1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is a utility pass used for testing the InstructionSimplify analysis. 11 // The analysis is applied to every instruction, and if it simplifies then the 12 // instruction is replaced by the simplification. If you are looking for a pass 13 // that performs serious instruction folding, use the instcombine pass instead. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DiagnosticInfo.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Transforms/Utils/BuildLibCalls.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 static cl::opt<bool> 40 ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden, 41 cl::desc("Treat error-reporting calls as cold")); 42 43 static cl::opt<bool> 44 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 45 cl::init(false), 46 cl::desc("Enable unsafe double to float " 47 "shrinking for math lib calls")); 48 49 50 //===----------------------------------------------------------------------===// 51 // Helper Functions 52 //===----------------------------------------------------------------------===// 53 54 static bool ignoreCallingConv(LibFunc::Func Func) { 55 return Func == LibFunc::abs || Func == LibFunc::labs || 56 Func == LibFunc::llabs || Func == LibFunc::strlen; 57 } 58 59 /// Return true if it only matters that the value is equal or not-equal to zero. 60 static bool isOnlyUsedInZeroEqualityComparison(Value *V) { 61 for (User *U : V->users()) { 62 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 63 if (IC->isEquality()) 64 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 65 if (C->isNullValue()) 66 continue; 67 // Unknown instruction. 68 return false; 69 } 70 return true; 71 } 72 73 /// Return true if it is only used in equality comparisons with With. 74 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 75 for (User *U : V->users()) { 76 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 77 if (IC->isEquality() && IC->getOperand(1) == With) 78 continue; 79 // Unknown instruction. 80 return false; 81 } 82 return true; 83 } 84 85 static bool callHasFloatingPointArgument(const CallInst *CI) { 86 return any_of(CI->operands(), [](const Use &OI) { 87 return OI->getType()->isFloatingPointTy(); 88 }); 89 } 90 91 /// \brief Check whether the overloaded unary floating point function 92 /// corresponding to \a Ty is available. 93 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty, 94 LibFunc::Func DoubleFn, LibFunc::Func FloatFn, 95 LibFunc::Func LongDoubleFn) { 96 switch (Ty->getTypeID()) { 97 case Type::FloatTyID: 98 return TLI->has(FloatFn); 99 case Type::DoubleTyID: 100 return TLI->has(DoubleFn); 101 default: 102 return TLI->has(LongDoubleFn); 103 } 104 } 105 106 //===----------------------------------------------------------------------===// 107 // String and Memory Library Call Optimizations 108 //===----------------------------------------------------------------------===// 109 110 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 111 // Extract some information from the instruction 112 Value *Dst = CI->getArgOperand(0); 113 Value *Src = CI->getArgOperand(1); 114 115 // See if we can get the length of the input string. 116 uint64_t Len = GetStringLength(Src); 117 if (Len == 0) 118 return nullptr; 119 --Len; // Unbias length. 120 121 // Handle the simple, do-nothing case: strcat(x, "") -> x 122 if (Len == 0) 123 return Dst; 124 125 return emitStrLenMemCpy(Src, Dst, Len, B); 126 } 127 128 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 129 IRBuilder<> &B) { 130 // We need to find the end of the destination string. That's where the 131 // memory is to be moved to. We just generate a call to strlen. 132 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 133 if (!DstLen) 134 return nullptr; 135 136 // Now that we have the destination's length, we must index into the 137 // destination's pointer to get the actual memcpy destination (end of 138 // the string .. we're concatenating). 139 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 140 141 // We have enough information to now generate the memcpy call to do the 142 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 143 B.CreateMemCpy(CpyDst, Src, 144 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1), 145 1); 146 return Dst; 147 } 148 149 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 150 // Extract some information from the instruction. 151 Value *Dst = CI->getArgOperand(0); 152 Value *Src = CI->getArgOperand(1); 153 uint64_t Len; 154 155 // We don't do anything if length is not constant. 156 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 157 Len = LengthArg->getZExtValue(); 158 else 159 return nullptr; 160 161 // See if we can get the length of the input string. 162 uint64_t SrcLen = GetStringLength(Src); 163 if (SrcLen == 0) 164 return nullptr; 165 --SrcLen; // Unbias length. 166 167 // Handle the simple, do-nothing cases: 168 // strncat(x, "", c) -> x 169 // strncat(x, c, 0) -> x 170 if (SrcLen == 0 || Len == 0) 171 return Dst; 172 173 // We don't optimize this case. 174 if (Len < SrcLen) 175 return nullptr; 176 177 // strncat(x, s, c) -> strcat(x, s) 178 // s is constant so the strcat can be optimized further. 179 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 180 } 181 182 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 183 Function *Callee = CI->getCalledFunction(); 184 FunctionType *FT = Callee->getFunctionType(); 185 Value *SrcStr = CI->getArgOperand(0); 186 187 // If the second operand is non-constant, see if we can compute the length 188 // of the input string and turn this into memchr. 189 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 190 if (!CharC) { 191 uint64_t Len = GetStringLength(SrcStr); 192 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 193 return nullptr; 194 195 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 196 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 197 B, DL, TLI); 198 } 199 200 // Otherwise, the character is a constant, see if the first argument is 201 // a string literal. If so, we can constant fold. 202 StringRef Str; 203 if (!getConstantStringInfo(SrcStr, Str)) { 204 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 205 return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI), 206 "strchr"); 207 return nullptr; 208 } 209 210 // Compute the offset, make sure to handle the case when we're searching for 211 // zero (a weird way to spell strlen). 212 size_t I = (0xFF & CharC->getSExtValue()) == 0 213 ? Str.size() 214 : Str.find(CharC->getSExtValue()); 215 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 216 return Constant::getNullValue(CI->getType()); 217 218 // strchr(s+n,c) -> gep(s+n+i,c) 219 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 220 } 221 222 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 223 Value *SrcStr = CI->getArgOperand(0); 224 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 225 226 // Cannot fold anything if we're not looking for a constant. 227 if (!CharC) 228 return nullptr; 229 230 StringRef Str; 231 if (!getConstantStringInfo(SrcStr, Str)) { 232 // strrchr(s, 0) -> strchr(s, 0) 233 if (CharC->isZero()) 234 return emitStrChr(SrcStr, '\0', B, TLI); 235 return nullptr; 236 } 237 238 // Compute the offset. 239 size_t I = (0xFF & CharC->getSExtValue()) == 0 240 ? Str.size() 241 : Str.rfind(CharC->getSExtValue()); 242 if (I == StringRef::npos) // Didn't find the char. Return null. 243 return Constant::getNullValue(CI->getType()); 244 245 // strrchr(s+n,c) -> gep(s+n+i,c) 246 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 247 } 248 249 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 250 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 251 if (Str1P == Str2P) // strcmp(x,x) -> 0 252 return ConstantInt::get(CI->getType(), 0); 253 254 StringRef Str1, Str2; 255 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 256 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 257 258 // strcmp(x, y) -> cnst (if both x and y are constant strings) 259 if (HasStr1 && HasStr2) 260 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 261 262 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 263 return B.CreateNeg( 264 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 265 266 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 267 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 268 269 // strcmp(P, "x") -> memcmp(P, "x", 2) 270 uint64_t Len1 = GetStringLength(Str1P); 271 uint64_t Len2 = GetStringLength(Str2P); 272 if (Len1 && Len2) { 273 return emitMemCmp(Str1P, Str2P, 274 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 275 std::min(Len1, Len2)), 276 B, DL, TLI); 277 } 278 279 return nullptr; 280 } 281 282 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 283 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 284 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 285 return ConstantInt::get(CI->getType(), 0); 286 287 // Get the length argument if it is constant. 288 uint64_t Length; 289 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 290 Length = LengthArg->getZExtValue(); 291 else 292 return nullptr; 293 294 if (Length == 0) // strncmp(x,y,0) -> 0 295 return ConstantInt::get(CI->getType(), 0); 296 297 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 298 return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 299 300 StringRef Str1, Str2; 301 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 302 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 303 304 // strncmp(x, y) -> cnst (if both x and y are constant strings) 305 if (HasStr1 && HasStr2) { 306 StringRef SubStr1 = Str1.substr(0, Length); 307 StringRef SubStr2 = Str2.substr(0, Length); 308 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 309 } 310 311 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 312 return B.CreateNeg( 313 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 314 315 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 316 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 317 318 return nullptr; 319 } 320 321 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 322 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 323 if (Dst == Src) // strcpy(x,x) -> x 324 return Src; 325 326 // See if we can get the length of the input string. 327 uint64_t Len = GetStringLength(Src); 328 if (Len == 0) 329 return nullptr; 330 331 // We have enough information to now generate the memcpy call to do the 332 // copy for us. Make a memcpy to copy the nul byte with align = 1. 333 B.CreateMemCpy(Dst, Src, 334 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1); 335 return Dst; 336 } 337 338 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 339 Function *Callee = CI->getCalledFunction(); 340 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 341 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 342 Value *StrLen = emitStrLen(Src, B, DL, TLI); 343 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 344 } 345 346 // See if we can get the length of the input string. 347 uint64_t Len = GetStringLength(Src); 348 if (Len == 0) 349 return nullptr; 350 351 Type *PT = Callee->getFunctionType()->getParamType(0); 352 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 353 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 354 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 355 356 // We have enough information to now generate the memcpy call to do the 357 // copy for us. Make a memcpy to copy the nul byte with align = 1. 358 B.CreateMemCpy(Dst, Src, LenV, 1); 359 return DstEnd; 360 } 361 362 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 363 Function *Callee = CI->getCalledFunction(); 364 Value *Dst = CI->getArgOperand(0); 365 Value *Src = CI->getArgOperand(1); 366 Value *LenOp = CI->getArgOperand(2); 367 368 // See if we can get the length of the input string. 369 uint64_t SrcLen = GetStringLength(Src); 370 if (SrcLen == 0) 371 return nullptr; 372 --SrcLen; 373 374 if (SrcLen == 0) { 375 // strncpy(x, "", y) -> memset(x, '\0', y, 1) 376 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 377 return Dst; 378 } 379 380 uint64_t Len; 381 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 382 Len = LengthArg->getZExtValue(); 383 else 384 return nullptr; 385 386 if (Len == 0) 387 return Dst; // strncpy(x, y, 0) -> x 388 389 // Let strncpy handle the zero padding 390 if (Len > SrcLen + 1) 391 return nullptr; 392 393 Type *PT = Callee->getFunctionType()->getParamType(0); 394 // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] 395 B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1); 396 397 return Dst; 398 } 399 400 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 401 Value *Src = CI->getArgOperand(0); 402 403 // Constant folding: strlen("xyz") -> 3 404 if (uint64_t Len = GetStringLength(Src)) 405 return ConstantInt::get(CI->getType(), Len - 1); 406 407 // If s is a constant pointer pointing to a string literal, we can fold 408 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 409 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 410 // We only try to simplify strlen when the pointer s points to an array 411 // of i8. Otherwise, we would need to scale the offset x before doing the 412 // subtraction. This will make the optimization more complex, and it's not 413 // very useful because calling strlen for a pointer of other types is 414 // very uncommon. 415 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 416 if (!isGEPBasedOnPointerToString(GEP)) 417 return nullptr; 418 419 StringRef Str; 420 if (getConstantStringInfo(GEP->getOperand(0), Str, 0, false)) { 421 size_t NullTermIdx = Str.find('\0'); 422 423 // If the string does not have '\0', leave it to strlen to compute 424 // its length. 425 if (NullTermIdx == StringRef::npos) 426 return nullptr; 427 428 Value *Offset = GEP->getOperand(2); 429 unsigned BitWidth = Offset->getType()->getIntegerBitWidth(); 430 APInt KnownZero(BitWidth, 0); 431 APInt KnownOne(BitWidth, 0); 432 computeKnownBits(Offset, KnownZero, KnownOne, DL, 0, nullptr, CI, 433 nullptr); 434 KnownZero.flipAllBits(); 435 size_t ArrSize = 436 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 437 438 // KnownZero's bits are flipped, so zeros in KnownZero now represent 439 // bits known to be zeros in Offset, and ones in KnowZero represent 440 // bits unknown in Offset. Therefore, Offset is known to be in range 441 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 442 // unsigned-less-than NullTermIdx. 443 // 444 // If Offset is not provably in the range [0, NullTermIdx], we can still 445 // optimize if we can prove that the program has undefined behavior when 446 // Offset is outside that range. That is the case when GEP->getOperand(0) 447 // is a pointer to an object whose memory extent is NullTermIdx+1. 448 if ((KnownZero.isNonNegative() && KnownZero.ule(NullTermIdx)) || 449 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 450 NullTermIdx == ArrSize - 1)) 451 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 452 Offset); 453 } 454 455 return nullptr; 456 } 457 458 // strlen(x?"foo":"bars") --> x ? 3 : 4 459 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 460 uint64_t LenTrue = GetStringLength(SI->getTrueValue()); 461 uint64_t LenFalse = GetStringLength(SI->getFalseValue()); 462 if (LenTrue && LenFalse) { 463 Function *Caller = CI->getParent()->getParent(); 464 emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller, 465 SI->getDebugLoc(), 466 "folded strlen(select) to select of constants"); 467 return B.CreateSelect(SI->getCondition(), 468 ConstantInt::get(CI->getType(), LenTrue - 1), 469 ConstantInt::get(CI->getType(), LenFalse - 1)); 470 } 471 } 472 473 // strlen(x) != 0 --> *x != 0 474 // strlen(x) == 0 --> *x == 0 475 if (isOnlyUsedInZeroEqualityComparison(CI)) 476 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); 477 478 return nullptr; 479 } 480 481 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 482 StringRef S1, S2; 483 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 484 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 485 486 // strpbrk(s, "") -> nullptr 487 // strpbrk("", s) -> nullptr 488 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 489 return Constant::getNullValue(CI->getType()); 490 491 // Constant folding. 492 if (HasS1 && HasS2) { 493 size_t I = S1.find_first_of(S2); 494 if (I == StringRef::npos) // No match. 495 return Constant::getNullValue(CI->getType()); 496 497 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 498 "strpbrk"); 499 } 500 501 // strpbrk(s, "a") -> strchr(s, 'a') 502 if (HasS2 && S2.size() == 1) 503 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 504 505 return nullptr; 506 } 507 508 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 509 Value *EndPtr = CI->getArgOperand(1); 510 if (isa<ConstantPointerNull>(EndPtr)) { 511 // With a null EndPtr, this function won't capture the main argument. 512 // It would be readonly too, except that it still may write to errno. 513 CI->addAttribute(1, Attribute::NoCapture); 514 } 515 516 return nullptr; 517 } 518 519 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 520 StringRef S1, S2; 521 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 522 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 523 524 // strspn(s, "") -> 0 525 // strspn("", s) -> 0 526 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 527 return Constant::getNullValue(CI->getType()); 528 529 // Constant folding. 530 if (HasS1 && HasS2) { 531 size_t Pos = S1.find_first_not_of(S2); 532 if (Pos == StringRef::npos) 533 Pos = S1.size(); 534 return ConstantInt::get(CI->getType(), Pos); 535 } 536 537 return nullptr; 538 } 539 540 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 541 StringRef S1, S2; 542 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 543 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 544 545 // strcspn("", s) -> 0 546 if (HasS1 && S1.empty()) 547 return Constant::getNullValue(CI->getType()); 548 549 // Constant folding. 550 if (HasS1 && HasS2) { 551 size_t Pos = S1.find_first_of(S2); 552 if (Pos == StringRef::npos) 553 Pos = S1.size(); 554 return ConstantInt::get(CI->getType(), Pos); 555 } 556 557 // strcspn(s, "") -> strlen(s) 558 if (HasS2 && S2.empty()) 559 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 560 561 return nullptr; 562 } 563 564 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 565 // fold strstr(x, x) -> x. 566 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 567 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 568 569 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 570 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 571 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 572 if (!StrLen) 573 return nullptr; 574 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 575 StrLen, B, DL, TLI); 576 if (!StrNCmp) 577 return nullptr; 578 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 579 ICmpInst *Old = cast<ICmpInst>(*UI++); 580 Value *Cmp = 581 B.CreateICmp(Old->getPredicate(), StrNCmp, 582 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 583 replaceAllUsesWith(Old, Cmp); 584 } 585 return CI; 586 } 587 588 // See if either input string is a constant string. 589 StringRef SearchStr, ToFindStr; 590 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 591 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 592 593 // fold strstr(x, "") -> x. 594 if (HasStr2 && ToFindStr.empty()) 595 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 596 597 // If both strings are known, constant fold it. 598 if (HasStr1 && HasStr2) { 599 size_t Offset = SearchStr.find(ToFindStr); 600 601 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 602 return Constant::getNullValue(CI->getType()); 603 604 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 605 Value *Result = castToCStr(CI->getArgOperand(0), B); 606 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); 607 return B.CreateBitCast(Result, CI->getType()); 608 } 609 610 // fold strstr(x, "y") -> strchr(x, 'y'). 611 if (HasStr2 && ToFindStr.size() == 1) { 612 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 613 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 614 } 615 return nullptr; 616 } 617 618 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { 619 Value *SrcStr = CI->getArgOperand(0); 620 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 621 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 622 623 // memchr(x, y, 0) -> null 624 if (LenC && LenC->isNullValue()) 625 return Constant::getNullValue(CI->getType()); 626 627 // From now on we need at least constant length and string. 628 StringRef Str; 629 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 630 return nullptr; 631 632 // Truncate the string to LenC. If Str is smaller than LenC we will still only 633 // scan the string, as reading past the end of it is undefined and we can just 634 // return null if we don't find the char. 635 Str = Str.substr(0, LenC->getZExtValue()); 636 637 // If the char is variable but the input str and length are not we can turn 638 // this memchr call into a simple bit field test. Of course this only works 639 // when the return value is only checked against null. 640 // 641 // It would be really nice to reuse switch lowering here but we can't change 642 // the CFG at this point. 643 // 644 // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0 645 // after bounds check. 646 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 647 unsigned char Max = 648 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 649 reinterpret_cast<const unsigned char *>(Str.end())); 650 651 // Make sure the bit field we're about to create fits in a register on the 652 // target. 653 // FIXME: On a 64 bit architecture this prevents us from using the 654 // interesting range of alpha ascii chars. We could do better by emitting 655 // two bitfields or shifting the range by 64 if no lower chars are used. 656 if (!DL.fitsInLegalInteger(Max + 1)) 657 return nullptr; 658 659 // For the bit field use a power-of-2 type with at least 8 bits to avoid 660 // creating unnecessary illegal types. 661 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 662 663 // Now build the bit field. 664 APInt Bitfield(Width, 0); 665 for (char C : Str) 666 Bitfield.setBit((unsigned char)C); 667 Value *BitfieldC = B.getInt(Bitfield); 668 669 // First check that the bit field access is within bounds. 670 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 671 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 672 "memchr.bounds"); 673 674 // Create code that checks if the given bit is set in the field. 675 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 676 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 677 678 // Finally merge both checks and cast to pointer type. The inttoptr 679 // implicitly zexts the i1 to intptr type. 680 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 681 } 682 683 // Check if all arguments are constants. If so, we can constant fold. 684 if (!CharC) 685 return nullptr; 686 687 // Compute the offset. 688 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 689 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 690 return Constant::getNullValue(CI->getType()); 691 692 // memchr(s+n,c,l) -> gep(s+n+i,c) 693 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 694 } 695 696 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 697 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 698 699 if (LHS == RHS) // memcmp(s,s,x) -> 0 700 return Constant::getNullValue(CI->getType()); 701 702 // Make sure we have a constant length. 703 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 704 if (!LenC) 705 return nullptr; 706 uint64_t Len = LenC->getZExtValue(); 707 708 if (Len == 0) // memcmp(s1,s2,0) -> 0 709 return Constant::getNullValue(CI->getType()); 710 711 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 712 if (Len == 1) { 713 Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"), 714 CI->getType(), "lhsv"); 715 Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"), 716 CI->getType(), "rhsv"); 717 return B.CreateSub(LHSV, RHSV, "chardiff"); 718 } 719 720 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 721 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 722 723 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 724 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 725 726 if (getKnownAlignment(LHS, DL, CI) >= PrefAlignment && 727 getKnownAlignment(RHS, DL, CI) >= PrefAlignment) { 728 729 Type *LHSPtrTy = 730 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 731 Type *RHSPtrTy = 732 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 733 734 Value *LHSV = 735 B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy, "lhsc"), "lhsv"); 736 Value *RHSV = 737 B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy, "rhsc"), "rhsv"); 738 739 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 740 } 741 } 742 743 // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant) 744 StringRef LHSStr, RHSStr; 745 if (getConstantStringInfo(LHS, LHSStr) && 746 getConstantStringInfo(RHS, RHSStr)) { 747 // Make sure we're not reading out-of-bounds memory. 748 if (Len > LHSStr.size() || Len > RHSStr.size()) 749 return nullptr; 750 // Fold the memcmp and normalize the result. This way we get consistent 751 // results across multiple platforms. 752 uint64_t Ret = 0; 753 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 754 if (Cmp < 0) 755 Ret = -1; 756 else if (Cmp > 0) 757 Ret = 1; 758 return ConstantInt::get(CI->getType(), Ret); 759 } 760 761 return nullptr; 762 } 763 764 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { 765 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) 766 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 767 CI->getArgOperand(2), 1); 768 return CI->getArgOperand(0); 769 } 770 771 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { 772 // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) 773 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 774 CI->getArgOperand(2), 1); 775 return CI->getArgOperand(0); 776 } 777 778 // TODO: Does this belong in BuildLibCalls or should all of those similar 779 // functions be moved here? 780 static Value *emitCalloc(Value *Num, Value *Size, const AttributeSet &Attrs, 781 IRBuilder<> &B, const TargetLibraryInfo &TLI) { 782 LibFunc::Func Func; 783 if (!TLI.getLibFunc("calloc", Func) || !TLI.has(Func)) 784 return nullptr; 785 786 Module *M = B.GetInsertBlock()->getModule(); 787 const DataLayout &DL = M->getDataLayout(); 788 IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext())); 789 Value *Calloc = M->getOrInsertFunction("calloc", Attrs, B.getInt8PtrTy(), 790 PtrType, PtrType, nullptr); 791 CallInst *CI = B.CreateCall(Calloc, { Num, Size }, "calloc"); 792 793 if (const auto *F = dyn_cast<Function>(Calloc->stripPointerCasts())) 794 CI->setCallingConv(F->getCallingConv()); 795 796 return CI; 797 } 798 799 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 800 static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B, 801 const TargetLibraryInfo &TLI) { 802 // This has to be a memset of zeros (bzero). 803 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 804 if (!FillValue || FillValue->getZExtValue() != 0) 805 return nullptr; 806 807 // TODO: We should handle the case where the malloc has more than one use. 808 // This is necessary to optimize common patterns such as when the result of 809 // the malloc is checked against null or when a memset intrinsic is used in 810 // place of a memset library call. 811 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 812 if (!Malloc || !Malloc->hasOneUse()) 813 return nullptr; 814 815 // Is the inner call really malloc()? 816 Function *InnerCallee = Malloc->getCalledFunction(); 817 LibFunc::Func Func; 818 if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) || 819 Func != LibFunc::malloc) 820 return nullptr; 821 822 // The memset must cover the same number of bytes that are malloc'd. 823 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 824 return nullptr; 825 826 // Replace the malloc with a calloc. We need the data layout to know what the 827 // actual size of a 'size_t' parameter is. 828 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 829 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 830 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 831 Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 832 Malloc->getArgOperand(0), Malloc->getAttributes(), 833 B, TLI); 834 if (!Calloc) 835 return nullptr; 836 837 Malloc->replaceAllUsesWith(Calloc); 838 Malloc->eraseFromParent(); 839 840 return Calloc; 841 } 842 843 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { 844 if (auto *Calloc = foldMallocMemset(CI, B, *TLI)) 845 return Calloc; 846 847 // memset(p, v, n) -> llvm.memset(p, v, n, 1) 848 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 849 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 850 return CI->getArgOperand(0); 851 } 852 853 //===----------------------------------------------------------------------===// 854 // Math Library Optimizations 855 //===----------------------------------------------------------------------===// 856 857 /// Return a variant of Val with float type. 858 /// Currently this works in two cases: If Val is an FPExtension of a float 859 /// value to something bigger, simply return the operand. 860 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 861 /// loss of precision do so. 862 static Value *valueHasFloatPrecision(Value *Val) { 863 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 864 Value *Op = Cast->getOperand(0); 865 if (Op->getType()->isFloatTy()) 866 return Op; 867 } 868 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 869 APFloat F = Const->getValueAPF(); 870 bool losesInfo; 871 (void)F.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 872 &losesInfo); 873 if (!losesInfo) 874 return ConstantFP::get(Const->getContext(), F); 875 } 876 return nullptr; 877 } 878 879 /// Shrink double -> float for unary functions like 'floor'. 880 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 881 bool CheckRetType) { 882 Function *Callee = CI->getCalledFunction(); 883 // We know this libcall has a valid prototype, but we don't know which. 884 if (!CI->getType()->isDoubleTy()) 885 return nullptr; 886 887 if (CheckRetType) { 888 // Check if all the uses for function like 'sin' are converted to float. 889 for (User *U : CI->users()) { 890 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 891 if (!Cast || !Cast->getType()->isFloatTy()) 892 return nullptr; 893 } 894 } 895 896 // If this is something like 'floor((double)floatval)', convert to floorf. 897 Value *V = valueHasFloatPrecision(CI->getArgOperand(0)); 898 if (V == nullptr) 899 return nullptr; 900 901 // Propagate fast-math flags from the existing call to the new call. 902 IRBuilder<>::FastMathFlagGuard Guard(B); 903 B.setFastMathFlags(CI->getFastMathFlags()); 904 905 // floor((double)floatval) -> (double)floorf(floatval) 906 if (Callee->isIntrinsic()) { 907 Module *M = CI->getModule(); 908 Intrinsic::ID IID = Callee->getIntrinsicID(); 909 Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 910 V = B.CreateCall(F, V); 911 } else { 912 // The call is a library call rather than an intrinsic. 913 V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes()); 914 } 915 916 return B.CreateFPExt(V, B.getDoubleTy()); 917 } 918 919 /// Shrink double -> float for binary functions like 'fmin/fmax'. 920 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) { 921 Function *Callee = CI->getCalledFunction(); 922 // We know this libcall has a valid prototype, but we don't know which. 923 if (!CI->getType()->isDoubleTy()) 924 return nullptr; 925 926 // If this is something like 'fmin((double)floatval1, (double)floatval2)', 927 // or fmin(1.0, (double)floatval), then we convert it to fminf. 928 Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0)); 929 if (V1 == nullptr) 930 return nullptr; 931 Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1)); 932 if (V2 == nullptr) 933 return nullptr; 934 935 // Propagate fast-math flags from the existing call to the new call. 936 IRBuilder<>::FastMathFlagGuard Guard(B); 937 B.setFastMathFlags(CI->getFastMathFlags()); 938 939 // fmin((double)floatval1, (double)floatval2) 940 // -> (double)fminf(floatval1, floatval2) 941 // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP(). 942 Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B, 943 Callee->getAttributes()); 944 return B.CreateFPExt(V, B.getDoubleTy()); 945 } 946 947 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) { 948 Function *Callee = CI->getCalledFunction(); 949 Value *Ret = nullptr; 950 StringRef Name = Callee->getName(); 951 if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name)) 952 Ret = optimizeUnaryDoubleFP(CI, B, true); 953 954 // cos(-x) -> cos(x) 955 Value *Op1 = CI->getArgOperand(0); 956 if (BinaryOperator::isFNeg(Op1)) { 957 BinaryOperator *BinExpr = cast<BinaryOperator>(Op1); 958 return B.CreateCall(Callee, BinExpr->getOperand(1), "cos"); 959 } 960 return Ret; 961 } 962 963 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) { 964 // Multiplications calculated using Addition Chains. 965 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 966 967 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 968 969 if (InnerChain[Exp]) 970 return InnerChain[Exp]; 971 972 static const unsigned AddChain[33][2] = { 973 {0, 0}, // Unused. 974 {0, 0}, // Unused (base case = pow1). 975 {1, 1}, // Unused (pre-computed). 976 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 977 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 978 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 979 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 980 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 981 }; 982 983 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 984 getPow(InnerChain, AddChain[Exp][1], B)); 985 return InnerChain[Exp]; 986 } 987 988 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) { 989 Function *Callee = CI->getCalledFunction(); 990 Value *Ret = nullptr; 991 StringRef Name = Callee->getName(); 992 if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name)) 993 Ret = optimizeUnaryDoubleFP(CI, B, true); 994 995 Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1); 996 997 // pow(1.0, x) -> 1.0 998 if (match(Op1, m_SpecificFP(1.0))) 999 return Op1; 1000 // pow(2.0, x) -> llvm.exp2(x) 1001 if (match(Op1, m_SpecificFP(2.0))) { 1002 Value *Exp2 = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::exp2, 1003 CI->getType()); 1004 return B.CreateCall(Exp2, Op2, "exp2"); 1005 } 1006 1007 // There's no llvm.exp10 intrinsic yet, but, maybe, some day there will 1008 // be one. 1009 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { 1010 // pow(10.0, x) -> exp10(x) 1011 if (Op1C->isExactlyValue(10.0) && 1012 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f, 1013 LibFunc::exp10l)) 1014 return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B, 1015 Callee->getAttributes()); 1016 } 1017 1018 // pow(exp(x), y) -> exp(x * y) 1019 // pow(exp2(x), y) -> exp2(x * y) 1020 // We enable these only with fast-math. Besides rounding differences, the 1021 // transformation changes overflow and underflow behavior quite dramatically. 1022 // Example: x = 1000, y = 0.001. 1023 // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1). 1024 auto *OpC = dyn_cast<CallInst>(Op1); 1025 if (OpC && OpC->hasUnsafeAlgebra() && CI->hasUnsafeAlgebra()) { 1026 LibFunc::Func Func; 1027 Function *OpCCallee = OpC->getCalledFunction(); 1028 if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) && 1029 TLI->has(Func) && (Func == LibFunc::exp || Func == LibFunc::exp2)) { 1030 IRBuilder<>::FastMathFlagGuard Guard(B); 1031 B.setFastMathFlags(CI->getFastMathFlags()); 1032 Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul"); 1033 return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B, 1034 OpCCallee->getAttributes()); 1035 } 1036 } 1037 1038 ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2); 1039 if (!Op2C) 1040 return Ret; 1041 1042 if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 1043 return ConstantFP::get(CI->getType(), 1.0); 1044 1045 if (Op2C->isExactlyValue(0.5) && 1046 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf, 1047 LibFunc::sqrtl) && 1048 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf, 1049 LibFunc::fabsl)) { 1050 1051 // In -ffast-math, pow(x, 0.5) -> sqrt(x). 1052 if (CI->hasUnsafeAlgebra()) { 1053 IRBuilder<>::FastMathFlagGuard Guard(B); 1054 B.setFastMathFlags(CI->getFastMathFlags()); 1055 1056 // Unlike other math intrinsics, sqrt has differerent semantics 1057 // from the libc function. See LangRef for details. 1058 return emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc::sqrt), B, 1059 Callee->getAttributes()); 1060 } 1061 1062 // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). 1063 // This is faster than calling pow, and still handles negative zero 1064 // and negative infinity correctly. 1065 // TODO: In finite-only mode, this could be just fabs(sqrt(x)). 1066 Value *Inf = ConstantFP::getInfinity(CI->getType()); 1067 Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); 1068 Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes()); 1069 Value *FAbs = 1070 emitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes()); 1071 Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf); 1072 Value *Sel = B.CreateSelect(FCmp, Inf, FAbs); 1073 return Sel; 1074 } 1075 1076 if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x 1077 return Op1; 1078 if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x 1079 return B.CreateFMul(Op1, Op1, "pow2"); 1080 if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x 1081 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip"); 1082 1083 // In -ffast-math, generate repeated fmul instead of generating pow(x, n). 1084 if (CI->hasUnsafeAlgebra()) { 1085 APFloat V = abs(Op2C->getValueAPF()); 1086 // We limit to a max of 7 fmul(s). Thus max exponent is 32. 1087 // This transformation applies to integer exponents only. 1088 if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan || 1089 !V.isInteger()) 1090 return nullptr; 1091 1092 // We will memoize intermediate products of the Addition Chain. 1093 Value *InnerChain[33] = {nullptr}; 1094 InnerChain[1] = Op1; 1095 InnerChain[2] = B.CreateFMul(Op1, Op1); 1096 1097 // We cannot readily convert a non-double type (like float) to a double. 1098 // So we first convert V to something which could be converted to double. 1099 bool ignored; 1100 V.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &ignored); 1101 1102 // TODO: Should the new instructions propagate the 'fast' flag of the pow()? 1103 Value *FMul = getPow(InnerChain, V.convertToDouble(), B); 1104 // For negative exponents simply compute the reciprocal. 1105 if (Op2C->isNegative()) 1106 FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul); 1107 return FMul; 1108 } 1109 1110 return nullptr; 1111 } 1112 1113 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1114 Function *Callee = CI->getCalledFunction(); 1115 Value *Ret = nullptr; 1116 StringRef Name = Callee->getName(); 1117 if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name)) 1118 Ret = optimizeUnaryDoubleFP(CI, B, true); 1119 1120 Value *Op = CI->getArgOperand(0); 1121 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1122 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1123 LibFunc::Func LdExp = LibFunc::ldexpl; 1124 if (Op->getType()->isFloatTy()) 1125 LdExp = LibFunc::ldexpf; 1126 else if (Op->getType()->isDoubleTy()) 1127 LdExp = LibFunc::ldexp; 1128 1129 if (TLI->has(LdExp)) { 1130 Value *LdExpArg = nullptr; 1131 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 1132 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 1133 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 1134 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 1135 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 1136 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 1137 } 1138 1139 if (LdExpArg) { 1140 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); 1141 if (!Op->getType()->isFloatTy()) 1142 One = ConstantExpr::getFPExtend(One, Op->getType()); 1143 1144 Module *M = CI->getModule(); 1145 Value *NewCallee = 1146 M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), 1147 Op->getType(), B.getInt32Ty(), nullptr); 1148 CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg}); 1149 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 1150 CI->setCallingConv(F->getCallingConv()); 1151 1152 return CI; 1153 } 1154 } 1155 return Ret; 1156 } 1157 1158 Value *LibCallSimplifier::optimizeFabs(CallInst *CI, IRBuilder<> &B) { 1159 Function *Callee = CI->getCalledFunction(); 1160 Value *Ret = nullptr; 1161 StringRef Name = Callee->getName(); 1162 if (Name == "fabs" && hasFloatVersion(Name)) 1163 Ret = optimizeUnaryDoubleFP(CI, B, false); 1164 1165 Value *Op = CI->getArgOperand(0); 1166 if (Instruction *I = dyn_cast<Instruction>(Op)) { 1167 // Fold fabs(x * x) -> x * x; any squared FP value must already be positive. 1168 if (I->getOpcode() == Instruction::FMul) 1169 if (I->getOperand(0) == I->getOperand(1)) 1170 return Op; 1171 } 1172 return Ret; 1173 } 1174 1175 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { 1176 Function *Callee = CI->getCalledFunction(); 1177 // If we can shrink the call to a float function rather than a double 1178 // function, do that first. 1179 StringRef Name = Callee->getName(); 1180 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1181 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1182 return Ret; 1183 1184 IRBuilder<>::FastMathFlagGuard Guard(B); 1185 FastMathFlags FMF; 1186 if (CI->hasUnsafeAlgebra()) { 1187 // Unsafe algebra sets all fast-math-flags to true. 1188 FMF.setUnsafeAlgebra(); 1189 } else { 1190 // At a minimum, no-nans-fp-math must be true. 1191 if (!CI->hasNoNaNs()) 1192 return nullptr; 1193 // No-signed-zeros is implied by the definitions of fmax/fmin themselves: 1194 // "Ideally, fmax would be sensitive to the sign of zero, for example 1195 // fmax(-0. 0, +0. 0) would return +0; however, implementation in software 1196 // might be impractical." 1197 FMF.setNoSignedZeros(); 1198 FMF.setNoNaNs(); 1199 } 1200 B.setFastMathFlags(FMF); 1201 1202 // We have a relaxed floating-point environment. We can ignore NaN-handling 1203 // and transform to a compare and select. We do not have to consider errno or 1204 // exceptions, because fmin/fmax do not have those. 1205 Value *Op0 = CI->getArgOperand(0); 1206 Value *Op1 = CI->getArgOperand(1); 1207 Value *Cmp = Callee->getName().startswith("fmin") ? 1208 B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1); 1209 return B.CreateSelect(Cmp, Op0, Op1); 1210 } 1211 1212 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { 1213 Function *Callee = CI->getCalledFunction(); 1214 Value *Ret = nullptr; 1215 StringRef Name = Callee->getName(); 1216 if (UnsafeFPShrink && hasFloatVersion(Name)) 1217 Ret = optimizeUnaryDoubleFP(CI, B, true); 1218 1219 if (!CI->hasUnsafeAlgebra()) 1220 return Ret; 1221 Value *Op1 = CI->getArgOperand(0); 1222 auto *OpC = dyn_cast<CallInst>(Op1); 1223 1224 // The earlier call must also be unsafe in order to do these transforms. 1225 if (!OpC || !OpC->hasUnsafeAlgebra()) 1226 return Ret; 1227 1228 // log(pow(x,y)) -> y*log(x) 1229 // This is only applicable to log, log2, log10. 1230 if (Name != "log" && Name != "log2" && Name != "log10") 1231 return Ret; 1232 1233 IRBuilder<>::FastMathFlagGuard Guard(B); 1234 FastMathFlags FMF; 1235 FMF.setUnsafeAlgebra(); 1236 B.setFastMathFlags(FMF); 1237 1238 LibFunc::Func Func; 1239 Function *F = OpC->getCalledFunction(); 1240 if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1241 Func == LibFunc::pow) || F->getIntrinsicID() == Intrinsic::pow)) 1242 return B.CreateFMul(OpC->getArgOperand(1), 1243 emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, 1244 Callee->getAttributes()), "mul"); 1245 1246 // log(exp2(y)) -> y*log(2) 1247 if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && 1248 TLI->has(Func) && Func == LibFunc::exp2) 1249 return B.CreateFMul( 1250 OpC->getArgOperand(0), 1251 emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), 1252 Callee->getName(), B, Callee->getAttributes()), 1253 "logmul"); 1254 return Ret; 1255 } 1256 1257 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1258 Function *Callee = CI->getCalledFunction(); 1259 Value *Ret = nullptr; 1260 if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" || 1261 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1262 Ret = optimizeUnaryDoubleFP(CI, B, true); 1263 1264 if (!CI->hasUnsafeAlgebra()) 1265 return Ret; 1266 1267 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1268 if (!I || I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra()) 1269 return Ret; 1270 1271 // We're looking for a repeated factor in a multiplication tree, 1272 // so we can do this fold: sqrt(x * x) -> fabs(x); 1273 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 1274 Value *Op0 = I->getOperand(0); 1275 Value *Op1 = I->getOperand(1); 1276 Value *RepeatOp = nullptr; 1277 Value *OtherOp = nullptr; 1278 if (Op0 == Op1) { 1279 // Simple match: the operands of the multiply are identical. 1280 RepeatOp = Op0; 1281 } else { 1282 // Look for a more complicated pattern: one of the operands is itself 1283 // a multiply, so search for a common factor in that multiply. 1284 // Note: We don't bother looking any deeper than this first level or for 1285 // variations of this pattern because instcombine's visitFMUL and/or the 1286 // reassociation pass should give us this form. 1287 Value *OtherMul0, *OtherMul1; 1288 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1289 // Pattern: sqrt((x * y) * z) 1290 if (OtherMul0 == OtherMul1 && 1291 cast<Instruction>(Op0)->hasUnsafeAlgebra()) { 1292 // Matched: sqrt((x * x) * z) 1293 RepeatOp = OtherMul0; 1294 OtherOp = Op1; 1295 } 1296 } 1297 } 1298 if (!RepeatOp) 1299 return Ret; 1300 1301 // Fast math flags for any created instructions should match the sqrt 1302 // and multiply. 1303 IRBuilder<>::FastMathFlagGuard Guard(B); 1304 B.setFastMathFlags(I->getFastMathFlags()); 1305 1306 // If we found a repeated factor, hoist it out of the square root and 1307 // replace it with the fabs of that factor. 1308 Module *M = Callee->getParent(); 1309 Type *ArgType = I->getType(); 1310 Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1311 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1312 if (OtherOp) { 1313 // If we found a non-repeated factor, we still need to get its square 1314 // root. We then multiply that by the value that was simplified out 1315 // of the square root calculation. 1316 Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1317 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1318 return B.CreateFMul(FabsCall, SqrtCall); 1319 } 1320 return FabsCall; 1321 } 1322 1323 // TODO: Generalize to handle any trig function and its inverse. 1324 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { 1325 Function *Callee = CI->getCalledFunction(); 1326 Value *Ret = nullptr; 1327 StringRef Name = Callee->getName(); 1328 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 1329 Ret = optimizeUnaryDoubleFP(CI, B, true); 1330 1331 Value *Op1 = CI->getArgOperand(0); 1332 auto *OpC = dyn_cast<CallInst>(Op1); 1333 if (!OpC) 1334 return Ret; 1335 1336 // Both calls must allow unsafe optimizations in order to remove them. 1337 if (!CI->hasUnsafeAlgebra() || !OpC->hasUnsafeAlgebra()) 1338 return Ret; 1339 1340 // tan(atan(x)) -> x 1341 // tanf(atanf(x)) -> x 1342 // tanl(atanl(x)) -> x 1343 LibFunc::Func Func; 1344 Function *F = OpC->getCalledFunction(); 1345 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1346 ((Func == LibFunc::atan && Callee->getName() == "tan") || 1347 (Func == LibFunc::atanf && Callee->getName() == "tanf") || 1348 (Func == LibFunc::atanl && Callee->getName() == "tanl"))) 1349 Ret = OpC->getArgOperand(0); 1350 return Ret; 1351 } 1352 1353 static bool isTrigLibCall(CallInst *CI) { 1354 // We can only hope to do anything useful if we can ignore things like errno 1355 // and floating-point exceptions. 1356 // We already checked the prototype. 1357 return CI->hasFnAttr(Attribute::NoUnwind) && 1358 CI->hasFnAttr(Attribute::ReadNone); 1359 } 1360 1361 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1362 bool UseFloat, Value *&Sin, Value *&Cos, 1363 Value *&SinCos) { 1364 Type *ArgTy = Arg->getType(); 1365 Type *ResTy; 1366 StringRef Name; 1367 1368 Triple T(OrigCallee->getParent()->getTargetTriple()); 1369 if (UseFloat) { 1370 Name = "__sincospif_stret"; 1371 1372 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1373 // x86_64 can't use {float, float} since that would be returned in both 1374 // xmm0 and xmm1, which isn't what a real struct would do. 1375 ResTy = T.getArch() == Triple::x86_64 1376 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1377 : static_cast<Type *>(StructType::get(ArgTy, ArgTy, nullptr)); 1378 } else { 1379 Name = "__sincospi_stret"; 1380 ResTy = StructType::get(ArgTy, ArgTy, nullptr); 1381 } 1382 1383 Module *M = OrigCallee->getParent(); 1384 Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), 1385 ResTy, ArgTy, nullptr); 1386 1387 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1388 // If the argument is an instruction, it must dominate all uses so put our 1389 // sincos call there. 1390 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1391 } else { 1392 // Otherwise (e.g. for a constant) the beginning of the function is as 1393 // good a place as any. 1394 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1395 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1396 } 1397 1398 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1399 1400 if (SinCos->getType()->isStructTy()) { 1401 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1402 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1403 } else { 1404 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1405 "sinpi"); 1406 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1407 "cospi"); 1408 } 1409 } 1410 1411 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1412 // Make sure the prototype is as expected, otherwise the rest of the 1413 // function is probably invalid and likely to abort. 1414 if (!isTrigLibCall(CI)) 1415 return nullptr; 1416 1417 Value *Arg = CI->getArgOperand(0); 1418 SmallVector<CallInst *, 1> SinCalls; 1419 SmallVector<CallInst *, 1> CosCalls; 1420 SmallVector<CallInst *, 1> SinCosCalls; 1421 1422 bool IsFloat = Arg->getType()->isFloatTy(); 1423 1424 // Look for all compatible sinpi, cospi and sincospi calls with the same 1425 // argument. If there are enough (in some sense) we can make the 1426 // substitution. 1427 Function *F = CI->getFunction(); 1428 for (User *U : Arg->users()) 1429 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 1430 1431 // It's only worthwhile if both sinpi and cospi are actually used. 1432 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1433 return nullptr; 1434 1435 Value *Sin, *Cos, *SinCos; 1436 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1437 1438 replaceTrigInsts(SinCalls, Sin); 1439 replaceTrigInsts(CosCalls, Cos); 1440 replaceTrigInsts(SinCosCalls, SinCos); 1441 1442 return nullptr; 1443 } 1444 1445 void LibCallSimplifier::classifyArgUse( 1446 Value *Val, Function *F, bool IsFloat, 1447 SmallVectorImpl<CallInst *> &SinCalls, 1448 SmallVectorImpl<CallInst *> &CosCalls, 1449 SmallVectorImpl<CallInst *> &SinCosCalls) { 1450 CallInst *CI = dyn_cast<CallInst>(Val); 1451 1452 if (!CI) 1453 return; 1454 1455 // Don't consider calls in other functions. 1456 if (CI->getFunction() != F) 1457 return; 1458 1459 Function *Callee = CI->getCalledFunction(); 1460 LibFunc::Func Func; 1461 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 1462 !isTrigLibCall(CI)) 1463 return; 1464 1465 if (IsFloat) { 1466 if (Func == LibFunc::sinpif) 1467 SinCalls.push_back(CI); 1468 else if (Func == LibFunc::cospif) 1469 CosCalls.push_back(CI); 1470 else if (Func == LibFunc::sincospif_stret) 1471 SinCosCalls.push_back(CI); 1472 } else { 1473 if (Func == LibFunc::sinpi) 1474 SinCalls.push_back(CI); 1475 else if (Func == LibFunc::cospi) 1476 CosCalls.push_back(CI); 1477 else if (Func == LibFunc::sincospi_stret) 1478 SinCosCalls.push_back(CI); 1479 } 1480 } 1481 1482 void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls, 1483 Value *Res) { 1484 for (CallInst *C : Calls) 1485 replaceAllUsesWith(C, Res); 1486 } 1487 1488 //===----------------------------------------------------------------------===// 1489 // Integer Library Call Optimizations 1490 //===----------------------------------------------------------------------===// 1491 1492 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1493 Function *Callee = CI->getCalledFunction(); 1494 Value *Op = CI->getArgOperand(0); 1495 1496 // Constant fold. 1497 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1498 if (CI->isZero()) // ffs(0) -> 0. 1499 return B.getInt32(0); 1500 // ffs(c) -> cttz(c)+1 1501 return B.getInt32(CI->getValue().countTrailingZeros() + 1); 1502 } 1503 1504 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1505 Type *ArgType = Op->getType(); 1506 Value *F = 1507 Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType); 1508 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 1509 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1510 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1511 1512 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1513 return B.CreateSelect(Cond, V, B.getInt32(0)); 1514 } 1515 1516 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1517 // abs(x) -> x >s -1 ? x : -x 1518 Value *Op = CI->getArgOperand(0); 1519 Value *Pos = 1520 B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos"); 1521 Value *Neg = B.CreateNeg(Op, "neg"); 1522 return B.CreateSelect(Pos, Op, Neg); 1523 } 1524 1525 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 1526 // isdigit(c) -> (c-'0') <u 10 1527 Value *Op = CI->getArgOperand(0); 1528 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1529 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1530 return B.CreateZExt(Op, CI->getType()); 1531 } 1532 1533 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 1534 // isascii(c) -> c <u 128 1535 Value *Op = CI->getArgOperand(0); 1536 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1537 return B.CreateZExt(Op, CI->getType()); 1538 } 1539 1540 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 1541 // toascii(c) -> c & 0x7f 1542 return B.CreateAnd(CI->getArgOperand(0), 1543 ConstantInt::get(CI->getType(), 0x7F)); 1544 } 1545 1546 //===----------------------------------------------------------------------===// 1547 // Formatting and IO Library Call Optimizations 1548 //===----------------------------------------------------------------------===// 1549 1550 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 1551 1552 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 1553 int StreamArg) { 1554 Function *Callee = CI->getCalledFunction(); 1555 // Error reporting calls should be cold, mark them as such. 1556 // This applies even to non-builtin calls: it is only a hint and applies to 1557 // functions that the frontend might not understand as builtins. 1558 1559 // This heuristic was suggested in: 1560 // Improving Static Branch Prediction in a Compiler 1561 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 1562 // Proceedings of PACT'98, Oct. 1998, IEEE 1563 if (!CI->hasFnAttr(Attribute::Cold) && 1564 isReportingError(Callee, CI, StreamArg)) { 1565 CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold); 1566 } 1567 1568 return nullptr; 1569 } 1570 1571 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 1572 if (!ColdErrorCalls || !Callee || !Callee->isDeclaration()) 1573 return false; 1574 1575 if (StreamArg < 0) 1576 return true; 1577 1578 // These functions might be considered cold, but only if their stream 1579 // argument is stderr. 1580 1581 if (StreamArg >= (int)CI->getNumArgOperands()) 1582 return false; 1583 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 1584 if (!LI) 1585 return false; 1586 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 1587 if (!GV || !GV->isDeclaration()) 1588 return false; 1589 return GV->getName() == "stderr"; 1590 } 1591 1592 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 1593 // Check for a fixed format string. 1594 StringRef FormatStr; 1595 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 1596 return nullptr; 1597 1598 // Empty format string -> noop. 1599 if (FormatStr.empty()) // Tolerate printf's declared void. 1600 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 1601 1602 // Do not do any of the following transformations if the printf return value 1603 // is used, in general the printf return value is not compatible with either 1604 // putchar() or puts(). 1605 if (!CI->use_empty()) 1606 return nullptr; 1607 1608 // printf("x") -> putchar('x'), even for "%" and "%%". 1609 if (FormatStr.size() == 1 || FormatStr == "%%") 1610 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 1611 1612 // printf("%s", "a") --> putchar('a') 1613 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 1614 StringRef ChrStr; 1615 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 1616 return nullptr; 1617 if (ChrStr.size() != 1) 1618 return nullptr; 1619 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 1620 } 1621 1622 // printf("foo\n") --> puts("foo") 1623 if (FormatStr[FormatStr.size() - 1] == '\n' && 1624 FormatStr.find('%') == StringRef::npos) { // No format characters. 1625 // Create a string literal with no \n on it. We expect the constant merge 1626 // pass to be run after this pass, to merge duplicate strings. 1627 FormatStr = FormatStr.drop_back(); 1628 Value *GV = B.CreateGlobalString(FormatStr, "str"); 1629 return emitPutS(GV, B, TLI); 1630 } 1631 1632 // Optimize specific format strings. 1633 // printf("%c", chr) --> putchar(chr) 1634 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 1635 CI->getArgOperand(1)->getType()->isIntegerTy()) 1636 return emitPutChar(CI->getArgOperand(1), B, TLI); 1637 1638 // printf("%s\n", str) --> puts(str) 1639 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 1640 CI->getArgOperand(1)->getType()->isPointerTy()) 1641 return emitPutS(CI->getArgOperand(1), B, TLI); 1642 return nullptr; 1643 } 1644 1645 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 1646 1647 Function *Callee = CI->getCalledFunction(); 1648 FunctionType *FT = Callee->getFunctionType(); 1649 if (Value *V = optimizePrintFString(CI, B)) { 1650 return V; 1651 } 1652 1653 // printf(format, ...) -> iprintf(format, ...) if no floating point 1654 // arguments. 1655 if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) { 1656 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1657 Constant *IPrintFFn = 1658 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 1659 CallInst *New = cast<CallInst>(CI->clone()); 1660 New->setCalledFunction(IPrintFFn); 1661 B.Insert(New); 1662 return New; 1663 } 1664 return nullptr; 1665 } 1666 1667 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 1668 // Check for a fixed format string. 1669 StringRef FormatStr; 1670 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1671 return nullptr; 1672 1673 // If we just have a format string (nothing else crazy) transform it. 1674 if (CI->getNumArgOperands() == 2) { 1675 // Make sure there's no % in the constant array. We could try to handle 1676 // %% -> % in the future if we cared. 1677 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1678 if (FormatStr[i] == '%') 1679 return nullptr; // we found a format specifier, bail out. 1680 1681 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) 1682 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 1683 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 1684 FormatStr.size() + 1), 1685 1); // Copy the null byte. 1686 return ConstantInt::get(CI->getType(), FormatStr.size()); 1687 } 1688 1689 // The remaining optimizations require the format string to be "%s" or "%c" 1690 // and have an extra operand. 1691 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1692 CI->getNumArgOperands() < 3) 1693 return nullptr; 1694 1695 // Decode the second character of the format string. 1696 if (FormatStr[1] == 'c') { 1697 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 1698 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1699 return nullptr; 1700 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 1701 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 1702 B.CreateStore(V, Ptr); 1703 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 1704 B.CreateStore(B.getInt8(0), Ptr); 1705 1706 return ConstantInt::get(CI->getType(), 1); 1707 } 1708 1709 if (FormatStr[1] == 's') { 1710 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) 1711 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1712 return nullptr; 1713 1714 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 1715 if (!Len) 1716 return nullptr; 1717 Value *IncLen = 1718 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 1719 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1); 1720 1721 // The sprintf result is the unincremented number of bytes in the string. 1722 return B.CreateIntCast(Len, CI->getType(), false); 1723 } 1724 return nullptr; 1725 } 1726 1727 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 1728 Function *Callee = CI->getCalledFunction(); 1729 FunctionType *FT = Callee->getFunctionType(); 1730 if (Value *V = optimizeSPrintFString(CI, B)) { 1731 return V; 1732 } 1733 1734 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 1735 // point arguments. 1736 if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) { 1737 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1738 Constant *SIPrintFFn = 1739 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 1740 CallInst *New = cast<CallInst>(CI->clone()); 1741 New->setCalledFunction(SIPrintFFn); 1742 B.Insert(New); 1743 return New; 1744 } 1745 return nullptr; 1746 } 1747 1748 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 1749 optimizeErrorReporting(CI, B, 0); 1750 1751 // All the optimizations depend on the format string. 1752 StringRef FormatStr; 1753 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1754 return nullptr; 1755 1756 // Do not do any of the following transformations if the fprintf return 1757 // value is used, in general the fprintf return value is not compatible 1758 // with fwrite(), fputc() or fputs(). 1759 if (!CI->use_empty()) 1760 return nullptr; 1761 1762 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 1763 if (CI->getNumArgOperands() == 2) { 1764 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1765 if (FormatStr[i] == '%') // Could handle %% -> % if we cared. 1766 return nullptr; // We found a format specifier. 1767 1768 return emitFWrite( 1769 CI->getArgOperand(1), 1770 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 1771 CI->getArgOperand(0), B, DL, TLI); 1772 } 1773 1774 // The remaining optimizations require the format string to be "%s" or "%c" 1775 // and have an extra operand. 1776 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1777 CI->getNumArgOperands() < 3) 1778 return nullptr; 1779 1780 // Decode the second character of the format string. 1781 if (FormatStr[1] == 'c') { 1782 // fprintf(F, "%c", chr) --> fputc(chr, F) 1783 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1784 return nullptr; 1785 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 1786 } 1787 1788 if (FormatStr[1] == 's') { 1789 // fprintf(F, "%s", str) --> fputs(str, F) 1790 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1791 return nullptr; 1792 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 1793 } 1794 return nullptr; 1795 } 1796 1797 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 1798 Function *Callee = CI->getCalledFunction(); 1799 FunctionType *FT = Callee->getFunctionType(); 1800 if (Value *V = optimizeFPrintFString(CI, B)) { 1801 return V; 1802 } 1803 1804 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 1805 // floating point arguments. 1806 if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) { 1807 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1808 Constant *FIPrintFFn = 1809 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 1810 CallInst *New = cast<CallInst>(CI->clone()); 1811 New->setCalledFunction(FIPrintFFn); 1812 B.Insert(New); 1813 return New; 1814 } 1815 return nullptr; 1816 } 1817 1818 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 1819 optimizeErrorReporting(CI, B, 3); 1820 1821 // Get the element size and count. 1822 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 1823 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1824 if (!SizeC || !CountC) 1825 return nullptr; 1826 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 1827 1828 // If this is writing zero records, remove the call (it's a noop). 1829 if (Bytes == 0) 1830 return ConstantInt::get(CI->getType(), 0); 1831 1832 // If this is writing one byte, turn it into fputc. 1833 // This optimisation is only valid, if the return value is unused. 1834 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 1835 Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char"); 1836 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 1837 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 1838 } 1839 1840 return nullptr; 1841 } 1842 1843 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 1844 optimizeErrorReporting(CI, B, 1); 1845 1846 // Don't rewrite fputs to fwrite when optimising for size because fwrite 1847 // requires more arguments and thus extra MOVs are required. 1848 if (CI->getParent()->getParent()->optForSize()) 1849 return nullptr; 1850 1851 // We can't optimize if return value is used. 1852 if (!CI->use_empty()) 1853 return nullptr; 1854 1855 // fputs(s,F) --> fwrite(s,1,strlen(s),F) 1856 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 1857 if (!Len) 1858 return nullptr; 1859 1860 // Known to have no uses (see above). 1861 return emitFWrite( 1862 CI->getArgOperand(0), 1863 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 1864 CI->getArgOperand(1), B, DL, TLI); 1865 } 1866 1867 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 1868 // Check for a constant string. 1869 StringRef Str; 1870 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1871 return nullptr; 1872 1873 if (Str.empty() && CI->use_empty()) { 1874 // puts("") -> putchar('\n') 1875 Value *Res = emitPutChar(B.getInt32('\n'), B, TLI); 1876 if (CI->use_empty() || !Res) 1877 return Res; 1878 return B.CreateIntCast(Res, CI->getType(), true); 1879 } 1880 1881 return nullptr; 1882 } 1883 1884 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 1885 LibFunc::Func Func; 1886 SmallString<20> FloatFuncName = FuncName; 1887 FloatFuncName += 'f'; 1888 if (TLI->getLibFunc(FloatFuncName, Func)) 1889 return TLI->has(Func); 1890 return false; 1891 } 1892 1893 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 1894 IRBuilder<> &Builder) { 1895 LibFunc::Func Func; 1896 Function *Callee = CI->getCalledFunction(); 1897 // Check for string/memory library functions. 1898 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 1899 // Make sure we never change the calling convention. 1900 assert((ignoreCallingConv(Func) || 1901 CI->getCallingConv() == llvm::CallingConv::C) && 1902 "Optimizing string/memory libcall would change the calling convention"); 1903 switch (Func) { 1904 case LibFunc::strcat: 1905 return optimizeStrCat(CI, Builder); 1906 case LibFunc::strncat: 1907 return optimizeStrNCat(CI, Builder); 1908 case LibFunc::strchr: 1909 return optimizeStrChr(CI, Builder); 1910 case LibFunc::strrchr: 1911 return optimizeStrRChr(CI, Builder); 1912 case LibFunc::strcmp: 1913 return optimizeStrCmp(CI, Builder); 1914 case LibFunc::strncmp: 1915 return optimizeStrNCmp(CI, Builder); 1916 case LibFunc::strcpy: 1917 return optimizeStrCpy(CI, Builder); 1918 case LibFunc::stpcpy: 1919 return optimizeStpCpy(CI, Builder); 1920 case LibFunc::strncpy: 1921 return optimizeStrNCpy(CI, Builder); 1922 case LibFunc::strlen: 1923 return optimizeStrLen(CI, Builder); 1924 case LibFunc::strpbrk: 1925 return optimizeStrPBrk(CI, Builder); 1926 case LibFunc::strtol: 1927 case LibFunc::strtod: 1928 case LibFunc::strtof: 1929 case LibFunc::strtoul: 1930 case LibFunc::strtoll: 1931 case LibFunc::strtold: 1932 case LibFunc::strtoull: 1933 return optimizeStrTo(CI, Builder); 1934 case LibFunc::strspn: 1935 return optimizeStrSpn(CI, Builder); 1936 case LibFunc::strcspn: 1937 return optimizeStrCSpn(CI, Builder); 1938 case LibFunc::strstr: 1939 return optimizeStrStr(CI, Builder); 1940 case LibFunc::memchr: 1941 return optimizeMemChr(CI, Builder); 1942 case LibFunc::memcmp: 1943 return optimizeMemCmp(CI, Builder); 1944 case LibFunc::memcpy: 1945 return optimizeMemCpy(CI, Builder); 1946 case LibFunc::memmove: 1947 return optimizeMemMove(CI, Builder); 1948 case LibFunc::memset: 1949 return optimizeMemSet(CI, Builder); 1950 default: 1951 break; 1952 } 1953 } 1954 return nullptr; 1955 } 1956 1957 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 1958 if (CI->isNoBuiltin()) 1959 return nullptr; 1960 1961 LibFunc::Func Func; 1962 Function *Callee = CI->getCalledFunction(); 1963 StringRef FuncName = Callee->getName(); 1964 1965 SmallVector<OperandBundleDef, 2> OpBundles; 1966 CI->getOperandBundlesAsDefs(OpBundles); 1967 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 1968 bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C; 1969 1970 // Command-line parameter overrides instruction attribute. 1971 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 1972 UnsafeFPShrink = EnableUnsafeFPShrink; 1973 else if (isa<FPMathOperator>(CI) && CI->hasUnsafeAlgebra()) 1974 UnsafeFPShrink = true; 1975 1976 // First, check for intrinsics. 1977 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 1978 if (!isCallingConvC) 1979 return nullptr; 1980 switch (II->getIntrinsicID()) { 1981 case Intrinsic::pow: 1982 return optimizePow(CI, Builder); 1983 case Intrinsic::exp2: 1984 return optimizeExp2(CI, Builder); 1985 case Intrinsic::fabs: 1986 return optimizeFabs(CI, Builder); 1987 case Intrinsic::log: 1988 return optimizeLog(CI, Builder); 1989 case Intrinsic::sqrt: 1990 return optimizeSqrt(CI, Builder); 1991 // TODO: Use foldMallocMemset() with memset intrinsic. 1992 default: 1993 return nullptr; 1994 } 1995 } 1996 1997 // Also try to simplify calls to fortified library functions. 1998 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 1999 // Try to further simplify the result. 2000 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 2001 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 2002 // Use an IR Builder from SimplifiedCI if available instead of CI 2003 // to guarantee we reach all uses we might replace later on. 2004 IRBuilder<> TmpBuilder(SimplifiedCI); 2005 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { 2006 // If we were able to further simplify, remove the now redundant call. 2007 SimplifiedCI->replaceAllUsesWith(V); 2008 SimplifiedCI->eraseFromParent(); 2009 return V; 2010 } 2011 } 2012 return SimplifiedFortifiedCI; 2013 } 2014 2015 // Then check for known library functions. 2016 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2017 // We never change the calling convention. 2018 if (!ignoreCallingConv(Func) && !isCallingConvC) 2019 return nullptr; 2020 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 2021 return V; 2022 switch (Func) { 2023 case LibFunc::cosf: 2024 case LibFunc::cos: 2025 case LibFunc::cosl: 2026 return optimizeCos(CI, Builder); 2027 case LibFunc::sinpif: 2028 case LibFunc::sinpi: 2029 case LibFunc::cospif: 2030 case LibFunc::cospi: 2031 return optimizeSinCosPi(CI, Builder); 2032 case LibFunc::powf: 2033 case LibFunc::pow: 2034 case LibFunc::powl: 2035 return optimizePow(CI, Builder); 2036 case LibFunc::exp2l: 2037 case LibFunc::exp2: 2038 case LibFunc::exp2f: 2039 return optimizeExp2(CI, Builder); 2040 case LibFunc::fabsf: 2041 case LibFunc::fabs: 2042 case LibFunc::fabsl: 2043 return optimizeFabs(CI, Builder); 2044 case LibFunc::sqrtf: 2045 case LibFunc::sqrt: 2046 case LibFunc::sqrtl: 2047 return optimizeSqrt(CI, Builder); 2048 case LibFunc::ffs: 2049 case LibFunc::ffsl: 2050 case LibFunc::ffsll: 2051 return optimizeFFS(CI, Builder); 2052 case LibFunc::abs: 2053 case LibFunc::labs: 2054 case LibFunc::llabs: 2055 return optimizeAbs(CI, Builder); 2056 case LibFunc::isdigit: 2057 return optimizeIsDigit(CI, Builder); 2058 case LibFunc::isascii: 2059 return optimizeIsAscii(CI, Builder); 2060 case LibFunc::toascii: 2061 return optimizeToAscii(CI, Builder); 2062 case LibFunc::printf: 2063 return optimizePrintF(CI, Builder); 2064 case LibFunc::sprintf: 2065 return optimizeSPrintF(CI, Builder); 2066 case LibFunc::fprintf: 2067 return optimizeFPrintF(CI, Builder); 2068 case LibFunc::fwrite: 2069 return optimizeFWrite(CI, Builder); 2070 case LibFunc::fputs: 2071 return optimizeFPuts(CI, Builder); 2072 case LibFunc::log: 2073 case LibFunc::log10: 2074 case LibFunc::log1p: 2075 case LibFunc::log2: 2076 case LibFunc::logb: 2077 return optimizeLog(CI, Builder); 2078 case LibFunc::puts: 2079 return optimizePuts(CI, Builder); 2080 case LibFunc::tan: 2081 case LibFunc::tanf: 2082 case LibFunc::tanl: 2083 return optimizeTan(CI, Builder); 2084 case LibFunc::perror: 2085 return optimizeErrorReporting(CI, Builder); 2086 case LibFunc::vfprintf: 2087 case LibFunc::fiprintf: 2088 return optimizeErrorReporting(CI, Builder, 0); 2089 case LibFunc::fputc: 2090 return optimizeErrorReporting(CI, Builder, 1); 2091 case LibFunc::ceil: 2092 case LibFunc::floor: 2093 case LibFunc::rint: 2094 case LibFunc::round: 2095 case LibFunc::nearbyint: 2096 case LibFunc::trunc: 2097 if (hasFloatVersion(FuncName)) 2098 return optimizeUnaryDoubleFP(CI, Builder, false); 2099 return nullptr; 2100 case LibFunc::acos: 2101 case LibFunc::acosh: 2102 case LibFunc::asin: 2103 case LibFunc::asinh: 2104 case LibFunc::atan: 2105 case LibFunc::atanh: 2106 case LibFunc::cbrt: 2107 case LibFunc::cosh: 2108 case LibFunc::exp: 2109 case LibFunc::exp10: 2110 case LibFunc::expm1: 2111 case LibFunc::sin: 2112 case LibFunc::sinh: 2113 case LibFunc::tanh: 2114 if (UnsafeFPShrink && hasFloatVersion(FuncName)) 2115 return optimizeUnaryDoubleFP(CI, Builder, true); 2116 return nullptr; 2117 case LibFunc::copysign: 2118 if (hasFloatVersion(FuncName)) 2119 return optimizeBinaryDoubleFP(CI, Builder); 2120 return nullptr; 2121 case LibFunc::fminf: 2122 case LibFunc::fmin: 2123 case LibFunc::fminl: 2124 case LibFunc::fmaxf: 2125 case LibFunc::fmax: 2126 case LibFunc::fmaxl: 2127 return optimizeFMinFMax(CI, Builder); 2128 default: 2129 return nullptr; 2130 } 2131 } 2132 return nullptr; 2133 } 2134 2135 LibCallSimplifier::LibCallSimplifier( 2136 const DataLayout &DL, const TargetLibraryInfo *TLI, 2137 function_ref<void(Instruction *, Value *)> Replacer) 2138 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), UnsafeFPShrink(false), 2139 Replacer(Replacer) {} 2140 2141 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 2142 // Indirect through the replacer used in this instance. 2143 Replacer(I, With); 2144 } 2145 2146 // TODO: 2147 // Additional cases that we need to add to this file: 2148 // 2149 // cbrt: 2150 // * cbrt(expN(X)) -> expN(x/3) 2151 // * cbrt(sqrt(x)) -> pow(x,1/6) 2152 // * cbrt(cbrt(x)) -> pow(x,1/9) 2153 // 2154 // exp, expf, expl: 2155 // * exp(log(x)) -> x 2156 // 2157 // log, logf, logl: 2158 // * log(exp(x)) -> x 2159 // * log(exp(y)) -> y*log(e) 2160 // * log(exp10(y)) -> y*log(10) 2161 // * log(sqrt(x)) -> 0.5*log(x) 2162 // 2163 // lround, lroundf, lroundl: 2164 // * lround(cnst) -> cnst' 2165 // 2166 // pow, powf, powl: 2167 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2168 // * pow(pow(x,y),z)-> pow(x,y*z) 2169 // 2170 // round, roundf, roundl: 2171 // * round(cnst) -> cnst' 2172 // 2173 // signbit: 2174 // * signbit(cnst) -> cnst' 2175 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2176 // 2177 // sqrt, sqrtf, sqrtl: 2178 // * sqrt(expN(x)) -> expN(x*0.5) 2179 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2180 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2181 // 2182 // trunc, truncf, truncl: 2183 // * trunc(cnst) -> cnst' 2184 // 2185 // 2186 2187 //===----------------------------------------------------------------------===// 2188 // Fortified Library Call Optimizations 2189 //===----------------------------------------------------------------------===// 2190 2191 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2192 unsigned ObjSizeOp, 2193 unsigned SizeOp, 2194 bool isString) { 2195 if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp)) 2196 return true; 2197 if (ConstantInt *ObjSizeCI = 2198 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2199 if (ObjSizeCI->isAllOnesValue()) 2200 return true; 2201 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2202 if (OnlyLowerUnknownSize) 2203 return false; 2204 if (isString) { 2205 uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp)); 2206 // If the length is 0 we don't know how long it is and so we can't 2207 // remove the check. 2208 if (Len == 0) 2209 return false; 2210 return ObjSizeCI->getZExtValue() >= Len; 2211 } 2212 if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp))) 2213 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2214 } 2215 return false; 2216 } 2217 2218 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 2219 IRBuilder<> &B) { 2220 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2221 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2222 CI->getArgOperand(2), 1); 2223 return CI->getArgOperand(0); 2224 } 2225 return nullptr; 2226 } 2227 2228 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 2229 IRBuilder<> &B) { 2230 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2231 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 2232 CI->getArgOperand(2), 1); 2233 return CI->getArgOperand(0); 2234 } 2235 return nullptr; 2236 } 2237 2238 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 2239 IRBuilder<> &B) { 2240 // TODO: Try foldMallocMemset() here. 2241 2242 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2243 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2244 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2245 return CI->getArgOperand(0); 2246 } 2247 return nullptr; 2248 } 2249 2250 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 2251 IRBuilder<> &B, 2252 LibFunc::Func Func) { 2253 Function *Callee = CI->getCalledFunction(); 2254 StringRef Name = Callee->getName(); 2255 const DataLayout &DL = CI->getModule()->getDataLayout(); 2256 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 2257 *ObjSize = CI->getArgOperand(2); 2258 2259 // __stpcpy_chk(x,x,...) -> x+strlen(x) 2260 if (Func == LibFunc::stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 2261 Value *StrLen = emitStrLen(Src, B, DL, TLI); 2262 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 2263 } 2264 2265 // If a) we don't have any length information, or b) we know this will 2266 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 2267 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 2268 // TODO: It might be nice to get a maximum length out of the possible 2269 // string lengths for varying. 2270 if (isFortifiedCallFoldable(CI, 2, 1, true)) 2271 return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6)); 2272 2273 if (OnlyLowerUnknownSize) 2274 return nullptr; 2275 2276 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 2277 uint64_t Len = GetStringLength(Src); 2278 if (Len == 0) 2279 return nullptr; 2280 2281 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 2282 Value *LenV = ConstantInt::get(SizeTTy, Len); 2283 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 2284 // If the function was an __stpcpy_chk, and we were able to fold it into 2285 // a __memcpy_chk, we still need to return the correct end pointer. 2286 if (Ret && Func == LibFunc::stpcpy_chk) 2287 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 2288 return Ret; 2289 } 2290 2291 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 2292 IRBuilder<> &B, 2293 LibFunc::Func Func) { 2294 Function *Callee = CI->getCalledFunction(); 2295 StringRef Name = Callee->getName(); 2296 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2297 Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2298 CI->getArgOperand(2), B, TLI, Name.substr(2, 7)); 2299 return Ret; 2300 } 2301 return nullptr; 2302 } 2303 2304 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 2305 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 2306 // Some clang users checked for _chk libcall availability using: 2307 // __has_builtin(__builtin___memcpy_chk) 2308 // When compiling with -fno-builtin, this is always true. 2309 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 2310 // end up with fortified libcalls, which isn't acceptable in a freestanding 2311 // environment which only provides their non-fortified counterparts. 2312 // 2313 // Until we change clang and/or teach external users to check for availability 2314 // differently, disregard the "nobuiltin" attribute and TLI::has. 2315 // 2316 // PR23093. 2317 2318 LibFunc::Func Func; 2319 Function *Callee = CI->getCalledFunction(); 2320 2321 SmallVector<OperandBundleDef, 2> OpBundles; 2322 CI->getOperandBundlesAsDefs(OpBundles); 2323 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2324 bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C; 2325 2326 // First, check that this is a known library functions and that the prototype 2327 // is correct. 2328 if (!TLI->getLibFunc(*Callee, Func)) 2329 return nullptr; 2330 2331 // We never change the calling convention. 2332 if (!ignoreCallingConv(Func) && !isCallingConvC) 2333 return nullptr; 2334 2335 switch (Func) { 2336 case LibFunc::memcpy_chk: 2337 return optimizeMemCpyChk(CI, Builder); 2338 case LibFunc::memmove_chk: 2339 return optimizeMemMoveChk(CI, Builder); 2340 case LibFunc::memset_chk: 2341 return optimizeMemSetChk(CI, Builder); 2342 case LibFunc::stpcpy_chk: 2343 case LibFunc::strcpy_chk: 2344 return optimizeStrpCpyChk(CI, Builder, Func); 2345 case LibFunc::stpncpy_chk: 2346 case LibFunc::strncpy_chk: 2347 return optimizeStrpNCpyChk(CI, Builder, Func); 2348 default: 2349 break; 2350 } 2351 return nullptr; 2352 } 2353 2354 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 2355 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 2356 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 2357