1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Transforms/Utils/BuildLibCalls.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Transforms/Utils/SizeOpts.h" 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 static cl::opt<bool> 40 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 41 cl::init(false), 42 cl::desc("Enable unsafe double to float " 43 "shrinking for math lib calls")); 44 45 //===----------------------------------------------------------------------===// 46 // Helper Functions 47 //===----------------------------------------------------------------------===// 48 49 static bool ignoreCallingConv(LibFunc Func) { 50 return Func == LibFunc_abs || Func == LibFunc_labs || 51 Func == LibFunc_llabs || Func == LibFunc_strlen; 52 } 53 54 /// Return true if it is only used in equality comparisons with With. 55 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 56 for (User *U : V->users()) { 57 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 58 if (IC->isEquality() && IC->getOperand(1) == With) 59 continue; 60 // Unknown instruction. 61 return false; 62 } 63 return true; 64 } 65 66 static bool callHasFloatingPointArgument(const CallInst *CI) { 67 return any_of(CI->operands(), [](const Use &OI) { 68 return OI->getType()->isFloatingPointTy(); 69 }); 70 } 71 72 static bool callHasFP128Argument(const CallInst *CI) { 73 return any_of(CI->operands(), [](const Use &OI) { 74 return OI->getType()->isFP128Ty(); 75 }); 76 } 77 78 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 79 if (Base < 2 || Base > 36) 80 // handle special zero base 81 if (Base != 0) 82 return nullptr; 83 84 char *End; 85 std::string nptr = Str.str(); 86 errno = 0; 87 long long int Result = strtoll(nptr.c_str(), &End, Base); 88 if (errno) 89 return nullptr; 90 91 // if we assume all possible target locales are ASCII supersets, 92 // then if strtoll successfully parses a number on the host, 93 // it will also successfully parse the same way on the target 94 if (*End != '\0') 95 return nullptr; 96 97 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 98 return nullptr; 99 100 return ConstantInt::get(CI->getType(), Result); 101 } 102 103 static bool isOnlyUsedInComparisonWithZero(Value *V) { 104 for (User *U : V->users()) { 105 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 106 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 107 if (C->isNullValue()) 108 continue; 109 // Unknown instruction. 110 return false; 111 } 112 return true; 113 } 114 115 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 116 const DataLayout &DL) { 117 if (!isOnlyUsedInComparisonWithZero(CI)) 118 return false; 119 120 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 121 return false; 122 123 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 124 return false; 125 126 return true; 127 } 128 129 static void annotateDereferenceableBytes(CallInst *CI, 130 ArrayRef<unsigned> ArgNos, 131 uint64_t DereferenceableBytes) { 132 const Function *F = CI->getCaller(); 133 if (!F) 134 return; 135 for (unsigned ArgNo : ArgNos) { 136 uint64_t DerefBytes = DereferenceableBytes; 137 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 138 if (!llvm::NullPointerIsDefined(F, AS) || 139 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 140 DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo), 141 DereferenceableBytes); 142 143 if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) { 144 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 145 if (!llvm::NullPointerIsDefined(F, AS) || 146 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 147 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 148 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 149 CI->getContext(), DerefBytes)); 150 } 151 } 152 } 153 154 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, 155 ArrayRef<unsigned> ArgNos) { 156 Function *F = CI->getCaller(); 157 if (!F) 158 return; 159 160 for (unsigned ArgNo : ArgNos) { 161 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef)) 162 CI->addParamAttr(ArgNo, Attribute::NoUndef); 163 164 if (CI->paramHasAttr(ArgNo, Attribute::NonNull)) 165 continue; 166 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 167 if (llvm::NullPointerIsDefined(F, AS)) 168 continue; 169 170 CI->addParamAttr(ArgNo, Attribute::NonNull); 171 annotateDereferenceableBytes(CI, ArgNo, 1); 172 } 173 } 174 175 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 176 Value *Size, const DataLayout &DL) { 177 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 178 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 179 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 180 } else if (isKnownNonZero(Size, DL)) { 181 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 182 const APInt *X, *Y; 183 uint64_t DerefMin = 1; 184 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 185 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 186 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 187 } 188 } 189 } 190 191 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for 192 // easier chaining. Calls to emit* and B.createCall should probably be wrapped 193 // in this function when New is created to replace Old. Callers should take 194 // care to check Old.isMustTailCall() if they aren't replacing Old directly 195 // with New. 196 static Value *copyFlags(const CallInst &Old, Value *New) { 197 assert(!Old.isMustTailCall() && "do not copy musttail call flags"); 198 assert(!Old.isNoTailCall() && "do not copy notail call flags"); 199 if (auto *NewCI = dyn_cast_or_null<CallInst>(New)) 200 NewCI->setTailCallKind(Old.getTailCallKind()); 201 return New; 202 } 203 204 // Helper to avoid truncating the length if size_t is 32-bits. 205 static StringRef substr(StringRef Str, uint64_t Len) { 206 return Len >= Str.size() ? Str : Str.substr(0, Len); 207 } 208 209 //===----------------------------------------------------------------------===// 210 // String and Memory Library Call Optimizations 211 //===----------------------------------------------------------------------===// 212 213 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 214 // Extract some information from the instruction 215 Value *Dst = CI->getArgOperand(0); 216 Value *Src = CI->getArgOperand(1); 217 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 218 219 // See if we can get the length of the input string. 220 uint64_t Len = GetStringLength(Src); 221 if (Len) 222 annotateDereferenceableBytes(CI, 1, Len); 223 else 224 return nullptr; 225 --Len; // Unbias length. 226 227 // Handle the simple, do-nothing case: strcat(x, "") -> x 228 if (Len == 0) 229 return Dst; 230 231 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B)); 232 } 233 234 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 235 IRBuilderBase &B) { 236 // We need to find the end of the destination string. That's where the 237 // memory is to be moved to. We just generate a call to strlen. 238 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 239 if (!DstLen) 240 return nullptr; 241 242 // Now that we have the destination's length, we must index into the 243 // destination's pointer to get the actual memcpy destination (end of 244 // the string .. we're concatenating). 245 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 246 247 // We have enough information to now generate the memcpy call to do the 248 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 249 B.CreateMemCpy( 250 CpyDst, Align(1), Src, Align(1), 251 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 252 return Dst; 253 } 254 255 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 256 // Extract some information from the instruction. 257 Value *Dst = CI->getArgOperand(0); 258 Value *Src = CI->getArgOperand(1); 259 Value *Size = CI->getArgOperand(2); 260 uint64_t Len; 261 annotateNonNullNoUndefBasedOnAccess(CI, 0); 262 if (isKnownNonZero(Size, DL)) 263 annotateNonNullNoUndefBasedOnAccess(CI, 1); 264 265 // We don't do anything if length is not constant. 266 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 267 if (LengthArg) { 268 Len = LengthArg->getZExtValue(); 269 // strncat(x, c, 0) -> x 270 if (!Len) 271 return Dst; 272 } else { 273 return nullptr; 274 } 275 276 // See if we can get the length of the input string. 277 uint64_t SrcLen = GetStringLength(Src); 278 if (SrcLen) { 279 annotateDereferenceableBytes(CI, 1, SrcLen); 280 --SrcLen; // Unbias length. 281 } else { 282 return nullptr; 283 } 284 285 // strncat(x, "", c) -> x 286 if (SrcLen == 0) 287 return Dst; 288 289 // We don't optimize this case. 290 if (Len < SrcLen) 291 return nullptr; 292 293 // strncat(x, s, c) -> strcat(x, s) 294 // s is constant so the strcat can be optimized further. 295 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B)); 296 } 297 298 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 299 Function *Callee = CI->getCalledFunction(); 300 FunctionType *FT = Callee->getFunctionType(); 301 Value *SrcStr = CI->getArgOperand(0); 302 annotateNonNullNoUndefBasedOnAccess(CI, 0); 303 304 // If the second operand is non-constant, see if we can compute the length 305 // of the input string and turn this into memchr. 306 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 307 if (!CharC) { 308 uint64_t Len = GetStringLength(SrcStr); 309 if (Len) 310 annotateDereferenceableBytes(CI, 0, Len); 311 else 312 return nullptr; 313 if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 314 return nullptr; 315 316 return copyFlags( 317 *CI, 318 emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 319 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), B, 320 DL, TLI)); 321 } 322 323 // Otherwise, the character is a constant, see if the first argument is 324 // a string literal. If so, we can constant fold. 325 StringRef Str; 326 if (!getConstantStringInfo(SrcStr, Str)) { 327 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 328 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 329 return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 330 return nullptr; 331 } 332 333 // Compute the offset, make sure to handle the case when we're searching for 334 // zero (a weird way to spell strlen). 335 size_t I = (0xFF & CharC->getSExtValue()) == 0 336 ? Str.size() 337 : Str.find(CharC->getSExtValue()); 338 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 339 return Constant::getNullValue(CI->getType()); 340 341 // strchr(s+n,c) -> gep(s+n+i,c) 342 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 343 } 344 345 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 346 Value *SrcStr = CI->getArgOperand(0); 347 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 348 annotateNonNullNoUndefBasedOnAccess(CI, 0); 349 350 // Cannot fold anything if we're not looking for a constant. 351 if (!CharC) 352 return nullptr; 353 354 StringRef Str; 355 if (!getConstantStringInfo(SrcStr, Str)) { 356 // strrchr(s, 0) -> strchr(s, 0) 357 if (CharC->isZero()) 358 return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI)); 359 return nullptr; 360 } 361 362 // Compute the offset. 363 size_t I = (0xFF & CharC->getSExtValue()) == 0 364 ? Str.size() 365 : Str.rfind(CharC->getSExtValue()); 366 if (I == StringRef::npos) // Didn't find the char. Return null. 367 return Constant::getNullValue(CI->getType()); 368 369 // strrchr(s+n,c) -> gep(s+n+i,c) 370 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 371 } 372 373 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 374 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 375 if (Str1P == Str2P) // strcmp(x,x) -> 0 376 return ConstantInt::get(CI->getType(), 0); 377 378 StringRef Str1, Str2; 379 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 380 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 381 382 // strcmp(x, y) -> cnst (if both x and y are constant strings) 383 if (HasStr1 && HasStr2) 384 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 385 386 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 387 return B.CreateNeg(B.CreateZExt( 388 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 389 390 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 391 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 392 CI->getType()); 393 394 // strcmp(P, "x") -> memcmp(P, "x", 2) 395 uint64_t Len1 = GetStringLength(Str1P); 396 if (Len1) 397 annotateDereferenceableBytes(CI, 0, Len1); 398 uint64_t Len2 = GetStringLength(Str2P); 399 if (Len2) 400 annotateDereferenceableBytes(CI, 1, Len2); 401 402 if (Len1 && Len2) { 403 return copyFlags( 404 *CI, emitMemCmp(Str1P, Str2P, 405 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 406 std::min(Len1, Len2)), 407 B, DL, TLI)); 408 } 409 410 // strcmp to memcmp 411 if (!HasStr1 && HasStr2) { 412 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 413 return copyFlags( 414 *CI, 415 emitMemCmp(Str1P, Str2P, 416 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 417 B, DL, TLI)); 418 } else if (HasStr1 && !HasStr2) { 419 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 420 return copyFlags( 421 *CI, 422 emitMemCmp(Str1P, Str2P, 423 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 424 B, DL, TLI)); 425 } 426 427 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 428 return nullptr; 429 } 430 431 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 432 Value *Str1P = CI->getArgOperand(0); 433 Value *Str2P = CI->getArgOperand(1); 434 Value *Size = CI->getArgOperand(2); 435 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 436 return ConstantInt::get(CI->getType(), 0); 437 438 if (isKnownNonZero(Size, DL)) 439 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 440 // Get the length argument if it is constant. 441 uint64_t Length; 442 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 443 Length = LengthArg->getZExtValue(); 444 else 445 return nullptr; 446 447 if (Length == 0) // strncmp(x,y,0) -> 0 448 return ConstantInt::get(CI->getType(), 0); 449 450 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 451 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI)); 452 453 StringRef Str1, Str2; 454 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 455 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 456 457 // strncmp(x, y) -> cnst (if both x and y are constant strings) 458 if (HasStr1 && HasStr2) { 459 // Avoid truncating the 64-bit Length to 32 bits in ILP32. 460 StringRef SubStr1 = substr(Str1, Length); 461 StringRef SubStr2 = substr(Str2, Length); 462 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 463 } 464 465 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 466 return B.CreateNeg(B.CreateZExt( 467 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 468 469 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 470 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 471 CI->getType()); 472 473 uint64_t Len1 = GetStringLength(Str1P); 474 if (Len1) 475 annotateDereferenceableBytes(CI, 0, Len1); 476 uint64_t Len2 = GetStringLength(Str2P); 477 if (Len2) 478 annotateDereferenceableBytes(CI, 1, Len2); 479 480 // strncmp to memcmp 481 if (!HasStr1 && HasStr2) { 482 Len2 = std::min(Len2, Length); 483 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 484 return copyFlags( 485 *CI, 486 emitMemCmp(Str1P, Str2P, 487 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 488 B, DL, TLI)); 489 } else if (HasStr1 && !HasStr2) { 490 Len1 = std::min(Len1, Length); 491 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 492 return copyFlags( 493 *CI, 494 emitMemCmp(Str1P, Str2P, 495 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 496 B, DL, TLI)); 497 } 498 499 return nullptr; 500 } 501 502 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 503 Value *Src = CI->getArgOperand(0); 504 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 505 uint64_t SrcLen = GetStringLength(Src); 506 if (SrcLen && Size) { 507 annotateDereferenceableBytes(CI, 0, SrcLen); 508 if (SrcLen <= Size->getZExtValue() + 1) 509 return copyFlags(*CI, emitStrDup(Src, B, TLI)); 510 } 511 512 return nullptr; 513 } 514 515 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 516 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 517 if (Dst == Src) // strcpy(x,x) -> x 518 return Src; 519 520 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 521 // See if we can get the length of the input string. 522 uint64_t Len = GetStringLength(Src); 523 if (Len) 524 annotateDereferenceableBytes(CI, 1, Len); 525 else 526 return nullptr; 527 528 // We have enough information to now generate the memcpy call to do the 529 // copy for us. Make a memcpy to copy the nul byte with align = 1. 530 CallInst *NewCI = 531 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 532 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 533 NewCI->setAttributes(CI->getAttributes()); 534 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 535 copyFlags(*CI, NewCI); 536 return Dst; 537 } 538 539 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 540 Function *Callee = CI->getCalledFunction(); 541 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 542 543 // stpcpy(d,s) -> strcpy(d,s) if the result is not used. 544 if (CI->use_empty()) 545 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 546 547 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 548 Value *StrLen = emitStrLen(Src, B, DL, TLI); 549 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 550 } 551 552 // See if we can get the length of the input string. 553 uint64_t Len = GetStringLength(Src); 554 if (Len) 555 annotateDereferenceableBytes(CI, 1, Len); 556 else 557 return nullptr; 558 559 Type *PT = Callee->getFunctionType()->getParamType(0); 560 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 561 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 562 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 563 564 // We have enough information to now generate the memcpy call to do the 565 // copy for us. Make a memcpy to copy the nul byte with align = 1. 566 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 567 NewCI->setAttributes(CI->getAttributes()); 568 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 569 copyFlags(*CI, NewCI); 570 return DstEnd; 571 } 572 573 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) { 574 Function *Callee = CI->getCalledFunction(); 575 Value *Dst = CI->getArgOperand(0); 576 Value *Src = CI->getArgOperand(1); 577 Value *Size = CI->getArgOperand(2); 578 annotateNonNullNoUndefBasedOnAccess(CI, 0); 579 if (isKnownNonZero(Size, DL)) 580 annotateNonNullNoUndefBasedOnAccess(CI, 1); 581 582 uint64_t Len; 583 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 584 Len = LengthArg->getZExtValue(); 585 else 586 return nullptr; 587 588 // strncpy(x, y, 0) -> x 589 if (Len == 0) 590 return Dst; 591 592 // See if we can get the length of the input string. 593 uint64_t SrcLen = GetStringLength(Src); 594 if (SrcLen) { 595 annotateDereferenceableBytes(CI, 1, SrcLen); 596 --SrcLen; // Unbias length. 597 } else { 598 return nullptr; 599 } 600 601 if (SrcLen == 0) { 602 // strncpy(x, "", y) -> memset(x, '\0', y) 603 Align MemSetAlign = 604 CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne(); 605 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign); 606 AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0)); 607 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 608 CI->getContext(), 0, ArgAttrs)); 609 copyFlags(*CI, NewCI); 610 return Dst; 611 } 612 613 // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4) 614 if (Len > SrcLen + 1) { 615 if (Len <= 128) { 616 StringRef Str; 617 if (!getConstantStringInfo(Src, Str)) 618 return nullptr; 619 std::string SrcStr = Str.str(); 620 SrcStr.resize(Len, '\0'); 621 Src = B.CreateGlobalString(SrcStr, "str"); 622 } else { 623 return nullptr; 624 } 625 } 626 627 Type *PT = Callee->getFunctionType()->getParamType(0); 628 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 629 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 630 ConstantInt::get(DL.getIntPtrType(PT), Len)); 631 NewCI->setAttributes(CI->getAttributes()); 632 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 633 copyFlags(*CI, NewCI); 634 return Dst; 635 } 636 637 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 638 unsigned CharSize, 639 Value *Bound) { 640 Value *Src = CI->getArgOperand(0); 641 Type *CharTy = B.getIntNTy(CharSize); 642 643 if (isOnlyUsedInZeroEqualityComparison(CI) && 644 (!Bound || isKnownNonZero(Bound, DL))) { 645 // Fold strlen: 646 // strlen(x) != 0 --> *x != 0 647 // strlen(x) == 0 --> *x == 0 648 // and likewise strnlen with constant N > 0: 649 // strnlen(x, N) != 0 --> *x != 0 650 // strnlen(x, N) == 0 --> *x == 0 651 return B.CreateZExt(B.CreateLoad(CharTy, Src, "char0"), 652 CI->getType()); 653 } 654 655 if (Bound) { 656 if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) { 657 if (BoundCst->isZero()) 658 // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise. 659 return ConstantInt::get(CI->getType(), 0); 660 661 if (BoundCst->isOne()) { 662 // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s. 663 Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0"); 664 Value *ZeroChar = ConstantInt::get(CharTy, 0); 665 Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp"); 666 return B.CreateZExt(Cmp, CI->getType()); 667 } 668 } 669 } 670 671 if (uint64_t Len = GetStringLength(Src, CharSize)) { 672 Value *LenC = ConstantInt::get(CI->getType(), Len - 1); 673 // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2 674 // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound. 675 if (Bound) 676 return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound); 677 return LenC; 678 } 679 680 if (Bound) 681 // Punt for strnlen for now. 682 return nullptr; 683 684 // If s is a constant pointer pointing to a string literal, we can fold 685 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 686 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 687 // We only try to simplify strlen when the pointer s points to an array 688 // of i8. Otherwise, we would need to scale the offset x before doing the 689 // subtraction. This will make the optimization more complex, and it's not 690 // very useful because calling strlen for a pointer of other types is 691 // very uncommon. 692 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 693 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 694 return nullptr; 695 696 ConstantDataArraySlice Slice; 697 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 698 uint64_t NullTermIdx; 699 if (Slice.Array == nullptr) { 700 NullTermIdx = 0; 701 } else { 702 NullTermIdx = ~((uint64_t)0); 703 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 704 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 705 NullTermIdx = I; 706 break; 707 } 708 } 709 // If the string does not have '\0', leave it to strlen to compute 710 // its length. 711 if (NullTermIdx == ~((uint64_t)0)) 712 return nullptr; 713 } 714 715 Value *Offset = GEP->getOperand(2); 716 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 717 uint64_t ArrSize = 718 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 719 720 // If Offset is not provably in the range [0, NullTermIdx], we can still 721 // optimize if we can prove that the program has undefined behavior when 722 // Offset is outside that range. That is the case when GEP->getOperand(0) 723 // is a pointer to an object whose memory extent is NullTermIdx+1. 724 if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) || 725 (isa<GlobalVariable>(GEP->getOperand(0)) && 726 NullTermIdx == ArrSize - 1)) { 727 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 728 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 729 Offset); 730 } 731 } 732 } 733 734 // strlen(x?"foo":"bars") --> x ? 3 : 4 735 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 736 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 737 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 738 if (LenTrue && LenFalse) { 739 ORE.emit([&]() { 740 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 741 << "folded strlen(select) to select of constants"; 742 }); 743 return B.CreateSelect(SI->getCondition(), 744 ConstantInt::get(CI->getType(), LenTrue - 1), 745 ConstantInt::get(CI->getType(), LenFalse - 1)); 746 } 747 } 748 749 return nullptr; 750 } 751 752 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 753 if (Value *V = optimizeStringLength(CI, B, 8)) 754 return V; 755 annotateNonNullNoUndefBasedOnAccess(CI, 0); 756 return nullptr; 757 } 758 759 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) { 760 Value *Bound = CI->getArgOperand(1); 761 if (Value *V = optimizeStringLength(CI, B, 8, Bound)) 762 return V; 763 764 if (isKnownNonZero(Bound, DL)) 765 annotateNonNullNoUndefBasedOnAccess(CI, 0); 766 return nullptr; 767 } 768 769 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 770 Module &M = *CI->getModule(); 771 unsigned WCharSize = TLI->getWCharSize(M) * 8; 772 // We cannot perform this optimization without wchar_size metadata. 773 if (WCharSize == 0) 774 return nullptr; 775 776 return optimizeStringLength(CI, B, WCharSize); 777 } 778 779 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 780 StringRef S1, S2; 781 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 782 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 783 784 // strpbrk(s, "") -> nullptr 785 // strpbrk("", s) -> nullptr 786 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 787 return Constant::getNullValue(CI->getType()); 788 789 // Constant folding. 790 if (HasS1 && HasS2) { 791 size_t I = S1.find_first_of(S2); 792 if (I == StringRef::npos) // No match. 793 return Constant::getNullValue(CI->getType()); 794 795 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 796 "strpbrk"); 797 } 798 799 // strpbrk(s, "a") -> strchr(s, 'a') 800 if (HasS2 && S2.size() == 1) 801 return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI)); 802 803 return nullptr; 804 } 805 806 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 807 Value *EndPtr = CI->getArgOperand(1); 808 if (isa<ConstantPointerNull>(EndPtr)) { 809 // With a null EndPtr, this function won't capture the main argument. 810 // It would be readonly too, except that it still may write to errno. 811 CI->addParamAttr(0, Attribute::NoCapture); 812 } 813 814 return nullptr; 815 } 816 817 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 818 StringRef S1, S2; 819 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 820 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 821 822 // strspn(s, "") -> 0 823 // strspn("", s) -> 0 824 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 825 return Constant::getNullValue(CI->getType()); 826 827 // Constant folding. 828 if (HasS1 && HasS2) { 829 size_t Pos = S1.find_first_not_of(S2); 830 if (Pos == StringRef::npos) 831 Pos = S1.size(); 832 return ConstantInt::get(CI->getType(), Pos); 833 } 834 835 return nullptr; 836 } 837 838 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 839 StringRef S1, S2; 840 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 841 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 842 843 // strcspn("", s) -> 0 844 if (HasS1 && S1.empty()) 845 return Constant::getNullValue(CI->getType()); 846 847 // Constant folding. 848 if (HasS1 && HasS2) { 849 size_t Pos = S1.find_first_of(S2); 850 if (Pos == StringRef::npos) 851 Pos = S1.size(); 852 return ConstantInt::get(CI->getType(), Pos); 853 } 854 855 // strcspn(s, "") -> strlen(s) 856 if (HasS2 && S2.empty()) 857 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI)); 858 859 return nullptr; 860 } 861 862 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 863 // fold strstr(x, x) -> x. 864 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 865 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 866 867 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 868 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 869 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 870 if (!StrLen) 871 return nullptr; 872 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 873 StrLen, B, DL, TLI); 874 if (!StrNCmp) 875 return nullptr; 876 for (User *U : llvm::make_early_inc_range(CI->users())) { 877 ICmpInst *Old = cast<ICmpInst>(U); 878 Value *Cmp = 879 B.CreateICmp(Old->getPredicate(), StrNCmp, 880 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 881 replaceAllUsesWith(Old, Cmp); 882 } 883 return CI; 884 } 885 886 // See if either input string is a constant string. 887 StringRef SearchStr, ToFindStr; 888 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 889 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 890 891 // fold strstr(x, "") -> x. 892 if (HasStr2 && ToFindStr.empty()) 893 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 894 895 // If both strings are known, constant fold it. 896 if (HasStr1 && HasStr2) { 897 size_t Offset = SearchStr.find(ToFindStr); 898 899 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 900 return Constant::getNullValue(CI->getType()); 901 902 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 903 Value *Result = castToCStr(CI->getArgOperand(0), B); 904 Result = 905 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 906 return B.CreateBitCast(Result, CI->getType()); 907 } 908 909 // fold strstr(x, "y") -> strchr(x, 'y'). 910 if (HasStr2 && ToFindStr.size() == 1) { 911 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 912 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 913 } 914 915 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 916 return nullptr; 917 } 918 919 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 920 Value *SrcStr = CI->getArgOperand(0); 921 Value *Size = CI->getArgOperand(2); 922 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 923 Value *CharVal = CI->getArgOperand(1); 924 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 925 Value *NullPtr = Constant::getNullValue(CI->getType()); 926 927 if (LenC) { 928 if (LenC->isZero()) 929 // Fold memrchr(x, y, 0) --> null. 930 return NullPtr; 931 932 if (LenC->isOne()) { 933 // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y, 934 // constant or otherwise. 935 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0"); 936 // Slice off the character's high end bits. 937 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 938 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp"); 939 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel"); 940 } 941 } 942 943 StringRef Str; 944 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 945 return nullptr; 946 947 uint64_t EndOff = UINT64_MAX; 948 if (LenC) { 949 EndOff = LenC->getZExtValue(); 950 if (Str.size() < EndOff) 951 // Punt out-of-bounds accesses to sanitizers and/or libc. 952 return nullptr; 953 } 954 955 if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) { 956 // Fold memrchr(S, C, N) for a constant C. 957 size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff); 958 if (Pos == StringRef::npos) 959 // When the character is not in the source array fold the result 960 // to null regardless of Size. 961 return NullPtr; 962 963 if (LenC) 964 // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos. 965 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos)); 966 967 if (Str.find(CharC->getZExtValue(), Pos) == StringRef::npos) { 968 // When there is just a single occurrence of C in S, fold 969 // memrchr(s, c, N) --> N <= Pos ? null : s + Pos 970 // for nonconstant N. 971 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), 972 Pos), 973 "memrchr.cmp"); 974 Value *SrcPlus = B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), 975 "memrchr.ptr_plus"); 976 return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel"); 977 } 978 } 979 980 // Truncate the string to search at most EndOff characters. 981 Str = Str.substr(0, EndOff); 982 if (Str.find_first_not_of(Str[0]) != StringRef::npos) 983 return nullptr; 984 985 // If the source array consists of all equal characters, then for any 986 // C and N (whether in bounds or not), fold memrchr(S, C, N) to 987 // N != 0 && *S == C ? S + N - 1 : null 988 Type *SizeTy = Size->getType(); 989 Type *Int8Ty = B.getInt8Ty(); 990 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0)); 991 // Slice off the sought character's high end bits. 992 CharVal = B.CreateTrunc(CharVal, Int8Ty); 993 Value *CEqS0 = B.CreateICmpEQ(ConstantInt::get(Int8Ty, Str[0]), CharVal); 994 Value *And = B.CreateLogicalAnd(NNeZ, CEqS0); 995 Value *SizeM1 = B.CreateSub(Size, ConstantInt::get(SizeTy, 1)); 996 Value *SrcPlus = B.CreateGEP(Int8Ty, SrcStr, SizeM1, "memrchr.ptr_plus"); 997 return B.CreateSelect(And, SrcPlus, NullPtr, "memrchr.sel"); 998 } 999 1000 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 1001 Value *SrcStr = CI->getArgOperand(0); 1002 Value *Size = CI->getArgOperand(2); 1003 if (isKnownNonZero(Size, DL)) 1004 annotateNonNullNoUndefBasedOnAccess(CI, 0); 1005 1006 Value *CharVal = CI->getArgOperand(1); 1007 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 1008 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1009 1010 // memchr(x, y, 0) -> null 1011 if (LenC) { 1012 if (LenC->isZero()) 1013 return Constant::getNullValue(CI->getType()); 1014 1015 if (LenC->isOne()) { 1016 // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y, 1017 // constant or otherwise. 1018 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0"); 1019 // Slice off the character's high end bits. 1020 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 1021 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp"); 1022 Value *NullPtr = Constant::getNullValue(CI->getType()); 1023 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel"); 1024 } 1025 } 1026 1027 StringRef Str; 1028 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 1029 return nullptr; 1030 1031 if (CharC) { 1032 size_t Pos = Str.find(CharC->getZExtValue()); 1033 if (Pos == StringRef::npos) 1034 // When the character is not in the source array fold the result 1035 // to null regardless of Size. 1036 return Constant::getNullValue(CI->getType()); 1037 1038 // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos 1039 // When the constant Size is less than or equal to the character 1040 // position also fold the result to null. 1041 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos), 1042 "memchr.cmp"); 1043 Value *NullPtr = Constant::getNullValue(CI->getType()); 1044 Value *SrcPlus = 1045 B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), "memchr.ptr"); 1046 return B.CreateSelect(Cmp, NullPtr, SrcPlus); 1047 } 1048 1049 if (!LenC) 1050 // From now on we need a constant length and constant array. 1051 return nullptr; 1052 1053 // Truncate the string to LenC without slicing when targeting LP64 1054 // on an ILP32 host. 1055 Str = substr(Str, LenC->getZExtValue()); 1056 1057 // If the char is variable but the input str and length are not we can turn 1058 // this memchr call into a simple bit field test. Of course this only works 1059 // when the return value is only checked against null. 1060 // 1061 // It would be really nice to reuse switch lowering here but we can't change 1062 // the CFG at this point. 1063 // 1064 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 1065 // != 0 1066 // after bounds check. 1067 if (Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI)) 1068 return nullptr; 1069 1070 unsigned char Max = 1071 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 1072 reinterpret_cast<const unsigned char *>(Str.end())); 1073 1074 // Make sure the bit field we're about to create fits in a register on the 1075 // target. 1076 // FIXME: On a 64 bit architecture this prevents us from using the 1077 // interesting range of alpha ascii chars. We could do better by emitting 1078 // two bitfields or shifting the range by 64 if no lower chars are used. 1079 if (!DL.fitsInLegalInteger(Max + 1)) 1080 return nullptr; 1081 1082 // For the bit field use a power-of-2 type with at least 8 bits to avoid 1083 // creating unnecessary illegal types. 1084 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 1085 1086 // Now build the bit field. 1087 APInt Bitfield(Width, 0); 1088 for (char C : Str) 1089 Bitfield.setBit((unsigned char)C); 1090 Value *BitfieldC = B.getInt(Bitfield); 1091 1092 // Adjust width of "C" to the bitfield width, then mask off the high bits. 1093 Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType()); 1094 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 1095 1096 // First check that the bit field access is within bounds. 1097 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 1098 "memchr.bounds"); 1099 1100 // Create code that checks if the given bit is set in the field. 1101 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 1102 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 1103 1104 // Finally merge both checks and cast to pointer type. The inttoptr 1105 // implicitly zexts the i1 to intptr type. 1106 return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"), 1107 CI->getType()); 1108 } 1109 1110 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 1111 uint64_t Len, IRBuilderBase &B, 1112 const DataLayout &DL) { 1113 if (Len == 0) // memcmp(s1,s2,0) -> 0 1114 return Constant::getNullValue(CI->getType()); 1115 1116 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 1117 if (Len == 1) { 1118 Value *LHSV = 1119 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 1120 CI->getType(), "lhsv"); 1121 Value *RHSV = 1122 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 1123 CI->getType(), "rhsv"); 1124 return B.CreateSub(LHSV, RHSV, "chardiff"); 1125 } 1126 1127 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 1128 // TODO: The case where both inputs are constants does not need to be limited 1129 // to legal integers or equality comparison. See block below this. 1130 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 1131 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 1132 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 1133 1134 // First, see if we can fold either argument to a constant. 1135 Value *LHSV = nullptr; 1136 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 1137 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 1138 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 1139 } 1140 Value *RHSV = nullptr; 1141 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 1142 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 1143 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 1144 } 1145 1146 // Don't generate unaligned loads. If either source is constant data, 1147 // alignment doesn't matter for that source because there is no load. 1148 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 1149 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 1150 if (!LHSV) { 1151 Type *LHSPtrTy = 1152 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 1153 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 1154 } 1155 if (!RHSV) { 1156 Type *RHSPtrTy = 1157 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 1158 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 1159 } 1160 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1161 } 1162 } 1163 1164 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 1165 // TODO: This is limited to i8 arrays. 1166 StringRef LHSStr, RHSStr; 1167 if (getConstantStringInfo(LHS, LHSStr) && 1168 getConstantStringInfo(RHS, RHSStr)) { 1169 // Make sure we're not reading out-of-bounds memory. 1170 if (Len > LHSStr.size() || Len > RHSStr.size()) 1171 return nullptr; 1172 // Fold the memcmp and normalize the result. This way we get consistent 1173 // results across multiple platforms. 1174 uint64_t Ret = 0; 1175 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 1176 if (Cmp < 0) 1177 Ret = -1; 1178 else if (Cmp > 0) 1179 Ret = 1; 1180 return ConstantInt::get(CI->getType(), Ret); 1181 } 1182 1183 return nullptr; 1184 } 1185 1186 // Most simplifications for memcmp also apply to bcmp. 1187 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1188 IRBuilderBase &B) { 1189 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1190 Value *Size = CI->getArgOperand(2); 1191 1192 if (LHS == RHS) // memcmp(s,s,x) -> 0 1193 return Constant::getNullValue(CI->getType()); 1194 1195 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1196 // Handle constant lengths. 1197 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1198 if (!LenC) 1199 return nullptr; 1200 1201 // memcmp(d,s,0) -> 0 1202 if (LenC->getZExtValue() == 0) 1203 return Constant::getNullValue(CI->getType()); 1204 1205 if (Value *Res = 1206 optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL)) 1207 return Res; 1208 return nullptr; 1209 } 1210 1211 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1212 Module *M = CI->getModule(); 1213 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1214 return V; 1215 1216 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1217 // bcmp can be more efficient than memcmp because it only has to know that 1218 // there is a difference, not how different one is to the other. 1219 if (isLibFuncEmittable(M, TLI, LibFunc_bcmp) && 1220 isOnlyUsedInZeroEqualityComparison(CI)) { 1221 Value *LHS = CI->getArgOperand(0); 1222 Value *RHS = CI->getArgOperand(1); 1223 Value *Size = CI->getArgOperand(2); 1224 return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI)); 1225 } 1226 1227 return nullptr; 1228 } 1229 1230 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1231 return optimizeMemCmpBCmpCommon(CI, B); 1232 } 1233 1234 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1235 Value *Size = CI->getArgOperand(2); 1236 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1237 if (isa<IntrinsicInst>(CI)) 1238 return nullptr; 1239 1240 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1241 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1242 CI->getArgOperand(1), Align(1), Size); 1243 NewCI->setAttributes(CI->getAttributes()); 1244 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1245 copyFlags(*CI, NewCI); 1246 return CI->getArgOperand(0); 1247 } 1248 1249 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1250 Value *Dst = CI->getArgOperand(0); 1251 Value *Src = CI->getArgOperand(1); 1252 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1253 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1254 StringRef SrcStr; 1255 if (CI->use_empty() && Dst == Src) 1256 return Dst; 1257 // memccpy(d, s, c, 0) -> nullptr 1258 if (N) { 1259 if (N->isNullValue()) 1260 return Constant::getNullValue(CI->getType()); 1261 if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0, 1262 /*TrimAtNul=*/false) || 1263 !StopChar) 1264 return nullptr; 1265 } else { 1266 return nullptr; 1267 } 1268 1269 // Wrap arg 'c' of type int to char 1270 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1271 if (Pos == StringRef::npos) { 1272 if (N->getZExtValue() <= SrcStr.size()) { 1273 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), 1274 CI->getArgOperand(3))); 1275 return Constant::getNullValue(CI->getType()); 1276 } 1277 return nullptr; 1278 } 1279 1280 Value *NewN = 1281 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1282 // memccpy -> llvm.memcpy 1283 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN)); 1284 return Pos + 1 <= N->getZExtValue() 1285 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1286 : Constant::getNullValue(CI->getType()); 1287 } 1288 1289 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1290 Value *Dst = CI->getArgOperand(0); 1291 Value *N = CI->getArgOperand(2); 1292 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1293 CallInst *NewCI = 1294 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1295 // Propagate attributes, but memcpy has no return value, so make sure that 1296 // any return attributes are compliant. 1297 // TODO: Attach return value attributes to the 1st operand to preserve them? 1298 NewCI->setAttributes(CI->getAttributes()); 1299 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1300 copyFlags(*CI, NewCI); 1301 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1302 } 1303 1304 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1305 Value *Size = CI->getArgOperand(2); 1306 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1307 if (isa<IntrinsicInst>(CI)) 1308 return nullptr; 1309 1310 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1311 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1312 CI->getArgOperand(1), Align(1), Size); 1313 NewCI->setAttributes(CI->getAttributes()); 1314 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1315 copyFlags(*CI, NewCI); 1316 return CI->getArgOperand(0); 1317 } 1318 1319 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1320 Value *Size = CI->getArgOperand(2); 1321 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1322 if (isa<IntrinsicInst>(CI)) 1323 return nullptr; 1324 1325 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1326 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1327 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1328 NewCI->setAttributes(CI->getAttributes()); 1329 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1330 copyFlags(*CI, NewCI); 1331 return CI->getArgOperand(0); 1332 } 1333 1334 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1335 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1336 return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI)); 1337 1338 return nullptr; 1339 } 1340 1341 //===----------------------------------------------------------------------===// 1342 // Math Library Optimizations 1343 //===----------------------------------------------------------------------===// 1344 1345 // Replace a libcall \p CI with a call to intrinsic \p IID 1346 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1347 Intrinsic::ID IID) { 1348 // Propagate fast-math flags from the existing call to the new call. 1349 IRBuilderBase::FastMathFlagGuard Guard(B); 1350 B.setFastMathFlags(CI->getFastMathFlags()); 1351 1352 Module *M = CI->getModule(); 1353 Value *V = CI->getArgOperand(0); 1354 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1355 CallInst *NewCall = B.CreateCall(F, V); 1356 NewCall->takeName(CI); 1357 return copyFlags(*CI, NewCall); 1358 } 1359 1360 /// Return a variant of Val with float type. 1361 /// Currently this works in two cases: If Val is an FPExtension of a float 1362 /// value to something bigger, simply return the operand. 1363 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1364 /// loss of precision do so. 1365 static Value *valueHasFloatPrecision(Value *Val) { 1366 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1367 Value *Op = Cast->getOperand(0); 1368 if (Op->getType()->isFloatTy()) 1369 return Op; 1370 } 1371 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1372 APFloat F = Const->getValueAPF(); 1373 bool losesInfo; 1374 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1375 &losesInfo); 1376 if (!losesInfo) 1377 return ConstantFP::get(Const->getContext(), F); 1378 } 1379 return nullptr; 1380 } 1381 1382 /// Shrink double -> float functions. 1383 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1384 bool isBinary, const TargetLibraryInfo *TLI, 1385 bool isPrecise = false) { 1386 Function *CalleeFn = CI->getCalledFunction(); 1387 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1388 return nullptr; 1389 1390 // If not all the uses of the function are converted to float, then bail out. 1391 // This matters if the precision of the result is more important than the 1392 // precision of the arguments. 1393 if (isPrecise) 1394 for (User *U : CI->users()) { 1395 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1396 if (!Cast || !Cast->getType()->isFloatTy()) 1397 return nullptr; 1398 } 1399 1400 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1401 Value *V[2]; 1402 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1403 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1404 if (!V[0] || (isBinary && !V[1])) 1405 return nullptr; 1406 1407 // If call isn't an intrinsic, check that it isn't within a function with the 1408 // same name as the float version of this call, otherwise the result is an 1409 // infinite loop. For example, from MinGW-w64: 1410 // 1411 // float expf(float val) { return (float) exp((double) val); } 1412 StringRef CalleeName = CalleeFn->getName(); 1413 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1414 if (!IsIntrinsic) { 1415 StringRef CallerName = CI->getFunction()->getName(); 1416 if (!CallerName.empty() && CallerName.back() == 'f' && 1417 CallerName.size() == (CalleeName.size() + 1) && 1418 CallerName.startswith(CalleeName)) 1419 return nullptr; 1420 } 1421 1422 // Propagate the math semantics from the current function to the new function. 1423 IRBuilderBase::FastMathFlagGuard Guard(B); 1424 B.setFastMathFlags(CI->getFastMathFlags()); 1425 1426 // g((double) float) -> (double) gf(float) 1427 Value *R; 1428 if (IsIntrinsic) { 1429 Module *M = CI->getModule(); 1430 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1431 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1432 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1433 } else { 1434 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1435 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B, 1436 CalleeAttrs) 1437 : emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs); 1438 } 1439 return B.CreateFPExt(R, B.getDoubleTy()); 1440 } 1441 1442 /// Shrink double -> float for unary functions. 1443 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1444 const TargetLibraryInfo *TLI, 1445 bool isPrecise = false) { 1446 return optimizeDoubleFP(CI, B, false, TLI, isPrecise); 1447 } 1448 1449 /// Shrink double -> float for binary functions. 1450 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1451 const TargetLibraryInfo *TLI, 1452 bool isPrecise = false) { 1453 return optimizeDoubleFP(CI, B, true, TLI, isPrecise); 1454 } 1455 1456 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1457 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1458 if (!CI->isFast()) 1459 return nullptr; 1460 1461 // Propagate fast-math flags from the existing call to new instructions. 1462 IRBuilderBase::FastMathFlagGuard Guard(B); 1463 B.setFastMathFlags(CI->getFastMathFlags()); 1464 1465 Value *Real, *Imag; 1466 if (CI->arg_size() == 1) { 1467 Value *Op = CI->getArgOperand(0); 1468 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1469 Real = B.CreateExtractValue(Op, 0, "real"); 1470 Imag = B.CreateExtractValue(Op, 1, "imag"); 1471 } else { 1472 assert(CI->arg_size() == 2 && "Unexpected signature for cabs!"); 1473 Real = CI->getArgOperand(0); 1474 Imag = CI->getArgOperand(1); 1475 } 1476 1477 Value *RealReal = B.CreateFMul(Real, Real); 1478 Value *ImagImag = B.CreateFMul(Imag, Imag); 1479 1480 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1481 CI->getType()); 1482 return copyFlags( 1483 *CI, B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs")); 1484 } 1485 1486 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1487 IRBuilderBase &B) { 1488 if (!isa<FPMathOperator>(Call)) 1489 return nullptr; 1490 1491 IRBuilderBase::FastMathFlagGuard Guard(B); 1492 B.setFastMathFlags(Call->getFastMathFlags()); 1493 1494 // TODO: Can this be shared to also handle LLVM intrinsics? 1495 Value *X; 1496 switch (Func) { 1497 case LibFunc_sin: 1498 case LibFunc_sinf: 1499 case LibFunc_sinl: 1500 case LibFunc_tan: 1501 case LibFunc_tanf: 1502 case LibFunc_tanl: 1503 // sin(-X) --> -sin(X) 1504 // tan(-X) --> -tan(X) 1505 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1506 return B.CreateFNeg( 1507 copyFlags(*Call, B.CreateCall(Call->getCalledFunction(), X))); 1508 break; 1509 case LibFunc_cos: 1510 case LibFunc_cosf: 1511 case LibFunc_cosl: 1512 // cos(-X) --> cos(X) 1513 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1514 return copyFlags(*Call, 1515 B.CreateCall(Call->getCalledFunction(), X, "cos")); 1516 break; 1517 default: 1518 break; 1519 } 1520 return nullptr; 1521 } 1522 1523 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) { 1524 // Multiplications calculated using Addition Chains. 1525 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1526 1527 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1528 1529 if (InnerChain[Exp]) 1530 return InnerChain[Exp]; 1531 1532 static const unsigned AddChain[33][2] = { 1533 {0, 0}, // Unused. 1534 {0, 0}, // Unused (base case = pow1). 1535 {1, 1}, // Unused (pre-computed). 1536 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1537 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1538 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1539 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1540 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1541 }; 1542 1543 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1544 getPow(InnerChain, AddChain[Exp][1], B)); 1545 return InnerChain[Exp]; 1546 } 1547 1548 // Return a properly extended integer (DstWidth bits wide) if the operation is 1549 // an itofp. 1550 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) { 1551 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1552 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1553 // Make sure that the exponent fits inside an "int" of size DstWidth, 1554 // thus avoiding any range issues that FP has not. 1555 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); 1556 if (BitWidth < DstWidth || 1557 (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) 1558 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth)) 1559 : B.CreateZExt(Op, B.getIntNTy(DstWidth)); 1560 } 1561 1562 return nullptr; 1563 } 1564 1565 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1566 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 1567 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 1568 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 1569 Module *M = Pow->getModule(); 1570 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1571 AttributeList Attrs; // Attributes are only meaningful on the original call 1572 Module *Mod = Pow->getModule(); 1573 Type *Ty = Pow->getType(); 1574 bool Ignored; 1575 1576 // Evaluate special cases related to a nested function as the base. 1577 1578 // pow(exp(x), y) -> exp(x * y) 1579 // pow(exp2(x), y) -> exp2(x * y) 1580 // If exp{,2}() is used only once, it is better to fold two transcendental 1581 // math functions into one. If used again, exp{,2}() would still have to be 1582 // called with the original argument, then keep both original transcendental 1583 // functions. However, this transformation is only safe with fully relaxed 1584 // math semantics, since, besides rounding differences, it changes overflow 1585 // and underflow behavior quite dramatically. For example: 1586 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1587 // Whereas: 1588 // exp(1000 * 0.001) = exp(1) 1589 // TODO: Loosen the requirement for fully relaxed math semantics. 1590 // TODO: Handle exp10() when more targets have it available. 1591 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1592 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1593 LibFunc LibFn; 1594 1595 Function *CalleeFn = BaseFn->getCalledFunction(); 1596 if (CalleeFn && 1597 TLI->getLibFunc(CalleeFn->getName(), LibFn) && 1598 isLibFuncEmittable(M, TLI, LibFn)) { 1599 StringRef ExpName; 1600 Intrinsic::ID ID; 1601 Value *ExpFn; 1602 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 1603 1604 switch (LibFn) { 1605 default: 1606 return nullptr; 1607 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1608 ExpName = TLI->getName(LibFunc_exp); 1609 ID = Intrinsic::exp; 1610 LibFnFloat = LibFunc_expf; 1611 LibFnDouble = LibFunc_exp; 1612 LibFnLongDouble = LibFunc_expl; 1613 break; 1614 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1615 ExpName = TLI->getName(LibFunc_exp2); 1616 ID = Intrinsic::exp2; 1617 LibFnFloat = LibFunc_exp2f; 1618 LibFnDouble = LibFunc_exp2; 1619 LibFnLongDouble = LibFunc_exp2l; 1620 break; 1621 } 1622 1623 // Create new exp{,2}() with the product as its argument. 1624 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1625 ExpFn = BaseFn->doesNotAccessMemory() 1626 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1627 FMul, ExpName) 1628 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1629 LibFnLongDouble, B, 1630 BaseFn->getAttributes()); 1631 1632 // Since the new exp{,2}() is different from the original one, dead code 1633 // elimination cannot be trusted to remove it, since it may have side 1634 // effects (e.g., errno). When the only consumer for the original 1635 // exp{,2}() is pow(), then it has to be explicitly erased. 1636 substituteInParent(BaseFn, ExpFn); 1637 return ExpFn; 1638 } 1639 } 1640 1641 // Evaluate special cases related to a constant base. 1642 1643 const APFloat *BaseF; 1644 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1645 return nullptr; 1646 1647 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 1648 if (match(Base, m_SpecificFP(2.0)) && 1649 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 1650 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1651 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1652 return copyFlags(*Pow, 1653 emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, 1654 TLI, LibFunc_ldexp, LibFunc_ldexpf, 1655 LibFunc_ldexpl, B, Attrs)); 1656 } 1657 1658 // pow(2.0 ** n, x) -> exp2(n * x) 1659 if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1660 APFloat BaseR = APFloat(1.0); 1661 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1662 BaseR = BaseR / *BaseF; 1663 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1664 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1665 APSInt NI(64, false); 1666 if ((IsInteger || IsReciprocal) && 1667 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1668 APFloat::opOK && 1669 NI > 1 && NI.isPowerOf2()) { 1670 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1671 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1672 if (Pow->doesNotAccessMemory()) 1673 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 1674 Mod, Intrinsic::exp2, Ty), 1675 FMul, "exp2")); 1676 else 1677 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 1678 LibFunc_exp2f, 1679 LibFunc_exp2l, B, Attrs)); 1680 } 1681 } 1682 1683 // pow(10.0, x) -> exp10(x) 1684 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1685 if (match(Base, m_SpecificFP(10.0)) && 1686 hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1687 return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, 1688 LibFunc_exp10f, LibFunc_exp10l, 1689 B, Attrs)); 1690 1691 // pow(x, y) -> exp2(log2(x) * y) 1692 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 1693 !BaseF->isNegative()) { 1694 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 1695 // Luckily optimizePow has already handled the x == 1 case. 1696 assert(!match(Base, m_FPOne()) && 1697 "pow(1.0, y) should have been simplified earlier!"); 1698 1699 Value *Log = nullptr; 1700 if (Ty->isFloatTy()) 1701 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 1702 else if (Ty->isDoubleTy()) 1703 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 1704 1705 if (Log) { 1706 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 1707 if (Pow->doesNotAccessMemory()) 1708 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 1709 Mod, Intrinsic::exp2, Ty), 1710 FMul, "exp2")); 1711 else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, 1712 LibFunc_exp2l)) 1713 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 1714 LibFunc_exp2f, 1715 LibFunc_exp2l, B, Attrs)); 1716 } 1717 } 1718 1719 return nullptr; 1720 } 1721 1722 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1723 Module *M, IRBuilderBase &B, 1724 const TargetLibraryInfo *TLI) { 1725 // If errno is never set, then use the intrinsic for sqrt(). 1726 if (NoErrno) { 1727 Function *SqrtFn = 1728 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1729 return B.CreateCall(SqrtFn, V, "sqrt"); 1730 } 1731 1732 // Otherwise, use the libcall for sqrt(). 1733 if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, 1734 LibFunc_sqrtl)) 1735 // TODO: We also should check that the target can in fact lower the sqrt() 1736 // libcall. We currently have no way to ask this question, so we ask if 1737 // the target has a sqrt() libcall, which is not exactly the same. 1738 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1739 LibFunc_sqrtl, B, Attrs); 1740 1741 return nullptr; 1742 } 1743 1744 /// Use square root in place of pow(x, +/-0.5). 1745 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 1746 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1747 AttributeList Attrs; // Attributes are only meaningful on the original call 1748 Module *Mod = Pow->getModule(); 1749 Type *Ty = Pow->getType(); 1750 1751 const APFloat *ExpoF; 1752 if (!match(Expo, m_APFloat(ExpoF)) || 1753 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1754 return nullptr; 1755 1756 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 1757 // so that requires fast-math-flags (afn or reassoc). 1758 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 1759 return nullptr; 1760 1761 // If we have a pow() library call (accesses memory) and we can't guarantee 1762 // that the base is not an infinity, give up: 1763 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 1764 // errno), but sqrt(-Inf) is required by various standards to set errno. 1765 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 1766 !isKnownNeverInfinity(Base, TLI)) 1767 return nullptr; 1768 1769 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1770 if (!Sqrt) 1771 return nullptr; 1772 1773 // Handle signed zero base by expanding to fabs(sqrt(x)). 1774 if (!Pow->hasNoSignedZeros()) { 1775 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1776 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1777 } 1778 1779 Sqrt = copyFlags(*Pow, Sqrt); 1780 1781 // Handle non finite base by expanding to 1782 // (x == -infinity ? +infinity : sqrt(x)). 1783 if (!Pow->hasNoInfs()) { 1784 Value *PosInf = ConstantFP::getInfinity(Ty), 1785 *NegInf = ConstantFP::getInfinity(Ty, true); 1786 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1787 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1788 } 1789 1790 // If the exponent is negative, then get the reciprocal. 1791 if (ExpoF->isNegative()) 1792 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1793 1794 return Sqrt; 1795 } 1796 1797 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1798 IRBuilderBase &B) { 1799 Value *Args[] = {Base, Expo}; 1800 Type *Types[] = {Base->getType(), Expo->getType()}; 1801 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types); 1802 return B.CreateCall(F, Args); 1803 } 1804 1805 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 1806 Value *Base = Pow->getArgOperand(0); 1807 Value *Expo = Pow->getArgOperand(1); 1808 Function *Callee = Pow->getCalledFunction(); 1809 StringRef Name = Callee->getName(); 1810 Type *Ty = Pow->getType(); 1811 Module *M = Pow->getModule(); 1812 bool AllowApprox = Pow->hasApproxFunc(); 1813 bool Ignored; 1814 1815 // Propagate the math semantics from the call to any created instructions. 1816 IRBuilderBase::FastMathFlagGuard Guard(B); 1817 B.setFastMathFlags(Pow->getFastMathFlags()); 1818 // Evaluate special cases related to the base. 1819 1820 // pow(1.0, x) -> 1.0 1821 if (match(Base, m_FPOne())) 1822 return Base; 1823 1824 if (Value *Exp = replacePowWithExp(Pow, B)) 1825 return Exp; 1826 1827 // Evaluate special cases related to the exponent. 1828 1829 // pow(x, -1.0) -> 1.0 / x 1830 if (match(Expo, m_SpecificFP(-1.0))) 1831 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1832 1833 // pow(x, +/-0.0) -> 1.0 1834 if (match(Expo, m_AnyZeroFP())) 1835 return ConstantFP::get(Ty, 1.0); 1836 1837 // pow(x, 1.0) -> x 1838 if (match(Expo, m_FPOne())) 1839 return Base; 1840 1841 // pow(x, 2.0) -> x * x 1842 if (match(Expo, m_SpecificFP(2.0))) 1843 return B.CreateFMul(Base, Base, "square"); 1844 1845 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1846 return Sqrt; 1847 1848 // pow(x, n) -> x * x * x * ... 1849 const APFloat *ExpoF; 1850 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 1851 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 1852 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1853 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1854 // additional fmul. 1855 // TODO: This whole transformation should be backend specific (e.g. some 1856 // backends might prefer libcalls or the limit for the exponent might 1857 // be different) and it should also consider optimizing for size. 1858 APFloat LimF(ExpoF->getSemantics(), 33), 1859 ExpoA(abs(*ExpoF)); 1860 if (ExpoA < LimF) { 1861 // This transformation applies to integer or integer+0.5 exponents only. 1862 // For integer+0.5, we create a sqrt(Base) call. 1863 Value *Sqrt = nullptr; 1864 if (!ExpoA.isInteger()) { 1865 APFloat Expo2 = ExpoA; 1866 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1867 // is no floating point exception and the result is an integer, then 1868 // ExpoA == integer + 0.5 1869 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1870 return nullptr; 1871 1872 if (!Expo2.isInteger()) 1873 return nullptr; 1874 1875 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1876 Pow->doesNotAccessMemory(), M, B, TLI); 1877 if (!Sqrt) 1878 return nullptr; 1879 } 1880 1881 // We will memoize intermediate products of the Addition Chain. 1882 Value *InnerChain[33] = {nullptr}; 1883 InnerChain[1] = Base; 1884 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1885 1886 // We cannot readily convert a non-double type (like float) to a double. 1887 // So we first convert it to something which could be converted to double. 1888 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1889 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1890 1891 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1892 if (Sqrt) 1893 FMul = B.CreateFMul(FMul, Sqrt); 1894 1895 // If the exponent is negative, then get the reciprocal. 1896 if (ExpoF->isNegative()) 1897 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1898 1899 return FMul; 1900 } 1901 1902 APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false); 1903 // powf(x, n) -> powi(x, n) if n is a constant signed integer value 1904 if (ExpoF->isInteger() && 1905 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 1906 APFloat::opOK) { 1907 return copyFlags( 1908 *Pow, 1909 createPowWithIntegerExponent( 1910 Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo), 1911 M, B)); 1912 } 1913 } 1914 1915 // powf(x, itofp(y)) -> powi(x, y) 1916 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 1917 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1918 return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B)); 1919 } 1920 1921 // Shrink pow() to powf() if the arguments are single precision, 1922 // unless the result is expected to be double precision. 1923 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 1924 hasFloatVersion(M, Name)) { 1925 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true)) 1926 return Shrunk; 1927 } 1928 1929 return nullptr; 1930 } 1931 1932 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 1933 Module *M = CI->getModule(); 1934 Function *Callee = CI->getCalledFunction(); 1935 AttributeList Attrs; // Attributes are only meaningful on the original call 1936 StringRef Name = Callee->getName(); 1937 Value *Ret = nullptr; 1938 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 1939 hasFloatVersion(M, Name)) 1940 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 1941 1942 Type *Ty = CI->getType(); 1943 Value *Op = CI->getArgOperand(0); 1944 1945 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize 1946 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize 1947 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 1948 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1949 if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) 1950 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 1951 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1952 B, Attrs); 1953 } 1954 1955 return Ret; 1956 } 1957 1958 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 1959 Module *M = CI->getModule(); 1960 1961 // If we can shrink the call to a float function rather than a double 1962 // function, do that first. 1963 Function *Callee = CI->getCalledFunction(); 1964 StringRef Name = Callee->getName(); 1965 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name)) 1966 if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI)) 1967 return Ret; 1968 1969 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 1970 // the intrinsics for improved optimization (for example, vectorization). 1971 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 1972 // From the C standard draft WG14/N1256: 1973 // "Ideally, fmax would be sensitive to the sign of zero, for example 1974 // fmax(-0.0, +0.0) would return +0; however, implementation in software 1975 // might be impractical." 1976 IRBuilderBase::FastMathFlagGuard Guard(B); 1977 FastMathFlags FMF = CI->getFastMathFlags(); 1978 FMF.setNoSignedZeros(); 1979 B.setFastMathFlags(FMF); 1980 1981 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 1982 : Intrinsic::maxnum; 1983 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 1984 return copyFlags( 1985 *CI, B.CreateCall(F, {CI->getArgOperand(0), CI->getArgOperand(1)})); 1986 } 1987 1988 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 1989 Function *LogFn = Log->getCalledFunction(); 1990 AttributeList Attrs; // Attributes are only meaningful on the original call 1991 StringRef LogNm = LogFn->getName(); 1992 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 1993 Module *Mod = Log->getModule(); 1994 Type *Ty = Log->getType(); 1995 Value *Ret = nullptr; 1996 1997 if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm)) 1998 Ret = optimizeUnaryDoubleFP(Log, B, TLI, true); 1999 2000 // The earlier call must also be 'fast' in order to do these transforms. 2001 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 2002 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 2003 return Ret; 2004 2005 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 2006 2007 // This is only applicable to log(), log2(), log10(). 2008 if (TLI->getLibFunc(LogNm, LogLb)) 2009 switch (LogLb) { 2010 case LibFunc_logf: 2011 LogID = Intrinsic::log; 2012 ExpLb = LibFunc_expf; 2013 Exp2Lb = LibFunc_exp2f; 2014 Exp10Lb = LibFunc_exp10f; 2015 PowLb = LibFunc_powf; 2016 break; 2017 case LibFunc_log: 2018 LogID = Intrinsic::log; 2019 ExpLb = LibFunc_exp; 2020 Exp2Lb = LibFunc_exp2; 2021 Exp10Lb = LibFunc_exp10; 2022 PowLb = LibFunc_pow; 2023 break; 2024 case LibFunc_logl: 2025 LogID = Intrinsic::log; 2026 ExpLb = LibFunc_expl; 2027 Exp2Lb = LibFunc_exp2l; 2028 Exp10Lb = LibFunc_exp10l; 2029 PowLb = LibFunc_powl; 2030 break; 2031 case LibFunc_log2f: 2032 LogID = Intrinsic::log2; 2033 ExpLb = LibFunc_expf; 2034 Exp2Lb = LibFunc_exp2f; 2035 Exp10Lb = LibFunc_exp10f; 2036 PowLb = LibFunc_powf; 2037 break; 2038 case LibFunc_log2: 2039 LogID = Intrinsic::log2; 2040 ExpLb = LibFunc_exp; 2041 Exp2Lb = LibFunc_exp2; 2042 Exp10Lb = LibFunc_exp10; 2043 PowLb = LibFunc_pow; 2044 break; 2045 case LibFunc_log2l: 2046 LogID = Intrinsic::log2; 2047 ExpLb = LibFunc_expl; 2048 Exp2Lb = LibFunc_exp2l; 2049 Exp10Lb = LibFunc_exp10l; 2050 PowLb = LibFunc_powl; 2051 break; 2052 case LibFunc_log10f: 2053 LogID = Intrinsic::log10; 2054 ExpLb = LibFunc_expf; 2055 Exp2Lb = LibFunc_exp2f; 2056 Exp10Lb = LibFunc_exp10f; 2057 PowLb = LibFunc_powf; 2058 break; 2059 case LibFunc_log10: 2060 LogID = Intrinsic::log10; 2061 ExpLb = LibFunc_exp; 2062 Exp2Lb = LibFunc_exp2; 2063 Exp10Lb = LibFunc_exp10; 2064 PowLb = LibFunc_pow; 2065 break; 2066 case LibFunc_log10l: 2067 LogID = Intrinsic::log10; 2068 ExpLb = LibFunc_expl; 2069 Exp2Lb = LibFunc_exp2l; 2070 Exp10Lb = LibFunc_exp10l; 2071 PowLb = LibFunc_powl; 2072 break; 2073 default: 2074 return Ret; 2075 } 2076 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 2077 LogID == Intrinsic::log10) { 2078 if (Ty->getScalarType()->isFloatTy()) { 2079 ExpLb = LibFunc_expf; 2080 Exp2Lb = LibFunc_exp2f; 2081 Exp10Lb = LibFunc_exp10f; 2082 PowLb = LibFunc_powf; 2083 } else if (Ty->getScalarType()->isDoubleTy()) { 2084 ExpLb = LibFunc_exp; 2085 Exp2Lb = LibFunc_exp2; 2086 Exp10Lb = LibFunc_exp10; 2087 PowLb = LibFunc_pow; 2088 } else 2089 return Ret; 2090 } else 2091 return Ret; 2092 2093 IRBuilderBase::FastMathFlagGuard Guard(B); 2094 B.setFastMathFlags(FastMathFlags::getFast()); 2095 2096 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 2097 LibFunc ArgLb = NotLibFunc; 2098 TLI->getLibFunc(*Arg, ArgLb); 2099 2100 // log(pow(x,y)) -> y*log(x) 2101 if (ArgLb == PowLb || ArgID == Intrinsic::pow) { 2102 Value *LogX = 2103 Log->doesNotAccessMemory() 2104 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 2105 Arg->getOperand(0), "log") 2106 : emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, Attrs); 2107 Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul"); 2108 // Since pow() may have side effects, e.g. errno, 2109 // dead code elimination may not be trusted to remove it. 2110 substituteInParent(Arg, MulY); 2111 return MulY; 2112 } 2113 2114 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 2115 // TODO: There is no exp10() intrinsic yet. 2116 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 2117 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 2118 Constant *Eul; 2119 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 2120 // FIXME: Add more precise value of e for long double. 2121 Eul = ConstantFP::get(Log->getType(), numbers::e); 2122 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 2123 Eul = ConstantFP::get(Log->getType(), 2.0); 2124 else 2125 Eul = ConstantFP::get(Log->getType(), 10.0); 2126 Value *LogE = Log->doesNotAccessMemory() 2127 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 2128 Eul, "log") 2129 : emitUnaryFloatFnCall(Eul, TLI, LogNm, B, Attrs); 2130 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 2131 // Since exp() may have side effects, e.g. errno, 2132 // dead code elimination may not be trusted to remove it. 2133 substituteInParent(Arg, MulY); 2134 return MulY; 2135 } 2136 2137 return Ret; 2138 } 2139 2140 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 2141 Module *M = CI->getModule(); 2142 Function *Callee = CI->getCalledFunction(); 2143 Value *Ret = nullptr; 2144 // TODO: Once we have a way (other than checking for the existince of the 2145 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 2146 // condition below. 2147 if (isLibFuncEmittable(M, TLI, LibFunc_sqrtf) && 2148 (Callee->getName() == "sqrt" || 2149 Callee->getIntrinsicID() == Intrinsic::sqrt)) 2150 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2151 2152 if (!CI->isFast()) 2153 return Ret; 2154 2155 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 2156 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 2157 return Ret; 2158 2159 // We're looking for a repeated factor in a multiplication tree, 2160 // so we can do this fold: sqrt(x * x) -> fabs(x); 2161 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 2162 Value *Op0 = I->getOperand(0); 2163 Value *Op1 = I->getOperand(1); 2164 Value *RepeatOp = nullptr; 2165 Value *OtherOp = nullptr; 2166 if (Op0 == Op1) { 2167 // Simple match: the operands of the multiply are identical. 2168 RepeatOp = Op0; 2169 } else { 2170 // Look for a more complicated pattern: one of the operands is itself 2171 // a multiply, so search for a common factor in that multiply. 2172 // Note: We don't bother looking any deeper than this first level or for 2173 // variations of this pattern because instcombine's visitFMUL and/or the 2174 // reassociation pass should give us this form. 2175 Value *OtherMul0, *OtherMul1; 2176 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 2177 // Pattern: sqrt((x * y) * z) 2178 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 2179 // Matched: sqrt((x * x) * z) 2180 RepeatOp = OtherMul0; 2181 OtherOp = Op1; 2182 } 2183 } 2184 } 2185 if (!RepeatOp) 2186 return Ret; 2187 2188 // Fast math flags for any created instructions should match the sqrt 2189 // and multiply. 2190 IRBuilderBase::FastMathFlagGuard Guard(B); 2191 B.setFastMathFlags(I->getFastMathFlags()); 2192 2193 // If we found a repeated factor, hoist it out of the square root and 2194 // replace it with the fabs of that factor. 2195 Type *ArgType = I->getType(); 2196 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 2197 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 2198 if (OtherOp) { 2199 // If we found a non-repeated factor, we still need to get its square 2200 // root. We then multiply that by the value that was simplified out 2201 // of the square root calculation. 2202 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 2203 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 2204 return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall)); 2205 } 2206 return copyFlags(*CI, FabsCall); 2207 } 2208 2209 // TODO: Generalize to handle any trig function and its inverse. 2210 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) { 2211 Module *M = CI->getModule(); 2212 Function *Callee = CI->getCalledFunction(); 2213 Value *Ret = nullptr; 2214 StringRef Name = Callee->getName(); 2215 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(M, Name)) 2216 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2217 2218 Value *Op1 = CI->getArgOperand(0); 2219 auto *OpC = dyn_cast<CallInst>(Op1); 2220 if (!OpC) 2221 return Ret; 2222 2223 // Both calls must be 'fast' in order to remove them. 2224 if (!CI->isFast() || !OpC->isFast()) 2225 return Ret; 2226 2227 // tan(atan(x)) -> x 2228 // tanf(atanf(x)) -> x 2229 // tanl(atanl(x)) -> x 2230 LibFunc Func; 2231 Function *F = OpC->getCalledFunction(); 2232 if (F && TLI->getLibFunc(F->getName(), Func) && 2233 isLibFuncEmittable(M, TLI, Func) && 2234 ((Func == LibFunc_atan && Callee->getName() == "tan") || 2235 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 2236 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 2237 Ret = OpC->getArgOperand(0); 2238 return Ret; 2239 } 2240 2241 static bool isTrigLibCall(CallInst *CI) { 2242 // We can only hope to do anything useful if we can ignore things like errno 2243 // and floating-point exceptions. 2244 // We already checked the prototype. 2245 return CI->hasFnAttr(Attribute::NoUnwind) && 2246 CI->hasFnAttr(Attribute::ReadNone); 2247 } 2248 2249 static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2250 bool UseFloat, Value *&Sin, Value *&Cos, 2251 Value *&SinCos, const TargetLibraryInfo *TLI) { 2252 Module *M = OrigCallee->getParent(); 2253 Type *ArgTy = Arg->getType(); 2254 Type *ResTy; 2255 StringRef Name; 2256 2257 Triple T(OrigCallee->getParent()->getTargetTriple()); 2258 if (UseFloat) { 2259 Name = "__sincospif_stret"; 2260 2261 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2262 // x86_64 can't use {float, float} since that would be returned in both 2263 // xmm0 and xmm1, which isn't what a real struct would do. 2264 ResTy = T.getArch() == Triple::x86_64 2265 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2266 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2267 } else { 2268 Name = "__sincospi_stret"; 2269 ResTy = StructType::get(ArgTy, ArgTy); 2270 } 2271 2272 if (!isLibFuncEmittable(M, TLI, Name)) 2273 return false; 2274 LibFunc TheLibFunc; 2275 TLI->getLibFunc(Name, TheLibFunc); 2276 FunctionCallee Callee = getOrInsertLibFunc( 2277 M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy); 2278 2279 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2280 // If the argument is an instruction, it must dominate all uses so put our 2281 // sincos call there. 2282 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2283 } else { 2284 // Otherwise (e.g. for a constant) the beginning of the function is as 2285 // good a place as any. 2286 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2287 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2288 } 2289 2290 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2291 2292 if (SinCos->getType()->isStructTy()) { 2293 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2294 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2295 } else { 2296 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2297 "sinpi"); 2298 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2299 "cospi"); 2300 } 2301 2302 return true; 2303 } 2304 2305 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) { 2306 // Make sure the prototype is as expected, otherwise the rest of the 2307 // function is probably invalid and likely to abort. 2308 if (!isTrigLibCall(CI)) 2309 return nullptr; 2310 2311 Value *Arg = CI->getArgOperand(0); 2312 SmallVector<CallInst *, 1> SinCalls; 2313 SmallVector<CallInst *, 1> CosCalls; 2314 SmallVector<CallInst *, 1> SinCosCalls; 2315 2316 bool IsFloat = Arg->getType()->isFloatTy(); 2317 2318 // Look for all compatible sinpi, cospi and sincospi calls with the same 2319 // argument. If there are enough (in some sense) we can make the 2320 // substitution. 2321 Function *F = CI->getFunction(); 2322 for (User *U : Arg->users()) 2323 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2324 2325 // It's only worthwhile if both sinpi and cospi are actually used. 2326 if (SinCalls.empty() || CosCalls.empty()) 2327 return nullptr; 2328 2329 Value *Sin, *Cos, *SinCos; 2330 if (!insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, 2331 SinCos, TLI)) 2332 return nullptr; 2333 2334 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2335 Value *Res) { 2336 for (CallInst *C : Calls) 2337 replaceAllUsesWith(C, Res); 2338 }; 2339 2340 replaceTrigInsts(SinCalls, Sin); 2341 replaceTrigInsts(CosCalls, Cos); 2342 replaceTrigInsts(SinCosCalls, SinCos); 2343 2344 return nullptr; 2345 } 2346 2347 void LibCallSimplifier::classifyArgUse( 2348 Value *Val, Function *F, bool IsFloat, 2349 SmallVectorImpl<CallInst *> &SinCalls, 2350 SmallVectorImpl<CallInst *> &CosCalls, 2351 SmallVectorImpl<CallInst *> &SinCosCalls) { 2352 CallInst *CI = dyn_cast<CallInst>(Val); 2353 Module *M = CI->getModule(); 2354 2355 if (!CI || CI->use_empty()) 2356 return; 2357 2358 // Don't consider calls in other functions. 2359 if (CI->getFunction() != F) 2360 return; 2361 2362 Function *Callee = CI->getCalledFunction(); 2363 LibFunc Func; 2364 if (!Callee || !TLI->getLibFunc(*Callee, Func) || 2365 !isLibFuncEmittable(M, TLI, Func) || 2366 !isTrigLibCall(CI)) 2367 return; 2368 2369 if (IsFloat) { 2370 if (Func == LibFunc_sinpif) 2371 SinCalls.push_back(CI); 2372 else if (Func == LibFunc_cospif) 2373 CosCalls.push_back(CI); 2374 else if (Func == LibFunc_sincospif_stret) 2375 SinCosCalls.push_back(CI); 2376 } else { 2377 if (Func == LibFunc_sinpi) 2378 SinCalls.push_back(CI); 2379 else if (Func == LibFunc_cospi) 2380 CosCalls.push_back(CI); 2381 else if (Func == LibFunc_sincospi_stret) 2382 SinCosCalls.push_back(CI); 2383 } 2384 } 2385 2386 //===----------------------------------------------------------------------===// 2387 // Integer Library Call Optimizations 2388 //===----------------------------------------------------------------------===// 2389 2390 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 2391 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 2392 Value *Op = CI->getArgOperand(0); 2393 Type *ArgType = Op->getType(); 2394 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2395 Intrinsic::cttz, ArgType); 2396 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 2397 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 2398 V = B.CreateIntCast(V, B.getInt32Ty(), false); 2399 2400 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 2401 return B.CreateSelect(Cond, V, B.getInt32(0)); 2402 } 2403 2404 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 2405 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 2406 Value *Op = CI->getArgOperand(0); 2407 Type *ArgType = Op->getType(); 2408 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2409 Intrinsic::ctlz, ArgType); 2410 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 2411 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 2412 V); 2413 return B.CreateIntCast(V, CI->getType(), false); 2414 } 2415 2416 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 2417 // abs(x) -> x <s 0 ? -x : x 2418 // The negation has 'nsw' because abs of INT_MIN is undefined. 2419 Value *X = CI->getArgOperand(0); 2420 Value *IsNeg = B.CreateIsNeg(X); 2421 Value *NegX = B.CreateNSWNeg(X, "neg"); 2422 return B.CreateSelect(IsNeg, NegX, X); 2423 } 2424 2425 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 2426 // isdigit(c) -> (c-'0') <u 10 2427 Value *Op = CI->getArgOperand(0); 2428 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 2429 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 2430 return B.CreateZExt(Op, CI->getType()); 2431 } 2432 2433 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 2434 // isascii(c) -> c <u 128 2435 Value *Op = CI->getArgOperand(0); 2436 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 2437 return B.CreateZExt(Op, CI->getType()); 2438 } 2439 2440 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 2441 // toascii(c) -> c & 0x7f 2442 return B.CreateAnd(CI->getArgOperand(0), 2443 ConstantInt::get(CI->getType(), 0x7F)); 2444 } 2445 2446 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 2447 StringRef Str; 2448 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2449 return nullptr; 2450 2451 return convertStrToNumber(CI, Str, 10); 2452 } 2453 2454 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) { 2455 StringRef Str; 2456 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2457 return nullptr; 2458 2459 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 2460 return nullptr; 2461 2462 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2463 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 2464 } 2465 2466 return nullptr; 2467 } 2468 2469 //===----------------------------------------------------------------------===// 2470 // Formatting and IO Library Call Optimizations 2471 //===----------------------------------------------------------------------===// 2472 2473 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2474 2475 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 2476 int StreamArg) { 2477 Function *Callee = CI->getCalledFunction(); 2478 // Error reporting calls should be cold, mark them as such. 2479 // This applies even to non-builtin calls: it is only a hint and applies to 2480 // functions that the frontend might not understand as builtins. 2481 2482 // This heuristic was suggested in: 2483 // Improving Static Branch Prediction in a Compiler 2484 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2485 // Proceedings of PACT'98, Oct. 1998, IEEE 2486 if (!CI->hasFnAttr(Attribute::Cold) && 2487 isReportingError(Callee, CI, StreamArg)) { 2488 CI->addFnAttr(Attribute::Cold); 2489 } 2490 2491 return nullptr; 2492 } 2493 2494 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2495 if (!Callee || !Callee->isDeclaration()) 2496 return false; 2497 2498 if (StreamArg < 0) 2499 return true; 2500 2501 // These functions might be considered cold, but only if their stream 2502 // argument is stderr. 2503 2504 if (StreamArg >= (int)CI->arg_size()) 2505 return false; 2506 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2507 if (!LI) 2508 return false; 2509 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2510 if (!GV || !GV->isDeclaration()) 2511 return false; 2512 return GV->getName() == "stderr"; 2513 } 2514 2515 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 2516 // Check for a fixed format string. 2517 StringRef FormatStr; 2518 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2519 return nullptr; 2520 2521 // Empty format string -> noop. 2522 if (FormatStr.empty()) // Tolerate printf's declared void. 2523 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2524 2525 // Do not do any of the following transformations if the printf return value 2526 // is used, in general the printf return value is not compatible with either 2527 // putchar() or puts(). 2528 if (!CI->use_empty()) 2529 return nullptr; 2530 2531 // printf("x") -> putchar('x'), even for "%" and "%%". 2532 if (FormatStr.size() == 1 || FormatStr == "%%") 2533 return copyFlags(*CI, emitPutChar(B.getInt32(FormatStr[0]), B, TLI)); 2534 2535 // Try to remove call or emit putchar/puts. 2536 if (FormatStr == "%s" && CI->arg_size() > 1) { 2537 StringRef OperandStr; 2538 if (!getConstantStringInfo(CI->getOperand(1), OperandStr)) 2539 return nullptr; 2540 // printf("%s", "") --> NOP 2541 if (OperandStr.empty()) 2542 return (Value *)CI; 2543 // printf("%s", "a") --> putchar('a') 2544 if (OperandStr.size() == 1) 2545 return copyFlags(*CI, emitPutChar(B.getInt32(OperandStr[0]), B, TLI)); 2546 // printf("%s", str"\n") --> puts(str) 2547 if (OperandStr.back() == '\n') { 2548 OperandStr = OperandStr.drop_back(); 2549 Value *GV = B.CreateGlobalString(OperandStr, "str"); 2550 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2551 } 2552 return nullptr; 2553 } 2554 2555 // printf("foo\n") --> puts("foo") 2556 if (FormatStr.back() == '\n' && 2557 !FormatStr.contains('%')) { // No format characters. 2558 // Create a string literal with no \n on it. We expect the constant merge 2559 // pass to be run after this pass, to merge duplicate strings. 2560 FormatStr = FormatStr.drop_back(); 2561 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2562 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2563 } 2564 2565 // Optimize specific format strings. 2566 // printf("%c", chr) --> putchar(chr) 2567 if (FormatStr == "%c" && CI->arg_size() > 1 && 2568 CI->getArgOperand(1)->getType()->isIntegerTy()) 2569 return copyFlags(*CI, emitPutChar(CI->getArgOperand(1), B, TLI)); 2570 2571 // printf("%s\n", str) --> puts(str) 2572 if (FormatStr == "%s\n" && CI->arg_size() > 1 && 2573 CI->getArgOperand(1)->getType()->isPointerTy()) 2574 return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI)); 2575 return nullptr; 2576 } 2577 2578 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 2579 2580 Module *M = CI->getModule(); 2581 Function *Callee = CI->getCalledFunction(); 2582 FunctionType *FT = Callee->getFunctionType(); 2583 if (Value *V = optimizePrintFString(CI, B)) { 2584 return V; 2585 } 2586 2587 // printf(format, ...) -> iprintf(format, ...) if no floating point 2588 // arguments. 2589 if (isLibFuncEmittable(M, TLI, LibFunc_iprintf) && 2590 !callHasFloatingPointArgument(CI)) { 2591 FunctionCallee IPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_iprintf, FT, 2592 Callee->getAttributes()); 2593 CallInst *New = cast<CallInst>(CI->clone()); 2594 New->setCalledFunction(IPrintFFn); 2595 B.Insert(New); 2596 return New; 2597 } 2598 2599 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2600 // arguments. 2601 if (isLibFuncEmittable(M, TLI, LibFunc_small_printf) && 2602 !callHasFP128Argument(CI)) { 2603 auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT, 2604 Callee->getAttributes()); 2605 CallInst *New = cast<CallInst>(CI->clone()); 2606 New->setCalledFunction(SmallPrintFFn); 2607 B.Insert(New); 2608 return New; 2609 } 2610 2611 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2612 return nullptr; 2613 } 2614 2615 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 2616 IRBuilderBase &B) { 2617 // Check for a fixed format string. 2618 StringRef FormatStr; 2619 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2620 return nullptr; 2621 2622 // If we just have a format string (nothing else crazy) transform it. 2623 Value *Dest = CI->getArgOperand(0); 2624 if (CI->arg_size() == 2) { 2625 // Make sure there's no % in the constant array. We could try to handle 2626 // %% -> % in the future if we cared. 2627 if (FormatStr.contains('%')) 2628 return nullptr; // we found a format specifier, bail out. 2629 2630 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2631 B.CreateMemCpy( 2632 Dest, Align(1), CI->getArgOperand(1), Align(1), 2633 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2634 FormatStr.size() + 1)); // Copy the null byte. 2635 return ConstantInt::get(CI->getType(), FormatStr.size()); 2636 } 2637 2638 // The remaining optimizations require the format string to be "%s" or "%c" 2639 // and have an extra operand. 2640 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 2641 return nullptr; 2642 2643 // Decode the second character of the format string. 2644 if (FormatStr[1] == 'c') { 2645 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2646 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2647 return nullptr; 2648 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2649 Value *Ptr = castToCStr(Dest, B); 2650 B.CreateStore(V, Ptr); 2651 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2652 B.CreateStore(B.getInt8(0), Ptr); 2653 2654 return ConstantInt::get(CI->getType(), 1); 2655 } 2656 2657 if (FormatStr[1] == 's') { 2658 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2659 // strlen(str)+1) 2660 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2661 return nullptr; 2662 2663 if (CI->use_empty()) 2664 // sprintf(dest, "%s", str) -> strcpy(dest, str) 2665 return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI)); 2666 2667 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 2668 if (SrcLen) { 2669 B.CreateMemCpy( 2670 Dest, Align(1), CI->getArgOperand(2), Align(1), 2671 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 2672 // Returns total number of characters written without null-character. 2673 return ConstantInt::get(CI->getType(), SrcLen - 1); 2674 } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) { 2675 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 2676 // Handle mismatched pointer types (goes away with typeless pointers?). 2677 V = B.CreatePointerCast(V, B.getInt8PtrTy()); 2678 Dest = B.CreatePointerCast(Dest, B.getInt8PtrTy()); 2679 Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest); 2680 return B.CreateIntCast(PtrDiff, CI->getType(), false); 2681 } 2682 2683 bool OptForSize = CI->getFunction()->hasOptSize() || 2684 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2685 PGSOQueryType::IRPass); 2686 if (OptForSize) 2687 return nullptr; 2688 2689 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2690 if (!Len) 2691 return nullptr; 2692 Value *IncLen = 2693 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2694 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen); 2695 2696 // The sprintf result is the unincremented number of bytes in the string. 2697 return B.CreateIntCast(Len, CI->getType(), false); 2698 } 2699 return nullptr; 2700 } 2701 2702 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 2703 Module *M = CI->getModule(); 2704 Function *Callee = CI->getCalledFunction(); 2705 FunctionType *FT = Callee->getFunctionType(); 2706 if (Value *V = optimizeSPrintFString(CI, B)) { 2707 return V; 2708 } 2709 2710 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2711 // point arguments. 2712 if (isLibFuncEmittable(M, TLI, LibFunc_siprintf) && 2713 !callHasFloatingPointArgument(CI)) { 2714 FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_siprintf, 2715 FT, Callee->getAttributes()); 2716 CallInst *New = cast<CallInst>(CI->clone()); 2717 New->setCalledFunction(SIPrintFFn); 2718 B.Insert(New); 2719 return New; 2720 } 2721 2722 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2723 // floating point arguments. 2724 if (isLibFuncEmittable(M, TLI, LibFunc_small_sprintf) && 2725 !callHasFP128Argument(CI)) { 2726 auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT, 2727 Callee->getAttributes()); 2728 CallInst *New = cast<CallInst>(CI->clone()); 2729 New->setCalledFunction(SmallSPrintFFn); 2730 B.Insert(New); 2731 return New; 2732 } 2733 2734 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 2735 return nullptr; 2736 } 2737 2738 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 2739 IRBuilderBase &B) { 2740 // Check for size 2741 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2742 if (!Size) 2743 return nullptr; 2744 2745 uint64_t N = Size->getZExtValue(); 2746 // Check for a fixed format string. 2747 StringRef FormatStr; 2748 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2749 return nullptr; 2750 2751 // If we just have a format string (nothing else crazy) transform it. 2752 if (CI->arg_size() == 3) { 2753 // Make sure there's no % in the constant array. We could try to handle 2754 // %% -> % in the future if we cared. 2755 if (FormatStr.contains('%')) 2756 return nullptr; // we found a format specifier, bail out. 2757 2758 if (N == 0) 2759 return ConstantInt::get(CI->getType(), FormatStr.size()); 2760 else if (N < FormatStr.size() + 1) 2761 return nullptr; 2762 2763 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2764 // strlen(fmt)+1) 2765 copyFlags( 2766 *CI, 2767 B.CreateMemCpy( 2768 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2769 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2770 FormatStr.size() + 1))); // Copy the null byte. 2771 return ConstantInt::get(CI->getType(), FormatStr.size()); 2772 } 2773 2774 // The remaining optimizations require the format string to be "%s" or "%c" 2775 // and have an extra operand. 2776 if (FormatStr.size() == 2 && FormatStr[0] == '%' && CI->arg_size() == 4) { 2777 2778 // Decode the second character of the format string. 2779 if (FormatStr[1] == 'c') { 2780 if (N == 0) 2781 return ConstantInt::get(CI->getType(), 1); 2782 else if (N == 1) 2783 return nullptr; 2784 2785 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2786 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2787 return nullptr; 2788 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2789 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2790 B.CreateStore(V, Ptr); 2791 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2792 B.CreateStore(B.getInt8(0), Ptr); 2793 2794 return ConstantInt::get(CI->getType(), 1); 2795 } 2796 2797 if (FormatStr[1] == 's') { 2798 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2799 StringRef Str; 2800 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2801 return nullptr; 2802 2803 if (N == 0) 2804 return ConstantInt::get(CI->getType(), Str.size()); 2805 else if (N < Str.size() + 1) 2806 return nullptr; 2807 2808 copyFlags( 2809 *CI, B.CreateMemCpy(CI->getArgOperand(0), Align(1), 2810 CI->getArgOperand(3), Align(1), 2811 ConstantInt::get(CI->getType(), Str.size() + 1))); 2812 2813 // The snprintf result is the unincremented number of bytes in the string. 2814 return ConstantInt::get(CI->getType(), Str.size()); 2815 } 2816 } 2817 return nullptr; 2818 } 2819 2820 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 2821 if (Value *V = optimizeSnPrintFString(CI, B)) { 2822 return V; 2823 } 2824 2825 if (isKnownNonZero(CI->getOperand(1), DL)) 2826 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2827 return nullptr; 2828 } 2829 2830 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 2831 IRBuilderBase &B) { 2832 optimizeErrorReporting(CI, B, 0); 2833 2834 // All the optimizations depend on the format string. 2835 StringRef FormatStr; 2836 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2837 return nullptr; 2838 2839 // Do not do any of the following transformations if the fprintf return 2840 // value is used, in general the fprintf return value is not compatible 2841 // with fwrite(), fputc() or fputs(). 2842 if (!CI->use_empty()) 2843 return nullptr; 2844 2845 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2846 if (CI->arg_size() == 2) { 2847 // Could handle %% -> % if we cared. 2848 if (FormatStr.contains('%')) 2849 return nullptr; // We found a format specifier. 2850 2851 return copyFlags( 2852 *CI, emitFWrite(CI->getArgOperand(1), 2853 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2854 FormatStr.size()), 2855 CI->getArgOperand(0), B, DL, TLI)); 2856 } 2857 2858 // The remaining optimizations require the format string to be "%s" or "%c" 2859 // and have an extra operand. 2860 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 2861 return nullptr; 2862 2863 // Decode the second character of the format string. 2864 if (FormatStr[1] == 'c') { 2865 // fprintf(F, "%c", chr) --> fputc(chr, F) 2866 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2867 return nullptr; 2868 return copyFlags( 2869 *CI, emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 2870 } 2871 2872 if (FormatStr[1] == 's') { 2873 // fprintf(F, "%s", str) --> fputs(str, F) 2874 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2875 return nullptr; 2876 return copyFlags( 2877 *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 2878 } 2879 return nullptr; 2880 } 2881 2882 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 2883 Module *M = CI->getModule(); 2884 Function *Callee = CI->getCalledFunction(); 2885 FunctionType *FT = Callee->getFunctionType(); 2886 if (Value *V = optimizeFPrintFString(CI, B)) { 2887 return V; 2888 } 2889 2890 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2891 // floating point arguments. 2892 if (isLibFuncEmittable(M, TLI, LibFunc_fiprintf) && 2893 !callHasFloatingPointArgument(CI)) { 2894 FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_fiprintf, 2895 FT, Callee->getAttributes()); 2896 CallInst *New = cast<CallInst>(CI->clone()); 2897 New->setCalledFunction(FIPrintFFn); 2898 B.Insert(New); 2899 return New; 2900 } 2901 2902 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2903 // 128-bit floating point arguments. 2904 if (isLibFuncEmittable(M, TLI, LibFunc_small_fprintf) && 2905 !callHasFP128Argument(CI)) { 2906 auto SmallFPrintFFn = 2907 getOrInsertLibFunc(M, *TLI, LibFunc_small_fprintf, FT, 2908 Callee->getAttributes()); 2909 CallInst *New = cast<CallInst>(CI->clone()); 2910 New->setCalledFunction(SmallFPrintFFn); 2911 B.Insert(New); 2912 return New; 2913 } 2914 2915 return nullptr; 2916 } 2917 2918 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 2919 optimizeErrorReporting(CI, B, 3); 2920 2921 // Get the element size and count. 2922 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2923 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2924 if (SizeC && CountC) { 2925 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2926 2927 // If this is writing zero records, remove the call (it's a noop). 2928 if (Bytes == 0) 2929 return ConstantInt::get(CI->getType(), 0); 2930 2931 // If this is writing one byte, turn it into fputc. 2932 // This optimisation is only valid, if the return value is unused. 2933 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2934 Value *Char = B.CreateLoad(B.getInt8Ty(), 2935 castToCStr(CI->getArgOperand(0), B), "char"); 2936 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2937 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2938 } 2939 } 2940 2941 return nullptr; 2942 } 2943 2944 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 2945 optimizeErrorReporting(CI, B, 1); 2946 2947 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2948 // requires more arguments and thus extra MOVs are required. 2949 bool OptForSize = CI->getFunction()->hasOptSize() || 2950 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2951 PGSOQueryType::IRPass); 2952 if (OptForSize) 2953 return nullptr; 2954 2955 // We can't optimize if return value is used. 2956 if (!CI->use_empty()) 2957 return nullptr; 2958 2959 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2960 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2961 if (!Len) 2962 return nullptr; 2963 2964 // Known to have no uses (see above). 2965 return copyFlags( 2966 *CI, 2967 emitFWrite(CI->getArgOperand(0), 2968 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2969 CI->getArgOperand(1), B, DL, TLI)); 2970 } 2971 2972 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 2973 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2974 if (!CI->use_empty()) 2975 return nullptr; 2976 2977 // Check for a constant string. 2978 // puts("") -> putchar('\n') 2979 StringRef Str; 2980 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 2981 return copyFlags(*CI, emitPutChar(B.getInt32('\n'), B, TLI)); 2982 2983 return nullptr; 2984 } 2985 2986 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 2987 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 2988 return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1), 2989 CI->getArgOperand(0), Align(1), 2990 CI->getArgOperand(2))); 2991 } 2992 2993 bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) { 2994 SmallString<20> FloatFuncName = FuncName; 2995 FloatFuncName += 'f'; 2996 return isLibFuncEmittable(M, TLI, FloatFuncName); 2997 } 2998 2999 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 3000 IRBuilderBase &Builder) { 3001 Module *M = CI->getModule(); 3002 LibFunc Func; 3003 Function *Callee = CI->getCalledFunction(); 3004 // Check for string/memory library functions. 3005 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) { 3006 // Make sure we never change the calling convention. 3007 assert( 3008 (ignoreCallingConv(Func) || 3009 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) && 3010 "Optimizing string/memory libcall would change the calling convention"); 3011 switch (Func) { 3012 case LibFunc_strcat: 3013 return optimizeStrCat(CI, Builder); 3014 case LibFunc_strncat: 3015 return optimizeStrNCat(CI, Builder); 3016 case LibFunc_strchr: 3017 return optimizeStrChr(CI, Builder); 3018 case LibFunc_strrchr: 3019 return optimizeStrRChr(CI, Builder); 3020 case LibFunc_strcmp: 3021 return optimizeStrCmp(CI, Builder); 3022 case LibFunc_strncmp: 3023 return optimizeStrNCmp(CI, Builder); 3024 case LibFunc_strcpy: 3025 return optimizeStrCpy(CI, Builder); 3026 case LibFunc_stpcpy: 3027 return optimizeStpCpy(CI, Builder); 3028 case LibFunc_strncpy: 3029 return optimizeStrNCpy(CI, Builder); 3030 case LibFunc_strlen: 3031 return optimizeStrLen(CI, Builder); 3032 case LibFunc_strnlen: 3033 return optimizeStrNLen(CI, Builder); 3034 case LibFunc_strpbrk: 3035 return optimizeStrPBrk(CI, Builder); 3036 case LibFunc_strndup: 3037 return optimizeStrNDup(CI, Builder); 3038 case LibFunc_strtol: 3039 case LibFunc_strtod: 3040 case LibFunc_strtof: 3041 case LibFunc_strtoul: 3042 case LibFunc_strtoll: 3043 case LibFunc_strtold: 3044 case LibFunc_strtoull: 3045 return optimizeStrTo(CI, Builder); 3046 case LibFunc_strspn: 3047 return optimizeStrSpn(CI, Builder); 3048 case LibFunc_strcspn: 3049 return optimizeStrCSpn(CI, Builder); 3050 case LibFunc_strstr: 3051 return optimizeStrStr(CI, Builder); 3052 case LibFunc_memchr: 3053 return optimizeMemChr(CI, Builder); 3054 case LibFunc_memrchr: 3055 return optimizeMemRChr(CI, Builder); 3056 case LibFunc_bcmp: 3057 return optimizeBCmp(CI, Builder); 3058 case LibFunc_memcmp: 3059 return optimizeMemCmp(CI, Builder); 3060 case LibFunc_memcpy: 3061 return optimizeMemCpy(CI, Builder); 3062 case LibFunc_memccpy: 3063 return optimizeMemCCpy(CI, Builder); 3064 case LibFunc_mempcpy: 3065 return optimizeMemPCpy(CI, Builder); 3066 case LibFunc_memmove: 3067 return optimizeMemMove(CI, Builder); 3068 case LibFunc_memset: 3069 return optimizeMemSet(CI, Builder); 3070 case LibFunc_realloc: 3071 return optimizeRealloc(CI, Builder); 3072 case LibFunc_wcslen: 3073 return optimizeWcslen(CI, Builder); 3074 case LibFunc_bcopy: 3075 return optimizeBCopy(CI, Builder); 3076 default: 3077 break; 3078 } 3079 } 3080 return nullptr; 3081 } 3082 3083 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 3084 LibFunc Func, 3085 IRBuilderBase &Builder) { 3086 const Module *M = CI->getModule(); 3087 3088 // Don't optimize calls that require strict floating point semantics. 3089 if (CI->isStrictFP()) 3090 return nullptr; 3091 3092 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 3093 return V; 3094 3095 switch (Func) { 3096 case LibFunc_sinpif: 3097 case LibFunc_sinpi: 3098 case LibFunc_cospif: 3099 case LibFunc_cospi: 3100 return optimizeSinCosPi(CI, Builder); 3101 case LibFunc_powf: 3102 case LibFunc_pow: 3103 case LibFunc_powl: 3104 return optimizePow(CI, Builder); 3105 case LibFunc_exp2l: 3106 case LibFunc_exp2: 3107 case LibFunc_exp2f: 3108 return optimizeExp2(CI, Builder); 3109 case LibFunc_fabsf: 3110 case LibFunc_fabs: 3111 case LibFunc_fabsl: 3112 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 3113 case LibFunc_sqrtf: 3114 case LibFunc_sqrt: 3115 case LibFunc_sqrtl: 3116 return optimizeSqrt(CI, Builder); 3117 case LibFunc_logf: 3118 case LibFunc_log: 3119 case LibFunc_logl: 3120 case LibFunc_log10f: 3121 case LibFunc_log10: 3122 case LibFunc_log10l: 3123 case LibFunc_log1pf: 3124 case LibFunc_log1p: 3125 case LibFunc_log1pl: 3126 case LibFunc_log2f: 3127 case LibFunc_log2: 3128 case LibFunc_log2l: 3129 case LibFunc_logbf: 3130 case LibFunc_logb: 3131 case LibFunc_logbl: 3132 return optimizeLog(CI, Builder); 3133 case LibFunc_tan: 3134 case LibFunc_tanf: 3135 case LibFunc_tanl: 3136 return optimizeTan(CI, Builder); 3137 case LibFunc_ceil: 3138 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 3139 case LibFunc_floor: 3140 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 3141 case LibFunc_round: 3142 return replaceUnaryCall(CI, Builder, Intrinsic::round); 3143 case LibFunc_roundeven: 3144 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 3145 case LibFunc_nearbyint: 3146 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 3147 case LibFunc_rint: 3148 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 3149 case LibFunc_trunc: 3150 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 3151 case LibFunc_acos: 3152 case LibFunc_acosh: 3153 case LibFunc_asin: 3154 case LibFunc_asinh: 3155 case LibFunc_atan: 3156 case LibFunc_atanh: 3157 case LibFunc_cbrt: 3158 case LibFunc_cosh: 3159 case LibFunc_exp: 3160 case LibFunc_exp10: 3161 case LibFunc_expm1: 3162 case LibFunc_cos: 3163 case LibFunc_sin: 3164 case LibFunc_sinh: 3165 case LibFunc_tanh: 3166 if (UnsafeFPShrink && hasFloatVersion(M, CI->getCalledFunction()->getName())) 3167 return optimizeUnaryDoubleFP(CI, Builder, TLI, true); 3168 return nullptr; 3169 case LibFunc_copysign: 3170 if (hasFloatVersion(M, CI->getCalledFunction()->getName())) 3171 return optimizeBinaryDoubleFP(CI, Builder, TLI); 3172 return nullptr; 3173 case LibFunc_fminf: 3174 case LibFunc_fmin: 3175 case LibFunc_fminl: 3176 case LibFunc_fmaxf: 3177 case LibFunc_fmax: 3178 case LibFunc_fmaxl: 3179 return optimizeFMinFMax(CI, Builder); 3180 case LibFunc_cabs: 3181 case LibFunc_cabsf: 3182 case LibFunc_cabsl: 3183 return optimizeCAbs(CI, Builder); 3184 default: 3185 return nullptr; 3186 } 3187 } 3188 3189 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 3190 Module *M = CI->getModule(); 3191 assert(!CI->isMustTailCall() && "These transforms aren't musttail safe."); 3192 3193 // TODO: Split out the code below that operates on FP calls so that 3194 // we can all non-FP calls with the StrictFP attribute to be 3195 // optimized. 3196 if (CI->isNoBuiltin()) 3197 return nullptr; 3198 3199 LibFunc Func; 3200 Function *Callee = CI->getCalledFunction(); 3201 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3202 3203 SmallVector<OperandBundleDef, 2> OpBundles; 3204 CI->getOperandBundlesAsDefs(OpBundles); 3205 3206 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3207 Builder.setDefaultOperandBundles(OpBundles); 3208 3209 // Command-line parameter overrides instruction attribute. 3210 // This can't be moved to optimizeFloatingPointLibCall() because it may be 3211 // used by the intrinsic optimizations. 3212 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 3213 UnsafeFPShrink = EnableUnsafeFPShrink; 3214 else if (isa<FPMathOperator>(CI) && CI->isFast()) 3215 UnsafeFPShrink = true; 3216 3217 // First, check for intrinsics. 3218 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 3219 if (!IsCallingConvC) 3220 return nullptr; 3221 // The FP intrinsics have corresponding constrained versions so we don't 3222 // need to check for the StrictFP attribute here. 3223 switch (II->getIntrinsicID()) { 3224 case Intrinsic::pow: 3225 return optimizePow(CI, Builder); 3226 case Intrinsic::exp2: 3227 return optimizeExp2(CI, Builder); 3228 case Intrinsic::log: 3229 case Intrinsic::log2: 3230 case Intrinsic::log10: 3231 return optimizeLog(CI, Builder); 3232 case Intrinsic::sqrt: 3233 return optimizeSqrt(CI, Builder); 3234 case Intrinsic::memset: 3235 return optimizeMemSet(CI, Builder); 3236 case Intrinsic::memcpy: 3237 return optimizeMemCpy(CI, Builder); 3238 case Intrinsic::memmove: 3239 return optimizeMemMove(CI, Builder); 3240 default: 3241 return nullptr; 3242 } 3243 } 3244 3245 // Also try to simplify calls to fortified library functions. 3246 if (Value *SimplifiedFortifiedCI = 3247 FortifiedSimplifier.optimizeCall(CI, Builder)) { 3248 // Try to further simplify the result. 3249 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 3250 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 3251 // Ensure that SimplifiedCI's uses are complete, since some calls have 3252 // their uses analyzed. 3253 replaceAllUsesWith(CI, SimplifiedCI); 3254 3255 // Set insertion point to SimplifiedCI to guarantee we reach all uses 3256 // we might replace later on. 3257 IRBuilderBase::InsertPointGuard Guard(Builder); 3258 Builder.SetInsertPoint(SimplifiedCI); 3259 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) { 3260 // If we were able to further simplify, remove the now redundant call. 3261 substituteInParent(SimplifiedCI, V); 3262 return V; 3263 } 3264 } 3265 return SimplifiedFortifiedCI; 3266 } 3267 3268 // Then check for known library functions. 3269 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) { 3270 // We never change the calling convention. 3271 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3272 return nullptr; 3273 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 3274 return V; 3275 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 3276 return V; 3277 switch (Func) { 3278 case LibFunc_ffs: 3279 case LibFunc_ffsl: 3280 case LibFunc_ffsll: 3281 return optimizeFFS(CI, Builder); 3282 case LibFunc_fls: 3283 case LibFunc_flsl: 3284 case LibFunc_flsll: 3285 return optimizeFls(CI, Builder); 3286 case LibFunc_abs: 3287 case LibFunc_labs: 3288 case LibFunc_llabs: 3289 return optimizeAbs(CI, Builder); 3290 case LibFunc_isdigit: 3291 return optimizeIsDigit(CI, Builder); 3292 case LibFunc_isascii: 3293 return optimizeIsAscii(CI, Builder); 3294 case LibFunc_toascii: 3295 return optimizeToAscii(CI, Builder); 3296 case LibFunc_atoi: 3297 case LibFunc_atol: 3298 case LibFunc_atoll: 3299 return optimizeAtoi(CI, Builder); 3300 case LibFunc_strtol: 3301 case LibFunc_strtoll: 3302 return optimizeStrtol(CI, Builder); 3303 case LibFunc_printf: 3304 return optimizePrintF(CI, Builder); 3305 case LibFunc_sprintf: 3306 return optimizeSPrintF(CI, Builder); 3307 case LibFunc_snprintf: 3308 return optimizeSnPrintF(CI, Builder); 3309 case LibFunc_fprintf: 3310 return optimizeFPrintF(CI, Builder); 3311 case LibFunc_fwrite: 3312 return optimizeFWrite(CI, Builder); 3313 case LibFunc_fputs: 3314 return optimizeFPuts(CI, Builder); 3315 case LibFunc_puts: 3316 return optimizePuts(CI, Builder); 3317 case LibFunc_perror: 3318 return optimizeErrorReporting(CI, Builder); 3319 case LibFunc_vfprintf: 3320 case LibFunc_fiprintf: 3321 return optimizeErrorReporting(CI, Builder, 0); 3322 default: 3323 return nullptr; 3324 } 3325 } 3326 return nullptr; 3327 } 3328 3329 LibCallSimplifier::LibCallSimplifier( 3330 const DataLayout &DL, const TargetLibraryInfo *TLI, 3331 OptimizationRemarkEmitter &ORE, 3332 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 3333 function_ref<void(Instruction *, Value *)> Replacer, 3334 function_ref<void(Instruction *)> Eraser) 3335 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 3336 Replacer(Replacer), Eraser(Eraser) {} 3337 3338 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 3339 // Indirect through the replacer used in this instance. 3340 Replacer(I, With); 3341 } 3342 3343 void LibCallSimplifier::eraseFromParent(Instruction *I) { 3344 Eraser(I); 3345 } 3346 3347 // TODO: 3348 // Additional cases that we need to add to this file: 3349 // 3350 // cbrt: 3351 // * cbrt(expN(X)) -> expN(x/3) 3352 // * cbrt(sqrt(x)) -> pow(x,1/6) 3353 // * cbrt(cbrt(x)) -> pow(x,1/9) 3354 // 3355 // exp, expf, expl: 3356 // * exp(log(x)) -> x 3357 // 3358 // log, logf, logl: 3359 // * log(exp(x)) -> x 3360 // * log(exp(y)) -> y*log(e) 3361 // * log(exp10(y)) -> y*log(10) 3362 // * log(sqrt(x)) -> 0.5*log(x) 3363 // 3364 // pow, powf, powl: 3365 // * pow(sqrt(x),y) -> pow(x,y*0.5) 3366 // * pow(pow(x,y),z)-> pow(x,y*z) 3367 // 3368 // signbit: 3369 // * signbit(cnst) -> cnst' 3370 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 3371 // 3372 // sqrt, sqrtf, sqrtl: 3373 // * sqrt(expN(x)) -> expN(x*0.5) 3374 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 3375 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 3376 // 3377 3378 //===----------------------------------------------------------------------===// 3379 // Fortified Library Call Optimizations 3380 //===----------------------------------------------------------------------===// 3381 3382 bool 3383 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 3384 unsigned ObjSizeOp, 3385 Optional<unsigned> SizeOp, 3386 Optional<unsigned> StrOp, 3387 Optional<unsigned> FlagOp) { 3388 // If this function takes a flag argument, the implementation may use it to 3389 // perform extra checks. Don't fold into the non-checking variant. 3390 if (FlagOp) { 3391 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 3392 if (!Flag || !Flag->isZero()) 3393 return false; 3394 } 3395 3396 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 3397 return true; 3398 3399 if (ConstantInt *ObjSizeCI = 3400 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 3401 if (ObjSizeCI->isMinusOne()) 3402 return true; 3403 // If the object size wasn't -1 (unknown), bail out if we were asked to. 3404 if (OnlyLowerUnknownSize) 3405 return false; 3406 if (StrOp) { 3407 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 3408 // If the length is 0 we don't know how long it is and so we can't 3409 // remove the check. 3410 if (Len) 3411 annotateDereferenceableBytes(CI, *StrOp, Len); 3412 else 3413 return false; 3414 return ObjSizeCI->getZExtValue() >= Len; 3415 } 3416 3417 if (SizeOp) { 3418 if (ConstantInt *SizeCI = 3419 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 3420 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 3421 } 3422 } 3423 return false; 3424 } 3425 3426 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 3427 IRBuilderBase &B) { 3428 if (isFortifiedCallFoldable(CI, 3, 2)) { 3429 CallInst *NewCI = 3430 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3431 Align(1), CI->getArgOperand(2)); 3432 NewCI->setAttributes(CI->getAttributes()); 3433 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3434 copyFlags(*CI, NewCI); 3435 return CI->getArgOperand(0); 3436 } 3437 return nullptr; 3438 } 3439 3440 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 3441 IRBuilderBase &B) { 3442 if (isFortifiedCallFoldable(CI, 3, 2)) { 3443 CallInst *NewCI = 3444 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3445 Align(1), CI->getArgOperand(2)); 3446 NewCI->setAttributes(CI->getAttributes()); 3447 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3448 copyFlags(*CI, NewCI); 3449 return CI->getArgOperand(0); 3450 } 3451 return nullptr; 3452 } 3453 3454 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 3455 IRBuilderBase &B) { 3456 if (isFortifiedCallFoldable(CI, 3, 2)) { 3457 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 3458 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 3459 CI->getArgOperand(2), Align(1)); 3460 NewCI->setAttributes(CI->getAttributes()); 3461 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3462 copyFlags(*CI, NewCI); 3463 return CI->getArgOperand(0); 3464 } 3465 return nullptr; 3466 } 3467 3468 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 3469 IRBuilderBase &B) { 3470 const DataLayout &DL = CI->getModule()->getDataLayout(); 3471 if (isFortifiedCallFoldable(CI, 3, 2)) 3472 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3473 CI->getArgOperand(2), B, DL, TLI)) { 3474 CallInst *NewCI = cast<CallInst>(Call); 3475 NewCI->setAttributes(CI->getAttributes()); 3476 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3477 return copyFlags(*CI, NewCI); 3478 } 3479 return nullptr; 3480 } 3481 3482 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 3483 IRBuilderBase &B, 3484 LibFunc Func) { 3485 const DataLayout &DL = CI->getModule()->getDataLayout(); 3486 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 3487 *ObjSize = CI->getArgOperand(2); 3488 3489 // __stpcpy_chk(x,x,...) -> x+strlen(x) 3490 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 3491 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3492 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3493 } 3494 3495 // If a) we don't have any length information, or b) we know this will 3496 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3497 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3498 // TODO: It might be nice to get a maximum length out of the possible 3499 // string lengths for varying. 3500 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 3501 if (Func == LibFunc_strcpy_chk) 3502 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 3503 else 3504 return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI)); 3505 } 3506 3507 if (OnlyLowerUnknownSize) 3508 return nullptr; 3509 3510 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3511 uint64_t Len = GetStringLength(Src); 3512 if (Len) 3513 annotateDereferenceableBytes(CI, 1, Len); 3514 else 3515 return nullptr; 3516 3517 // FIXME: There is really no guarantee that sizeof(size_t) is equal to 3518 // sizeof(int*) for every target. So the assumption used here to derive the 3519 // SizeTBits based on the size of an integer pointer in address space zero 3520 // isn't always valid. 3521 Type *SizeTTy = DL.getIntPtrType(CI->getContext(), /*AddressSpace=*/0); 3522 Value *LenV = ConstantInt::get(SizeTTy, Len); 3523 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 3524 // If the function was an __stpcpy_chk, and we were able to fold it into 3525 // a __memcpy_chk, we still need to return the correct end pointer. 3526 if (Ret && Func == LibFunc_stpcpy_chk) 3527 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 3528 return copyFlags(*CI, cast<CallInst>(Ret)); 3529 } 3530 3531 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 3532 IRBuilderBase &B) { 3533 if (isFortifiedCallFoldable(CI, 1, None, 0)) 3534 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, 3535 CI->getModule()->getDataLayout(), TLI)); 3536 return nullptr; 3537 } 3538 3539 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 3540 IRBuilderBase &B, 3541 LibFunc Func) { 3542 if (isFortifiedCallFoldable(CI, 3, 2)) { 3543 if (Func == LibFunc_strncpy_chk) 3544 return copyFlags(*CI, 3545 emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3546 CI->getArgOperand(2), B, TLI)); 3547 else 3548 return copyFlags(*CI, 3549 emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3550 CI->getArgOperand(2), B, TLI)); 3551 } 3552 3553 return nullptr; 3554 } 3555 3556 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 3557 IRBuilderBase &B) { 3558 if (isFortifiedCallFoldable(CI, 4, 3)) 3559 return copyFlags( 3560 *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3561 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI)); 3562 3563 return nullptr; 3564 } 3565 3566 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 3567 IRBuilderBase &B) { 3568 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 3569 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 3570 return copyFlags(*CI, 3571 emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3572 CI->getArgOperand(4), VariadicArgs, B, TLI)); 3573 } 3574 3575 return nullptr; 3576 } 3577 3578 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3579 IRBuilderBase &B) { 3580 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3581 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 3582 return copyFlags(*CI, 3583 emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3584 VariadicArgs, B, TLI)); 3585 } 3586 3587 return nullptr; 3588 } 3589 3590 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3591 IRBuilderBase &B) { 3592 if (isFortifiedCallFoldable(CI, 2)) 3593 return copyFlags( 3594 *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI)); 3595 3596 return nullptr; 3597 } 3598 3599 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3600 IRBuilderBase &B) { 3601 if (isFortifiedCallFoldable(CI, 3)) 3602 return copyFlags(*CI, 3603 emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3604 CI->getArgOperand(2), B, TLI)); 3605 3606 return nullptr; 3607 } 3608 3609 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3610 IRBuilderBase &B) { 3611 if (isFortifiedCallFoldable(CI, 3)) 3612 return copyFlags(*CI, 3613 emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3614 CI->getArgOperand(2), B, TLI)); 3615 3616 return nullptr; 3617 } 3618 3619 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3620 IRBuilderBase &B) { 3621 if (isFortifiedCallFoldable(CI, 3)) 3622 return copyFlags(*CI, 3623 emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3624 CI->getArgOperand(2), B, TLI)); 3625 3626 return nullptr; 3627 } 3628 3629 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3630 IRBuilderBase &B) { 3631 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3632 return copyFlags( 3633 *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3634 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI)); 3635 3636 return nullptr; 3637 } 3638 3639 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3640 IRBuilderBase &B) { 3641 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3642 return copyFlags(*CI, 3643 emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3644 CI->getArgOperand(4), B, TLI)); 3645 3646 return nullptr; 3647 } 3648 3649 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 3650 IRBuilderBase &Builder) { 3651 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3652 // Some clang users checked for _chk libcall availability using: 3653 // __has_builtin(__builtin___memcpy_chk) 3654 // When compiling with -fno-builtin, this is always true. 3655 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3656 // end up with fortified libcalls, which isn't acceptable in a freestanding 3657 // environment which only provides their non-fortified counterparts. 3658 // 3659 // Until we change clang and/or teach external users to check for availability 3660 // differently, disregard the "nobuiltin" attribute and TLI::has. 3661 // 3662 // PR23093. 3663 3664 LibFunc Func; 3665 Function *Callee = CI->getCalledFunction(); 3666 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3667 3668 SmallVector<OperandBundleDef, 2> OpBundles; 3669 CI->getOperandBundlesAsDefs(OpBundles); 3670 3671 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3672 Builder.setDefaultOperandBundles(OpBundles); 3673 3674 // First, check that this is a known library functions and that the prototype 3675 // is correct. 3676 if (!TLI->getLibFunc(*Callee, Func)) 3677 return nullptr; 3678 3679 // We never change the calling convention. 3680 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3681 return nullptr; 3682 3683 switch (Func) { 3684 case LibFunc_memcpy_chk: 3685 return optimizeMemCpyChk(CI, Builder); 3686 case LibFunc_mempcpy_chk: 3687 return optimizeMemPCpyChk(CI, Builder); 3688 case LibFunc_memmove_chk: 3689 return optimizeMemMoveChk(CI, Builder); 3690 case LibFunc_memset_chk: 3691 return optimizeMemSetChk(CI, Builder); 3692 case LibFunc_stpcpy_chk: 3693 case LibFunc_strcpy_chk: 3694 return optimizeStrpCpyChk(CI, Builder, Func); 3695 case LibFunc_strlen_chk: 3696 return optimizeStrLenChk(CI, Builder); 3697 case LibFunc_stpncpy_chk: 3698 case LibFunc_strncpy_chk: 3699 return optimizeStrpNCpyChk(CI, Builder, Func); 3700 case LibFunc_memccpy_chk: 3701 return optimizeMemCCpyChk(CI, Builder); 3702 case LibFunc_snprintf_chk: 3703 return optimizeSNPrintfChk(CI, Builder); 3704 case LibFunc_sprintf_chk: 3705 return optimizeSPrintfChk(CI, Builder); 3706 case LibFunc_strcat_chk: 3707 return optimizeStrCatChk(CI, Builder); 3708 case LibFunc_strlcat_chk: 3709 return optimizeStrLCat(CI, Builder); 3710 case LibFunc_strncat_chk: 3711 return optimizeStrNCatChk(CI, Builder); 3712 case LibFunc_strlcpy_chk: 3713 return optimizeStrLCpyChk(CI, Builder); 3714 case LibFunc_vsnprintf_chk: 3715 return optimizeVSNPrintfChk(CI, Builder); 3716 case LibFunc_vsprintf_chk: 3717 return optimizeVSPrintfChk(CI, Builder); 3718 default: 3719 break; 3720 } 3721 return nullptr; 3722 } 3723 3724 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3725 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3726 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 3727