1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is a utility pass used for testing the InstructionSimplify analysis. 11 // The analysis is applied to every instruction, and if it simplifies then the 12 // instruction is replaced by the simplification. If you are looking for a pass 13 // that performs serious instruction folding, use the instcombine pass instead. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DiagnosticInfo.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Transforms/Utils/BuildLibCalls.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 static cl::opt<bool> 40 ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden, 41 cl::desc("Treat error-reporting calls as cold")); 42 43 static cl::opt<bool> 44 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 45 cl::init(false), 46 cl::desc("Enable unsafe double to float " 47 "shrinking for math lib calls")); 48 49 50 //===----------------------------------------------------------------------===// 51 // Helper Functions 52 //===----------------------------------------------------------------------===// 53 54 static bool ignoreCallingConv(LibFunc::Func Func) { 55 return Func == LibFunc::abs || Func == LibFunc::labs || 56 Func == LibFunc::llabs || Func == LibFunc::strlen; 57 } 58 59 /// Return true if it only matters that the value is equal or not-equal to zero. 60 static bool isOnlyUsedInZeroEqualityComparison(Value *V) { 61 for (User *U : V->users()) { 62 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 63 if (IC->isEquality()) 64 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 65 if (C->isNullValue()) 66 continue; 67 // Unknown instruction. 68 return false; 69 } 70 return true; 71 } 72 73 /// Return true if it is only used in equality comparisons with With. 74 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 75 for (User *U : V->users()) { 76 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 77 if (IC->isEquality() && IC->getOperand(1) == With) 78 continue; 79 // Unknown instruction. 80 return false; 81 } 82 return true; 83 } 84 85 static bool callHasFloatingPointArgument(const CallInst *CI) { 86 return std::any_of(CI->op_begin(), CI->op_end(), [](const Use &OI) { 87 return OI->getType()->isFloatingPointTy(); 88 }); 89 } 90 91 /// \brief Check whether the overloaded unary floating point function 92 /// corresponding to \a Ty is available. 93 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty, 94 LibFunc::Func DoubleFn, LibFunc::Func FloatFn, 95 LibFunc::Func LongDoubleFn) { 96 switch (Ty->getTypeID()) { 97 case Type::FloatTyID: 98 return TLI->has(FloatFn); 99 case Type::DoubleTyID: 100 return TLI->has(DoubleFn); 101 default: 102 return TLI->has(LongDoubleFn); 103 } 104 } 105 106 /// \brief Returns whether \p F matches the signature expected for the 107 /// string/memory copying library function \p Func. 108 /// Acceptable functions are st[rp][n]?cpy, memove, memcpy, and memset. 109 /// Their fortified (_chk) counterparts are also accepted. 110 static bool checkStringCopyLibFuncSignature(Function *F, LibFunc::Func Func) { 111 const DataLayout &DL = F->getParent()->getDataLayout(); 112 FunctionType *FT = F->getFunctionType(); 113 LLVMContext &Context = F->getContext(); 114 Type *PCharTy = Type::getInt8PtrTy(Context); 115 Type *SizeTTy = DL.getIntPtrType(Context); 116 unsigned NumParams = FT->getNumParams(); 117 118 // All string libfuncs return the same type as the first parameter. 119 if (FT->getReturnType() != FT->getParamType(0)) 120 return false; 121 122 switch (Func) { 123 default: 124 llvm_unreachable("Can't check signature for non-string-copy libfunc."); 125 case LibFunc::stpncpy_chk: 126 case LibFunc::strncpy_chk: 127 --NumParams; // fallthrough 128 case LibFunc::stpncpy: 129 case LibFunc::strncpy: { 130 if (NumParams != 3 || FT->getParamType(0) != FT->getParamType(1) || 131 FT->getParamType(0) != PCharTy || !FT->getParamType(2)->isIntegerTy()) 132 return false; 133 break; 134 } 135 case LibFunc::strcpy_chk: 136 case LibFunc::stpcpy_chk: 137 --NumParams; // fallthrough 138 case LibFunc::stpcpy: 139 case LibFunc::strcpy: { 140 if (NumParams != 2 || FT->getParamType(0) != FT->getParamType(1) || 141 FT->getParamType(0) != PCharTy) 142 return false; 143 break; 144 } 145 case LibFunc::memmove_chk: 146 case LibFunc::memcpy_chk: 147 --NumParams; // fallthrough 148 case LibFunc::memmove: 149 case LibFunc::memcpy: { 150 if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() || 151 !FT->getParamType(1)->isPointerTy() || FT->getParamType(2) != SizeTTy) 152 return false; 153 break; 154 } 155 case LibFunc::memset_chk: 156 --NumParams; // fallthrough 157 case LibFunc::memset: { 158 if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() || 159 !FT->getParamType(1)->isIntegerTy() || FT->getParamType(2) != SizeTTy) 160 return false; 161 break; 162 } 163 } 164 // If this is a fortified libcall, the last parameter is a size_t. 165 if (NumParams == FT->getNumParams() - 1) 166 return FT->getParamType(FT->getNumParams() - 1) == SizeTTy; 167 return true; 168 } 169 170 //===----------------------------------------------------------------------===// 171 // String and Memory Library Call Optimizations 172 //===----------------------------------------------------------------------===// 173 174 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 175 Function *Callee = CI->getCalledFunction(); 176 // Verify the "strcat" function prototype. 177 FunctionType *FT = Callee->getFunctionType(); 178 if (FT->getNumParams() != 2|| 179 FT->getReturnType() != B.getInt8PtrTy() || 180 FT->getParamType(0) != FT->getReturnType() || 181 FT->getParamType(1) != FT->getReturnType()) 182 return nullptr; 183 184 // Extract some information from the instruction 185 Value *Dst = CI->getArgOperand(0); 186 Value *Src = CI->getArgOperand(1); 187 188 // See if we can get the length of the input string. 189 uint64_t Len = GetStringLength(Src); 190 if (Len == 0) 191 return nullptr; 192 --Len; // Unbias length. 193 194 // Handle the simple, do-nothing case: strcat(x, "") -> x 195 if (Len == 0) 196 return Dst; 197 198 return emitStrLenMemCpy(Src, Dst, Len, B); 199 } 200 201 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 202 IRBuilder<> &B) { 203 // We need to find the end of the destination string. That's where the 204 // memory is to be moved to. We just generate a call to strlen. 205 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 206 if (!DstLen) 207 return nullptr; 208 209 // Now that we have the destination's length, we must index into the 210 // destination's pointer to get the actual memcpy destination (end of 211 // the string .. we're concatenating). 212 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 213 214 // We have enough information to now generate the memcpy call to do the 215 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 216 B.CreateMemCpy(CpyDst, Src, 217 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1), 218 1); 219 return Dst; 220 } 221 222 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 223 Function *Callee = CI->getCalledFunction(); 224 // Verify the "strncat" function prototype. 225 FunctionType *FT = Callee->getFunctionType(); 226 if (FT->getNumParams() != 3 || FT->getReturnType() != B.getInt8PtrTy() || 227 FT->getParamType(0) != FT->getReturnType() || 228 FT->getParamType(1) != FT->getReturnType() || 229 !FT->getParamType(2)->isIntegerTy()) 230 return nullptr; 231 232 // Extract some information from the instruction. 233 Value *Dst = CI->getArgOperand(0); 234 Value *Src = CI->getArgOperand(1); 235 uint64_t Len; 236 237 // We don't do anything if length is not constant. 238 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 239 Len = LengthArg->getZExtValue(); 240 else 241 return nullptr; 242 243 // See if we can get the length of the input string. 244 uint64_t SrcLen = GetStringLength(Src); 245 if (SrcLen == 0) 246 return nullptr; 247 --SrcLen; // Unbias length. 248 249 // Handle the simple, do-nothing cases: 250 // strncat(x, "", c) -> x 251 // strncat(x, c, 0) -> x 252 if (SrcLen == 0 || Len == 0) 253 return Dst; 254 255 // We don't optimize this case. 256 if (Len < SrcLen) 257 return nullptr; 258 259 // strncat(x, s, c) -> strcat(x, s) 260 // s is constant so the strcat can be optimized further. 261 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 262 } 263 264 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 265 Function *Callee = CI->getCalledFunction(); 266 // Verify the "strchr" function prototype. 267 FunctionType *FT = Callee->getFunctionType(); 268 if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() || 269 FT->getParamType(0) != FT->getReturnType() || 270 !FT->getParamType(1)->isIntegerTy(32)) 271 return nullptr; 272 273 Value *SrcStr = CI->getArgOperand(0); 274 275 // If the second operand is non-constant, see if we can compute the length 276 // of the input string and turn this into memchr. 277 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 278 if (!CharC) { 279 uint64_t Len = GetStringLength(SrcStr); 280 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 281 return nullptr; 282 283 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 284 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 285 B, DL, TLI); 286 } 287 288 // Otherwise, the character is a constant, see if the first argument is 289 // a string literal. If so, we can constant fold. 290 StringRef Str; 291 if (!getConstantStringInfo(SrcStr, Str)) { 292 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 293 return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI), 294 "strchr"); 295 return nullptr; 296 } 297 298 // Compute the offset, make sure to handle the case when we're searching for 299 // zero (a weird way to spell strlen). 300 size_t I = (0xFF & CharC->getSExtValue()) == 0 301 ? Str.size() 302 : Str.find(CharC->getSExtValue()); 303 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 304 return Constant::getNullValue(CI->getType()); 305 306 // strchr(s+n,c) -> gep(s+n+i,c) 307 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 308 } 309 310 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 311 Function *Callee = CI->getCalledFunction(); 312 // Verify the "strrchr" function prototype. 313 FunctionType *FT = Callee->getFunctionType(); 314 if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() || 315 FT->getParamType(0) != FT->getReturnType() || 316 !FT->getParamType(1)->isIntegerTy(32)) 317 return nullptr; 318 319 Value *SrcStr = CI->getArgOperand(0); 320 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 321 322 // Cannot fold anything if we're not looking for a constant. 323 if (!CharC) 324 return nullptr; 325 326 StringRef Str; 327 if (!getConstantStringInfo(SrcStr, Str)) { 328 // strrchr(s, 0) -> strchr(s, 0) 329 if (CharC->isZero()) 330 return emitStrChr(SrcStr, '\0', B, TLI); 331 return nullptr; 332 } 333 334 // Compute the offset. 335 size_t I = (0xFF & CharC->getSExtValue()) == 0 336 ? Str.size() 337 : Str.rfind(CharC->getSExtValue()); 338 if (I == StringRef::npos) // Didn't find the char. Return null. 339 return Constant::getNullValue(CI->getType()); 340 341 // strrchr(s+n,c) -> gep(s+n+i,c) 342 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 343 } 344 345 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 346 Function *Callee = CI->getCalledFunction(); 347 // Verify the "strcmp" function prototype. 348 FunctionType *FT = Callee->getFunctionType(); 349 if (FT->getNumParams() != 2 || !FT->getReturnType()->isIntegerTy(32) || 350 FT->getParamType(0) != FT->getParamType(1) || 351 FT->getParamType(0) != B.getInt8PtrTy()) 352 return nullptr; 353 354 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 355 if (Str1P == Str2P) // strcmp(x,x) -> 0 356 return ConstantInt::get(CI->getType(), 0); 357 358 StringRef Str1, Str2; 359 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 360 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 361 362 // strcmp(x, y) -> cnst (if both x and y are constant strings) 363 if (HasStr1 && HasStr2) 364 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 365 366 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 367 return B.CreateNeg( 368 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 369 370 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 371 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 372 373 // strcmp(P, "x") -> memcmp(P, "x", 2) 374 uint64_t Len1 = GetStringLength(Str1P); 375 uint64_t Len2 = GetStringLength(Str2P); 376 if (Len1 && Len2) { 377 return emitMemCmp(Str1P, Str2P, 378 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 379 std::min(Len1, Len2)), 380 B, DL, TLI); 381 } 382 383 return nullptr; 384 } 385 386 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 387 Function *Callee = CI->getCalledFunction(); 388 // Verify the "strncmp" function prototype. 389 FunctionType *FT = Callee->getFunctionType(); 390 if (FT->getNumParams() != 3 || !FT->getReturnType()->isIntegerTy(32) || 391 FT->getParamType(0) != FT->getParamType(1) || 392 FT->getParamType(0) != B.getInt8PtrTy() || 393 !FT->getParamType(2)->isIntegerTy()) 394 return nullptr; 395 396 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 397 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 398 return ConstantInt::get(CI->getType(), 0); 399 400 // Get the length argument if it is constant. 401 uint64_t Length; 402 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 403 Length = LengthArg->getZExtValue(); 404 else 405 return nullptr; 406 407 if (Length == 0) // strncmp(x,y,0) -> 0 408 return ConstantInt::get(CI->getType(), 0); 409 410 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 411 return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 412 413 StringRef Str1, Str2; 414 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 415 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 416 417 // strncmp(x, y) -> cnst (if both x and y are constant strings) 418 if (HasStr1 && HasStr2) { 419 StringRef SubStr1 = Str1.substr(0, Length); 420 StringRef SubStr2 = Str2.substr(0, Length); 421 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 422 } 423 424 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 425 return B.CreateNeg( 426 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 427 428 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 429 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 430 431 return nullptr; 432 } 433 434 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 435 Function *Callee = CI->getCalledFunction(); 436 437 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strcpy)) 438 return nullptr; 439 440 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 441 if (Dst == Src) // strcpy(x,x) -> x 442 return Src; 443 444 // See if we can get the length of the input string. 445 uint64_t Len = GetStringLength(Src); 446 if (Len == 0) 447 return nullptr; 448 449 // We have enough information to now generate the memcpy call to do the 450 // copy for us. Make a memcpy to copy the nul byte with align = 1. 451 B.CreateMemCpy(Dst, Src, 452 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1); 453 return Dst; 454 } 455 456 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 457 Function *Callee = CI->getCalledFunction(); 458 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::stpcpy)) 459 return nullptr; 460 461 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 462 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 463 Value *StrLen = emitStrLen(Src, B, DL, TLI); 464 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 465 } 466 467 // See if we can get the length of the input string. 468 uint64_t Len = GetStringLength(Src); 469 if (Len == 0) 470 return nullptr; 471 472 Type *PT = Callee->getFunctionType()->getParamType(0); 473 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 474 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 475 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 476 477 // We have enough information to now generate the memcpy call to do the 478 // copy for us. Make a memcpy to copy the nul byte with align = 1. 479 B.CreateMemCpy(Dst, Src, LenV, 1); 480 return DstEnd; 481 } 482 483 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 484 Function *Callee = CI->getCalledFunction(); 485 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strncpy)) 486 return nullptr; 487 488 Value *Dst = CI->getArgOperand(0); 489 Value *Src = CI->getArgOperand(1); 490 Value *LenOp = CI->getArgOperand(2); 491 492 // See if we can get the length of the input string. 493 uint64_t SrcLen = GetStringLength(Src); 494 if (SrcLen == 0) 495 return nullptr; 496 --SrcLen; 497 498 if (SrcLen == 0) { 499 // strncpy(x, "", y) -> memset(x, '\0', y, 1) 500 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 501 return Dst; 502 } 503 504 uint64_t Len; 505 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 506 Len = LengthArg->getZExtValue(); 507 else 508 return nullptr; 509 510 if (Len == 0) 511 return Dst; // strncpy(x, y, 0) -> x 512 513 // Let strncpy handle the zero padding 514 if (Len > SrcLen + 1) 515 return nullptr; 516 517 Type *PT = Callee->getFunctionType()->getParamType(0); 518 // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] 519 B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1); 520 521 return Dst; 522 } 523 524 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 525 Function *Callee = CI->getCalledFunction(); 526 FunctionType *FT = Callee->getFunctionType(); 527 if (FT->getNumParams() != 1 || FT->getParamType(0) != B.getInt8PtrTy() || 528 !FT->getReturnType()->isIntegerTy()) 529 return nullptr; 530 531 Value *Src = CI->getArgOperand(0); 532 533 // Constant folding: strlen("xyz") -> 3 534 if (uint64_t Len = GetStringLength(Src)) 535 return ConstantInt::get(CI->getType(), Len - 1); 536 537 // If s is a constant pointer pointing to a string literal, we can fold 538 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 539 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 540 // We only try to simplify strlen when the pointer s points to an array 541 // of i8. Otherwise, we would need to scale the offset x before doing the 542 // subtraction. This will make the optimization more complex, and it's not 543 // very useful because calling strlen for a pointer of other types is 544 // very uncommon. 545 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 546 if (!isGEPBasedOnPointerToString(GEP)) 547 return nullptr; 548 549 StringRef Str; 550 if (getConstantStringInfo(GEP->getOperand(0), Str, 0, false)) { 551 size_t NullTermIdx = Str.find('\0'); 552 553 // If the string does not have '\0', leave it to strlen to compute 554 // its length. 555 if (NullTermIdx == StringRef::npos) 556 return nullptr; 557 558 Value *Offset = GEP->getOperand(2); 559 unsigned BitWidth = Offset->getType()->getIntegerBitWidth(); 560 APInt KnownZero(BitWidth, 0); 561 APInt KnownOne(BitWidth, 0); 562 computeKnownBits(Offset, KnownZero, KnownOne, DL, 0, nullptr, CI, 563 nullptr); 564 KnownZero.flipAllBits(); 565 size_t ArrSize = 566 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 567 568 // KnownZero's bits are flipped, so zeros in KnownZero now represent 569 // bits known to be zeros in Offset, and ones in KnowZero represent 570 // bits unknown in Offset. Therefore, Offset is known to be in range 571 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 572 // unsigned-less-than NullTermIdx. 573 // 574 // If Offset is not provably in the range [0, NullTermIdx], we can still 575 // optimize if we can prove that the program has undefined behavior when 576 // Offset is outside that range. That is the case when GEP->getOperand(0) 577 // is a pointer to an object whose memory extent is NullTermIdx+1. 578 if ((KnownZero.isNonNegative() && KnownZero.ule(NullTermIdx)) || 579 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 580 NullTermIdx == ArrSize - 1)) 581 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 582 Offset); 583 } 584 585 return nullptr; 586 } 587 588 // strlen(x?"foo":"bars") --> x ? 3 : 4 589 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 590 uint64_t LenTrue = GetStringLength(SI->getTrueValue()); 591 uint64_t LenFalse = GetStringLength(SI->getFalseValue()); 592 if (LenTrue && LenFalse) { 593 Function *Caller = CI->getParent()->getParent(); 594 emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller, 595 SI->getDebugLoc(), 596 "folded strlen(select) to select of constants"); 597 return B.CreateSelect(SI->getCondition(), 598 ConstantInt::get(CI->getType(), LenTrue - 1), 599 ConstantInt::get(CI->getType(), LenFalse - 1)); 600 } 601 } 602 603 // strlen(x) != 0 --> *x != 0 604 // strlen(x) == 0 --> *x == 0 605 if (isOnlyUsedInZeroEqualityComparison(CI)) 606 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); 607 608 return nullptr; 609 } 610 611 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 612 Function *Callee = CI->getCalledFunction(); 613 FunctionType *FT = Callee->getFunctionType(); 614 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || 615 FT->getParamType(1) != FT->getParamType(0) || 616 FT->getReturnType() != FT->getParamType(0)) 617 return nullptr; 618 619 StringRef S1, S2; 620 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 621 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 622 623 // strpbrk(s, "") -> nullptr 624 // strpbrk("", s) -> nullptr 625 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 626 return Constant::getNullValue(CI->getType()); 627 628 // Constant folding. 629 if (HasS1 && HasS2) { 630 size_t I = S1.find_first_of(S2); 631 if (I == StringRef::npos) // No match. 632 return Constant::getNullValue(CI->getType()); 633 634 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 635 "strpbrk"); 636 } 637 638 // strpbrk(s, "a") -> strchr(s, 'a') 639 if (HasS2 && S2.size() == 1) 640 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 641 642 return nullptr; 643 } 644 645 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 646 Function *Callee = CI->getCalledFunction(); 647 FunctionType *FT = Callee->getFunctionType(); 648 if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) || 649 !FT->getParamType(0)->isPointerTy() || 650 !FT->getParamType(1)->isPointerTy()) 651 return nullptr; 652 653 Value *EndPtr = CI->getArgOperand(1); 654 if (isa<ConstantPointerNull>(EndPtr)) { 655 // With a null EndPtr, this function won't capture the main argument. 656 // It would be readonly too, except that it still may write to errno. 657 CI->addAttribute(1, Attribute::NoCapture); 658 } 659 660 return nullptr; 661 } 662 663 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 664 Function *Callee = CI->getCalledFunction(); 665 FunctionType *FT = Callee->getFunctionType(); 666 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || 667 FT->getParamType(1) != FT->getParamType(0) || 668 !FT->getReturnType()->isIntegerTy()) 669 return nullptr; 670 671 StringRef S1, S2; 672 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 673 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 674 675 // strspn(s, "") -> 0 676 // strspn("", s) -> 0 677 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 678 return Constant::getNullValue(CI->getType()); 679 680 // Constant folding. 681 if (HasS1 && HasS2) { 682 size_t Pos = S1.find_first_not_of(S2); 683 if (Pos == StringRef::npos) 684 Pos = S1.size(); 685 return ConstantInt::get(CI->getType(), Pos); 686 } 687 688 return nullptr; 689 } 690 691 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 692 Function *Callee = CI->getCalledFunction(); 693 FunctionType *FT = Callee->getFunctionType(); 694 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || 695 FT->getParamType(1) != FT->getParamType(0) || 696 !FT->getReturnType()->isIntegerTy()) 697 return nullptr; 698 699 StringRef S1, S2; 700 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 701 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 702 703 // strcspn("", s) -> 0 704 if (HasS1 && S1.empty()) 705 return Constant::getNullValue(CI->getType()); 706 707 // Constant folding. 708 if (HasS1 && HasS2) { 709 size_t Pos = S1.find_first_of(S2); 710 if (Pos == StringRef::npos) 711 Pos = S1.size(); 712 return ConstantInt::get(CI->getType(), Pos); 713 } 714 715 // strcspn(s, "") -> strlen(s) 716 if (HasS2 && S2.empty()) 717 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 718 719 return nullptr; 720 } 721 722 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 723 Function *Callee = CI->getCalledFunction(); 724 FunctionType *FT = Callee->getFunctionType(); 725 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 726 !FT->getParamType(1)->isPointerTy() || 727 !FT->getReturnType()->isPointerTy()) 728 return nullptr; 729 730 // fold strstr(x, x) -> x. 731 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 732 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 733 734 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 735 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 736 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 737 if (!StrLen) 738 return nullptr; 739 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 740 StrLen, B, DL, TLI); 741 if (!StrNCmp) 742 return nullptr; 743 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 744 ICmpInst *Old = cast<ICmpInst>(*UI++); 745 Value *Cmp = 746 B.CreateICmp(Old->getPredicate(), StrNCmp, 747 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 748 replaceAllUsesWith(Old, Cmp); 749 } 750 return CI; 751 } 752 753 // See if either input string is a constant string. 754 StringRef SearchStr, ToFindStr; 755 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 756 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 757 758 // fold strstr(x, "") -> x. 759 if (HasStr2 && ToFindStr.empty()) 760 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 761 762 // If both strings are known, constant fold it. 763 if (HasStr1 && HasStr2) { 764 size_t Offset = SearchStr.find(ToFindStr); 765 766 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 767 return Constant::getNullValue(CI->getType()); 768 769 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 770 Value *Result = castToCStr(CI->getArgOperand(0), B); 771 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); 772 return B.CreateBitCast(Result, CI->getType()); 773 } 774 775 // fold strstr(x, "y") -> strchr(x, 'y'). 776 if (HasStr2 && ToFindStr.size() == 1) { 777 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 778 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 779 } 780 return nullptr; 781 } 782 783 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { 784 Function *Callee = CI->getCalledFunction(); 785 FunctionType *FT = Callee->getFunctionType(); 786 if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() || 787 !FT->getParamType(1)->isIntegerTy(32) || 788 !FT->getParamType(2)->isIntegerTy() || 789 !FT->getReturnType()->isPointerTy()) 790 return nullptr; 791 792 Value *SrcStr = CI->getArgOperand(0); 793 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 794 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 795 796 // memchr(x, y, 0) -> null 797 if (LenC && LenC->isNullValue()) 798 return Constant::getNullValue(CI->getType()); 799 800 // From now on we need at least constant length and string. 801 StringRef Str; 802 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 803 return nullptr; 804 805 // Truncate the string to LenC. If Str is smaller than LenC we will still only 806 // scan the string, as reading past the end of it is undefined and we can just 807 // return null if we don't find the char. 808 Str = Str.substr(0, LenC->getZExtValue()); 809 810 // If the char is variable but the input str and length are not we can turn 811 // this memchr call into a simple bit field test. Of course this only works 812 // when the return value is only checked against null. 813 // 814 // It would be really nice to reuse switch lowering here but we can't change 815 // the CFG at this point. 816 // 817 // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0 818 // after bounds check. 819 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 820 unsigned char Max = 821 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 822 reinterpret_cast<const unsigned char *>(Str.end())); 823 824 // Make sure the bit field we're about to create fits in a register on the 825 // target. 826 // FIXME: On a 64 bit architecture this prevents us from using the 827 // interesting range of alpha ascii chars. We could do better by emitting 828 // two bitfields or shifting the range by 64 if no lower chars are used. 829 if (!DL.fitsInLegalInteger(Max + 1)) 830 return nullptr; 831 832 // For the bit field use a power-of-2 type with at least 8 bits to avoid 833 // creating unnecessary illegal types. 834 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 835 836 // Now build the bit field. 837 APInt Bitfield(Width, 0); 838 for (char C : Str) 839 Bitfield.setBit((unsigned char)C); 840 Value *BitfieldC = B.getInt(Bitfield); 841 842 // First check that the bit field access is within bounds. 843 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 844 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 845 "memchr.bounds"); 846 847 // Create code that checks if the given bit is set in the field. 848 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 849 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 850 851 // Finally merge both checks and cast to pointer type. The inttoptr 852 // implicitly zexts the i1 to intptr type. 853 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 854 } 855 856 // Check if all arguments are constants. If so, we can constant fold. 857 if (!CharC) 858 return nullptr; 859 860 // Compute the offset. 861 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 862 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 863 return Constant::getNullValue(CI->getType()); 864 865 // memchr(s+n,c,l) -> gep(s+n+i,c) 866 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 867 } 868 869 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 870 Function *Callee = CI->getCalledFunction(); 871 FunctionType *FT = Callee->getFunctionType(); 872 if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() || 873 !FT->getParamType(1)->isPointerTy() || 874 !FT->getReturnType()->isIntegerTy(32)) 875 return nullptr; 876 877 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 878 879 if (LHS == RHS) // memcmp(s,s,x) -> 0 880 return Constant::getNullValue(CI->getType()); 881 882 // Make sure we have a constant length. 883 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 884 if (!LenC) 885 return nullptr; 886 uint64_t Len = LenC->getZExtValue(); 887 888 if (Len == 0) // memcmp(s1,s2,0) -> 0 889 return Constant::getNullValue(CI->getType()); 890 891 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 892 if (Len == 1) { 893 Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"), 894 CI->getType(), "lhsv"); 895 Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"), 896 CI->getType(), "rhsv"); 897 return B.CreateSub(LHSV, RHSV, "chardiff"); 898 } 899 900 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 901 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 902 903 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 904 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 905 906 if (getKnownAlignment(LHS, DL, CI) >= PrefAlignment && 907 getKnownAlignment(RHS, DL, CI) >= PrefAlignment) { 908 909 Type *LHSPtrTy = 910 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 911 Type *RHSPtrTy = 912 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 913 914 Value *LHSV = 915 B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy, "lhsc"), "lhsv"); 916 Value *RHSV = 917 B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy, "rhsc"), "rhsv"); 918 919 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 920 } 921 } 922 923 // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant) 924 StringRef LHSStr, RHSStr; 925 if (getConstantStringInfo(LHS, LHSStr) && 926 getConstantStringInfo(RHS, RHSStr)) { 927 // Make sure we're not reading out-of-bounds memory. 928 if (Len > LHSStr.size() || Len > RHSStr.size()) 929 return nullptr; 930 // Fold the memcmp and normalize the result. This way we get consistent 931 // results across multiple platforms. 932 uint64_t Ret = 0; 933 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 934 if (Cmp < 0) 935 Ret = -1; 936 else if (Cmp > 0) 937 Ret = 1; 938 return ConstantInt::get(CI->getType(), Ret); 939 } 940 941 return nullptr; 942 } 943 944 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { 945 Function *Callee = CI->getCalledFunction(); 946 947 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy)) 948 return nullptr; 949 950 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) 951 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 952 CI->getArgOperand(2), 1); 953 return CI->getArgOperand(0); 954 } 955 956 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { 957 Function *Callee = CI->getCalledFunction(); 958 959 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove)) 960 return nullptr; 961 962 // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) 963 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 964 CI->getArgOperand(2), 1); 965 return CI->getArgOperand(0); 966 } 967 968 // TODO: Does this belong in BuildLibCalls or should all of those similar 969 // functions be moved here? 970 static Value *emitCalloc(Value *Num, Value *Size, const AttributeSet &Attrs, 971 IRBuilder<> &B, const TargetLibraryInfo &TLI) { 972 LibFunc::Func Func; 973 if (!TLI.getLibFunc("calloc", Func) || !TLI.has(Func)) 974 return nullptr; 975 976 Module *M = B.GetInsertBlock()->getModule(); 977 const DataLayout &DL = M->getDataLayout(); 978 IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext())); 979 Value *Calloc = M->getOrInsertFunction("calloc", Attrs, B.getInt8PtrTy(), 980 PtrType, PtrType, nullptr); 981 CallInst *CI = B.CreateCall(Calloc, { Num, Size }, "calloc"); 982 983 if (const auto *F = dyn_cast<Function>(Calloc->stripPointerCasts())) 984 CI->setCallingConv(F->getCallingConv()); 985 986 return CI; 987 } 988 989 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 990 static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B, 991 const TargetLibraryInfo &TLI) { 992 // This has to be a memset of zeros (bzero). 993 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 994 if (!FillValue || FillValue->getZExtValue() != 0) 995 return nullptr; 996 997 // TODO: We should handle the case where the malloc has more than one use. 998 // This is necessary to optimize common patterns such as when the result of 999 // the malloc is checked against null or when a memset intrinsic is used in 1000 // place of a memset library call. 1001 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 1002 if (!Malloc || !Malloc->hasOneUse()) 1003 return nullptr; 1004 1005 // Is the inner call really malloc()? 1006 Function *InnerCallee = Malloc->getCalledFunction(); 1007 LibFunc::Func Func; 1008 if (!TLI.getLibFunc(InnerCallee->getName(), Func) || !TLI.has(Func) || 1009 Func != LibFunc::malloc) 1010 return nullptr; 1011 1012 // Matching the name is not good enough. Make sure the parameter and return 1013 // type match the standard library signature. 1014 FunctionType *FT = InnerCallee->getFunctionType(); 1015 if (FT->getNumParams() != 1 || !FT->getParamType(0)->isIntegerTy()) 1016 return nullptr; 1017 1018 auto *RetType = dyn_cast<PointerType>(FT->getReturnType()); 1019 if (!RetType || !RetType->getPointerElementType()->isIntegerTy(8)) 1020 return nullptr; 1021 1022 // The memset must cover the same number of bytes that are malloc'd. 1023 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 1024 return nullptr; 1025 1026 // Replace the malloc with a calloc. We need the data layout to know what the 1027 // actual size of a 'size_t' parameter is. 1028 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 1029 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 1030 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 1031 Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 1032 Malloc->getArgOperand(0), Malloc->getAttributes(), 1033 B, TLI); 1034 if (!Calloc) 1035 return nullptr; 1036 1037 Malloc->replaceAllUsesWith(Calloc); 1038 Malloc->eraseFromParent(); 1039 1040 return Calloc; 1041 } 1042 1043 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { 1044 Function *Callee = CI->getCalledFunction(); 1045 1046 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset)) 1047 return nullptr; 1048 1049 if (auto *Calloc = foldMallocMemset(CI, B, *TLI)) 1050 return Calloc; 1051 1052 // memset(p, v, n) -> llvm.memset(p, v, n, 1) 1053 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1054 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 1055 return CI->getArgOperand(0); 1056 } 1057 1058 //===----------------------------------------------------------------------===// 1059 // Math Library Optimizations 1060 //===----------------------------------------------------------------------===// 1061 1062 /// Return a variant of Val with float type. 1063 /// Currently this works in two cases: If Val is an FPExtension of a float 1064 /// value to something bigger, simply return the operand. 1065 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1066 /// loss of precision do so. 1067 static Value *valueHasFloatPrecision(Value *Val) { 1068 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1069 Value *Op = Cast->getOperand(0); 1070 if (Op->getType()->isFloatTy()) 1071 return Op; 1072 } 1073 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1074 APFloat F = Const->getValueAPF(); 1075 bool losesInfo; 1076 (void)F.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 1077 &losesInfo); 1078 if (!losesInfo) 1079 return ConstantFP::get(Const->getContext(), F); 1080 } 1081 return nullptr; 1082 } 1083 1084 /// Any floating-point library function that we're trying to simplify will have 1085 /// a signature of the form: fptype foo(fptype param1, fptype param2, ...). 1086 /// CheckDoubleTy indicates that 'fptype' must be 'double'. 1087 static bool matchesFPLibFunctionSignature(const Function *F, unsigned NumParams, 1088 bool CheckDoubleTy) { 1089 FunctionType *FT = F->getFunctionType(); 1090 if (FT->getNumParams() != NumParams) 1091 return false; 1092 1093 // The return type must match what we're looking for. 1094 Type *RetTy = FT->getReturnType(); 1095 if (CheckDoubleTy ? !RetTy->isDoubleTy() : !RetTy->isFloatingPointTy()) 1096 return false; 1097 1098 // Each parameter must match the return type, and therefore, match every other 1099 // parameter too. 1100 for (const Type *ParamTy : FT->params()) 1101 if (ParamTy != RetTy) 1102 return false; 1103 1104 return true; 1105 } 1106 1107 /// Shrink double -> float for unary functions like 'floor'. 1108 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1109 bool CheckRetType) { 1110 Function *Callee = CI->getCalledFunction(); 1111 if (!matchesFPLibFunctionSignature(Callee, 1, true)) 1112 return nullptr; 1113 1114 if (CheckRetType) { 1115 // Check if all the uses for function like 'sin' are converted to float. 1116 for (User *U : CI->users()) { 1117 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1118 if (!Cast || !Cast->getType()->isFloatTy()) 1119 return nullptr; 1120 } 1121 } 1122 1123 // If this is something like 'floor((double)floatval)', convert to floorf. 1124 Value *V = valueHasFloatPrecision(CI->getArgOperand(0)); 1125 if (V == nullptr) 1126 return nullptr; 1127 1128 // Propagate fast-math flags from the existing call to the new call. 1129 IRBuilder<>::FastMathFlagGuard Guard(B); 1130 B.setFastMathFlags(CI->getFastMathFlags()); 1131 1132 // floor((double)floatval) -> (double)floorf(floatval) 1133 if (Callee->isIntrinsic()) { 1134 Module *M = CI->getModule(); 1135 Intrinsic::ID IID = Callee->getIntrinsicID(); 1136 Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1137 V = B.CreateCall(F, V); 1138 } else { 1139 // The call is a library call rather than an intrinsic. 1140 V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes()); 1141 } 1142 1143 return B.CreateFPExt(V, B.getDoubleTy()); 1144 } 1145 1146 /// Shrink double -> float for binary functions like 'fmin/fmax'. 1147 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) { 1148 Function *Callee = CI->getCalledFunction(); 1149 if (!matchesFPLibFunctionSignature(Callee, 2, true)) 1150 return nullptr; 1151 1152 // If this is something like 'fmin((double)floatval1, (double)floatval2)', 1153 // or fmin(1.0, (double)floatval), then we convert it to fminf. 1154 Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0)); 1155 if (V1 == nullptr) 1156 return nullptr; 1157 Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1)); 1158 if (V2 == nullptr) 1159 return nullptr; 1160 1161 // Propagate fast-math flags from the existing call to the new call. 1162 IRBuilder<>::FastMathFlagGuard Guard(B); 1163 B.setFastMathFlags(CI->getFastMathFlags()); 1164 1165 // fmin((double)floatval1, (double)floatval2) 1166 // -> (double)fminf(floatval1, floatval2) 1167 // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP(). 1168 Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B, 1169 Callee->getAttributes()); 1170 return B.CreateFPExt(V, B.getDoubleTy()); 1171 } 1172 1173 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) { 1174 Function *Callee = CI->getCalledFunction(); 1175 if (!matchesFPLibFunctionSignature(Callee, 1, false)) 1176 return nullptr; 1177 1178 Value *Ret = nullptr; 1179 StringRef Name = Callee->getName(); 1180 if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name)) 1181 Ret = optimizeUnaryDoubleFP(CI, B, true); 1182 1183 // cos(-x) -> cos(x) 1184 Value *Op1 = CI->getArgOperand(0); 1185 if (BinaryOperator::isFNeg(Op1)) { 1186 BinaryOperator *BinExpr = cast<BinaryOperator>(Op1); 1187 return B.CreateCall(Callee, BinExpr->getOperand(1), "cos"); 1188 } 1189 return Ret; 1190 } 1191 1192 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) { 1193 // Multiplications calculated using Addition Chains. 1194 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1195 1196 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1197 1198 if (InnerChain[Exp]) 1199 return InnerChain[Exp]; 1200 1201 static const unsigned AddChain[33][2] = { 1202 {0, 0}, // Unused. 1203 {0, 0}, // Unused (base case = pow1). 1204 {1, 1}, // Unused (pre-computed). 1205 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1206 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1207 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1208 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1209 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1210 }; 1211 1212 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1213 getPow(InnerChain, AddChain[Exp][1], B)); 1214 return InnerChain[Exp]; 1215 } 1216 1217 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) { 1218 Function *Callee = CI->getCalledFunction(); 1219 if (!matchesFPLibFunctionSignature(Callee, 2, false)) 1220 return nullptr; 1221 1222 Value *Ret = nullptr; 1223 StringRef Name = Callee->getName(); 1224 if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name)) 1225 Ret = optimizeUnaryDoubleFP(CI, B, true); 1226 1227 Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1); 1228 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { 1229 // pow(1.0, x) -> 1.0 1230 if (Op1C->isExactlyValue(1.0)) 1231 return Op1C; 1232 // pow(2.0, x) -> exp2(x) 1233 if (Op1C->isExactlyValue(2.0) && 1234 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f, 1235 LibFunc::exp2l)) 1236 return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp2), B, 1237 Callee->getAttributes()); 1238 // pow(10.0, x) -> exp10(x) 1239 if (Op1C->isExactlyValue(10.0) && 1240 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f, 1241 LibFunc::exp10l)) 1242 return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B, 1243 Callee->getAttributes()); 1244 } 1245 1246 // pow(exp(x), y) -> exp(x * y) 1247 // pow(exp2(x), y) -> exp2(x * y) 1248 // We enable these only with fast-math. Besides rounding differences, the 1249 // transformation changes overflow and underflow behavior quite dramatically. 1250 // Example: x = 1000, y = 0.001. 1251 // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1). 1252 auto *OpC = dyn_cast<CallInst>(Op1); 1253 if (OpC && OpC->hasUnsafeAlgebra() && CI->hasUnsafeAlgebra()) { 1254 LibFunc::Func Func; 1255 Function *OpCCallee = OpC->getCalledFunction(); 1256 if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) && 1257 TLI->has(Func) && (Func == LibFunc::exp || Func == LibFunc::exp2)) { 1258 IRBuilder<>::FastMathFlagGuard Guard(B); 1259 B.setFastMathFlags(CI->getFastMathFlags()); 1260 Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul"); 1261 return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B, 1262 OpCCallee->getAttributes()); 1263 } 1264 } 1265 1266 ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2); 1267 if (!Op2C) 1268 return Ret; 1269 1270 if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 1271 return ConstantFP::get(CI->getType(), 1.0); 1272 1273 if (Op2C->isExactlyValue(0.5) && 1274 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf, 1275 LibFunc::sqrtl) && 1276 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf, 1277 LibFunc::fabsl)) { 1278 1279 // In -ffast-math, pow(x, 0.5) -> sqrt(x). 1280 if (CI->hasUnsafeAlgebra()) { 1281 IRBuilder<>::FastMathFlagGuard Guard(B); 1282 B.setFastMathFlags(CI->getFastMathFlags()); 1283 return emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc::sqrt), B, 1284 Callee->getAttributes()); 1285 } 1286 1287 // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). 1288 // This is faster than calling pow, and still handles negative zero 1289 // and negative infinity correctly. 1290 // TODO: In finite-only mode, this could be just fabs(sqrt(x)). 1291 Value *Inf = ConstantFP::getInfinity(CI->getType()); 1292 Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); 1293 Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes()); 1294 Value *FAbs = 1295 emitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes()); 1296 Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf); 1297 Value *Sel = B.CreateSelect(FCmp, Inf, FAbs); 1298 return Sel; 1299 } 1300 1301 if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x 1302 return Op1; 1303 if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x 1304 return B.CreateFMul(Op1, Op1, "pow2"); 1305 if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x 1306 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip"); 1307 1308 // In -ffast-math, generate repeated fmul instead of generating pow(x, n). 1309 if (CI->hasUnsafeAlgebra()) { 1310 APFloat V = abs(Op2C->getValueAPF()); 1311 // We limit to a max of 7 fmul(s). Thus max exponent is 32. 1312 // This transformation applies to integer exponents only. 1313 if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan || 1314 !V.isInteger()) 1315 return nullptr; 1316 1317 // We will memoize intermediate products of the Addition Chain. 1318 Value *InnerChain[33] = {nullptr}; 1319 InnerChain[1] = Op1; 1320 InnerChain[2] = B.CreateFMul(Op1, Op1); 1321 1322 // We cannot readily convert a non-double type (like float) to a double. 1323 // So we first convert V to something which could be converted to double. 1324 bool ignored; 1325 V.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &ignored); 1326 1327 // TODO: Should the new instructions propagate the 'fast' flag of the pow()? 1328 Value *FMul = getPow(InnerChain, V.convertToDouble(), B); 1329 // For negative exponents simply compute the reciprocal. 1330 if (Op2C->isNegative()) 1331 FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul); 1332 return FMul; 1333 } 1334 1335 return nullptr; 1336 } 1337 1338 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1339 Function *Callee = CI->getCalledFunction(); 1340 if (!matchesFPLibFunctionSignature(Callee, 1, false)) 1341 return nullptr; 1342 1343 Value *Ret = nullptr; 1344 StringRef Name = Callee->getName(); 1345 if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name)) 1346 Ret = optimizeUnaryDoubleFP(CI, B, true); 1347 1348 Value *Op = CI->getArgOperand(0); 1349 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1350 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1351 LibFunc::Func LdExp = LibFunc::ldexpl; 1352 if (Op->getType()->isFloatTy()) 1353 LdExp = LibFunc::ldexpf; 1354 else if (Op->getType()->isDoubleTy()) 1355 LdExp = LibFunc::ldexp; 1356 1357 if (TLI->has(LdExp)) { 1358 Value *LdExpArg = nullptr; 1359 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 1360 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 1361 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 1362 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 1363 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 1364 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 1365 } 1366 1367 if (LdExpArg) { 1368 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); 1369 if (!Op->getType()->isFloatTy()) 1370 One = ConstantExpr::getFPExtend(One, Op->getType()); 1371 1372 Module *M = CI->getModule(); 1373 Value *NewCallee = 1374 M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), 1375 Op->getType(), B.getInt32Ty(), nullptr); 1376 CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg}); 1377 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 1378 CI->setCallingConv(F->getCallingConv()); 1379 1380 return CI; 1381 } 1382 } 1383 return Ret; 1384 } 1385 1386 Value *LibCallSimplifier::optimizeFabs(CallInst *CI, IRBuilder<> &B) { 1387 Function *Callee = CI->getCalledFunction(); 1388 if (!matchesFPLibFunctionSignature(Callee, 1, false)) 1389 return nullptr; 1390 1391 Value *Ret = nullptr; 1392 StringRef Name = Callee->getName(); 1393 if (Name == "fabs" && hasFloatVersion(Name)) 1394 Ret = optimizeUnaryDoubleFP(CI, B, false); 1395 1396 Value *Op = CI->getArgOperand(0); 1397 if (Instruction *I = dyn_cast<Instruction>(Op)) { 1398 // Fold fabs(x * x) -> x * x; any squared FP value must already be positive. 1399 if (I->getOpcode() == Instruction::FMul) 1400 if (I->getOperand(0) == I->getOperand(1)) 1401 return Op; 1402 } 1403 return Ret; 1404 } 1405 1406 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { 1407 Function *Callee = CI->getCalledFunction(); 1408 if (!matchesFPLibFunctionSignature(Callee, 2, false)) 1409 return nullptr; 1410 1411 // If we can shrink the call to a float function rather than a double 1412 // function, do that first. 1413 StringRef Name = Callee->getName(); 1414 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1415 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1416 return Ret; 1417 1418 IRBuilder<>::FastMathFlagGuard Guard(B); 1419 FastMathFlags FMF; 1420 if (CI->hasUnsafeAlgebra()) { 1421 // Unsafe algebra sets all fast-math-flags to true. 1422 FMF.setUnsafeAlgebra(); 1423 } else { 1424 // At a minimum, no-nans-fp-math must be true. 1425 if (!CI->hasNoNaNs()) 1426 return nullptr; 1427 // No-signed-zeros is implied by the definitions of fmax/fmin themselves: 1428 // "Ideally, fmax would be sensitive to the sign of zero, for example 1429 // fmax(-0. 0, +0. 0) would return +0; however, implementation in software 1430 // might be impractical." 1431 FMF.setNoSignedZeros(); 1432 FMF.setNoNaNs(); 1433 } 1434 B.setFastMathFlags(FMF); 1435 1436 // We have a relaxed floating-point environment. We can ignore NaN-handling 1437 // and transform to a compare and select. We do not have to consider errno or 1438 // exceptions, because fmin/fmax do not have those. 1439 Value *Op0 = CI->getArgOperand(0); 1440 Value *Op1 = CI->getArgOperand(1); 1441 Value *Cmp = Callee->getName().startswith("fmin") ? 1442 B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1); 1443 return B.CreateSelect(Cmp, Op0, Op1); 1444 } 1445 1446 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { 1447 Function *Callee = CI->getCalledFunction(); 1448 if (!matchesFPLibFunctionSignature(Callee, 1, false)) 1449 return nullptr; 1450 1451 Value *Ret = nullptr; 1452 StringRef Name = Callee->getName(); 1453 if (UnsafeFPShrink && hasFloatVersion(Name)) 1454 Ret = optimizeUnaryDoubleFP(CI, B, true); 1455 1456 if (!CI->hasUnsafeAlgebra()) 1457 return Ret; 1458 Value *Op1 = CI->getArgOperand(0); 1459 auto *OpC = dyn_cast<CallInst>(Op1); 1460 1461 // The earlier call must also be unsafe in order to do these transforms. 1462 if (!OpC || !OpC->hasUnsafeAlgebra()) 1463 return Ret; 1464 1465 // log(pow(x,y)) -> y*log(x) 1466 // This is only applicable to log, log2, log10. 1467 if (Name != "log" && Name != "log2" && Name != "log10") 1468 return Ret; 1469 1470 IRBuilder<>::FastMathFlagGuard Guard(B); 1471 FastMathFlags FMF; 1472 FMF.setUnsafeAlgebra(); 1473 B.setFastMathFlags(FMF); 1474 1475 LibFunc::Func Func; 1476 Function *F = OpC->getCalledFunction(); 1477 if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1478 Func == LibFunc::pow) || F->getIntrinsicID() == Intrinsic::pow)) 1479 return B.CreateFMul(OpC->getArgOperand(1), 1480 emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, 1481 Callee->getAttributes()), "mul"); 1482 1483 // log(exp2(y)) -> y*log(2) 1484 if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && 1485 TLI->has(Func) && Func == LibFunc::exp2) 1486 return B.CreateFMul( 1487 OpC->getArgOperand(0), 1488 emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), 1489 Callee->getName(), B, Callee->getAttributes()), 1490 "logmul"); 1491 return Ret; 1492 } 1493 1494 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1495 Function *Callee = CI->getCalledFunction(); 1496 if (!matchesFPLibFunctionSignature(Callee, 1, false)) 1497 return nullptr; 1498 1499 Value *Ret = nullptr; 1500 if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" || 1501 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1502 Ret = optimizeUnaryDoubleFP(CI, B, true); 1503 1504 if (!CI->hasUnsafeAlgebra()) 1505 return Ret; 1506 1507 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1508 if (!I || I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra()) 1509 return Ret; 1510 1511 // We're looking for a repeated factor in a multiplication tree, 1512 // so we can do this fold: sqrt(x * x) -> fabs(x); 1513 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 1514 Value *Op0 = I->getOperand(0); 1515 Value *Op1 = I->getOperand(1); 1516 Value *RepeatOp = nullptr; 1517 Value *OtherOp = nullptr; 1518 if (Op0 == Op1) { 1519 // Simple match: the operands of the multiply are identical. 1520 RepeatOp = Op0; 1521 } else { 1522 // Look for a more complicated pattern: one of the operands is itself 1523 // a multiply, so search for a common factor in that multiply. 1524 // Note: We don't bother looking any deeper than this first level or for 1525 // variations of this pattern because instcombine's visitFMUL and/or the 1526 // reassociation pass should give us this form. 1527 Value *OtherMul0, *OtherMul1; 1528 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1529 // Pattern: sqrt((x * y) * z) 1530 if (OtherMul0 == OtherMul1 && 1531 cast<Instruction>(Op0)->hasUnsafeAlgebra()) { 1532 // Matched: sqrt((x * x) * z) 1533 RepeatOp = OtherMul0; 1534 OtherOp = Op1; 1535 } 1536 } 1537 } 1538 if (!RepeatOp) 1539 return Ret; 1540 1541 // Fast math flags for any created instructions should match the sqrt 1542 // and multiply. 1543 IRBuilder<>::FastMathFlagGuard Guard(B); 1544 B.setFastMathFlags(I->getFastMathFlags()); 1545 1546 // If we found a repeated factor, hoist it out of the square root and 1547 // replace it with the fabs of that factor. 1548 Module *M = Callee->getParent(); 1549 Type *ArgType = I->getType(); 1550 Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1551 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1552 if (OtherOp) { 1553 // If we found a non-repeated factor, we still need to get its square 1554 // root. We then multiply that by the value that was simplified out 1555 // of the square root calculation. 1556 Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1557 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1558 return B.CreateFMul(FabsCall, SqrtCall); 1559 } 1560 return FabsCall; 1561 } 1562 1563 // TODO: Generalize to handle any trig function and its inverse. 1564 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { 1565 Function *Callee = CI->getCalledFunction(); 1566 if (!matchesFPLibFunctionSignature(Callee, 1, false)) 1567 return nullptr; 1568 1569 Value *Ret = nullptr; 1570 StringRef Name = Callee->getName(); 1571 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 1572 Ret = optimizeUnaryDoubleFP(CI, B, true); 1573 1574 Value *Op1 = CI->getArgOperand(0); 1575 auto *OpC = dyn_cast<CallInst>(Op1); 1576 if (!OpC) 1577 return Ret; 1578 1579 // Both calls must allow unsafe optimizations in order to remove them. 1580 if (!CI->hasUnsafeAlgebra() || !OpC->hasUnsafeAlgebra()) 1581 return Ret; 1582 1583 // tan(atan(x)) -> x 1584 // tanf(atanf(x)) -> x 1585 // tanl(atanl(x)) -> x 1586 LibFunc::Func Func; 1587 Function *F = OpC->getCalledFunction(); 1588 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1589 ((Func == LibFunc::atan && Callee->getName() == "tan") || 1590 (Func == LibFunc::atanf && Callee->getName() == "tanf") || 1591 (Func == LibFunc::atanl && Callee->getName() == "tanl"))) 1592 Ret = OpC->getArgOperand(0); 1593 return Ret; 1594 } 1595 1596 static bool isTrigLibCall(CallInst *CI) { 1597 Function *Callee = CI->getCalledFunction(); 1598 FunctionType *FT = Callee->getFunctionType(); 1599 1600 // We can only hope to do anything useful if we can ignore things like errno 1601 // and floating-point exceptions. 1602 bool AttributesSafe = 1603 CI->hasFnAttr(Attribute::NoUnwind) && CI->hasFnAttr(Attribute::ReadNone); 1604 1605 // Other than that we need float(float) or double(double) 1606 return AttributesSafe && FT->getNumParams() == 1 && 1607 FT->getReturnType() == FT->getParamType(0) && 1608 (FT->getParamType(0)->isFloatTy() || 1609 FT->getParamType(0)->isDoubleTy()); 1610 } 1611 1612 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1613 bool UseFloat, Value *&Sin, Value *&Cos, 1614 Value *&SinCos) { 1615 Type *ArgTy = Arg->getType(); 1616 Type *ResTy; 1617 StringRef Name; 1618 1619 Triple T(OrigCallee->getParent()->getTargetTriple()); 1620 if (UseFloat) { 1621 Name = "__sincospif_stret"; 1622 1623 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1624 // x86_64 can't use {float, float} since that would be returned in both 1625 // xmm0 and xmm1, which isn't what a real struct would do. 1626 ResTy = T.getArch() == Triple::x86_64 1627 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1628 : static_cast<Type *>(StructType::get(ArgTy, ArgTy, nullptr)); 1629 } else { 1630 Name = "__sincospi_stret"; 1631 ResTy = StructType::get(ArgTy, ArgTy, nullptr); 1632 } 1633 1634 Module *M = OrigCallee->getParent(); 1635 Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), 1636 ResTy, ArgTy, nullptr); 1637 1638 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1639 // If the argument is an instruction, it must dominate all uses so put our 1640 // sincos call there. 1641 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1642 } else { 1643 // Otherwise (e.g. for a constant) the beginning of the function is as 1644 // good a place as any. 1645 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1646 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1647 } 1648 1649 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1650 1651 if (SinCos->getType()->isStructTy()) { 1652 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1653 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1654 } else { 1655 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1656 "sinpi"); 1657 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1658 "cospi"); 1659 } 1660 } 1661 1662 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1663 // Make sure the prototype is as expected, otherwise the rest of the 1664 // function is probably invalid and likely to abort. 1665 if (!isTrigLibCall(CI)) 1666 return nullptr; 1667 1668 Value *Arg = CI->getArgOperand(0); 1669 SmallVector<CallInst *, 1> SinCalls; 1670 SmallVector<CallInst *, 1> CosCalls; 1671 SmallVector<CallInst *, 1> SinCosCalls; 1672 1673 bool IsFloat = Arg->getType()->isFloatTy(); 1674 1675 // Look for all compatible sinpi, cospi and sincospi calls with the same 1676 // argument. If there are enough (in some sense) we can make the 1677 // substitution. 1678 Function *F = CI->getFunction(); 1679 for (User *U : Arg->users()) 1680 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 1681 1682 // It's only worthwhile if both sinpi and cospi are actually used. 1683 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1684 return nullptr; 1685 1686 Value *Sin, *Cos, *SinCos; 1687 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1688 1689 replaceTrigInsts(SinCalls, Sin); 1690 replaceTrigInsts(CosCalls, Cos); 1691 replaceTrigInsts(SinCosCalls, SinCos); 1692 1693 return nullptr; 1694 } 1695 1696 void LibCallSimplifier::classifyArgUse( 1697 Value *Val, Function *F, bool IsFloat, 1698 SmallVectorImpl<CallInst *> &SinCalls, 1699 SmallVectorImpl<CallInst *> &CosCalls, 1700 SmallVectorImpl<CallInst *> &SinCosCalls) { 1701 CallInst *CI = dyn_cast<CallInst>(Val); 1702 1703 if (!CI) 1704 return; 1705 1706 // Don't consider calls in other functions. 1707 if (CI->getFunction() != F) 1708 return; 1709 1710 Function *Callee = CI->getCalledFunction(); 1711 LibFunc::Func Func; 1712 if (!Callee || !TLI->getLibFunc(Callee->getName(), Func) || !TLI->has(Func) || 1713 !isTrigLibCall(CI)) 1714 return; 1715 1716 if (IsFloat) { 1717 if (Func == LibFunc::sinpif) 1718 SinCalls.push_back(CI); 1719 else if (Func == LibFunc::cospif) 1720 CosCalls.push_back(CI); 1721 else if (Func == LibFunc::sincospif_stret) 1722 SinCosCalls.push_back(CI); 1723 } else { 1724 if (Func == LibFunc::sinpi) 1725 SinCalls.push_back(CI); 1726 else if (Func == LibFunc::cospi) 1727 CosCalls.push_back(CI); 1728 else if (Func == LibFunc::sincospi_stret) 1729 SinCosCalls.push_back(CI); 1730 } 1731 } 1732 1733 void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls, 1734 Value *Res) { 1735 for (CallInst *C : Calls) 1736 replaceAllUsesWith(C, Res); 1737 } 1738 1739 //===----------------------------------------------------------------------===// 1740 // Integer Library Call Optimizations 1741 //===----------------------------------------------------------------------===// 1742 1743 static bool checkIntUnaryReturnAndParam(Function *Callee) { 1744 FunctionType *FT = Callee->getFunctionType(); 1745 return FT->getNumParams() == 1 && FT->getReturnType()->isIntegerTy(32) && 1746 FT->getParamType(0)->isIntegerTy(); 1747 } 1748 1749 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1750 Function *Callee = CI->getCalledFunction(); 1751 if (!checkIntUnaryReturnAndParam(Callee)) 1752 return nullptr; 1753 Value *Op = CI->getArgOperand(0); 1754 1755 // Constant fold. 1756 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1757 if (CI->isZero()) // ffs(0) -> 0. 1758 return B.getInt32(0); 1759 // ffs(c) -> cttz(c)+1 1760 return B.getInt32(CI->getValue().countTrailingZeros() + 1); 1761 } 1762 1763 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1764 Type *ArgType = Op->getType(); 1765 Value *F = 1766 Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType); 1767 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 1768 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1769 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1770 1771 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1772 return B.CreateSelect(Cond, V, B.getInt32(0)); 1773 } 1774 1775 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1776 Function *Callee = CI->getCalledFunction(); 1777 FunctionType *FT = Callee->getFunctionType(); 1778 // We require integer(integer) where the types agree. 1779 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || 1780 FT->getParamType(0) != FT->getReturnType()) 1781 return nullptr; 1782 1783 // abs(x) -> x >s -1 ? x : -x 1784 Value *Op = CI->getArgOperand(0); 1785 Value *Pos = 1786 B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos"); 1787 Value *Neg = B.CreateNeg(Op, "neg"); 1788 return B.CreateSelect(Pos, Op, Neg); 1789 } 1790 1791 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 1792 if (!checkIntUnaryReturnAndParam(CI->getCalledFunction())) 1793 return nullptr; 1794 1795 // isdigit(c) -> (c-'0') <u 10 1796 Value *Op = CI->getArgOperand(0); 1797 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1798 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1799 return B.CreateZExt(Op, CI->getType()); 1800 } 1801 1802 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 1803 if (!checkIntUnaryReturnAndParam(CI->getCalledFunction())) 1804 return nullptr; 1805 1806 // isascii(c) -> c <u 128 1807 Value *Op = CI->getArgOperand(0); 1808 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1809 return B.CreateZExt(Op, CI->getType()); 1810 } 1811 1812 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 1813 if (!checkIntUnaryReturnAndParam(CI->getCalledFunction())) 1814 return nullptr; 1815 1816 // toascii(c) -> c & 0x7f 1817 return B.CreateAnd(CI->getArgOperand(0), 1818 ConstantInt::get(CI->getType(), 0x7F)); 1819 } 1820 1821 //===----------------------------------------------------------------------===// 1822 // Formatting and IO Library Call Optimizations 1823 //===----------------------------------------------------------------------===// 1824 1825 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 1826 1827 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 1828 int StreamArg) { 1829 // Error reporting calls should be cold, mark them as such. 1830 // This applies even to non-builtin calls: it is only a hint and applies to 1831 // functions that the frontend might not understand as builtins. 1832 1833 // This heuristic was suggested in: 1834 // Improving Static Branch Prediction in a Compiler 1835 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 1836 // Proceedings of PACT'98, Oct. 1998, IEEE 1837 Function *Callee = CI->getCalledFunction(); 1838 1839 if (!CI->hasFnAttr(Attribute::Cold) && 1840 isReportingError(Callee, CI, StreamArg)) { 1841 CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold); 1842 } 1843 1844 return nullptr; 1845 } 1846 1847 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 1848 if (!ColdErrorCalls || !Callee || !Callee->isDeclaration()) 1849 return false; 1850 1851 if (StreamArg < 0) 1852 return true; 1853 1854 // These functions might be considered cold, but only if their stream 1855 // argument is stderr. 1856 1857 if (StreamArg >= (int)CI->getNumArgOperands()) 1858 return false; 1859 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 1860 if (!LI) 1861 return false; 1862 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 1863 if (!GV || !GV->isDeclaration()) 1864 return false; 1865 return GV->getName() == "stderr"; 1866 } 1867 1868 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 1869 // Check for a fixed format string. 1870 StringRef FormatStr; 1871 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 1872 return nullptr; 1873 1874 // Empty format string -> noop. 1875 if (FormatStr.empty()) // Tolerate printf's declared void. 1876 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 1877 1878 // Do not do any of the following transformations if the printf return value 1879 // is used, in general the printf return value is not compatible with either 1880 // putchar() or puts(). 1881 if (!CI->use_empty()) 1882 return nullptr; 1883 1884 // printf("x") -> putchar('x'), even for '%'. 1885 if (FormatStr.size() == 1) 1886 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 1887 1888 // printf("%s", "a") --> putchar('a') 1889 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 1890 StringRef ChrStr; 1891 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 1892 return nullptr; 1893 if (ChrStr.size() != 1) 1894 return nullptr; 1895 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 1896 } 1897 1898 // printf("foo\n") --> puts("foo") 1899 if (FormatStr[FormatStr.size() - 1] == '\n' && 1900 FormatStr.find('%') == StringRef::npos) { // No format characters. 1901 // Create a string literal with no \n on it. We expect the constant merge 1902 // pass to be run after this pass, to merge duplicate strings. 1903 FormatStr = FormatStr.drop_back(); 1904 Value *GV = B.CreateGlobalString(FormatStr, "str"); 1905 return emitPutS(GV, B, TLI); 1906 } 1907 1908 // Optimize specific format strings. 1909 // printf("%c", chr) --> putchar(chr) 1910 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 1911 CI->getArgOperand(1)->getType()->isIntegerTy()) 1912 return emitPutChar(CI->getArgOperand(1), B, TLI); 1913 1914 // printf("%s\n", str) --> puts(str) 1915 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 1916 CI->getArgOperand(1)->getType()->isPointerTy()) 1917 return emitPutS(CI->getArgOperand(1), B, TLI); 1918 return nullptr; 1919 } 1920 1921 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 1922 1923 Function *Callee = CI->getCalledFunction(); 1924 // Require one fixed pointer argument and an integer/void result. 1925 FunctionType *FT = Callee->getFunctionType(); 1926 if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || 1927 !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy())) 1928 return nullptr; 1929 1930 if (Value *V = optimizePrintFString(CI, B)) { 1931 return V; 1932 } 1933 1934 // printf(format, ...) -> iprintf(format, ...) if no floating point 1935 // arguments. 1936 if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) { 1937 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1938 Constant *IPrintFFn = 1939 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 1940 CallInst *New = cast<CallInst>(CI->clone()); 1941 New->setCalledFunction(IPrintFFn); 1942 B.Insert(New); 1943 return New; 1944 } 1945 return nullptr; 1946 } 1947 1948 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 1949 // Check for a fixed format string. 1950 StringRef FormatStr; 1951 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1952 return nullptr; 1953 1954 // If we just have a format string (nothing else crazy) transform it. 1955 if (CI->getNumArgOperands() == 2) { 1956 // Make sure there's no % in the constant array. We could try to handle 1957 // %% -> % in the future if we cared. 1958 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1959 if (FormatStr[i] == '%') 1960 return nullptr; // we found a format specifier, bail out. 1961 1962 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) 1963 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 1964 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 1965 FormatStr.size() + 1), 1966 1); // Copy the null byte. 1967 return ConstantInt::get(CI->getType(), FormatStr.size()); 1968 } 1969 1970 // The remaining optimizations require the format string to be "%s" or "%c" 1971 // and have an extra operand. 1972 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1973 CI->getNumArgOperands() < 3) 1974 return nullptr; 1975 1976 // Decode the second character of the format string. 1977 if (FormatStr[1] == 'c') { 1978 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 1979 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1980 return nullptr; 1981 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 1982 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 1983 B.CreateStore(V, Ptr); 1984 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 1985 B.CreateStore(B.getInt8(0), Ptr); 1986 1987 return ConstantInt::get(CI->getType(), 1); 1988 } 1989 1990 if (FormatStr[1] == 's') { 1991 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) 1992 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1993 return nullptr; 1994 1995 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 1996 if (!Len) 1997 return nullptr; 1998 Value *IncLen = 1999 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2000 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1); 2001 2002 // The sprintf result is the unincremented number of bytes in the string. 2003 return B.CreateIntCast(Len, CI->getType(), false); 2004 } 2005 return nullptr; 2006 } 2007 2008 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 2009 Function *Callee = CI->getCalledFunction(); 2010 // Require two fixed pointer arguments and an integer result. 2011 FunctionType *FT = Callee->getFunctionType(); 2012 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 2013 !FT->getParamType(1)->isPointerTy() || 2014 !FT->getReturnType()->isIntegerTy()) 2015 return nullptr; 2016 2017 if (Value *V = optimizeSPrintFString(CI, B)) { 2018 return V; 2019 } 2020 2021 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2022 // point arguments. 2023 if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) { 2024 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2025 Constant *SIPrintFFn = 2026 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2027 CallInst *New = cast<CallInst>(CI->clone()); 2028 New->setCalledFunction(SIPrintFFn); 2029 B.Insert(New); 2030 return New; 2031 } 2032 return nullptr; 2033 } 2034 2035 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 2036 optimizeErrorReporting(CI, B, 0); 2037 2038 // All the optimizations depend on the format string. 2039 StringRef FormatStr; 2040 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2041 return nullptr; 2042 2043 // Do not do any of the following transformations if the fprintf return 2044 // value is used, in general the fprintf return value is not compatible 2045 // with fwrite(), fputc() or fputs(). 2046 if (!CI->use_empty()) 2047 return nullptr; 2048 2049 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2050 if (CI->getNumArgOperands() == 2) { 2051 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 2052 if (FormatStr[i] == '%') // Could handle %% -> % if we cared. 2053 return nullptr; // We found a format specifier. 2054 2055 return emitFWrite( 2056 CI->getArgOperand(1), 2057 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 2058 CI->getArgOperand(0), B, DL, TLI); 2059 } 2060 2061 // The remaining optimizations require the format string to be "%s" or "%c" 2062 // and have an extra operand. 2063 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2064 CI->getNumArgOperands() < 3) 2065 return nullptr; 2066 2067 // Decode the second character of the format string. 2068 if (FormatStr[1] == 'c') { 2069 // fprintf(F, "%c", chr) --> fputc(chr, F) 2070 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2071 return nullptr; 2072 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2073 } 2074 2075 if (FormatStr[1] == 's') { 2076 // fprintf(F, "%s", str) --> fputs(str, F) 2077 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2078 return nullptr; 2079 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2080 } 2081 return nullptr; 2082 } 2083 2084 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 2085 Function *Callee = CI->getCalledFunction(); 2086 // Require two fixed paramters as pointers and integer result. 2087 FunctionType *FT = Callee->getFunctionType(); 2088 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 2089 !FT->getParamType(1)->isPointerTy() || 2090 !FT->getReturnType()->isIntegerTy()) 2091 return nullptr; 2092 2093 if (Value *V = optimizeFPrintFString(CI, B)) { 2094 return V; 2095 } 2096 2097 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2098 // floating point arguments. 2099 if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) { 2100 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2101 Constant *FIPrintFFn = 2102 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2103 CallInst *New = cast<CallInst>(CI->clone()); 2104 New->setCalledFunction(FIPrintFFn); 2105 B.Insert(New); 2106 return New; 2107 } 2108 return nullptr; 2109 } 2110 2111 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 2112 optimizeErrorReporting(CI, B, 3); 2113 2114 Function *Callee = CI->getCalledFunction(); 2115 // Require a pointer, an integer, an integer, a pointer, returning integer. 2116 FunctionType *FT = Callee->getFunctionType(); 2117 if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() || 2118 !FT->getParamType(1)->isIntegerTy() || 2119 !FT->getParamType(2)->isIntegerTy() || 2120 !FT->getParamType(3)->isPointerTy() || 2121 !FT->getReturnType()->isIntegerTy()) 2122 return nullptr; 2123 2124 // Get the element size and count. 2125 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2126 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2127 if (!SizeC || !CountC) 2128 return nullptr; 2129 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2130 2131 // If this is writing zero records, remove the call (it's a noop). 2132 if (Bytes == 0) 2133 return ConstantInt::get(CI->getType(), 0); 2134 2135 // If this is writing one byte, turn it into fputc. 2136 // This optimisation is only valid, if the return value is unused. 2137 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2138 Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char"); 2139 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2140 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2141 } 2142 2143 return nullptr; 2144 } 2145 2146 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 2147 optimizeErrorReporting(CI, B, 1); 2148 2149 Function *Callee = CI->getCalledFunction(); 2150 2151 // Require two pointers. Also, we can't optimize if return value is used. 2152 FunctionType *FT = Callee->getFunctionType(); 2153 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 2154 !FT->getParamType(1)->isPointerTy() || !CI->use_empty()) 2155 return nullptr; 2156 2157 // fputs(s,F) --> fwrite(s,1,strlen(s),F) 2158 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2159 if (!Len) 2160 return nullptr; 2161 2162 // Known to have no uses (see above). 2163 return emitFWrite( 2164 CI->getArgOperand(0), 2165 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2166 CI->getArgOperand(1), B, DL, TLI); 2167 } 2168 2169 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 2170 Function *Callee = CI->getCalledFunction(); 2171 // Require one fixed pointer argument and an integer/void result. 2172 FunctionType *FT = Callee->getFunctionType(); 2173 if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || 2174 !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy())) 2175 return nullptr; 2176 2177 // Check for a constant string. 2178 StringRef Str; 2179 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2180 return nullptr; 2181 2182 if (Str.empty() && CI->use_empty()) { 2183 // puts("") -> putchar('\n') 2184 Value *Res = emitPutChar(B.getInt32('\n'), B, TLI); 2185 if (CI->use_empty() || !Res) 2186 return Res; 2187 return B.CreateIntCast(Res, CI->getType(), true); 2188 } 2189 2190 return nullptr; 2191 } 2192 2193 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2194 LibFunc::Func Func; 2195 SmallString<20> FloatFuncName = FuncName; 2196 FloatFuncName += 'f'; 2197 if (TLI->getLibFunc(FloatFuncName, Func)) 2198 return TLI->has(Func); 2199 return false; 2200 } 2201 2202 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2203 IRBuilder<> &Builder) { 2204 LibFunc::Func Func; 2205 Function *Callee = CI->getCalledFunction(); 2206 StringRef FuncName = Callee->getName(); 2207 2208 // Check for string/memory library functions. 2209 if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) { 2210 // Make sure we never change the calling convention. 2211 assert((ignoreCallingConv(Func) || 2212 CI->getCallingConv() == llvm::CallingConv::C) && 2213 "Optimizing string/memory libcall would change the calling convention"); 2214 switch (Func) { 2215 case LibFunc::strcat: 2216 return optimizeStrCat(CI, Builder); 2217 case LibFunc::strncat: 2218 return optimizeStrNCat(CI, Builder); 2219 case LibFunc::strchr: 2220 return optimizeStrChr(CI, Builder); 2221 case LibFunc::strrchr: 2222 return optimizeStrRChr(CI, Builder); 2223 case LibFunc::strcmp: 2224 return optimizeStrCmp(CI, Builder); 2225 case LibFunc::strncmp: 2226 return optimizeStrNCmp(CI, Builder); 2227 case LibFunc::strcpy: 2228 return optimizeStrCpy(CI, Builder); 2229 case LibFunc::stpcpy: 2230 return optimizeStpCpy(CI, Builder); 2231 case LibFunc::strncpy: 2232 return optimizeStrNCpy(CI, Builder); 2233 case LibFunc::strlen: 2234 return optimizeStrLen(CI, Builder); 2235 case LibFunc::strpbrk: 2236 return optimizeStrPBrk(CI, Builder); 2237 case LibFunc::strtol: 2238 case LibFunc::strtod: 2239 case LibFunc::strtof: 2240 case LibFunc::strtoul: 2241 case LibFunc::strtoll: 2242 case LibFunc::strtold: 2243 case LibFunc::strtoull: 2244 return optimizeStrTo(CI, Builder); 2245 case LibFunc::strspn: 2246 return optimizeStrSpn(CI, Builder); 2247 case LibFunc::strcspn: 2248 return optimizeStrCSpn(CI, Builder); 2249 case LibFunc::strstr: 2250 return optimizeStrStr(CI, Builder); 2251 case LibFunc::memchr: 2252 return optimizeMemChr(CI, Builder); 2253 case LibFunc::memcmp: 2254 return optimizeMemCmp(CI, Builder); 2255 case LibFunc::memcpy: 2256 return optimizeMemCpy(CI, Builder); 2257 case LibFunc::memmove: 2258 return optimizeMemMove(CI, Builder); 2259 case LibFunc::memset: 2260 return optimizeMemSet(CI, Builder); 2261 default: 2262 break; 2263 } 2264 } 2265 return nullptr; 2266 } 2267 2268 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 2269 if (CI->isNoBuiltin()) 2270 return nullptr; 2271 2272 LibFunc::Func Func; 2273 Function *Callee = CI->getCalledFunction(); 2274 StringRef FuncName = Callee->getName(); 2275 2276 SmallVector<OperandBundleDef, 2> OpBundles; 2277 CI->getOperandBundlesAsDefs(OpBundles); 2278 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2279 bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C; 2280 2281 // Command-line parameter overrides instruction attribute. 2282 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2283 UnsafeFPShrink = EnableUnsafeFPShrink; 2284 else if (isa<FPMathOperator>(CI) && CI->hasUnsafeAlgebra()) 2285 UnsafeFPShrink = true; 2286 2287 // First, check for intrinsics. 2288 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2289 if (!isCallingConvC) 2290 return nullptr; 2291 switch (II->getIntrinsicID()) { 2292 case Intrinsic::pow: 2293 return optimizePow(CI, Builder); 2294 case Intrinsic::exp2: 2295 return optimizeExp2(CI, Builder); 2296 case Intrinsic::fabs: 2297 return optimizeFabs(CI, Builder); 2298 case Intrinsic::log: 2299 return optimizeLog(CI, Builder); 2300 case Intrinsic::sqrt: 2301 return optimizeSqrt(CI, Builder); 2302 // TODO: Use foldMallocMemset() with memset intrinsic. 2303 default: 2304 return nullptr; 2305 } 2306 } 2307 2308 // Also try to simplify calls to fortified library functions. 2309 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 2310 // Try to further simplify the result. 2311 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 2312 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 2313 // Use an IR Builder from SimplifiedCI if available instead of CI 2314 // to guarantee we reach all uses we might replace later on. 2315 IRBuilder<> TmpBuilder(SimplifiedCI); 2316 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { 2317 // If we were able to further simplify, remove the now redundant call. 2318 SimplifiedCI->replaceAllUsesWith(V); 2319 SimplifiedCI->eraseFromParent(); 2320 return V; 2321 } 2322 } 2323 return SimplifiedFortifiedCI; 2324 } 2325 2326 // Then check for known library functions. 2327 if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) { 2328 // We never change the calling convention. 2329 if (!ignoreCallingConv(Func) && !isCallingConvC) 2330 return nullptr; 2331 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 2332 return V; 2333 switch (Func) { 2334 case LibFunc::cosf: 2335 case LibFunc::cos: 2336 case LibFunc::cosl: 2337 return optimizeCos(CI, Builder); 2338 case LibFunc::sinpif: 2339 case LibFunc::sinpi: 2340 case LibFunc::cospif: 2341 case LibFunc::cospi: 2342 return optimizeSinCosPi(CI, Builder); 2343 case LibFunc::powf: 2344 case LibFunc::pow: 2345 case LibFunc::powl: 2346 return optimizePow(CI, Builder); 2347 case LibFunc::exp2l: 2348 case LibFunc::exp2: 2349 case LibFunc::exp2f: 2350 return optimizeExp2(CI, Builder); 2351 case LibFunc::fabsf: 2352 case LibFunc::fabs: 2353 case LibFunc::fabsl: 2354 return optimizeFabs(CI, Builder); 2355 case LibFunc::sqrtf: 2356 case LibFunc::sqrt: 2357 case LibFunc::sqrtl: 2358 return optimizeSqrt(CI, Builder); 2359 case LibFunc::ffs: 2360 case LibFunc::ffsl: 2361 case LibFunc::ffsll: 2362 return optimizeFFS(CI, Builder); 2363 case LibFunc::abs: 2364 case LibFunc::labs: 2365 case LibFunc::llabs: 2366 return optimizeAbs(CI, Builder); 2367 case LibFunc::isdigit: 2368 return optimizeIsDigit(CI, Builder); 2369 case LibFunc::isascii: 2370 return optimizeIsAscii(CI, Builder); 2371 case LibFunc::toascii: 2372 return optimizeToAscii(CI, Builder); 2373 case LibFunc::printf: 2374 return optimizePrintF(CI, Builder); 2375 case LibFunc::sprintf: 2376 return optimizeSPrintF(CI, Builder); 2377 case LibFunc::fprintf: 2378 return optimizeFPrintF(CI, Builder); 2379 case LibFunc::fwrite: 2380 return optimizeFWrite(CI, Builder); 2381 case LibFunc::fputs: 2382 return optimizeFPuts(CI, Builder); 2383 case LibFunc::log: 2384 case LibFunc::log10: 2385 case LibFunc::log1p: 2386 case LibFunc::log2: 2387 case LibFunc::logb: 2388 return optimizeLog(CI, Builder); 2389 case LibFunc::puts: 2390 return optimizePuts(CI, Builder); 2391 case LibFunc::tan: 2392 case LibFunc::tanf: 2393 case LibFunc::tanl: 2394 return optimizeTan(CI, Builder); 2395 case LibFunc::perror: 2396 return optimizeErrorReporting(CI, Builder); 2397 case LibFunc::vfprintf: 2398 case LibFunc::fiprintf: 2399 return optimizeErrorReporting(CI, Builder, 0); 2400 case LibFunc::fputc: 2401 return optimizeErrorReporting(CI, Builder, 1); 2402 case LibFunc::ceil: 2403 case LibFunc::floor: 2404 case LibFunc::rint: 2405 case LibFunc::round: 2406 case LibFunc::nearbyint: 2407 case LibFunc::trunc: 2408 if (hasFloatVersion(FuncName)) 2409 return optimizeUnaryDoubleFP(CI, Builder, false); 2410 return nullptr; 2411 case LibFunc::acos: 2412 case LibFunc::acosh: 2413 case LibFunc::asin: 2414 case LibFunc::asinh: 2415 case LibFunc::atan: 2416 case LibFunc::atanh: 2417 case LibFunc::cbrt: 2418 case LibFunc::cosh: 2419 case LibFunc::exp: 2420 case LibFunc::exp10: 2421 case LibFunc::expm1: 2422 case LibFunc::sin: 2423 case LibFunc::sinh: 2424 case LibFunc::tanh: 2425 if (UnsafeFPShrink && hasFloatVersion(FuncName)) 2426 return optimizeUnaryDoubleFP(CI, Builder, true); 2427 return nullptr; 2428 case LibFunc::copysign: 2429 if (hasFloatVersion(FuncName)) 2430 return optimizeBinaryDoubleFP(CI, Builder); 2431 return nullptr; 2432 case LibFunc::fminf: 2433 case LibFunc::fmin: 2434 case LibFunc::fminl: 2435 case LibFunc::fmaxf: 2436 case LibFunc::fmax: 2437 case LibFunc::fmaxl: 2438 return optimizeFMinFMax(CI, Builder); 2439 default: 2440 return nullptr; 2441 } 2442 } 2443 return nullptr; 2444 } 2445 2446 LibCallSimplifier::LibCallSimplifier( 2447 const DataLayout &DL, const TargetLibraryInfo *TLI, 2448 function_ref<void(Instruction *, Value *)> Replacer) 2449 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), UnsafeFPShrink(false), 2450 Replacer(Replacer) {} 2451 2452 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 2453 // Indirect through the replacer used in this instance. 2454 Replacer(I, With); 2455 } 2456 2457 // TODO: 2458 // Additional cases that we need to add to this file: 2459 // 2460 // cbrt: 2461 // * cbrt(expN(X)) -> expN(x/3) 2462 // * cbrt(sqrt(x)) -> pow(x,1/6) 2463 // * cbrt(cbrt(x)) -> pow(x,1/9) 2464 // 2465 // exp, expf, expl: 2466 // * exp(log(x)) -> x 2467 // 2468 // log, logf, logl: 2469 // * log(exp(x)) -> x 2470 // * log(exp(y)) -> y*log(e) 2471 // * log(exp10(y)) -> y*log(10) 2472 // * log(sqrt(x)) -> 0.5*log(x) 2473 // 2474 // lround, lroundf, lroundl: 2475 // * lround(cnst) -> cnst' 2476 // 2477 // pow, powf, powl: 2478 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2479 // * pow(pow(x,y),z)-> pow(x,y*z) 2480 // 2481 // round, roundf, roundl: 2482 // * round(cnst) -> cnst' 2483 // 2484 // signbit: 2485 // * signbit(cnst) -> cnst' 2486 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2487 // 2488 // sqrt, sqrtf, sqrtl: 2489 // * sqrt(expN(x)) -> expN(x*0.5) 2490 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2491 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2492 // 2493 // trunc, truncf, truncl: 2494 // * trunc(cnst) -> cnst' 2495 // 2496 // 2497 2498 //===----------------------------------------------------------------------===// 2499 // Fortified Library Call Optimizations 2500 //===----------------------------------------------------------------------===// 2501 2502 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2503 unsigned ObjSizeOp, 2504 unsigned SizeOp, 2505 bool isString) { 2506 if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp)) 2507 return true; 2508 if (ConstantInt *ObjSizeCI = 2509 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2510 if (ObjSizeCI->isAllOnesValue()) 2511 return true; 2512 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2513 if (OnlyLowerUnknownSize) 2514 return false; 2515 if (isString) { 2516 uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp)); 2517 // If the length is 0 we don't know how long it is and so we can't 2518 // remove the check. 2519 if (Len == 0) 2520 return false; 2521 return ObjSizeCI->getZExtValue() >= Len; 2522 } 2523 if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp))) 2524 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2525 } 2526 return false; 2527 } 2528 2529 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 2530 IRBuilder<> &B) { 2531 Function *Callee = CI->getCalledFunction(); 2532 2533 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy_chk)) 2534 return nullptr; 2535 2536 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2537 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2538 CI->getArgOperand(2), 1); 2539 return CI->getArgOperand(0); 2540 } 2541 return nullptr; 2542 } 2543 2544 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 2545 IRBuilder<> &B) { 2546 Function *Callee = CI->getCalledFunction(); 2547 2548 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove_chk)) 2549 return nullptr; 2550 2551 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2552 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 2553 CI->getArgOperand(2), 1); 2554 return CI->getArgOperand(0); 2555 } 2556 return nullptr; 2557 } 2558 2559 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 2560 IRBuilder<> &B) { 2561 Function *Callee = CI->getCalledFunction(); 2562 2563 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset_chk)) 2564 return nullptr; 2565 2566 // TODO: Try foldMallocMemset() here. 2567 2568 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2569 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2570 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2571 return CI->getArgOperand(0); 2572 } 2573 return nullptr; 2574 } 2575 2576 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 2577 IRBuilder<> &B, 2578 LibFunc::Func Func) { 2579 Function *Callee = CI->getCalledFunction(); 2580 StringRef Name = Callee->getName(); 2581 const DataLayout &DL = CI->getModule()->getDataLayout(); 2582 2583 if (!checkStringCopyLibFuncSignature(Callee, Func)) 2584 return nullptr; 2585 2586 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 2587 *ObjSize = CI->getArgOperand(2); 2588 2589 // __stpcpy_chk(x,x,...) -> x+strlen(x) 2590 if (Func == LibFunc::stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 2591 Value *StrLen = emitStrLen(Src, B, DL, TLI); 2592 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 2593 } 2594 2595 // If a) we don't have any length information, or b) we know this will 2596 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 2597 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 2598 // TODO: It might be nice to get a maximum length out of the possible 2599 // string lengths for varying. 2600 if (isFortifiedCallFoldable(CI, 2, 1, true)) 2601 return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6)); 2602 2603 if (OnlyLowerUnknownSize) 2604 return nullptr; 2605 2606 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 2607 uint64_t Len = GetStringLength(Src); 2608 if (Len == 0) 2609 return nullptr; 2610 2611 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 2612 Value *LenV = ConstantInt::get(SizeTTy, Len); 2613 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 2614 // If the function was an __stpcpy_chk, and we were able to fold it into 2615 // a __memcpy_chk, we still need to return the correct end pointer. 2616 if (Ret && Func == LibFunc::stpcpy_chk) 2617 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 2618 return Ret; 2619 } 2620 2621 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 2622 IRBuilder<> &B, 2623 LibFunc::Func Func) { 2624 Function *Callee = CI->getCalledFunction(); 2625 StringRef Name = Callee->getName(); 2626 2627 if (!checkStringCopyLibFuncSignature(Callee, Func)) 2628 return nullptr; 2629 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2630 Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2631 CI->getArgOperand(2), B, TLI, Name.substr(2, 7)); 2632 return Ret; 2633 } 2634 return nullptr; 2635 } 2636 2637 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 2638 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 2639 // Some clang users checked for _chk libcall availability using: 2640 // __has_builtin(__builtin___memcpy_chk) 2641 // When compiling with -fno-builtin, this is always true. 2642 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 2643 // end up with fortified libcalls, which isn't acceptable in a freestanding 2644 // environment which only provides their non-fortified counterparts. 2645 // 2646 // Until we change clang and/or teach external users to check for availability 2647 // differently, disregard the "nobuiltin" attribute and TLI::has. 2648 // 2649 // PR23093. 2650 2651 LibFunc::Func Func; 2652 Function *Callee = CI->getCalledFunction(); 2653 StringRef FuncName = Callee->getName(); 2654 2655 SmallVector<OperandBundleDef, 2> OpBundles; 2656 CI->getOperandBundlesAsDefs(OpBundles); 2657 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2658 bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C; 2659 2660 // First, check that this is a known library functions. 2661 if (!TLI->getLibFunc(FuncName, Func)) 2662 return nullptr; 2663 2664 // We never change the calling convention. 2665 if (!ignoreCallingConv(Func) && !isCallingConvC) 2666 return nullptr; 2667 2668 switch (Func) { 2669 case LibFunc::memcpy_chk: 2670 return optimizeMemCpyChk(CI, Builder); 2671 case LibFunc::memmove_chk: 2672 return optimizeMemMoveChk(CI, Builder); 2673 case LibFunc::memset_chk: 2674 return optimizeMemSetChk(CI, Builder); 2675 case LibFunc::stpcpy_chk: 2676 case LibFunc::strcpy_chk: 2677 return optimizeStrpCpyChk(CI, Builder, Func); 2678 case LibFunc::stpncpy_chk: 2679 case LibFunc::strncpy_chk: 2680 return optimizeStrpNCpyChk(CI, Builder, Func); 2681 default: 2682 break; 2683 } 2684 return nullptr; 2685 } 2686 2687 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 2688 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 2689 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 2690