1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is a utility pass used for testing the InstructionSimplify analysis.
11 // The analysis is applied to every instruction, and if it simplifies then the
12 // instruction is replaced by the simplification.  If you are looking for a pass
13 // that performs serious instruction folding, use the instcombine pass instead.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DiagnosticInfo.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Transforms/Utils/BuildLibCalls.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 static cl::opt<bool>
40     ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden,
41                    cl::desc("Treat error-reporting calls as cold"));
42 
43 static cl::opt<bool>
44     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
45                          cl::init(false),
46                          cl::desc("Enable unsafe double to float "
47                                   "shrinking for math lib calls"));
48 
49 
50 //===----------------------------------------------------------------------===//
51 // Helper Functions
52 //===----------------------------------------------------------------------===//
53 
54 static bool ignoreCallingConv(LibFunc::Func Func) {
55   return Func == LibFunc::abs || Func == LibFunc::labs ||
56          Func == LibFunc::llabs || Func == LibFunc::strlen;
57 }
58 
59 static bool isCallingConvCCompatible(CallInst *CI) {
60   switch(CI->getCallingConv()) {
61   default:
62     return false;
63   case llvm::CallingConv::C:
64     return true;
65   case llvm::CallingConv::ARM_APCS:
66   case llvm::CallingConv::ARM_AAPCS:
67   case llvm::CallingConv::ARM_AAPCS_VFP: {
68 
69     // The iOS ABI diverges from the standard in some cases, so for now don't
70     // try to simplify those calls.
71     if (Triple(CI->getModule()->getTargetTriple()).isiOS())
72       return false;
73 
74     auto *FuncTy = CI->getFunctionType();
75 
76     if (!FuncTy->getReturnType()->isPointerTy() &&
77         !FuncTy->getReturnType()->isIntegerTy() &&
78         !FuncTy->getReturnType()->isVoidTy())
79       return false;
80 
81     for (auto Param : FuncTy->params()) {
82       if (!Param->isPointerTy() && !Param->isIntegerTy())
83         return false;
84     }
85     return true;
86   }
87   }
88   return false;
89 }
90 
91 /// Return true if it only matters that the value is equal or not-equal to zero.
92 static bool isOnlyUsedInZeroEqualityComparison(Value *V) {
93   for (User *U : V->users()) {
94     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
95       if (IC->isEquality())
96         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
97           if (C->isNullValue())
98             continue;
99     // Unknown instruction.
100     return false;
101   }
102   return true;
103 }
104 
105 /// Return true if it is only used in equality comparisons with With.
106 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
107   for (User *U : V->users()) {
108     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
109       if (IC->isEquality() && IC->getOperand(1) == With)
110         continue;
111     // Unknown instruction.
112     return false;
113   }
114   return true;
115 }
116 
117 static bool callHasFloatingPointArgument(const CallInst *CI) {
118   return any_of(CI->operands(), [](const Use &OI) {
119     return OI->getType()->isFloatingPointTy();
120   });
121 }
122 
123 /// \brief Check whether the overloaded unary floating point function
124 /// corresponding to \a Ty is available.
125 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
126                             LibFunc::Func DoubleFn, LibFunc::Func FloatFn,
127                             LibFunc::Func LongDoubleFn) {
128   switch (Ty->getTypeID()) {
129   case Type::FloatTyID:
130     return TLI->has(FloatFn);
131   case Type::DoubleTyID:
132     return TLI->has(DoubleFn);
133   default:
134     return TLI->has(LongDoubleFn);
135   }
136 }
137 
138 //===----------------------------------------------------------------------===//
139 // String and Memory Library Call Optimizations
140 //===----------------------------------------------------------------------===//
141 
142 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
143   // Extract some information from the instruction
144   Value *Dst = CI->getArgOperand(0);
145   Value *Src = CI->getArgOperand(1);
146 
147   // See if we can get the length of the input string.
148   uint64_t Len = GetStringLength(Src);
149   if (Len == 0)
150     return nullptr;
151   --Len; // Unbias length.
152 
153   // Handle the simple, do-nothing case: strcat(x, "") -> x
154   if (Len == 0)
155     return Dst;
156 
157   return emitStrLenMemCpy(Src, Dst, Len, B);
158 }
159 
160 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
161                                            IRBuilder<> &B) {
162   // We need to find the end of the destination string.  That's where the
163   // memory is to be moved to. We just generate a call to strlen.
164   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
165   if (!DstLen)
166     return nullptr;
167 
168   // Now that we have the destination's length, we must index into the
169   // destination's pointer to get the actual memcpy destination (end of
170   // the string .. we're concatenating).
171   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
172 
173   // We have enough information to now generate the memcpy call to do the
174   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
175   B.CreateMemCpy(CpyDst, Src,
176                  ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1),
177                  1);
178   return Dst;
179 }
180 
181 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
182   // Extract some information from the instruction.
183   Value *Dst = CI->getArgOperand(0);
184   Value *Src = CI->getArgOperand(1);
185   uint64_t Len;
186 
187   // We don't do anything if length is not constant.
188   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
189     Len = LengthArg->getZExtValue();
190   else
191     return nullptr;
192 
193   // See if we can get the length of the input string.
194   uint64_t SrcLen = GetStringLength(Src);
195   if (SrcLen == 0)
196     return nullptr;
197   --SrcLen; // Unbias length.
198 
199   // Handle the simple, do-nothing cases:
200   // strncat(x, "", c) -> x
201   // strncat(x,  c, 0) -> x
202   if (SrcLen == 0 || Len == 0)
203     return Dst;
204 
205   // We don't optimize this case.
206   if (Len < SrcLen)
207     return nullptr;
208 
209   // strncat(x, s, c) -> strcat(x, s)
210   // s is constant so the strcat can be optimized further.
211   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
212 }
213 
214 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
215   Function *Callee = CI->getCalledFunction();
216   FunctionType *FT = Callee->getFunctionType();
217   Value *SrcStr = CI->getArgOperand(0);
218 
219   // If the second operand is non-constant, see if we can compute the length
220   // of the input string and turn this into memchr.
221   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
222   if (!CharC) {
223     uint64_t Len = GetStringLength(SrcStr);
224     if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
225       return nullptr;
226 
227     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
228                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
229                       B, DL, TLI);
230   }
231 
232   // Otherwise, the character is a constant, see if the first argument is
233   // a string literal.  If so, we can constant fold.
234   StringRef Str;
235   if (!getConstantStringInfo(SrcStr, Str)) {
236     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
237       return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI),
238                          "strchr");
239     return nullptr;
240   }
241 
242   // Compute the offset, make sure to handle the case when we're searching for
243   // zero (a weird way to spell strlen).
244   size_t I = (0xFF & CharC->getSExtValue()) == 0
245                  ? Str.size()
246                  : Str.find(CharC->getSExtValue());
247   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
248     return Constant::getNullValue(CI->getType());
249 
250   // strchr(s+n,c)  -> gep(s+n+i,c)
251   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
252 }
253 
254 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
255   Value *SrcStr = CI->getArgOperand(0);
256   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
257 
258   // Cannot fold anything if we're not looking for a constant.
259   if (!CharC)
260     return nullptr;
261 
262   StringRef Str;
263   if (!getConstantStringInfo(SrcStr, Str)) {
264     // strrchr(s, 0) -> strchr(s, 0)
265     if (CharC->isZero())
266       return emitStrChr(SrcStr, '\0', B, TLI);
267     return nullptr;
268   }
269 
270   // Compute the offset.
271   size_t I = (0xFF & CharC->getSExtValue()) == 0
272                  ? Str.size()
273                  : Str.rfind(CharC->getSExtValue());
274   if (I == StringRef::npos) // Didn't find the char. Return null.
275     return Constant::getNullValue(CI->getType());
276 
277   // strrchr(s+n,c) -> gep(s+n+i,c)
278   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
279 }
280 
281 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
282   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
283   if (Str1P == Str2P) // strcmp(x,x)  -> 0
284     return ConstantInt::get(CI->getType(), 0);
285 
286   StringRef Str1, Str2;
287   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
288   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
289 
290   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
291   if (HasStr1 && HasStr2)
292     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
293 
294   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
295     return B.CreateNeg(
296         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
297 
298   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
299     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
300 
301   // strcmp(P, "x") -> memcmp(P, "x", 2)
302   uint64_t Len1 = GetStringLength(Str1P);
303   uint64_t Len2 = GetStringLength(Str2P);
304   if (Len1 && Len2) {
305     return emitMemCmp(Str1P, Str2P,
306                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
307                                        std::min(Len1, Len2)),
308                       B, DL, TLI);
309   }
310 
311   return nullptr;
312 }
313 
314 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
315   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
316   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
317     return ConstantInt::get(CI->getType(), 0);
318 
319   // Get the length argument if it is constant.
320   uint64_t Length;
321   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
322     Length = LengthArg->getZExtValue();
323   else
324     return nullptr;
325 
326   if (Length == 0) // strncmp(x,y,0)   -> 0
327     return ConstantInt::get(CI->getType(), 0);
328 
329   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
330     return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
331 
332   StringRef Str1, Str2;
333   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
334   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
335 
336   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
337   if (HasStr1 && HasStr2) {
338     StringRef SubStr1 = Str1.substr(0, Length);
339     StringRef SubStr2 = Str2.substr(0, Length);
340     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
341   }
342 
343   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
344     return B.CreateNeg(
345         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
346 
347   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
348     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
349 
350   return nullptr;
351 }
352 
353 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
354   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
355   if (Dst == Src) // strcpy(x,x)  -> x
356     return Src;
357 
358   // See if we can get the length of the input string.
359   uint64_t Len = GetStringLength(Src);
360   if (Len == 0)
361     return nullptr;
362 
363   // We have enough information to now generate the memcpy call to do the
364   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
365   B.CreateMemCpy(Dst, Src,
366                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1);
367   return Dst;
368 }
369 
370 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
371   Function *Callee = CI->getCalledFunction();
372   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
373   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
374     Value *StrLen = emitStrLen(Src, B, DL, TLI);
375     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
376   }
377 
378   // See if we can get the length of the input string.
379   uint64_t Len = GetStringLength(Src);
380   if (Len == 0)
381     return nullptr;
382 
383   Type *PT = Callee->getFunctionType()->getParamType(0);
384   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
385   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
386                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
387 
388   // We have enough information to now generate the memcpy call to do the
389   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
390   B.CreateMemCpy(Dst, Src, LenV, 1);
391   return DstEnd;
392 }
393 
394 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
395   Function *Callee = CI->getCalledFunction();
396   Value *Dst = CI->getArgOperand(0);
397   Value *Src = CI->getArgOperand(1);
398   Value *LenOp = CI->getArgOperand(2);
399 
400   // See if we can get the length of the input string.
401   uint64_t SrcLen = GetStringLength(Src);
402   if (SrcLen == 0)
403     return nullptr;
404   --SrcLen;
405 
406   if (SrcLen == 0) {
407     // strncpy(x, "", y) -> memset(x, '\0', y, 1)
408     B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
409     return Dst;
410   }
411 
412   uint64_t Len;
413   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
414     Len = LengthArg->getZExtValue();
415   else
416     return nullptr;
417 
418   if (Len == 0)
419     return Dst; // strncpy(x, y, 0) -> x
420 
421   // Let strncpy handle the zero padding
422   if (Len > SrcLen + 1)
423     return nullptr;
424 
425   Type *PT = Callee->getFunctionType()->getParamType(0);
426   // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
427   B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1);
428 
429   return Dst;
430 }
431 
432 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
433   Value *Src = CI->getArgOperand(0);
434 
435   // Constant folding: strlen("xyz") -> 3
436   if (uint64_t Len = GetStringLength(Src))
437     return ConstantInt::get(CI->getType(), Len - 1);
438 
439   // If s is a constant pointer pointing to a string literal, we can fold
440   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
441   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
442   // We only try to simplify strlen when the pointer s points to an array
443   // of i8. Otherwise, we would need to scale the offset x before doing the
444   // subtraction. This will make the optimization more complex, and it's not
445   // very useful because calling strlen for a pointer of other types is
446   // very uncommon.
447   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
448     if (!isGEPBasedOnPointerToString(GEP))
449       return nullptr;
450 
451     StringRef Str;
452     if (getConstantStringInfo(GEP->getOperand(0), Str, 0, false)) {
453       size_t NullTermIdx = Str.find('\0');
454 
455       // If the string does not have '\0', leave it to strlen to compute
456       // its length.
457       if (NullTermIdx == StringRef::npos)
458         return nullptr;
459 
460       Value *Offset = GEP->getOperand(2);
461       unsigned BitWidth = Offset->getType()->getIntegerBitWidth();
462       APInt KnownZero(BitWidth, 0);
463       APInt KnownOne(BitWidth, 0);
464       computeKnownBits(Offset, KnownZero, KnownOne, DL, 0, nullptr, CI,
465                        nullptr);
466       KnownZero.flipAllBits();
467       size_t ArrSize =
468              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
469 
470       // KnownZero's bits are flipped, so zeros in KnownZero now represent
471       // bits known to be zeros in Offset, and ones in KnowZero represent
472       // bits unknown in Offset. Therefore, Offset is known to be in range
473       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
474       // unsigned-less-than NullTermIdx.
475       //
476       // If Offset is not provably in the range [0, NullTermIdx], we can still
477       // optimize if we can prove that the program has undefined behavior when
478       // Offset is outside that range. That is the case when GEP->getOperand(0)
479       // is a pointer to an object whose memory extent is NullTermIdx+1.
480       if ((KnownZero.isNonNegative() && KnownZero.ule(NullTermIdx)) ||
481           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
482            NullTermIdx == ArrSize - 1))
483         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
484                            Offset);
485     }
486 
487     return nullptr;
488   }
489 
490   // strlen(x?"foo":"bars") --> x ? 3 : 4
491   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
492     uint64_t LenTrue = GetStringLength(SI->getTrueValue());
493     uint64_t LenFalse = GetStringLength(SI->getFalseValue());
494     if (LenTrue && LenFalse) {
495       Function *Caller = CI->getParent()->getParent();
496       emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller,
497                              SI->getDebugLoc(),
498                              "folded strlen(select) to select of constants");
499       return B.CreateSelect(SI->getCondition(),
500                             ConstantInt::get(CI->getType(), LenTrue - 1),
501                             ConstantInt::get(CI->getType(), LenFalse - 1));
502     }
503   }
504 
505   // strlen(x) != 0 --> *x != 0
506   // strlen(x) == 0 --> *x == 0
507   if (isOnlyUsedInZeroEqualityComparison(CI))
508     return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
509 
510   return nullptr;
511 }
512 
513 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
514   StringRef S1, S2;
515   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
516   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
517 
518   // strpbrk(s, "") -> nullptr
519   // strpbrk("", s) -> nullptr
520   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
521     return Constant::getNullValue(CI->getType());
522 
523   // Constant folding.
524   if (HasS1 && HasS2) {
525     size_t I = S1.find_first_of(S2);
526     if (I == StringRef::npos) // No match.
527       return Constant::getNullValue(CI->getType());
528 
529     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
530                        "strpbrk");
531   }
532 
533   // strpbrk(s, "a") -> strchr(s, 'a')
534   if (HasS2 && S2.size() == 1)
535     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
536 
537   return nullptr;
538 }
539 
540 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
541   Value *EndPtr = CI->getArgOperand(1);
542   if (isa<ConstantPointerNull>(EndPtr)) {
543     // With a null EndPtr, this function won't capture the main argument.
544     // It would be readonly too, except that it still may write to errno.
545     CI->addAttribute(1, Attribute::NoCapture);
546   }
547 
548   return nullptr;
549 }
550 
551 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
552   StringRef S1, S2;
553   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
554   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
555 
556   // strspn(s, "") -> 0
557   // strspn("", s) -> 0
558   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
559     return Constant::getNullValue(CI->getType());
560 
561   // Constant folding.
562   if (HasS1 && HasS2) {
563     size_t Pos = S1.find_first_not_of(S2);
564     if (Pos == StringRef::npos)
565       Pos = S1.size();
566     return ConstantInt::get(CI->getType(), Pos);
567   }
568 
569   return nullptr;
570 }
571 
572 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
573   StringRef S1, S2;
574   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
575   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
576 
577   // strcspn("", s) -> 0
578   if (HasS1 && S1.empty())
579     return Constant::getNullValue(CI->getType());
580 
581   // Constant folding.
582   if (HasS1 && HasS2) {
583     size_t Pos = S1.find_first_of(S2);
584     if (Pos == StringRef::npos)
585       Pos = S1.size();
586     return ConstantInt::get(CI->getType(), Pos);
587   }
588 
589   // strcspn(s, "") -> strlen(s)
590   if (HasS2 && S2.empty())
591     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
592 
593   return nullptr;
594 }
595 
596 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
597   // fold strstr(x, x) -> x.
598   if (CI->getArgOperand(0) == CI->getArgOperand(1))
599     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
600 
601   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
602   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
603     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
604     if (!StrLen)
605       return nullptr;
606     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
607                                  StrLen, B, DL, TLI);
608     if (!StrNCmp)
609       return nullptr;
610     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
611       ICmpInst *Old = cast<ICmpInst>(*UI++);
612       Value *Cmp =
613           B.CreateICmp(Old->getPredicate(), StrNCmp,
614                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
615       replaceAllUsesWith(Old, Cmp);
616     }
617     return CI;
618   }
619 
620   // See if either input string is a constant string.
621   StringRef SearchStr, ToFindStr;
622   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
623   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
624 
625   // fold strstr(x, "") -> x.
626   if (HasStr2 && ToFindStr.empty())
627     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
628 
629   // If both strings are known, constant fold it.
630   if (HasStr1 && HasStr2) {
631     size_t Offset = SearchStr.find(ToFindStr);
632 
633     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
634       return Constant::getNullValue(CI->getType());
635 
636     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
637     Value *Result = castToCStr(CI->getArgOperand(0), B);
638     Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
639     return B.CreateBitCast(Result, CI->getType());
640   }
641 
642   // fold strstr(x, "y") -> strchr(x, 'y').
643   if (HasStr2 && ToFindStr.size() == 1) {
644     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
645     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
646   }
647   return nullptr;
648 }
649 
650 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
651   Value *SrcStr = CI->getArgOperand(0);
652   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
653   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
654 
655   // memchr(x, y, 0) -> null
656   if (LenC && LenC->isNullValue())
657     return Constant::getNullValue(CI->getType());
658 
659   // From now on we need at least constant length and string.
660   StringRef Str;
661   if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
662     return nullptr;
663 
664   // Truncate the string to LenC. If Str is smaller than LenC we will still only
665   // scan the string, as reading past the end of it is undefined and we can just
666   // return null if we don't find the char.
667   Str = Str.substr(0, LenC->getZExtValue());
668 
669   // If the char is variable but the input str and length are not we can turn
670   // this memchr call into a simple bit field test. Of course this only works
671   // when the return value is only checked against null.
672   //
673   // It would be really nice to reuse switch lowering here but we can't change
674   // the CFG at this point.
675   //
676   // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
677   //   after bounds check.
678   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
679     unsigned char Max =
680         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
681                           reinterpret_cast<const unsigned char *>(Str.end()));
682 
683     // Make sure the bit field we're about to create fits in a register on the
684     // target.
685     // FIXME: On a 64 bit architecture this prevents us from using the
686     // interesting range of alpha ascii chars. We could do better by emitting
687     // two bitfields or shifting the range by 64 if no lower chars are used.
688     if (!DL.fitsInLegalInteger(Max + 1))
689       return nullptr;
690 
691     // For the bit field use a power-of-2 type with at least 8 bits to avoid
692     // creating unnecessary illegal types.
693     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
694 
695     // Now build the bit field.
696     APInt Bitfield(Width, 0);
697     for (char C : Str)
698       Bitfield.setBit((unsigned char)C);
699     Value *BitfieldC = B.getInt(Bitfield);
700 
701     // First check that the bit field access is within bounds.
702     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
703     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
704                                  "memchr.bounds");
705 
706     // Create code that checks if the given bit is set in the field.
707     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
708     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
709 
710     // Finally merge both checks and cast to pointer type. The inttoptr
711     // implicitly zexts the i1 to intptr type.
712     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
713   }
714 
715   // Check if all arguments are constants.  If so, we can constant fold.
716   if (!CharC)
717     return nullptr;
718 
719   // Compute the offset.
720   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
721   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
722     return Constant::getNullValue(CI->getType());
723 
724   // memchr(s+n,c,l) -> gep(s+n+i,c)
725   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
726 }
727 
728 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
729   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
730 
731   if (LHS == RHS) // memcmp(s,s,x) -> 0
732     return Constant::getNullValue(CI->getType());
733 
734   // Make sure we have a constant length.
735   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
736   if (!LenC)
737     return nullptr;
738   uint64_t Len = LenC->getZExtValue();
739 
740   if (Len == 0) // memcmp(s1,s2,0) -> 0
741     return Constant::getNullValue(CI->getType());
742 
743   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
744   if (Len == 1) {
745     Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"),
746                                CI->getType(), "lhsv");
747     Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"),
748                                CI->getType(), "rhsv");
749     return B.CreateSub(LHSV, RHSV, "chardiff");
750   }
751 
752   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
753   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
754 
755     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
756     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
757 
758     if (getKnownAlignment(LHS, DL, CI) >= PrefAlignment &&
759         getKnownAlignment(RHS, DL, CI) >= PrefAlignment) {
760 
761       Type *LHSPtrTy =
762           IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
763       Type *RHSPtrTy =
764           IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
765 
766       Value *LHSV =
767           B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy, "lhsc"), "lhsv");
768       Value *RHSV =
769           B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy, "rhsc"), "rhsv");
770 
771       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
772     }
773   }
774 
775   // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
776   StringRef LHSStr, RHSStr;
777   if (getConstantStringInfo(LHS, LHSStr) &&
778       getConstantStringInfo(RHS, RHSStr)) {
779     // Make sure we're not reading out-of-bounds memory.
780     if (Len > LHSStr.size() || Len > RHSStr.size())
781       return nullptr;
782     // Fold the memcmp and normalize the result.  This way we get consistent
783     // results across multiple platforms.
784     uint64_t Ret = 0;
785     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
786     if (Cmp < 0)
787       Ret = -1;
788     else if (Cmp > 0)
789       Ret = 1;
790     return ConstantInt::get(CI->getType(), Ret);
791   }
792 
793   return nullptr;
794 }
795 
796 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
797   // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
798   B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
799                  CI->getArgOperand(2), 1);
800   return CI->getArgOperand(0);
801 }
802 
803 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
804   // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
805   B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
806                   CI->getArgOperand(2), 1);
807   return CI->getArgOperand(0);
808 }
809 
810 // TODO: Does this belong in BuildLibCalls or should all of those similar
811 // functions be moved here?
812 static Value *emitCalloc(Value *Num, Value *Size, const AttributeSet &Attrs,
813                          IRBuilder<> &B, const TargetLibraryInfo &TLI) {
814   LibFunc::Func Func;
815   if (!TLI.getLibFunc("calloc", Func) || !TLI.has(Func))
816     return nullptr;
817 
818   Module *M = B.GetInsertBlock()->getModule();
819   const DataLayout &DL = M->getDataLayout();
820   IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext()));
821   Value *Calloc = M->getOrInsertFunction("calloc", Attrs, B.getInt8PtrTy(),
822                                          PtrType, PtrType, nullptr);
823   CallInst *CI = B.CreateCall(Calloc, { Num, Size }, "calloc");
824 
825   if (const auto *F = dyn_cast<Function>(Calloc->stripPointerCasts()))
826     CI->setCallingConv(F->getCallingConv());
827 
828   return CI;
829 }
830 
831 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
832 static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B,
833                                const TargetLibraryInfo &TLI) {
834   // This has to be a memset of zeros (bzero).
835   auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
836   if (!FillValue || FillValue->getZExtValue() != 0)
837     return nullptr;
838 
839   // TODO: We should handle the case where the malloc has more than one use.
840   // This is necessary to optimize common patterns such as when the result of
841   // the malloc is checked against null or when a memset intrinsic is used in
842   // place of a memset library call.
843   auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
844   if (!Malloc || !Malloc->hasOneUse())
845     return nullptr;
846 
847   // Is the inner call really malloc()?
848   Function *InnerCallee = Malloc->getCalledFunction();
849   LibFunc::Func Func;
850   if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
851       Func != LibFunc::malloc)
852     return nullptr;
853 
854   // The memset must cover the same number of bytes that are malloc'd.
855   if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
856     return nullptr;
857 
858   // Replace the malloc with a calloc. We need the data layout to know what the
859   // actual size of a 'size_t' parameter is.
860   B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
861   const DataLayout &DL = Malloc->getModule()->getDataLayout();
862   IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
863   Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
864                              Malloc->getArgOperand(0), Malloc->getAttributes(),
865                              B, TLI);
866   if (!Calloc)
867     return nullptr;
868 
869   Malloc->replaceAllUsesWith(Calloc);
870   Malloc->eraseFromParent();
871 
872   return Calloc;
873 }
874 
875 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
876   if (auto *Calloc = foldMallocMemset(CI, B, *TLI))
877     return Calloc;
878 
879   // memset(p, v, n) -> llvm.memset(p, v, n, 1)
880   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
881   B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
882   return CI->getArgOperand(0);
883 }
884 
885 //===----------------------------------------------------------------------===//
886 // Math Library Optimizations
887 //===----------------------------------------------------------------------===//
888 
889 /// Return a variant of Val with float type.
890 /// Currently this works in two cases: If Val is an FPExtension of a float
891 /// value to something bigger, simply return the operand.
892 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
893 /// loss of precision do so.
894 static Value *valueHasFloatPrecision(Value *Val) {
895   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
896     Value *Op = Cast->getOperand(0);
897     if (Op->getType()->isFloatTy())
898       return Op;
899   }
900   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
901     APFloat F = Const->getValueAPF();
902     bool losesInfo;
903     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
904                     &losesInfo);
905     if (!losesInfo)
906       return ConstantFP::get(Const->getContext(), F);
907   }
908   return nullptr;
909 }
910 
911 /// Shrink double -> float for unary functions like 'floor'.
912 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
913                                     bool CheckRetType) {
914   Function *Callee = CI->getCalledFunction();
915   // We know this libcall has a valid prototype, but we don't know which.
916   if (!CI->getType()->isDoubleTy())
917     return nullptr;
918 
919   if (CheckRetType) {
920     // Check if all the uses for function like 'sin' are converted to float.
921     for (User *U : CI->users()) {
922       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
923       if (!Cast || !Cast->getType()->isFloatTy())
924         return nullptr;
925     }
926   }
927 
928   // If this is something like 'floor((double)floatval)', convert to floorf.
929   Value *V = valueHasFloatPrecision(CI->getArgOperand(0));
930   if (V == nullptr)
931     return nullptr;
932 
933   // Propagate fast-math flags from the existing call to the new call.
934   IRBuilder<>::FastMathFlagGuard Guard(B);
935   B.setFastMathFlags(CI->getFastMathFlags());
936 
937   // floor((double)floatval) -> (double)floorf(floatval)
938   if (Callee->isIntrinsic()) {
939     Module *M = CI->getModule();
940     Intrinsic::ID IID = Callee->getIntrinsicID();
941     Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
942     V = B.CreateCall(F, V);
943   } else {
944     // The call is a library call rather than an intrinsic.
945     V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
946   }
947 
948   return B.CreateFPExt(V, B.getDoubleTy());
949 }
950 
951 /// Shrink double -> float for binary functions like 'fmin/fmax'.
952 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
953   Function *Callee = CI->getCalledFunction();
954   // We know this libcall has a valid prototype, but we don't know which.
955   if (!CI->getType()->isDoubleTy())
956     return nullptr;
957 
958   // If this is something like 'fmin((double)floatval1, (double)floatval2)',
959   // or fmin(1.0, (double)floatval), then we convert it to fminf.
960   Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0));
961   if (V1 == nullptr)
962     return nullptr;
963   Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1));
964   if (V2 == nullptr)
965     return nullptr;
966 
967   // Propagate fast-math flags from the existing call to the new call.
968   IRBuilder<>::FastMathFlagGuard Guard(B);
969   B.setFastMathFlags(CI->getFastMathFlags());
970 
971   // fmin((double)floatval1, (double)floatval2)
972   //                      -> (double)fminf(floatval1, floatval2)
973   // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP().
974   Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
975                                    Callee->getAttributes());
976   return B.CreateFPExt(V, B.getDoubleTy());
977 }
978 
979 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
980   Function *Callee = CI->getCalledFunction();
981   Value *Ret = nullptr;
982   StringRef Name = Callee->getName();
983   if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name))
984     Ret = optimizeUnaryDoubleFP(CI, B, true);
985 
986   // cos(-x) -> cos(x)
987   Value *Op1 = CI->getArgOperand(0);
988   if (BinaryOperator::isFNeg(Op1)) {
989     BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
990     return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
991   }
992   return Ret;
993 }
994 
995 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
996   // Multiplications calculated using Addition Chains.
997   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
998 
999   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1000 
1001   if (InnerChain[Exp])
1002     return InnerChain[Exp];
1003 
1004   static const unsigned AddChain[33][2] = {
1005       {0, 0}, // Unused.
1006       {0, 0}, // Unused (base case = pow1).
1007       {1, 1}, // Unused (pre-computed).
1008       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1009       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1010       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1011       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1012       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1013   };
1014 
1015   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1016                                  getPow(InnerChain, AddChain[Exp][1], B));
1017   return InnerChain[Exp];
1018 }
1019 
1020 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
1021   Function *Callee = CI->getCalledFunction();
1022   Value *Ret = nullptr;
1023   StringRef Name = Callee->getName();
1024   if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name))
1025     Ret = optimizeUnaryDoubleFP(CI, B, true);
1026 
1027   Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
1028 
1029   // pow(1.0, x) -> 1.0
1030   if (match(Op1, m_SpecificFP(1.0)))
1031     return Op1;
1032   // pow(2.0, x) -> llvm.exp2(x)
1033   if (match(Op1, m_SpecificFP(2.0))) {
1034     Value *Exp2 = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::exp2,
1035                                             CI->getType());
1036     return B.CreateCall(Exp2, Op2, "exp2");
1037   }
1038 
1039   // There's no llvm.exp10 intrinsic yet, but, maybe, some day there will
1040   // be one.
1041   if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
1042     // pow(10.0, x) -> exp10(x)
1043     if (Op1C->isExactlyValue(10.0) &&
1044         hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f,
1045                         LibFunc::exp10l))
1046       return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B,
1047                                   Callee->getAttributes());
1048   }
1049 
1050   // pow(exp(x), y) -> exp(x * y)
1051   // pow(exp2(x), y) -> exp2(x * y)
1052   // We enable these only with fast-math. Besides rounding differences, the
1053   // transformation changes overflow and underflow behavior quite dramatically.
1054   // Example: x = 1000, y = 0.001.
1055   // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1).
1056   auto *OpC = dyn_cast<CallInst>(Op1);
1057   if (OpC && OpC->hasUnsafeAlgebra() && CI->hasUnsafeAlgebra()) {
1058     LibFunc::Func Func;
1059     Function *OpCCallee = OpC->getCalledFunction();
1060     if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) &&
1061         TLI->has(Func) && (Func == LibFunc::exp || Func == LibFunc::exp2)) {
1062       IRBuilder<>::FastMathFlagGuard Guard(B);
1063       B.setFastMathFlags(CI->getFastMathFlags());
1064       Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul");
1065       return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B,
1066                                   OpCCallee->getAttributes());
1067     }
1068   }
1069 
1070   ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
1071   if (!Op2C)
1072     return Ret;
1073 
1074   if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
1075     return ConstantFP::get(CI->getType(), 1.0);
1076 
1077   if (Op2C->isExactlyValue(0.5) &&
1078       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf,
1079                       LibFunc::sqrtl) &&
1080       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf,
1081                       LibFunc::fabsl)) {
1082 
1083     // In -ffast-math, pow(x, 0.5) -> sqrt(x).
1084     if (CI->hasUnsafeAlgebra()) {
1085       IRBuilder<>::FastMathFlagGuard Guard(B);
1086       B.setFastMathFlags(CI->getFastMathFlags());
1087 
1088       // Unlike other math intrinsics, sqrt has differerent semantics
1089       // from the libc function. See LangRef for details.
1090       return emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc::sqrt), B,
1091                                   Callee->getAttributes());
1092     }
1093 
1094     // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
1095     // This is faster than calling pow, and still handles negative zero
1096     // and negative infinity correctly.
1097     // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
1098     Value *Inf = ConstantFP::getInfinity(CI->getType());
1099     Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
1100     Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes());
1101     Value *FAbs =
1102         emitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes());
1103     Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
1104     Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
1105     return Sel;
1106   }
1107 
1108   if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
1109     return Op1;
1110   if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
1111     return B.CreateFMul(Op1, Op1, "pow2");
1112   if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
1113     return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
1114 
1115   // In -ffast-math, generate repeated fmul instead of generating pow(x, n).
1116   if (CI->hasUnsafeAlgebra()) {
1117     APFloat V = abs(Op2C->getValueAPF());
1118     // We limit to a max of 7 fmul(s). Thus max exponent is 32.
1119     // This transformation applies to integer exponents only.
1120     if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan ||
1121         !V.isInteger())
1122       return nullptr;
1123 
1124     // We will memoize intermediate products of the Addition Chain.
1125     Value *InnerChain[33] = {nullptr};
1126     InnerChain[1] = Op1;
1127     InnerChain[2] = B.CreateFMul(Op1, Op1);
1128 
1129     // We cannot readily convert a non-double type (like float) to a double.
1130     // So we first convert V to something which could be converted to double.
1131     bool ignored;
1132     V.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &ignored);
1133 
1134     // TODO: Should the new instructions propagate the 'fast' flag of the pow()?
1135     Value *FMul = getPow(InnerChain, V.convertToDouble(), B);
1136     // For negative exponents simply compute the reciprocal.
1137     if (Op2C->isNegative())
1138       FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul);
1139     return FMul;
1140   }
1141 
1142   return nullptr;
1143 }
1144 
1145 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1146   Function *Callee = CI->getCalledFunction();
1147   Value *Ret = nullptr;
1148   StringRef Name = Callee->getName();
1149   if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name))
1150     Ret = optimizeUnaryDoubleFP(CI, B, true);
1151 
1152   Value *Op = CI->getArgOperand(0);
1153   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1154   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1155   LibFunc::Func LdExp = LibFunc::ldexpl;
1156   if (Op->getType()->isFloatTy())
1157     LdExp = LibFunc::ldexpf;
1158   else if (Op->getType()->isDoubleTy())
1159     LdExp = LibFunc::ldexp;
1160 
1161   if (TLI->has(LdExp)) {
1162     Value *LdExpArg = nullptr;
1163     if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
1164       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
1165         LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
1166     } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
1167       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
1168         LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
1169     }
1170 
1171     if (LdExpArg) {
1172       Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
1173       if (!Op->getType()->isFloatTy())
1174         One = ConstantExpr::getFPExtend(One, Op->getType());
1175 
1176       Module *M = CI->getModule();
1177       Value *NewCallee =
1178           M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
1179                                  Op->getType(), B.getInt32Ty(), nullptr);
1180       CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg});
1181       if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
1182         CI->setCallingConv(F->getCallingConv());
1183 
1184       return CI;
1185     }
1186   }
1187   return Ret;
1188 }
1189 
1190 Value *LibCallSimplifier::optimizeFabs(CallInst *CI, IRBuilder<> &B) {
1191   Function *Callee = CI->getCalledFunction();
1192   StringRef Name = Callee->getName();
1193   if (Name == "fabs" && hasFloatVersion(Name))
1194     return optimizeUnaryDoubleFP(CI, B, false);
1195 
1196   return nullptr;
1197 }
1198 
1199 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1200   Function *Callee = CI->getCalledFunction();
1201   // If we can shrink the call to a float function rather than a double
1202   // function, do that first.
1203   StringRef Name = Callee->getName();
1204   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1205     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1206       return Ret;
1207 
1208   IRBuilder<>::FastMathFlagGuard Guard(B);
1209   FastMathFlags FMF;
1210   if (CI->hasUnsafeAlgebra()) {
1211     // Unsafe algebra sets all fast-math-flags to true.
1212     FMF.setUnsafeAlgebra();
1213   } else {
1214     // At a minimum, no-nans-fp-math must be true.
1215     if (!CI->hasNoNaNs())
1216       return nullptr;
1217     // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
1218     // "Ideally, fmax would be sensitive to the sign of zero, for example
1219     // fmax(-0. 0, +0. 0) would return +0; however, implementation in software
1220     // might be impractical."
1221     FMF.setNoSignedZeros();
1222     FMF.setNoNaNs();
1223   }
1224   B.setFastMathFlags(FMF);
1225 
1226   // We have a relaxed floating-point environment. We can ignore NaN-handling
1227   // and transform to a compare and select. We do not have to consider errno or
1228   // exceptions, because fmin/fmax do not have those.
1229   Value *Op0 = CI->getArgOperand(0);
1230   Value *Op1 = CI->getArgOperand(1);
1231   Value *Cmp = Callee->getName().startswith("fmin") ?
1232     B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
1233   return B.CreateSelect(Cmp, Op0, Op1);
1234 }
1235 
1236 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
1237   Function *Callee = CI->getCalledFunction();
1238   Value *Ret = nullptr;
1239   StringRef Name = Callee->getName();
1240   if (UnsafeFPShrink && hasFloatVersion(Name))
1241     Ret = optimizeUnaryDoubleFP(CI, B, true);
1242 
1243   if (!CI->hasUnsafeAlgebra())
1244     return Ret;
1245   Value *Op1 = CI->getArgOperand(0);
1246   auto *OpC = dyn_cast<CallInst>(Op1);
1247 
1248   // The earlier call must also be unsafe in order to do these transforms.
1249   if (!OpC || !OpC->hasUnsafeAlgebra())
1250     return Ret;
1251 
1252   // log(pow(x,y)) -> y*log(x)
1253   // This is only applicable to log, log2, log10.
1254   if (Name != "log" && Name != "log2" && Name != "log10")
1255     return Ret;
1256 
1257   IRBuilder<>::FastMathFlagGuard Guard(B);
1258   FastMathFlags FMF;
1259   FMF.setUnsafeAlgebra();
1260   B.setFastMathFlags(FMF);
1261 
1262   LibFunc::Func Func;
1263   Function *F = OpC->getCalledFunction();
1264   if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1265       Func == LibFunc::pow) || F->getIntrinsicID() == Intrinsic::pow))
1266     return B.CreateFMul(OpC->getArgOperand(1),
1267       emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B,
1268                            Callee->getAttributes()), "mul");
1269 
1270   // log(exp2(y)) -> y*log(2)
1271   if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) &&
1272       TLI->has(Func) && Func == LibFunc::exp2)
1273     return B.CreateFMul(
1274         OpC->getArgOperand(0),
1275         emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0),
1276                              Callee->getName(), B, Callee->getAttributes()),
1277         "logmul");
1278   return Ret;
1279 }
1280 
1281 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
1282   Function *Callee = CI->getCalledFunction();
1283   Value *Ret = nullptr;
1284   if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" ||
1285                                    Callee->getIntrinsicID() == Intrinsic::sqrt))
1286     Ret = optimizeUnaryDoubleFP(CI, B, true);
1287 
1288   if (!CI->hasUnsafeAlgebra())
1289     return Ret;
1290 
1291   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
1292   if (!I || I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
1293     return Ret;
1294 
1295   // We're looking for a repeated factor in a multiplication tree,
1296   // so we can do this fold: sqrt(x * x) -> fabs(x);
1297   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
1298   Value *Op0 = I->getOperand(0);
1299   Value *Op1 = I->getOperand(1);
1300   Value *RepeatOp = nullptr;
1301   Value *OtherOp = nullptr;
1302   if (Op0 == Op1) {
1303     // Simple match: the operands of the multiply are identical.
1304     RepeatOp = Op0;
1305   } else {
1306     // Look for a more complicated pattern: one of the operands is itself
1307     // a multiply, so search for a common factor in that multiply.
1308     // Note: We don't bother looking any deeper than this first level or for
1309     // variations of this pattern because instcombine's visitFMUL and/or the
1310     // reassociation pass should give us this form.
1311     Value *OtherMul0, *OtherMul1;
1312     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
1313       // Pattern: sqrt((x * y) * z)
1314       if (OtherMul0 == OtherMul1 &&
1315           cast<Instruction>(Op0)->hasUnsafeAlgebra()) {
1316         // Matched: sqrt((x * x) * z)
1317         RepeatOp = OtherMul0;
1318         OtherOp = Op1;
1319       }
1320     }
1321   }
1322   if (!RepeatOp)
1323     return Ret;
1324 
1325   // Fast math flags for any created instructions should match the sqrt
1326   // and multiply.
1327   IRBuilder<>::FastMathFlagGuard Guard(B);
1328   B.setFastMathFlags(I->getFastMathFlags());
1329 
1330   // If we found a repeated factor, hoist it out of the square root and
1331   // replace it with the fabs of that factor.
1332   Module *M = Callee->getParent();
1333   Type *ArgType = I->getType();
1334   Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
1335   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
1336   if (OtherOp) {
1337     // If we found a non-repeated factor, we still need to get its square
1338     // root. We then multiply that by the value that was simplified out
1339     // of the square root calculation.
1340     Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
1341     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
1342     return B.CreateFMul(FabsCall, SqrtCall);
1343   }
1344   return FabsCall;
1345 }
1346 
1347 // TODO: Generalize to handle any trig function and its inverse.
1348 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
1349   Function *Callee = CI->getCalledFunction();
1350   Value *Ret = nullptr;
1351   StringRef Name = Callee->getName();
1352   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
1353     Ret = optimizeUnaryDoubleFP(CI, B, true);
1354 
1355   Value *Op1 = CI->getArgOperand(0);
1356   auto *OpC = dyn_cast<CallInst>(Op1);
1357   if (!OpC)
1358     return Ret;
1359 
1360   // Both calls must allow unsafe optimizations in order to remove them.
1361   if (!CI->hasUnsafeAlgebra() || !OpC->hasUnsafeAlgebra())
1362     return Ret;
1363 
1364   // tan(atan(x)) -> x
1365   // tanf(atanf(x)) -> x
1366   // tanl(atanl(x)) -> x
1367   LibFunc::Func Func;
1368   Function *F = OpC->getCalledFunction();
1369   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1370       ((Func == LibFunc::atan && Callee->getName() == "tan") ||
1371        (Func == LibFunc::atanf && Callee->getName() == "tanf") ||
1372        (Func == LibFunc::atanl && Callee->getName() == "tanl")))
1373     Ret = OpC->getArgOperand(0);
1374   return Ret;
1375 }
1376 
1377 static bool isTrigLibCall(CallInst *CI) {
1378   // We can only hope to do anything useful if we can ignore things like errno
1379   // and floating-point exceptions.
1380   // We already checked the prototype.
1381   return CI->hasFnAttr(Attribute::NoUnwind) &&
1382          CI->hasFnAttr(Attribute::ReadNone);
1383 }
1384 
1385 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
1386                              bool UseFloat, Value *&Sin, Value *&Cos,
1387                              Value *&SinCos) {
1388   Type *ArgTy = Arg->getType();
1389   Type *ResTy;
1390   StringRef Name;
1391 
1392   Triple T(OrigCallee->getParent()->getTargetTriple());
1393   if (UseFloat) {
1394     Name = "__sincospif_stret";
1395 
1396     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
1397     // x86_64 can't use {float, float} since that would be returned in both
1398     // xmm0 and xmm1, which isn't what a real struct would do.
1399     ResTy = T.getArch() == Triple::x86_64
1400     ? static_cast<Type *>(VectorType::get(ArgTy, 2))
1401     : static_cast<Type *>(StructType::get(ArgTy, ArgTy, nullptr));
1402   } else {
1403     Name = "__sincospi_stret";
1404     ResTy = StructType::get(ArgTy, ArgTy, nullptr);
1405   }
1406 
1407   Module *M = OrigCallee->getParent();
1408   Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
1409                                          ResTy, ArgTy, nullptr);
1410 
1411   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
1412     // If the argument is an instruction, it must dominate all uses so put our
1413     // sincos call there.
1414     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
1415   } else {
1416     // Otherwise (e.g. for a constant) the beginning of the function is as
1417     // good a place as any.
1418     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
1419     B.SetInsertPoint(&EntryBB, EntryBB.begin());
1420   }
1421 
1422   SinCos = B.CreateCall(Callee, Arg, "sincospi");
1423 
1424   if (SinCos->getType()->isStructTy()) {
1425     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
1426     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
1427   } else {
1428     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
1429                                  "sinpi");
1430     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
1431                                  "cospi");
1432   }
1433 }
1434 
1435 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
1436   // Make sure the prototype is as expected, otherwise the rest of the
1437   // function is probably invalid and likely to abort.
1438   if (!isTrigLibCall(CI))
1439     return nullptr;
1440 
1441   Value *Arg = CI->getArgOperand(0);
1442   SmallVector<CallInst *, 1> SinCalls;
1443   SmallVector<CallInst *, 1> CosCalls;
1444   SmallVector<CallInst *, 1> SinCosCalls;
1445 
1446   bool IsFloat = Arg->getType()->isFloatTy();
1447 
1448   // Look for all compatible sinpi, cospi and sincospi calls with the same
1449   // argument. If there are enough (in some sense) we can make the
1450   // substitution.
1451   Function *F = CI->getFunction();
1452   for (User *U : Arg->users())
1453     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
1454 
1455   // It's only worthwhile if both sinpi and cospi are actually used.
1456   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
1457     return nullptr;
1458 
1459   Value *Sin, *Cos, *SinCos;
1460   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
1461 
1462   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
1463                                  Value *Res) {
1464     for (CallInst *C : Calls)
1465       replaceAllUsesWith(C, Res);
1466   };
1467 
1468   replaceTrigInsts(SinCalls, Sin);
1469   replaceTrigInsts(CosCalls, Cos);
1470   replaceTrigInsts(SinCosCalls, SinCos);
1471 
1472   return nullptr;
1473 }
1474 
1475 void LibCallSimplifier::classifyArgUse(
1476     Value *Val, Function *F, bool IsFloat,
1477     SmallVectorImpl<CallInst *> &SinCalls,
1478     SmallVectorImpl<CallInst *> &CosCalls,
1479     SmallVectorImpl<CallInst *> &SinCosCalls) {
1480   CallInst *CI = dyn_cast<CallInst>(Val);
1481 
1482   if (!CI)
1483     return;
1484 
1485   // Don't consider calls in other functions.
1486   if (CI->getFunction() != F)
1487     return;
1488 
1489   Function *Callee = CI->getCalledFunction();
1490   LibFunc::Func Func;
1491   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
1492       !isTrigLibCall(CI))
1493     return;
1494 
1495   if (IsFloat) {
1496     if (Func == LibFunc::sinpif)
1497       SinCalls.push_back(CI);
1498     else if (Func == LibFunc::cospif)
1499       CosCalls.push_back(CI);
1500     else if (Func == LibFunc::sincospif_stret)
1501       SinCosCalls.push_back(CI);
1502   } else {
1503     if (Func == LibFunc::sinpi)
1504       SinCalls.push_back(CI);
1505     else if (Func == LibFunc::cospi)
1506       CosCalls.push_back(CI);
1507     else if (Func == LibFunc::sincospi_stret)
1508       SinCosCalls.push_back(CI);
1509   }
1510 }
1511 
1512 //===----------------------------------------------------------------------===//
1513 // Integer Library Call Optimizations
1514 //===----------------------------------------------------------------------===//
1515 
1516 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
1517   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
1518   Value *Op = CI->getArgOperand(0);
1519   Type *ArgType = Op->getType();
1520   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1521                                        Intrinsic::cttz, ArgType);
1522   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
1523   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
1524   V = B.CreateIntCast(V, B.getInt32Ty(), false);
1525 
1526   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
1527   return B.CreateSelect(Cond, V, B.getInt32(0));
1528 }
1529 
1530 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
1531   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
1532   Value *Op = CI->getArgOperand(0);
1533   Type *ArgType = Op->getType();
1534   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1535                                        Intrinsic::ctlz, ArgType);
1536   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
1537   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
1538                   V);
1539   return B.CreateIntCast(V, CI->getType(), false);
1540 }
1541 
1542 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
1543   // abs(x) -> x >s -1 ? x : -x
1544   Value *Op = CI->getArgOperand(0);
1545   Value *Pos =
1546       B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos");
1547   Value *Neg = B.CreateNeg(Op, "neg");
1548   return B.CreateSelect(Pos, Op, Neg);
1549 }
1550 
1551 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
1552   // isdigit(c) -> (c-'0') <u 10
1553   Value *Op = CI->getArgOperand(0);
1554   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
1555   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
1556   return B.CreateZExt(Op, CI->getType());
1557 }
1558 
1559 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
1560   // isascii(c) -> c <u 128
1561   Value *Op = CI->getArgOperand(0);
1562   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
1563   return B.CreateZExt(Op, CI->getType());
1564 }
1565 
1566 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
1567   // toascii(c) -> c & 0x7f
1568   return B.CreateAnd(CI->getArgOperand(0),
1569                      ConstantInt::get(CI->getType(), 0x7F));
1570 }
1571 
1572 //===----------------------------------------------------------------------===//
1573 // Formatting and IO Library Call Optimizations
1574 //===----------------------------------------------------------------------===//
1575 
1576 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
1577 
1578 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
1579                                                  int StreamArg) {
1580   Function *Callee = CI->getCalledFunction();
1581   // Error reporting calls should be cold, mark them as such.
1582   // This applies even to non-builtin calls: it is only a hint and applies to
1583   // functions that the frontend might not understand as builtins.
1584 
1585   // This heuristic was suggested in:
1586   // Improving Static Branch Prediction in a Compiler
1587   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
1588   // Proceedings of PACT'98, Oct. 1998, IEEE
1589   if (!CI->hasFnAttr(Attribute::Cold) &&
1590       isReportingError(Callee, CI, StreamArg)) {
1591     CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
1592   }
1593 
1594   return nullptr;
1595 }
1596 
1597 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
1598   if (!ColdErrorCalls || !Callee || !Callee->isDeclaration())
1599     return false;
1600 
1601   if (StreamArg < 0)
1602     return true;
1603 
1604   // These functions might be considered cold, but only if their stream
1605   // argument is stderr.
1606 
1607   if (StreamArg >= (int)CI->getNumArgOperands())
1608     return false;
1609   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
1610   if (!LI)
1611     return false;
1612   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
1613   if (!GV || !GV->isDeclaration())
1614     return false;
1615   return GV->getName() == "stderr";
1616 }
1617 
1618 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
1619   // Check for a fixed format string.
1620   StringRef FormatStr;
1621   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
1622     return nullptr;
1623 
1624   // Empty format string -> noop.
1625   if (FormatStr.empty()) // Tolerate printf's declared void.
1626     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
1627 
1628   // Do not do any of the following transformations if the printf return value
1629   // is used, in general the printf return value is not compatible with either
1630   // putchar() or puts().
1631   if (!CI->use_empty())
1632     return nullptr;
1633 
1634   // printf("x") -> putchar('x'), even for "%" and "%%".
1635   if (FormatStr.size() == 1 || FormatStr == "%%")
1636     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
1637 
1638   // printf("%s", "a") --> putchar('a')
1639   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
1640     StringRef ChrStr;
1641     if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
1642       return nullptr;
1643     if (ChrStr.size() != 1)
1644       return nullptr;
1645     return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
1646   }
1647 
1648   // printf("foo\n") --> puts("foo")
1649   if (FormatStr[FormatStr.size() - 1] == '\n' &&
1650       FormatStr.find('%') == StringRef::npos) { // No format characters.
1651     // Create a string literal with no \n on it.  We expect the constant merge
1652     // pass to be run after this pass, to merge duplicate strings.
1653     FormatStr = FormatStr.drop_back();
1654     Value *GV = B.CreateGlobalString(FormatStr, "str");
1655     return emitPutS(GV, B, TLI);
1656   }
1657 
1658   // Optimize specific format strings.
1659   // printf("%c", chr) --> putchar(chr)
1660   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
1661       CI->getArgOperand(1)->getType()->isIntegerTy())
1662     return emitPutChar(CI->getArgOperand(1), B, TLI);
1663 
1664   // printf("%s\n", str) --> puts(str)
1665   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
1666       CI->getArgOperand(1)->getType()->isPointerTy())
1667     return emitPutS(CI->getArgOperand(1), B, TLI);
1668   return nullptr;
1669 }
1670 
1671 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
1672 
1673   Function *Callee = CI->getCalledFunction();
1674   FunctionType *FT = Callee->getFunctionType();
1675   if (Value *V = optimizePrintFString(CI, B)) {
1676     return V;
1677   }
1678 
1679   // printf(format, ...) -> iprintf(format, ...) if no floating point
1680   // arguments.
1681   if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
1682     Module *M = B.GetInsertBlock()->getParent()->getParent();
1683     Constant *IPrintFFn =
1684         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
1685     CallInst *New = cast<CallInst>(CI->clone());
1686     New->setCalledFunction(IPrintFFn);
1687     B.Insert(New);
1688     return New;
1689   }
1690   return nullptr;
1691 }
1692 
1693 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
1694   // Check for a fixed format string.
1695   StringRef FormatStr;
1696   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1697     return nullptr;
1698 
1699   // If we just have a format string (nothing else crazy) transform it.
1700   if (CI->getNumArgOperands() == 2) {
1701     // Make sure there's no % in the constant array.  We could try to handle
1702     // %% -> % in the future if we cared.
1703     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1704       if (FormatStr[i] == '%')
1705         return nullptr; // we found a format specifier, bail out.
1706 
1707     // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
1708     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
1709                    ConstantInt::get(DL.getIntPtrType(CI->getContext()),
1710                                     FormatStr.size() + 1),
1711                    1); // Copy the null byte.
1712     return ConstantInt::get(CI->getType(), FormatStr.size());
1713   }
1714 
1715   // The remaining optimizations require the format string to be "%s" or "%c"
1716   // and have an extra operand.
1717   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1718       CI->getNumArgOperands() < 3)
1719     return nullptr;
1720 
1721   // Decode the second character of the format string.
1722   if (FormatStr[1] == 'c') {
1723     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
1724     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1725       return nullptr;
1726     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
1727     Value *Ptr = castToCStr(CI->getArgOperand(0), B);
1728     B.CreateStore(V, Ptr);
1729     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
1730     B.CreateStore(B.getInt8(0), Ptr);
1731 
1732     return ConstantInt::get(CI->getType(), 1);
1733   }
1734 
1735   if (FormatStr[1] == 's') {
1736     // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1737     if (!CI->getArgOperand(2)->getType()->isPointerTy())
1738       return nullptr;
1739 
1740     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
1741     if (!Len)
1742       return nullptr;
1743     Value *IncLen =
1744         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
1745     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
1746 
1747     // The sprintf result is the unincremented number of bytes in the string.
1748     return B.CreateIntCast(Len, CI->getType(), false);
1749   }
1750   return nullptr;
1751 }
1752 
1753 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
1754   Function *Callee = CI->getCalledFunction();
1755   FunctionType *FT = Callee->getFunctionType();
1756   if (Value *V = optimizeSPrintFString(CI, B)) {
1757     return V;
1758   }
1759 
1760   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
1761   // point arguments.
1762   if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) {
1763     Module *M = B.GetInsertBlock()->getParent()->getParent();
1764     Constant *SIPrintFFn =
1765         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
1766     CallInst *New = cast<CallInst>(CI->clone());
1767     New->setCalledFunction(SIPrintFFn);
1768     B.Insert(New);
1769     return New;
1770   }
1771   return nullptr;
1772 }
1773 
1774 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
1775   optimizeErrorReporting(CI, B, 0);
1776 
1777   // All the optimizations depend on the format string.
1778   StringRef FormatStr;
1779   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1780     return nullptr;
1781 
1782   // Do not do any of the following transformations if the fprintf return
1783   // value is used, in general the fprintf return value is not compatible
1784   // with fwrite(), fputc() or fputs().
1785   if (!CI->use_empty())
1786     return nullptr;
1787 
1788   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
1789   if (CI->getNumArgOperands() == 2) {
1790     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1791       if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
1792         return nullptr;        // We found a format specifier.
1793 
1794     return emitFWrite(
1795         CI->getArgOperand(1),
1796         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
1797         CI->getArgOperand(0), B, DL, TLI);
1798   }
1799 
1800   // The remaining optimizations require the format string to be "%s" or "%c"
1801   // and have an extra operand.
1802   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1803       CI->getNumArgOperands() < 3)
1804     return nullptr;
1805 
1806   // Decode the second character of the format string.
1807   if (FormatStr[1] == 'c') {
1808     // fprintf(F, "%c", chr) --> fputc(chr, F)
1809     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1810       return nullptr;
1811     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1812   }
1813 
1814   if (FormatStr[1] == 's') {
1815     // fprintf(F, "%s", str) --> fputs(str, F)
1816     if (!CI->getArgOperand(2)->getType()->isPointerTy())
1817       return nullptr;
1818     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1819   }
1820   return nullptr;
1821 }
1822 
1823 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
1824   Function *Callee = CI->getCalledFunction();
1825   FunctionType *FT = Callee->getFunctionType();
1826   if (Value *V = optimizeFPrintFString(CI, B)) {
1827     return V;
1828   }
1829 
1830   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
1831   // floating point arguments.
1832   if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) {
1833     Module *M = B.GetInsertBlock()->getParent()->getParent();
1834     Constant *FIPrintFFn =
1835         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
1836     CallInst *New = cast<CallInst>(CI->clone());
1837     New->setCalledFunction(FIPrintFFn);
1838     B.Insert(New);
1839     return New;
1840   }
1841   return nullptr;
1842 }
1843 
1844 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
1845   optimizeErrorReporting(CI, B, 3);
1846 
1847   // Get the element size and count.
1848   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
1849   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1850   if (!SizeC || !CountC)
1851     return nullptr;
1852   uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
1853 
1854   // If this is writing zero records, remove the call (it's a noop).
1855   if (Bytes == 0)
1856     return ConstantInt::get(CI->getType(), 0);
1857 
1858   // If this is writing one byte, turn it into fputc.
1859   // This optimisation is only valid, if the return value is unused.
1860   if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
1861     Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char");
1862     Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
1863     return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
1864   }
1865 
1866   return nullptr;
1867 }
1868 
1869 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
1870   optimizeErrorReporting(CI, B, 1);
1871 
1872   // Don't rewrite fputs to fwrite when optimising for size because fwrite
1873   // requires more arguments and thus extra MOVs are required.
1874   if (CI->getParent()->getParent()->optForSize())
1875     return nullptr;
1876 
1877   // We can't optimize if return value is used.
1878   if (!CI->use_empty())
1879     return nullptr;
1880 
1881   // fputs(s,F) --> fwrite(s,1,strlen(s),F)
1882   uint64_t Len = GetStringLength(CI->getArgOperand(0));
1883   if (!Len)
1884     return nullptr;
1885 
1886   // Known to have no uses (see above).
1887   return emitFWrite(
1888       CI->getArgOperand(0),
1889       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
1890       CI->getArgOperand(1), B, DL, TLI);
1891 }
1892 
1893 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
1894   // Check for a constant string.
1895   StringRef Str;
1896   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
1897     return nullptr;
1898 
1899   if (Str.empty() && CI->use_empty()) {
1900     // puts("") -> putchar('\n')
1901     Value *Res = emitPutChar(B.getInt32('\n'), B, TLI);
1902     if (CI->use_empty() || !Res)
1903       return Res;
1904     return B.CreateIntCast(Res, CI->getType(), true);
1905   }
1906 
1907   return nullptr;
1908 }
1909 
1910 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
1911   LibFunc::Func Func;
1912   SmallString<20> FloatFuncName = FuncName;
1913   FloatFuncName += 'f';
1914   if (TLI->getLibFunc(FloatFuncName, Func))
1915     return TLI->has(Func);
1916   return false;
1917 }
1918 
1919 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
1920                                                       IRBuilder<> &Builder) {
1921   LibFunc::Func Func;
1922   Function *Callee = CI->getCalledFunction();
1923   // Check for string/memory library functions.
1924   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
1925     // Make sure we never change the calling convention.
1926     assert((ignoreCallingConv(Func) ||
1927             isCallingConvCCompatible(CI)) &&
1928       "Optimizing string/memory libcall would change the calling convention");
1929     switch (Func) {
1930     case LibFunc::strcat:
1931       return optimizeStrCat(CI, Builder);
1932     case LibFunc::strncat:
1933       return optimizeStrNCat(CI, Builder);
1934     case LibFunc::strchr:
1935       return optimizeStrChr(CI, Builder);
1936     case LibFunc::strrchr:
1937       return optimizeStrRChr(CI, Builder);
1938     case LibFunc::strcmp:
1939       return optimizeStrCmp(CI, Builder);
1940     case LibFunc::strncmp:
1941       return optimizeStrNCmp(CI, Builder);
1942     case LibFunc::strcpy:
1943       return optimizeStrCpy(CI, Builder);
1944     case LibFunc::stpcpy:
1945       return optimizeStpCpy(CI, Builder);
1946     case LibFunc::strncpy:
1947       return optimizeStrNCpy(CI, Builder);
1948     case LibFunc::strlen:
1949       return optimizeStrLen(CI, Builder);
1950     case LibFunc::strpbrk:
1951       return optimizeStrPBrk(CI, Builder);
1952     case LibFunc::strtol:
1953     case LibFunc::strtod:
1954     case LibFunc::strtof:
1955     case LibFunc::strtoul:
1956     case LibFunc::strtoll:
1957     case LibFunc::strtold:
1958     case LibFunc::strtoull:
1959       return optimizeStrTo(CI, Builder);
1960     case LibFunc::strspn:
1961       return optimizeStrSpn(CI, Builder);
1962     case LibFunc::strcspn:
1963       return optimizeStrCSpn(CI, Builder);
1964     case LibFunc::strstr:
1965       return optimizeStrStr(CI, Builder);
1966     case LibFunc::memchr:
1967       return optimizeMemChr(CI, Builder);
1968     case LibFunc::memcmp:
1969       return optimizeMemCmp(CI, Builder);
1970     case LibFunc::memcpy:
1971       return optimizeMemCpy(CI, Builder);
1972     case LibFunc::memmove:
1973       return optimizeMemMove(CI, Builder);
1974     case LibFunc::memset:
1975       return optimizeMemSet(CI, Builder);
1976     default:
1977       break;
1978     }
1979   }
1980   return nullptr;
1981 }
1982 
1983 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
1984   if (CI->isNoBuiltin())
1985     return nullptr;
1986 
1987   LibFunc::Func Func;
1988   Function *Callee = CI->getCalledFunction();
1989   StringRef FuncName = Callee->getName();
1990 
1991   SmallVector<OperandBundleDef, 2> OpBundles;
1992   CI->getOperandBundlesAsDefs(OpBundles);
1993   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
1994   bool isCallingConvC = isCallingConvCCompatible(CI);
1995 
1996   // Command-line parameter overrides instruction attribute.
1997   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
1998     UnsafeFPShrink = EnableUnsafeFPShrink;
1999   else if (isa<FPMathOperator>(CI) && CI->hasUnsafeAlgebra())
2000     UnsafeFPShrink = true;
2001 
2002   // First, check for intrinsics.
2003   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
2004     if (!isCallingConvC)
2005       return nullptr;
2006     switch (II->getIntrinsicID()) {
2007     case Intrinsic::pow:
2008       return optimizePow(CI, Builder);
2009     case Intrinsic::exp2:
2010       return optimizeExp2(CI, Builder);
2011     case Intrinsic::fabs:
2012       return optimizeFabs(CI, Builder);
2013     case Intrinsic::log:
2014       return optimizeLog(CI, Builder);
2015     case Intrinsic::sqrt:
2016       return optimizeSqrt(CI, Builder);
2017     // TODO: Use foldMallocMemset() with memset intrinsic.
2018     default:
2019       return nullptr;
2020     }
2021   }
2022 
2023   // Also try to simplify calls to fortified library functions.
2024   if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
2025     // Try to further simplify the result.
2026     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
2027     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
2028       // Use an IR Builder from SimplifiedCI if available instead of CI
2029       // to guarantee we reach all uses we might replace later on.
2030       IRBuilder<> TmpBuilder(SimplifiedCI);
2031       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
2032         // If we were able to further simplify, remove the now redundant call.
2033         SimplifiedCI->replaceAllUsesWith(V);
2034         SimplifiedCI->eraseFromParent();
2035         return V;
2036       }
2037     }
2038     return SimplifiedFortifiedCI;
2039   }
2040 
2041   // Then check for known library functions.
2042   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2043     // We never change the calling convention.
2044     if (!ignoreCallingConv(Func) && !isCallingConvC)
2045       return nullptr;
2046     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
2047       return V;
2048     switch (Func) {
2049     case LibFunc::cosf:
2050     case LibFunc::cos:
2051     case LibFunc::cosl:
2052       return optimizeCos(CI, Builder);
2053     case LibFunc::sinpif:
2054     case LibFunc::sinpi:
2055     case LibFunc::cospif:
2056     case LibFunc::cospi:
2057       return optimizeSinCosPi(CI, Builder);
2058     case LibFunc::powf:
2059     case LibFunc::pow:
2060     case LibFunc::powl:
2061       return optimizePow(CI, Builder);
2062     case LibFunc::exp2l:
2063     case LibFunc::exp2:
2064     case LibFunc::exp2f:
2065       return optimizeExp2(CI, Builder);
2066     case LibFunc::fabsf:
2067     case LibFunc::fabs:
2068     case LibFunc::fabsl:
2069       return optimizeFabs(CI, Builder);
2070     case LibFunc::sqrtf:
2071     case LibFunc::sqrt:
2072     case LibFunc::sqrtl:
2073       return optimizeSqrt(CI, Builder);
2074     case LibFunc::ffs:
2075     case LibFunc::ffsl:
2076     case LibFunc::ffsll:
2077       return optimizeFFS(CI, Builder);
2078     case LibFunc::fls:
2079     case LibFunc::flsl:
2080     case LibFunc::flsll:
2081       return optimizeFls(CI, Builder);
2082     case LibFunc::abs:
2083     case LibFunc::labs:
2084     case LibFunc::llabs:
2085       return optimizeAbs(CI, Builder);
2086     case LibFunc::isdigit:
2087       return optimizeIsDigit(CI, Builder);
2088     case LibFunc::isascii:
2089       return optimizeIsAscii(CI, Builder);
2090     case LibFunc::toascii:
2091       return optimizeToAscii(CI, Builder);
2092     case LibFunc::printf:
2093       return optimizePrintF(CI, Builder);
2094     case LibFunc::sprintf:
2095       return optimizeSPrintF(CI, Builder);
2096     case LibFunc::fprintf:
2097       return optimizeFPrintF(CI, Builder);
2098     case LibFunc::fwrite:
2099       return optimizeFWrite(CI, Builder);
2100     case LibFunc::fputs:
2101       return optimizeFPuts(CI, Builder);
2102     case LibFunc::log:
2103     case LibFunc::log10:
2104     case LibFunc::log1p:
2105     case LibFunc::log2:
2106     case LibFunc::logb:
2107       return optimizeLog(CI, Builder);
2108     case LibFunc::puts:
2109       return optimizePuts(CI, Builder);
2110     case LibFunc::tan:
2111     case LibFunc::tanf:
2112     case LibFunc::tanl:
2113       return optimizeTan(CI, Builder);
2114     case LibFunc::perror:
2115       return optimizeErrorReporting(CI, Builder);
2116     case LibFunc::vfprintf:
2117     case LibFunc::fiprintf:
2118       return optimizeErrorReporting(CI, Builder, 0);
2119     case LibFunc::fputc:
2120       return optimizeErrorReporting(CI, Builder, 1);
2121     case LibFunc::ceil:
2122     case LibFunc::floor:
2123     case LibFunc::rint:
2124     case LibFunc::round:
2125     case LibFunc::nearbyint:
2126     case LibFunc::trunc:
2127       if (hasFloatVersion(FuncName))
2128         return optimizeUnaryDoubleFP(CI, Builder, false);
2129       return nullptr;
2130     case LibFunc::acos:
2131     case LibFunc::acosh:
2132     case LibFunc::asin:
2133     case LibFunc::asinh:
2134     case LibFunc::atan:
2135     case LibFunc::atanh:
2136     case LibFunc::cbrt:
2137     case LibFunc::cosh:
2138     case LibFunc::exp:
2139     case LibFunc::exp10:
2140     case LibFunc::expm1:
2141     case LibFunc::sin:
2142     case LibFunc::sinh:
2143     case LibFunc::tanh:
2144       if (UnsafeFPShrink && hasFloatVersion(FuncName))
2145         return optimizeUnaryDoubleFP(CI, Builder, true);
2146       return nullptr;
2147     case LibFunc::copysign:
2148       if (hasFloatVersion(FuncName))
2149         return optimizeBinaryDoubleFP(CI, Builder);
2150       return nullptr;
2151     case LibFunc::fminf:
2152     case LibFunc::fmin:
2153     case LibFunc::fminl:
2154     case LibFunc::fmaxf:
2155     case LibFunc::fmax:
2156     case LibFunc::fmaxl:
2157       return optimizeFMinFMax(CI, Builder);
2158     default:
2159       return nullptr;
2160     }
2161   }
2162   return nullptr;
2163 }
2164 
2165 LibCallSimplifier::LibCallSimplifier(
2166     const DataLayout &DL, const TargetLibraryInfo *TLI,
2167     function_ref<void(Instruction *, Value *)> Replacer)
2168     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), UnsafeFPShrink(false),
2169       Replacer(Replacer) {}
2170 
2171 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
2172   // Indirect through the replacer used in this instance.
2173   Replacer(I, With);
2174 }
2175 
2176 // TODO:
2177 //   Additional cases that we need to add to this file:
2178 //
2179 // cbrt:
2180 //   * cbrt(expN(X))  -> expN(x/3)
2181 //   * cbrt(sqrt(x))  -> pow(x,1/6)
2182 //   * cbrt(cbrt(x))  -> pow(x,1/9)
2183 //
2184 // exp, expf, expl:
2185 //   * exp(log(x))  -> x
2186 //
2187 // log, logf, logl:
2188 //   * log(exp(x))   -> x
2189 //   * log(exp(y))   -> y*log(e)
2190 //   * log(exp10(y)) -> y*log(10)
2191 //   * log(sqrt(x))  -> 0.5*log(x)
2192 //
2193 // lround, lroundf, lroundl:
2194 //   * lround(cnst) -> cnst'
2195 //
2196 // pow, powf, powl:
2197 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
2198 //   * pow(pow(x,y),z)-> pow(x,y*z)
2199 //
2200 // round, roundf, roundl:
2201 //   * round(cnst) -> cnst'
2202 //
2203 // signbit:
2204 //   * signbit(cnst) -> cnst'
2205 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2206 //
2207 // sqrt, sqrtf, sqrtl:
2208 //   * sqrt(expN(x))  -> expN(x*0.5)
2209 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2210 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2211 //
2212 // trunc, truncf, truncl:
2213 //   * trunc(cnst) -> cnst'
2214 //
2215 //
2216 
2217 //===----------------------------------------------------------------------===//
2218 // Fortified Library Call Optimizations
2219 //===----------------------------------------------------------------------===//
2220 
2221 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
2222                                                          unsigned ObjSizeOp,
2223                                                          unsigned SizeOp,
2224                                                          bool isString) {
2225   if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
2226     return true;
2227   if (ConstantInt *ObjSizeCI =
2228           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
2229     if (ObjSizeCI->isAllOnesValue())
2230       return true;
2231     // If the object size wasn't -1 (unknown), bail out if we were asked to.
2232     if (OnlyLowerUnknownSize)
2233       return false;
2234     if (isString) {
2235       uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
2236       // If the length is 0 we don't know how long it is and so we can't
2237       // remove the check.
2238       if (Len == 0)
2239         return false;
2240       return ObjSizeCI->getZExtValue() >= Len;
2241     }
2242     if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
2243       return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
2244   }
2245   return false;
2246 }
2247 
2248 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
2249                                                      IRBuilder<> &B) {
2250   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2251     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2252                    CI->getArgOperand(2), 1);
2253     return CI->getArgOperand(0);
2254   }
2255   return nullptr;
2256 }
2257 
2258 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
2259                                                       IRBuilder<> &B) {
2260   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2261     B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
2262                     CI->getArgOperand(2), 1);
2263     return CI->getArgOperand(0);
2264   }
2265   return nullptr;
2266 }
2267 
2268 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
2269                                                      IRBuilder<> &B) {
2270   // TODO: Try foldMallocMemset() here.
2271 
2272   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2273     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
2274     B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
2275     return CI->getArgOperand(0);
2276   }
2277   return nullptr;
2278 }
2279 
2280 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
2281                                                       IRBuilder<> &B,
2282                                                       LibFunc::Func Func) {
2283   Function *Callee = CI->getCalledFunction();
2284   StringRef Name = Callee->getName();
2285   const DataLayout &DL = CI->getModule()->getDataLayout();
2286   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
2287         *ObjSize = CI->getArgOperand(2);
2288 
2289   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
2290   if (Func == LibFunc::stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
2291     Value *StrLen = emitStrLen(Src, B, DL, TLI);
2292     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
2293   }
2294 
2295   // If a) we don't have any length information, or b) we know this will
2296   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
2297   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
2298   // TODO: It might be nice to get a maximum length out of the possible
2299   // string lengths for varying.
2300   if (isFortifiedCallFoldable(CI, 2, 1, true))
2301     return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
2302 
2303   if (OnlyLowerUnknownSize)
2304     return nullptr;
2305 
2306   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
2307   uint64_t Len = GetStringLength(Src);
2308   if (Len == 0)
2309     return nullptr;
2310 
2311   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
2312   Value *LenV = ConstantInt::get(SizeTTy, Len);
2313   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
2314   // If the function was an __stpcpy_chk, and we were able to fold it into
2315   // a __memcpy_chk, we still need to return the correct end pointer.
2316   if (Ret && Func == LibFunc::stpcpy_chk)
2317     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
2318   return Ret;
2319 }
2320 
2321 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
2322                                                        IRBuilder<> &B,
2323                                                        LibFunc::Func Func) {
2324   Function *Callee = CI->getCalledFunction();
2325   StringRef Name = Callee->getName();
2326   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2327     Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2328                              CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
2329     return Ret;
2330   }
2331   return nullptr;
2332 }
2333 
2334 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
2335   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
2336   // Some clang users checked for _chk libcall availability using:
2337   //   __has_builtin(__builtin___memcpy_chk)
2338   // When compiling with -fno-builtin, this is always true.
2339   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
2340   // end up with fortified libcalls, which isn't acceptable in a freestanding
2341   // environment which only provides their non-fortified counterparts.
2342   //
2343   // Until we change clang and/or teach external users to check for availability
2344   // differently, disregard the "nobuiltin" attribute and TLI::has.
2345   //
2346   // PR23093.
2347 
2348   LibFunc::Func Func;
2349   Function *Callee = CI->getCalledFunction();
2350 
2351   SmallVector<OperandBundleDef, 2> OpBundles;
2352   CI->getOperandBundlesAsDefs(OpBundles);
2353   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2354   bool isCallingConvC = isCallingConvCCompatible(CI);
2355 
2356   // First, check that this is a known library functions and that the prototype
2357   // is correct.
2358   if (!TLI->getLibFunc(*Callee, Func))
2359     return nullptr;
2360 
2361   // We never change the calling convention.
2362   if (!ignoreCallingConv(Func) && !isCallingConvC)
2363     return nullptr;
2364 
2365   switch (Func) {
2366   case LibFunc::memcpy_chk:
2367     return optimizeMemCpyChk(CI, Builder);
2368   case LibFunc::memmove_chk:
2369     return optimizeMemMoveChk(CI, Builder);
2370   case LibFunc::memset_chk:
2371     return optimizeMemSetChk(CI, Builder);
2372   case LibFunc::stpcpy_chk:
2373   case LibFunc::strcpy_chk:
2374     return optimizeStrpCpyChk(CI, Builder, Func);
2375   case LibFunc::stpncpy_chk:
2376   case LibFunc::strncpy_chk:
2377     return optimizeStrpNCpyChk(CI, Builder, Func);
2378   default:
2379     break;
2380   }
2381   return nullptr;
2382 }
2383 
2384 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
2385     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
2386     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
2387