1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/CaptureTracking.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/KnownBits.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Transforms/Utils/BuildLibCalls.h"
39 #include "llvm/Transforms/Utils/SizeOpts.h"
40 
41 using namespace llvm;
42 using namespace PatternMatch;
43 
44 static cl::opt<bool>
45     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
46                          cl::init(false),
47                          cl::desc("Enable unsafe double to float "
48                                   "shrinking for math lib calls"));
49 
50 //===----------------------------------------------------------------------===//
51 // Helper Functions
52 //===----------------------------------------------------------------------===//
53 
54 static bool ignoreCallingConv(LibFunc Func) {
55   return Func == LibFunc_abs || Func == LibFunc_labs ||
56          Func == LibFunc_llabs || Func == LibFunc_strlen;
57 }
58 
59 /// Return true if it is only used in equality comparisons with With.
60 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
61   for (User *U : V->users()) {
62     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
63       if (IC->isEquality() && IC->getOperand(1) == With)
64         continue;
65     // Unknown instruction.
66     return false;
67   }
68   return true;
69 }
70 
71 static bool callHasFloatingPointArgument(const CallInst *CI) {
72   return any_of(CI->operands(), [](const Use &OI) {
73     return OI->getType()->isFloatingPointTy();
74   });
75 }
76 
77 static bool callHasFP128Argument(const CallInst *CI) {
78   return any_of(CI->operands(), [](const Use &OI) {
79     return OI->getType()->isFP128Ty();
80   });
81 }
82 
83 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
84   if (Base < 2 || Base > 36)
85     // handle special zero base
86     if (Base != 0)
87       return nullptr;
88 
89   char *End;
90   std::string nptr = Str.str();
91   errno = 0;
92   long long int Result = strtoll(nptr.c_str(), &End, Base);
93   if (errno)
94     return nullptr;
95 
96   // if we assume all possible target locales are ASCII supersets,
97   // then if strtoll successfully parses a number on the host,
98   // it will also successfully parse the same way on the target
99   if (*End != '\0')
100     return nullptr;
101 
102   if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
103     return nullptr;
104 
105   return ConstantInt::get(CI->getType(), Result);
106 }
107 
108 static bool isOnlyUsedInComparisonWithZero(Value *V) {
109   for (User *U : V->users()) {
110     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
111       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
112         if (C->isNullValue())
113           continue;
114     // Unknown instruction.
115     return false;
116   }
117   return true;
118 }
119 
120 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
121                                  const DataLayout &DL) {
122   if (!isOnlyUsedInComparisonWithZero(CI))
123     return false;
124 
125   if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL))
126     return false;
127 
128   if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
129     return false;
130 
131   return true;
132 }
133 
134 static void annotateDereferenceableBytes(CallInst *CI,
135                                          ArrayRef<unsigned> ArgNos,
136                                          uint64_t DereferenceableBytes) {
137   const Function *F = CI->getCaller();
138   if (!F)
139     return;
140   for (unsigned ArgNo : ArgNos) {
141     uint64_t DerefBytes = DereferenceableBytes;
142     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
143     if (!llvm::NullPointerIsDefined(F, AS) ||
144         CI->paramHasAttr(ArgNo, Attribute::NonNull))
145       DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo),
146                             DereferenceableBytes);
147 
148     if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) {
149       CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
150       if (!llvm::NullPointerIsDefined(F, AS) ||
151           CI->paramHasAttr(ArgNo, Attribute::NonNull))
152         CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
153       CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
154                                   CI->getContext(), DerefBytes));
155     }
156   }
157 }
158 
159 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI,
160                                          ArrayRef<unsigned> ArgNos) {
161   Function *F = CI->getCaller();
162   if (!F)
163     return;
164 
165   for (unsigned ArgNo : ArgNos) {
166     if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef))
167       CI->addParamAttr(ArgNo, Attribute::NoUndef);
168 
169     if (CI->paramHasAttr(ArgNo, Attribute::NonNull))
170       continue;
171     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
172     if (llvm::NullPointerIsDefined(F, AS))
173       continue;
174 
175     CI->addParamAttr(ArgNo, Attribute::NonNull);
176     annotateDereferenceableBytes(CI, ArgNo, 1);
177   }
178 }
179 
180 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
181                                Value *Size, const DataLayout &DL) {
182   if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
183     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
184     annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
185   } else if (isKnownNonZero(Size, DL)) {
186     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
187     const APInt *X, *Y;
188     uint64_t DerefMin = 1;
189     if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
190       DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
191       annotateDereferenceableBytes(CI, ArgNos, DerefMin);
192     }
193   }
194 }
195 
196 //===----------------------------------------------------------------------===//
197 // String and Memory Library Call Optimizations
198 //===----------------------------------------------------------------------===//
199 
200 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) {
201   // Extract some information from the instruction
202   Value *Dst = CI->getArgOperand(0);
203   Value *Src = CI->getArgOperand(1);
204   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
205 
206   // See if we can get the length of the input string.
207   uint64_t Len = GetStringLength(Src);
208   if (Len)
209     annotateDereferenceableBytes(CI, 1, Len);
210   else
211     return nullptr;
212   --Len; // Unbias length.
213 
214   // Handle the simple, do-nothing case: strcat(x, "") -> x
215   if (Len == 0)
216     return Dst;
217 
218   return emitStrLenMemCpy(Src, Dst, Len, B);
219 }
220 
221 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
222                                            IRBuilderBase &B) {
223   // We need to find the end of the destination string.  That's where the
224   // memory is to be moved to. We just generate a call to strlen.
225   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
226   if (!DstLen)
227     return nullptr;
228 
229   // Now that we have the destination's length, we must index into the
230   // destination's pointer to get the actual memcpy destination (end of
231   // the string .. we're concatenating).
232   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
233 
234   // We have enough information to now generate the memcpy call to do the
235   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
236   B.CreateMemCpy(
237       CpyDst, Align(1), Src, Align(1),
238       ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
239   return Dst;
240 }
241 
242 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) {
243   // Extract some information from the instruction.
244   Value *Dst = CI->getArgOperand(0);
245   Value *Src = CI->getArgOperand(1);
246   Value *Size = CI->getArgOperand(2);
247   uint64_t Len;
248   annotateNonNullNoUndefBasedOnAccess(CI, 0);
249   if (isKnownNonZero(Size, DL))
250     annotateNonNullNoUndefBasedOnAccess(CI, 1);
251 
252   // We don't do anything if length is not constant.
253   ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
254   if (LengthArg) {
255     Len = LengthArg->getZExtValue();
256     // strncat(x, c, 0) -> x
257     if (!Len)
258       return Dst;
259   } else {
260     return nullptr;
261   }
262 
263   // See if we can get the length of the input string.
264   uint64_t SrcLen = GetStringLength(Src);
265   if (SrcLen) {
266     annotateDereferenceableBytes(CI, 1, SrcLen);
267     --SrcLen; // Unbias length.
268   } else {
269     return nullptr;
270   }
271 
272   // strncat(x, "", c) -> x
273   if (SrcLen == 0)
274     return Dst;
275 
276   // We don't optimize this case.
277   if (Len < SrcLen)
278     return nullptr;
279 
280   // strncat(x, s, c) -> strcat(x, s)
281   // s is constant so the strcat can be optimized further.
282   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
283 }
284 
285 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) {
286   Function *Callee = CI->getCalledFunction();
287   FunctionType *FT = Callee->getFunctionType();
288   Value *SrcStr = CI->getArgOperand(0);
289   annotateNonNullNoUndefBasedOnAccess(CI, 0);
290 
291   // If the second operand is non-constant, see if we can compute the length
292   // of the input string and turn this into memchr.
293   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
294   if (!CharC) {
295     uint64_t Len = GetStringLength(SrcStr);
296     if (Len)
297       annotateDereferenceableBytes(CI, 0, Len);
298     else
299       return nullptr;
300     if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
301       return nullptr;
302 
303     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
304                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
305                       B, DL, TLI);
306   }
307 
308   // Otherwise, the character is a constant, see if the first argument is
309   // a string literal.  If so, we can constant fold.
310   StringRef Str;
311   if (!getConstantStringInfo(SrcStr, Str)) {
312     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
313       if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
314         return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
315     return nullptr;
316   }
317 
318   // Compute the offset, make sure to handle the case when we're searching for
319   // zero (a weird way to spell strlen).
320   size_t I = (0xFF & CharC->getSExtValue()) == 0
321                  ? Str.size()
322                  : Str.find(CharC->getSExtValue());
323   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
324     return Constant::getNullValue(CI->getType());
325 
326   // strchr(s+n,c)  -> gep(s+n+i,c)
327   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
328 }
329 
330 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) {
331   Value *SrcStr = CI->getArgOperand(0);
332   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
333   annotateNonNullNoUndefBasedOnAccess(CI, 0);
334 
335   // Cannot fold anything if we're not looking for a constant.
336   if (!CharC)
337     return nullptr;
338 
339   StringRef Str;
340   if (!getConstantStringInfo(SrcStr, Str)) {
341     // strrchr(s, 0) -> strchr(s, 0)
342     if (CharC->isZero())
343       return emitStrChr(SrcStr, '\0', B, TLI);
344     return nullptr;
345   }
346 
347   // Compute the offset.
348   size_t I = (0xFF & CharC->getSExtValue()) == 0
349                  ? Str.size()
350                  : Str.rfind(CharC->getSExtValue());
351   if (I == StringRef::npos) // Didn't find the char. Return null.
352     return Constant::getNullValue(CI->getType());
353 
354   // strrchr(s+n,c) -> gep(s+n+i,c)
355   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
356 }
357 
358 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) {
359   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
360   if (Str1P == Str2P) // strcmp(x,x)  -> 0
361     return ConstantInt::get(CI->getType(), 0);
362 
363   StringRef Str1, Str2;
364   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
365   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
366 
367   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
368   if (HasStr1 && HasStr2)
369     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
370 
371   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
372     return B.CreateNeg(B.CreateZExt(
373         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
374 
375   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
376     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
377                         CI->getType());
378 
379   // strcmp(P, "x") -> memcmp(P, "x", 2)
380   uint64_t Len1 = GetStringLength(Str1P);
381   if (Len1)
382     annotateDereferenceableBytes(CI, 0, Len1);
383   uint64_t Len2 = GetStringLength(Str2P);
384   if (Len2)
385     annotateDereferenceableBytes(CI, 1, Len2);
386 
387   if (Len1 && Len2) {
388     return emitMemCmp(Str1P, Str2P,
389                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
390                                        std::min(Len1, Len2)),
391                       B, DL, TLI);
392   }
393 
394   // strcmp to memcmp
395   if (!HasStr1 && HasStr2) {
396     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
397       return emitMemCmp(
398           Str1P, Str2P,
399           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
400           TLI);
401   } else if (HasStr1 && !HasStr2) {
402     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
403       return emitMemCmp(
404           Str1P, Str2P,
405           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
406           TLI);
407   }
408 
409   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
410   return nullptr;
411 }
412 
413 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) {
414   Value *Str1P = CI->getArgOperand(0);
415   Value *Str2P = CI->getArgOperand(1);
416   Value *Size = CI->getArgOperand(2);
417   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
418     return ConstantInt::get(CI->getType(), 0);
419 
420   if (isKnownNonZero(Size, DL))
421     annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
422   // Get the length argument if it is constant.
423   uint64_t Length;
424   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
425     Length = LengthArg->getZExtValue();
426   else
427     return nullptr;
428 
429   if (Length == 0) // strncmp(x,y,0)   -> 0
430     return ConstantInt::get(CI->getType(), 0);
431 
432   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
433     return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI);
434 
435   StringRef Str1, Str2;
436   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
437   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
438 
439   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
440   if (HasStr1 && HasStr2) {
441     StringRef SubStr1 = Str1.substr(0, Length);
442     StringRef SubStr2 = Str2.substr(0, Length);
443     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
444   }
445 
446   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
447     return B.CreateNeg(B.CreateZExt(
448         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
449 
450   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
451     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
452                         CI->getType());
453 
454   uint64_t Len1 = GetStringLength(Str1P);
455   if (Len1)
456     annotateDereferenceableBytes(CI, 0, Len1);
457   uint64_t Len2 = GetStringLength(Str2P);
458   if (Len2)
459     annotateDereferenceableBytes(CI, 1, Len2);
460 
461   // strncmp to memcmp
462   if (!HasStr1 && HasStr2) {
463     Len2 = std::min(Len2, Length);
464     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
465       return emitMemCmp(
466           Str1P, Str2P,
467           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
468           TLI);
469   } else if (HasStr1 && !HasStr2) {
470     Len1 = std::min(Len1, Length);
471     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
472       return emitMemCmp(
473           Str1P, Str2P,
474           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
475           TLI);
476   }
477 
478   return nullptr;
479 }
480 
481 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) {
482   Value *Src = CI->getArgOperand(0);
483   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
484   uint64_t SrcLen = GetStringLength(Src);
485   if (SrcLen && Size) {
486     annotateDereferenceableBytes(CI, 0, SrcLen);
487     if (SrcLen <= Size->getZExtValue() + 1)
488       return emitStrDup(Src, B, TLI);
489   }
490 
491   return nullptr;
492 }
493 
494 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) {
495   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
496   if (Dst == Src) // strcpy(x,x)  -> x
497     return Src;
498 
499   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
500   // See if we can get the length of the input string.
501   uint64_t Len = GetStringLength(Src);
502   if (Len)
503     annotateDereferenceableBytes(CI, 1, Len);
504   else
505     return nullptr;
506 
507   // We have enough information to now generate the memcpy call to do the
508   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
509   CallInst *NewCI =
510       B.CreateMemCpy(Dst, Align(1), Src, Align(1),
511                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
512   NewCI->setAttributes(CI->getAttributes());
513   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
514   return Dst;
515 }
516 
517 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) {
518   Function *Callee = CI->getCalledFunction();
519   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
520   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
521     Value *StrLen = emitStrLen(Src, B, DL, TLI);
522     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
523   }
524 
525   // See if we can get the length of the input string.
526   uint64_t Len = GetStringLength(Src);
527   if (Len)
528     annotateDereferenceableBytes(CI, 1, Len);
529   else
530     return nullptr;
531 
532   Type *PT = Callee->getFunctionType()->getParamType(0);
533   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
534   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
535                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
536 
537   // We have enough information to now generate the memcpy call to do the
538   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
539   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV);
540   NewCI->setAttributes(CI->getAttributes());
541   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
542   return DstEnd;
543 }
544 
545 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) {
546   Function *Callee = CI->getCalledFunction();
547   Value *Dst = CI->getArgOperand(0);
548   Value *Src = CI->getArgOperand(1);
549   Value *Size = CI->getArgOperand(2);
550   annotateNonNullNoUndefBasedOnAccess(CI, 0);
551   if (isKnownNonZero(Size, DL))
552     annotateNonNullNoUndefBasedOnAccess(CI, 1);
553 
554   uint64_t Len;
555   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
556     Len = LengthArg->getZExtValue();
557   else
558     return nullptr;
559 
560   // strncpy(x, y, 0) -> x
561   if (Len == 0)
562     return Dst;
563 
564   // See if we can get the length of the input string.
565   uint64_t SrcLen = GetStringLength(Src);
566   if (SrcLen) {
567     annotateDereferenceableBytes(CI, 1, SrcLen);
568     --SrcLen; // Unbias length.
569   } else {
570     return nullptr;
571   }
572 
573   if (SrcLen == 0) {
574     // strncpy(x, "", y) -> memset(x, '\0', y)
575     Align MemSetAlign =
576         CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne();
577     CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign);
578     AttrBuilder ArgAttrs(CI->getAttributes().getParamAttrs(0));
579     NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
580         CI->getContext(), 0, ArgAttrs));
581     return Dst;
582   }
583 
584   // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4)
585   if (Len > SrcLen + 1) {
586     if (Len <= 128) {
587       StringRef Str;
588       if (!getConstantStringInfo(Src, Str))
589         return nullptr;
590       std::string SrcStr = Str.str();
591       SrcStr.resize(Len, '\0');
592       Src = B.CreateGlobalString(SrcStr, "str");
593     } else {
594       return nullptr;
595     }
596   }
597 
598   Type *PT = Callee->getFunctionType()->getParamType(0);
599   // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
600   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
601                                    ConstantInt::get(DL.getIntPtrType(PT), Len));
602   NewCI->setAttributes(CI->getAttributes());
603   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
604   return Dst;
605 }
606 
607 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B,
608                                                unsigned CharSize) {
609   Value *Src = CI->getArgOperand(0);
610 
611   // Constant folding: strlen("xyz") -> 3
612   if (uint64_t Len = GetStringLength(Src, CharSize))
613     return ConstantInt::get(CI->getType(), Len - 1);
614 
615   // If s is a constant pointer pointing to a string literal, we can fold
616   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
617   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
618   // We only try to simplify strlen when the pointer s points to an array
619   // of i8. Otherwise, we would need to scale the offset x before doing the
620   // subtraction. This will make the optimization more complex, and it's not
621   // very useful because calling strlen for a pointer of other types is
622   // very uncommon.
623   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
624     if (!isGEPBasedOnPointerToString(GEP, CharSize))
625       return nullptr;
626 
627     ConstantDataArraySlice Slice;
628     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
629       uint64_t NullTermIdx;
630       if (Slice.Array == nullptr) {
631         NullTermIdx = 0;
632       } else {
633         NullTermIdx = ~((uint64_t)0);
634         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
635           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
636             NullTermIdx = I;
637             break;
638           }
639         }
640         // If the string does not have '\0', leave it to strlen to compute
641         // its length.
642         if (NullTermIdx == ~((uint64_t)0))
643           return nullptr;
644       }
645 
646       Value *Offset = GEP->getOperand(2);
647       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
648       Known.Zero.flipAllBits();
649       uint64_t ArrSize =
650              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
651 
652       // KnownZero's bits are flipped, so zeros in KnownZero now represent
653       // bits known to be zeros in Offset, and ones in KnowZero represent
654       // bits unknown in Offset. Therefore, Offset is known to be in range
655       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
656       // unsigned-less-than NullTermIdx.
657       //
658       // If Offset is not provably in the range [0, NullTermIdx], we can still
659       // optimize if we can prove that the program has undefined behavior when
660       // Offset is outside that range. That is the case when GEP->getOperand(0)
661       // is a pointer to an object whose memory extent is NullTermIdx+1.
662       if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
663           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
664            NullTermIdx == ArrSize - 1)) {
665         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
666         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
667                            Offset);
668       }
669     }
670   }
671 
672   // strlen(x?"foo":"bars") --> x ? 3 : 4
673   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
674     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
675     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
676     if (LenTrue && LenFalse) {
677       ORE.emit([&]() {
678         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
679                << "folded strlen(select) to select of constants";
680       });
681       return B.CreateSelect(SI->getCondition(),
682                             ConstantInt::get(CI->getType(), LenTrue - 1),
683                             ConstantInt::get(CI->getType(), LenFalse - 1));
684     }
685   }
686 
687   // strlen(x) != 0 --> *x != 0
688   // strlen(x) == 0 --> *x == 0
689   if (isOnlyUsedInZeroEqualityComparison(CI))
690     return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"),
691                         CI->getType());
692 
693   return nullptr;
694 }
695 
696 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) {
697   if (Value *V = optimizeStringLength(CI, B, 8))
698     return V;
699   annotateNonNullNoUndefBasedOnAccess(CI, 0);
700   return nullptr;
701 }
702 
703 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) {
704   Module &M = *CI->getModule();
705   unsigned WCharSize = TLI->getWCharSize(M) * 8;
706   // We cannot perform this optimization without wchar_size metadata.
707   if (WCharSize == 0)
708     return nullptr;
709 
710   return optimizeStringLength(CI, B, WCharSize);
711 }
712 
713 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) {
714   StringRef S1, S2;
715   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
716   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
717 
718   // strpbrk(s, "") -> nullptr
719   // strpbrk("", s) -> nullptr
720   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
721     return Constant::getNullValue(CI->getType());
722 
723   // Constant folding.
724   if (HasS1 && HasS2) {
725     size_t I = S1.find_first_of(S2);
726     if (I == StringRef::npos) // No match.
727       return Constant::getNullValue(CI->getType());
728 
729     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
730                        "strpbrk");
731   }
732 
733   // strpbrk(s, "a") -> strchr(s, 'a')
734   if (HasS2 && S2.size() == 1)
735     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
736 
737   return nullptr;
738 }
739 
740 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) {
741   Value *EndPtr = CI->getArgOperand(1);
742   if (isa<ConstantPointerNull>(EndPtr)) {
743     // With a null EndPtr, this function won't capture the main argument.
744     // It would be readonly too, except that it still may write to errno.
745     CI->addParamAttr(0, Attribute::NoCapture);
746   }
747 
748   return nullptr;
749 }
750 
751 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) {
752   StringRef S1, S2;
753   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
754   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
755 
756   // strspn(s, "") -> 0
757   // strspn("", s) -> 0
758   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
759     return Constant::getNullValue(CI->getType());
760 
761   // Constant folding.
762   if (HasS1 && HasS2) {
763     size_t Pos = S1.find_first_not_of(S2);
764     if (Pos == StringRef::npos)
765       Pos = S1.size();
766     return ConstantInt::get(CI->getType(), Pos);
767   }
768 
769   return nullptr;
770 }
771 
772 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) {
773   StringRef S1, S2;
774   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
775   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
776 
777   // strcspn("", s) -> 0
778   if (HasS1 && S1.empty())
779     return Constant::getNullValue(CI->getType());
780 
781   // Constant folding.
782   if (HasS1 && HasS2) {
783     size_t Pos = S1.find_first_of(S2);
784     if (Pos == StringRef::npos)
785       Pos = S1.size();
786     return ConstantInt::get(CI->getType(), Pos);
787   }
788 
789   // strcspn(s, "") -> strlen(s)
790   if (HasS2 && S2.empty())
791     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
792 
793   return nullptr;
794 }
795 
796 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) {
797   // fold strstr(x, x) -> x.
798   if (CI->getArgOperand(0) == CI->getArgOperand(1))
799     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
800 
801   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
802   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
803     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
804     if (!StrLen)
805       return nullptr;
806     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
807                                  StrLen, B, DL, TLI);
808     if (!StrNCmp)
809       return nullptr;
810     for (User *U : llvm::make_early_inc_range(CI->users())) {
811       ICmpInst *Old = cast<ICmpInst>(U);
812       Value *Cmp =
813           B.CreateICmp(Old->getPredicate(), StrNCmp,
814                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
815       replaceAllUsesWith(Old, Cmp);
816     }
817     return CI;
818   }
819 
820   // See if either input string is a constant string.
821   StringRef SearchStr, ToFindStr;
822   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
823   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
824 
825   // fold strstr(x, "") -> x.
826   if (HasStr2 && ToFindStr.empty())
827     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
828 
829   // If both strings are known, constant fold it.
830   if (HasStr1 && HasStr2) {
831     size_t Offset = SearchStr.find(ToFindStr);
832 
833     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
834       return Constant::getNullValue(CI->getType());
835 
836     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
837     Value *Result = castToCStr(CI->getArgOperand(0), B);
838     Result =
839         B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
840     return B.CreateBitCast(Result, CI->getType());
841   }
842 
843   // fold strstr(x, "y") -> strchr(x, 'y').
844   if (HasStr2 && ToFindStr.size() == 1) {
845     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
846     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
847   }
848 
849   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
850   return nullptr;
851 }
852 
853 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) {
854   if (isKnownNonZero(CI->getOperand(2), DL))
855     annotateNonNullNoUndefBasedOnAccess(CI, 0);
856   return nullptr;
857 }
858 
859 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) {
860   Value *SrcStr = CI->getArgOperand(0);
861   Value *Size = CI->getArgOperand(2);
862   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
863   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
864   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
865 
866   // memchr(x, y, 0) -> null
867   if (LenC) {
868     if (LenC->isZero())
869       return Constant::getNullValue(CI->getType());
870   } else {
871     // From now on we need at least constant length and string.
872     return nullptr;
873   }
874 
875   StringRef Str;
876   if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
877     return nullptr;
878 
879   // Truncate the string to LenC. If Str is smaller than LenC we will still only
880   // scan the string, as reading past the end of it is undefined and we can just
881   // return null if we don't find the char.
882   Str = Str.substr(0, LenC->getZExtValue());
883 
884   // If the char is variable but the input str and length are not we can turn
885   // this memchr call into a simple bit field test. Of course this only works
886   // when the return value is only checked against null.
887   //
888   // It would be really nice to reuse switch lowering here but we can't change
889   // the CFG at this point.
890   //
891   // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
892   // != 0
893   //   after bounds check.
894   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
895     unsigned char Max =
896         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
897                           reinterpret_cast<const unsigned char *>(Str.end()));
898 
899     // Make sure the bit field we're about to create fits in a register on the
900     // target.
901     // FIXME: On a 64 bit architecture this prevents us from using the
902     // interesting range of alpha ascii chars. We could do better by emitting
903     // two bitfields or shifting the range by 64 if no lower chars are used.
904     if (!DL.fitsInLegalInteger(Max + 1))
905       return nullptr;
906 
907     // For the bit field use a power-of-2 type with at least 8 bits to avoid
908     // creating unnecessary illegal types.
909     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
910 
911     // Now build the bit field.
912     APInt Bitfield(Width, 0);
913     for (char C : Str)
914       Bitfield.setBit((unsigned char)C);
915     Value *BitfieldC = B.getInt(Bitfield);
916 
917     // Adjust width of "C" to the bitfield width, then mask off the high bits.
918     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
919     C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
920 
921     // First check that the bit field access is within bounds.
922     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
923                                  "memchr.bounds");
924 
925     // Create code that checks if the given bit is set in the field.
926     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
927     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
928 
929     // Finally merge both checks and cast to pointer type. The inttoptr
930     // implicitly zexts the i1 to intptr type.
931     return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"),
932                             CI->getType());
933   }
934 
935   // Check if all arguments are constants.  If so, we can constant fold.
936   if (!CharC)
937     return nullptr;
938 
939   // Compute the offset.
940   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
941   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
942     return Constant::getNullValue(CI->getType());
943 
944   // memchr(s+n,c,l) -> gep(s+n+i,c)
945   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
946 }
947 
948 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
949                                          uint64_t Len, IRBuilderBase &B,
950                                          const DataLayout &DL) {
951   if (Len == 0) // memcmp(s1,s2,0) -> 0
952     return Constant::getNullValue(CI->getType());
953 
954   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
955   if (Len == 1) {
956     Value *LHSV =
957         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
958                      CI->getType(), "lhsv");
959     Value *RHSV =
960         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
961                      CI->getType(), "rhsv");
962     return B.CreateSub(LHSV, RHSV, "chardiff");
963   }
964 
965   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
966   // TODO: The case where both inputs are constants does not need to be limited
967   // to legal integers or equality comparison. See block below this.
968   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
969     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
970     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
971 
972     // First, see if we can fold either argument to a constant.
973     Value *LHSV = nullptr;
974     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
975       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
976       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
977     }
978     Value *RHSV = nullptr;
979     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
980       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
981       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
982     }
983 
984     // Don't generate unaligned loads. If either source is constant data,
985     // alignment doesn't matter for that source because there is no load.
986     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
987         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
988       if (!LHSV) {
989         Type *LHSPtrTy =
990             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
991         LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
992       }
993       if (!RHSV) {
994         Type *RHSPtrTy =
995             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
996         RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
997       }
998       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
999     }
1000   }
1001 
1002   // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
1003   // TODO: This is limited to i8 arrays.
1004   StringRef LHSStr, RHSStr;
1005   if (getConstantStringInfo(LHS, LHSStr) &&
1006       getConstantStringInfo(RHS, RHSStr)) {
1007     // Make sure we're not reading out-of-bounds memory.
1008     if (Len > LHSStr.size() || Len > RHSStr.size())
1009       return nullptr;
1010     // Fold the memcmp and normalize the result.  This way we get consistent
1011     // results across multiple platforms.
1012     uint64_t Ret = 0;
1013     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
1014     if (Cmp < 0)
1015       Ret = -1;
1016     else if (Cmp > 0)
1017       Ret = 1;
1018     return ConstantInt::get(CI->getType(), Ret);
1019   }
1020 
1021   return nullptr;
1022 }
1023 
1024 // Most simplifications for memcmp also apply to bcmp.
1025 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1026                                                    IRBuilderBase &B) {
1027   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1028   Value *Size = CI->getArgOperand(2);
1029 
1030   if (LHS == RHS) // memcmp(s,s,x) -> 0
1031     return Constant::getNullValue(CI->getType());
1032 
1033   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1034   // Handle constant lengths.
1035   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1036   if (!LenC)
1037     return nullptr;
1038 
1039   // memcmp(d,s,0) -> 0
1040   if (LenC->getZExtValue() == 0)
1041     return Constant::getNullValue(CI->getType());
1042 
1043   if (Value *Res =
1044           optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL))
1045     return Res;
1046   return nullptr;
1047 }
1048 
1049 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
1050   if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1051     return V;
1052 
1053   // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1054   // bcmp can be more efficient than memcmp because it only has to know that
1055   // there is a difference, not how different one is to the other.
1056   if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) {
1057     Value *LHS = CI->getArgOperand(0);
1058     Value *RHS = CI->getArgOperand(1);
1059     Value *Size = CI->getArgOperand(2);
1060     return emitBCmp(LHS, RHS, Size, B, DL, TLI);
1061   }
1062 
1063   return nullptr;
1064 }
1065 
1066 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) {
1067   return optimizeMemCmpBCmpCommon(CI, B);
1068 }
1069 
1070 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) {
1071   Value *Size = CI->getArgOperand(2);
1072   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1073   if (isa<IntrinsicInst>(CI))
1074     return nullptr;
1075 
1076   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1077   CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1),
1078                                    CI->getArgOperand(1), Align(1), Size);
1079   NewCI->setAttributes(CI->getAttributes());
1080   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1081   return CI->getArgOperand(0);
1082 }
1083 
1084 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) {
1085   Value *Dst = CI->getArgOperand(0);
1086   Value *Src = CI->getArgOperand(1);
1087   ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1088   ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1089   StringRef SrcStr;
1090   if (CI->use_empty() && Dst == Src)
1091     return Dst;
1092   // memccpy(d, s, c, 0) -> nullptr
1093   if (N) {
1094     if (N->isNullValue())
1095       return Constant::getNullValue(CI->getType());
1096     if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0,
1097                                /*TrimAtNul=*/false) ||
1098         !StopChar)
1099       return nullptr;
1100   } else {
1101     return nullptr;
1102   }
1103 
1104   // Wrap arg 'c' of type int to char
1105   size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1106   if (Pos == StringRef::npos) {
1107     if (N->getZExtValue() <= SrcStr.size()) {
1108       B.CreateMemCpy(Dst, Align(1), Src, Align(1), CI->getArgOperand(3));
1109       return Constant::getNullValue(CI->getType());
1110     }
1111     return nullptr;
1112   }
1113 
1114   Value *NewN =
1115       ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1116   // memccpy -> llvm.memcpy
1117   B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN);
1118   return Pos + 1 <= N->getZExtValue()
1119              ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1120              : Constant::getNullValue(CI->getType());
1121 }
1122 
1123 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) {
1124   Value *Dst = CI->getArgOperand(0);
1125   Value *N = CI->getArgOperand(2);
1126   // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1127   CallInst *NewCI =
1128       B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N);
1129   // Propagate attributes, but memcpy has no return value, so make sure that
1130   // any return attributes are compliant.
1131   // TODO: Attach return value attributes to the 1st operand to preserve them?
1132   NewCI->setAttributes(CI->getAttributes());
1133   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1134   return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1135 }
1136 
1137 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) {
1138   Value *Size = CI->getArgOperand(2);
1139   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1140   if (isa<IntrinsicInst>(CI))
1141     return nullptr;
1142 
1143   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1144   CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1),
1145                                     CI->getArgOperand(1), Align(1), Size);
1146   NewCI->setAttributes(CI->getAttributes());
1147   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1148   return CI->getArgOperand(0);
1149 }
1150 
1151 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) {
1152   Value *Size = CI->getArgOperand(2);
1153   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1154   if (isa<IntrinsicInst>(CI))
1155     return nullptr;
1156 
1157   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1158   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1159   CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1));
1160   NewCI->setAttributes(CI->getAttributes());
1161   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1162   return CI->getArgOperand(0);
1163 }
1164 
1165 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) {
1166   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1167     return emitMalloc(CI->getArgOperand(1), B, DL, TLI);
1168 
1169   return nullptr;
1170 }
1171 
1172 //===----------------------------------------------------------------------===//
1173 // Math Library Optimizations
1174 //===----------------------------------------------------------------------===//
1175 
1176 // Replace a libcall \p CI with a call to intrinsic \p IID
1177 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B,
1178                                Intrinsic::ID IID) {
1179   // Propagate fast-math flags from the existing call to the new call.
1180   IRBuilderBase::FastMathFlagGuard Guard(B);
1181   B.setFastMathFlags(CI->getFastMathFlags());
1182 
1183   Module *M = CI->getModule();
1184   Value *V = CI->getArgOperand(0);
1185   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1186   CallInst *NewCall = B.CreateCall(F, V);
1187   NewCall->takeName(CI);
1188   return NewCall;
1189 }
1190 
1191 /// Return a variant of Val with float type.
1192 /// Currently this works in two cases: If Val is an FPExtension of a float
1193 /// value to something bigger, simply return the operand.
1194 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1195 /// loss of precision do so.
1196 static Value *valueHasFloatPrecision(Value *Val) {
1197   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1198     Value *Op = Cast->getOperand(0);
1199     if (Op->getType()->isFloatTy())
1200       return Op;
1201   }
1202   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1203     APFloat F = Const->getValueAPF();
1204     bool losesInfo;
1205     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1206                     &losesInfo);
1207     if (!losesInfo)
1208       return ConstantFP::get(Const->getContext(), F);
1209   }
1210   return nullptr;
1211 }
1212 
1213 /// Shrink double -> float functions.
1214 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
1215                                bool isBinary, bool isPrecise = false) {
1216   Function *CalleeFn = CI->getCalledFunction();
1217   if (!CI->getType()->isDoubleTy() || !CalleeFn)
1218     return nullptr;
1219 
1220   // If not all the uses of the function are converted to float, then bail out.
1221   // This matters if the precision of the result is more important than the
1222   // precision of the arguments.
1223   if (isPrecise)
1224     for (User *U : CI->users()) {
1225       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1226       if (!Cast || !Cast->getType()->isFloatTy())
1227         return nullptr;
1228     }
1229 
1230   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1231   Value *V[2];
1232   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1233   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1234   if (!V[0] || (isBinary && !V[1]))
1235     return nullptr;
1236 
1237   // If call isn't an intrinsic, check that it isn't within a function with the
1238   // same name as the float version of this call, otherwise the result is an
1239   // infinite loop.  For example, from MinGW-w64:
1240   //
1241   // float expf(float val) { return (float) exp((double) val); }
1242   StringRef CalleeName = CalleeFn->getName();
1243   bool IsIntrinsic = CalleeFn->isIntrinsic();
1244   if (!IsIntrinsic) {
1245     StringRef CallerName = CI->getFunction()->getName();
1246     if (!CallerName.empty() && CallerName.back() == 'f' &&
1247         CallerName.size() == (CalleeName.size() + 1) &&
1248         CallerName.startswith(CalleeName))
1249       return nullptr;
1250   }
1251 
1252   // Propagate the math semantics from the current function to the new function.
1253   IRBuilderBase::FastMathFlagGuard Guard(B);
1254   B.setFastMathFlags(CI->getFastMathFlags());
1255 
1256   // g((double) float) -> (double) gf(float)
1257   Value *R;
1258   if (IsIntrinsic) {
1259     Module *M = CI->getModule();
1260     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1261     Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1262     R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1263   } else {
1264     AttributeList CalleeAttrs = CalleeFn->getAttributes();
1265     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs)
1266                  : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs);
1267   }
1268   return B.CreateFPExt(R, B.getDoubleTy());
1269 }
1270 
1271 /// Shrink double -> float for unary functions.
1272 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1273                                     bool isPrecise = false) {
1274   return optimizeDoubleFP(CI, B, false, isPrecise);
1275 }
1276 
1277 /// Shrink double -> float for binary functions.
1278 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1279                                      bool isPrecise = false) {
1280   return optimizeDoubleFP(CI, B, true, isPrecise);
1281 }
1282 
1283 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1284 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) {
1285   if (!CI->isFast())
1286     return nullptr;
1287 
1288   // Propagate fast-math flags from the existing call to new instructions.
1289   IRBuilderBase::FastMathFlagGuard Guard(B);
1290   B.setFastMathFlags(CI->getFastMathFlags());
1291 
1292   Value *Real, *Imag;
1293   if (CI->getNumArgOperands() == 1) {
1294     Value *Op = CI->getArgOperand(0);
1295     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1296     Real = B.CreateExtractValue(Op, 0, "real");
1297     Imag = B.CreateExtractValue(Op, 1, "imag");
1298   } else {
1299     assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
1300     Real = CI->getArgOperand(0);
1301     Imag = CI->getArgOperand(1);
1302   }
1303 
1304   Value *RealReal = B.CreateFMul(Real, Real);
1305   Value *ImagImag = B.CreateFMul(Imag, Imag);
1306 
1307   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1308                                               CI->getType());
1309   return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
1310 }
1311 
1312 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1313                                       IRBuilderBase &B) {
1314   if (!isa<FPMathOperator>(Call))
1315     return nullptr;
1316 
1317   IRBuilderBase::FastMathFlagGuard Guard(B);
1318   B.setFastMathFlags(Call->getFastMathFlags());
1319 
1320   // TODO: Can this be shared to also handle LLVM intrinsics?
1321   Value *X;
1322   switch (Func) {
1323   case LibFunc_sin:
1324   case LibFunc_sinf:
1325   case LibFunc_sinl:
1326   case LibFunc_tan:
1327   case LibFunc_tanf:
1328   case LibFunc_tanl:
1329     // sin(-X) --> -sin(X)
1330     // tan(-X) --> -tan(X)
1331     if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1332       return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X));
1333     break;
1334   case LibFunc_cos:
1335   case LibFunc_cosf:
1336   case LibFunc_cosl:
1337     // cos(-X) --> cos(X)
1338     if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1339       return B.CreateCall(Call->getCalledFunction(), X, "cos");
1340     break;
1341   default:
1342     break;
1343   }
1344   return nullptr;
1345 }
1346 
1347 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) {
1348   // Multiplications calculated using Addition Chains.
1349   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1350 
1351   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1352 
1353   if (InnerChain[Exp])
1354     return InnerChain[Exp];
1355 
1356   static const unsigned AddChain[33][2] = {
1357       {0, 0}, // Unused.
1358       {0, 0}, // Unused (base case = pow1).
1359       {1, 1}, // Unused (pre-computed).
1360       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1361       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1362       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1363       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1364       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1365   };
1366 
1367   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1368                                  getPow(InnerChain, AddChain[Exp][1], B));
1369   return InnerChain[Exp];
1370 }
1371 
1372 // Return a properly extended integer (DstWidth bits wide) if the operation is
1373 // an itofp.
1374 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) {
1375   if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
1376     Value *Op = cast<Instruction>(I2F)->getOperand(0);
1377     // Make sure that the exponent fits inside an "int" of size DstWidth,
1378     // thus avoiding any range issues that FP has not.
1379     unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1380     if (BitWidth < DstWidth ||
1381         (BitWidth == DstWidth && isa<SIToFPInst>(I2F)))
1382       return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth))
1383                                   : B.CreateZExt(Op, B.getIntNTy(DstWidth));
1384   }
1385 
1386   return nullptr;
1387 }
1388 
1389 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1390 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1391 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1392 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
1393   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1394   AttributeList Attrs; // Attributes are only meaningful on the original call
1395   Module *Mod = Pow->getModule();
1396   Type *Ty = Pow->getType();
1397   bool Ignored;
1398 
1399   // Evaluate special cases related to a nested function as the base.
1400 
1401   // pow(exp(x), y) -> exp(x * y)
1402   // pow(exp2(x), y) -> exp2(x * y)
1403   // If exp{,2}() is used only once, it is better to fold two transcendental
1404   // math functions into one.  If used again, exp{,2}() would still have to be
1405   // called with the original argument, then keep both original transcendental
1406   // functions.  However, this transformation is only safe with fully relaxed
1407   // math semantics, since, besides rounding differences, it changes overflow
1408   // and underflow behavior quite dramatically.  For example:
1409   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1410   // Whereas:
1411   //   exp(1000 * 0.001) = exp(1)
1412   // TODO: Loosen the requirement for fully relaxed math semantics.
1413   // TODO: Handle exp10() when more targets have it available.
1414   CallInst *BaseFn = dyn_cast<CallInst>(Base);
1415   if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1416     LibFunc LibFn;
1417 
1418     Function *CalleeFn = BaseFn->getCalledFunction();
1419     if (CalleeFn &&
1420         TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) {
1421       StringRef ExpName;
1422       Intrinsic::ID ID;
1423       Value *ExpFn;
1424       LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
1425 
1426       switch (LibFn) {
1427       default:
1428         return nullptr;
1429       case LibFunc_expf:  case LibFunc_exp:  case LibFunc_expl:
1430         ExpName = TLI->getName(LibFunc_exp);
1431         ID = Intrinsic::exp;
1432         LibFnFloat = LibFunc_expf;
1433         LibFnDouble = LibFunc_exp;
1434         LibFnLongDouble = LibFunc_expl;
1435         break;
1436       case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1437         ExpName = TLI->getName(LibFunc_exp2);
1438         ID = Intrinsic::exp2;
1439         LibFnFloat = LibFunc_exp2f;
1440         LibFnDouble = LibFunc_exp2;
1441         LibFnLongDouble = LibFunc_exp2l;
1442         break;
1443       }
1444 
1445       // Create new exp{,2}() with the product as its argument.
1446       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1447       ExpFn = BaseFn->doesNotAccessMemory()
1448               ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1449                              FMul, ExpName)
1450               : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1451                                      LibFnLongDouble, B,
1452                                      BaseFn->getAttributes());
1453 
1454       // Since the new exp{,2}() is different from the original one, dead code
1455       // elimination cannot be trusted to remove it, since it may have side
1456       // effects (e.g., errno).  When the only consumer for the original
1457       // exp{,2}() is pow(), then it has to be explicitly erased.
1458       substituteInParent(BaseFn, ExpFn);
1459       return ExpFn;
1460     }
1461   }
1462 
1463   // Evaluate special cases related to a constant base.
1464 
1465   const APFloat *BaseF;
1466   if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1467     return nullptr;
1468 
1469   // pow(2.0, itofp(x)) -> ldexp(1.0, x)
1470   if (match(Base, m_SpecificFP(2.0)) &&
1471       (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
1472       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1473     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
1474       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI,
1475                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1476                                    B, Attrs);
1477   }
1478 
1479   // pow(2.0 ** n, x) -> exp2(n * x)
1480   if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1481     APFloat BaseR = APFloat(1.0);
1482     BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1483     BaseR = BaseR / *BaseF;
1484     bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
1485     const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1486     APSInt NI(64, false);
1487     if ((IsInteger || IsReciprocal) &&
1488         NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
1489             APFloat::opOK &&
1490         NI > 1 && NI.isPowerOf2()) {
1491       double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1492       Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1493       if (Pow->doesNotAccessMemory())
1494         return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1495                             FMul, "exp2");
1496       else
1497         return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1498                                     LibFunc_exp2l, B, Attrs);
1499     }
1500   }
1501 
1502   // pow(10.0, x) -> exp10(x)
1503   // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1504   if (match(Base, m_SpecificFP(10.0)) &&
1505       hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1506     return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f,
1507                                 LibFunc_exp10l, B, Attrs);
1508 
1509   // pow(x, y) -> exp2(log2(x) * y)
1510   if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() &&
1511       !BaseF->isNegative()) {
1512     // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
1513     // Luckily optimizePow has already handled the x == 1 case.
1514     assert(!match(Base, m_FPOne()) &&
1515            "pow(1.0, y) should have been simplified earlier!");
1516 
1517     Value *Log = nullptr;
1518     if (Ty->isFloatTy())
1519       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
1520     else if (Ty->isDoubleTy())
1521       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
1522 
1523     if (Log) {
1524       Value *FMul = B.CreateFMul(Log, Expo, "mul");
1525       if (Pow->doesNotAccessMemory())
1526         return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1527                             FMul, "exp2");
1528       else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l))
1529         return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1530                                     LibFunc_exp2l, B, Attrs);
1531     }
1532   }
1533 
1534   return nullptr;
1535 }
1536 
1537 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1538                           Module *M, IRBuilderBase &B,
1539                           const TargetLibraryInfo *TLI) {
1540   // If errno is never set, then use the intrinsic for sqrt().
1541   if (NoErrno) {
1542     Function *SqrtFn =
1543         Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1544     return B.CreateCall(SqrtFn, V, "sqrt");
1545   }
1546 
1547   // Otherwise, use the libcall for sqrt().
1548   if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl))
1549     // TODO: We also should check that the target can in fact lower the sqrt()
1550     // libcall. We currently have no way to ask this question, so we ask if
1551     // the target has a sqrt() libcall, which is not exactly the same.
1552     return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1553                                 LibFunc_sqrtl, B, Attrs);
1554 
1555   return nullptr;
1556 }
1557 
1558 /// Use square root in place of pow(x, +/-0.5).
1559 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) {
1560   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1561   AttributeList Attrs; // Attributes are only meaningful on the original call
1562   Module *Mod = Pow->getModule();
1563   Type *Ty = Pow->getType();
1564 
1565   const APFloat *ExpoF;
1566   if (!match(Expo, m_APFloat(ExpoF)) ||
1567       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1568     return nullptr;
1569 
1570   // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
1571   // so that requires fast-math-flags (afn or reassoc).
1572   if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
1573     return nullptr;
1574 
1575   // If we have a pow() library call (accesses memory) and we can't guarantee
1576   // that the base is not an infinity, give up:
1577   // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting
1578   // errno), but sqrt(-Inf) is required by various standards to set errno.
1579   if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() &&
1580       !isKnownNeverInfinity(Base, TLI))
1581     return nullptr;
1582 
1583   Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1584   if (!Sqrt)
1585     return nullptr;
1586 
1587   // Handle signed zero base by expanding to fabs(sqrt(x)).
1588   if (!Pow->hasNoSignedZeros()) {
1589     Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1590     Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1591   }
1592 
1593   // Handle non finite base by expanding to
1594   // (x == -infinity ? +infinity : sqrt(x)).
1595   if (!Pow->hasNoInfs()) {
1596     Value *PosInf = ConstantFP::getInfinity(Ty),
1597           *NegInf = ConstantFP::getInfinity(Ty, true);
1598     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1599     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1600   }
1601 
1602   // If the exponent is negative, then get the reciprocal.
1603   if (ExpoF->isNegative())
1604     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1605 
1606   return Sqrt;
1607 }
1608 
1609 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
1610                                            IRBuilderBase &B) {
1611   Value *Args[] = {Base, Expo};
1612   Type *Types[] = {Base->getType(), Expo->getType()};
1613   Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types);
1614   return B.CreateCall(F, Args);
1615 }
1616 
1617 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
1618   Value *Base = Pow->getArgOperand(0);
1619   Value *Expo = Pow->getArgOperand(1);
1620   Function *Callee = Pow->getCalledFunction();
1621   StringRef Name = Callee->getName();
1622   Type *Ty = Pow->getType();
1623   Module *M = Pow->getModule();
1624   bool AllowApprox = Pow->hasApproxFunc();
1625   bool Ignored;
1626 
1627   // Propagate the math semantics from the call to any created instructions.
1628   IRBuilderBase::FastMathFlagGuard Guard(B);
1629   B.setFastMathFlags(Pow->getFastMathFlags());
1630   // Evaluate special cases related to the base.
1631 
1632   // pow(1.0, x) -> 1.0
1633   if (match(Base, m_FPOne()))
1634     return Base;
1635 
1636   if (Value *Exp = replacePowWithExp(Pow, B))
1637     return Exp;
1638 
1639   // Evaluate special cases related to the exponent.
1640 
1641   // pow(x, -1.0) -> 1.0 / x
1642   if (match(Expo, m_SpecificFP(-1.0)))
1643     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1644 
1645   // pow(x, +/-0.0) -> 1.0
1646   if (match(Expo, m_AnyZeroFP()))
1647     return ConstantFP::get(Ty, 1.0);
1648 
1649   // pow(x, 1.0) -> x
1650   if (match(Expo, m_FPOne()))
1651     return Base;
1652 
1653   // pow(x, 2.0) -> x * x
1654   if (match(Expo, m_SpecificFP(2.0)))
1655     return B.CreateFMul(Base, Base, "square");
1656 
1657   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1658     return Sqrt;
1659 
1660   // pow(x, n) -> x * x * x * ...
1661   const APFloat *ExpoF;
1662   if (AllowApprox && match(Expo, m_APFloat(ExpoF)) &&
1663       !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) {
1664     // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1665     // If the exponent is an integer+0.5 we generate a call to sqrt and an
1666     // additional fmul.
1667     // TODO: This whole transformation should be backend specific (e.g. some
1668     //       backends might prefer libcalls or the limit for the exponent might
1669     //       be different) and it should also consider optimizing for size.
1670     APFloat LimF(ExpoF->getSemantics(), 33),
1671             ExpoA(abs(*ExpoF));
1672     if (ExpoA < LimF) {
1673       // This transformation applies to integer or integer+0.5 exponents only.
1674       // For integer+0.5, we create a sqrt(Base) call.
1675       Value *Sqrt = nullptr;
1676       if (!ExpoA.isInteger()) {
1677         APFloat Expo2 = ExpoA;
1678         // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1679         // is no floating point exception and the result is an integer, then
1680         // ExpoA == integer + 0.5
1681         if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
1682           return nullptr;
1683 
1684         if (!Expo2.isInteger())
1685           return nullptr;
1686 
1687         Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
1688                            Pow->doesNotAccessMemory(), M, B, TLI);
1689         if (!Sqrt)
1690           return nullptr;
1691       }
1692 
1693       // We will memoize intermediate products of the Addition Chain.
1694       Value *InnerChain[33] = {nullptr};
1695       InnerChain[1] = Base;
1696       InnerChain[2] = B.CreateFMul(Base, Base, "square");
1697 
1698       // We cannot readily convert a non-double type (like float) to a double.
1699       // So we first convert it to something which could be converted to double.
1700       ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1701       Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1702 
1703       // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
1704       if (Sqrt)
1705         FMul = B.CreateFMul(FMul, Sqrt);
1706 
1707       // If the exponent is negative, then get the reciprocal.
1708       if (ExpoF->isNegative())
1709         FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1710 
1711       return FMul;
1712     }
1713 
1714     APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false);
1715     // powf(x, n) -> powi(x, n) if n is a constant signed integer value
1716     if (ExpoF->isInteger() &&
1717         ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
1718             APFloat::opOK) {
1719       return createPowWithIntegerExponent(
1720           Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo), M, B);
1721     }
1722   }
1723 
1724   // powf(x, itofp(y)) -> powi(x, y)
1725   if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
1726     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
1727       return createPowWithIntegerExponent(Base, ExpoI, M, B);
1728   }
1729 
1730   // Shrink pow() to powf() if the arguments are single precision,
1731   // unless the result is expected to be double precision.
1732   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
1733       hasFloatVersion(Name)) {
1734     if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, true))
1735       return Shrunk;
1736   }
1737 
1738   return nullptr;
1739 }
1740 
1741 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
1742   Function *Callee = CI->getCalledFunction();
1743   AttributeList Attrs; // Attributes are only meaningful on the original call
1744   StringRef Name = Callee->getName();
1745   Value *Ret = nullptr;
1746   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
1747       hasFloatVersion(Name))
1748     Ret = optimizeUnaryDoubleFP(CI, B, true);
1749 
1750   Type *Ty = CI->getType();
1751   Value *Op = CI->getArgOperand(0);
1752 
1753   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= IntSize
1754   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < IntSize
1755   if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
1756       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1757     if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize()))
1758       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
1759                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1760                                    B, Attrs);
1761   }
1762 
1763   return Ret;
1764 }
1765 
1766 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
1767   // If we can shrink the call to a float function rather than a double
1768   // function, do that first.
1769   Function *Callee = CI->getCalledFunction();
1770   StringRef Name = Callee->getName();
1771   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1772     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1773       return Ret;
1774 
1775   // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
1776   // the intrinsics for improved optimization (for example, vectorization).
1777   // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
1778   // From the C standard draft WG14/N1256:
1779   // "Ideally, fmax would be sensitive to the sign of zero, for example
1780   // fmax(-0.0, +0.0) would return +0; however, implementation in software
1781   // might be impractical."
1782   IRBuilderBase::FastMathFlagGuard Guard(B);
1783   FastMathFlags FMF = CI->getFastMathFlags();
1784   FMF.setNoSignedZeros();
1785   B.setFastMathFlags(FMF);
1786 
1787   Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
1788                                                            : Intrinsic::maxnum;
1789   Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
1790   return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) });
1791 }
1792 
1793 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
1794   Function *LogFn = Log->getCalledFunction();
1795   AttributeList Attrs; // Attributes are only meaningful on the original call
1796   StringRef LogNm = LogFn->getName();
1797   Intrinsic::ID LogID = LogFn->getIntrinsicID();
1798   Module *Mod = Log->getModule();
1799   Type *Ty = Log->getType();
1800   Value *Ret = nullptr;
1801 
1802   if (UnsafeFPShrink && hasFloatVersion(LogNm))
1803     Ret = optimizeUnaryDoubleFP(Log, B, true);
1804 
1805   // The earlier call must also be 'fast' in order to do these transforms.
1806   CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
1807   if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
1808     return Ret;
1809 
1810   LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
1811 
1812   // This is only applicable to log(), log2(), log10().
1813   if (TLI->getLibFunc(LogNm, LogLb))
1814     switch (LogLb) {
1815     case LibFunc_logf:
1816       LogID = Intrinsic::log;
1817       ExpLb = LibFunc_expf;
1818       Exp2Lb = LibFunc_exp2f;
1819       Exp10Lb = LibFunc_exp10f;
1820       PowLb = LibFunc_powf;
1821       break;
1822     case LibFunc_log:
1823       LogID = Intrinsic::log;
1824       ExpLb = LibFunc_exp;
1825       Exp2Lb = LibFunc_exp2;
1826       Exp10Lb = LibFunc_exp10;
1827       PowLb = LibFunc_pow;
1828       break;
1829     case LibFunc_logl:
1830       LogID = Intrinsic::log;
1831       ExpLb = LibFunc_expl;
1832       Exp2Lb = LibFunc_exp2l;
1833       Exp10Lb = LibFunc_exp10l;
1834       PowLb = LibFunc_powl;
1835       break;
1836     case LibFunc_log2f:
1837       LogID = Intrinsic::log2;
1838       ExpLb = LibFunc_expf;
1839       Exp2Lb = LibFunc_exp2f;
1840       Exp10Lb = LibFunc_exp10f;
1841       PowLb = LibFunc_powf;
1842       break;
1843     case LibFunc_log2:
1844       LogID = Intrinsic::log2;
1845       ExpLb = LibFunc_exp;
1846       Exp2Lb = LibFunc_exp2;
1847       Exp10Lb = LibFunc_exp10;
1848       PowLb = LibFunc_pow;
1849       break;
1850     case LibFunc_log2l:
1851       LogID = Intrinsic::log2;
1852       ExpLb = LibFunc_expl;
1853       Exp2Lb = LibFunc_exp2l;
1854       Exp10Lb = LibFunc_exp10l;
1855       PowLb = LibFunc_powl;
1856       break;
1857     case LibFunc_log10f:
1858       LogID = Intrinsic::log10;
1859       ExpLb = LibFunc_expf;
1860       Exp2Lb = LibFunc_exp2f;
1861       Exp10Lb = LibFunc_exp10f;
1862       PowLb = LibFunc_powf;
1863       break;
1864     case LibFunc_log10:
1865       LogID = Intrinsic::log10;
1866       ExpLb = LibFunc_exp;
1867       Exp2Lb = LibFunc_exp2;
1868       Exp10Lb = LibFunc_exp10;
1869       PowLb = LibFunc_pow;
1870       break;
1871     case LibFunc_log10l:
1872       LogID = Intrinsic::log10;
1873       ExpLb = LibFunc_expl;
1874       Exp2Lb = LibFunc_exp2l;
1875       Exp10Lb = LibFunc_exp10l;
1876       PowLb = LibFunc_powl;
1877       break;
1878     default:
1879       return Ret;
1880     }
1881   else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
1882            LogID == Intrinsic::log10) {
1883     if (Ty->getScalarType()->isFloatTy()) {
1884       ExpLb = LibFunc_expf;
1885       Exp2Lb = LibFunc_exp2f;
1886       Exp10Lb = LibFunc_exp10f;
1887       PowLb = LibFunc_powf;
1888     } else if (Ty->getScalarType()->isDoubleTy()) {
1889       ExpLb = LibFunc_exp;
1890       Exp2Lb = LibFunc_exp2;
1891       Exp10Lb = LibFunc_exp10;
1892       PowLb = LibFunc_pow;
1893     } else
1894       return Ret;
1895   } else
1896     return Ret;
1897 
1898   IRBuilderBase::FastMathFlagGuard Guard(B);
1899   B.setFastMathFlags(FastMathFlags::getFast());
1900 
1901   Intrinsic::ID ArgID = Arg->getIntrinsicID();
1902   LibFunc ArgLb = NotLibFunc;
1903   TLI->getLibFunc(*Arg, ArgLb);
1904 
1905   // log(pow(x,y)) -> y*log(x)
1906   if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
1907     Value *LogX =
1908         Log->doesNotAccessMemory()
1909             ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1910                            Arg->getOperand(0), "log")
1911             : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs);
1912     Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
1913     // Since pow() may have side effects, e.g. errno,
1914     // dead code elimination may not be trusted to remove it.
1915     substituteInParent(Arg, MulY);
1916     return MulY;
1917   }
1918 
1919   // log(exp{,2,10}(y)) -> y*log({e,2,10})
1920   // TODO: There is no exp10() intrinsic yet.
1921   if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
1922            ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
1923     Constant *Eul;
1924     if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
1925       // FIXME: Add more precise value of e for long double.
1926       Eul = ConstantFP::get(Log->getType(), numbers::e);
1927     else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
1928       Eul = ConstantFP::get(Log->getType(), 2.0);
1929     else
1930       Eul = ConstantFP::get(Log->getType(), 10.0);
1931     Value *LogE = Log->doesNotAccessMemory()
1932                       ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1933                                      Eul, "log")
1934                       : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs);
1935     Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
1936     // Since exp() may have side effects, e.g. errno,
1937     // dead code elimination may not be trusted to remove it.
1938     substituteInParent(Arg, MulY);
1939     return MulY;
1940   }
1941 
1942   return Ret;
1943 }
1944 
1945 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
1946   Function *Callee = CI->getCalledFunction();
1947   Value *Ret = nullptr;
1948   // TODO: Once we have a way (other than checking for the existince of the
1949   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
1950   // condition below.
1951   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
1952                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
1953     Ret = optimizeUnaryDoubleFP(CI, B, true);
1954 
1955   if (!CI->isFast())
1956     return Ret;
1957 
1958   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
1959   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
1960     return Ret;
1961 
1962   // We're looking for a repeated factor in a multiplication tree,
1963   // so we can do this fold: sqrt(x * x) -> fabs(x);
1964   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
1965   Value *Op0 = I->getOperand(0);
1966   Value *Op1 = I->getOperand(1);
1967   Value *RepeatOp = nullptr;
1968   Value *OtherOp = nullptr;
1969   if (Op0 == Op1) {
1970     // Simple match: the operands of the multiply are identical.
1971     RepeatOp = Op0;
1972   } else {
1973     // Look for a more complicated pattern: one of the operands is itself
1974     // a multiply, so search for a common factor in that multiply.
1975     // Note: We don't bother looking any deeper than this first level or for
1976     // variations of this pattern because instcombine's visitFMUL and/or the
1977     // reassociation pass should give us this form.
1978     Value *OtherMul0, *OtherMul1;
1979     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
1980       // Pattern: sqrt((x * y) * z)
1981       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
1982         // Matched: sqrt((x * x) * z)
1983         RepeatOp = OtherMul0;
1984         OtherOp = Op1;
1985       }
1986     }
1987   }
1988   if (!RepeatOp)
1989     return Ret;
1990 
1991   // Fast math flags for any created instructions should match the sqrt
1992   // and multiply.
1993   IRBuilderBase::FastMathFlagGuard Guard(B);
1994   B.setFastMathFlags(I->getFastMathFlags());
1995 
1996   // If we found a repeated factor, hoist it out of the square root and
1997   // replace it with the fabs of that factor.
1998   Module *M = Callee->getParent();
1999   Type *ArgType = I->getType();
2000   Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
2001   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
2002   if (OtherOp) {
2003     // If we found a non-repeated factor, we still need to get its square
2004     // root. We then multiply that by the value that was simplified out
2005     // of the square root calculation.
2006     Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
2007     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
2008     return B.CreateFMul(FabsCall, SqrtCall);
2009   }
2010   return FabsCall;
2011 }
2012 
2013 // TODO: Generalize to handle any trig function and its inverse.
2014 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) {
2015   Function *Callee = CI->getCalledFunction();
2016   Value *Ret = nullptr;
2017   StringRef Name = Callee->getName();
2018   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
2019     Ret = optimizeUnaryDoubleFP(CI, B, true);
2020 
2021   Value *Op1 = CI->getArgOperand(0);
2022   auto *OpC = dyn_cast<CallInst>(Op1);
2023   if (!OpC)
2024     return Ret;
2025 
2026   // Both calls must be 'fast' in order to remove them.
2027   if (!CI->isFast() || !OpC->isFast())
2028     return Ret;
2029 
2030   // tan(atan(x)) -> x
2031   // tanf(atanf(x)) -> x
2032   // tanl(atanl(x)) -> x
2033   LibFunc Func;
2034   Function *F = OpC->getCalledFunction();
2035   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
2036       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
2037        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
2038        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
2039     Ret = OpC->getArgOperand(0);
2040   return Ret;
2041 }
2042 
2043 static bool isTrigLibCall(CallInst *CI) {
2044   // We can only hope to do anything useful if we can ignore things like errno
2045   // and floating-point exceptions.
2046   // We already checked the prototype.
2047   return CI->hasFnAttr(Attribute::NoUnwind) &&
2048          CI->hasFnAttr(Attribute::ReadNone);
2049 }
2050 
2051 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
2052                              bool UseFloat, Value *&Sin, Value *&Cos,
2053                              Value *&SinCos) {
2054   Type *ArgTy = Arg->getType();
2055   Type *ResTy;
2056   StringRef Name;
2057 
2058   Triple T(OrigCallee->getParent()->getTargetTriple());
2059   if (UseFloat) {
2060     Name = "__sincospif_stret";
2061 
2062     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2063     // x86_64 can't use {float, float} since that would be returned in both
2064     // xmm0 and xmm1, which isn't what a real struct would do.
2065     ResTy = T.getArch() == Triple::x86_64
2066                 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2))
2067                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2068   } else {
2069     Name = "__sincospi_stret";
2070     ResTy = StructType::get(ArgTy, ArgTy);
2071   }
2072 
2073   Module *M = OrigCallee->getParent();
2074   FunctionCallee Callee =
2075       M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy);
2076 
2077   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2078     // If the argument is an instruction, it must dominate all uses so put our
2079     // sincos call there.
2080     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2081   } else {
2082     // Otherwise (e.g. for a constant) the beginning of the function is as
2083     // good a place as any.
2084     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2085     B.SetInsertPoint(&EntryBB, EntryBB.begin());
2086   }
2087 
2088   SinCos = B.CreateCall(Callee, Arg, "sincospi");
2089 
2090   if (SinCos->getType()->isStructTy()) {
2091     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2092     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2093   } else {
2094     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2095                                  "sinpi");
2096     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2097                                  "cospi");
2098   }
2099 }
2100 
2101 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) {
2102   // Make sure the prototype is as expected, otherwise the rest of the
2103   // function is probably invalid and likely to abort.
2104   if (!isTrigLibCall(CI))
2105     return nullptr;
2106 
2107   Value *Arg = CI->getArgOperand(0);
2108   SmallVector<CallInst *, 1> SinCalls;
2109   SmallVector<CallInst *, 1> CosCalls;
2110   SmallVector<CallInst *, 1> SinCosCalls;
2111 
2112   bool IsFloat = Arg->getType()->isFloatTy();
2113 
2114   // Look for all compatible sinpi, cospi and sincospi calls with the same
2115   // argument. If there are enough (in some sense) we can make the
2116   // substitution.
2117   Function *F = CI->getFunction();
2118   for (User *U : Arg->users())
2119     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2120 
2121   // It's only worthwhile if both sinpi and cospi are actually used.
2122   if (SinCalls.empty() || CosCalls.empty())
2123     return nullptr;
2124 
2125   Value *Sin, *Cos, *SinCos;
2126   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
2127 
2128   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2129                                  Value *Res) {
2130     for (CallInst *C : Calls)
2131       replaceAllUsesWith(C, Res);
2132   };
2133 
2134   replaceTrigInsts(SinCalls, Sin);
2135   replaceTrigInsts(CosCalls, Cos);
2136   replaceTrigInsts(SinCosCalls, SinCos);
2137 
2138   return nullptr;
2139 }
2140 
2141 void LibCallSimplifier::classifyArgUse(
2142     Value *Val, Function *F, bool IsFloat,
2143     SmallVectorImpl<CallInst *> &SinCalls,
2144     SmallVectorImpl<CallInst *> &CosCalls,
2145     SmallVectorImpl<CallInst *> &SinCosCalls) {
2146   CallInst *CI = dyn_cast<CallInst>(Val);
2147 
2148   if (!CI || CI->use_empty())
2149     return;
2150 
2151   // Don't consider calls in other functions.
2152   if (CI->getFunction() != F)
2153     return;
2154 
2155   Function *Callee = CI->getCalledFunction();
2156   LibFunc Func;
2157   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
2158       !isTrigLibCall(CI))
2159     return;
2160 
2161   if (IsFloat) {
2162     if (Func == LibFunc_sinpif)
2163       SinCalls.push_back(CI);
2164     else if (Func == LibFunc_cospif)
2165       CosCalls.push_back(CI);
2166     else if (Func == LibFunc_sincospif_stret)
2167       SinCosCalls.push_back(CI);
2168   } else {
2169     if (Func == LibFunc_sinpi)
2170       SinCalls.push_back(CI);
2171     else if (Func == LibFunc_cospi)
2172       CosCalls.push_back(CI);
2173     else if (Func == LibFunc_sincospi_stret)
2174       SinCosCalls.push_back(CI);
2175   }
2176 }
2177 
2178 //===----------------------------------------------------------------------===//
2179 // Integer Library Call Optimizations
2180 //===----------------------------------------------------------------------===//
2181 
2182 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) {
2183   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
2184   Value *Op = CI->getArgOperand(0);
2185   Type *ArgType = Op->getType();
2186   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2187                                           Intrinsic::cttz, ArgType);
2188   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
2189   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
2190   V = B.CreateIntCast(V, B.getInt32Ty(), false);
2191 
2192   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
2193   return B.CreateSelect(Cond, V, B.getInt32(0));
2194 }
2195 
2196 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) {
2197   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
2198   Value *Op = CI->getArgOperand(0);
2199   Type *ArgType = Op->getType();
2200   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2201                                           Intrinsic::ctlz, ArgType);
2202   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
2203   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
2204                   V);
2205   return B.CreateIntCast(V, CI->getType(), false);
2206 }
2207 
2208 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) {
2209   // abs(x) -> x <s 0 ? -x : x
2210   // The negation has 'nsw' because abs of INT_MIN is undefined.
2211   Value *X = CI->getArgOperand(0);
2212   Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
2213   Value *NegX = B.CreateNSWNeg(X, "neg");
2214   return B.CreateSelect(IsNeg, NegX, X);
2215 }
2216 
2217 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) {
2218   // isdigit(c) -> (c-'0') <u 10
2219   Value *Op = CI->getArgOperand(0);
2220   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
2221   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
2222   return B.CreateZExt(Op, CI->getType());
2223 }
2224 
2225 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) {
2226   // isascii(c) -> c <u 128
2227   Value *Op = CI->getArgOperand(0);
2228   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
2229   return B.CreateZExt(Op, CI->getType());
2230 }
2231 
2232 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) {
2233   // toascii(c) -> c & 0x7f
2234   return B.CreateAnd(CI->getArgOperand(0),
2235                      ConstantInt::get(CI->getType(), 0x7F));
2236 }
2237 
2238 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) {
2239   StringRef Str;
2240   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2241     return nullptr;
2242 
2243   return convertStrToNumber(CI, Str, 10);
2244 }
2245 
2246 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) {
2247   StringRef Str;
2248   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2249     return nullptr;
2250 
2251   if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
2252     return nullptr;
2253 
2254   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2255     return convertStrToNumber(CI, Str, CInt->getSExtValue());
2256   }
2257 
2258   return nullptr;
2259 }
2260 
2261 //===----------------------------------------------------------------------===//
2262 // Formatting and IO Library Call Optimizations
2263 //===----------------------------------------------------------------------===//
2264 
2265 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2266 
2267 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B,
2268                                                  int StreamArg) {
2269   Function *Callee = CI->getCalledFunction();
2270   // Error reporting calls should be cold, mark them as such.
2271   // This applies even to non-builtin calls: it is only a hint and applies to
2272   // functions that the frontend might not understand as builtins.
2273 
2274   // This heuristic was suggested in:
2275   // Improving Static Branch Prediction in a Compiler
2276   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2277   // Proceedings of PACT'98, Oct. 1998, IEEE
2278   if (!CI->hasFnAttr(Attribute::Cold) &&
2279       isReportingError(Callee, CI, StreamArg)) {
2280     CI->addFnAttr(Attribute::Cold);
2281   }
2282 
2283   return nullptr;
2284 }
2285 
2286 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2287   if (!Callee || !Callee->isDeclaration())
2288     return false;
2289 
2290   if (StreamArg < 0)
2291     return true;
2292 
2293   // These functions might be considered cold, but only if their stream
2294   // argument is stderr.
2295 
2296   if (StreamArg >= (int)CI->getNumArgOperands())
2297     return false;
2298   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2299   if (!LI)
2300     return false;
2301   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
2302   if (!GV || !GV->isDeclaration())
2303     return false;
2304   return GV->getName() == "stderr";
2305 }
2306 
2307 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
2308   // Check for a fixed format string.
2309   StringRef FormatStr;
2310   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2311     return nullptr;
2312 
2313   // Empty format string -> noop.
2314   if (FormatStr.empty()) // Tolerate printf's declared void.
2315     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2316 
2317   // Do not do any of the following transformations if the printf return value
2318   // is used, in general the printf return value is not compatible with either
2319   // putchar() or puts().
2320   if (!CI->use_empty())
2321     return nullptr;
2322 
2323   // printf("x") -> putchar('x'), even for "%" and "%%".
2324   if (FormatStr.size() == 1 || FormatStr == "%%")
2325     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
2326 
2327   // Try to remove call or emit putchar/puts.
2328   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
2329     StringRef OperandStr;
2330     if (!getConstantStringInfo(CI->getOperand(1), OperandStr))
2331       return nullptr;
2332     // printf("%s", "") --> NOP
2333     if (OperandStr.empty())
2334       return (Value *)CI;
2335     // printf("%s", "a") --> putchar('a')
2336     if (OperandStr.size() == 1)
2337       return emitPutChar(B.getInt32(OperandStr[0]), B, TLI);
2338     // printf("%s", str"\n") --> puts(str)
2339     if (OperandStr.back() == '\n') {
2340       OperandStr = OperandStr.drop_back();
2341       Value *GV = B.CreateGlobalString(OperandStr, "str");
2342       return emitPutS(GV, B, TLI);
2343     }
2344     return nullptr;
2345   }
2346 
2347   // printf("foo\n") --> puts("foo")
2348   if (FormatStr.back() == '\n' &&
2349       FormatStr.find('%') == StringRef::npos) { // No format characters.
2350     // Create a string literal with no \n on it.  We expect the constant merge
2351     // pass to be run after this pass, to merge duplicate strings.
2352     FormatStr = FormatStr.drop_back();
2353     Value *GV = B.CreateGlobalString(FormatStr, "str");
2354     return emitPutS(GV, B, TLI);
2355   }
2356 
2357   // Optimize specific format strings.
2358   // printf("%c", chr) --> putchar(chr)
2359   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
2360       CI->getArgOperand(1)->getType()->isIntegerTy())
2361     return emitPutChar(CI->getArgOperand(1), B, TLI);
2362 
2363   // printf("%s\n", str) --> puts(str)
2364   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
2365       CI->getArgOperand(1)->getType()->isPointerTy())
2366     return emitPutS(CI->getArgOperand(1), B, TLI);
2367   return nullptr;
2368 }
2369 
2370 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
2371 
2372   Function *Callee = CI->getCalledFunction();
2373   FunctionType *FT = Callee->getFunctionType();
2374   if (Value *V = optimizePrintFString(CI, B)) {
2375     return V;
2376   }
2377 
2378   // printf(format, ...) -> iprintf(format, ...) if no floating point
2379   // arguments.
2380   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
2381     Module *M = B.GetInsertBlock()->getParent()->getParent();
2382     FunctionCallee IPrintFFn =
2383         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
2384     CallInst *New = cast<CallInst>(CI->clone());
2385     New->setCalledFunction(IPrintFFn);
2386     B.Insert(New);
2387     return New;
2388   }
2389 
2390   // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2391   // arguments.
2392   if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) {
2393     Module *M = B.GetInsertBlock()->getParent()->getParent();
2394     auto SmallPrintFFn =
2395         M->getOrInsertFunction(TLI->getName(LibFunc_small_printf),
2396                                FT, Callee->getAttributes());
2397     CallInst *New = cast<CallInst>(CI->clone());
2398     New->setCalledFunction(SmallPrintFFn);
2399     B.Insert(New);
2400     return New;
2401   }
2402 
2403   annotateNonNullNoUndefBasedOnAccess(CI, 0);
2404   return nullptr;
2405 }
2406 
2407 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
2408                                                 IRBuilderBase &B) {
2409   // Check for a fixed format string.
2410   StringRef FormatStr;
2411   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2412     return nullptr;
2413 
2414   // If we just have a format string (nothing else crazy) transform it.
2415   Value *Dest = CI->getArgOperand(0);
2416   if (CI->getNumArgOperands() == 2) {
2417     // Make sure there's no % in the constant array.  We could try to handle
2418     // %% -> % in the future if we cared.
2419     if (FormatStr.find('%') != StringRef::npos)
2420       return nullptr; // we found a format specifier, bail out.
2421 
2422     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2423     B.CreateMemCpy(
2424         Dest, Align(1), CI->getArgOperand(1), Align(1),
2425         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2426                          FormatStr.size() + 1)); // Copy the null byte.
2427     return ConstantInt::get(CI->getType(), FormatStr.size());
2428   }
2429 
2430   // The remaining optimizations require the format string to be "%s" or "%c"
2431   // and have an extra operand.
2432   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2433       CI->getNumArgOperands() < 3)
2434     return nullptr;
2435 
2436   // Decode the second character of the format string.
2437   if (FormatStr[1] == 'c') {
2438     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2439     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2440       return nullptr;
2441     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2442     Value *Ptr = castToCStr(Dest, B);
2443     B.CreateStore(V, Ptr);
2444     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2445     B.CreateStore(B.getInt8(0), Ptr);
2446 
2447     return ConstantInt::get(CI->getType(), 1);
2448   }
2449 
2450   if (FormatStr[1] == 's') {
2451     // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2452     // strlen(str)+1)
2453     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2454       return nullptr;
2455 
2456     if (CI->use_empty())
2457       // sprintf(dest, "%s", str) -> strcpy(dest, str)
2458       return emitStrCpy(Dest, CI->getArgOperand(2), B, TLI);
2459 
2460     uint64_t SrcLen = GetStringLength(CI->getArgOperand(2));
2461     if (SrcLen) {
2462       B.CreateMemCpy(
2463           Dest, Align(1), CI->getArgOperand(2), Align(1),
2464           ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen));
2465       // Returns total number of characters written without null-character.
2466       return ConstantInt::get(CI->getType(), SrcLen - 1);
2467     } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) {
2468       // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest
2469       // Handle mismatched pointer types (goes away with typeless pointers?).
2470       V = B.CreatePointerCast(V, Dest->getType());
2471       Value *PtrDiff = B.CreatePtrDiff(V, Dest);
2472       return B.CreateIntCast(PtrDiff, CI->getType(), false);
2473     }
2474 
2475     bool OptForSize = CI->getFunction()->hasOptSize() ||
2476                       llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2477                                                   PGSOQueryType::IRPass);
2478     if (OptForSize)
2479       return nullptr;
2480 
2481     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2482     if (!Len)
2483       return nullptr;
2484     Value *IncLen =
2485         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2486     B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen);
2487 
2488     // The sprintf result is the unincremented number of bytes in the string.
2489     return B.CreateIntCast(Len, CI->getType(), false);
2490   }
2491   return nullptr;
2492 }
2493 
2494 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
2495   Function *Callee = CI->getCalledFunction();
2496   FunctionType *FT = Callee->getFunctionType();
2497   if (Value *V = optimizeSPrintFString(CI, B)) {
2498     return V;
2499   }
2500 
2501   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2502   // point arguments.
2503   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
2504     Module *M = B.GetInsertBlock()->getParent()->getParent();
2505     FunctionCallee SIPrintFFn =
2506         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
2507     CallInst *New = cast<CallInst>(CI->clone());
2508     New->setCalledFunction(SIPrintFFn);
2509     B.Insert(New);
2510     return New;
2511   }
2512 
2513   // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
2514   // floating point arguments.
2515   if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) {
2516     Module *M = B.GetInsertBlock()->getParent()->getParent();
2517     auto SmallSPrintFFn =
2518         M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf),
2519                                FT, Callee->getAttributes());
2520     CallInst *New = cast<CallInst>(CI->clone());
2521     New->setCalledFunction(SmallSPrintFFn);
2522     B.Insert(New);
2523     return New;
2524   }
2525 
2526   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
2527   return nullptr;
2528 }
2529 
2530 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
2531                                                  IRBuilderBase &B) {
2532   // Check for size
2533   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2534   if (!Size)
2535     return nullptr;
2536 
2537   uint64_t N = Size->getZExtValue();
2538   // Check for a fixed format string.
2539   StringRef FormatStr;
2540   if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2541     return nullptr;
2542 
2543   // If we just have a format string (nothing else crazy) transform it.
2544   if (CI->getNumArgOperands() == 3) {
2545     // Make sure there's no % in the constant array.  We could try to handle
2546     // %% -> % in the future if we cared.
2547     if (FormatStr.find('%') != StringRef::npos)
2548       return nullptr; // we found a format specifier, bail out.
2549 
2550     if (N == 0)
2551       return ConstantInt::get(CI->getType(), FormatStr.size());
2552     else if (N < FormatStr.size() + 1)
2553       return nullptr;
2554 
2555     // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2556     // strlen(fmt)+1)
2557     B.CreateMemCpy(
2558         CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1),
2559         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2560                          FormatStr.size() + 1)); // Copy the null byte.
2561     return ConstantInt::get(CI->getType(), FormatStr.size());
2562   }
2563 
2564   // The remaining optimizations require the format string to be "%s" or "%c"
2565   // and have an extra operand.
2566   if (FormatStr.size() == 2 && FormatStr[0] == '%' &&
2567       CI->getNumArgOperands() == 4) {
2568 
2569     // Decode the second character of the format string.
2570     if (FormatStr[1] == 'c') {
2571       if (N == 0)
2572         return ConstantInt::get(CI->getType(), 1);
2573       else if (N == 1)
2574         return nullptr;
2575 
2576       // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2577       if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2578         return nullptr;
2579       Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2580       Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2581       B.CreateStore(V, Ptr);
2582       Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2583       B.CreateStore(B.getInt8(0), Ptr);
2584 
2585       return ConstantInt::get(CI->getType(), 1);
2586     }
2587 
2588     if (FormatStr[1] == 's') {
2589       // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2590       StringRef Str;
2591       if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2592         return nullptr;
2593 
2594       if (N == 0)
2595         return ConstantInt::get(CI->getType(), Str.size());
2596       else if (N < Str.size() + 1)
2597         return nullptr;
2598 
2599       B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(3),
2600                      Align(1), ConstantInt::get(CI->getType(), Str.size() + 1));
2601 
2602       // The snprintf result is the unincremented number of bytes in the string.
2603       return ConstantInt::get(CI->getType(), Str.size());
2604     }
2605   }
2606   return nullptr;
2607 }
2608 
2609 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) {
2610   if (Value *V = optimizeSnPrintFString(CI, B)) {
2611     return V;
2612   }
2613 
2614   if (isKnownNonZero(CI->getOperand(1), DL))
2615     annotateNonNullNoUndefBasedOnAccess(CI, 0);
2616   return nullptr;
2617 }
2618 
2619 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
2620                                                 IRBuilderBase &B) {
2621   optimizeErrorReporting(CI, B, 0);
2622 
2623   // All the optimizations depend on the format string.
2624   StringRef FormatStr;
2625   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2626     return nullptr;
2627 
2628   // Do not do any of the following transformations if the fprintf return
2629   // value is used, in general the fprintf return value is not compatible
2630   // with fwrite(), fputc() or fputs().
2631   if (!CI->use_empty())
2632     return nullptr;
2633 
2634   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2635   if (CI->getNumArgOperands() == 2) {
2636     // Could handle %% -> % if we cared.
2637     if (FormatStr.find('%') != StringRef::npos)
2638       return nullptr; // We found a format specifier.
2639 
2640     return emitFWrite(
2641         CI->getArgOperand(1),
2642         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
2643         CI->getArgOperand(0), B, DL, TLI);
2644   }
2645 
2646   // The remaining optimizations require the format string to be "%s" or "%c"
2647   // and have an extra operand.
2648   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2649       CI->getNumArgOperands() < 3)
2650     return nullptr;
2651 
2652   // Decode the second character of the format string.
2653   if (FormatStr[1] == 'c') {
2654     // fprintf(F, "%c", chr) --> fputc(chr, F)
2655     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2656       return nullptr;
2657     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2658   }
2659 
2660   if (FormatStr[1] == 's') {
2661     // fprintf(F, "%s", str) --> fputs(str, F)
2662     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2663       return nullptr;
2664     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2665   }
2666   return nullptr;
2667 }
2668 
2669 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
2670   Function *Callee = CI->getCalledFunction();
2671   FunctionType *FT = Callee->getFunctionType();
2672   if (Value *V = optimizeFPrintFString(CI, B)) {
2673     return V;
2674   }
2675 
2676   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2677   // floating point arguments.
2678   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
2679     Module *M = B.GetInsertBlock()->getParent()->getParent();
2680     FunctionCallee FIPrintFFn =
2681         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2682     CallInst *New = cast<CallInst>(CI->clone());
2683     New->setCalledFunction(FIPrintFFn);
2684     B.Insert(New);
2685     return New;
2686   }
2687 
2688   // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
2689   // 128-bit floating point arguments.
2690   if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) {
2691     Module *M = B.GetInsertBlock()->getParent()->getParent();
2692     auto SmallFPrintFFn =
2693         M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf),
2694                                FT, Callee->getAttributes());
2695     CallInst *New = cast<CallInst>(CI->clone());
2696     New->setCalledFunction(SmallFPrintFFn);
2697     B.Insert(New);
2698     return New;
2699   }
2700 
2701   return nullptr;
2702 }
2703 
2704 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) {
2705   optimizeErrorReporting(CI, B, 3);
2706 
2707   // Get the element size and count.
2708   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2709   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2710   if (SizeC && CountC) {
2711     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2712 
2713     // If this is writing zero records, remove the call (it's a noop).
2714     if (Bytes == 0)
2715       return ConstantInt::get(CI->getType(), 0);
2716 
2717     // If this is writing one byte, turn it into fputc.
2718     // This optimisation is only valid, if the return value is unused.
2719     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2720       Value *Char = B.CreateLoad(B.getInt8Ty(),
2721                                  castToCStr(CI->getArgOperand(0), B), "char");
2722       Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2723       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2724     }
2725   }
2726 
2727   return nullptr;
2728 }
2729 
2730 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) {
2731   optimizeErrorReporting(CI, B, 1);
2732 
2733   // Don't rewrite fputs to fwrite when optimising for size because fwrite
2734   // requires more arguments and thus extra MOVs are required.
2735   bool OptForSize = CI->getFunction()->hasOptSize() ||
2736                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2737                                                 PGSOQueryType::IRPass);
2738   if (OptForSize)
2739     return nullptr;
2740 
2741   // We can't optimize if return value is used.
2742   if (!CI->use_empty())
2743     return nullptr;
2744 
2745   // fputs(s,F) --> fwrite(s,strlen(s),1,F)
2746   uint64_t Len = GetStringLength(CI->getArgOperand(0));
2747   if (!Len)
2748     return nullptr;
2749 
2750   // Known to have no uses (see above).
2751   return emitFWrite(
2752       CI->getArgOperand(0),
2753       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2754       CI->getArgOperand(1), B, DL, TLI);
2755 }
2756 
2757 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) {
2758   annotateNonNullNoUndefBasedOnAccess(CI, 0);
2759   if (!CI->use_empty())
2760     return nullptr;
2761 
2762   // Check for a constant string.
2763   // puts("") -> putchar('\n')
2764   StringRef Str;
2765   if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
2766     return emitPutChar(B.getInt32('\n'), B, TLI);
2767 
2768   return nullptr;
2769 }
2770 
2771 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
2772   // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
2773   return B.CreateMemMove(CI->getArgOperand(1), Align(1), CI->getArgOperand(0),
2774                          Align(1), CI->getArgOperand(2));
2775 }
2776 
2777 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2778   LibFunc Func;
2779   SmallString<20> FloatFuncName = FuncName;
2780   FloatFuncName += 'f';
2781   if (TLI->getLibFunc(FloatFuncName, Func))
2782     return TLI->has(Func);
2783   return false;
2784 }
2785 
2786 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2787                                                       IRBuilderBase &Builder) {
2788   LibFunc Func;
2789   Function *Callee = CI->getCalledFunction();
2790   // Check for string/memory library functions.
2791   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2792     // Make sure we never change the calling convention.
2793     assert(
2794         (ignoreCallingConv(Func) ||
2795          TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) &&
2796         "Optimizing string/memory libcall would change the calling convention");
2797     switch (Func) {
2798     case LibFunc_strcat:
2799       return optimizeStrCat(CI, Builder);
2800     case LibFunc_strncat:
2801       return optimizeStrNCat(CI, Builder);
2802     case LibFunc_strchr:
2803       return optimizeStrChr(CI, Builder);
2804     case LibFunc_strrchr:
2805       return optimizeStrRChr(CI, Builder);
2806     case LibFunc_strcmp:
2807       return optimizeStrCmp(CI, Builder);
2808     case LibFunc_strncmp:
2809       return optimizeStrNCmp(CI, Builder);
2810     case LibFunc_strcpy:
2811       return optimizeStrCpy(CI, Builder);
2812     case LibFunc_stpcpy:
2813       return optimizeStpCpy(CI, Builder);
2814     case LibFunc_strncpy:
2815       return optimizeStrNCpy(CI, Builder);
2816     case LibFunc_strlen:
2817       return optimizeStrLen(CI, Builder);
2818     case LibFunc_strpbrk:
2819       return optimizeStrPBrk(CI, Builder);
2820     case LibFunc_strndup:
2821       return optimizeStrNDup(CI, Builder);
2822     case LibFunc_strtol:
2823     case LibFunc_strtod:
2824     case LibFunc_strtof:
2825     case LibFunc_strtoul:
2826     case LibFunc_strtoll:
2827     case LibFunc_strtold:
2828     case LibFunc_strtoull:
2829       return optimizeStrTo(CI, Builder);
2830     case LibFunc_strspn:
2831       return optimizeStrSpn(CI, Builder);
2832     case LibFunc_strcspn:
2833       return optimizeStrCSpn(CI, Builder);
2834     case LibFunc_strstr:
2835       return optimizeStrStr(CI, Builder);
2836     case LibFunc_memchr:
2837       return optimizeMemChr(CI, Builder);
2838     case LibFunc_memrchr:
2839       return optimizeMemRChr(CI, Builder);
2840     case LibFunc_bcmp:
2841       return optimizeBCmp(CI, Builder);
2842     case LibFunc_memcmp:
2843       return optimizeMemCmp(CI, Builder);
2844     case LibFunc_memcpy:
2845       return optimizeMemCpy(CI, Builder);
2846     case LibFunc_memccpy:
2847       return optimizeMemCCpy(CI, Builder);
2848     case LibFunc_mempcpy:
2849       return optimizeMemPCpy(CI, Builder);
2850     case LibFunc_memmove:
2851       return optimizeMemMove(CI, Builder);
2852     case LibFunc_memset:
2853       return optimizeMemSet(CI, Builder);
2854     case LibFunc_realloc:
2855       return optimizeRealloc(CI, Builder);
2856     case LibFunc_wcslen:
2857       return optimizeWcslen(CI, Builder);
2858     case LibFunc_bcopy:
2859       return optimizeBCopy(CI, Builder);
2860     default:
2861       break;
2862     }
2863   }
2864   return nullptr;
2865 }
2866 
2867 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2868                                                        LibFunc Func,
2869                                                        IRBuilderBase &Builder) {
2870   // Don't optimize calls that require strict floating point semantics.
2871   if (CI->isStrictFP())
2872     return nullptr;
2873 
2874   if (Value *V = optimizeTrigReflections(CI, Func, Builder))
2875     return V;
2876 
2877   switch (Func) {
2878   case LibFunc_sinpif:
2879   case LibFunc_sinpi:
2880   case LibFunc_cospif:
2881   case LibFunc_cospi:
2882     return optimizeSinCosPi(CI, Builder);
2883   case LibFunc_powf:
2884   case LibFunc_pow:
2885   case LibFunc_powl:
2886     return optimizePow(CI, Builder);
2887   case LibFunc_exp2l:
2888   case LibFunc_exp2:
2889   case LibFunc_exp2f:
2890     return optimizeExp2(CI, Builder);
2891   case LibFunc_fabsf:
2892   case LibFunc_fabs:
2893   case LibFunc_fabsl:
2894     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2895   case LibFunc_sqrtf:
2896   case LibFunc_sqrt:
2897   case LibFunc_sqrtl:
2898     return optimizeSqrt(CI, Builder);
2899   case LibFunc_logf:
2900   case LibFunc_log:
2901   case LibFunc_logl:
2902   case LibFunc_log10f:
2903   case LibFunc_log10:
2904   case LibFunc_log10l:
2905   case LibFunc_log1pf:
2906   case LibFunc_log1p:
2907   case LibFunc_log1pl:
2908   case LibFunc_log2f:
2909   case LibFunc_log2:
2910   case LibFunc_log2l:
2911   case LibFunc_logbf:
2912   case LibFunc_logb:
2913   case LibFunc_logbl:
2914     return optimizeLog(CI, Builder);
2915   case LibFunc_tan:
2916   case LibFunc_tanf:
2917   case LibFunc_tanl:
2918     return optimizeTan(CI, Builder);
2919   case LibFunc_ceil:
2920     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2921   case LibFunc_floor:
2922     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2923   case LibFunc_round:
2924     return replaceUnaryCall(CI, Builder, Intrinsic::round);
2925   case LibFunc_roundeven:
2926     return replaceUnaryCall(CI, Builder, Intrinsic::roundeven);
2927   case LibFunc_nearbyint:
2928     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2929   case LibFunc_rint:
2930     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2931   case LibFunc_trunc:
2932     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
2933   case LibFunc_acos:
2934   case LibFunc_acosh:
2935   case LibFunc_asin:
2936   case LibFunc_asinh:
2937   case LibFunc_atan:
2938   case LibFunc_atanh:
2939   case LibFunc_cbrt:
2940   case LibFunc_cosh:
2941   case LibFunc_exp:
2942   case LibFunc_exp10:
2943   case LibFunc_expm1:
2944   case LibFunc_cos:
2945   case LibFunc_sin:
2946   case LibFunc_sinh:
2947   case LibFunc_tanh:
2948     if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
2949       return optimizeUnaryDoubleFP(CI, Builder, true);
2950     return nullptr;
2951   case LibFunc_copysign:
2952     if (hasFloatVersion(CI->getCalledFunction()->getName()))
2953       return optimizeBinaryDoubleFP(CI, Builder);
2954     return nullptr;
2955   case LibFunc_fminf:
2956   case LibFunc_fmin:
2957   case LibFunc_fminl:
2958   case LibFunc_fmaxf:
2959   case LibFunc_fmax:
2960   case LibFunc_fmaxl:
2961     return optimizeFMinFMax(CI, Builder);
2962   case LibFunc_cabs:
2963   case LibFunc_cabsf:
2964   case LibFunc_cabsl:
2965     return optimizeCAbs(CI, Builder);
2966   default:
2967     return nullptr;
2968   }
2969 }
2970 
2971 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
2972   // TODO: Split out the code below that operates on FP calls so that
2973   //       we can all non-FP calls with the StrictFP attribute to be
2974   //       optimized.
2975   if (CI->isNoBuiltin())
2976     return nullptr;
2977 
2978   LibFunc Func;
2979   Function *Callee = CI->getCalledFunction();
2980   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
2981 
2982   SmallVector<OperandBundleDef, 2> OpBundles;
2983   CI->getOperandBundlesAsDefs(OpBundles);
2984 
2985   IRBuilderBase::OperandBundlesGuard Guard(Builder);
2986   Builder.setDefaultOperandBundles(OpBundles);
2987 
2988   // Command-line parameter overrides instruction attribute.
2989   // This can't be moved to optimizeFloatingPointLibCall() because it may be
2990   // used by the intrinsic optimizations.
2991   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
2992     UnsafeFPShrink = EnableUnsafeFPShrink;
2993   else if (isa<FPMathOperator>(CI) && CI->isFast())
2994     UnsafeFPShrink = true;
2995 
2996   // First, check for intrinsics.
2997   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
2998     if (!IsCallingConvC)
2999       return nullptr;
3000     // The FP intrinsics have corresponding constrained versions so we don't
3001     // need to check for the StrictFP attribute here.
3002     switch (II->getIntrinsicID()) {
3003     case Intrinsic::pow:
3004       return optimizePow(CI, Builder);
3005     case Intrinsic::exp2:
3006       return optimizeExp2(CI, Builder);
3007     case Intrinsic::log:
3008     case Intrinsic::log2:
3009     case Intrinsic::log10:
3010       return optimizeLog(CI, Builder);
3011     case Intrinsic::sqrt:
3012       return optimizeSqrt(CI, Builder);
3013     case Intrinsic::memset:
3014       return optimizeMemSet(CI, Builder);
3015     case Intrinsic::memcpy:
3016       return optimizeMemCpy(CI, Builder);
3017     case Intrinsic::memmove:
3018       return optimizeMemMove(CI, Builder);
3019     default:
3020       return nullptr;
3021     }
3022   }
3023 
3024   // Also try to simplify calls to fortified library functions.
3025   if (Value *SimplifiedFortifiedCI =
3026           FortifiedSimplifier.optimizeCall(CI, Builder)) {
3027     // Try to further simplify the result.
3028     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
3029     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
3030       // Ensure that SimplifiedCI's uses are complete, since some calls have
3031       // their uses analyzed.
3032       replaceAllUsesWith(CI, SimplifiedCI);
3033 
3034       // Set insertion point to SimplifiedCI to guarantee we reach all uses
3035       // we might replace later on.
3036       IRBuilderBase::InsertPointGuard Guard(Builder);
3037       Builder.SetInsertPoint(SimplifiedCI);
3038       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) {
3039         // If we were able to further simplify, remove the now redundant call.
3040         substituteInParent(SimplifiedCI, V);
3041         return V;
3042       }
3043     }
3044     return SimplifiedFortifiedCI;
3045   }
3046 
3047   // Then check for known library functions.
3048   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
3049     // We never change the calling convention.
3050     if (!ignoreCallingConv(Func) && !IsCallingConvC)
3051       return nullptr;
3052     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3053       return V;
3054     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3055       return V;
3056     switch (Func) {
3057     case LibFunc_ffs:
3058     case LibFunc_ffsl:
3059     case LibFunc_ffsll:
3060       return optimizeFFS(CI, Builder);
3061     case LibFunc_fls:
3062     case LibFunc_flsl:
3063     case LibFunc_flsll:
3064       return optimizeFls(CI, Builder);
3065     case LibFunc_abs:
3066     case LibFunc_labs:
3067     case LibFunc_llabs:
3068       return optimizeAbs(CI, Builder);
3069     case LibFunc_isdigit:
3070       return optimizeIsDigit(CI, Builder);
3071     case LibFunc_isascii:
3072       return optimizeIsAscii(CI, Builder);
3073     case LibFunc_toascii:
3074       return optimizeToAscii(CI, Builder);
3075     case LibFunc_atoi:
3076     case LibFunc_atol:
3077     case LibFunc_atoll:
3078       return optimizeAtoi(CI, Builder);
3079     case LibFunc_strtol:
3080     case LibFunc_strtoll:
3081       return optimizeStrtol(CI, Builder);
3082     case LibFunc_printf:
3083       return optimizePrintF(CI, Builder);
3084     case LibFunc_sprintf:
3085       return optimizeSPrintF(CI, Builder);
3086     case LibFunc_snprintf:
3087       return optimizeSnPrintF(CI, Builder);
3088     case LibFunc_fprintf:
3089       return optimizeFPrintF(CI, Builder);
3090     case LibFunc_fwrite:
3091       return optimizeFWrite(CI, Builder);
3092     case LibFunc_fputs:
3093       return optimizeFPuts(CI, Builder);
3094     case LibFunc_puts:
3095       return optimizePuts(CI, Builder);
3096     case LibFunc_perror:
3097       return optimizeErrorReporting(CI, Builder);
3098     case LibFunc_vfprintf:
3099     case LibFunc_fiprintf:
3100       return optimizeErrorReporting(CI, Builder, 0);
3101     default:
3102       return nullptr;
3103     }
3104   }
3105   return nullptr;
3106 }
3107 
3108 LibCallSimplifier::LibCallSimplifier(
3109     const DataLayout &DL, const TargetLibraryInfo *TLI,
3110     OptimizationRemarkEmitter &ORE,
3111     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
3112     function_ref<void(Instruction *, Value *)> Replacer,
3113     function_ref<void(Instruction *)> Eraser)
3114     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
3115       UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {}
3116 
3117 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3118   // Indirect through the replacer used in this instance.
3119   Replacer(I, With);
3120 }
3121 
3122 void LibCallSimplifier::eraseFromParent(Instruction *I) {
3123   Eraser(I);
3124 }
3125 
3126 // TODO:
3127 //   Additional cases that we need to add to this file:
3128 //
3129 // cbrt:
3130 //   * cbrt(expN(X))  -> expN(x/3)
3131 //   * cbrt(sqrt(x))  -> pow(x,1/6)
3132 //   * cbrt(cbrt(x))  -> pow(x,1/9)
3133 //
3134 // exp, expf, expl:
3135 //   * exp(log(x))  -> x
3136 //
3137 // log, logf, logl:
3138 //   * log(exp(x))   -> x
3139 //   * log(exp(y))   -> y*log(e)
3140 //   * log(exp10(y)) -> y*log(10)
3141 //   * log(sqrt(x))  -> 0.5*log(x)
3142 //
3143 // pow, powf, powl:
3144 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
3145 //   * pow(pow(x,y),z)-> pow(x,y*z)
3146 //
3147 // signbit:
3148 //   * signbit(cnst) -> cnst'
3149 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3150 //
3151 // sqrt, sqrtf, sqrtl:
3152 //   * sqrt(expN(x))  -> expN(x*0.5)
3153 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3154 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3155 //
3156 
3157 //===----------------------------------------------------------------------===//
3158 // Fortified Library Call Optimizations
3159 //===----------------------------------------------------------------------===//
3160 
3161 bool
3162 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
3163                                                     unsigned ObjSizeOp,
3164                                                     Optional<unsigned> SizeOp,
3165                                                     Optional<unsigned> StrOp,
3166                                                     Optional<unsigned> FlagOp) {
3167   // If this function takes a flag argument, the implementation may use it to
3168   // perform extra checks. Don't fold into the non-checking variant.
3169   if (FlagOp) {
3170     ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
3171     if (!Flag || !Flag->isZero())
3172       return false;
3173   }
3174 
3175   if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
3176     return true;
3177 
3178   if (ConstantInt *ObjSizeCI =
3179           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
3180     if (ObjSizeCI->isMinusOne())
3181       return true;
3182     // If the object size wasn't -1 (unknown), bail out if we were asked to.
3183     if (OnlyLowerUnknownSize)
3184       return false;
3185     if (StrOp) {
3186       uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
3187       // If the length is 0 we don't know how long it is and so we can't
3188       // remove the check.
3189       if (Len)
3190         annotateDereferenceableBytes(CI, *StrOp, Len);
3191       else
3192         return false;
3193       return ObjSizeCI->getZExtValue() >= Len;
3194     }
3195 
3196     if (SizeOp) {
3197       if (ConstantInt *SizeCI =
3198               dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
3199         return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
3200     }
3201   }
3202   return false;
3203 }
3204 
3205 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
3206                                                      IRBuilderBase &B) {
3207   if (isFortifiedCallFoldable(CI, 3, 2)) {
3208     CallInst *NewCI =
3209         B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3210                        Align(1), CI->getArgOperand(2));
3211     NewCI->setAttributes(CI->getAttributes());
3212     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3213     return CI->getArgOperand(0);
3214   }
3215   return nullptr;
3216 }
3217 
3218 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
3219                                                       IRBuilderBase &B) {
3220   if (isFortifiedCallFoldable(CI, 3, 2)) {
3221     CallInst *NewCI =
3222         B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3223                         Align(1), CI->getArgOperand(2));
3224     NewCI->setAttributes(CI->getAttributes());
3225     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3226     return CI->getArgOperand(0);
3227   }
3228   return nullptr;
3229 }
3230 
3231 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
3232                                                      IRBuilderBase &B) {
3233   if (isFortifiedCallFoldable(CI, 3, 2)) {
3234     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
3235     CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
3236                                      CI->getArgOperand(2), Align(1));
3237     NewCI->setAttributes(CI->getAttributes());
3238     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3239     return CI->getArgOperand(0);
3240   }
3241   return nullptr;
3242 }
3243 
3244 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI,
3245                                                       IRBuilderBase &B) {
3246   const DataLayout &DL = CI->getModule()->getDataLayout();
3247   if (isFortifiedCallFoldable(CI, 3, 2))
3248     if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3249                                   CI->getArgOperand(2), B, DL, TLI)) {
3250       CallInst *NewCI = cast<CallInst>(Call);
3251       NewCI->setAttributes(CI->getAttributes());
3252       NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3253       return NewCI;
3254     }
3255   return nullptr;
3256 }
3257 
3258 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
3259                                                       IRBuilderBase &B,
3260                                                       LibFunc Func) {
3261   const DataLayout &DL = CI->getModule()->getDataLayout();
3262   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
3263         *ObjSize = CI->getArgOperand(2);
3264 
3265   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
3266   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
3267     Value *StrLen = emitStrLen(Src, B, DL, TLI);
3268     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
3269   }
3270 
3271   // If a) we don't have any length information, or b) we know this will
3272   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3273   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3274   // TODO: It might be nice to get a maximum length out of the possible
3275   // string lengths for varying.
3276   if (isFortifiedCallFoldable(CI, 2, None, 1)) {
3277     if (Func == LibFunc_strcpy_chk)
3278       return emitStrCpy(Dst, Src, B, TLI);
3279     else
3280       return emitStpCpy(Dst, Src, B, TLI);
3281   }
3282 
3283   if (OnlyLowerUnknownSize)
3284     return nullptr;
3285 
3286   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3287   uint64_t Len = GetStringLength(Src);
3288   if (Len)
3289     annotateDereferenceableBytes(CI, 1, Len);
3290   else
3291     return nullptr;
3292 
3293   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
3294   Value *LenV = ConstantInt::get(SizeTTy, Len);
3295   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
3296   // If the function was an __stpcpy_chk, and we were able to fold it into
3297   // a __memcpy_chk, we still need to return the correct end pointer.
3298   if (Ret && Func == LibFunc_stpcpy_chk)
3299     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
3300   return Ret;
3301 }
3302 
3303 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
3304                                                      IRBuilderBase &B) {
3305   if (isFortifiedCallFoldable(CI, 1, None, 0))
3306     return emitStrLen(CI->getArgOperand(0), B, CI->getModule()->getDataLayout(),
3307                       TLI);
3308   return nullptr;
3309 }
3310 
3311 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
3312                                                        IRBuilderBase &B,
3313                                                        LibFunc Func) {
3314   if (isFortifiedCallFoldable(CI, 3, 2)) {
3315     if (Func == LibFunc_strncpy_chk)
3316       return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3317                                CI->getArgOperand(2), B, TLI);
3318     else
3319       return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3320                          CI->getArgOperand(2), B, TLI);
3321   }
3322 
3323   return nullptr;
3324 }
3325 
3326 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
3327                                                       IRBuilderBase &B) {
3328   if (isFortifiedCallFoldable(CI, 4, 3))
3329     return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3330                        CI->getArgOperand(2), CI->getArgOperand(3), B, TLI);
3331 
3332   return nullptr;
3333 }
3334 
3335 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
3336                                                        IRBuilderBase &B) {
3337   if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
3338     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5));
3339     return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3340                         CI->getArgOperand(4), VariadicArgs, B, TLI);
3341   }
3342 
3343   return nullptr;
3344 }
3345 
3346 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
3347                                                       IRBuilderBase &B) {
3348   if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
3349     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4));
3350     return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs,
3351                        B, TLI);
3352   }
3353 
3354   return nullptr;
3355 }
3356 
3357 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
3358                                                      IRBuilderBase &B) {
3359   if (isFortifiedCallFoldable(CI, 2))
3360     return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI);
3361 
3362   return nullptr;
3363 }
3364 
3365 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
3366                                                    IRBuilderBase &B) {
3367   if (isFortifiedCallFoldable(CI, 3))
3368     return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
3369                        CI->getArgOperand(2), B, TLI);
3370 
3371   return nullptr;
3372 }
3373 
3374 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
3375                                                       IRBuilderBase &B) {
3376   if (isFortifiedCallFoldable(CI, 3))
3377     return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
3378                        CI->getArgOperand(2), B, TLI);
3379 
3380   return nullptr;
3381 }
3382 
3383 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
3384                                                       IRBuilderBase &B) {
3385   if (isFortifiedCallFoldable(CI, 3))
3386     return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3387                        CI->getArgOperand(2), B, TLI);
3388 
3389   return nullptr;
3390 }
3391 
3392 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
3393                                                         IRBuilderBase &B) {
3394   if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
3395     return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3396                          CI->getArgOperand(4), CI->getArgOperand(5), B, TLI);
3397 
3398   return nullptr;
3399 }
3400 
3401 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
3402                                                        IRBuilderBase &B) {
3403   if (isFortifiedCallFoldable(CI, 2, None, None, 1))
3404     return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3405                         CI->getArgOperand(4), B, TLI);
3406 
3407   return nullptr;
3408 }
3409 
3410 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI,
3411                                                 IRBuilderBase &Builder) {
3412   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
3413   // Some clang users checked for _chk libcall availability using:
3414   //   __has_builtin(__builtin___memcpy_chk)
3415   // When compiling with -fno-builtin, this is always true.
3416   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
3417   // end up with fortified libcalls, which isn't acceptable in a freestanding
3418   // environment which only provides their non-fortified counterparts.
3419   //
3420   // Until we change clang and/or teach external users to check for availability
3421   // differently, disregard the "nobuiltin" attribute and TLI::has.
3422   //
3423   // PR23093.
3424 
3425   LibFunc Func;
3426   Function *Callee = CI->getCalledFunction();
3427   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
3428 
3429   SmallVector<OperandBundleDef, 2> OpBundles;
3430   CI->getOperandBundlesAsDefs(OpBundles);
3431 
3432   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3433   Builder.setDefaultOperandBundles(OpBundles);
3434 
3435   // First, check that this is a known library functions and that the prototype
3436   // is correct.
3437   if (!TLI->getLibFunc(*Callee, Func))
3438     return nullptr;
3439 
3440   // We never change the calling convention.
3441   if (!ignoreCallingConv(Func) && !IsCallingConvC)
3442     return nullptr;
3443 
3444   switch (Func) {
3445   case LibFunc_memcpy_chk:
3446     return optimizeMemCpyChk(CI, Builder);
3447   case LibFunc_mempcpy_chk:
3448     return optimizeMemPCpyChk(CI, Builder);
3449   case LibFunc_memmove_chk:
3450     return optimizeMemMoveChk(CI, Builder);
3451   case LibFunc_memset_chk:
3452     return optimizeMemSetChk(CI, Builder);
3453   case LibFunc_stpcpy_chk:
3454   case LibFunc_strcpy_chk:
3455     return optimizeStrpCpyChk(CI, Builder, Func);
3456   case LibFunc_strlen_chk:
3457     return optimizeStrLenChk(CI, Builder);
3458   case LibFunc_stpncpy_chk:
3459   case LibFunc_strncpy_chk:
3460     return optimizeStrpNCpyChk(CI, Builder, Func);
3461   case LibFunc_memccpy_chk:
3462     return optimizeMemCCpyChk(CI, Builder);
3463   case LibFunc_snprintf_chk:
3464     return optimizeSNPrintfChk(CI, Builder);
3465   case LibFunc_sprintf_chk:
3466     return optimizeSPrintfChk(CI, Builder);
3467   case LibFunc_strcat_chk:
3468     return optimizeStrCatChk(CI, Builder);
3469   case LibFunc_strlcat_chk:
3470     return optimizeStrLCat(CI, Builder);
3471   case LibFunc_strncat_chk:
3472     return optimizeStrNCatChk(CI, Builder);
3473   case LibFunc_strlcpy_chk:
3474     return optimizeStrLCpyChk(CI, Builder);
3475   case LibFunc_vsnprintf_chk:
3476     return optimizeVSNPrintfChk(CI, Builder);
3477   case LibFunc_vsprintf_chk:
3478     return optimizeVSPrintfChk(CI, Builder);
3479   default:
3480     break;
3481   }
3482   return nullptr;
3483 }
3484 
3485 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
3486     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
3487     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
3488