1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Analysis/BlockFrequencyInfo.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ProfileSummaryInfo.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/KnownBits.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Transforms/Utils/BuildLibCalls.h" 39 #include "llvm/Transforms/Utils/SizeOpts.h" 40 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 static cl::opt<bool> 45 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 46 cl::init(false), 47 cl::desc("Enable unsafe double to float " 48 "shrinking for math lib calls")); 49 50 //===----------------------------------------------------------------------===// 51 // Helper Functions 52 //===----------------------------------------------------------------------===// 53 54 static bool ignoreCallingConv(LibFunc Func) { 55 return Func == LibFunc_abs || Func == LibFunc_labs || 56 Func == LibFunc_llabs || Func == LibFunc_strlen; 57 } 58 59 /// Return true if it is only used in equality comparisons with With. 60 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 61 for (User *U : V->users()) { 62 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 63 if (IC->isEquality() && IC->getOperand(1) == With) 64 continue; 65 // Unknown instruction. 66 return false; 67 } 68 return true; 69 } 70 71 static bool callHasFloatingPointArgument(const CallInst *CI) { 72 return any_of(CI->operands(), [](const Use &OI) { 73 return OI->getType()->isFloatingPointTy(); 74 }); 75 } 76 77 static bool callHasFP128Argument(const CallInst *CI) { 78 return any_of(CI->operands(), [](const Use &OI) { 79 return OI->getType()->isFP128Ty(); 80 }); 81 } 82 83 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 84 if (Base < 2 || Base > 36) 85 // handle special zero base 86 if (Base != 0) 87 return nullptr; 88 89 char *End; 90 std::string nptr = Str.str(); 91 errno = 0; 92 long long int Result = strtoll(nptr.c_str(), &End, Base); 93 if (errno) 94 return nullptr; 95 96 // if we assume all possible target locales are ASCII supersets, 97 // then if strtoll successfully parses a number on the host, 98 // it will also successfully parse the same way on the target 99 if (*End != '\0') 100 return nullptr; 101 102 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 103 return nullptr; 104 105 return ConstantInt::get(CI->getType(), Result); 106 } 107 108 static bool isOnlyUsedInComparisonWithZero(Value *V) { 109 for (User *U : V->users()) { 110 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 111 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 112 if (C->isNullValue()) 113 continue; 114 // Unknown instruction. 115 return false; 116 } 117 return true; 118 } 119 120 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 121 const DataLayout &DL) { 122 if (!isOnlyUsedInComparisonWithZero(CI)) 123 return false; 124 125 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 126 return false; 127 128 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 129 return false; 130 131 return true; 132 } 133 134 static void annotateDereferenceableBytes(CallInst *CI, 135 ArrayRef<unsigned> ArgNos, 136 uint64_t DereferenceableBytes) { 137 const Function *F = CI->getCaller(); 138 if (!F) 139 return; 140 for (unsigned ArgNo : ArgNos) { 141 uint64_t DerefBytes = DereferenceableBytes; 142 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 143 if (!llvm::NullPointerIsDefined(F, AS) || 144 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 145 DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo), 146 DereferenceableBytes); 147 148 if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) { 149 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 150 if (!llvm::NullPointerIsDefined(F, AS) || 151 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 152 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 153 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 154 CI->getContext(), DerefBytes)); 155 } 156 } 157 } 158 159 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, 160 ArrayRef<unsigned> ArgNos) { 161 Function *F = CI->getCaller(); 162 if (!F) 163 return; 164 165 for (unsigned ArgNo : ArgNos) { 166 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef)) 167 CI->addParamAttr(ArgNo, Attribute::NoUndef); 168 169 if (CI->paramHasAttr(ArgNo, Attribute::NonNull)) 170 continue; 171 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 172 if (llvm::NullPointerIsDefined(F, AS)) 173 continue; 174 175 CI->addParamAttr(ArgNo, Attribute::NonNull); 176 annotateDereferenceableBytes(CI, ArgNo, 1); 177 } 178 } 179 180 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 181 Value *Size, const DataLayout &DL) { 182 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 183 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 184 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 185 } else if (isKnownNonZero(Size, DL)) { 186 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 187 const APInt *X, *Y; 188 uint64_t DerefMin = 1; 189 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 190 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 191 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 192 } 193 } 194 } 195 196 //===----------------------------------------------------------------------===// 197 // String and Memory Library Call Optimizations 198 //===----------------------------------------------------------------------===// 199 200 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 201 // Extract some information from the instruction 202 Value *Dst = CI->getArgOperand(0); 203 Value *Src = CI->getArgOperand(1); 204 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 205 206 // See if we can get the length of the input string. 207 uint64_t Len = GetStringLength(Src); 208 if (Len) 209 annotateDereferenceableBytes(CI, 1, Len); 210 else 211 return nullptr; 212 --Len; // Unbias length. 213 214 // Handle the simple, do-nothing case: strcat(x, "") -> x 215 if (Len == 0) 216 return Dst; 217 218 return emitStrLenMemCpy(Src, Dst, Len, B); 219 } 220 221 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 222 IRBuilderBase &B) { 223 // We need to find the end of the destination string. That's where the 224 // memory is to be moved to. We just generate a call to strlen. 225 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 226 if (!DstLen) 227 return nullptr; 228 229 // Now that we have the destination's length, we must index into the 230 // destination's pointer to get the actual memcpy destination (end of 231 // the string .. we're concatenating). 232 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 233 234 // We have enough information to now generate the memcpy call to do the 235 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 236 B.CreateMemCpy( 237 CpyDst, Align(1), Src, Align(1), 238 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 239 return Dst; 240 } 241 242 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 243 // Extract some information from the instruction. 244 Value *Dst = CI->getArgOperand(0); 245 Value *Src = CI->getArgOperand(1); 246 Value *Size = CI->getArgOperand(2); 247 uint64_t Len; 248 annotateNonNullNoUndefBasedOnAccess(CI, 0); 249 if (isKnownNonZero(Size, DL)) 250 annotateNonNullNoUndefBasedOnAccess(CI, 1); 251 252 // We don't do anything if length is not constant. 253 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 254 if (LengthArg) { 255 Len = LengthArg->getZExtValue(); 256 // strncat(x, c, 0) -> x 257 if (!Len) 258 return Dst; 259 } else { 260 return nullptr; 261 } 262 263 // See if we can get the length of the input string. 264 uint64_t SrcLen = GetStringLength(Src); 265 if (SrcLen) { 266 annotateDereferenceableBytes(CI, 1, SrcLen); 267 --SrcLen; // Unbias length. 268 } else { 269 return nullptr; 270 } 271 272 // strncat(x, "", c) -> x 273 if (SrcLen == 0) 274 return Dst; 275 276 // We don't optimize this case. 277 if (Len < SrcLen) 278 return nullptr; 279 280 // strncat(x, s, c) -> strcat(x, s) 281 // s is constant so the strcat can be optimized further. 282 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 283 } 284 285 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 286 Function *Callee = CI->getCalledFunction(); 287 FunctionType *FT = Callee->getFunctionType(); 288 Value *SrcStr = CI->getArgOperand(0); 289 annotateNonNullNoUndefBasedOnAccess(CI, 0); 290 291 // If the second operand is non-constant, see if we can compute the length 292 // of the input string and turn this into memchr. 293 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 294 if (!CharC) { 295 uint64_t Len = GetStringLength(SrcStr); 296 if (Len) 297 annotateDereferenceableBytes(CI, 0, Len); 298 else 299 return nullptr; 300 if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 301 return nullptr; 302 303 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 304 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 305 B, DL, TLI); 306 } 307 308 // Otherwise, the character is a constant, see if the first argument is 309 // a string literal. If so, we can constant fold. 310 StringRef Str; 311 if (!getConstantStringInfo(SrcStr, Str)) { 312 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 313 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 314 return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 315 return nullptr; 316 } 317 318 // Compute the offset, make sure to handle the case when we're searching for 319 // zero (a weird way to spell strlen). 320 size_t I = (0xFF & CharC->getSExtValue()) == 0 321 ? Str.size() 322 : Str.find(CharC->getSExtValue()); 323 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 324 return Constant::getNullValue(CI->getType()); 325 326 // strchr(s+n,c) -> gep(s+n+i,c) 327 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 328 } 329 330 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 331 Value *SrcStr = CI->getArgOperand(0); 332 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 333 annotateNonNullNoUndefBasedOnAccess(CI, 0); 334 335 // Cannot fold anything if we're not looking for a constant. 336 if (!CharC) 337 return nullptr; 338 339 StringRef Str; 340 if (!getConstantStringInfo(SrcStr, Str)) { 341 // strrchr(s, 0) -> strchr(s, 0) 342 if (CharC->isZero()) 343 return emitStrChr(SrcStr, '\0', B, TLI); 344 return nullptr; 345 } 346 347 // Compute the offset. 348 size_t I = (0xFF & CharC->getSExtValue()) == 0 349 ? Str.size() 350 : Str.rfind(CharC->getSExtValue()); 351 if (I == StringRef::npos) // Didn't find the char. Return null. 352 return Constant::getNullValue(CI->getType()); 353 354 // strrchr(s+n,c) -> gep(s+n+i,c) 355 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 356 } 357 358 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 359 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 360 if (Str1P == Str2P) // strcmp(x,x) -> 0 361 return ConstantInt::get(CI->getType(), 0); 362 363 StringRef Str1, Str2; 364 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 365 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 366 367 // strcmp(x, y) -> cnst (if both x and y are constant strings) 368 if (HasStr1 && HasStr2) 369 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 370 371 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 372 return B.CreateNeg(B.CreateZExt( 373 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 374 375 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 376 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 377 CI->getType()); 378 379 // strcmp(P, "x") -> memcmp(P, "x", 2) 380 uint64_t Len1 = GetStringLength(Str1P); 381 if (Len1) 382 annotateDereferenceableBytes(CI, 0, Len1); 383 uint64_t Len2 = GetStringLength(Str2P); 384 if (Len2) 385 annotateDereferenceableBytes(CI, 1, Len2); 386 387 if (Len1 && Len2) { 388 return emitMemCmp(Str1P, Str2P, 389 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 390 std::min(Len1, Len2)), 391 B, DL, TLI); 392 } 393 394 // strcmp to memcmp 395 if (!HasStr1 && HasStr2) { 396 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 397 return emitMemCmp( 398 Str1P, Str2P, 399 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 400 TLI); 401 } else if (HasStr1 && !HasStr2) { 402 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 403 return emitMemCmp( 404 Str1P, Str2P, 405 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 406 TLI); 407 } 408 409 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 410 return nullptr; 411 } 412 413 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 414 Value *Str1P = CI->getArgOperand(0); 415 Value *Str2P = CI->getArgOperand(1); 416 Value *Size = CI->getArgOperand(2); 417 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 418 return ConstantInt::get(CI->getType(), 0); 419 420 if (isKnownNonZero(Size, DL)) 421 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 422 // Get the length argument if it is constant. 423 uint64_t Length; 424 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 425 Length = LengthArg->getZExtValue(); 426 else 427 return nullptr; 428 429 if (Length == 0) // strncmp(x,y,0) -> 0 430 return ConstantInt::get(CI->getType(), 0); 431 432 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 433 return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI); 434 435 StringRef Str1, Str2; 436 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 437 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 438 439 // strncmp(x, y) -> cnst (if both x and y are constant strings) 440 if (HasStr1 && HasStr2) { 441 StringRef SubStr1 = Str1.substr(0, Length); 442 StringRef SubStr2 = Str2.substr(0, Length); 443 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 444 } 445 446 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 447 return B.CreateNeg(B.CreateZExt( 448 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 449 450 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 451 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 452 CI->getType()); 453 454 uint64_t Len1 = GetStringLength(Str1P); 455 if (Len1) 456 annotateDereferenceableBytes(CI, 0, Len1); 457 uint64_t Len2 = GetStringLength(Str2P); 458 if (Len2) 459 annotateDereferenceableBytes(CI, 1, Len2); 460 461 // strncmp to memcmp 462 if (!HasStr1 && HasStr2) { 463 Len2 = std::min(Len2, Length); 464 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 465 return emitMemCmp( 466 Str1P, Str2P, 467 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 468 TLI); 469 } else if (HasStr1 && !HasStr2) { 470 Len1 = std::min(Len1, Length); 471 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 472 return emitMemCmp( 473 Str1P, Str2P, 474 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 475 TLI); 476 } 477 478 return nullptr; 479 } 480 481 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 482 Value *Src = CI->getArgOperand(0); 483 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 484 uint64_t SrcLen = GetStringLength(Src); 485 if (SrcLen && Size) { 486 annotateDereferenceableBytes(CI, 0, SrcLen); 487 if (SrcLen <= Size->getZExtValue() + 1) 488 return emitStrDup(Src, B, TLI); 489 } 490 491 return nullptr; 492 } 493 494 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 495 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 496 if (Dst == Src) // strcpy(x,x) -> x 497 return Src; 498 499 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 500 // See if we can get the length of the input string. 501 uint64_t Len = GetStringLength(Src); 502 if (Len) 503 annotateDereferenceableBytes(CI, 1, Len); 504 else 505 return nullptr; 506 507 // We have enough information to now generate the memcpy call to do the 508 // copy for us. Make a memcpy to copy the nul byte with align = 1. 509 CallInst *NewCI = 510 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 511 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 512 NewCI->setAttributes(CI->getAttributes()); 513 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 514 return Dst; 515 } 516 517 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 518 Function *Callee = CI->getCalledFunction(); 519 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 520 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 521 Value *StrLen = emitStrLen(Src, B, DL, TLI); 522 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 523 } 524 525 // See if we can get the length of the input string. 526 uint64_t Len = GetStringLength(Src); 527 if (Len) 528 annotateDereferenceableBytes(CI, 1, Len); 529 else 530 return nullptr; 531 532 Type *PT = Callee->getFunctionType()->getParamType(0); 533 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 534 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 535 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 536 537 // We have enough information to now generate the memcpy call to do the 538 // copy for us. Make a memcpy to copy the nul byte with align = 1. 539 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 540 NewCI->setAttributes(CI->getAttributes()); 541 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 542 return DstEnd; 543 } 544 545 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) { 546 Function *Callee = CI->getCalledFunction(); 547 Value *Dst = CI->getArgOperand(0); 548 Value *Src = CI->getArgOperand(1); 549 Value *Size = CI->getArgOperand(2); 550 annotateNonNullNoUndefBasedOnAccess(CI, 0); 551 if (isKnownNonZero(Size, DL)) 552 annotateNonNullNoUndefBasedOnAccess(CI, 1); 553 554 uint64_t Len; 555 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 556 Len = LengthArg->getZExtValue(); 557 else 558 return nullptr; 559 560 // strncpy(x, y, 0) -> x 561 if (Len == 0) 562 return Dst; 563 564 // See if we can get the length of the input string. 565 uint64_t SrcLen = GetStringLength(Src); 566 if (SrcLen) { 567 annotateDereferenceableBytes(CI, 1, SrcLen); 568 --SrcLen; // Unbias length. 569 } else { 570 return nullptr; 571 } 572 573 if (SrcLen == 0) { 574 // strncpy(x, "", y) -> memset(x, '\0', y) 575 Align MemSetAlign = 576 CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne(); 577 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign); 578 AttrBuilder ArgAttrs(CI->getAttributes().getParamAttrs(0)); 579 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 580 CI->getContext(), 0, ArgAttrs)); 581 return Dst; 582 } 583 584 // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4) 585 if (Len > SrcLen + 1) { 586 if (Len <= 128) { 587 StringRef Str; 588 if (!getConstantStringInfo(Src, Str)) 589 return nullptr; 590 std::string SrcStr = Str.str(); 591 SrcStr.resize(Len, '\0'); 592 Src = B.CreateGlobalString(SrcStr, "str"); 593 } else { 594 return nullptr; 595 } 596 } 597 598 Type *PT = Callee->getFunctionType()->getParamType(0); 599 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 600 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 601 ConstantInt::get(DL.getIntPtrType(PT), Len)); 602 NewCI->setAttributes(CI->getAttributes()); 603 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 604 return Dst; 605 } 606 607 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 608 unsigned CharSize) { 609 Value *Src = CI->getArgOperand(0); 610 611 // Constant folding: strlen("xyz") -> 3 612 if (uint64_t Len = GetStringLength(Src, CharSize)) 613 return ConstantInt::get(CI->getType(), Len - 1); 614 615 // If s is a constant pointer pointing to a string literal, we can fold 616 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 617 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 618 // We only try to simplify strlen when the pointer s points to an array 619 // of i8. Otherwise, we would need to scale the offset x before doing the 620 // subtraction. This will make the optimization more complex, and it's not 621 // very useful because calling strlen for a pointer of other types is 622 // very uncommon. 623 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 624 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 625 return nullptr; 626 627 ConstantDataArraySlice Slice; 628 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 629 uint64_t NullTermIdx; 630 if (Slice.Array == nullptr) { 631 NullTermIdx = 0; 632 } else { 633 NullTermIdx = ~((uint64_t)0); 634 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 635 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 636 NullTermIdx = I; 637 break; 638 } 639 } 640 // If the string does not have '\0', leave it to strlen to compute 641 // its length. 642 if (NullTermIdx == ~((uint64_t)0)) 643 return nullptr; 644 } 645 646 Value *Offset = GEP->getOperand(2); 647 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 648 Known.Zero.flipAllBits(); 649 uint64_t ArrSize = 650 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 651 652 // KnownZero's bits are flipped, so zeros in KnownZero now represent 653 // bits known to be zeros in Offset, and ones in KnowZero represent 654 // bits unknown in Offset. Therefore, Offset is known to be in range 655 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 656 // unsigned-less-than NullTermIdx. 657 // 658 // If Offset is not provably in the range [0, NullTermIdx], we can still 659 // optimize if we can prove that the program has undefined behavior when 660 // Offset is outside that range. That is the case when GEP->getOperand(0) 661 // is a pointer to an object whose memory extent is NullTermIdx+1. 662 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 663 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 664 NullTermIdx == ArrSize - 1)) { 665 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 666 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 667 Offset); 668 } 669 } 670 } 671 672 // strlen(x?"foo":"bars") --> x ? 3 : 4 673 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 674 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 675 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 676 if (LenTrue && LenFalse) { 677 ORE.emit([&]() { 678 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 679 << "folded strlen(select) to select of constants"; 680 }); 681 return B.CreateSelect(SI->getCondition(), 682 ConstantInt::get(CI->getType(), LenTrue - 1), 683 ConstantInt::get(CI->getType(), LenFalse - 1)); 684 } 685 } 686 687 // strlen(x) != 0 --> *x != 0 688 // strlen(x) == 0 --> *x == 0 689 if (isOnlyUsedInZeroEqualityComparison(CI)) 690 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), 691 CI->getType()); 692 693 return nullptr; 694 } 695 696 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 697 if (Value *V = optimizeStringLength(CI, B, 8)) 698 return V; 699 annotateNonNullNoUndefBasedOnAccess(CI, 0); 700 return nullptr; 701 } 702 703 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 704 Module &M = *CI->getModule(); 705 unsigned WCharSize = TLI->getWCharSize(M) * 8; 706 // We cannot perform this optimization without wchar_size metadata. 707 if (WCharSize == 0) 708 return nullptr; 709 710 return optimizeStringLength(CI, B, WCharSize); 711 } 712 713 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 714 StringRef S1, S2; 715 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 716 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 717 718 // strpbrk(s, "") -> nullptr 719 // strpbrk("", s) -> nullptr 720 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 721 return Constant::getNullValue(CI->getType()); 722 723 // Constant folding. 724 if (HasS1 && HasS2) { 725 size_t I = S1.find_first_of(S2); 726 if (I == StringRef::npos) // No match. 727 return Constant::getNullValue(CI->getType()); 728 729 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 730 "strpbrk"); 731 } 732 733 // strpbrk(s, "a") -> strchr(s, 'a') 734 if (HasS2 && S2.size() == 1) 735 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 736 737 return nullptr; 738 } 739 740 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 741 Value *EndPtr = CI->getArgOperand(1); 742 if (isa<ConstantPointerNull>(EndPtr)) { 743 // With a null EndPtr, this function won't capture the main argument. 744 // It would be readonly too, except that it still may write to errno. 745 CI->addParamAttr(0, Attribute::NoCapture); 746 } 747 748 return nullptr; 749 } 750 751 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 752 StringRef S1, S2; 753 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 754 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 755 756 // strspn(s, "") -> 0 757 // strspn("", s) -> 0 758 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 759 return Constant::getNullValue(CI->getType()); 760 761 // Constant folding. 762 if (HasS1 && HasS2) { 763 size_t Pos = S1.find_first_not_of(S2); 764 if (Pos == StringRef::npos) 765 Pos = S1.size(); 766 return ConstantInt::get(CI->getType(), Pos); 767 } 768 769 return nullptr; 770 } 771 772 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 773 StringRef S1, S2; 774 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 775 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 776 777 // strcspn("", s) -> 0 778 if (HasS1 && S1.empty()) 779 return Constant::getNullValue(CI->getType()); 780 781 // Constant folding. 782 if (HasS1 && HasS2) { 783 size_t Pos = S1.find_first_of(S2); 784 if (Pos == StringRef::npos) 785 Pos = S1.size(); 786 return ConstantInt::get(CI->getType(), Pos); 787 } 788 789 // strcspn(s, "") -> strlen(s) 790 if (HasS2 && S2.empty()) 791 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 792 793 return nullptr; 794 } 795 796 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 797 // fold strstr(x, x) -> x. 798 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 799 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 800 801 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 802 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 803 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 804 if (!StrLen) 805 return nullptr; 806 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 807 StrLen, B, DL, TLI); 808 if (!StrNCmp) 809 return nullptr; 810 for (User *U : llvm::make_early_inc_range(CI->users())) { 811 ICmpInst *Old = cast<ICmpInst>(U); 812 Value *Cmp = 813 B.CreateICmp(Old->getPredicate(), StrNCmp, 814 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 815 replaceAllUsesWith(Old, Cmp); 816 } 817 return CI; 818 } 819 820 // See if either input string is a constant string. 821 StringRef SearchStr, ToFindStr; 822 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 823 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 824 825 // fold strstr(x, "") -> x. 826 if (HasStr2 && ToFindStr.empty()) 827 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 828 829 // If both strings are known, constant fold it. 830 if (HasStr1 && HasStr2) { 831 size_t Offset = SearchStr.find(ToFindStr); 832 833 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 834 return Constant::getNullValue(CI->getType()); 835 836 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 837 Value *Result = castToCStr(CI->getArgOperand(0), B); 838 Result = 839 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 840 return B.CreateBitCast(Result, CI->getType()); 841 } 842 843 // fold strstr(x, "y") -> strchr(x, 'y'). 844 if (HasStr2 && ToFindStr.size() == 1) { 845 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 846 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 847 } 848 849 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 850 return nullptr; 851 } 852 853 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 854 if (isKnownNonZero(CI->getOperand(2), DL)) 855 annotateNonNullNoUndefBasedOnAccess(CI, 0); 856 return nullptr; 857 } 858 859 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 860 Value *SrcStr = CI->getArgOperand(0); 861 Value *Size = CI->getArgOperand(2); 862 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 863 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 864 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 865 866 // memchr(x, y, 0) -> null 867 if (LenC) { 868 if (LenC->isZero()) 869 return Constant::getNullValue(CI->getType()); 870 } else { 871 // From now on we need at least constant length and string. 872 return nullptr; 873 } 874 875 StringRef Str; 876 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 877 return nullptr; 878 879 // Truncate the string to LenC. If Str is smaller than LenC we will still only 880 // scan the string, as reading past the end of it is undefined and we can just 881 // return null if we don't find the char. 882 Str = Str.substr(0, LenC->getZExtValue()); 883 884 // If the char is variable but the input str and length are not we can turn 885 // this memchr call into a simple bit field test. Of course this only works 886 // when the return value is only checked against null. 887 // 888 // It would be really nice to reuse switch lowering here but we can't change 889 // the CFG at this point. 890 // 891 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 892 // != 0 893 // after bounds check. 894 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 895 unsigned char Max = 896 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 897 reinterpret_cast<const unsigned char *>(Str.end())); 898 899 // Make sure the bit field we're about to create fits in a register on the 900 // target. 901 // FIXME: On a 64 bit architecture this prevents us from using the 902 // interesting range of alpha ascii chars. We could do better by emitting 903 // two bitfields or shifting the range by 64 if no lower chars are used. 904 if (!DL.fitsInLegalInteger(Max + 1)) 905 return nullptr; 906 907 // For the bit field use a power-of-2 type with at least 8 bits to avoid 908 // creating unnecessary illegal types. 909 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 910 911 // Now build the bit field. 912 APInt Bitfield(Width, 0); 913 for (char C : Str) 914 Bitfield.setBit((unsigned char)C); 915 Value *BitfieldC = B.getInt(Bitfield); 916 917 // Adjust width of "C" to the bitfield width, then mask off the high bits. 918 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 919 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 920 921 // First check that the bit field access is within bounds. 922 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 923 "memchr.bounds"); 924 925 // Create code that checks if the given bit is set in the field. 926 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 927 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 928 929 // Finally merge both checks and cast to pointer type. The inttoptr 930 // implicitly zexts the i1 to intptr type. 931 return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"), 932 CI->getType()); 933 } 934 935 // Check if all arguments are constants. If so, we can constant fold. 936 if (!CharC) 937 return nullptr; 938 939 // Compute the offset. 940 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 941 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 942 return Constant::getNullValue(CI->getType()); 943 944 // memchr(s+n,c,l) -> gep(s+n+i,c) 945 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 946 } 947 948 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 949 uint64_t Len, IRBuilderBase &B, 950 const DataLayout &DL) { 951 if (Len == 0) // memcmp(s1,s2,0) -> 0 952 return Constant::getNullValue(CI->getType()); 953 954 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 955 if (Len == 1) { 956 Value *LHSV = 957 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 958 CI->getType(), "lhsv"); 959 Value *RHSV = 960 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 961 CI->getType(), "rhsv"); 962 return B.CreateSub(LHSV, RHSV, "chardiff"); 963 } 964 965 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 966 // TODO: The case where both inputs are constants does not need to be limited 967 // to legal integers or equality comparison. See block below this. 968 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 969 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 970 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 971 972 // First, see if we can fold either argument to a constant. 973 Value *LHSV = nullptr; 974 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 975 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 976 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 977 } 978 Value *RHSV = nullptr; 979 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 980 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 981 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 982 } 983 984 // Don't generate unaligned loads. If either source is constant data, 985 // alignment doesn't matter for that source because there is no load. 986 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 987 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 988 if (!LHSV) { 989 Type *LHSPtrTy = 990 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 991 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 992 } 993 if (!RHSV) { 994 Type *RHSPtrTy = 995 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 996 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 997 } 998 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 999 } 1000 } 1001 1002 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 1003 // TODO: This is limited to i8 arrays. 1004 StringRef LHSStr, RHSStr; 1005 if (getConstantStringInfo(LHS, LHSStr) && 1006 getConstantStringInfo(RHS, RHSStr)) { 1007 // Make sure we're not reading out-of-bounds memory. 1008 if (Len > LHSStr.size() || Len > RHSStr.size()) 1009 return nullptr; 1010 // Fold the memcmp and normalize the result. This way we get consistent 1011 // results across multiple platforms. 1012 uint64_t Ret = 0; 1013 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 1014 if (Cmp < 0) 1015 Ret = -1; 1016 else if (Cmp > 0) 1017 Ret = 1; 1018 return ConstantInt::get(CI->getType(), Ret); 1019 } 1020 1021 return nullptr; 1022 } 1023 1024 // Most simplifications for memcmp also apply to bcmp. 1025 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1026 IRBuilderBase &B) { 1027 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1028 Value *Size = CI->getArgOperand(2); 1029 1030 if (LHS == RHS) // memcmp(s,s,x) -> 0 1031 return Constant::getNullValue(CI->getType()); 1032 1033 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1034 // Handle constant lengths. 1035 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1036 if (!LenC) 1037 return nullptr; 1038 1039 // memcmp(d,s,0) -> 0 1040 if (LenC->getZExtValue() == 0) 1041 return Constant::getNullValue(CI->getType()); 1042 1043 if (Value *Res = 1044 optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL)) 1045 return Res; 1046 return nullptr; 1047 } 1048 1049 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1050 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1051 return V; 1052 1053 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1054 // bcmp can be more efficient than memcmp because it only has to know that 1055 // there is a difference, not how different one is to the other. 1056 if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) { 1057 Value *LHS = CI->getArgOperand(0); 1058 Value *RHS = CI->getArgOperand(1); 1059 Value *Size = CI->getArgOperand(2); 1060 return emitBCmp(LHS, RHS, Size, B, DL, TLI); 1061 } 1062 1063 return nullptr; 1064 } 1065 1066 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1067 return optimizeMemCmpBCmpCommon(CI, B); 1068 } 1069 1070 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1071 Value *Size = CI->getArgOperand(2); 1072 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1073 if (isa<IntrinsicInst>(CI)) 1074 return nullptr; 1075 1076 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1077 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1078 CI->getArgOperand(1), Align(1), Size); 1079 NewCI->setAttributes(CI->getAttributes()); 1080 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1081 return CI->getArgOperand(0); 1082 } 1083 1084 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1085 Value *Dst = CI->getArgOperand(0); 1086 Value *Src = CI->getArgOperand(1); 1087 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1088 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1089 StringRef SrcStr; 1090 if (CI->use_empty() && Dst == Src) 1091 return Dst; 1092 // memccpy(d, s, c, 0) -> nullptr 1093 if (N) { 1094 if (N->isNullValue()) 1095 return Constant::getNullValue(CI->getType()); 1096 if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0, 1097 /*TrimAtNul=*/false) || 1098 !StopChar) 1099 return nullptr; 1100 } else { 1101 return nullptr; 1102 } 1103 1104 // Wrap arg 'c' of type int to char 1105 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1106 if (Pos == StringRef::npos) { 1107 if (N->getZExtValue() <= SrcStr.size()) { 1108 B.CreateMemCpy(Dst, Align(1), Src, Align(1), CI->getArgOperand(3)); 1109 return Constant::getNullValue(CI->getType()); 1110 } 1111 return nullptr; 1112 } 1113 1114 Value *NewN = 1115 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1116 // memccpy -> llvm.memcpy 1117 B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN); 1118 return Pos + 1 <= N->getZExtValue() 1119 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1120 : Constant::getNullValue(CI->getType()); 1121 } 1122 1123 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1124 Value *Dst = CI->getArgOperand(0); 1125 Value *N = CI->getArgOperand(2); 1126 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1127 CallInst *NewCI = 1128 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1129 // Propagate attributes, but memcpy has no return value, so make sure that 1130 // any return attributes are compliant. 1131 // TODO: Attach return value attributes to the 1st operand to preserve them? 1132 NewCI->setAttributes(CI->getAttributes()); 1133 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1134 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1135 } 1136 1137 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1138 Value *Size = CI->getArgOperand(2); 1139 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1140 if (isa<IntrinsicInst>(CI)) 1141 return nullptr; 1142 1143 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1144 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1145 CI->getArgOperand(1), Align(1), Size); 1146 NewCI->setAttributes(CI->getAttributes()); 1147 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1148 return CI->getArgOperand(0); 1149 } 1150 1151 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1152 Value *Size = CI->getArgOperand(2); 1153 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1154 if (isa<IntrinsicInst>(CI)) 1155 return nullptr; 1156 1157 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1158 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1159 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1160 NewCI->setAttributes(CI->getAttributes()); 1161 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1162 return CI->getArgOperand(0); 1163 } 1164 1165 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1166 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1167 return emitMalloc(CI->getArgOperand(1), B, DL, TLI); 1168 1169 return nullptr; 1170 } 1171 1172 //===----------------------------------------------------------------------===// 1173 // Math Library Optimizations 1174 //===----------------------------------------------------------------------===// 1175 1176 // Replace a libcall \p CI with a call to intrinsic \p IID 1177 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1178 Intrinsic::ID IID) { 1179 // Propagate fast-math flags from the existing call to the new call. 1180 IRBuilderBase::FastMathFlagGuard Guard(B); 1181 B.setFastMathFlags(CI->getFastMathFlags()); 1182 1183 Module *M = CI->getModule(); 1184 Value *V = CI->getArgOperand(0); 1185 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1186 CallInst *NewCall = B.CreateCall(F, V); 1187 NewCall->takeName(CI); 1188 return NewCall; 1189 } 1190 1191 /// Return a variant of Val with float type. 1192 /// Currently this works in two cases: If Val is an FPExtension of a float 1193 /// value to something bigger, simply return the operand. 1194 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1195 /// loss of precision do so. 1196 static Value *valueHasFloatPrecision(Value *Val) { 1197 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1198 Value *Op = Cast->getOperand(0); 1199 if (Op->getType()->isFloatTy()) 1200 return Op; 1201 } 1202 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1203 APFloat F = Const->getValueAPF(); 1204 bool losesInfo; 1205 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1206 &losesInfo); 1207 if (!losesInfo) 1208 return ConstantFP::get(Const->getContext(), F); 1209 } 1210 return nullptr; 1211 } 1212 1213 /// Shrink double -> float functions. 1214 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1215 bool isBinary, bool isPrecise = false) { 1216 Function *CalleeFn = CI->getCalledFunction(); 1217 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1218 return nullptr; 1219 1220 // If not all the uses of the function are converted to float, then bail out. 1221 // This matters if the precision of the result is more important than the 1222 // precision of the arguments. 1223 if (isPrecise) 1224 for (User *U : CI->users()) { 1225 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1226 if (!Cast || !Cast->getType()->isFloatTy()) 1227 return nullptr; 1228 } 1229 1230 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1231 Value *V[2]; 1232 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1233 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1234 if (!V[0] || (isBinary && !V[1])) 1235 return nullptr; 1236 1237 // If call isn't an intrinsic, check that it isn't within a function with the 1238 // same name as the float version of this call, otherwise the result is an 1239 // infinite loop. For example, from MinGW-w64: 1240 // 1241 // float expf(float val) { return (float) exp((double) val); } 1242 StringRef CalleeName = CalleeFn->getName(); 1243 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1244 if (!IsIntrinsic) { 1245 StringRef CallerName = CI->getFunction()->getName(); 1246 if (!CallerName.empty() && CallerName.back() == 'f' && 1247 CallerName.size() == (CalleeName.size() + 1) && 1248 CallerName.startswith(CalleeName)) 1249 return nullptr; 1250 } 1251 1252 // Propagate the math semantics from the current function to the new function. 1253 IRBuilderBase::FastMathFlagGuard Guard(B); 1254 B.setFastMathFlags(CI->getFastMathFlags()); 1255 1256 // g((double) float) -> (double) gf(float) 1257 Value *R; 1258 if (IsIntrinsic) { 1259 Module *M = CI->getModule(); 1260 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1261 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1262 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1263 } else { 1264 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1265 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs) 1266 : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs); 1267 } 1268 return B.CreateFPExt(R, B.getDoubleTy()); 1269 } 1270 1271 /// Shrink double -> float for unary functions. 1272 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1273 bool isPrecise = false) { 1274 return optimizeDoubleFP(CI, B, false, isPrecise); 1275 } 1276 1277 /// Shrink double -> float for binary functions. 1278 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1279 bool isPrecise = false) { 1280 return optimizeDoubleFP(CI, B, true, isPrecise); 1281 } 1282 1283 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1284 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1285 if (!CI->isFast()) 1286 return nullptr; 1287 1288 // Propagate fast-math flags from the existing call to new instructions. 1289 IRBuilderBase::FastMathFlagGuard Guard(B); 1290 B.setFastMathFlags(CI->getFastMathFlags()); 1291 1292 Value *Real, *Imag; 1293 if (CI->getNumArgOperands() == 1) { 1294 Value *Op = CI->getArgOperand(0); 1295 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1296 Real = B.CreateExtractValue(Op, 0, "real"); 1297 Imag = B.CreateExtractValue(Op, 1, "imag"); 1298 } else { 1299 assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); 1300 Real = CI->getArgOperand(0); 1301 Imag = CI->getArgOperand(1); 1302 } 1303 1304 Value *RealReal = B.CreateFMul(Real, Real); 1305 Value *ImagImag = B.CreateFMul(Imag, Imag); 1306 1307 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1308 CI->getType()); 1309 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); 1310 } 1311 1312 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1313 IRBuilderBase &B) { 1314 if (!isa<FPMathOperator>(Call)) 1315 return nullptr; 1316 1317 IRBuilderBase::FastMathFlagGuard Guard(B); 1318 B.setFastMathFlags(Call->getFastMathFlags()); 1319 1320 // TODO: Can this be shared to also handle LLVM intrinsics? 1321 Value *X; 1322 switch (Func) { 1323 case LibFunc_sin: 1324 case LibFunc_sinf: 1325 case LibFunc_sinl: 1326 case LibFunc_tan: 1327 case LibFunc_tanf: 1328 case LibFunc_tanl: 1329 // sin(-X) --> -sin(X) 1330 // tan(-X) --> -tan(X) 1331 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1332 return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X)); 1333 break; 1334 case LibFunc_cos: 1335 case LibFunc_cosf: 1336 case LibFunc_cosl: 1337 // cos(-X) --> cos(X) 1338 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1339 return B.CreateCall(Call->getCalledFunction(), X, "cos"); 1340 break; 1341 default: 1342 break; 1343 } 1344 return nullptr; 1345 } 1346 1347 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) { 1348 // Multiplications calculated using Addition Chains. 1349 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1350 1351 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1352 1353 if (InnerChain[Exp]) 1354 return InnerChain[Exp]; 1355 1356 static const unsigned AddChain[33][2] = { 1357 {0, 0}, // Unused. 1358 {0, 0}, // Unused (base case = pow1). 1359 {1, 1}, // Unused (pre-computed). 1360 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1361 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1362 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1363 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1364 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1365 }; 1366 1367 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1368 getPow(InnerChain, AddChain[Exp][1], B)); 1369 return InnerChain[Exp]; 1370 } 1371 1372 // Return a properly extended integer (DstWidth bits wide) if the operation is 1373 // an itofp. 1374 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) { 1375 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1376 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1377 // Make sure that the exponent fits inside an "int" of size DstWidth, 1378 // thus avoiding any range issues that FP has not. 1379 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); 1380 if (BitWidth < DstWidth || 1381 (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) 1382 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth)) 1383 : B.CreateZExt(Op, B.getIntNTy(DstWidth)); 1384 } 1385 1386 return nullptr; 1387 } 1388 1389 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1390 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 1391 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 1392 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 1393 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1394 AttributeList Attrs; // Attributes are only meaningful on the original call 1395 Module *Mod = Pow->getModule(); 1396 Type *Ty = Pow->getType(); 1397 bool Ignored; 1398 1399 // Evaluate special cases related to a nested function as the base. 1400 1401 // pow(exp(x), y) -> exp(x * y) 1402 // pow(exp2(x), y) -> exp2(x * y) 1403 // If exp{,2}() is used only once, it is better to fold two transcendental 1404 // math functions into one. If used again, exp{,2}() would still have to be 1405 // called with the original argument, then keep both original transcendental 1406 // functions. However, this transformation is only safe with fully relaxed 1407 // math semantics, since, besides rounding differences, it changes overflow 1408 // and underflow behavior quite dramatically. For example: 1409 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1410 // Whereas: 1411 // exp(1000 * 0.001) = exp(1) 1412 // TODO: Loosen the requirement for fully relaxed math semantics. 1413 // TODO: Handle exp10() when more targets have it available. 1414 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1415 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1416 LibFunc LibFn; 1417 1418 Function *CalleeFn = BaseFn->getCalledFunction(); 1419 if (CalleeFn && 1420 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1421 StringRef ExpName; 1422 Intrinsic::ID ID; 1423 Value *ExpFn; 1424 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 1425 1426 switch (LibFn) { 1427 default: 1428 return nullptr; 1429 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1430 ExpName = TLI->getName(LibFunc_exp); 1431 ID = Intrinsic::exp; 1432 LibFnFloat = LibFunc_expf; 1433 LibFnDouble = LibFunc_exp; 1434 LibFnLongDouble = LibFunc_expl; 1435 break; 1436 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1437 ExpName = TLI->getName(LibFunc_exp2); 1438 ID = Intrinsic::exp2; 1439 LibFnFloat = LibFunc_exp2f; 1440 LibFnDouble = LibFunc_exp2; 1441 LibFnLongDouble = LibFunc_exp2l; 1442 break; 1443 } 1444 1445 // Create new exp{,2}() with the product as its argument. 1446 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1447 ExpFn = BaseFn->doesNotAccessMemory() 1448 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1449 FMul, ExpName) 1450 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1451 LibFnLongDouble, B, 1452 BaseFn->getAttributes()); 1453 1454 // Since the new exp{,2}() is different from the original one, dead code 1455 // elimination cannot be trusted to remove it, since it may have side 1456 // effects (e.g., errno). When the only consumer for the original 1457 // exp{,2}() is pow(), then it has to be explicitly erased. 1458 substituteInParent(BaseFn, ExpFn); 1459 return ExpFn; 1460 } 1461 } 1462 1463 // Evaluate special cases related to a constant base. 1464 1465 const APFloat *BaseF; 1466 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1467 return nullptr; 1468 1469 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 1470 if (match(Base, m_SpecificFP(2.0)) && 1471 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 1472 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1473 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1474 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI, 1475 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1476 B, Attrs); 1477 } 1478 1479 // pow(2.0 ** n, x) -> exp2(n * x) 1480 if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1481 APFloat BaseR = APFloat(1.0); 1482 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1483 BaseR = BaseR / *BaseF; 1484 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1485 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1486 APSInt NI(64, false); 1487 if ((IsInteger || IsReciprocal) && 1488 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1489 APFloat::opOK && 1490 NI > 1 && NI.isPowerOf2()) { 1491 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1492 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1493 if (Pow->doesNotAccessMemory()) 1494 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1495 FMul, "exp2"); 1496 else 1497 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1498 LibFunc_exp2l, B, Attrs); 1499 } 1500 } 1501 1502 // pow(10.0, x) -> exp10(x) 1503 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1504 if (match(Base, m_SpecificFP(10.0)) && 1505 hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1506 return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f, 1507 LibFunc_exp10l, B, Attrs); 1508 1509 // pow(x, y) -> exp2(log2(x) * y) 1510 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 1511 !BaseF->isNegative()) { 1512 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 1513 // Luckily optimizePow has already handled the x == 1 case. 1514 assert(!match(Base, m_FPOne()) && 1515 "pow(1.0, y) should have been simplified earlier!"); 1516 1517 Value *Log = nullptr; 1518 if (Ty->isFloatTy()) 1519 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 1520 else if (Ty->isDoubleTy()) 1521 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 1522 1523 if (Log) { 1524 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 1525 if (Pow->doesNotAccessMemory()) 1526 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1527 FMul, "exp2"); 1528 else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) 1529 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1530 LibFunc_exp2l, B, Attrs); 1531 } 1532 } 1533 1534 return nullptr; 1535 } 1536 1537 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1538 Module *M, IRBuilderBase &B, 1539 const TargetLibraryInfo *TLI) { 1540 // If errno is never set, then use the intrinsic for sqrt(). 1541 if (NoErrno) { 1542 Function *SqrtFn = 1543 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1544 return B.CreateCall(SqrtFn, V, "sqrt"); 1545 } 1546 1547 // Otherwise, use the libcall for sqrt(). 1548 if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) 1549 // TODO: We also should check that the target can in fact lower the sqrt() 1550 // libcall. We currently have no way to ask this question, so we ask if 1551 // the target has a sqrt() libcall, which is not exactly the same. 1552 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1553 LibFunc_sqrtl, B, Attrs); 1554 1555 return nullptr; 1556 } 1557 1558 /// Use square root in place of pow(x, +/-0.5). 1559 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 1560 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1561 AttributeList Attrs; // Attributes are only meaningful on the original call 1562 Module *Mod = Pow->getModule(); 1563 Type *Ty = Pow->getType(); 1564 1565 const APFloat *ExpoF; 1566 if (!match(Expo, m_APFloat(ExpoF)) || 1567 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1568 return nullptr; 1569 1570 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 1571 // so that requires fast-math-flags (afn or reassoc). 1572 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 1573 return nullptr; 1574 1575 // If we have a pow() library call (accesses memory) and we can't guarantee 1576 // that the base is not an infinity, give up: 1577 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 1578 // errno), but sqrt(-Inf) is required by various standards to set errno. 1579 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 1580 !isKnownNeverInfinity(Base, TLI)) 1581 return nullptr; 1582 1583 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1584 if (!Sqrt) 1585 return nullptr; 1586 1587 // Handle signed zero base by expanding to fabs(sqrt(x)). 1588 if (!Pow->hasNoSignedZeros()) { 1589 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1590 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1591 } 1592 1593 // Handle non finite base by expanding to 1594 // (x == -infinity ? +infinity : sqrt(x)). 1595 if (!Pow->hasNoInfs()) { 1596 Value *PosInf = ConstantFP::getInfinity(Ty), 1597 *NegInf = ConstantFP::getInfinity(Ty, true); 1598 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1599 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1600 } 1601 1602 // If the exponent is negative, then get the reciprocal. 1603 if (ExpoF->isNegative()) 1604 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1605 1606 return Sqrt; 1607 } 1608 1609 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1610 IRBuilderBase &B) { 1611 Value *Args[] = {Base, Expo}; 1612 Type *Types[] = {Base->getType(), Expo->getType()}; 1613 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types); 1614 return B.CreateCall(F, Args); 1615 } 1616 1617 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 1618 Value *Base = Pow->getArgOperand(0); 1619 Value *Expo = Pow->getArgOperand(1); 1620 Function *Callee = Pow->getCalledFunction(); 1621 StringRef Name = Callee->getName(); 1622 Type *Ty = Pow->getType(); 1623 Module *M = Pow->getModule(); 1624 bool AllowApprox = Pow->hasApproxFunc(); 1625 bool Ignored; 1626 1627 // Propagate the math semantics from the call to any created instructions. 1628 IRBuilderBase::FastMathFlagGuard Guard(B); 1629 B.setFastMathFlags(Pow->getFastMathFlags()); 1630 // Evaluate special cases related to the base. 1631 1632 // pow(1.0, x) -> 1.0 1633 if (match(Base, m_FPOne())) 1634 return Base; 1635 1636 if (Value *Exp = replacePowWithExp(Pow, B)) 1637 return Exp; 1638 1639 // Evaluate special cases related to the exponent. 1640 1641 // pow(x, -1.0) -> 1.0 / x 1642 if (match(Expo, m_SpecificFP(-1.0))) 1643 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1644 1645 // pow(x, +/-0.0) -> 1.0 1646 if (match(Expo, m_AnyZeroFP())) 1647 return ConstantFP::get(Ty, 1.0); 1648 1649 // pow(x, 1.0) -> x 1650 if (match(Expo, m_FPOne())) 1651 return Base; 1652 1653 // pow(x, 2.0) -> x * x 1654 if (match(Expo, m_SpecificFP(2.0))) 1655 return B.CreateFMul(Base, Base, "square"); 1656 1657 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1658 return Sqrt; 1659 1660 // pow(x, n) -> x * x * x * ... 1661 const APFloat *ExpoF; 1662 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 1663 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 1664 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1665 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1666 // additional fmul. 1667 // TODO: This whole transformation should be backend specific (e.g. some 1668 // backends might prefer libcalls or the limit for the exponent might 1669 // be different) and it should also consider optimizing for size. 1670 APFloat LimF(ExpoF->getSemantics(), 33), 1671 ExpoA(abs(*ExpoF)); 1672 if (ExpoA < LimF) { 1673 // This transformation applies to integer or integer+0.5 exponents only. 1674 // For integer+0.5, we create a sqrt(Base) call. 1675 Value *Sqrt = nullptr; 1676 if (!ExpoA.isInteger()) { 1677 APFloat Expo2 = ExpoA; 1678 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1679 // is no floating point exception and the result is an integer, then 1680 // ExpoA == integer + 0.5 1681 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1682 return nullptr; 1683 1684 if (!Expo2.isInteger()) 1685 return nullptr; 1686 1687 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1688 Pow->doesNotAccessMemory(), M, B, TLI); 1689 if (!Sqrt) 1690 return nullptr; 1691 } 1692 1693 // We will memoize intermediate products of the Addition Chain. 1694 Value *InnerChain[33] = {nullptr}; 1695 InnerChain[1] = Base; 1696 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1697 1698 // We cannot readily convert a non-double type (like float) to a double. 1699 // So we first convert it to something which could be converted to double. 1700 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1701 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1702 1703 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1704 if (Sqrt) 1705 FMul = B.CreateFMul(FMul, Sqrt); 1706 1707 // If the exponent is negative, then get the reciprocal. 1708 if (ExpoF->isNegative()) 1709 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1710 1711 return FMul; 1712 } 1713 1714 APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false); 1715 // powf(x, n) -> powi(x, n) if n is a constant signed integer value 1716 if (ExpoF->isInteger() && 1717 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 1718 APFloat::opOK) { 1719 return createPowWithIntegerExponent( 1720 Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo), M, B); 1721 } 1722 } 1723 1724 // powf(x, itofp(y)) -> powi(x, y) 1725 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 1726 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1727 return createPowWithIntegerExponent(Base, ExpoI, M, B); 1728 } 1729 1730 // Shrink pow() to powf() if the arguments are single precision, 1731 // unless the result is expected to be double precision. 1732 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 1733 hasFloatVersion(Name)) { 1734 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, true)) 1735 return Shrunk; 1736 } 1737 1738 return nullptr; 1739 } 1740 1741 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 1742 Function *Callee = CI->getCalledFunction(); 1743 AttributeList Attrs; // Attributes are only meaningful on the original call 1744 StringRef Name = Callee->getName(); 1745 Value *Ret = nullptr; 1746 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 1747 hasFloatVersion(Name)) 1748 Ret = optimizeUnaryDoubleFP(CI, B, true); 1749 1750 Type *Ty = CI->getType(); 1751 Value *Op = CI->getArgOperand(0); 1752 1753 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize 1754 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize 1755 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 1756 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1757 if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) 1758 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 1759 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1760 B, Attrs); 1761 } 1762 1763 return Ret; 1764 } 1765 1766 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 1767 // If we can shrink the call to a float function rather than a double 1768 // function, do that first. 1769 Function *Callee = CI->getCalledFunction(); 1770 StringRef Name = Callee->getName(); 1771 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1772 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1773 return Ret; 1774 1775 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 1776 // the intrinsics for improved optimization (for example, vectorization). 1777 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 1778 // From the C standard draft WG14/N1256: 1779 // "Ideally, fmax would be sensitive to the sign of zero, for example 1780 // fmax(-0.0, +0.0) would return +0; however, implementation in software 1781 // might be impractical." 1782 IRBuilderBase::FastMathFlagGuard Guard(B); 1783 FastMathFlags FMF = CI->getFastMathFlags(); 1784 FMF.setNoSignedZeros(); 1785 B.setFastMathFlags(FMF); 1786 1787 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 1788 : Intrinsic::maxnum; 1789 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 1790 return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) }); 1791 } 1792 1793 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 1794 Function *LogFn = Log->getCalledFunction(); 1795 AttributeList Attrs; // Attributes are only meaningful on the original call 1796 StringRef LogNm = LogFn->getName(); 1797 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 1798 Module *Mod = Log->getModule(); 1799 Type *Ty = Log->getType(); 1800 Value *Ret = nullptr; 1801 1802 if (UnsafeFPShrink && hasFloatVersion(LogNm)) 1803 Ret = optimizeUnaryDoubleFP(Log, B, true); 1804 1805 // The earlier call must also be 'fast' in order to do these transforms. 1806 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 1807 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 1808 return Ret; 1809 1810 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 1811 1812 // This is only applicable to log(), log2(), log10(). 1813 if (TLI->getLibFunc(LogNm, LogLb)) 1814 switch (LogLb) { 1815 case LibFunc_logf: 1816 LogID = Intrinsic::log; 1817 ExpLb = LibFunc_expf; 1818 Exp2Lb = LibFunc_exp2f; 1819 Exp10Lb = LibFunc_exp10f; 1820 PowLb = LibFunc_powf; 1821 break; 1822 case LibFunc_log: 1823 LogID = Intrinsic::log; 1824 ExpLb = LibFunc_exp; 1825 Exp2Lb = LibFunc_exp2; 1826 Exp10Lb = LibFunc_exp10; 1827 PowLb = LibFunc_pow; 1828 break; 1829 case LibFunc_logl: 1830 LogID = Intrinsic::log; 1831 ExpLb = LibFunc_expl; 1832 Exp2Lb = LibFunc_exp2l; 1833 Exp10Lb = LibFunc_exp10l; 1834 PowLb = LibFunc_powl; 1835 break; 1836 case LibFunc_log2f: 1837 LogID = Intrinsic::log2; 1838 ExpLb = LibFunc_expf; 1839 Exp2Lb = LibFunc_exp2f; 1840 Exp10Lb = LibFunc_exp10f; 1841 PowLb = LibFunc_powf; 1842 break; 1843 case LibFunc_log2: 1844 LogID = Intrinsic::log2; 1845 ExpLb = LibFunc_exp; 1846 Exp2Lb = LibFunc_exp2; 1847 Exp10Lb = LibFunc_exp10; 1848 PowLb = LibFunc_pow; 1849 break; 1850 case LibFunc_log2l: 1851 LogID = Intrinsic::log2; 1852 ExpLb = LibFunc_expl; 1853 Exp2Lb = LibFunc_exp2l; 1854 Exp10Lb = LibFunc_exp10l; 1855 PowLb = LibFunc_powl; 1856 break; 1857 case LibFunc_log10f: 1858 LogID = Intrinsic::log10; 1859 ExpLb = LibFunc_expf; 1860 Exp2Lb = LibFunc_exp2f; 1861 Exp10Lb = LibFunc_exp10f; 1862 PowLb = LibFunc_powf; 1863 break; 1864 case LibFunc_log10: 1865 LogID = Intrinsic::log10; 1866 ExpLb = LibFunc_exp; 1867 Exp2Lb = LibFunc_exp2; 1868 Exp10Lb = LibFunc_exp10; 1869 PowLb = LibFunc_pow; 1870 break; 1871 case LibFunc_log10l: 1872 LogID = Intrinsic::log10; 1873 ExpLb = LibFunc_expl; 1874 Exp2Lb = LibFunc_exp2l; 1875 Exp10Lb = LibFunc_exp10l; 1876 PowLb = LibFunc_powl; 1877 break; 1878 default: 1879 return Ret; 1880 } 1881 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 1882 LogID == Intrinsic::log10) { 1883 if (Ty->getScalarType()->isFloatTy()) { 1884 ExpLb = LibFunc_expf; 1885 Exp2Lb = LibFunc_exp2f; 1886 Exp10Lb = LibFunc_exp10f; 1887 PowLb = LibFunc_powf; 1888 } else if (Ty->getScalarType()->isDoubleTy()) { 1889 ExpLb = LibFunc_exp; 1890 Exp2Lb = LibFunc_exp2; 1891 Exp10Lb = LibFunc_exp10; 1892 PowLb = LibFunc_pow; 1893 } else 1894 return Ret; 1895 } else 1896 return Ret; 1897 1898 IRBuilderBase::FastMathFlagGuard Guard(B); 1899 B.setFastMathFlags(FastMathFlags::getFast()); 1900 1901 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 1902 LibFunc ArgLb = NotLibFunc; 1903 TLI->getLibFunc(*Arg, ArgLb); 1904 1905 // log(pow(x,y)) -> y*log(x) 1906 if (ArgLb == PowLb || ArgID == Intrinsic::pow) { 1907 Value *LogX = 1908 Log->doesNotAccessMemory() 1909 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 1910 Arg->getOperand(0), "log") 1911 : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs); 1912 Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul"); 1913 // Since pow() may have side effects, e.g. errno, 1914 // dead code elimination may not be trusted to remove it. 1915 substituteInParent(Arg, MulY); 1916 return MulY; 1917 } 1918 1919 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 1920 // TODO: There is no exp10() intrinsic yet. 1921 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 1922 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 1923 Constant *Eul; 1924 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 1925 // FIXME: Add more precise value of e for long double. 1926 Eul = ConstantFP::get(Log->getType(), numbers::e); 1927 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 1928 Eul = ConstantFP::get(Log->getType(), 2.0); 1929 else 1930 Eul = ConstantFP::get(Log->getType(), 10.0); 1931 Value *LogE = Log->doesNotAccessMemory() 1932 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 1933 Eul, "log") 1934 : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs); 1935 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 1936 // Since exp() may have side effects, e.g. errno, 1937 // dead code elimination may not be trusted to remove it. 1938 substituteInParent(Arg, MulY); 1939 return MulY; 1940 } 1941 1942 return Ret; 1943 } 1944 1945 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 1946 Function *Callee = CI->getCalledFunction(); 1947 Value *Ret = nullptr; 1948 // TODO: Once we have a way (other than checking for the existince of the 1949 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 1950 // condition below. 1951 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 1952 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1953 Ret = optimizeUnaryDoubleFP(CI, B, true); 1954 1955 if (!CI->isFast()) 1956 return Ret; 1957 1958 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1959 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 1960 return Ret; 1961 1962 // We're looking for a repeated factor in a multiplication tree, 1963 // so we can do this fold: sqrt(x * x) -> fabs(x); 1964 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 1965 Value *Op0 = I->getOperand(0); 1966 Value *Op1 = I->getOperand(1); 1967 Value *RepeatOp = nullptr; 1968 Value *OtherOp = nullptr; 1969 if (Op0 == Op1) { 1970 // Simple match: the operands of the multiply are identical. 1971 RepeatOp = Op0; 1972 } else { 1973 // Look for a more complicated pattern: one of the operands is itself 1974 // a multiply, so search for a common factor in that multiply. 1975 // Note: We don't bother looking any deeper than this first level or for 1976 // variations of this pattern because instcombine's visitFMUL and/or the 1977 // reassociation pass should give us this form. 1978 Value *OtherMul0, *OtherMul1; 1979 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1980 // Pattern: sqrt((x * y) * z) 1981 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 1982 // Matched: sqrt((x * x) * z) 1983 RepeatOp = OtherMul0; 1984 OtherOp = Op1; 1985 } 1986 } 1987 } 1988 if (!RepeatOp) 1989 return Ret; 1990 1991 // Fast math flags for any created instructions should match the sqrt 1992 // and multiply. 1993 IRBuilderBase::FastMathFlagGuard Guard(B); 1994 B.setFastMathFlags(I->getFastMathFlags()); 1995 1996 // If we found a repeated factor, hoist it out of the square root and 1997 // replace it with the fabs of that factor. 1998 Module *M = Callee->getParent(); 1999 Type *ArgType = I->getType(); 2000 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 2001 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 2002 if (OtherOp) { 2003 // If we found a non-repeated factor, we still need to get its square 2004 // root. We then multiply that by the value that was simplified out 2005 // of the square root calculation. 2006 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 2007 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 2008 return B.CreateFMul(FabsCall, SqrtCall); 2009 } 2010 return FabsCall; 2011 } 2012 2013 // TODO: Generalize to handle any trig function and its inverse. 2014 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) { 2015 Function *Callee = CI->getCalledFunction(); 2016 Value *Ret = nullptr; 2017 StringRef Name = Callee->getName(); 2018 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 2019 Ret = optimizeUnaryDoubleFP(CI, B, true); 2020 2021 Value *Op1 = CI->getArgOperand(0); 2022 auto *OpC = dyn_cast<CallInst>(Op1); 2023 if (!OpC) 2024 return Ret; 2025 2026 // Both calls must be 'fast' in order to remove them. 2027 if (!CI->isFast() || !OpC->isFast()) 2028 return Ret; 2029 2030 // tan(atan(x)) -> x 2031 // tanf(atanf(x)) -> x 2032 // tanl(atanl(x)) -> x 2033 LibFunc Func; 2034 Function *F = OpC->getCalledFunction(); 2035 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 2036 ((Func == LibFunc_atan && Callee->getName() == "tan") || 2037 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 2038 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 2039 Ret = OpC->getArgOperand(0); 2040 return Ret; 2041 } 2042 2043 static bool isTrigLibCall(CallInst *CI) { 2044 // We can only hope to do anything useful if we can ignore things like errno 2045 // and floating-point exceptions. 2046 // We already checked the prototype. 2047 return CI->hasFnAttr(Attribute::NoUnwind) && 2048 CI->hasFnAttr(Attribute::ReadNone); 2049 } 2050 2051 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2052 bool UseFloat, Value *&Sin, Value *&Cos, 2053 Value *&SinCos) { 2054 Type *ArgTy = Arg->getType(); 2055 Type *ResTy; 2056 StringRef Name; 2057 2058 Triple T(OrigCallee->getParent()->getTargetTriple()); 2059 if (UseFloat) { 2060 Name = "__sincospif_stret"; 2061 2062 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2063 // x86_64 can't use {float, float} since that would be returned in both 2064 // xmm0 and xmm1, which isn't what a real struct would do. 2065 ResTy = T.getArch() == Triple::x86_64 2066 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2067 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2068 } else { 2069 Name = "__sincospi_stret"; 2070 ResTy = StructType::get(ArgTy, ArgTy); 2071 } 2072 2073 Module *M = OrigCallee->getParent(); 2074 FunctionCallee Callee = 2075 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); 2076 2077 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2078 // If the argument is an instruction, it must dominate all uses so put our 2079 // sincos call there. 2080 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2081 } else { 2082 // Otherwise (e.g. for a constant) the beginning of the function is as 2083 // good a place as any. 2084 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2085 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2086 } 2087 2088 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2089 2090 if (SinCos->getType()->isStructTy()) { 2091 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2092 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2093 } else { 2094 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2095 "sinpi"); 2096 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2097 "cospi"); 2098 } 2099 } 2100 2101 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) { 2102 // Make sure the prototype is as expected, otherwise the rest of the 2103 // function is probably invalid and likely to abort. 2104 if (!isTrigLibCall(CI)) 2105 return nullptr; 2106 2107 Value *Arg = CI->getArgOperand(0); 2108 SmallVector<CallInst *, 1> SinCalls; 2109 SmallVector<CallInst *, 1> CosCalls; 2110 SmallVector<CallInst *, 1> SinCosCalls; 2111 2112 bool IsFloat = Arg->getType()->isFloatTy(); 2113 2114 // Look for all compatible sinpi, cospi and sincospi calls with the same 2115 // argument. If there are enough (in some sense) we can make the 2116 // substitution. 2117 Function *F = CI->getFunction(); 2118 for (User *U : Arg->users()) 2119 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2120 2121 // It's only worthwhile if both sinpi and cospi are actually used. 2122 if (SinCalls.empty() || CosCalls.empty()) 2123 return nullptr; 2124 2125 Value *Sin, *Cos, *SinCos; 2126 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 2127 2128 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2129 Value *Res) { 2130 for (CallInst *C : Calls) 2131 replaceAllUsesWith(C, Res); 2132 }; 2133 2134 replaceTrigInsts(SinCalls, Sin); 2135 replaceTrigInsts(CosCalls, Cos); 2136 replaceTrigInsts(SinCosCalls, SinCos); 2137 2138 return nullptr; 2139 } 2140 2141 void LibCallSimplifier::classifyArgUse( 2142 Value *Val, Function *F, bool IsFloat, 2143 SmallVectorImpl<CallInst *> &SinCalls, 2144 SmallVectorImpl<CallInst *> &CosCalls, 2145 SmallVectorImpl<CallInst *> &SinCosCalls) { 2146 CallInst *CI = dyn_cast<CallInst>(Val); 2147 2148 if (!CI || CI->use_empty()) 2149 return; 2150 2151 // Don't consider calls in other functions. 2152 if (CI->getFunction() != F) 2153 return; 2154 2155 Function *Callee = CI->getCalledFunction(); 2156 LibFunc Func; 2157 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 2158 !isTrigLibCall(CI)) 2159 return; 2160 2161 if (IsFloat) { 2162 if (Func == LibFunc_sinpif) 2163 SinCalls.push_back(CI); 2164 else if (Func == LibFunc_cospif) 2165 CosCalls.push_back(CI); 2166 else if (Func == LibFunc_sincospif_stret) 2167 SinCosCalls.push_back(CI); 2168 } else { 2169 if (Func == LibFunc_sinpi) 2170 SinCalls.push_back(CI); 2171 else if (Func == LibFunc_cospi) 2172 CosCalls.push_back(CI); 2173 else if (Func == LibFunc_sincospi_stret) 2174 SinCosCalls.push_back(CI); 2175 } 2176 } 2177 2178 //===----------------------------------------------------------------------===// 2179 // Integer Library Call Optimizations 2180 //===----------------------------------------------------------------------===// 2181 2182 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 2183 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 2184 Value *Op = CI->getArgOperand(0); 2185 Type *ArgType = Op->getType(); 2186 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2187 Intrinsic::cttz, ArgType); 2188 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 2189 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 2190 V = B.CreateIntCast(V, B.getInt32Ty(), false); 2191 2192 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 2193 return B.CreateSelect(Cond, V, B.getInt32(0)); 2194 } 2195 2196 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 2197 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 2198 Value *Op = CI->getArgOperand(0); 2199 Type *ArgType = Op->getType(); 2200 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2201 Intrinsic::ctlz, ArgType); 2202 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 2203 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 2204 V); 2205 return B.CreateIntCast(V, CI->getType(), false); 2206 } 2207 2208 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 2209 // abs(x) -> x <s 0 ? -x : x 2210 // The negation has 'nsw' because abs of INT_MIN is undefined. 2211 Value *X = CI->getArgOperand(0); 2212 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 2213 Value *NegX = B.CreateNSWNeg(X, "neg"); 2214 return B.CreateSelect(IsNeg, NegX, X); 2215 } 2216 2217 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 2218 // isdigit(c) -> (c-'0') <u 10 2219 Value *Op = CI->getArgOperand(0); 2220 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 2221 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 2222 return B.CreateZExt(Op, CI->getType()); 2223 } 2224 2225 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 2226 // isascii(c) -> c <u 128 2227 Value *Op = CI->getArgOperand(0); 2228 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 2229 return B.CreateZExt(Op, CI->getType()); 2230 } 2231 2232 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 2233 // toascii(c) -> c & 0x7f 2234 return B.CreateAnd(CI->getArgOperand(0), 2235 ConstantInt::get(CI->getType(), 0x7F)); 2236 } 2237 2238 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 2239 StringRef Str; 2240 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2241 return nullptr; 2242 2243 return convertStrToNumber(CI, Str, 10); 2244 } 2245 2246 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) { 2247 StringRef Str; 2248 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2249 return nullptr; 2250 2251 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 2252 return nullptr; 2253 2254 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2255 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 2256 } 2257 2258 return nullptr; 2259 } 2260 2261 //===----------------------------------------------------------------------===// 2262 // Formatting and IO Library Call Optimizations 2263 //===----------------------------------------------------------------------===// 2264 2265 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2266 2267 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 2268 int StreamArg) { 2269 Function *Callee = CI->getCalledFunction(); 2270 // Error reporting calls should be cold, mark them as such. 2271 // This applies even to non-builtin calls: it is only a hint and applies to 2272 // functions that the frontend might not understand as builtins. 2273 2274 // This heuristic was suggested in: 2275 // Improving Static Branch Prediction in a Compiler 2276 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2277 // Proceedings of PACT'98, Oct. 1998, IEEE 2278 if (!CI->hasFnAttr(Attribute::Cold) && 2279 isReportingError(Callee, CI, StreamArg)) { 2280 CI->addFnAttr(Attribute::Cold); 2281 } 2282 2283 return nullptr; 2284 } 2285 2286 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2287 if (!Callee || !Callee->isDeclaration()) 2288 return false; 2289 2290 if (StreamArg < 0) 2291 return true; 2292 2293 // These functions might be considered cold, but only if their stream 2294 // argument is stderr. 2295 2296 if (StreamArg >= (int)CI->getNumArgOperands()) 2297 return false; 2298 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2299 if (!LI) 2300 return false; 2301 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2302 if (!GV || !GV->isDeclaration()) 2303 return false; 2304 return GV->getName() == "stderr"; 2305 } 2306 2307 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 2308 // Check for a fixed format string. 2309 StringRef FormatStr; 2310 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2311 return nullptr; 2312 2313 // Empty format string -> noop. 2314 if (FormatStr.empty()) // Tolerate printf's declared void. 2315 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2316 2317 // Do not do any of the following transformations if the printf return value 2318 // is used, in general the printf return value is not compatible with either 2319 // putchar() or puts(). 2320 if (!CI->use_empty()) 2321 return nullptr; 2322 2323 // printf("x") -> putchar('x'), even for "%" and "%%". 2324 if (FormatStr.size() == 1 || FormatStr == "%%") 2325 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 2326 2327 // Try to remove call or emit putchar/puts. 2328 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 2329 StringRef OperandStr; 2330 if (!getConstantStringInfo(CI->getOperand(1), OperandStr)) 2331 return nullptr; 2332 // printf("%s", "") --> NOP 2333 if (OperandStr.empty()) 2334 return (Value *)CI; 2335 // printf("%s", "a") --> putchar('a') 2336 if (OperandStr.size() == 1) 2337 return emitPutChar(B.getInt32(OperandStr[0]), B, TLI); 2338 // printf("%s", str"\n") --> puts(str) 2339 if (OperandStr.back() == '\n') { 2340 OperandStr = OperandStr.drop_back(); 2341 Value *GV = B.CreateGlobalString(OperandStr, "str"); 2342 return emitPutS(GV, B, TLI); 2343 } 2344 return nullptr; 2345 } 2346 2347 // printf("foo\n") --> puts("foo") 2348 if (FormatStr.back() == '\n' && 2349 FormatStr.find('%') == StringRef::npos) { // No format characters. 2350 // Create a string literal with no \n on it. We expect the constant merge 2351 // pass to be run after this pass, to merge duplicate strings. 2352 FormatStr = FormatStr.drop_back(); 2353 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2354 return emitPutS(GV, B, TLI); 2355 } 2356 2357 // Optimize specific format strings. 2358 // printf("%c", chr) --> putchar(chr) 2359 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 2360 CI->getArgOperand(1)->getType()->isIntegerTy()) 2361 return emitPutChar(CI->getArgOperand(1), B, TLI); 2362 2363 // printf("%s\n", str) --> puts(str) 2364 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 2365 CI->getArgOperand(1)->getType()->isPointerTy()) 2366 return emitPutS(CI->getArgOperand(1), B, TLI); 2367 return nullptr; 2368 } 2369 2370 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 2371 2372 Function *Callee = CI->getCalledFunction(); 2373 FunctionType *FT = Callee->getFunctionType(); 2374 if (Value *V = optimizePrintFString(CI, B)) { 2375 return V; 2376 } 2377 2378 // printf(format, ...) -> iprintf(format, ...) if no floating point 2379 // arguments. 2380 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2381 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2382 FunctionCallee IPrintFFn = 2383 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2384 CallInst *New = cast<CallInst>(CI->clone()); 2385 New->setCalledFunction(IPrintFFn); 2386 B.Insert(New); 2387 return New; 2388 } 2389 2390 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2391 // arguments. 2392 if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) { 2393 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2394 auto SmallPrintFFn = 2395 M->getOrInsertFunction(TLI->getName(LibFunc_small_printf), 2396 FT, Callee->getAttributes()); 2397 CallInst *New = cast<CallInst>(CI->clone()); 2398 New->setCalledFunction(SmallPrintFFn); 2399 B.Insert(New); 2400 return New; 2401 } 2402 2403 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2404 return nullptr; 2405 } 2406 2407 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 2408 IRBuilderBase &B) { 2409 // Check for a fixed format string. 2410 StringRef FormatStr; 2411 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2412 return nullptr; 2413 2414 // If we just have a format string (nothing else crazy) transform it. 2415 Value *Dest = CI->getArgOperand(0); 2416 if (CI->getNumArgOperands() == 2) { 2417 // Make sure there's no % in the constant array. We could try to handle 2418 // %% -> % in the future if we cared. 2419 if (FormatStr.find('%') != StringRef::npos) 2420 return nullptr; // we found a format specifier, bail out. 2421 2422 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2423 B.CreateMemCpy( 2424 Dest, Align(1), CI->getArgOperand(1), Align(1), 2425 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2426 FormatStr.size() + 1)); // Copy the null byte. 2427 return ConstantInt::get(CI->getType(), FormatStr.size()); 2428 } 2429 2430 // The remaining optimizations require the format string to be "%s" or "%c" 2431 // and have an extra operand. 2432 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2433 CI->getNumArgOperands() < 3) 2434 return nullptr; 2435 2436 // Decode the second character of the format string. 2437 if (FormatStr[1] == 'c') { 2438 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2439 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2440 return nullptr; 2441 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2442 Value *Ptr = castToCStr(Dest, B); 2443 B.CreateStore(V, Ptr); 2444 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2445 B.CreateStore(B.getInt8(0), Ptr); 2446 2447 return ConstantInt::get(CI->getType(), 1); 2448 } 2449 2450 if (FormatStr[1] == 's') { 2451 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2452 // strlen(str)+1) 2453 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2454 return nullptr; 2455 2456 if (CI->use_empty()) 2457 // sprintf(dest, "%s", str) -> strcpy(dest, str) 2458 return emitStrCpy(Dest, CI->getArgOperand(2), B, TLI); 2459 2460 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 2461 if (SrcLen) { 2462 B.CreateMemCpy( 2463 Dest, Align(1), CI->getArgOperand(2), Align(1), 2464 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 2465 // Returns total number of characters written without null-character. 2466 return ConstantInt::get(CI->getType(), SrcLen - 1); 2467 } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) { 2468 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 2469 // Handle mismatched pointer types (goes away with typeless pointers?). 2470 V = B.CreatePointerCast(V, Dest->getType()); 2471 Value *PtrDiff = B.CreatePtrDiff(V, Dest); 2472 return B.CreateIntCast(PtrDiff, CI->getType(), false); 2473 } 2474 2475 bool OptForSize = CI->getFunction()->hasOptSize() || 2476 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2477 PGSOQueryType::IRPass); 2478 if (OptForSize) 2479 return nullptr; 2480 2481 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2482 if (!Len) 2483 return nullptr; 2484 Value *IncLen = 2485 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2486 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen); 2487 2488 // The sprintf result is the unincremented number of bytes in the string. 2489 return B.CreateIntCast(Len, CI->getType(), false); 2490 } 2491 return nullptr; 2492 } 2493 2494 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 2495 Function *Callee = CI->getCalledFunction(); 2496 FunctionType *FT = Callee->getFunctionType(); 2497 if (Value *V = optimizeSPrintFString(CI, B)) { 2498 return V; 2499 } 2500 2501 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2502 // point arguments. 2503 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2504 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2505 FunctionCallee SIPrintFFn = 2506 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2507 CallInst *New = cast<CallInst>(CI->clone()); 2508 New->setCalledFunction(SIPrintFFn); 2509 B.Insert(New); 2510 return New; 2511 } 2512 2513 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2514 // floating point arguments. 2515 if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) { 2516 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2517 auto SmallSPrintFFn = 2518 M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf), 2519 FT, Callee->getAttributes()); 2520 CallInst *New = cast<CallInst>(CI->clone()); 2521 New->setCalledFunction(SmallSPrintFFn); 2522 B.Insert(New); 2523 return New; 2524 } 2525 2526 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 2527 return nullptr; 2528 } 2529 2530 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 2531 IRBuilderBase &B) { 2532 // Check for size 2533 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2534 if (!Size) 2535 return nullptr; 2536 2537 uint64_t N = Size->getZExtValue(); 2538 // Check for a fixed format string. 2539 StringRef FormatStr; 2540 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2541 return nullptr; 2542 2543 // If we just have a format string (nothing else crazy) transform it. 2544 if (CI->getNumArgOperands() == 3) { 2545 // Make sure there's no % in the constant array. We could try to handle 2546 // %% -> % in the future if we cared. 2547 if (FormatStr.find('%') != StringRef::npos) 2548 return nullptr; // we found a format specifier, bail out. 2549 2550 if (N == 0) 2551 return ConstantInt::get(CI->getType(), FormatStr.size()); 2552 else if (N < FormatStr.size() + 1) 2553 return nullptr; 2554 2555 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2556 // strlen(fmt)+1) 2557 B.CreateMemCpy( 2558 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2559 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2560 FormatStr.size() + 1)); // Copy the null byte. 2561 return ConstantInt::get(CI->getType(), FormatStr.size()); 2562 } 2563 2564 // The remaining optimizations require the format string to be "%s" or "%c" 2565 // and have an extra operand. 2566 if (FormatStr.size() == 2 && FormatStr[0] == '%' && 2567 CI->getNumArgOperands() == 4) { 2568 2569 // Decode the second character of the format string. 2570 if (FormatStr[1] == 'c') { 2571 if (N == 0) 2572 return ConstantInt::get(CI->getType(), 1); 2573 else if (N == 1) 2574 return nullptr; 2575 2576 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2577 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2578 return nullptr; 2579 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2580 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2581 B.CreateStore(V, Ptr); 2582 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2583 B.CreateStore(B.getInt8(0), Ptr); 2584 2585 return ConstantInt::get(CI->getType(), 1); 2586 } 2587 2588 if (FormatStr[1] == 's') { 2589 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2590 StringRef Str; 2591 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2592 return nullptr; 2593 2594 if (N == 0) 2595 return ConstantInt::get(CI->getType(), Str.size()); 2596 else if (N < Str.size() + 1) 2597 return nullptr; 2598 2599 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(3), 2600 Align(1), ConstantInt::get(CI->getType(), Str.size() + 1)); 2601 2602 // The snprintf result is the unincremented number of bytes in the string. 2603 return ConstantInt::get(CI->getType(), Str.size()); 2604 } 2605 } 2606 return nullptr; 2607 } 2608 2609 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 2610 if (Value *V = optimizeSnPrintFString(CI, B)) { 2611 return V; 2612 } 2613 2614 if (isKnownNonZero(CI->getOperand(1), DL)) 2615 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2616 return nullptr; 2617 } 2618 2619 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 2620 IRBuilderBase &B) { 2621 optimizeErrorReporting(CI, B, 0); 2622 2623 // All the optimizations depend on the format string. 2624 StringRef FormatStr; 2625 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2626 return nullptr; 2627 2628 // Do not do any of the following transformations if the fprintf return 2629 // value is used, in general the fprintf return value is not compatible 2630 // with fwrite(), fputc() or fputs(). 2631 if (!CI->use_empty()) 2632 return nullptr; 2633 2634 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2635 if (CI->getNumArgOperands() == 2) { 2636 // Could handle %% -> % if we cared. 2637 if (FormatStr.find('%') != StringRef::npos) 2638 return nullptr; // We found a format specifier. 2639 2640 return emitFWrite( 2641 CI->getArgOperand(1), 2642 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 2643 CI->getArgOperand(0), B, DL, TLI); 2644 } 2645 2646 // The remaining optimizations require the format string to be "%s" or "%c" 2647 // and have an extra operand. 2648 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2649 CI->getNumArgOperands() < 3) 2650 return nullptr; 2651 2652 // Decode the second character of the format string. 2653 if (FormatStr[1] == 'c') { 2654 // fprintf(F, "%c", chr) --> fputc(chr, F) 2655 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2656 return nullptr; 2657 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2658 } 2659 2660 if (FormatStr[1] == 's') { 2661 // fprintf(F, "%s", str) --> fputs(str, F) 2662 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2663 return nullptr; 2664 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2665 } 2666 return nullptr; 2667 } 2668 2669 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 2670 Function *Callee = CI->getCalledFunction(); 2671 FunctionType *FT = Callee->getFunctionType(); 2672 if (Value *V = optimizeFPrintFString(CI, B)) { 2673 return V; 2674 } 2675 2676 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2677 // floating point arguments. 2678 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2679 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2680 FunctionCallee FIPrintFFn = 2681 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2682 CallInst *New = cast<CallInst>(CI->clone()); 2683 New->setCalledFunction(FIPrintFFn); 2684 B.Insert(New); 2685 return New; 2686 } 2687 2688 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2689 // 128-bit floating point arguments. 2690 if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) { 2691 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2692 auto SmallFPrintFFn = 2693 M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf), 2694 FT, Callee->getAttributes()); 2695 CallInst *New = cast<CallInst>(CI->clone()); 2696 New->setCalledFunction(SmallFPrintFFn); 2697 B.Insert(New); 2698 return New; 2699 } 2700 2701 return nullptr; 2702 } 2703 2704 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 2705 optimizeErrorReporting(CI, B, 3); 2706 2707 // Get the element size and count. 2708 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2709 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2710 if (SizeC && CountC) { 2711 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2712 2713 // If this is writing zero records, remove the call (it's a noop). 2714 if (Bytes == 0) 2715 return ConstantInt::get(CI->getType(), 0); 2716 2717 // If this is writing one byte, turn it into fputc. 2718 // This optimisation is only valid, if the return value is unused. 2719 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2720 Value *Char = B.CreateLoad(B.getInt8Ty(), 2721 castToCStr(CI->getArgOperand(0), B), "char"); 2722 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2723 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2724 } 2725 } 2726 2727 return nullptr; 2728 } 2729 2730 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 2731 optimizeErrorReporting(CI, B, 1); 2732 2733 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2734 // requires more arguments and thus extra MOVs are required. 2735 bool OptForSize = CI->getFunction()->hasOptSize() || 2736 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2737 PGSOQueryType::IRPass); 2738 if (OptForSize) 2739 return nullptr; 2740 2741 // We can't optimize if return value is used. 2742 if (!CI->use_empty()) 2743 return nullptr; 2744 2745 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2746 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2747 if (!Len) 2748 return nullptr; 2749 2750 // Known to have no uses (see above). 2751 return emitFWrite( 2752 CI->getArgOperand(0), 2753 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2754 CI->getArgOperand(1), B, DL, TLI); 2755 } 2756 2757 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 2758 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2759 if (!CI->use_empty()) 2760 return nullptr; 2761 2762 // Check for a constant string. 2763 // puts("") -> putchar('\n') 2764 StringRef Str; 2765 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 2766 return emitPutChar(B.getInt32('\n'), B, TLI); 2767 2768 return nullptr; 2769 } 2770 2771 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 2772 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 2773 return B.CreateMemMove(CI->getArgOperand(1), Align(1), CI->getArgOperand(0), 2774 Align(1), CI->getArgOperand(2)); 2775 } 2776 2777 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2778 LibFunc Func; 2779 SmallString<20> FloatFuncName = FuncName; 2780 FloatFuncName += 'f'; 2781 if (TLI->getLibFunc(FloatFuncName, Func)) 2782 return TLI->has(Func); 2783 return false; 2784 } 2785 2786 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2787 IRBuilderBase &Builder) { 2788 LibFunc Func; 2789 Function *Callee = CI->getCalledFunction(); 2790 // Check for string/memory library functions. 2791 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2792 // Make sure we never change the calling convention. 2793 assert( 2794 (ignoreCallingConv(Func) || 2795 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) && 2796 "Optimizing string/memory libcall would change the calling convention"); 2797 switch (Func) { 2798 case LibFunc_strcat: 2799 return optimizeStrCat(CI, Builder); 2800 case LibFunc_strncat: 2801 return optimizeStrNCat(CI, Builder); 2802 case LibFunc_strchr: 2803 return optimizeStrChr(CI, Builder); 2804 case LibFunc_strrchr: 2805 return optimizeStrRChr(CI, Builder); 2806 case LibFunc_strcmp: 2807 return optimizeStrCmp(CI, Builder); 2808 case LibFunc_strncmp: 2809 return optimizeStrNCmp(CI, Builder); 2810 case LibFunc_strcpy: 2811 return optimizeStrCpy(CI, Builder); 2812 case LibFunc_stpcpy: 2813 return optimizeStpCpy(CI, Builder); 2814 case LibFunc_strncpy: 2815 return optimizeStrNCpy(CI, Builder); 2816 case LibFunc_strlen: 2817 return optimizeStrLen(CI, Builder); 2818 case LibFunc_strpbrk: 2819 return optimizeStrPBrk(CI, Builder); 2820 case LibFunc_strndup: 2821 return optimizeStrNDup(CI, Builder); 2822 case LibFunc_strtol: 2823 case LibFunc_strtod: 2824 case LibFunc_strtof: 2825 case LibFunc_strtoul: 2826 case LibFunc_strtoll: 2827 case LibFunc_strtold: 2828 case LibFunc_strtoull: 2829 return optimizeStrTo(CI, Builder); 2830 case LibFunc_strspn: 2831 return optimizeStrSpn(CI, Builder); 2832 case LibFunc_strcspn: 2833 return optimizeStrCSpn(CI, Builder); 2834 case LibFunc_strstr: 2835 return optimizeStrStr(CI, Builder); 2836 case LibFunc_memchr: 2837 return optimizeMemChr(CI, Builder); 2838 case LibFunc_memrchr: 2839 return optimizeMemRChr(CI, Builder); 2840 case LibFunc_bcmp: 2841 return optimizeBCmp(CI, Builder); 2842 case LibFunc_memcmp: 2843 return optimizeMemCmp(CI, Builder); 2844 case LibFunc_memcpy: 2845 return optimizeMemCpy(CI, Builder); 2846 case LibFunc_memccpy: 2847 return optimizeMemCCpy(CI, Builder); 2848 case LibFunc_mempcpy: 2849 return optimizeMemPCpy(CI, Builder); 2850 case LibFunc_memmove: 2851 return optimizeMemMove(CI, Builder); 2852 case LibFunc_memset: 2853 return optimizeMemSet(CI, Builder); 2854 case LibFunc_realloc: 2855 return optimizeRealloc(CI, Builder); 2856 case LibFunc_wcslen: 2857 return optimizeWcslen(CI, Builder); 2858 case LibFunc_bcopy: 2859 return optimizeBCopy(CI, Builder); 2860 default: 2861 break; 2862 } 2863 } 2864 return nullptr; 2865 } 2866 2867 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2868 LibFunc Func, 2869 IRBuilderBase &Builder) { 2870 // Don't optimize calls that require strict floating point semantics. 2871 if (CI->isStrictFP()) 2872 return nullptr; 2873 2874 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 2875 return V; 2876 2877 switch (Func) { 2878 case LibFunc_sinpif: 2879 case LibFunc_sinpi: 2880 case LibFunc_cospif: 2881 case LibFunc_cospi: 2882 return optimizeSinCosPi(CI, Builder); 2883 case LibFunc_powf: 2884 case LibFunc_pow: 2885 case LibFunc_powl: 2886 return optimizePow(CI, Builder); 2887 case LibFunc_exp2l: 2888 case LibFunc_exp2: 2889 case LibFunc_exp2f: 2890 return optimizeExp2(CI, Builder); 2891 case LibFunc_fabsf: 2892 case LibFunc_fabs: 2893 case LibFunc_fabsl: 2894 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2895 case LibFunc_sqrtf: 2896 case LibFunc_sqrt: 2897 case LibFunc_sqrtl: 2898 return optimizeSqrt(CI, Builder); 2899 case LibFunc_logf: 2900 case LibFunc_log: 2901 case LibFunc_logl: 2902 case LibFunc_log10f: 2903 case LibFunc_log10: 2904 case LibFunc_log10l: 2905 case LibFunc_log1pf: 2906 case LibFunc_log1p: 2907 case LibFunc_log1pl: 2908 case LibFunc_log2f: 2909 case LibFunc_log2: 2910 case LibFunc_log2l: 2911 case LibFunc_logbf: 2912 case LibFunc_logb: 2913 case LibFunc_logbl: 2914 return optimizeLog(CI, Builder); 2915 case LibFunc_tan: 2916 case LibFunc_tanf: 2917 case LibFunc_tanl: 2918 return optimizeTan(CI, Builder); 2919 case LibFunc_ceil: 2920 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2921 case LibFunc_floor: 2922 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2923 case LibFunc_round: 2924 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2925 case LibFunc_roundeven: 2926 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 2927 case LibFunc_nearbyint: 2928 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2929 case LibFunc_rint: 2930 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2931 case LibFunc_trunc: 2932 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2933 case LibFunc_acos: 2934 case LibFunc_acosh: 2935 case LibFunc_asin: 2936 case LibFunc_asinh: 2937 case LibFunc_atan: 2938 case LibFunc_atanh: 2939 case LibFunc_cbrt: 2940 case LibFunc_cosh: 2941 case LibFunc_exp: 2942 case LibFunc_exp10: 2943 case LibFunc_expm1: 2944 case LibFunc_cos: 2945 case LibFunc_sin: 2946 case LibFunc_sinh: 2947 case LibFunc_tanh: 2948 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 2949 return optimizeUnaryDoubleFP(CI, Builder, true); 2950 return nullptr; 2951 case LibFunc_copysign: 2952 if (hasFloatVersion(CI->getCalledFunction()->getName())) 2953 return optimizeBinaryDoubleFP(CI, Builder); 2954 return nullptr; 2955 case LibFunc_fminf: 2956 case LibFunc_fmin: 2957 case LibFunc_fminl: 2958 case LibFunc_fmaxf: 2959 case LibFunc_fmax: 2960 case LibFunc_fmaxl: 2961 return optimizeFMinFMax(CI, Builder); 2962 case LibFunc_cabs: 2963 case LibFunc_cabsf: 2964 case LibFunc_cabsl: 2965 return optimizeCAbs(CI, Builder); 2966 default: 2967 return nullptr; 2968 } 2969 } 2970 2971 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 2972 // TODO: Split out the code below that operates on FP calls so that 2973 // we can all non-FP calls with the StrictFP attribute to be 2974 // optimized. 2975 if (CI->isNoBuiltin()) 2976 return nullptr; 2977 2978 LibFunc Func; 2979 Function *Callee = CI->getCalledFunction(); 2980 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 2981 2982 SmallVector<OperandBundleDef, 2> OpBundles; 2983 CI->getOperandBundlesAsDefs(OpBundles); 2984 2985 IRBuilderBase::OperandBundlesGuard Guard(Builder); 2986 Builder.setDefaultOperandBundles(OpBundles); 2987 2988 // Command-line parameter overrides instruction attribute. 2989 // This can't be moved to optimizeFloatingPointLibCall() because it may be 2990 // used by the intrinsic optimizations. 2991 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2992 UnsafeFPShrink = EnableUnsafeFPShrink; 2993 else if (isa<FPMathOperator>(CI) && CI->isFast()) 2994 UnsafeFPShrink = true; 2995 2996 // First, check for intrinsics. 2997 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2998 if (!IsCallingConvC) 2999 return nullptr; 3000 // The FP intrinsics have corresponding constrained versions so we don't 3001 // need to check for the StrictFP attribute here. 3002 switch (II->getIntrinsicID()) { 3003 case Intrinsic::pow: 3004 return optimizePow(CI, Builder); 3005 case Intrinsic::exp2: 3006 return optimizeExp2(CI, Builder); 3007 case Intrinsic::log: 3008 case Intrinsic::log2: 3009 case Intrinsic::log10: 3010 return optimizeLog(CI, Builder); 3011 case Intrinsic::sqrt: 3012 return optimizeSqrt(CI, Builder); 3013 case Intrinsic::memset: 3014 return optimizeMemSet(CI, Builder); 3015 case Intrinsic::memcpy: 3016 return optimizeMemCpy(CI, Builder); 3017 case Intrinsic::memmove: 3018 return optimizeMemMove(CI, Builder); 3019 default: 3020 return nullptr; 3021 } 3022 } 3023 3024 // Also try to simplify calls to fortified library functions. 3025 if (Value *SimplifiedFortifiedCI = 3026 FortifiedSimplifier.optimizeCall(CI, Builder)) { 3027 // Try to further simplify the result. 3028 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 3029 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 3030 // Ensure that SimplifiedCI's uses are complete, since some calls have 3031 // their uses analyzed. 3032 replaceAllUsesWith(CI, SimplifiedCI); 3033 3034 // Set insertion point to SimplifiedCI to guarantee we reach all uses 3035 // we might replace later on. 3036 IRBuilderBase::InsertPointGuard Guard(Builder); 3037 Builder.SetInsertPoint(SimplifiedCI); 3038 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) { 3039 // If we were able to further simplify, remove the now redundant call. 3040 substituteInParent(SimplifiedCI, V); 3041 return V; 3042 } 3043 } 3044 return SimplifiedFortifiedCI; 3045 } 3046 3047 // Then check for known library functions. 3048 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 3049 // We never change the calling convention. 3050 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3051 return nullptr; 3052 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 3053 return V; 3054 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 3055 return V; 3056 switch (Func) { 3057 case LibFunc_ffs: 3058 case LibFunc_ffsl: 3059 case LibFunc_ffsll: 3060 return optimizeFFS(CI, Builder); 3061 case LibFunc_fls: 3062 case LibFunc_flsl: 3063 case LibFunc_flsll: 3064 return optimizeFls(CI, Builder); 3065 case LibFunc_abs: 3066 case LibFunc_labs: 3067 case LibFunc_llabs: 3068 return optimizeAbs(CI, Builder); 3069 case LibFunc_isdigit: 3070 return optimizeIsDigit(CI, Builder); 3071 case LibFunc_isascii: 3072 return optimizeIsAscii(CI, Builder); 3073 case LibFunc_toascii: 3074 return optimizeToAscii(CI, Builder); 3075 case LibFunc_atoi: 3076 case LibFunc_atol: 3077 case LibFunc_atoll: 3078 return optimizeAtoi(CI, Builder); 3079 case LibFunc_strtol: 3080 case LibFunc_strtoll: 3081 return optimizeStrtol(CI, Builder); 3082 case LibFunc_printf: 3083 return optimizePrintF(CI, Builder); 3084 case LibFunc_sprintf: 3085 return optimizeSPrintF(CI, Builder); 3086 case LibFunc_snprintf: 3087 return optimizeSnPrintF(CI, Builder); 3088 case LibFunc_fprintf: 3089 return optimizeFPrintF(CI, Builder); 3090 case LibFunc_fwrite: 3091 return optimizeFWrite(CI, Builder); 3092 case LibFunc_fputs: 3093 return optimizeFPuts(CI, Builder); 3094 case LibFunc_puts: 3095 return optimizePuts(CI, Builder); 3096 case LibFunc_perror: 3097 return optimizeErrorReporting(CI, Builder); 3098 case LibFunc_vfprintf: 3099 case LibFunc_fiprintf: 3100 return optimizeErrorReporting(CI, Builder, 0); 3101 default: 3102 return nullptr; 3103 } 3104 } 3105 return nullptr; 3106 } 3107 3108 LibCallSimplifier::LibCallSimplifier( 3109 const DataLayout &DL, const TargetLibraryInfo *TLI, 3110 OptimizationRemarkEmitter &ORE, 3111 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 3112 function_ref<void(Instruction *, Value *)> Replacer, 3113 function_ref<void(Instruction *)> Eraser) 3114 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 3115 UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {} 3116 3117 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 3118 // Indirect through the replacer used in this instance. 3119 Replacer(I, With); 3120 } 3121 3122 void LibCallSimplifier::eraseFromParent(Instruction *I) { 3123 Eraser(I); 3124 } 3125 3126 // TODO: 3127 // Additional cases that we need to add to this file: 3128 // 3129 // cbrt: 3130 // * cbrt(expN(X)) -> expN(x/3) 3131 // * cbrt(sqrt(x)) -> pow(x,1/6) 3132 // * cbrt(cbrt(x)) -> pow(x,1/9) 3133 // 3134 // exp, expf, expl: 3135 // * exp(log(x)) -> x 3136 // 3137 // log, logf, logl: 3138 // * log(exp(x)) -> x 3139 // * log(exp(y)) -> y*log(e) 3140 // * log(exp10(y)) -> y*log(10) 3141 // * log(sqrt(x)) -> 0.5*log(x) 3142 // 3143 // pow, powf, powl: 3144 // * pow(sqrt(x),y) -> pow(x,y*0.5) 3145 // * pow(pow(x,y),z)-> pow(x,y*z) 3146 // 3147 // signbit: 3148 // * signbit(cnst) -> cnst' 3149 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 3150 // 3151 // sqrt, sqrtf, sqrtl: 3152 // * sqrt(expN(x)) -> expN(x*0.5) 3153 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 3154 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 3155 // 3156 3157 //===----------------------------------------------------------------------===// 3158 // Fortified Library Call Optimizations 3159 //===----------------------------------------------------------------------===// 3160 3161 bool 3162 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 3163 unsigned ObjSizeOp, 3164 Optional<unsigned> SizeOp, 3165 Optional<unsigned> StrOp, 3166 Optional<unsigned> FlagOp) { 3167 // If this function takes a flag argument, the implementation may use it to 3168 // perform extra checks. Don't fold into the non-checking variant. 3169 if (FlagOp) { 3170 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 3171 if (!Flag || !Flag->isZero()) 3172 return false; 3173 } 3174 3175 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 3176 return true; 3177 3178 if (ConstantInt *ObjSizeCI = 3179 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 3180 if (ObjSizeCI->isMinusOne()) 3181 return true; 3182 // If the object size wasn't -1 (unknown), bail out if we were asked to. 3183 if (OnlyLowerUnknownSize) 3184 return false; 3185 if (StrOp) { 3186 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 3187 // If the length is 0 we don't know how long it is and so we can't 3188 // remove the check. 3189 if (Len) 3190 annotateDereferenceableBytes(CI, *StrOp, Len); 3191 else 3192 return false; 3193 return ObjSizeCI->getZExtValue() >= Len; 3194 } 3195 3196 if (SizeOp) { 3197 if (ConstantInt *SizeCI = 3198 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 3199 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 3200 } 3201 } 3202 return false; 3203 } 3204 3205 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 3206 IRBuilderBase &B) { 3207 if (isFortifiedCallFoldable(CI, 3, 2)) { 3208 CallInst *NewCI = 3209 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3210 Align(1), CI->getArgOperand(2)); 3211 NewCI->setAttributes(CI->getAttributes()); 3212 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3213 return CI->getArgOperand(0); 3214 } 3215 return nullptr; 3216 } 3217 3218 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 3219 IRBuilderBase &B) { 3220 if (isFortifiedCallFoldable(CI, 3, 2)) { 3221 CallInst *NewCI = 3222 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3223 Align(1), CI->getArgOperand(2)); 3224 NewCI->setAttributes(CI->getAttributes()); 3225 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3226 return CI->getArgOperand(0); 3227 } 3228 return nullptr; 3229 } 3230 3231 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 3232 IRBuilderBase &B) { 3233 if (isFortifiedCallFoldable(CI, 3, 2)) { 3234 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 3235 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 3236 CI->getArgOperand(2), Align(1)); 3237 NewCI->setAttributes(CI->getAttributes()); 3238 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3239 return CI->getArgOperand(0); 3240 } 3241 return nullptr; 3242 } 3243 3244 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 3245 IRBuilderBase &B) { 3246 const DataLayout &DL = CI->getModule()->getDataLayout(); 3247 if (isFortifiedCallFoldable(CI, 3, 2)) 3248 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3249 CI->getArgOperand(2), B, DL, TLI)) { 3250 CallInst *NewCI = cast<CallInst>(Call); 3251 NewCI->setAttributes(CI->getAttributes()); 3252 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3253 return NewCI; 3254 } 3255 return nullptr; 3256 } 3257 3258 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 3259 IRBuilderBase &B, 3260 LibFunc Func) { 3261 const DataLayout &DL = CI->getModule()->getDataLayout(); 3262 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 3263 *ObjSize = CI->getArgOperand(2); 3264 3265 // __stpcpy_chk(x,x,...) -> x+strlen(x) 3266 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 3267 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3268 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3269 } 3270 3271 // If a) we don't have any length information, or b) we know this will 3272 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3273 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3274 // TODO: It might be nice to get a maximum length out of the possible 3275 // string lengths for varying. 3276 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 3277 if (Func == LibFunc_strcpy_chk) 3278 return emitStrCpy(Dst, Src, B, TLI); 3279 else 3280 return emitStpCpy(Dst, Src, B, TLI); 3281 } 3282 3283 if (OnlyLowerUnknownSize) 3284 return nullptr; 3285 3286 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3287 uint64_t Len = GetStringLength(Src); 3288 if (Len) 3289 annotateDereferenceableBytes(CI, 1, Len); 3290 else 3291 return nullptr; 3292 3293 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 3294 Value *LenV = ConstantInt::get(SizeTTy, Len); 3295 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 3296 // If the function was an __stpcpy_chk, and we were able to fold it into 3297 // a __memcpy_chk, we still need to return the correct end pointer. 3298 if (Ret && Func == LibFunc_stpcpy_chk) 3299 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 3300 return Ret; 3301 } 3302 3303 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 3304 IRBuilderBase &B) { 3305 if (isFortifiedCallFoldable(CI, 1, None, 0)) 3306 return emitStrLen(CI->getArgOperand(0), B, CI->getModule()->getDataLayout(), 3307 TLI); 3308 return nullptr; 3309 } 3310 3311 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 3312 IRBuilderBase &B, 3313 LibFunc Func) { 3314 if (isFortifiedCallFoldable(CI, 3, 2)) { 3315 if (Func == LibFunc_strncpy_chk) 3316 return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3317 CI->getArgOperand(2), B, TLI); 3318 else 3319 return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3320 CI->getArgOperand(2), B, TLI); 3321 } 3322 3323 return nullptr; 3324 } 3325 3326 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 3327 IRBuilderBase &B) { 3328 if (isFortifiedCallFoldable(CI, 4, 3)) 3329 return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3330 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI); 3331 3332 return nullptr; 3333 } 3334 3335 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 3336 IRBuilderBase &B) { 3337 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 3338 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 3339 return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3340 CI->getArgOperand(4), VariadicArgs, B, TLI); 3341 } 3342 3343 return nullptr; 3344 } 3345 3346 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3347 IRBuilderBase &B) { 3348 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3349 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 3350 return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs, 3351 B, TLI); 3352 } 3353 3354 return nullptr; 3355 } 3356 3357 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3358 IRBuilderBase &B) { 3359 if (isFortifiedCallFoldable(CI, 2)) 3360 return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI); 3361 3362 return nullptr; 3363 } 3364 3365 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3366 IRBuilderBase &B) { 3367 if (isFortifiedCallFoldable(CI, 3)) 3368 return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3369 CI->getArgOperand(2), B, TLI); 3370 3371 return nullptr; 3372 } 3373 3374 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3375 IRBuilderBase &B) { 3376 if (isFortifiedCallFoldable(CI, 3)) 3377 return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3378 CI->getArgOperand(2), B, TLI); 3379 3380 return nullptr; 3381 } 3382 3383 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3384 IRBuilderBase &B) { 3385 if (isFortifiedCallFoldable(CI, 3)) 3386 return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3387 CI->getArgOperand(2), B, TLI); 3388 3389 return nullptr; 3390 } 3391 3392 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3393 IRBuilderBase &B) { 3394 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3395 return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3396 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI); 3397 3398 return nullptr; 3399 } 3400 3401 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3402 IRBuilderBase &B) { 3403 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3404 return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3405 CI->getArgOperand(4), B, TLI); 3406 3407 return nullptr; 3408 } 3409 3410 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 3411 IRBuilderBase &Builder) { 3412 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3413 // Some clang users checked for _chk libcall availability using: 3414 // __has_builtin(__builtin___memcpy_chk) 3415 // When compiling with -fno-builtin, this is always true. 3416 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3417 // end up with fortified libcalls, which isn't acceptable in a freestanding 3418 // environment which only provides their non-fortified counterparts. 3419 // 3420 // Until we change clang and/or teach external users to check for availability 3421 // differently, disregard the "nobuiltin" attribute and TLI::has. 3422 // 3423 // PR23093. 3424 3425 LibFunc Func; 3426 Function *Callee = CI->getCalledFunction(); 3427 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3428 3429 SmallVector<OperandBundleDef, 2> OpBundles; 3430 CI->getOperandBundlesAsDefs(OpBundles); 3431 3432 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3433 Builder.setDefaultOperandBundles(OpBundles); 3434 3435 // First, check that this is a known library functions and that the prototype 3436 // is correct. 3437 if (!TLI->getLibFunc(*Callee, Func)) 3438 return nullptr; 3439 3440 // We never change the calling convention. 3441 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3442 return nullptr; 3443 3444 switch (Func) { 3445 case LibFunc_memcpy_chk: 3446 return optimizeMemCpyChk(CI, Builder); 3447 case LibFunc_mempcpy_chk: 3448 return optimizeMemPCpyChk(CI, Builder); 3449 case LibFunc_memmove_chk: 3450 return optimizeMemMoveChk(CI, Builder); 3451 case LibFunc_memset_chk: 3452 return optimizeMemSetChk(CI, Builder); 3453 case LibFunc_stpcpy_chk: 3454 case LibFunc_strcpy_chk: 3455 return optimizeStrpCpyChk(CI, Builder, Func); 3456 case LibFunc_strlen_chk: 3457 return optimizeStrLenChk(CI, Builder); 3458 case LibFunc_stpncpy_chk: 3459 case LibFunc_strncpy_chk: 3460 return optimizeStrpNCpyChk(CI, Builder, Func); 3461 case LibFunc_memccpy_chk: 3462 return optimizeMemCCpyChk(CI, Builder); 3463 case LibFunc_snprintf_chk: 3464 return optimizeSNPrintfChk(CI, Builder); 3465 case LibFunc_sprintf_chk: 3466 return optimizeSPrintfChk(CI, Builder); 3467 case LibFunc_strcat_chk: 3468 return optimizeStrCatChk(CI, Builder); 3469 case LibFunc_strlcat_chk: 3470 return optimizeStrLCat(CI, Builder); 3471 case LibFunc_strncat_chk: 3472 return optimizeStrNCatChk(CI, Builder); 3473 case LibFunc_strlcpy_chk: 3474 return optimizeStrLCpyChk(CI, Builder); 3475 case LibFunc_vsnprintf_chk: 3476 return optimizeVSNPrintfChk(CI, Builder); 3477 case LibFunc_vsprintf_chk: 3478 return optimizeVSPrintfChk(CI, Builder); 3479 default: 3480 break; 3481 } 3482 return nullptr; 3483 } 3484 3485 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3486 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3487 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 3488