1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is a utility pass used for testing the InstructionSimplify analysis. 11 // The analysis is applied to every instruction, and if it simplifies then the 12 // instruction is replaced by the simplification. If you are looking for a pass 13 // that performs serious instruction folding, use the instcombine pass instead. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DiagnosticInfo.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Support/Allocator.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Target/TargetLibraryInfo.h" 33 #include "llvm/Transforms/Utils/BuildLibCalls.h" 34 35 using namespace llvm; 36 37 static cl::opt<bool> 38 ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden, 39 cl::desc("Treat error-reporting calls as cold")); 40 41 //===----------------------------------------------------------------------===// 42 // Helper Functions 43 //===----------------------------------------------------------------------===// 44 45 static bool ignoreCallingConv(LibFunc::Func Func) { 46 switch (Func) { 47 case LibFunc::abs: 48 case LibFunc::labs: 49 case LibFunc::llabs: 50 case LibFunc::strlen: 51 return true; 52 default: 53 return false; 54 } 55 llvm_unreachable("All cases should be covered in the switch."); 56 } 57 58 /// isOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 59 /// value is equal or not-equal to zero. 60 static bool isOnlyUsedInZeroEqualityComparison(Value *V) { 61 for (User *U : V->users()) { 62 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 63 if (IC->isEquality()) 64 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 65 if (C->isNullValue()) 66 continue; 67 // Unknown instruction. 68 return false; 69 } 70 return true; 71 } 72 73 /// isOnlyUsedInEqualityComparison - Return true if it is only used in equality 74 /// comparisons with With. 75 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 76 for (User *U : V->users()) { 77 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 78 if (IC->isEquality() && IC->getOperand(1) == With) 79 continue; 80 // Unknown instruction. 81 return false; 82 } 83 return true; 84 } 85 86 static bool callHasFloatingPointArgument(const CallInst *CI) { 87 for (CallInst::const_op_iterator it = CI->op_begin(), e = CI->op_end(); 88 it != e; ++it) { 89 if ((*it)->getType()->isFloatingPointTy()) 90 return true; 91 } 92 return false; 93 } 94 95 /// \brief Check whether the overloaded unary floating point function 96 /// corresponing to \a Ty is available. 97 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty, 98 LibFunc::Func DoubleFn, LibFunc::Func FloatFn, 99 LibFunc::Func LongDoubleFn) { 100 switch (Ty->getTypeID()) { 101 case Type::FloatTyID: 102 return TLI->has(FloatFn); 103 case Type::DoubleTyID: 104 return TLI->has(DoubleFn); 105 default: 106 return TLI->has(LongDoubleFn); 107 } 108 } 109 110 //===----------------------------------------------------------------------===// 111 // Fortified Library Call Optimizations 112 //===----------------------------------------------------------------------===// 113 114 static bool isFortifiedCallFoldable(CallInst *CI, unsigned SizeCIOp, unsigned SizeArgOp, 115 bool isString) { 116 if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp)) 117 return true; 118 if (ConstantInt *SizeCI = 119 dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) { 120 if (SizeCI->isAllOnesValue()) 121 return true; 122 if (isString) { 123 uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp)); 124 // If the length is 0 we don't know how long it is and so we can't 125 // remove the check. 126 if (Len == 0) 127 return false; 128 return SizeCI->getZExtValue() >= Len; 129 } 130 if (ConstantInt *Arg = dyn_cast<ConstantInt>(CI->getArgOperand(SizeArgOp))) 131 return SizeCI->getZExtValue() >= Arg->getZExtValue(); 132 } 133 return false; 134 } 135 136 Value *LibCallSimplifier::optimizeMemCpyChk(CallInst *CI, IRBuilder<> &B) { 137 Function *Callee = CI->getCalledFunction(); 138 FunctionType *FT = Callee->getFunctionType(); 139 LLVMContext &Context = CI->getContext(); 140 141 // Check if this has the right signature. 142 if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || 143 !FT->getParamType(0)->isPointerTy() || 144 !FT->getParamType(1)->isPointerTy() || 145 FT->getParamType(2) != DL->getIntPtrType(Context) || 146 FT->getParamType(3) != DL->getIntPtrType(Context)) 147 return nullptr; 148 149 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 150 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 151 CI->getArgOperand(2), 1); 152 return CI->getArgOperand(0); 153 } 154 return nullptr; 155 } 156 157 Value *LibCallSimplifier::optimizeMemMoveChk(CallInst *CI, IRBuilder<> &B) { 158 Function *Callee = CI->getCalledFunction(); 159 FunctionType *FT = Callee->getFunctionType(); 160 LLVMContext &Context = CI->getContext(); 161 162 // Check if this has the right signature. 163 if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || 164 !FT->getParamType(0)->isPointerTy() || 165 !FT->getParamType(1)->isPointerTy() || 166 FT->getParamType(2) != DL->getIntPtrType(Context) || 167 FT->getParamType(3) != DL->getIntPtrType(Context)) 168 return nullptr; 169 170 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 171 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 172 CI->getArgOperand(2), 1); 173 return CI->getArgOperand(0); 174 } 175 return nullptr; 176 } 177 178 Value *LibCallSimplifier::optimizeMemSetChk(CallInst *CI, IRBuilder<> &B) { 179 Function *Callee = CI->getCalledFunction(); 180 FunctionType *FT = Callee->getFunctionType(); 181 LLVMContext &Context = CI->getContext(); 182 183 // Check if this has the right signature. 184 if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || 185 !FT->getParamType(0)->isPointerTy() || 186 !FT->getParamType(1)->isIntegerTy() || 187 FT->getParamType(2) != DL->getIntPtrType(Context) || 188 FT->getParamType(3) != DL->getIntPtrType(Context)) 189 return nullptr; 190 191 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 192 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 193 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 194 return CI->getArgOperand(0); 195 } 196 return nullptr; 197 } 198 199 Value *LibCallSimplifier::optimizeStrCpyChk(CallInst *CI, IRBuilder<> &B) { 200 Function *Callee = CI->getCalledFunction(); 201 StringRef Name = Callee->getName(); 202 FunctionType *FT = Callee->getFunctionType(); 203 LLVMContext &Context = CI->getContext(); 204 205 // Check if this has the right signature. 206 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || 207 FT->getParamType(0) != FT->getParamType(1) || 208 FT->getParamType(0) != Type::getInt8PtrTy(Context) || 209 FT->getParamType(2) != DL->getIntPtrType(Context)) 210 return nullptr; 211 212 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 213 if (Dst == Src) // __strcpy_chk(x,x) -> x 214 return Src; 215 216 // If a) we don't have any length information, or b) we know this will 217 // fit then just lower to a plain strcpy. Otherwise we'll keep our 218 // strcpy_chk call which may fail at runtime if the size is too long. 219 // TODO: It might be nice to get a maximum length out of the possible 220 // string lengths for varying. 221 if (isFortifiedCallFoldable(CI, 2, 1, true)) { 222 Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6)); 223 return Ret; 224 } else { 225 // Maybe we can stil fold __strcpy_chk to __memcpy_chk. 226 uint64_t Len = GetStringLength(Src); 227 if (Len == 0) 228 return nullptr; 229 230 // This optimization require DataLayout. 231 if (!DL) 232 return nullptr; 233 234 Value *Ret = EmitMemCpyChk( 235 Dst, Src, ConstantInt::get(DL->getIntPtrType(Context), Len), 236 CI->getArgOperand(2), B, DL, TLI); 237 return Ret; 238 } 239 return nullptr; 240 } 241 242 Value *LibCallSimplifier::optimizeStpCpyChk(CallInst *CI, IRBuilder<> &B) { 243 Function *Callee = CI->getCalledFunction(); 244 StringRef Name = Callee->getName(); 245 FunctionType *FT = Callee->getFunctionType(); 246 LLVMContext &Context = CI->getContext(); 247 248 // Check if this has the right signature. 249 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || 250 FT->getParamType(0) != FT->getParamType(1) || 251 FT->getParamType(0) != Type::getInt8PtrTy(Context) || 252 FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0))) 253 return nullptr; 254 255 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 256 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 257 Value *StrLen = EmitStrLen(Src, B, DL, TLI); 258 return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr; 259 } 260 261 // If a) we don't have any length information, or b) we know this will 262 // fit then just lower to a plain stpcpy. Otherwise we'll keep our 263 // stpcpy_chk call which may fail at runtime if the size is too long. 264 // TODO: It might be nice to get a maximum length out of the possible 265 // string lengths for varying. 266 if (isFortifiedCallFoldable(CI, 2, 1, true)) { 267 Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6)); 268 return Ret; 269 } else { 270 // Maybe we can stil fold __stpcpy_chk to __memcpy_chk. 271 uint64_t Len = GetStringLength(Src); 272 if (Len == 0) 273 return nullptr; 274 275 // This optimization require DataLayout. 276 if (!DL) 277 return nullptr; 278 279 Type *PT = FT->getParamType(0); 280 Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len); 281 Value *DstEnd = 282 B.CreateGEP(Dst, ConstantInt::get(DL->getIntPtrType(PT), Len - 1)); 283 if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, DL, TLI)) 284 return nullptr; 285 return DstEnd; 286 } 287 return nullptr; 288 } 289 290 Value *LibCallSimplifier::optimizeStrNCpyChk(CallInst *CI, IRBuilder<> &B) { 291 Function *Callee = CI->getCalledFunction(); 292 StringRef Name = Callee->getName(); 293 FunctionType *FT = Callee->getFunctionType(); 294 LLVMContext &Context = CI->getContext(); 295 296 // Check if this has the right signature. 297 if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || 298 FT->getParamType(0) != FT->getParamType(1) || 299 FT->getParamType(0) != Type::getInt8PtrTy(Context) || 300 !FT->getParamType(2)->isIntegerTy() || 301 FT->getParamType(3) != DL->getIntPtrType(Context)) 302 return nullptr; 303 304 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 305 Value *Ret = 306 EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 307 CI->getArgOperand(2), B, DL, TLI, Name.substr(2, 7)); 308 return Ret; 309 } 310 return nullptr; 311 } 312 313 //===----------------------------------------------------------------------===// 314 // String and Memory Library Call Optimizations 315 //===----------------------------------------------------------------------===// 316 317 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 318 Function *Callee = CI->getCalledFunction(); 319 // Verify the "strcat" function prototype. 320 FunctionType *FT = Callee->getFunctionType(); 321 if (FT->getNumParams() != 2|| 322 FT->getReturnType() != B.getInt8PtrTy() || 323 FT->getParamType(0) != FT->getReturnType() || 324 FT->getParamType(1) != FT->getReturnType()) 325 return nullptr; 326 327 // Extract some information from the instruction 328 Value *Dst = CI->getArgOperand(0); 329 Value *Src = CI->getArgOperand(1); 330 331 // See if we can get the length of the input string. 332 uint64_t Len = GetStringLength(Src); 333 if (Len == 0) 334 return nullptr; 335 --Len; // Unbias length. 336 337 // Handle the simple, do-nothing case: strcat(x, "") -> x 338 if (Len == 0) 339 return Dst; 340 341 // These optimizations require DataLayout. 342 if (!DL) 343 return nullptr; 344 345 return emitStrLenMemCpy(Src, Dst, Len, B); 346 } 347 348 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 349 IRBuilder<> &B) { 350 // We need to find the end of the destination string. That's where the 351 // memory is to be moved to. We just generate a call to strlen. 352 Value *DstLen = EmitStrLen(Dst, B, DL, TLI); 353 if (!DstLen) 354 return nullptr; 355 356 // Now that we have the destination's length, we must index into the 357 // destination's pointer to get the actual memcpy destination (end of 358 // the string .. we're concatenating). 359 Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr"); 360 361 // We have enough information to now generate the memcpy call to do the 362 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 363 B.CreateMemCpy( 364 CpyDst, Src, 365 ConstantInt::get(DL->getIntPtrType(Src->getContext()), Len + 1), 1); 366 return Dst; 367 } 368 369 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 370 Function *Callee = CI->getCalledFunction(); 371 // Verify the "strncat" function prototype. 372 FunctionType *FT = Callee->getFunctionType(); 373 if (FT->getNumParams() != 3 || FT->getReturnType() != B.getInt8PtrTy() || 374 FT->getParamType(0) != FT->getReturnType() || 375 FT->getParamType(1) != FT->getReturnType() || 376 !FT->getParamType(2)->isIntegerTy()) 377 return nullptr; 378 379 // Extract some information from the instruction 380 Value *Dst = CI->getArgOperand(0); 381 Value *Src = CI->getArgOperand(1); 382 uint64_t Len; 383 384 // We don't do anything if length is not constant 385 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 386 Len = LengthArg->getZExtValue(); 387 else 388 return nullptr; 389 390 // See if we can get the length of the input string. 391 uint64_t SrcLen = GetStringLength(Src); 392 if (SrcLen == 0) 393 return nullptr; 394 --SrcLen; // Unbias length. 395 396 // Handle the simple, do-nothing cases: 397 // strncat(x, "", c) -> x 398 // strncat(x, c, 0) -> x 399 if (SrcLen == 0 || Len == 0) 400 return Dst; 401 402 // These optimizations require DataLayout. 403 if (!DL) 404 return nullptr; 405 406 // We don't optimize this case 407 if (Len < SrcLen) 408 return nullptr; 409 410 // strncat(x, s, c) -> strcat(x, s) 411 // s is constant so the strcat can be optimized further 412 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 413 } 414 415 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 416 Function *Callee = CI->getCalledFunction(); 417 // Verify the "strchr" function prototype. 418 FunctionType *FT = Callee->getFunctionType(); 419 if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() || 420 FT->getParamType(0) != FT->getReturnType() || 421 !FT->getParamType(1)->isIntegerTy(32)) 422 return nullptr; 423 424 Value *SrcStr = CI->getArgOperand(0); 425 426 // If the second operand is non-constant, see if we can compute the length 427 // of the input string and turn this into memchr. 428 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 429 if (!CharC) { 430 // These optimizations require DataLayout. 431 if (!DL) 432 return nullptr; 433 434 uint64_t Len = GetStringLength(SrcStr); 435 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 436 return nullptr; 437 438 return EmitMemChr( 439 SrcStr, CI->getArgOperand(1), // include nul. 440 ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len), B, DL, TLI); 441 } 442 443 // Otherwise, the character is a constant, see if the first argument is 444 // a string literal. If so, we can constant fold. 445 StringRef Str; 446 if (!getConstantStringInfo(SrcStr, Str)) { 447 if (DL && CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 448 return B.CreateGEP(SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr"); 449 return nullptr; 450 } 451 452 // Compute the offset, make sure to handle the case when we're searching for 453 // zero (a weird way to spell strlen). 454 size_t I = (0xFF & CharC->getSExtValue()) == 0 455 ? Str.size() 456 : Str.find(CharC->getSExtValue()); 457 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 458 return Constant::getNullValue(CI->getType()); 459 460 // strchr(s+n,c) -> gep(s+n+i,c) 461 return B.CreateGEP(SrcStr, B.getInt64(I), "strchr"); 462 } 463 464 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 465 Function *Callee = CI->getCalledFunction(); 466 // Verify the "strrchr" function prototype. 467 FunctionType *FT = Callee->getFunctionType(); 468 if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() || 469 FT->getParamType(0) != FT->getReturnType() || 470 !FT->getParamType(1)->isIntegerTy(32)) 471 return nullptr; 472 473 Value *SrcStr = CI->getArgOperand(0); 474 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 475 476 // Cannot fold anything if we're not looking for a constant. 477 if (!CharC) 478 return nullptr; 479 480 StringRef Str; 481 if (!getConstantStringInfo(SrcStr, Str)) { 482 // strrchr(s, 0) -> strchr(s, 0) 483 if (DL && CharC->isZero()) 484 return EmitStrChr(SrcStr, '\0', B, DL, TLI); 485 return nullptr; 486 } 487 488 // Compute the offset. 489 size_t I = (0xFF & CharC->getSExtValue()) == 0 490 ? Str.size() 491 : Str.rfind(CharC->getSExtValue()); 492 if (I == StringRef::npos) // Didn't find the char. Return null. 493 return Constant::getNullValue(CI->getType()); 494 495 // strrchr(s+n,c) -> gep(s+n+i,c) 496 return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr"); 497 } 498 499 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 500 Function *Callee = CI->getCalledFunction(); 501 // Verify the "strcmp" function prototype. 502 FunctionType *FT = Callee->getFunctionType(); 503 if (FT->getNumParams() != 2 || !FT->getReturnType()->isIntegerTy(32) || 504 FT->getParamType(0) != FT->getParamType(1) || 505 FT->getParamType(0) != B.getInt8PtrTy()) 506 return nullptr; 507 508 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 509 if (Str1P == Str2P) // strcmp(x,x) -> 0 510 return ConstantInt::get(CI->getType(), 0); 511 512 StringRef Str1, Str2; 513 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 514 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 515 516 // strcmp(x, y) -> cnst (if both x and y are constant strings) 517 if (HasStr1 && HasStr2) 518 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 519 520 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 521 return B.CreateNeg( 522 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 523 524 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 525 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 526 527 // strcmp(P, "x") -> memcmp(P, "x", 2) 528 uint64_t Len1 = GetStringLength(Str1P); 529 uint64_t Len2 = GetStringLength(Str2P); 530 if (Len1 && Len2) { 531 // These optimizations require DataLayout. 532 if (!DL) 533 return nullptr; 534 535 return EmitMemCmp(Str1P, Str2P, 536 ConstantInt::get(DL->getIntPtrType(CI->getContext()), 537 std::min(Len1, Len2)), 538 B, DL, TLI); 539 } 540 541 return nullptr; 542 } 543 544 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 545 Function *Callee = CI->getCalledFunction(); 546 // Verify the "strncmp" function prototype. 547 FunctionType *FT = Callee->getFunctionType(); 548 if (FT->getNumParams() != 3 || !FT->getReturnType()->isIntegerTy(32) || 549 FT->getParamType(0) != FT->getParamType(1) || 550 FT->getParamType(0) != B.getInt8PtrTy() || 551 !FT->getParamType(2)->isIntegerTy()) 552 return nullptr; 553 554 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 555 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 556 return ConstantInt::get(CI->getType(), 0); 557 558 // Get the length argument if it is constant. 559 uint64_t Length; 560 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 561 Length = LengthArg->getZExtValue(); 562 else 563 return nullptr; 564 565 if (Length == 0) // strncmp(x,y,0) -> 0 566 return ConstantInt::get(CI->getType(), 0); 567 568 if (DL && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 569 return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 570 571 StringRef Str1, Str2; 572 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 573 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 574 575 // strncmp(x, y) -> cnst (if both x and y are constant strings) 576 if (HasStr1 && HasStr2) { 577 StringRef SubStr1 = Str1.substr(0, Length); 578 StringRef SubStr2 = Str2.substr(0, Length); 579 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 580 } 581 582 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 583 return B.CreateNeg( 584 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 585 586 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 587 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 588 589 return nullptr; 590 } 591 592 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 593 Function *Callee = CI->getCalledFunction(); 594 // Verify the "strcpy" function prototype. 595 FunctionType *FT = Callee->getFunctionType(); 596 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || 597 FT->getParamType(0) != FT->getParamType(1) || 598 FT->getParamType(0) != B.getInt8PtrTy()) 599 return nullptr; 600 601 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 602 if (Dst == Src) // strcpy(x,x) -> x 603 return Src; 604 605 // These optimizations require DataLayout. 606 if (!DL) 607 return nullptr; 608 609 // See if we can get the length of the input string. 610 uint64_t Len = GetStringLength(Src); 611 if (Len == 0) 612 return nullptr; 613 614 // We have enough information to now generate the memcpy call to do the 615 // copy for us. Make a memcpy to copy the nul byte with align = 1. 616 B.CreateMemCpy(Dst, Src, 617 ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len), 1); 618 return Dst; 619 } 620 621 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 622 Function *Callee = CI->getCalledFunction(); 623 // Verify the "stpcpy" function prototype. 624 FunctionType *FT = Callee->getFunctionType(); 625 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || 626 FT->getParamType(0) != FT->getParamType(1) || 627 FT->getParamType(0) != B.getInt8PtrTy()) 628 return nullptr; 629 630 // These optimizations require DataLayout. 631 if (!DL) 632 return nullptr; 633 634 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 635 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 636 Value *StrLen = EmitStrLen(Src, B, DL, TLI); 637 return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr; 638 } 639 640 // See if we can get the length of the input string. 641 uint64_t Len = GetStringLength(Src); 642 if (Len == 0) 643 return nullptr; 644 645 Type *PT = FT->getParamType(0); 646 Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len); 647 Value *DstEnd = 648 B.CreateGEP(Dst, ConstantInt::get(DL->getIntPtrType(PT), Len - 1)); 649 650 // We have enough information to now generate the memcpy call to do the 651 // copy for us. Make a memcpy to copy the nul byte with align = 1. 652 B.CreateMemCpy(Dst, Src, LenV, 1); 653 return DstEnd; 654 } 655 656 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 657 Function *Callee = CI->getCalledFunction(); 658 FunctionType *FT = Callee->getFunctionType(); 659 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || 660 FT->getParamType(0) != FT->getParamType(1) || 661 FT->getParamType(0) != B.getInt8PtrTy() || 662 !FT->getParamType(2)->isIntegerTy()) 663 return nullptr; 664 665 Value *Dst = CI->getArgOperand(0); 666 Value *Src = CI->getArgOperand(1); 667 Value *LenOp = CI->getArgOperand(2); 668 669 // See if we can get the length of the input string. 670 uint64_t SrcLen = GetStringLength(Src); 671 if (SrcLen == 0) 672 return nullptr; 673 --SrcLen; 674 675 if (SrcLen == 0) { 676 // strncpy(x, "", y) -> memset(x, '\0', y, 1) 677 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 678 return Dst; 679 } 680 681 uint64_t Len; 682 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 683 Len = LengthArg->getZExtValue(); 684 else 685 return nullptr; 686 687 if (Len == 0) 688 return Dst; // strncpy(x, y, 0) -> x 689 690 // These optimizations require DataLayout. 691 if (!DL) 692 return nullptr; 693 694 // Let strncpy handle the zero padding 695 if (Len > SrcLen + 1) 696 return nullptr; 697 698 Type *PT = FT->getParamType(0); 699 // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] 700 B.CreateMemCpy(Dst, Src, ConstantInt::get(DL->getIntPtrType(PT), Len), 1); 701 702 return Dst; 703 } 704 705 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 706 Function *Callee = CI->getCalledFunction(); 707 FunctionType *FT = Callee->getFunctionType(); 708 if (FT->getNumParams() != 1 || FT->getParamType(0) != B.getInt8PtrTy() || 709 !FT->getReturnType()->isIntegerTy()) 710 return nullptr; 711 712 Value *Src = CI->getArgOperand(0); 713 714 // Constant folding: strlen("xyz") -> 3 715 if (uint64_t Len = GetStringLength(Src)) 716 return ConstantInt::get(CI->getType(), Len - 1); 717 718 // strlen(x?"foo":"bars") --> x ? 3 : 4 719 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 720 uint64_t LenTrue = GetStringLength(SI->getTrueValue()); 721 uint64_t LenFalse = GetStringLength(SI->getFalseValue()); 722 if (LenTrue && LenFalse) { 723 Function *Caller = CI->getParent()->getParent(); 724 emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller, 725 SI->getDebugLoc(), 726 "folded strlen(select) to select of constants"); 727 return B.CreateSelect(SI->getCondition(), 728 ConstantInt::get(CI->getType(), LenTrue - 1), 729 ConstantInt::get(CI->getType(), LenFalse - 1)); 730 } 731 } 732 733 // strlen(x) != 0 --> *x != 0 734 // strlen(x) == 0 --> *x == 0 735 if (isOnlyUsedInZeroEqualityComparison(CI)) 736 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); 737 738 return nullptr; 739 } 740 741 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 742 Function *Callee = CI->getCalledFunction(); 743 FunctionType *FT = Callee->getFunctionType(); 744 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || 745 FT->getParamType(1) != FT->getParamType(0) || 746 FT->getReturnType() != FT->getParamType(0)) 747 return nullptr; 748 749 StringRef S1, S2; 750 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 751 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 752 753 // strpbrk(s, "") -> NULL 754 // strpbrk("", s) -> NULL 755 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 756 return Constant::getNullValue(CI->getType()); 757 758 // Constant folding. 759 if (HasS1 && HasS2) { 760 size_t I = S1.find_first_of(S2); 761 if (I == StringRef::npos) // No match. 762 return Constant::getNullValue(CI->getType()); 763 764 return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk"); 765 } 766 767 // strpbrk(s, "a") -> strchr(s, 'a') 768 if (DL && HasS2 && S2.size() == 1) 769 return EmitStrChr(CI->getArgOperand(0), S2[0], B, DL, TLI); 770 771 return nullptr; 772 } 773 774 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 775 Function *Callee = CI->getCalledFunction(); 776 FunctionType *FT = Callee->getFunctionType(); 777 if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) || 778 !FT->getParamType(0)->isPointerTy() || 779 !FT->getParamType(1)->isPointerTy()) 780 return nullptr; 781 782 Value *EndPtr = CI->getArgOperand(1); 783 if (isa<ConstantPointerNull>(EndPtr)) { 784 // With a null EndPtr, this function won't capture the main argument. 785 // It would be readonly too, except that it still may write to errno. 786 CI->addAttribute(1, Attribute::NoCapture); 787 } 788 789 return nullptr; 790 } 791 792 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 793 Function *Callee = CI->getCalledFunction(); 794 FunctionType *FT = Callee->getFunctionType(); 795 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || 796 FT->getParamType(1) != FT->getParamType(0) || 797 !FT->getReturnType()->isIntegerTy()) 798 return nullptr; 799 800 StringRef S1, S2; 801 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 802 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 803 804 // strspn(s, "") -> 0 805 // strspn("", s) -> 0 806 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 807 return Constant::getNullValue(CI->getType()); 808 809 // Constant folding. 810 if (HasS1 && HasS2) { 811 size_t Pos = S1.find_first_not_of(S2); 812 if (Pos == StringRef::npos) 813 Pos = S1.size(); 814 return ConstantInt::get(CI->getType(), Pos); 815 } 816 817 return nullptr; 818 } 819 820 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 821 Function *Callee = CI->getCalledFunction(); 822 FunctionType *FT = Callee->getFunctionType(); 823 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || 824 FT->getParamType(1) != FT->getParamType(0) || 825 !FT->getReturnType()->isIntegerTy()) 826 return nullptr; 827 828 StringRef S1, S2; 829 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 830 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 831 832 // strcspn("", s) -> 0 833 if (HasS1 && S1.empty()) 834 return Constant::getNullValue(CI->getType()); 835 836 // Constant folding. 837 if (HasS1 && HasS2) { 838 size_t Pos = S1.find_first_of(S2); 839 if (Pos == StringRef::npos) 840 Pos = S1.size(); 841 return ConstantInt::get(CI->getType(), Pos); 842 } 843 844 // strcspn(s, "") -> strlen(s) 845 if (DL && HasS2 && S2.empty()) 846 return EmitStrLen(CI->getArgOperand(0), B, DL, TLI); 847 848 return nullptr; 849 } 850 851 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 852 Function *Callee = CI->getCalledFunction(); 853 FunctionType *FT = Callee->getFunctionType(); 854 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 855 !FT->getParamType(1)->isPointerTy() || 856 !FT->getReturnType()->isPointerTy()) 857 return nullptr; 858 859 // fold strstr(x, x) -> x. 860 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 861 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 862 863 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 864 if (DL && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 865 Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI); 866 if (!StrLen) 867 return nullptr; 868 Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 869 StrLen, B, DL, TLI); 870 if (!StrNCmp) 871 return nullptr; 872 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 873 ICmpInst *Old = cast<ICmpInst>(*UI++); 874 Value *Cmp = 875 B.CreateICmp(Old->getPredicate(), StrNCmp, 876 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 877 replaceAllUsesWith(Old, Cmp); 878 } 879 return CI; 880 } 881 882 // See if either input string is a constant string. 883 StringRef SearchStr, ToFindStr; 884 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 885 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 886 887 // fold strstr(x, "") -> x. 888 if (HasStr2 && ToFindStr.empty()) 889 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 890 891 // If both strings are known, constant fold it. 892 if (HasStr1 && HasStr2) { 893 size_t Offset = SearchStr.find(ToFindStr); 894 895 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 896 return Constant::getNullValue(CI->getType()); 897 898 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 899 Value *Result = CastToCStr(CI->getArgOperand(0), B); 900 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); 901 return B.CreateBitCast(Result, CI->getType()); 902 } 903 904 // fold strstr(x, "y") -> strchr(x, 'y'). 905 if (HasStr2 && ToFindStr.size() == 1) { 906 Value *StrChr = EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, DL, TLI); 907 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 908 } 909 return nullptr; 910 } 911 912 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 913 Function *Callee = CI->getCalledFunction(); 914 FunctionType *FT = Callee->getFunctionType(); 915 if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() || 916 !FT->getParamType(1)->isPointerTy() || 917 !FT->getReturnType()->isIntegerTy(32)) 918 return nullptr; 919 920 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 921 922 if (LHS == RHS) // memcmp(s,s,x) -> 0 923 return Constant::getNullValue(CI->getType()); 924 925 // Make sure we have a constant length. 926 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 927 if (!LenC) 928 return nullptr; 929 uint64_t Len = LenC->getZExtValue(); 930 931 if (Len == 0) // memcmp(s1,s2,0) -> 0 932 return Constant::getNullValue(CI->getType()); 933 934 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 935 if (Len == 1) { 936 Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"), 937 CI->getType(), "lhsv"); 938 Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"), 939 CI->getType(), "rhsv"); 940 return B.CreateSub(LHSV, RHSV, "chardiff"); 941 } 942 943 // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant) 944 StringRef LHSStr, RHSStr; 945 if (getConstantStringInfo(LHS, LHSStr) && 946 getConstantStringInfo(RHS, RHSStr)) { 947 // Make sure we're not reading out-of-bounds memory. 948 if (Len > LHSStr.size() || Len > RHSStr.size()) 949 return nullptr; 950 // Fold the memcmp and normalize the result. This way we get consistent 951 // results across multiple platforms. 952 uint64_t Ret = 0; 953 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 954 if (Cmp < 0) 955 Ret = -1; 956 else if (Cmp > 0) 957 Ret = 1; 958 return ConstantInt::get(CI->getType(), Ret); 959 } 960 961 return nullptr; 962 } 963 964 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { 965 Function *Callee = CI->getCalledFunction(); 966 // These optimizations require DataLayout. 967 if (!DL) 968 return nullptr; 969 970 FunctionType *FT = Callee->getFunctionType(); 971 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || 972 !FT->getParamType(0)->isPointerTy() || 973 !FT->getParamType(1)->isPointerTy() || 974 FT->getParamType(2) != DL->getIntPtrType(CI->getContext())) 975 return nullptr; 976 977 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) 978 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 979 CI->getArgOperand(2), 1); 980 return CI->getArgOperand(0); 981 } 982 983 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { 984 Function *Callee = CI->getCalledFunction(); 985 // These optimizations require DataLayout. 986 if (!DL) 987 return nullptr; 988 989 FunctionType *FT = Callee->getFunctionType(); 990 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || 991 !FT->getParamType(0)->isPointerTy() || 992 !FT->getParamType(1)->isPointerTy() || 993 FT->getParamType(2) != DL->getIntPtrType(CI->getContext())) 994 return nullptr; 995 996 // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) 997 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 998 CI->getArgOperand(2), 1); 999 return CI->getArgOperand(0); 1000 } 1001 1002 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { 1003 Function *Callee = CI->getCalledFunction(); 1004 // These optimizations require DataLayout. 1005 if (!DL) 1006 return nullptr; 1007 1008 FunctionType *FT = Callee->getFunctionType(); 1009 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || 1010 !FT->getParamType(0)->isPointerTy() || 1011 !FT->getParamType(1)->isIntegerTy() || 1012 FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0))) 1013 return nullptr; 1014 1015 // memset(p, v, n) -> llvm.memset(p, v, n, 1) 1016 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1017 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 1018 return CI->getArgOperand(0); 1019 } 1020 1021 //===----------------------------------------------------------------------===// 1022 // Math Library Optimizations 1023 //===----------------------------------------------------------------------===// 1024 1025 //===----------------------------------------------------------------------===// 1026 // Double -> Float Shrinking Optimizations for Unary Functions like 'floor' 1027 1028 Value *LibCallSimplifier::optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1029 bool CheckRetType) { 1030 Function *Callee = CI->getCalledFunction(); 1031 FunctionType *FT = Callee->getFunctionType(); 1032 if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() || 1033 !FT->getParamType(0)->isDoubleTy()) 1034 return nullptr; 1035 1036 if (CheckRetType) { 1037 // Check if all the uses for function like 'sin' are converted to float. 1038 for (User *U : CI->users()) { 1039 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1040 if (!Cast || !Cast->getType()->isFloatTy()) 1041 return nullptr; 1042 } 1043 } 1044 1045 // If this is something like 'floor((double)floatval)', convert to floorf. 1046 FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0)); 1047 if (!Cast || !Cast->getOperand(0)->getType()->isFloatTy()) 1048 return nullptr; 1049 1050 // floor((double)floatval) -> (double)floorf(floatval) 1051 Value *V = Cast->getOperand(0); 1052 V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes()); 1053 return B.CreateFPExt(V, B.getDoubleTy()); 1054 } 1055 1056 // Double -> Float Shrinking Optimizations for Binary Functions like 'fmin/fmax' 1057 Value *LibCallSimplifier::optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) { 1058 Function *Callee = CI->getCalledFunction(); 1059 FunctionType *FT = Callee->getFunctionType(); 1060 // Just make sure this has 2 arguments of the same FP type, which match the 1061 // result type. 1062 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || 1063 FT->getParamType(0) != FT->getParamType(1) || 1064 !FT->getParamType(0)->isFloatingPointTy()) 1065 return nullptr; 1066 1067 // If this is something like 'fmin((double)floatval1, (double)floatval2)', 1068 // we convert it to fminf. 1069 FPExtInst *Cast1 = dyn_cast<FPExtInst>(CI->getArgOperand(0)); 1070 FPExtInst *Cast2 = dyn_cast<FPExtInst>(CI->getArgOperand(1)); 1071 if (!Cast1 || !Cast1->getOperand(0)->getType()->isFloatTy() || !Cast2 || 1072 !Cast2->getOperand(0)->getType()->isFloatTy()) 1073 return nullptr; 1074 1075 // fmin((double)floatval1, (double)floatval2) 1076 // -> (double)fmin(floatval1, floatval2) 1077 Value *V = nullptr; 1078 Value *V1 = Cast1->getOperand(0); 1079 Value *V2 = Cast2->getOperand(0); 1080 V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B, 1081 Callee->getAttributes()); 1082 return B.CreateFPExt(V, B.getDoubleTy()); 1083 } 1084 1085 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) { 1086 Function *Callee = CI->getCalledFunction(); 1087 Value *Ret = nullptr; 1088 if (UnsafeFPShrink && Callee->getName() == "cos" && TLI->has(LibFunc::cosf)) { 1089 Ret = optimizeUnaryDoubleFP(CI, B, true); 1090 } 1091 1092 FunctionType *FT = Callee->getFunctionType(); 1093 // Just make sure this has 1 argument of FP type, which matches the 1094 // result type. 1095 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1096 !FT->getParamType(0)->isFloatingPointTy()) 1097 return Ret; 1098 1099 // cos(-x) -> cos(x) 1100 Value *Op1 = CI->getArgOperand(0); 1101 if (BinaryOperator::isFNeg(Op1)) { 1102 BinaryOperator *BinExpr = cast<BinaryOperator>(Op1); 1103 return B.CreateCall(Callee, BinExpr->getOperand(1), "cos"); 1104 } 1105 return Ret; 1106 } 1107 1108 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) { 1109 Function *Callee = CI->getCalledFunction(); 1110 1111 Value *Ret = nullptr; 1112 if (UnsafeFPShrink && Callee->getName() == "pow" && TLI->has(LibFunc::powf)) { 1113 Ret = optimizeUnaryDoubleFP(CI, B, true); 1114 } 1115 1116 FunctionType *FT = Callee->getFunctionType(); 1117 // Just make sure this has 2 arguments of the same FP type, which match the 1118 // result type. 1119 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || 1120 FT->getParamType(0) != FT->getParamType(1) || 1121 !FT->getParamType(0)->isFloatingPointTy()) 1122 return Ret; 1123 1124 Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1); 1125 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { 1126 // pow(1.0, x) -> 1.0 1127 if (Op1C->isExactlyValue(1.0)) 1128 return Op1C; 1129 // pow(2.0, x) -> exp2(x) 1130 if (Op1C->isExactlyValue(2.0) && 1131 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f, 1132 LibFunc::exp2l)) 1133 return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes()); 1134 // pow(10.0, x) -> exp10(x) 1135 if (Op1C->isExactlyValue(10.0) && 1136 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f, 1137 LibFunc::exp10l)) 1138 return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B, 1139 Callee->getAttributes()); 1140 } 1141 1142 ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2); 1143 if (!Op2C) 1144 return Ret; 1145 1146 if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 1147 return ConstantFP::get(CI->getType(), 1.0); 1148 1149 if (Op2C->isExactlyValue(0.5) && 1150 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf, 1151 LibFunc::sqrtl) && 1152 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf, 1153 LibFunc::fabsl)) { 1154 // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). 1155 // This is faster than calling pow, and still handles negative zero 1156 // and negative infinity correctly. 1157 // TODO: In fast-math mode, this could be just sqrt(x). 1158 // TODO: In finite-only mode, this could be just fabs(sqrt(x)). 1159 Value *Inf = ConstantFP::getInfinity(CI->getType()); 1160 Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); 1161 Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes()); 1162 Value *FAbs = 1163 EmitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes()); 1164 Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf); 1165 Value *Sel = B.CreateSelect(FCmp, Inf, FAbs); 1166 return Sel; 1167 } 1168 1169 if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x 1170 return Op1; 1171 if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x 1172 return B.CreateFMul(Op1, Op1, "pow2"); 1173 if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x 1174 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip"); 1175 return nullptr; 1176 } 1177 1178 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1179 Function *Callee = CI->getCalledFunction(); 1180 Function *Caller = CI->getParent()->getParent(); 1181 1182 Value *Ret = nullptr; 1183 if (UnsafeFPShrink && Callee->getName() == "exp2" && 1184 TLI->has(LibFunc::exp2f)) { 1185 Ret = optimizeUnaryDoubleFP(CI, B, true); 1186 } 1187 1188 FunctionType *FT = Callee->getFunctionType(); 1189 // Just make sure this has 1 argument of FP type, which matches the 1190 // result type. 1191 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1192 !FT->getParamType(0)->isFloatingPointTy()) 1193 return Ret; 1194 1195 Value *Op = CI->getArgOperand(0); 1196 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1197 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1198 LibFunc::Func LdExp = LibFunc::ldexpl; 1199 if (Op->getType()->isFloatTy()) 1200 LdExp = LibFunc::ldexpf; 1201 else if (Op->getType()->isDoubleTy()) 1202 LdExp = LibFunc::ldexp; 1203 1204 if (TLI->has(LdExp)) { 1205 Value *LdExpArg = nullptr; 1206 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 1207 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 1208 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 1209 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 1210 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 1211 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 1212 } 1213 1214 if (LdExpArg) { 1215 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); 1216 if (!Op->getType()->isFloatTy()) 1217 One = ConstantExpr::getFPExtend(One, Op->getType()); 1218 1219 Module *M = Caller->getParent(); 1220 Value *Callee = 1221 M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), 1222 Op->getType(), B.getInt32Ty(), NULL); 1223 CallInst *CI = B.CreateCall2(Callee, One, LdExpArg); 1224 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 1225 CI->setCallingConv(F->getCallingConv()); 1226 1227 return CI; 1228 } 1229 } 1230 return Ret; 1231 } 1232 1233 Value *LibCallSimplifier::optimizeFabs(CallInst *CI, IRBuilder<> &B) { 1234 Function *Callee = CI->getCalledFunction(); 1235 1236 Value *Ret = nullptr; 1237 if (Callee->getName() == "fabs" && TLI->has(LibFunc::fabsf)) { 1238 Ret = optimizeUnaryDoubleFP(CI, B, false); 1239 } 1240 1241 FunctionType *FT = Callee->getFunctionType(); 1242 // Make sure this has 1 argument of FP type which matches the result type. 1243 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1244 !FT->getParamType(0)->isFloatingPointTy()) 1245 return Ret; 1246 1247 Value *Op = CI->getArgOperand(0); 1248 if (Instruction *I = dyn_cast<Instruction>(Op)) { 1249 // Fold fabs(x * x) -> x * x; any squared FP value must already be positive. 1250 if (I->getOpcode() == Instruction::FMul) 1251 if (I->getOperand(0) == I->getOperand(1)) 1252 return Op; 1253 } 1254 return Ret; 1255 } 1256 1257 static bool isTrigLibCall(CallInst *CI); 1258 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1259 bool UseFloat, Value *&Sin, Value *&Cos, 1260 Value *&SinCos); 1261 1262 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1263 1264 // Make sure the prototype is as expected, otherwise the rest of the 1265 // function is probably invalid and likely to abort. 1266 if (!isTrigLibCall(CI)) 1267 return nullptr; 1268 1269 Value *Arg = CI->getArgOperand(0); 1270 SmallVector<CallInst *, 1> SinCalls; 1271 SmallVector<CallInst *, 1> CosCalls; 1272 SmallVector<CallInst *, 1> SinCosCalls; 1273 1274 bool IsFloat = Arg->getType()->isFloatTy(); 1275 1276 // Look for all compatible sinpi, cospi and sincospi calls with the same 1277 // argument. If there are enough (in some sense) we can make the 1278 // substitution. 1279 for (User *U : Arg->users()) 1280 classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls, 1281 SinCosCalls); 1282 1283 // It's only worthwhile if both sinpi and cospi are actually used. 1284 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1285 return nullptr; 1286 1287 Value *Sin, *Cos, *SinCos; 1288 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1289 1290 replaceTrigInsts(SinCalls, Sin); 1291 replaceTrigInsts(CosCalls, Cos); 1292 replaceTrigInsts(SinCosCalls, SinCos); 1293 1294 return nullptr; 1295 } 1296 1297 static bool isTrigLibCall(CallInst *CI) { 1298 Function *Callee = CI->getCalledFunction(); 1299 FunctionType *FT = Callee->getFunctionType(); 1300 1301 // We can only hope to do anything useful if we can ignore things like errno 1302 // and floating-point exceptions. 1303 bool AttributesSafe = 1304 CI->hasFnAttr(Attribute::NoUnwind) && CI->hasFnAttr(Attribute::ReadNone); 1305 1306 // Other than that we need float(float) or double(double) 1307 return AttributesSafe && FT->getNumParams() == 1 && 1308 FT->getReturnType() == FT->getParamType(0) && 1309 (FT->getParamType(0)->isFloatTy() || 1310 FT->getParamType(0)->isDoubleTy()); 1311 } 1312 1313 void 1314 LibCallSimplifier::classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat, 1315 SmallVectorImpl<CallInst *> &SinCalls, 1316 SmallVectorImpl<CallInst *> &CosCalls, 1317 SmallVectorImpl<CallInst *> &SinCosCalls) { 1318 CallInst *CI = dyn_cast<CallInst>(Val); 1319 1320 if (!CI) 1321 return; 1322 1323 Function *Callee = CI->getCalledFunction(); 1324 StringRef FuncName = Callee->getName(); 1325 LibFunc::Func Func; 1326 if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) || !isTrigLibCall(CI)) 1327 return; 1328 1329 if (IsFloat) { 1330 if (Func == LibFunc::sinpif) 1331 SinCalls.push_back(CI); 1332 else if (Func == LibFunc::cospif) 1333 CosCalls.push_back(CI); 1334 else if (Func == LibFunc::sincospif_stret) 1335 SinCosCalls.push_back(CI); 1336 } else { 1337 if (Func == LibFunc::sinpi) 1338 SinCalls.push_back(CI); 1339 else if (Func == LibFunc::cospi) 1340 CosCalls.push_back(CI); 1341 else if (Func == LibFunc::sincospi_stret) 1342 SinCosCalls.push_back(CI); 1343 } 1344 } 1345 1346 void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls, 1347 Value *Res) { 1348 for (SmallVectorImpl<CallInst *>::iterator I = Calls.begin(), E = Calls.end(); 1349 I != E; ++I) { 1350 replaceAllUsesWith(*I, Res); 1351 } 1352 } 1353 1354 void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1355 bool UseFloat, Value *&Sin, Value *&Cos, Value *&SinCos) { 1356 Type *ArgTy = Arg->getType(); 1357 Type *ResTy; 1358 StringRef Name; 1359 1360 Triple T(OrigCallee->getParent()->getTargetTriple()); 1361 if (UseFloat) { 1362 Name = "__sincospif_stret"; 1363 1364 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1365 // x86_64 can't use {float, float} since that would be returned in both 1366 // xmm0 and xmm1, which isn't what a real struct would do. 1367 ResTy = T.getArch() == Triple::x86_64 1368 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1369 : static_cast<Type *>(StructType::get(ArgTy, ArgTy, NULL)); 1370 } else { 1371 Name = "__sincospi_stret"; 1372 ResTy = StructType::get(ArgTy, ArgTy, NULL); 1373 } 1374 1375 Module *M = OrigCallee->getParent(); 1376 Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), 1377 ResTy, ArgTy, NULL); 1378 1379 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1380 // If the argument is an instruction, it must dominate all uses so put our 1381 // sincos call there. 1382 BasicBlock::iterator Loc = ArgInst; 1383 B.SetInsertPoint(ArgInst->getParent(), ++Loc); 1384 } else { 1385 // Otherwise (e.g. for a constant) the beginning of the function is as 1386 // good a place as any. 1387 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1388 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1389 } 1390 1391 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1392 1393 if (SinCos->getType()->isStructTy()) { 1394 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1395 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1396 } else { 1397 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1398 "sinpi"); 1399 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1400 "cospi"); 1401 } 1402 } 1403 1404 //===----------------------------------------------------------------------===// 1405 // Integer Library Call Optimizations 1406 //===----------------------------------------------------------------------===// 1407 1408 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1409 Function *Callee = CI->getCalledFunction(); 1410 FunctionType *FT = Callee->getFunctionType(); 1411 // Just make sure this has 2 arguments of the same FP type, which match the 1412 // result type. 1413 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy(32) || 1414 !FT->getParamType(0)->isIntegerTy()) 1415 return nullptr; 1416 1417 Value *Op = CI->getArgOperand(0); 1418 1419 // Constant fold. 1420 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1421 if (CI->isZero()) // ffs(0) -> 0. 1422 return B.getInt32(0); 1423 // ffs(c) -> cttz(c)+1 1424 return B.getInt32(CI->getValue().countTrailingZeros() + 1); 1425 } 1426 1427 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1428 Type *ArgType = Op->getType(); 1429 Value *F = 1430 Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType); 1431 Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz"); 1432 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1433 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1434 1435 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1436 return B.CreateSelect(Cond, V, B.getInt32(0)); 1437 } 1438 1439 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1440 Function *Callee = CI->getCalledFunction(); 1441 FunctionType *FT = Callee->getFunctionType(); 1442 // We require integer(integer) where the types agree. 1443 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || 1444 FT->getParamType(0) != FT->getReturnType()) 1445 return nullptr; 1446 1447 // abs(x) -> x >s -1 ? x : -x 1448 Value *Op = CI->getArgOperand(0); 1449 Value *Pos = 1450 B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos"); 1451 Value *Neg = B.CreateNeg(Op, "neg"); 1452 return B.CreateSelect(Pos, Op, Neg); 1453 } 1454 1455 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 1456 Function *Callee = CI->getCalledFunction(); 1457 FunctionType *FT = Callee->getFunctionType(); 1458 // We require integer(i32) 1459 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || 1460 !FT->getParamType(0)->isIntegerTy(32)) 1461 return nullptr; 1462 1463 // isdigit(c) -> (c-'0') <u 10 1464 Value *Op = CI->getArgOperand(0); 1465 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1466 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1467 return B.CreateZExt(Op, CI->getType()); 1468 } 1469 1470 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 1471 Function *Callee = CI->getCalledFunction(); 1472 FunctionType *FT = Callee->getFunctionType(); 1473 // We require integer(i32) 1474 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || 1475 !FT->getParamType(0)->isIntegerTy(32)) 1476 return nullptr; 1477 1478 // isascii(c) -> c <u 128 1479 Value *Op = CI->getArgOperand(0); 1480 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1481 return B.CreateZExt(Op, CI->getType()); 1482 } 1483 1484 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 1485 Function *Callee = CI->getCalledFunction(); 1486 FunctionType *FT = Callee->getFunctionType(); 1487 // We require i32(i32) 1488 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1489 !FT->getParamType(0)->isIntegerTy(32)) 1490 return nullptr; 1491 1492 // toascii(c) -> c & 0x7f 1493 return B.CreateAnd(CI->getArgOperand(0), 1494 ConstantInt::get(CI->getType(), 0x7F)); 1495 } 1496 1497 //===----------------------------------------------------------------------===// 1498 // Formatting and IO Library Call Optimizations 1499 //===----------------------------------------------------------------------===// 1500 1501 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 1502 1503 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 1504 int StreamArg) { 1505 // Error reporting calls should be cold, mark them as such. 1506 // This applies even to non-builtin calls: it is only a hint and applies to 1507 // functions that the frontend might not understand as builtins. 1508 1509 // This heuristic was suggested in: 1510 // Improving Static Branch Prediction in a Compiler 1511 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 1512 // Proceedings of PACT'98, Oct. 1998, IEEE 1513 Function *Callee = CI->getCalledFunction(); 1514 1515 if (!CI->hasFnAttr(Attribute::Cold) && 1516 isReportingError(Callee, CI, StreamArg)) { 1517 CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold); 1518 } 1519 1520 return nullptr; 1521 } 1522 1523 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 1524 if (!ColdErrorCalls) 1525 return false; 1526 1527 if (!Callee || !Callee->isDeclaration()) 1528 return false; 1529 1530 if (StreamArg < 0) 1531 return true; 1532 1533 // These functions might be considered cold, but only if their stream 1534 // argument is stderr. 1535 1536 if (StreamArg >= (int)CI->getNumArgOperands()) 1537 return false; 1538 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 1539 if (!LI) 1540 return false; 1541 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 1542 if (!GV || !GV->isDeclaration()) 1543 return false; 1544 return GV->getName() == "stderr"; 1545 } 1546 1547 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 1548 // Check for a fixed format string. 1549 StringRef FormatStr; 1550 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 1551 return nullptr; 1552 1553 // Empty format string -> noop. 1554 if (FormatStr.empty()) // Tolerate printf's declared void. 1555 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 1556 1557 // Do not do any of the following transformations if the printf return value 1558 // is used, in general the printf return value is not compatible with either 1559 // putchar() or puts(). 1560 if (!CI->use_empty()) 1561 return nullptr; 1562 1563 // printf("x") -> putchar('x'), even for '%'. 1564 if (FormatStr.size() == 1) { 1565 Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, DL, TLI); 1566 if (CI->use_empty() || !Res) 1567 return Res; 1568 return B.CreateIntCast(Res, CI->getType(), true); 1569 } 1570 1571 // printf("foo\n") --> puts("foo") 1572 if (FormatStr[FormatStr.size() - 1] == '\n' && 1573 FormatStr.find('%') == StringRef::npos) { // No format characters. 1574 // Create a string literal with no \n on it. We expect the constant merge 1575 // pass to be run after this pass, to merge duplicate strings. 1576 FormatStr = FormatStr.drop_back(); 1577 Value *GV = B.CreateGlobalString(FormatStr, "str"); 1578 Value *NewCI = EmitPutS(GV, B, DL, TLI); 1579 return (CI->use_empty() || !NewCI) 1580 ? NewCI 1581 : ConstantInt::get(CI->getType(), FormatStr.size() + 1); 1582 } 1583 1584 // Optimize specific format strings. 1585 // printf("%c", chr) --> putchar(chr) 1586 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 1587 CI->getArgOperand(1)->getType()->isIntegerTy()) { 1588 Value *Res = EmitPutChar(CI->getArgOperand(1), B, DL, TLI); 1589 1590 if (CI->use_empty() || !Res) 1591 return Res; 1592 return B.CreateIntCast(Res, CI->getType(), true); 1593 } 1594 1595 // printf("%s\n", str) --> puts(str) 1596 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 1597 CI->getArgOperand(1)->getType()->isPointerTy()) { 1598 return EmitPutS(CI->getArgOperand(1), B, DL, TLI); 1599 } 1600 return nullptr; 1601 } 1602 1603 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 1604 1605 Function *Callee = CI->getCalledFunction(); 1606 // Require one fixed pointer argument and an integer/void result. 1607 FunctionType *FT = Callee->getFunctionType(); 1608 if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || 1609 !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy())) 1610 return nullptr; 1611 1612 if (Value *V = optimizePrintFString(CI, B)) { 1613 return V; 1614 } 1615 1616 // printf(format, ...) -> iprintf(format, ...) if no floating point 1617 // arguments. 1618 if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) { 1619 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1620 Constant *IPrintFFn = 1621 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 1622 CallInst *New = cast<CallInst>(CI->clone()); 1623 New->setCalledFunction(IPrintFFn); 1624 B.Insert(New); 1625 return New; 1626 } 1627 return nullptr; 1628 } 1629 1630 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 1631 // Check for a fixed format string. 1632 StringRef FormatStr; 1633 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1634 return nullptr; 1635 1636 // If we just have a format string (nothing else crazy) transform it. 1637 if (CI->getNumArgOperands() == 2) { 1638 // Make sure there's no % in the constant array. We could try to handle 1639 // %% -> % in the future if we cared. 1640 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1641 if (FormatStr[i] == '%') 1642 return nullptr; // we found a format specifier, bail out. 1643 1644 // These optimizations require DataLayout. 1645 if (!DL) 1646 return nullptr; 1647 1648 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) 1649 B.CreateMemCpy( 1650 CI->getArgOperand(0), CI->getArgOperand(1), 1651 ConstantInt::get(DL->getIntPtrType(CI->getContext()), 1652 FormatStr.size() + 1), 1653 1); // Copy the null byte. 1654 return ConstantInt::get(CI->getType(), FormatStr.size()); 1655 } 1656 1657 // The remaining optimizations require the format string to be "%s" or "%c" 1658 // and have an extra operand. 1659 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1660 CI->getNumArgOperands() < 3) 1661 return nullptr; 1662 1663 // Decode the second character of the format string. 1664 if (FormatStr[1] == 'c') { 1665 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 1666 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1667 return nullptr; 1668 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 1669 Value *Ptr = CastToCStr(CI->getArgOperand(0), B); 1670 B.CreateStore(V, Ptr); 1671 Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul"); 1672 B.CreateStore(B.getInt8(0), Ptr); 1673 1674 return ConstantInt::get(CI->getType(), 1); 1675 } 1676 1677 if (FormatStr[1] == 's') { 1678 // These optimizations require DataLayout. 1679 if (!DL) 1680 return nullptr; 1681 1682 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) 1683 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1684 return nullptr; 1685 1686 Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI); 1687 if (!Len) 1688 return nullptr; 1689 Value *IncLen = 1690 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 1691 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1); 1692 1693 // The sprintf result is the unincremented number of bytes in the string. 1694 return B.CreateIntCast(Len, CI->getType(), false); 1695 } 1696 return nullptr; 1697 } 1698 1699 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 1700 Function *Callee = CI->getCalledFunction(); 1701 // Require two fixed pointer arguments and an integer result. 1702 FunctionType *FT = Callee->getFunctionType(); 1703 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 1704 !FT->getParamType(1)->isPointerTy() || 1705 !FT->getReturnType()->isIntegerTy()) 1706 return nullptr; 1707 1708 if (Value *V = optimizeSPrintFString(CI, B)) { 1709 return V; 1710 } 1711 1712 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 1713 // point arguments. 1714 if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) { 1715 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1716 Constant *SIPrintFFn = 1717 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 1718 CallInst *New = cast<CallInst>(CI->clone()); 1719 New->setCalledFunction(SIPrintFFn); 1720 B.Insert(New); 1721 return New; 1722 } 1723 return nullptr; 1724 } 1725 1726 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 1727 optimizeErrorReporting(CI, B, 0); 1728 1729 // All the optimizations depend on the format string. 1730 StringRef FormatStr; 1731 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1732 return nullptr; 1733 1734 // Do not do any of the following transformations if the fprintf return 1735 // value is used, in general the fprintf return value is not compatible 1736 // with fwrite(), fputc() or fputs(). 1737 if (!CI->use_empty()) 1738 return nullptr; 1739 1740 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 1741 if (CI->getNumArgOperands() == 2) { 1742 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1743 if (FormatStr[i] == '%') // Could handle %% -> % if we cared. 1744 return nullptr; // We found a format specifier. 1745 1746 // These optimizations require DataLayout. 1747 if (!DL) 1748 return nullptr; 1749 1750 return EmitFWrite( 1751 CI->getArgOperand(1), 1752 ConstantInt::get(DL->getIntPtrType(CI->getContext()), FormatStr.size()), 1753 CI->getArgOperand(0), B, DL, TLI); 1754 } 1755 1756 // The remaining optimizations require the format string to be "%s" or "%c" 1757 // and have an extra operand. 1758 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1759 CI->getNumArgOperands() < 3) 1760 return nullptr; 1761 1762 // Decode the second character of the format string. 1763 if (FormatStr[1] == 'c') { 1764 // fprintf(F, "%c", chr) --> fputc(chr, F) 1765 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1766 return nullptr; 1767 return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI); 1768 } 1769 1770 if (FormatStr[1] == 's') { 1771 // fprintf(F, "%s", str) --> fputs(str, F) 1772 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1773 return nullptr; 1774 return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI); 1775 } 1776 return nullptr; 1777 } 1778 1779 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 1780 Function *Callee = CI->getCalledFunction(); 1781 // Require two fixed paramters as pointers and integer result. 1782 FunctionType *FT = Callee->getFunctionType(); 1783 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 1784 !FT->getParamType(1)->isPointerTy() || 1785 !FT->getReturnType()->isIntegerTy()) 1786 return nullptr; 1787 1788 if (Value *V = optimizeFPrintFString(CI, B)) { 1789 return V; 1790 } 1791 1792 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 1793 // floating point arguments. 1794 if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) { 1795 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1796 Constant *FIPrintFFn = 1797 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 1798 CallInst *New = cast<CallInst>(CI->clone()); 1799 New->setCalledFunction(FIPrintFFn); 1800 B.Insert(New); 1801 return New; 1802 } 1803 return nullptr; 1804 } 1805 1806 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 1807 optimizeErrorReporting(CI, B, 3); 1808 1809 Function *Callee = CI->getCalledFunction(); 1810 // Require a pointer, an integer, an integer, a pointer, returning integer. 1811 FunctionType *FT = Callee->getFunctionType(); 1812 if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() || 1813 !FT->getParamType(1)->isIntegerTy() || 1814 !FT->getParamType(2)->isIntegerTy() || 1815 !FT->getParamType(3)->isPointerTy() || 1816 !FT->getReturnType()->isIntegerTy()) 1817 return nullptr; 1818 1819 // Get the element size and count. 1820 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 1821 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1822 if (!SizeC || !CountC) 1823 return nullptr; 1824 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 1825 1826 // If this is writing zero records, remove the call (it's a noop). 1827 if (Bytes == 0) 1828 return ConstantInt::get(CI->getType(), 0); 1829 1830 // If this is writing one byte, turn it into fputc. 1831 // This optimisation is only valid, if the return value is unused. 1832 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 1833 Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char"); 1834 Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, DL, TLI); 1835 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 1836 } 1837 1838 return nullptr; 1839 } 1840 1841 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 1842 optimizeErrorReporting(CI, B, 1); 1843 1844 Function *Callee = CI->getCalledFunction(); 1845 1846 // These optimizations require DataLayout. 1847 if (!DL) 1848 return nullptr; 1849 1850 // Require two pointers. Also, we can't optimize if return value is used. 1851 FunctionType *FT = Callee->getFunctionType(); 1852 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 1853 !FT->getParamType(1)->isPointerTy() || !CI->use_empty()) 1854 return nullptr; 1855 1856 // fputs(s,F) --> fwrite(s,1,strlen(s),F) 1857 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 1858 if (!Len) 1859 return nullptr; 1860 1861 // Known to have no uses (see above). 1862 return EmitFWrite( 1863 CI->getArgOperand(0), 1864 ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len - 1), 1865 CI->getArgOperand(1), B, DL, TLI); 1866 } 1867 1868 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 1869 Function *Callee = CI->getCalledFunction(); 1870 // Require one fixed pointer argument and an integer/void result. 1871 FunctionType *FT = Callee->getFunctionType(); 1872 if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || 1873 !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy())) 1874 return nullptr; 1875 1876 // Check for a constant string. 1877 StringRef Str; 1878 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1879 return nullptr; 1880 1881 if (Str.empty() && CI->use_empty()) { 1882 // puts("") -> putchar('\n') 1883 Value *Res = EmitPutChar(B.getInt32('\n'), B, DL, TLI); 1884 if (CI->use_empty() || !Res) 1885 return Res; 1886 return B.CreateIntCast(Res, CI->getType(), true); 1887 } 1888 1889 return nullptr; 1890 } 1891 1892 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 1893 LibFunc::Func Func; 1894 SmallString<20> FloatFuncName = FuncName; 1895 FloatFuncName += 'f'; 1896 if (TLI->getLibFunc(FloatFuncName, Func)) 1897 return TLI->has(Func); 1898 return false; 1899 } 1900 1901 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 1902 if (CI->isNoBuiltin()) 1903 return nullptr; 1904 1905 LibFunc::Func Func; 1906 Function *Callee = CI->getCalledFunction(); 1907 StringRef FuncName = Callee->getName(); 1908 IRBuilder<> Builder(CI); 1909 bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C; 1910 1911 // Next check for intrinsics. 1912 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 1913 if (!isCallingConvC) 1914 return nullptr; 1915 switch (II->getIntrinsicID()) { 1916 case Intrinsic::pow: 1917 return optimizePow(CI, Builder); 1918 case Intrinsic::exp2: 1919 return optimizeExp2(CI, Builder); 1920 case Intrinsic::fabs: 1921 return optimizeFabs(CI, Builder); 1922 default: 1923 return nullptr; 1924 } 1925 } 1926 1927 // Then check for known library functions. 1928 if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) { 1929 // We never change the calling convention. 1930 if (!ignoreCallingConv(Func) && !isCallingConvC) 1931 return nullptr; 1932 switch (Func) { 1933 case LibFunc::strcat: 1934 return optimizeStrCat(CI, Builder); 1935 case LibFunc::strncat: 1936 return optimizeStrNCat(CI, Builder); 1937 case LibFunc::strchr: 1938 return optimizeStrChr(CI, Builder); 1939 case LibFunc::strrchr: 1940 return optimizeStrRChr(CI, Builder); 1941 case LibFunc::strcmp: 1942 return optimizeStrCmp(CI, Builder); 1943 case LibFunc::strncmp: 1944 return optimizeStrNCmp(CI, Builder); 1945 case LibFunc::strcpy: 1946 return optimizeStrCpy(CI, Builder); 1947 case LibFunc::stpcpy: 1948 return optimizeStpCpy(CI, Builder); 1949 case LibFunc::strncpy: 1950 return optimizeStrNCpy(CI, Builder); 1951 case LibFunc::strlen: 1952 return optimizeStrLen(CI, Builder); 1953 case LibFunc::strpbrk: 1954 return optimizeStrPBrk(CI, Builder); 1955 case LibFunc::strtol: 1956 case LibFunc::strtod: 1957 case LibFunc::strtof: 1958 case LibFunc::strtoul: 1959 case LibFunc::strtoll: 1960 case LibFunc::strtold: 1961 case LibFunc::strtoull: 1962 return optimizeStrTo(CI, Builder); 1963 case LibFunc::strspn: 1964 return optimizeStrSpn(CI, Builder); 1965 case LibFunc::strcspn: 1966 return optimizeStrCSpn(CI, Builder); 1967 case LibFunc::strstr: 1968 return optimizeStrStr(CI, Builder); 1969 case LibFunc::memcmp: 1970 return optimizeMemCmp(CI, Builder); 1971 case LibFunc::memcpy: 1972 return optimizeMemCpy(CI, Builder); 1973 case LibFunc::memmove: 1974 return optimizeMemMove(CI, Builder); 1975 case LibFunc::memset: 1976 return optimizeMemSet(CI, Builder); 1977 case LibFunc::cosf: 1978 case LibFunc::cos: 1979 case LibFunc::cosl: 1980 return optimizeCos(CI, Builder); 1981 case LibFunc::sinpif: 1982 case LibFunc::sinpi: 1983 case LibFunc::cospif: 1984 case LibFunc::cospi: 1985 return optimizeSinCosPi(CI, Builder); 1986 case LibFunc::powf: 1987 case LibFunc::pow: 1988 case LibFunc::powl: 1989 return optimizePow(CI, Builder); 1990 case LibFunc::exp2l: 1991 case LibFunc::exp2: 1992 case LibFunc::exp2f: 1993 return optimizeExp2(CI, Builder); 1994 case LibFunc::fabsf: 1995 case LibFunc::fabs: 1996 case LibFunc::fabsl: 1997 return optimizeFabs(CI, Builder); 1998 case LibFunc::ffs: 1999 case LibFunc::ffsl: 2000 case LibFunc::ffsll: 2001 return optimizeFFS(CI, Builder); 2002 case LibFunc::abs: 2003 case LibFunc::labs: 2004 case LibFunc::llabs: 2005 return optimizeAbs(CI, Builder); 2006 case LibFunc::isdigit: 2007 return optimizeIsDigit(CI, Builder); 2008 case LibFunc::isascii: 2009 return optimizeIsAscii(CI, Builder); 2010 case LibFunc::toascii: 2011 return optimizeToAscii(CI, Builder); 2012 case LibFunc::printf: 2013 return optimizePrintF(CI, Builder); 2014 case LibFunc::sprintf: 2015 return optimizeSPrintF(CI, Builder); 2016 case LibFunc::fprintf: 2017 return optimizeFPrintF(CI, Builder); 2018 case LibFunc::fwrite: 2019 return optimizeFWrite(CI, Builder); 2020 case LibFunc::fputs: 2021 return optimizeFPuts(CI, Builder); 2022 case LibFunc::puts: 2023 return optimizePuts(CI, Builder); 2024 case LibFunc::perror: 2025 return optimizeErrorReporting(CI, Builder); 2026 case LibFunc::vfprintf: 2027 case LibFunc::fiprintf: 2028 return optimizeErrorReporting(CI, Builder, 0); 2029 case LibFunc::fputc: 2030 return optimizeErrorReporting(CI, Builder, 1); 2031 case LibFunc::ceil: 2032 case LibFunc::floor: 2033 case LibFunc::rint: 2034 case LibFunc::round: 2035 case LibFunc::nearbyint: 2036 case LibFunc::trunc: 2037 if (hasFloatVersion(FuncName)) 2038 return optimizeUnaryDoubleFP(CI, Builder, false); 2039 return nullptr; 2040 case LibFunc::acos: 2041 case LibFunc::acosh: 2042 case LibFunc::asin: 2043 case LibFunc::asinh: 2044 case LibFunc::atan: 2045 case LibFunc::atanh: 2046 case LibFunc::cbrt: 2047 case LibFunc::cosh: 2048 case LibFunc::exp: 2049 case LibFunc::exp10: 2050 case LibFunc::expm1: 2051 case LibFunc::log: 2052 case LibFunc::log10: 2053 case LibFunc::log1p: 2054 case LibFunc::log2: 2055 case LibFunc::logb: 2056 case LibFunc::sin: 2057 case LibFunc::sinh: 2058 case LibFunc::sqrt: 2059 case LibFunc::tan: 2060 case LibFunc::tanh: 2061 if (UnsafeFPShrink && hasFloatVersion(FuncName)) 2062 return optimizeUnaryDoubleFP(CI, Builder, true); 2063 return nullptr; 2064 case LibFunc::fmin: 2065 case LibFunc::fmax: 2066 if (hasFloatVersion(FuncName)) 2067 return optimizeBinaryDoubleFP(CI, Builder); 2068 return nullptr; 2069 case LibFunc::memcpy_chk: 2070 return optimizeMemCpyChk(CI, Builder); 2071 default: 2072 return nullptr; 2073 } 2074 } 2075 2076 if (!isCallingConvC) 2077 return nullptr; 2078 2079 // Finally check for fortified library calls. 2080 if (FuncName.endswith("_chk")) { 2081 if (FuncName == "__memmove_chk") 2082 return optimizeMemMoveChk(CI, Builder); 2083 else if (FuncName == "__memset_chk") 2084 return optimizeMemSetChk(CI, Builder); 2085 else if (FuncName == "__strcpy_chk") 2086 return optimizeStrCpyChk(CI, Builder); 2087 else if (FuncName == "__stpcpy_chk") 2088 return optimizeStpCpyChk(CI, Builder); 2089 else if (FuncName == "__strncpy_chk") 2090 return optimizeStrNCpyChk(CI, Builder); 2091 else if (FuncName == "__stpncpy_chk") 2092 return optimizeStrNCpyChk(CI, Builder); 2093 } 2094 2095 return nullptr; 2096 } 2097 2098 LibCallSimplifier::LibCallSimplifier(const DataLayout *DL, 2099 const TargetLibraryInfo *TLI, 2100 bool UnsafeFPShrink) : 2101 DL(DL), 2102 TLI(TLI), 2103 UnsafeFPShrink(UnsafeFPShrink) { 2104 } 2105 2106 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) const { 2107 I->replaceAllUsesWith(With); 2108 I->eraseFromParent(); 2109 } 2110 2111 // TODO: 2112 // Additional cases that we need to add to this file: 2113 // 2114 // cbrt: 2115 // * cbrt(expN(X)) -> expN(x/3) 2116 // * cbrt(sqrt(x)) -> pow(x,1/6) 2117 // * cbrt(sqrt(x)) -> pow(x,1/9) 2118 // 2119 // exp, expf, expl: 2120 // * exp(log(x)) -> x 2121 // 2122 // log, logf, logl: 2123 // * log(exp(x)) -> x 2124 // * log(x**y) -> y*log(x) 2125 // * log(exp(y)) -> y*log(e) 2126 // * log(exp2(y)) -> y*log(2) 2127 // * log(exp10(y)) -> y*log(10) 2128 // * log(sqrt(x)) -> 0.5*log(x) 2129 // * log(pow(x,y)) -> y*log(x) 2130 // 2131 // lround, lroundf, lroundl: 2132 // * lround(cnst) -> cnst' 2133 // 2134 // pow, powf, powl: 2135 // * pow(exp(x),y) -> exp(x*y) 2136 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2137 // * pow(pow(x,y),z)-> pow(x,y*z) 2138 // 2139 // round, roundf, roundl: 2140 // * round(cnst) -> cnst' 2141 // 2142 // signbit: 2143 // * signbit(cnst) -> cnst' 2144 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2145 // 2146 // sqrt, sqrtf, sqrtl: 2147 // * sqrt(expN(x)) -> expN(x*0.5) 2148 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2149 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2150 // 2151 // tan, tanf, tanl: 2152 // * tan(atan(x)) -> x 2153 // 2154 // trunc, truncf, truncl: 2155 // * trunc(cnst) -> cnst' 2156 // 2157 // 2158