI->getParent()->getParent();
464       emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller,
465                              SI->getDebugLoc(),
466                              "folded strlen(select) to select of constants");
467       return B.CreateSelect(SI->getCondition(),
468                             ConstantInt::get(CI->getType(), LenTrue - 1),
469                             ConstantInt::get(CI->getType(), LenFalse - 1));
470     }
471   }
472 
473   // strlen(x) != 0 --> *x != 0
474   // strlen(x) == 0 --> *x == 0
475   if (isOnlyUsedInZeroEqualityComparison(CI))
476     return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
477 
478   return nullptr;
479 }
480 
481 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
482   StringRef S1, S2;
483   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
484   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
485 
486   // strpbrk(s, "") -> nullptr
487   // strpbrk("", s) -> nullptr
488   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
489     return Constant::getNullValue(CI->getType());
490 
491   // Constant folding.
492   if (HasS1 && HasS2) {
493     size_t I = S1.find_first_of(S2);
494     if (I == StringRef::npos) // No match.
495       return Constant::getNullValue(CI->getType());
496 
497     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
498                        "strpbrk");
499   }
500 
501   // strpbrk(s, "a") -> strchr(s, 'a')
502   if (HasS2 && S2.size() == 1)
503     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
504 
505   return nullptr;
506 }
507 
508 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
509   Value *EndPtr = CI->getArgOperand(1);
510   if (isa<ConstantPointerNull>(EndPtr)) {
511     // With a null EndPtr, this function won't capture the main argument.
512     // It would be readonly too, except that it still may write to errno.
513     CI->addAttribute(1, Attribute::NoCapture);
514   }
515 
516   return nullptr;
517 }
518 
519 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
520   StringRef S1, S2;
521   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
522   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
523 
524   // strspn(s, "") -> 0
525   // strspn("", s) -> 0
526   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
527     return Constant::getNullValue(CI->getType());
528 
529   // Constant folding.
530   if (HasS1 && HasS2) {
531     size_t Pos = S1.find_first_not_of(S2);
532     if (Pos == StringRef::npos)
533       Pos = S1.size();
534     return ConstantInt::get(CI->getType(), Pos);
535   }
536 
537   return nullptr;
538 }
539 
540 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
541   StringRef S1, S2;
542   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
543   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
544 
545   // strcspn("", s) -> 0
546   if (HasS1 && S1.empty())
547     return Constant::getNullValue(CI->getType());
548 
549   // Constant folding.
550   if (HasS1 && HasS2) {
551     size_t Pos = S1.find_first_of(S2);
552     if (Pos == StringRef::npos)
553       Pos = S1.size();
554     return ConstantInt::get(CI->getType(), Pos);
555   }
556 
557   // strcspn(s, "") -> strlen(s)
558   if (HasS2 && S2.empty())
559     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
560 
561   return nullptr;
562 }
563 
564 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
565   // fold strstr(x, x) -> x.
566   if (CI->getArgOperand(0) == CI->getArgOperand(1))
567     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
568 
569   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
570   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
571     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
572     if (!StrLen)
573       return nullptr;
574     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
575                                  StrLen, B, DL, TLI);
576     if (!StrNCmp)
577       return nullptr;
578     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
579       ICmpInst *Old = cast<ICmpInst>(*UI++);
580       Value *Cmp =
581           B.CreateICmp(Old->getPredicate(), StrNCmp,
582                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
583       replaceAllUsesWith(Old, Cmp);
584     }
585     return CI;
586   }
587 
588   // See if either input string is a constant string.
589   StringRef SearchStr, ToFindStr;
590   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
591   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
592 
593   // fold strstr(x, "") -> x.
594   if (HasStr2 && ToFindStr.empty())
595     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
596 
597   // If both strings are known, constant fold it.
598   if (HasStr1 && HasStr2) {
599     size_t Offset = SearchStr.find(ToFindStr);
600 
601     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
602       return Constant::getNullValue(CI->getType());
603 
604     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
605     Value *Result = castToCStr(CI->getArgOperand(0), B);
606     Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
607     return B.CreateBitCast(Result, CI->getType());
608   }
609 
610   // fold strstr(x, "y") -> strchr(x, 'y').
611   if (HasStr2 && ToFindStr.size() == 1) {
612     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
613     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
614   }
615   return nullptr;
616 }
617 
618 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
619   Value *SrcStr = CI->getArgOperand(0);
620   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
621   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
622 
623   // memchr(x, y, 0) -> null
624   if (LenC && LenC->isNullValue())
625     return Constant::getNullValue(CI->getType());
626 
627   // From now on we need at least constant length and string.
628   StringRef Str;
629   if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
630     return nullptr;
631 
632   // Truncate the string to LenC. If Str is smaller than LenC we will still only
633   // scan the string, as reading past the end of it is undefined and we can just
634   // return null if we don't find the char.
635   Str = Str.substr(0, LenC->getZExtValue());
636 
637   // If the char is variable but the input str and length are not we can turn
638   // this memchr call into a simple bit field test. Of course this only works
639   // when the return value is only checked against null.
640   //
641   // It would be really nice to reuse switch lowering here but we can't change
642   // the CFG at this point.
643   //
644   // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
645   //   after bounds check.
646   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
647     unsigned char Max =
648         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
649                           reinterpret_cast<const unsigned char *>(Str.end()));
650 
651     // Make sure the bit field we're about to create fits in a register on the
652     // target.
653     // FIXME: On a 64 bit architecture this prevents us from using the
654     // interesting range of alpha ascii chars. We could do better by emitting
655     // two bitfields or shifting the range by 64 if no lower chars are used.
656     if (!DL.fitsInLegalInteger(Max + 1))
657       return nullptr;
658 
659     // For the bit field use a power-of-2 type with at least 8 bits to avoid
660     // creating unnecessary illegal types.
661     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
662 
663     // Now build the bit field.
664     APInt Bitfield(Width, 0);
665     for (char C : Str)
666       Bitfield.setBit((unsigned char)C);
667     Value *BitfieldC = B.getInt(Bitfield);
668 
669     // First check that the bit field access is within bounds.
670     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
671     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
672                                  "memchr.bounds");
673 
674     // Create code that checks if the given bit is set in the field.
675     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
676     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
677 
678     // Finally merge both checks and cast to pointer type. The inttoptr
679     // implicitly zexts the i1 to intptr type.
680     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
681   }
682 
683   // Check if all arguments are constants.  If so, we can constant fold.
684   if (!CharC)
685     return nullptr;
686 
687   // Compute the offset.
688   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
689   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
690     return Constant::getNullValue(CI->getType());
691 
692   // memchr(s+n,c,l) -> gep(s+n+i,c)
693   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
694 }
695 
696 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
697   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
698 
699   if (LHS == RHS) // memcmp(s,s,x) -> 0
700     return Constant::getNullValue(CI->getType());
701 
702   // Make sure we have a constant length.
703   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
704   if (!LenC)
705     return nullptr;
706   uint64_t Len = LenC->getZExtValue();
707 
708   if (Len == 0) // memcmp(s1,s2,0) -> 0
709     return Constant::getNullValue(CI->getType());
710 
711   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
712   if (Len == 1) {
713     Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"),
714                                CI->getType(), "lhsv");
715     Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"),
716                                CI->getType(), "rhsv");
717     return B.CreateSub(LHSV, RHSV, "chardiff");
718   }
719 
720   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
721   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
722 
723     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
724     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
725 
726     if (getKnownAlignment(LHS, DL, CI) >= PrefAlignment &&
727         getKnownAlignment(RHS, DL, CI) >= PrefAlignment) {
728 
729       Type *LHSPtrTy =
730           IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
731       Type *RHSPtrTy =
732           IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
733 
734       Value *LHSV =
735           B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy, "lhsc"), "lhsv");
736       Value *RHSV =
737           B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy, "rhsc"), "rhsv");
738 
739       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
740     }
741   }
742 
743   // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
744   StringRef LHSStr, RHSStr;
745   if (getConstantStringInfo(LHS, LHSStr) &&
746       getConstantStringInfo(RHS, RHSStr)) {
747     // Make sure we're not reading out-of-bounds memory.
748     if (Len > LHSStr.size() || Len > RHSStr.size())
749       return nullptr;
750     // Fold the memcmp and normalize the result.  This way we get consistent
751     // results across multiple platforms.
752     uint64_t Ret = 0;
753     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
754     if (Cmp < 0)
755       Ret = -1;
756     else if (Cmp > 0)
757       Ret = 1;
758     return ConstantInt::get(CI->getType(), Ret);
759   }
760 
761   return nullptr;
762 }
763 
764 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
765   // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
766   B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
767                  CI->getArgOperand(2), 1);
768   return CI->getArgOperand(0);
769 }
770 
771 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
772   // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
773   B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
774                   CI->getArgOperand(2), 1);
775   return CI->getArgOperand(0);
776 }
777 
778 // TODO: Does this belong in BuildLibCalls or should all of those similar
779 // functions be moved here?
780 static Value *emitCalloc(Value *Num, Value *Size, const AttributeSet &Attrs,
781                          IRBuilder<> &B, const TargetLibraryInfo &TLI) {
782   LibFunc::Func Func;
783   if (!TLI.getLibFunc("calloc", Func) || !TLI.has(Func))
784     return nullptr;
785 
786   Module *M = B.GetInsertBlock()->getModule();
787   const DataLayout &DL = M->getDataLayout();
788   IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext()));
789   Value *Calloc = M->getOrInsertFunction("calloc", Attrs, B.getInt8PtrTy(),
790                                          PtrType, PtrType, nullptr);
791   CallInst *CI = B.CreateCall(Calloc, { Num, Size }, "calloc");
792 
793   if (const auto *F = dyn_cast<Function>(Calloc->stripPointerCasts()))
794     CI->setCallingConv(F->getCallingConv());
795 
796   return CI;
797 }
798 
799 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
800 static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B,
801                                const TargetLibraryInfo &TLI) {
802   // This has to be a memset of zeros (bzero).
803   auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
804   if (!FillValue || FillValue->getZExtValue() != 0)
805     return nullptr;
806 
807   // TODO: We should handle the case where the malloc has more than one use.
808   // This is necessary to optimize common patterns such as when the result of
809   // the malloc is checked against null or when a memset intrinsic is used in
810   // place of a memset library call.
811   auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
812   if (!Malloc || !Malloc->hasOneUse())
813     return nullptr;
814 
815   // Is the inner call really malloc()?
816   Function *InnerCallee = Malloc->getCalledFunction();
817   LibFunc::Func Func;
818   if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
819       Func != LibFunc::malloc)
820     return nullptr;
821 
822   // The memset must cover the same number of bytes that are malloc'd.
823   if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
824     return nullptr;
825 
826   // Replace the malloc with a calloc. We need the data layout to know what the
827   // actual size of a 'size_t' parameter is.
828   B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
829   const DataLayout &DL = Malloc->getModule()->getDataLayout();
830   IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
831   Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
832                              Malloc->getArgOperand(0), Malloc->getAttributes(),
833                              B, TLI);
834   if (!Calloc)
835     return nullptr;
836 
837   Malloc->replaceAllUsesWith(Calloc);
838   Malloc->eraseFromParent();
839 
840   return Calloc;
841 }
842 
843 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
844   if (auto *Calloc = foldMallocMemset(CI, B, *TLI))
845     return Calloc;
846 
847   // memset(p, v, n) -> llvm.memset(p, v, n, 1)
848   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
849   B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
850   return CI->getArgOperand(0);
851 }
852 
853 //===----------------------------------------------------------------------===//
854 // Math Library Optimizations
855 //===----------------------------------------------------------------------===//
856 
857 /// Return a variant of Val with float type.
858 /// Currently this works in two cases: If Val is an FPExtension of a float
859 /// value to something bigger, simply return the operand.
860 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
861 /// loss of precision do so.
862 static Value *valueHasFloatPrecision(Value *Val) {
863   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
864     Value *Op = Cast->getOperand(0);
865     if (Op->getType()->isFloatTy())
866       return Op;
867   }
868   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
869     APFloat F = Const->getValueAPF();
870     bool losesInfo;
871     (void)F.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
872                     &losesInfo);
873     if (!losesInfo)
874       return ConstantFP::get(Const->getContext(), F);
875   }
876   return nullptr;
877 }
878 
879 /// Shrink double -> float for unary functions like 'floor'.
880 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
881                                     bool CheckRetType) {
882   Function *Callee = CI->getCalledFunction();
883   // We know this libcall has a valid prototype, but we don't know which.
884   if (!CI->getType()->isDoubleTy())
885     return nullptr;
886 
887   if (CheckRetType) {
888     // Check if all the uses for function like 'sin' are converted to float.
889     for (User *U : CI->users()) {
890       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
891       if (!Cast || !Cast->getType()->isFloatTy())
892         return nullptr;
893     }
894   }
895 
896   // If this is something like 'floor((double)floatval)', convert to floorf.
897   Value *V = valueHasFloatPrecision(CI->getArgOperand(0));
898   if (V == nullptr)
899     return nullptr;
900 
901   // Propagate fast-math flags from the existing call to the new call.
902   IRBuilder<>::FastMathFlagGuard Guard(B);
903   B.setFastMathFlags(CI->getFastMathFlags());
904 
905   // floor((double)floatval) -> (double)floorf(floatval)
906   if (Callee->isIntrinsic()) {
907     Module *M = CI->getModule();
908     Intrinsic::ID IID = Callee->getIntrinsicID();
909     Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
910     V = B.CreateCall(F, V);
911   } else {
912     // The call is a library call rather than an intrinsic.
913     V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
914   }
915 
916   return B.CreateFPExt(V, B.getDoubleTy());
917 }
918 
919 /// Shrink double -> float for binary functions like 'fmin/fmax'.
920 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
921   Function *Callee = CI->getCalledFunction();
922   // We know this libcall has a valid prototype, but we don't know which.
923   if (!CI->getType()->isDoubleTy())
924     return nullptr;
925 
926   // If this is something like 'fmin((double)floatval1, (double)floatval2)',
927   // or fmin(1.0, (double)floatval), then we convert it to fminf.
928   Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0));
929   if (V1 == nullptr)
930     return nullptr;
931   Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1));
932   if (V2 == nullptr)
933     return nullptr;
934 
935   // Propagate fast-math flags from the existing call to the new call.
936   IRBuilder<>::FastMathFlagGuard Guard(B);
937   B.setFastMathFlags(CI->getFastMathFlags());
938 
939   // fmin((double)floatval1, (double)floatval2)
940   //                      -> (double)fminf(floatval1, floatval2)
941   // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP().
942   Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
943                                    Callee->getAttributes());
944   return B.CreateFPExt(V, B.getDoubleTy());
945 }
946 
947 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
948   Function *Callee = CI->getCalledFunction();
949   Value *Ret = nullptr;
950   StringRef Name = Callee->getName();
951   if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name))
952     Ret = optimizeUnaryDoubleFP(CI, B, true);
953 
954   // cos(-x) -> cos(x)
955   Value *Op1 = CI->getArgOperand(0);
956   if (BinaryOperator::isFNeg(Op1)) {
957     BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
958     return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
959   }
960   return Ret;
961 }
962 
963 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
964   // Multiplications calculated using Addition Chains.
965   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
966 
967   assert(Exp != 0 && "Incorrect exponent 0 not handled");
968 
969   if (InnerChain[Exp])
970     return InnerChain[Exp];
971 
972   static const unsigned AddChain[33][2] = {
973       {0, 0}, // Unused.
974       {0, 0}, // Unused (base case = pow1).
975       {1, 1}, // Unused (pre-computed).
976       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
977       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
978       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
979       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
980       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
981   };
982 
983   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
984                                  getPow(InnerChain, AddChain[Exp][1], B));
985   return InnerChain[Exp];
986 }
987 
988 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
989   Function *Callee = CI->getCalledFunction();
990   Value *Ret = nullptr;
991   StringRef Name = Callee->getName();
992   if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name))
993     Ret = optimizeUnaryDoubleFP(CI, B, true);
994 
995   Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
996 
997   // pow(1.0, x) -> 1.0
998   if (match(Op1, m_SpecificFP(1.0)))
999     return Op1;
1000   // pow(2.0, x) -> llvm.exp2(x)
1001   if (match(Op1, m_SpecificFP(2.0))) {
1002     Value *Exp2 = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::exp2,
1003                                             CI->getType());
1004     return B.CreateCall(Exp2, Op2, "exp2");
1005   }
1006 
1007   // There's no llvm.exp10 intrinsic yet, but, maybe, some day there will
1008   // be one.
1009   if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
1010     // pow(10.0, x) -> exp10(x)
1011     if (Op1C->isExactlyValue(10.0) &&
1012         hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f,
1013                         LibFunc::exp10l))
1014       return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B,
1015                                   Callee->getAttributes());
1016   }
1017 
1018   // pow(exp(x), y) -> exp(x * y)
1019   // pow(exp2(x), y) -> exp2(x * y)
1020   // We enable these only with fast-math. Besides rounding differences, the
1021   // transformation changes overflow and underflow behavior quite dramatically.
1022   // Example: x = 1000, y = 0.001.
1023   // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1).
1024   auto *OpC = dyn_cast<CallInst>(Op1);
1025   if (OpC && OpC->hasUnsafeAlgebra() && CI->hasUnsafeAlgebra()) {
1026     LibFunc::Func Func;
1027     Function *OpCCallee = OpC->getCalledFunction();
1028     if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) &&
1029         TLI->has(Func) && (Func == LibFunc::exp || Func == LibFunc::exp2)) {
1030       IRBuilder<>::FastMathFlagGuard Guard(B);
1031       B.setFastMathFlags(CI->getFastMathFlags());
1032       Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul");
1033       return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B,
1034                                   OpCCallee->getAttributes());
1035     }
1036   }
1037 
1038   ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
1039   if (!Op2C)
1040     return Ret;
1041 
1042   if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
1043     return ConstantFP::get(CI->getType(), 1.0);
1044 
1045   if (Op2C->isExactlyValue(0.5) &&
1046       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf,
1047                       LibFunc::sqrtl) &&
1048       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf,
1049                       LibFunc::fabsl)) {
1050 
1051     // In -ffast-math, pow(x, 0.5) -> sqrt(x).
1052     if (CI->hasUnsafeAlgebra()) {
1053       IRBuilder<>::FastMathFlagGuard Guard(B);
1054       B.setFastMathFlags(CI->getFastMathFlags());
1055 
1056       // Unlike other math intrinsics, sqrt has differerent semantics
1057       // from the libc function. See LangRef for details.
1058       return emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc::sqrt), B,
1059                                   Callee->getAttributes());
1060     }
1061 
1062     // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
1063     // This is faster than calling pow, and still handles negative zero
1064     // and negative infinity correctly.
1065     // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
1066     Value *Inf = ConstantFP::getInfinity(CI->getType());
1067     Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
1068     Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes());
1069     Value *FAbs =
1070         emitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes());
1071     Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
1072     Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
1073     return Sel;
1074   }
1075 
1076   if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
1077     return Op1;
1078   if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
1079     return B.CreateFMul(Op1, Op1, "pow2");
1080   if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
1081     return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
1082 
1083   // In -ffast-math, generate repeated fmul instead of generating pow(x, n).
1084   if (CI->hasUnsafeAlgebra()) {
1085     APFloat V = abs(Op2C->getValueAPF());
1086     // We limit to a max of 7 fmul(s). Thus max exponent is 32.
1087     // This transformation applies to integer exponents only.
1088     if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan ||
1089         !V.isInteger())
1090       return nullptr;
1091 
1092     // We will memoize intermediate products of the Addition Chain.
1093     Value *InnerChain[33] = {nullptr};
1094     InnerChain[1] = Op1;
1095     InnerChain[2] = B.CreateFMul(Op1, Op1);
1096 
1097     // We cannot readily convert a non-double type (like float) to a double.
1098     // So we first convert V to something which could be converted to double.
1099     bool ignored;
1100     V.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &ignored);
1101 
1102     // TODO: Should the new instructions propagate the 'fast' flag of the pow()?
1103     Value *FMul = getPow(InnerChain, V.convertToDouble(), B);
1104     // For negative exponents simply compute the reciprocal.
1105     if (Op2C->isNegative())
1106       FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul);
1107     return FMul;
1108   }
1109 
1110   return nullptr;
1111 }
1112 
1113 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1114   Function *Callee = CI->getCalledFunction();
1115   Value *Ret = nullptr;
1116   StringRef Name = Callee->getName();
1117   if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name))
1118     Ret = optimizeUnaryDoubleFP(CI, B, true);
1119 
1120   Value *Op = CI->getArgOperand(0);
1121   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1122   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1123   LibFunc::Func LdExp = LibFunc::ldexpl;
1124   if (Op->getType()->isFloatTy())
1125     LdExp = LibFunc::ldexpf;
1126   else if (Op->getType()->isDoubleTy())
1127     LdExp = LibFunc::ldexp;
1128 
1129   if (TLI->has(LdExp)) {
1130     Value *LdExpArg = nullptr;
1131     if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
1132       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
1133         LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
1134     } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
1135       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
1136         LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
1137     }
1138 
1139     if (LdExpArg) {
1140       Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
1141       if (!Op->getType()->isFloatTy())
1142         One = ConstantExpr::getFPExtend(One, Op->getType());
1143 
1144       Module *M = CI->getModule();
1145       Value *NewCallee =
1146           M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
1147                                  Op->getType(), B.getInt32Ty(), nullptr);
1148       CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg});
1149       if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
1150         CI->setCallingConv(F->getCallingConv());
1151 
1152       return CI;
1153     }
1154   }
1155   return Ret;
1156 }
1157 
1158 Value *LibCallSimplifier::optimizeFabs(CallInst *CI, IRBuilder<> &B) {
1159   Function *Callee = CI->getCalledFunction();
1160   Value *Ret = nullptr;
1161   StringRef Name = Callee->getName();
1162   if (Name == "fabs" && hasFloatVersion(Name))
1163     Ret = optimizeUnaryDoubleFP(CI, B, false);
1164 
1165   Value *Op = CI->getArgOperand(0);
1166   if (Instruction *I = dyn_cast<Instruction>(Op)) {
1167     // Fold fabs(x * x) -> x * x; any squared FP value must already be positive.
1168     if (I->getOpcode() == Instruction::FMul)
1169       if (I->getOperand(0) == I->getOperand(1))
1170         return Op;
1171   }
1172   return Ret;
1173 }
1174 
1175 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1176   Function *Callee = CI->getCalledFunction();
1177   // If we can shrink the call to a float function rather than a double
1178   // function, do that first.
1179   StringRef Name = Callee->getName();
1180   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1181     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1182       return Ret;
1183 
1184   IRBuilder<>::FastMathFlagGuard Guard(B);
1185   FastMathFlags FMF;
1186   if (CI->hasUnsafeAlgebra()) {
1187     // Unsafe algebra sets all fast-math-flags to true.
1188     FMF.setUnsafeAlgebra();
1189   } else {
1190     // At a minimum, no-nans-fp-math must be true.
1191     if (!CI->hasNoNaNs())
1192       return nullptr;
1193     // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
1194     // "Ideally, fmax would be sensitive to the sign of zero, for example
1195     // fmax(-0. 0, +0. 0) would return +0; however, implementation in software
1196     // might be impractical."
1197     FMF.setNoSignedZeros();
1198     FMF.setNoNaNs();
1199   }
1200   B.setFastMathFlags(FMF);
1201 
1202   // We have a relaxed floating-point environment. We can ignore NaN-handling
1203   // and transform to a compare and select. We do not have to consider errno or
1204   // exceptions, because fmin/fmax do not have those.
1205   Value *Op0 = CI->getArgOperand(0);
1206   Value *Op1 = CI->getArgOperand(1);
1207   Value *Cmp = Callee->getName().startswith("fmin") ?
1208     B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
1209   return B.CreateSelect(Cmp, Op0, Op1);
1210 }
1211 
1212 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
1213   Function *Callee = CI->getCalledFunction();
1214   Value *Ret = nullptr;
1215   StringRef Name = Callee->getName();
1216   if (UnsafeFPShrink && hasFloatVersion(Name))
1217     Ret = optimizeUnaryDoubleFP(CI, B, true);
1218 
1219   if (!CI->hasUnsafeAlgebra())
1220     return Ret;
1221   Value *Op1 = CI->getArgOperand(0);
1222   auto *OpC = dyn_cast<CallInst>(Op1);
1223 
1224   // The earlier call must also be unsafe in order to do these transforms.
1225   if (!OpC || !OpC->hasUnsafeAlgebra())
1226     return Ret;
1227 
1228   // log(pow(x,y)) -> y*log(x)
1229   // This is only applicable to log, log2, log10.
1230   if (Name != "log" && Name != "log2" && Name != "log10")
1231     return Ret;
1232 
1233   IRBuilder<>::FastMathFlagGuard Guard(B);
1234   FastMathFlags FMF;
1235   FMF.setUnsafeAlgebra();
1236   B.setFastMathFlags(FMF);
1237 
1238   LibFunc::Func Func;
1239   Function *F = OpC->getCalledFunction();
1240   if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1241       Func == LibFunc::pow) || F->getIntrinsicID() == Intrinsic::pow))
1242     return B.CreateFMul(OpC->getArgOperand(1),
1243       emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B,
1244                            Callee->getAttributes()), "mul");
1245 
1246   // log(exp2(y)) -> y*log(2)
1247   if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) &&
1248       TLI->has(Func) && Func == LibFunc::exp2)
1249     return B.CreateFMul(
1250         OpC->getArgOperand(0),
1251         emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0),
1252                              Callee->getName(), B, Callee->getAttributes()),
1253         "logmul");
1254   return Ret;
1255 }
1256 
1257 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
1258   Function *Callee = CI->getCalledFunction();
1259   Value *Ret = nullptr;
1260   if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" ||
1261                                    Callee->getIntrinsicID() == Intrinsic::sqrt))
1262     Ret = optimizeUnaryDoubleFP(CI, B, true);
1263 
1264   if (!CI->hasUnsafeAlgebra())
1265     return Ret;
1266 
1267   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
1268   if (!I || I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
1269     return Ret;
1270 
1271   // We're looking for a repeated factor in a multiplication tree,
1272   // so we can do this fold: sqrt(x * x) -> fabs(x);
1273   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
1274   Value *Op0 = I->getOperand(0);
1275   Value *Op1 = I->getOperand(1);
1276   Value *RepeatOp = nullptr;
1277   Value *OtherOp = nullptr;
1278   if (Op0 == Op1) {
1279     // Simple match: the operands of the multiply are identical.
1280     RepeatOp = Op0;
1281   } else {
1282     // Look for a more complicated pattern: one of the operands is itself
1283     // a multiply, so search for a common factor in that multiply.
1284     // Note: We don't bother looking any deeper than this first level or for
1285     // variations of this pattern because instcombine's visitFMUL and/or the
1286     // reassociation pass should give us this form.
1287     Value *OtherMul0, *OtherMul1;
1288     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
1289       // Pattern: sqrt((x * y) * z)
1290       if (OtherMul0 == OtherMul1 &&
1291           cast<Instruction>(Op0)->hasUnsafeAlgebra()) {
1292         // Matched: sqrt((x * x) * z)
1293         RepeatOp = OtherMul0;
1294         OtherOp = Op1;
1295       }
1296     }
1297   }
1298   if (!RepeatOp)
1299     return Ret;
1300 
1301   // Fast math flags for any created instructions should match the sqrt
1302   // and multiply.
1303   IRBuilder<>::FastMathFlagGuard Guard(B);
1304   B.setFastMathFlags(I->getFastMathFlags());
1305 
1306   // If we found a repeated factor, hoist it out of the square root and
1307   // replace it with the fabs of that factor.
1308   Module *M = Callee->getParent();
1309   Type *ArgType = I->getType();
1310   Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
1311   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
1312   if (OtherOp) {
1313     // If we found a non-repeated factor, we still need to get its square
1314     // root. We then multiply that by the value that was simplified out
1315     // of the square root calculation.
1316     Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
1317     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
1318     return B.CreateFMul(FabsCall, SqrtCall);
1319   }
1320   return FabsCall;
1321 }
1322 
1323 // TODO: Generalize to handle any trig function and its inverse.
1324 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
1325   Function *Callee = CI->getCalledFunction();
1326   Value *Ret = nullptr;
1327   StringRef Name = Callee->getName();
1328   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
1329     Ret = optimizeUnaryDoubleFP(CI, B, true);
1330 
1331   Value *Op1 = CI->getArgOperand(0);
1332   auto *OpC = dyn_cast<CallInst>(Op1);
1333   if (!OpC)
1334     return Ret;
1335 
1336   // Both calls must allow unsafe optimizations in order to remove them.
1337   if (!CI->hasUnsafeAlgebra() || !OpC->hasUnsafeAlgebra())
1338     return Ret;
1339 
1340   // tan(atan(x)) -> x
1341   // tanf(atanf(x)) -> x
1342   // tanl(atanl(x)) -> x
1343   LibFunc::Func Func;
1344   Function *F = OpC->getCalledFunction();
1345   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1346       ((Func == LibFunc::atan && Callee->getName() == "tan") ||
1347        (Func == LibFunc::atanf && Callee->getName() == "tanf") ||
1348        (Func == LibFunc::atanl && Callee->getName() == "tanl")))
1349     Ret = OpC->getArgOperand(0);
1350   return Ret;
1351 }
1352 
1353 static bool isTrigLibCall(CallInst *CI) {
1354   // We can only hope to do anything useful if we can ignore things like errno
1355   // and floating-point exceptions.
1356   // We already checked the prototype.
1357   return CI->hasFnAttr(Attribute::NoUnwind) &&
1358          CI->hasFnAttr(Attribute::ReadNone);
1359 }
1360 
1361 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
1362                              bool UseFloat, Value *&Sin, Value *&Cos,
1363                              Value *&SinCos) {
1364   Type *ArgTy = Arg->getType();
1365   Type *ResTy;
1366   StringRef Name;
1367 
1368   Triple T(OrigCallee->getParent()->getTargetTriple());
1369   if (UseFloat) {
1370     Name = "__sincospif_stret";
1371 
1372     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
1373     // x86_64 can't use {float, float} since that would be returned in both
1374     // xmm0 and xmm1, which isn't what a real struct would do.
1375     ResTy = T.getArch() == Triple::x86_64
1376     ? static_cast<Type *>(VectorType::get(ArgTy, 2))
1377     : static_cast<Type *>(StructType::get(ArgTy, ArgTy, nullptr));
1378   } else {
1379     Name = "__sincospi_stret";
1380     ResTy = StructType::get(ArgTy, ArgTy, nullptr);
1381   }
1382 
1383   Module *M = OrigCallee->getParent();
1384   Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
1385                                          ResTy, ArgTy, nullptr);
1386 
1387   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
1388     // If the argument is an instruction, it must dominate all uses so put our
1389     // sincos call there.
1390     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
1391   } else {
1392     // Otherwise (e.g. for a constant) the beginning of the function is as
1393     // good a place as any.
1394     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
1395     B.SetInsertPoint(&EntryBB, EntryBB.begin());
1396   }
1397 
1398   SinCos = B.CreateCall(Callee, Arg, "sincospi");
1399 
1400   if (SinCos->getType()->isStructTy()) {
1401     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
1402     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
1403   } else {
1404     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
1405                                  "sinpi");
1406     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
1407                                  "cospi");
1408   }
1409 }
1410 
1411 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
1412   // Make sure the prototype is as expected, otherwise the rest of the
1413   // function is probably invalid and likely to abort.
1414   if (!isTrigLibCall(CI))
1415     return nullptr;
1416 
1417   Value *Arg = CI->getArgOperand(0);
1418   SmallVector<CallInst *, 1> SinCalls;
1419   SmallVector<CallInst *, 1> CosCalls;
1420   SmallVector<CallInst *, 1> SinCosCalls;
1421 
1422   bool IsFloat = Arg->getType()->isFloatTy();
1423 
1424   // Look for all compatible sinpi, cospi and sincospi calls with the same
1425   // argument. If there are enough (in some sense) we can make the
1426   // substitution.
1427   Function *F = CI->getFunction();
1428   for (User *U : Arg->users())
1429     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
1430 
1431   // It's only worthwhile if both sinpi and cospi are actually used.
1432   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
1433     return nullptr;
1434 
1435   Value *Sin, *Cos, *SinCos;
1436   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
1437 
1438   replaceTrigInsts(SinCalls, Sin);
1439   replaceTrigInsts(CosCalls, Cos);
1440   replaceTrigInsts(SinCosCalls, SinCos);
1441 
1442   return nullptr;
1443 }
1444 
1445 void LibCallSimplifier::classifyArgUse(
1446     Value *Val, Function *F, bool IsFloat,
1447     SmallVectorImpl<CallInst *> &SinCalls,
1448     SmallVectorImpl<CallInst *> &CosCalls,
1449     SmallVectorImpl<CallInst *> &SinCosCalls) {
1450   CallInst *CI = dyn_cast<CallInst>(Val);
1451 
1452   if (!CI)
1453     return;
1454 
1455   // Don't consider calls in other functions.
1456   if (CI->getFunction() != F)
1457     return;
1458 
1459   Function *Callee = CI->getCalledFunction();
1460   LibFunc::Func Func;
1461   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
1462       !isTrigLibCall(CI))
1463     return;
1464 
1465   if (IsFloat) {
1466     if (Func == LibFunc::sinpif)
1467       SinCalls.push_back(CI);
1468     else if (Func == LibFunc::cospif)
1469       CosCalls.push_back(CI);
1470     else if (Func == LibFunc::sincospif_stret)
1471       SinCosCalls.push_back(CI);
1472   } else {
1473     if (Func == LibFunc::sinpi)
1474       SinCalls.push_back(CI);
1475     else if (Func == LibFunc::cospi)
1476       CosCalls.push_back(CI);
1477     else if (Func == LibFunc::sincospi_stret)
1478       SinCosCalls.push_back(CI);
1479   }
1480 }
1481 
1482 void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls,
1483                                          Value *Res) {
1484   for (CallInst *C : Calls)
1485     replaceAllUsesWith(C, Res);
1486 }
1487 
1488 //===----------------------------------------------------------------------===//
1489 // Integer Library Call Optimizations
1490 //===----------------------------------------------------------------------===//
1491 
1492 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
1493   Function *Callee = CI->getCalledFunction();
1494   Value *Op = CI->getArgOperand(0);
1495 
1496   // Constant fold.
1497   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1498     if (CI->isZero()) // ffs(0) -> 0.
1499       return B.getInt32(0);
1500     // ffs(c) -> cttz(c)+1
1501     return B.getInt32(CI->getValue().countTrailingZeros() + 1);
1502   }
1503 
1504   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
1505   Type *ArgType = Op->getType();
1506   Value *F =
1507       Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType);
1508   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
1509   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
1510   V = B.CreateIntCast(V, B.getInt32Ty(), false);
1511 
1512   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
1513   return B.CreateSelect(Cond, V, B.getInt32(0));
1514 }
1515 
1516 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
1517   // abs(x) -> x >s -1 ? x : -x
1518   Value *Op = CI->getArgOperand(0);
1519   Value *Pos =
1520       B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos");
1521   Value *Neg = B.CreateNeg(Op, "neg");
1522   return B.CreateSelect(Pos, Op, Neg);
1523 }
1524 
1525 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
1526   // isdigit(c) -> (c-'0') <u 10
1527   Value *Op = CI->getArgOperand(0);
1528   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
1529   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
1530   return B.CreateZExt(Op, CI->getType());
1531 }
1532 
1533 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
1534   // isascii(c) -> c <u 128
1535   Value *Op = CI->getArgOperand(0);
1536   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
1537   return B.CreateZExt(Op, CI->getType());
1538 }
1539 
1540 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
1541   // toascii(c) -> c & 0x7f
1542   return B.CreateAnd(CI->getArgOperand(0),
1543                      ConstantInt::get(CI->getType(), 0x7F));
1544 }
1545 
1546 //===----------------------------------------------------------------------===//
1547 // Formatting and IO Library Call Optimizations
1548 //===----------------------------------------------------------------------===//
1549 
1550 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
1551 
1552 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
1553                                                  int StreamArg) {
1554   Function *Callee = CI->getCalledFunction();
1555   // Error reporting calls should be cold, mark them as such.
1556   // This applies even to non-builtin calls: it is only a hint and applies to
1557   // functions that the frontend might not understand as builtins.
1558 
1559   // This heuristic was suggested in:
1560   // Improving Static Branch Prediction in a Compiler
1561   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
1562   // Proceedings of PACT'98, Oct. 1998, IEEE
1563   if (!CI->hasFnAttr(Attribute::Cold) &&
1564       isReportingError(Callee, CI, StreamArg)) {
1565     CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
1566   }
1567 
1568   return nullptr;
1569 }
1570 
1571 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
1572   if (!ColdErrorCalls || !Callee || !Callee->isDeclaration())
1573     return false;
1574 
1575   if (StreamArg < 0)
1576     return true;
1577 
1578   // These functions might be considered cold, but only if their stream
1579   // argument is stderr.
1580 
1581   if (StreamArg >= (int)CI->getNumArgOperands())
1582     return false;
1583   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
1584   if (!LI)
1585     return false;
1586   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
1587   if (!GV || !GV->isDeclaration())
1588     return false;
1589   return GV->getName() == "stderr";
1590 }
1591 
1592 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
1593   // Check for a fixed format string.
1594   StringRef FormatStr;
1595   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
1596     return nullptr;
1597 
1598   // Empty format string -> noop.
1599   if (FormatStr.empty()) // Tolerate printf's declared void.
1600     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
1601 
1602   // Do not do any of the following transformations if the printf return value
1603   // is used, in general the printf return value is not compatible with either
1604   // putchar() or puts().
1605   if (!CI->use_empty())
1606     return nullptr;
1607 
1608   // printf("x") -> putchar('x'), even for "%" and "%%".
1609   if (FormatStr.size() == 1 || FormatStr == "%%")
1610     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
1611 
1612   // printf("%s", "a") --> putchar('a')
1613   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
1614     StringRef ChrStr;
1615     if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
1616       return nullptr;
1617     if (ChrStr.size() != 1)
1618       return nullptr;
1619     return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
1620   }
1621 
1622   // printf("foo\n") --> puts("foo")
1623   if (FormatStr[FormatStr.size() - 1] == '\n' &&
1624       FormatStr.find('%') == StringRef::npos) { // No format characters.
1625     // Create a string literal with no \n on it.  We expect the constant merge
1626     // pass to be run after this pass, to merge duplicate strings.
1627     FormatStr = FormatStr.drop_back();
1628     Value *GV = B.CreateGlobalString(FormatStr, "str");
1629     return emitPutS(GV, B, TLI);
1630   }
1631 
1632   // Optimize specific format strings.
1633   // printf("%c", chr) --> putchar(chr)
1634   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
1635       CI->getArgOperand(1)->getType()->isIntegerTy())
1636     return emitPutChar(CI->getArgOperand(1), B, TLI);
1637 
1638   // printf("%s\n", str) --> puts(str)
1639   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
1640       CI->getArgOperand(1)->getType()->isPointerTy())
1641     return emitPutS(CI->getArgOperand(1), B, TLI);
1642   return nullptr;
1643 }
1644 
1645 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
1646 
1647   Function *Callee = CI->getCalledFunction();
1648   FunctionType *FT = Callee->getFunctionType();
1649   if (Value *V = optimizePrintFString(CI, B)) {
1650     return V;
1651   }
1652 
1653   // printf(format, ...) -> iprintf(format, ...) if no floating point
1654   // arguments.
1655   if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
1656     Module *M = B.GetInsertBlock()->getParent()->getParent();
1657     Constant *IPrintFFn =
1658         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
1659     CallInst *New = cast<CallInst>(CI->clone());
1660     New->setCalledFunction(IPrintFFn);
1661     B.Insert(New);
1662     return New;
1663   }
1664   return nullptr;
1665 }
1666 
1667 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
1668   // Check for a fixed format string.
1669   StringRef FormatStr;
1670   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1671     return nullptr;
1672 
1673   // If we just have a format string (nothing else crazy) transform it.
1674   if (CI->getNumArgOperands() == 2) {
1675     // Make sure there's no % in the constant array.  We could try to handle
1676     // %% -> % in the future if we cared.
1677     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1678       if (FormatStr[i] == '%')
1679         return nullptr; // we found a format specifier, bail out.
1680 
1681     // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
1682     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
1683                    ConstantInt::get(DL.getIntPtrType(CI->getContext()),
1684                                     FormatStr.size() + 1),
1685                    1); // Copy the null byte.
1686     return ConstantInt::get(CI->getType(), FormatStr.size());
1687   }
1688 
1689   // The remaining optimizations require the format string to be "%s" or "%c"
1690   // and have an extra operand.
1691   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1692       CI->getNumArgOperands() < 3)
1693     return nullptr;
1694 
1695   // Decode the second character of the format string.
1696   if (FormatStr[1] == 'c') {
1697     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
1698     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1699       return nullptr;
1700     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
1701     Value *Ptr = castToCStr(CI->getArgOperand(0), B);
1702     B.CreateStore(V, Ptr);
1703     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
1704     B.CreateStore(B.getInt8(0), Ptr);
1705 
1706     return ConstantInt::get(CI->getType(), 1);
1707   }
1708 
1709   if (FormatStr[1] == 's') {
1710     // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1711     if (!CI->getArgOperand(2)->getType()->isPointerTy())
1712       return nullptr;
1713 
1714     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
1715     if (!Len)
1716       return nullptr;
1717     Value *IncLen =
1718         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
1719     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
1720 
1721     // The sprintf result is the unincremented number of bytes in the string.
1722     return B.CreateIntCast(Len, CI->getType(), false);
1723   }
1724   return nullptr;
1725 }
1726 
1727 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
1728   Function *Callee = CI->getCalledFunction();
1729   FunctionType *FT = Callee->getFunctionType();
1730   if (Value *V = optimizeSPrintFString(CI, B)) {
1731     return V;
1732   }
1733 
1734   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
1735   // point arguments.
1736   if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) {
1737     Module *M = B.GetInsertBlock()->getParent()->getParent();
1738     Constant *SIPrintFFn =
1739         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
1740     CallInst *New = cast<CallInst>(CI->clone());
1741     New->setCalledFunction(SIPrintFFn);
1742     B.Insert(New);
1743     return New;
1744   }
1745   return nullptr;
1746 }
1747 
1748 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
1749   optimizeErrorReporting(CI, B, 0);
1750 
1751   // All the optimizations depend on the format string.
1752   StringRef FormatStr;
1753   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1754     return nullptr;
1755 
1756   // Do not do any of the following transformations if the fprintf return
1757   // value is used, in general the fprintf return value is not compatible
1758   // with fwrite(), fputc() or fputs().
1759   if (!CI->use_empty())
1760     return nullptr;
1761 
1762   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
1763   if (CI->getNumArgOperands() == 2) {
1764     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1765       if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
1766         return nullptr;        // We found a format specifier.
1767 
1768     return emitFWrite(
1769         CI->getArgOperand(1),
1770         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
1771         CI->getArgOperand(0), B, DL, TLI);
1772   }
1773 
1774   // The remaining optimizations require the format string to be "%s" or "%c"
1775   // and have an extra operand.
1776   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1777       CI->getNumArgOperands() < 3)
1778     return nullptr;
1779 
1780   // Decode the second character of the format string.
1781   if (FormatStr[1] == 'c') {
1782     // fprintf(F, "%c", chr) --> fputc(chr, F)
1783     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1784       return nullptr;
1785     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1786   }
1787 
1788   if (FormatStr[1] == 's') {
1789     // fprintf(F, "%s", str) --> fputs(str, F)
1790     if (!CI->getArgOperand(2)->getType()->isPointerTy())
1791       return nullptr;
1792     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1793   }
1794   return nullptr;
1795 }
1796 
1797 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
1798   Function *Callee = CI->getCalledFunction();
1799   FunctionType *FT = Callee->getFunctionType();
1800   if (Value *V = optimizeFPrintFString(CI, B)) {
1801     return V;
1802   }
1803 
1804   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
1805   // floating point arguments.
1806   if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) {
1807     Module *M = B.GetInsertBlock()->getParent()->getParent();
1808     Constant *FIPrintFFn =
1809         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
1810     CallInst *New = cast<CallInst>(CI->clone());
1811     New->setCalledFunction(FIPrintFFn);
1812     B.Insert(New);
1813     return New;
1814   }
1815   return nullptr;
1816 }
1817 
1818 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
1819   optimizeErrorReporting(CI, B, 3);
1820 
1821   // Get the element size and count.
1822   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
1823   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1824   if (!SizeC || !CountC)
1825     return nullptr;
1826   uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
1827 
1828   // If this is writing zero records, remove the call (it's a noop).
1829   if (Bytes == 0)
1830     return ConstantInt::get(CI->getType(), 0);
1831 
1832   // If this is writing one byte, turn it into fputc.
1833   // This optimisation is only valid, if the return value is unused.
1834   if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
1835     Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char");
1836     Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
1837     return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
1838   }
1839 
1840   return nullptr;
1841 }
1842 
1843 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
1844   optimizeErrorReporting(CI, B, 1);
1845 
1846   // Don't rewrite fputs to fwrite when optimising for size because fwrite
1847   // requires more arguments and thus extra MOVs are required.
1848   if (CI->getParent()->getParent()->optForSize())
1849     return nullptr;
1850 
1851   // We can't optimize if return value is used.
1852   if (!CI->use_empty())
1853     return nullptr;
1854 
1855   // fputs(s,F) --> fwrite(s,1,strlen(s),F)
1856   uint64_t Len = GetStringLength(CI->getArgOperand(0));
1857   if (!Len)
1858     return nullptr;
1859 
1860   // Known to have no uses (see above).
1861   return emitFWrite(
1862       CI->getArgOperand(0),
1863       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
1864       CI->getArgOperand(1), B, DL, TLI);
1865 }
1866 
1867 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
1868   // Check for a constant string.
1869   StringRef Str;
1870   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
1871     return nullptr;
1872 
1873   if (Str.empty() && CI->use_empty()) {
1874     // puts("") -> putchar('\n')
1875     Value *Res = emitPutChar(B.getInt32('\n'), B, TLI);
1876     if (CI->use_empty() || !Res)
1877       return Res;
1878     return B.CreateIntCast(Res, CI->getType(), true);
1879   }
1880 
1881   return nullptr;
1882 }
1883 
1884 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
1885   LibFunc::Func Func;
1886   SmallString<20> FloatFuncName = FuncName;
1887   FloatFuncName += 'f';
1888   if (TLI->getLibFunc(FloatFuncName, Func))
1889     return TLI->has(Func);
1890   return false;
1891 }
1892 
1893 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
1894                                                       IRBuilder<> &Builder) {
1895   LibFunc::Func Func;
1896   Function *Callee = CI->getCalledFunction();
1897   // Check for string/memory library functions.
1898   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
1899     // Make sure we never change the calling convention.
1900     assert((ignoreCallingConv(Func) ||
1901             CI->getCallingConv() == llvm::CallingConv::C) &&
1902       "Optimizing string/memory libcall would change the calling convention");
1903     switch (Func) {
1904     case LibFunc::strcat:
1905       return optimizeStrCat(CI, Builder);
1906     case LibFunc::strncat:
1907       return optimizeStrNCat(CI, Builder);
1908     case LibFunc::strchr:
1909       return optimizeStrChr(CI, Builder);
1910     case LibFunc::strrchr:
1911       return optimizeStrRChr(CI, Builder);
1912     case LibFunc::strcmp:
1913       return optimizeStrCmp(CI, Builder);
1914     case LibFunc::strncmp:
1915       return optimizeStrNCmp(CI, Builder);
1916     case LibFunc::strcpy:
1917       return optimizeStrCpy(CI, Builder);
1918     case LibFunc::stpcpy:
1919       return optimizeStpCpy(CI, Builder);
1920     case LibFunc::strncpy:
1921       return optimizeStrNCpy(CI, Builder);
1922     case LibFunc::strlen:
1923       return optimizeStrLen(CI, Builder);
1924     case LibFunc::strpbrk:
1925       return optimizeStrPBrk(CI, Builder);
1926     case LibFunc::strtol:
1927     case LibFunc::strtod:
1928     case LibFunc::strtof:
1929     case LibFunc::strtoul:
1930     case LibFunc::strtoll:
1931     case LibFunc::strtold:
1932     case LibFunc::strtoull:
1933       return optimizeStrTo(CI, Builder);
1934     case LibFunc::strspn:
1935       return optimizeStrSpn(CI, Builder);
1936     case LibFunc::strcspn:
1937       return optimizeStrCSpn(CI, Builder);
1938     case LibFunc::strstr:
1939       return optimizeStrStr(CI, Builder);
1940     case LibFunc::memchr:
1941       return optimizeMemChr(CI, Builder);
1942     case LibFunc::memcmp:
1943       return optimizeMemCmp(CI, Builder);
1944     case LibFunc::memcpy:
1945       return optimizeMemCpy(CI, Builder);
1946     case LibFunc::memmove:
1947       return optimizeMemMove(CI, Builder);
1948     case LibFunc::memset:
1949       return optimizeMemSet(CI, Builder);
1950     default:
1951       break;
1952     }
1953   }
1954   return nullptr;
1955 }
1956 
1957 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
1958   if (CI->isNoBuiltin())
1959     return nullptr;
1960 
1961   LibFunc::Func Func;
1962   Function *Callee = CI->getCalledFunction();
1963   StringRef FuncName = Callee->getName();
1964 
1965   SmallVector<OperandBundleDef, 2> OpBundles;
1966   CI->getOperandBundlesAsDefs(OpBundles);
1967   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
1968   bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
1969 
1970   // Command-line parameter overrides instruction attribute.
1971   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
1972     UnsafeFPShrink = EnableUnsafeFPShrink;
1973   else if (isa<FPMathOperator>(CI) && CI->hasUnsafeAlgebra())
1974     UnsafeFPShrink = true;
1975 
1976   // First, check for intrinsics.
1977   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
1978     if (!isCallingConvC)
1979       return nullptr;
1980     switch (II->getIntrinsicID()) {
1981     case Intrinsic::pow:
1982       return optimizePow(CI, Builder);
1983     case Intrinsic::exp2:
1984       return optimizeExp2(CI, Builder);
1985     case Intrinsic::fabs:
1986       return optimizeFabs(CI, Builder);
1987     case Intrinsic::log:
1988       return optimizeLog(CI, Builder);
1989     case Intrinsic::sqrt:
1990       return optimizeSqrt(CI, Builder);
1991     // TODO: Use foldMallocMemset() with memset intrinsic.
1992     default:
1993       return nullptr;
1994     }
1995   }
1996 
1997   // Also try to simplify calls to fortified library functions.
1998   if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
1999     // Try to further simplify the result.
2000     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
2001     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
2002       // Use an IR Builder from SimplifiedCI if available instead of CI
2003       // to guarantee we reach all uses we might replace later on.
2004       IRBuilder<> TmpBuilder(SimplifiedCI);
2005       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
2006         // If we were able to further simplify, remove the now redundant call.
2007         SimplifiedCI->replaceAllUsesWith(V);
2008         SimplifiedCI->eraseFromParent();
2009         return V;
2010       }
2011     }
2012     return SimplifiedFortifiedCI;
2013   }
2014 
2015   // Then check for known library functions.
2016   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2017     // We never change the calling convention.
2018     if (!ignoreCallingConv(Func) && !isCallingConvC)
2019       return nullptr;
2020     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
2021       return V;
2022     switch (Func) {
2023     case LibFunc::cosf:
2024     case LibFunc::cos:
2025     case LibFunc::cosl:
2026       return optimizeCos(CI, Builder);
2027     case LibFunc::sinpif:
2028     case LibFunc::sinpi:
2029     case LibFunc::cospif:
2030     case LibFunc::cospi:
2031       return optimizeSinCosPi(CI, Builder);
2032     case LibFunc::powf:
2033     case LibFunc::pow:
2034     case LibFunc::powl:
2035       return optimizePow(CI, Builder);
2036     case LibFunc::exp2l:
2037     case LibFunc::exp2:
2038     case LibFunc::exp2f:
2039       return optimizeExp2(CI, Builder);
2040     case LibFunc::fabsf:
2041     case LibFunc::fabs:
2042     case LibFunc::fabsl:
2043       return optimizeFabs(CI, Builder);
2044     case LibFunc::sqrtf:
2045     case LibFunc::sqrt:
2046     case LibFunc::sqrtl:
2047       return optimizeSqrt(CI, Builder);
2048     case LibFunc::ffs:
2049     case LibFunc::ffsl:
2050     case LibFunc::ffsll:
2051       return optimizeFFS(CI, Builder);
2052     case LibFunc::abs:
2053     case LibFunc::labs:
2054     case LibFunc::llabs:
2055       return optimizeAbs(CI, Builder);
2056     case LibFunc::isdigit:
2057       return optimizeIsDigit(CI, Builder);
2058     case LibFunc::isascii:
2059       return optimizeIsAscii(CI, Builder);
2060     case LibFunc::toascii:
2061       return optimizeToAscii(CI, Builder);
2062     case LibFunc::printf:
2063       return optimizePrintF(CI, Builder);
2064     case LibFunc::sprintf:
2065       return optimizeSPrintF(CI, Builder);
2066     case LibFunc::fprintf:
2067       return optimizeFPrintF(CI, Builder);
2068     case LibFunc::fwrite:
2069       return optimizeFWrite(CI, Builder);
2070     case LibFunc::fputs:
2071       return optimizeFPuts(CI, Builder);
2072     case LibFunc::log:
2073     case LibFunc::log10:
2074     case LibFunc::log1p:
2075     case LibFunc::log2:
2076     case LibFunc::logb:
2077       return optimizeLog(CI, Builder);
2078     case LibFunc::puts:
2079       return optimizePuts(CI, Builder);
2080     case LibFunc::tan:
2081     case LibFunc::tanf:
2082     case LibFunc::tanl:
2083       return optimizeTan(CI, Builder);
2084     case LibFunc::perror:
2085       return optimizeErrorReporting(CI, Builder);
2086     case LibFunc::vfprintf:
2087     case LibFunc::fiprintf:
2088       return optimizeErrorReporting(CI, Builder, 0);
2089     case LibFunc::fputc:
2090       return optimizeErrorReporting(CI, Builder, 1);
2091     case LibFunc::ceil:
2092     case LibFunc::floor:
2093     case LibFunc::rint:
2094     case LibFunc::round:
2095     case LibFunc::nearbyint:
2096     case LibFunc::trunc:
2097       if (hasFloatVersion(FuncName))
2098         return optimizeUnaryDoubleFP(CI, Builder, false);
2099       return nullptr;
2100     case LibFunc::acos:
2101     case LibFunc::acosh:
2102     case LibFunc::asin:
2103     case LibFunc::asinh:
2104     case LibFunc::atan:
2105     case LibFunc::atanh:
2106     case LibFunc::cbrt:
2107     case LibFunc::cosh:
2108     case LibFunc::exp:
2109     case LibFunc::exp10:
2110     case LibFunc::expm1:
2111     case LibFunc::sin:
2112     case LibFunc::sinh:
2113     case LibFunc::tanh:
2114       if (UnsafeFPShrink && hasFloatVersion(FuncName))
2115         return optimizeUnaryDoubleFP(CI, Builder, true);
2116       return nullptr;
2117     case LibFunc::copysign:
2118       if (hasFloatVersion(FuncName))
2119         return optimizeBinaryDoubleFP(CI, Builder);
2120       return nullptr;
2121     case LibFunc::fminf:
2122     case LibFunc::fmin:
2123     case LibFunc::fminl:
2124     case LibFunc::fmaxf:
2125     case LibFunc::fmax:
2126     case LibFunc::fmaxl:
2127       return optimizeFMinFMax(CI, Builder);
2128     default:
2129       return nullptr;
2130     }
2131   }
2132   return nullptr;
2133 }
2134 
2135 LibCallSimplifier::LibCallSimplifier(
2136     const DataLayout &DL, const TargetLibraryInfo *TLI,
2137     function_ref<void(Instruction *, Value *)> Replacer)
2138     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), UnsafeFPShrink(false),
2139       Replacer(Replacer) {}
2140 
2141 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
2142   // Indirect through the replacer used in this instance.
2143   Replacer(I, With);
2144 }
2145 
2146 // TODO:
2147 //   Additional cases that we need to add to this file:
2148 //
2149 // cbrt:
2150 //   * cbrt(expN(X))  -> expN(x/3)
2151 //   * cbrt(sqrt(x))  -> pow(x,1/6)
2152 //   * cbrt(cbrt(x))  -> pow(x,1/9)
2153 //
2154 // exp, expf, expl:
2155 //   * exp(log(x))  -> x
2156 //
2157 // log, logf, logl:
2158 //   * log(exp(x))   -> x
2159 //   * log(exp(y))   -> y*log(e)
2160 //   * log(exp10(y)) -> y*log(10)
2161 //   * log(sqrt(x))  -> 0.5*log(x)
2162 //
2163 // lround, lroundf, lroundl:
2164 //   * lround(cnst) -> cnst'
2165 //
2166 // pow, powf, powl:
2167 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
2168 //   * pow(pow(x,y),z)-> pow(x,y*z)
2169 //
2170 // round, roundf, roundl:
2171 //   * round(cnst) -> cnst'
2172 //
2173 // signbit:
2174 //   * signbit(cnst) -> cnst'
2175 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2176 //
2177 // sqrt, sqrtf, sqrtl:
2178 //   * sqrt(expN(x))  -> expN(x*0.5)
2179 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2180 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2181 //
2182 // trunc, truncf, truncl:
2183 //   * trunc(cnst) -> cnst'
2184 //
2185 //
2186 
2187 //===----------------------------------------------------------------------===//
2188 // Fortified Library Call Optimizations
2189 //===----------------------------------------------------------------------===//
2190 
2191 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
2192                                                          unsigned ObjSizeOp,
2193                                                          unsigned SizeOp,
2194                                                          bool isString) {
2195   if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
2196     return true;
2197   if (ConstantInt *ObjSizeCI =
2198           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
2199     if (ObjSizeCI->isAllOnesValue())
2200       return true;
2201     // If the object size wasn't -1 (unknown), bail out if we were asked to.
2202     if (OnlyLowerUnknownSize)
2203       return false;
2204     if (isString) {
2205       uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
2206       // If the length is 0 we don't know how long it is and so we can't
2207       // remove the check.
2208       if (Len == 0)
2209         return false;
2210       return ObjSizeCI->getZExtValue() >= Len;
2211     }
2212     if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
2213       return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
2214   }
2215   return false;
2216 }
2217 
2218 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
2219                                                      IRBuilder<> &B) {
2220   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2221     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2222                    CI->getArgOperand(2), 1);
2223     return CI->getArgOperand(0);
2224   }
2225   return nullptr;
2226 }
2227 
2228 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
2229                                                       IRBuilder<> &B) {
2230   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2231     B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
2232                     CI->getArgOperand(2), 1);
2233     return CI->getArgOperand(0);
2234   }
2235   return nullptr;
2236 }
2237 
2238 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
2239                                                      IRBuilder<> &B) {
2240   // TODO: Try foldMallocMemset() here.
2241 
2242   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2243     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
2244     B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
2245     return CI->getArgOperand(0);
2246   }
2247   return nullptr;
2248 }
2249 
2250 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
2251                                                       IRBuilder<> &B,
2252                                                       LibFunc::Func Func) {
2253   Function *Callee = CI->getCalledFunction();
2254   StringRef Name = Callee->getName();
2255   const DataLayout &DL = CI->getModule()->getDataLayout();
2256   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
2257         *ObjSize = CI->getArgOperand(2);
2258 
2259   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
2260   if (Func == LibFunc::stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
2261     Value *StrLen = emitStrLen(Src, B, DL, TLI);
2262     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
2263   }
2264 
2265   // If a) we don't have any length information, or b) we know this will
2266   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
2267   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
2268   // TODO: It might be nice to get a maximum length out of the possible
2269   // string lengths for varying.
2270   if (isFortifiedCallFoldable(CI, 2, 1, true))
2271     return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
2272 
2273   if (OnlyLowerUnknownSize)
2274     return nullptr;
2275 
2276   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
2277   uint64_t Len = GetStringLength(Src);
2278   if (Len == 0)
2279     return nullptr;
2280 
2281   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
2282   Value *LenV = ConstantInt::get(SizeTTy, Len);
2283   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
2284   // If the function was an __stpcpy_chk, and we were able to fold it into
2285   // a __memcpy_chk, we still need to return the correct end pointer.
2286   if (Ret && Func == LibFunc::stpcpy_chk)
2287     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
2288   return Ret;
2289 }
2290 
2291 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
2292                                                        IRBuilder<> &B,
2293                                                        LibFunc::Func Func) {
2294   Function *Callee = CI->getCalledFunction();
2295   StringRef Name = Callee->getName();
2296   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2297     Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2298                              CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
2299     return Ret;
2300   }
2301   return nullptr;
2302 }
2303 
2304 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
2305   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
2306   // Some clang users checked for _chk libcall availability using:
2307   //   __has_builtin(__builtin___memcpy_chk)
2308   // When compiling with -fno-builtin, this is always true.
2309   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
2310   // end up with fortified libcalls, which isn't acceptable in a freestanding
2311   // environment which only provides their non-fortified counterparts.
2312   //
2313   // Until we change clang and/or teach external users to check for availability
2314   // differently, disregard the "nobuiltin" attribute and TLI::has.
2315   //
2316   // PR23093.
2317 
2318   LibFunc::Func Func;
2319   Function *Callee = CI->getCalledFunction();
2320 
2321   SmallVector<OperandBundleDef, 2> OpBundles;
2322   CI->getOperandBundlesAsDefs(OpBundles);
2323   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2324   bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
2325 
2326   // First, check that this is a known library functions and that the prototype
2327   // is correct.
2328   if (!TLI->getLibFunc(*Callee, Func))
2329     return nullptr;
2330 
2331   // We never change the calling convention.
2332   if (!ignoreCallingConv(Func) && !isCallingConvC)
2333     return nullptr;
2334 
2335   switch (Func) {
2336   case LibFunc::memcpy_chk:
2337     return optimizeMemCpyChk(CI, Builder);
2338   case LibFunc::memmove_chk:
2339     return optimizeMemMoveChk(CI, Builder);
2340   case LibFunc::memset_chk:
2341     return optimizeMemSetChk(CI, Builder);
2342   case LibFunc::stpcpy_chk:
2343   case LibFunc::strcpy_chk:
2344     return optimizeStrpCpyChk(CI, Builder, Func);
2345   case LibFunc::stpncpy_chk:
2346   case LibFunc::strncpy_chk:
2347     return optimizeStrpNCpyChk(CI, Builder, Func);
2348   default:
2349     break;
2350   }
2351   return nullptr;
2352 }
2353 
2354 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
2355     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
2356     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
2357