1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the library calls simplifier. It does not implement 11 // any pass, but can't be used by other passes to do simplifications. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/StringMap.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/KnownBits.h" 37 #include "llvm/Transforms/Utils/BuildLibCalls.h" 38 39 using namespace llvm; 40 using namespace PatternMatch; 41 42 static cl::opt<bool> 43 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 44 cl::init(false), 45 cl::desc("Enable unsafe double to float " 46 "shrinking for math lib calls")); 47 48 49 //===----------------------------------------------------------------------===// 50 // Helper Functions 51 //===----------------------------------------------------------------------===// 52 53 static bool ignoreCallingConv(LibFunc Func) { 54 return Func == LibFunc_abs || Func == LibFunc_labs || 55 Func == LibFunc_llabs || Func == LibFunc_strlen; 56 } 57 58 static bool isCallingConvCCompatible(CallInst *CI) { 59 switch(CI->getCallingConv()) { 60 default: 61 return false; 62 case llvm::CallingConv::C: 63 return true; 64 case llvm::CallingConv::ARM_APCS: 65 case llvm::CallingConv::ARM_AAPCS: 66 case llvm::CallingConv::ARM_AAPCS_VFP: { 67 68 // The iOS ABI diverges from the standard in some cases, so for now don't 69 // try to simplify those calls. 70 if (Triple(CI->getModule()->getTargetTriple()).isiOS()) 71 return false; 72 73 auto *FuncTy = CI->getFunctionType(); 74 75 if (!FuncTy->getReturnType()->isPointerTy() && 76 !FuncTy->getReturnType()->isIntegerTy() && 77 !FuncTy->getReturnType()->isVoidTy()) 78 return false; 79 80 for (auto Param : FuncTy->params()) { 81 if (!Param->isPointerTy() && !Param->isIntegerTy()) 82 return false; 83 } 84 return true; 85 } 86 } 87 return false; 88 } 89 90 /// Return true if it is only used in equality comparisons with With. 91 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 92 for (User *U : V->users()) { 93 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 94 if (IC->isEquality() && IC->getOperand(1) == With) 95 continue; 96 // Unknown instruction. 97 return false; 98 } 99 return true; 100 } 101 102 static bool callHasFloatingPointArgument(const CallInst *CI) { 103 return any_of(CI->operands(), [](const Use &OI) { 104 return OI->getType()->isFloatingPointTy(); 105 }); 106 } 107 108 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 109 if (Base < 2 || Base > 36) 110 // handle special zero base 111 if (Base != 0) 112 return nullptr; 113 114 char *End; 115 std::string nptr = Str.str(); 116 errno = 0; 117 long long int Result = strtoll(nptr.c_str(), &End, Base); 118 if (errno) 119 return nullptr; 120 121 // if we assume all possible target locales are ASCII supersets, 122 // then if strtoll successfully parses a number on the host, 123 // it will also successfully parse the same way on the target 124 if (*End != '\0') 125 return nullptr; 126 127 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 128 return nullptr; 129 130 return ConstantInt::get(CI->getType(), Result); 131 } 132 133 static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B, 134 const TargetLibraryInfo *TLI) { 135 CallInst *FOpen = dyn_cast<CallInst>(File); 136 if (!FOpen) 137 return false; 138 139 Function *InnerCallee = FOpen->getCalledFunction(); 140 if (!InnerCallee) 141 return false; 142 143 LibFunc Func; 144 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 145 Func != LibFunc_fopen) 146 return false; 147 148 inferLibFuncAttributes(*CI->getCalledFunction(), *TLI); 149 if (PointerMayBeCaptured(File, true, true)) 150 return false; 151 152 return true; 153 } 154 155 static bool isOnlyUsedInComparisonWithZero(Value *V) { 156 for (User *U : V->users()) { 157 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 158 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 159 if (C->isNullValue()) 160 continue; 161 // Unknown instruction. 162 return false; 163 } 164 return true; 165 } 166 167 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 168 const DataLayout &DL) { 169 if (!isOnlyUsedInComparisonWithZero(CI)) 170 return false; 171 172 if (!isDereferenceableAndAlignedPointer(Str, 1, APInt(64, Len), DL)) 173 return false; 174 175 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 176 return false; 177 178 return true; 179 } 180 181 //===----------------------------------------------------------------------===// 182 // String and Memory Library Call Optimizations 183 //===----------------------------------------------------------------------===// 184 185 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 186 // Extract some information from the instruction 187 Value *Dst = CI->getArgOperand(0); 188 Value *Src = CI->getArgOperand(1); 189 190 // See if we can get the length of the input string. 191 uint64_t Len = GetStringLength(Src); 192 if (Len == 0) 193 return nullptr; 194 --Len; // Unbias length. 195 196 // Handle the simple, do-nothing case: strcat(x, "") -> x 197 if (Len == 0) 198 return Dst; 199 200 return emitStrLenMemCpy(Src, Dst, Len, B); 201 } 202 203 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 204 IRBuilder<> &B) { 205 // We need to find the end of the destination string. That's where the 206 // memory is to be moved to. We just generate a call to strlen. 207 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 208 if (!DstLen) 209 return nullptr; 210 211 // Now that we have the destination's length, we must index into the 212 // destination's pointer to get the actual memcpy destination (end of 213 // the string .. we're concatenating). 214 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 215 216 // We have enough information to now generate the memcpy call to do the 217 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 218 B.CreateMemCpy(CpyDst, 1, Src, 1, 219 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 220 return Dst; 221 } 222 223 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 224 // Extract some information from the instruction. 225 Value *Dst = CI->getArgOperand(0); 226 Value *Src = CI->getArgOperand(1); 227 uint64_t Len; 228 229 // We don't do anything if length is not constant. 230 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 231 Len = LengthArg->getZExtValue(); 232 else 233 return nullptr; 234 235 // See if we can get the length of the input string. 236 uint64_t SrcLen = GetStringLength(Src); 237 if (SrcLen == 0) 238 return nullptr; 239 --SrcLen; // Unbias length. 240 241 // Handle the simple, do-nothing cases: 242 // strncat(x, "", c) -> x 243 // strncat(x, c, 0) -> x 244 if (SrcLen == 0 || Len == 0) 245 return Dst; 246 247 // We don't optimize this case. 248 if (Len < SrcLen) 249 return nullptr; 250 251 // strncat(x, s, c) -> strcat(x, s) 252 // s is constant so the strcat can be optimized further. 253 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 254 } 255 256 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 257 Function *Callee = CI->getCalledFunction(); 258 FunctionType *FT = Callee->getFunctionType(); 259 Value *SrcStr = CI->getArgOperand(0); 260 261 // If the second operand is non-constant, see if we can compute the length 262 // of the input string and turn this into memchr. 263 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 264 if (!CharC) { 265 uint64_t Len = GetStringLength(SrcStr); 266 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 267 return nullptr; 268 269 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 270 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 271 B, DL, TLI); 272 } 273 274 // Otherwise, the character is a constant, see if the first argument is 275 // a string literal. If so, we can constant fold. 276 StringRef Str; 277 if (!getConstantStringInfo(SrcStr, Str)) { 278 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 279 return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI), 280 "strchr"); 281 return nullptr; 282 } 283 284 // Compute the offset, make sure to handle the case when we're searching for 285 // zero (a weird way to spell strlen). 286 size_t I = (0xFF & CharC->getSExtValue()) == 0 287 ? Str.size() 288 : Str.find(CharC->getSExtValue()); 289 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 290 return Constant::getNullValue(CI->getType()); 291 292 // strchr(s+n,c) -> gep(s+n+i,c) 293 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 294 } 295 296 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 297 Value *SrcStr = CI->getArgOperand(0); 298 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 299 300 // Cannot fold anything if we're not looking for a constant. 301 if (!CharC) 302 return nullptr; 303 304 StringRef Str; 305 if (!getConstantStringInfo(SrcStr, Str)) { 306 // strrchr(s, 0) -> strchr(s, 0) 307 if (CharC->isZero()) 308 return emitStrChr(SrcStr, '\0', B, TLI); 309 return nullptr; 310 } 311 312 // Compute the offset. 313 size_t I = (0xFF & CharC->getSExtValue()) == 0 314 ? Str.size() 315 : Str.rfind(CharC->getSExtValue()); 316 if (I == StringRef::npos) // Didn't find the char. Return null. 317 return Constant::getNullValue(CI->getType()); 318 319 // strrchr(s+n,c) -> gep(s+n+i,c) 320 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 321 } 322 323 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 324 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 325 if (Str1P == Str2P) // strcmp(x,x) -> 0 326 return ConstantInt::get(CI->getType(), 0); 327 328 StringRef Str1, Str2; 329 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 330 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 331 332 // strcmp(x, y) -> cnst (if both x and y are constant strings) 333 if (HasStr1 && HasStr2) 334 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 335 336 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 337 return B.CreateNeg( 338 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 339 340 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 341 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 342 343 // strcmp(P, "x") -> memcmp(P, "x", 2) 344 uint64_t Len1 = GetStringLength(Str1P); 345 uint64_t Len2 = GetStringLength(Str2P); 346 if (Len1 && Len2) { 347 return emitMemCmp(Str1P, Str2P, 348 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 349 std::min(Len1, Len2)), 350 B, DL, TLI); 351 } 352 353 // strcmp to memcmp 354 if (!HasStr1 && HasStr2) { 355 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 356 return emitMemCmp( 357 Str1P, Str2P, 358 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 359 TLI); 360 } else if (HasStr1 && !HasStr2) { 361 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 362 return emitMemCmp( 363 Str1P, Str2P, 364 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 365 TLI); 366 } 367 368 return nullptr; 369 } 370 371 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 372 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 373 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 374 return ConstantInt::get(CI->getType(), 0); 375 376 // Get the length argument if it is constant. 377 uint64_t Length; 378 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 379 Length = LengthArg->getZExtValue(); 380 else 381 return nullptr; 382 383 if (Length == 0) // strncmp(x,y,0) -> 0 384 return ConstantInt::get(CI->getType(), 0); 385 386 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 387 return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 388 389 StringRef Str1, Str2; 390 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 391 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 392 393 // strncmp(x, y) -> cnst (if both x and y are constant strings) 394 if (HasStr1 && HasStr2) { 395 StringRef SubStr1 = Str1.substr(0, Length); 396 StringRef SubStr2 = Str2.substr(0, Length); 397 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 398 } 399 400 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 401 return B.CreateNeg( 402 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 403 404 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 405 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 406 407 uint64_t Len1 = GetStringLength(Str1P); 408 uint64_t Len2 = GetStringLength(Str2P); 409 410 // strncmp to memcmp 411 if (!HasStr1 && HasStr2) { 412 Len2 = std::min(Len2, Length); 413 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 414 return emitMemCmp( 415 Str1P, Str2P, 416 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 417 TLI); 418 } else if (HasStr1 && !HasStr2) { 419 Len1 = std::min(Len1, Length); 420 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 421 return emitMemCmp( 422 Str1P, Str2P, 423 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 424 TLI); 425 } 426 427 return nullptr; 428 } 429 430 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 431 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 432 if (Dst == Src) // strcpy(x,x) -> x 433 return Src; 434 435 // See if we can get the length of the input string. 436 uint64_t Len = GetStringLength(Src); 437 if (Len == 0) 438 return nullptr; 439 440 // We have enough information to now generate the memcpy call to do the 441 // copy for us. Make a memcpy to copy the nul byte with align = 1. 442 B.CreateMemCpy(Dst, 1, Src, 1, 443 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 444 return Dst; 445 } 446 447 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 448 Function *Callee = CI->getCalledFunction(); 449 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 450 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 451 Value *StrLen = emitStrLen(Src, B, DL, TLI); 452 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 453 } 454 455 // See if we can get the length of the input string. 456 uint64_t Len = GetStringLength(Src); 457 if (Len == 0) 458 return nullptr; 459 460 Type *PT = Callee->getFunctionType()->getParamType(0); 461 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 462 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 463 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 464 465 // We have enough information to now generate the memcpy call to do the 466 // copy for us. Make a memcpy to copy the nul byte with align = 1. 467 B.CreateMemCpy(Dst, 1, Src, 1, LenV); 468 return DstEnd; 469 } 470 471 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 472 Function *Callee = CI->getCalledFunction(); 473 Value *Dst = CI->getArgOperand(0); 474 Value *Src = CI->getArgOperand(1); 475 Value *LenOp = CI->getArgOperand(2); 476 477 // See if we can get the length of the input string. 478 uint64_t SrcLen = GetStringLength(Src); 479 if (SrcLen == 0) 480 return nullptr; 481 --SrcLen; 482 483 if (SrcLen == 0) { 484 // strncpy(x, "", y) -> memset(align 1 x, '\0', y) 485 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 486 return Dst; 487 } 488 489 uint64_t Len; 490 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 491 Len = LengthArg->getZExtValue(); 492 else 493 return nullptr; 494 495 if (Len == 0) 496 return Dst; // strncpy(x, y, 0) -> x 497 498 // Let strncpy handle the zero padding 499 if (Len > SrcLen + 1) 500 return nullptr; 501 502 Type *PT = Callee->getFunctionType()->getParamType(0); 503 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 504 B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len)); 505 506 return Dst; 507 } 508 509 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B, 510 unsigned CharSize) { 511 Value *Src = CI->getArgOperand(0); 512 513 // Constant folding: strlen("xyz") -> 3 514 if (uint64_t Len = GetStringLength(Src, CharSize)) 515 return ConstantInt::get(CI->getType(), Len - 1); 516 517 // If s is a constant pointer pointing to a string literal, we can fold 518 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 519 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 520 // We only try to simplify strlen when the pointer s points to an array 521 // of i8. Otherwise, we would need to scale the offset x before doing the 522 // subtraction. This will make the optimization more complex, and it's not 523 // very useful because calling strlen for a pointer of other types is 524 // very uncommon. 525 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 526 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 527 return nullptr; 528 529 ConstantDataArraySlice Slice; 530 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 531 uint64_t NullTermIdx; 532 if (Slice.Array == nullptr) { 533 NullTermIdx = 0; 534 } else { 535 NullTermIdx = ~((uint64_t)0); 536 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 537 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 538 NullTermIdx = I; 539 break; 540 } 541 } 542 // If the string does not have '\0', leave it to strlen to compute 543 // its length. 544 if (NullTermIdx == ~((uint64_t)0)) 545 return nullptr; 546 } 547 548 Value *Offset = GEP->getOperand(2); 549 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 550 Known.Zero.flipAllBits(); 551 uint64_t ArrSize = 552 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 553 554 // KnownZero's bits are flipped, so zeros in KnownZero now represent 555 // bits known to be zeros in Offset, and ones in KnowZero represent 556 // bits unknown in Offset. Therefore, Offset is known to be in range 557 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 558 // unsigned-less-than NullTermIdx. 559 // 560 // If Offset is not provably in the range [0, NullTermIdx], we can still 561 // optimize if we can prove that the program has undefined behavior when 562 // Offset is outside that range. That is the case when GEP->getOperand(0) 563 // is a pointer to an object whose memory extent is NullTermIdx+1. 564 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 565 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 566 NullTermIdx == ArrSize - 1)) { 567 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 568 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 569 Offset); 570 } 571 } 572 573 return nullptr; 574 } 575 576 // strlen(x?"foo":"bars") --> x ? 3 : 4 577 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 578 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 579 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 580 if (LenTrue && LenFalse) { 581 ORE.emit([&]() { 582 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 583 << "folded strlen(select) to select of constants"; 584 }); 585 return B.CreateSelect(SI->getCondition(), 586 ConstantInt::get(CI->getType(), LenTrue - 1), 587 ConstantInt::get(CI->getType(), LenFalse - 1)); 588 } 589 } 590 591 // strlen(x) != 0 --> *x != 0 592 // strlen(x) == 0 --> *x == 0 593 if (isOnlyUsedInZeroEqualityComparison(CI)) 594 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); 595 596 return nullptr; 597 } 598 599 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 600 return optimizeStringLength(CI, B, 8); 601 } 602 603 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) { 604 Module &M = *CI->getModule(); 605 unsigned WCharSize = TLI->getWCharSize(M) * 8; 606 // We cannot perform this optimization without wchar_size metadata. 607 if (WCharSize == 0) 608 return nullptr; 609 610 return optimizeStringLength(CI, B, WCharSize); 611 } 612 613 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 614 StringRef S1, S2; 615 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 616 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 617 618 // strpbrk(s, "") -> nullptr 619 // strpbrk("", s) -> nullptr 620 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 621 return Constant::getNullValue(CI->getType()); 622 623 // Constant folding. 624 if (HasS1 && HasS2) { 625 size_t I = S1.find_first_of(S2); 626 if (I == StringRef::npos) // No match. 627 return Constant::getNullValue(CI->getType()); 628 629 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 630 "strpbrk"); 631 } 632 633 // strpbrk(s, "a") -> strchr(s, 'a') 634 if (HasS2 && S2.size() == 1) 635 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 636 637 return nullptr; 638 } 639 640 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 641 Value *EndPtr = CI->getArgOperand(1); 642 if (isa<ConstantPointerNull>(EndPtr)) { 643 // With a null EndPtr, this function won't capture the main argument. 644 // It would be readonly too, except that it still may write to errno. 645 CI->addParamAttr(0, Attribute::NoCapture); 646 } 647 648 return nullptr; 649 } 650 651 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 652 StringRef S1, S2; 653 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 654 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 655 656 // strspn(s, "") -> 0 657 // strspn("", s) -> 0 658 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 659 return Constant::getNullValue(CI->getType()); 660 661 // Constant folding. 662 if (HasS1 && HasS2) { 663 size_t Pos = S1.find_first_not_of(S2); 664 if (Pos == StringRef::npos) 665 Pos = S1.size(); 666 return ConstantInt::get(CI->getType(), Pos); 667 } 668 669 return nullptr; 670 } 671 672 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 673 StringRef S1, S2; 674 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 675 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 676 677 // strcspn("", s) -> 0 678 if (HasS1 && S1.empty()) 679 return Constant::getNullValue(CI->getType()); 680 681 // Constant folding. 682 if (HasS1 && HasS2) { 683 size_t Pos = S1.find_first_of(S2); 684 if (Pos == StringRef::npos) 685 Pos = S1.size(); 686 return ConstantInt::get(CI->getType(), Pos); 687 } 688 689 // strcspn(s, "") -> strlen(s) 690 if (HasS2 && S2.empty()) 691 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 692 693 return nullptr; 694 } 695 696 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 697 // fold strstr(x, x) -> x. 698 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 699 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 700 701 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 702 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 703 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 704 if (!StrLen) 705 return nullptr; 706 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 707 StrLen, B, DL, TLI); 708 if (!StrNCmp) 709 return nullptr; 710 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 711 ICmpInst *Old = cast<ICmpInst>(*UI++); 712 Value *Cmp = 713 B.CreateICmp(Old->getPredicate(), StrNCmp, 714 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 715 replaceAllUsesWith(Old, Cmp); 716 } 717 return CI; 718 } 719 720 // See if either input string is a constant string. 721 StringRef SearchStr, ToFindStr; 722 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 723 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 724 725 // fold strstr(x, "") -> x. 726 if (HasStr2 && ToFindStr.empty()) 727 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 728 729 // If both strings are known, constant fold it. 730 if (HasStr1 && HasStr2) { 731 size_t Offset = SearchStr.find(ToFindStr); 732 733 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 734 return Constant::getNullValue(CI->getType()); 735 736 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 737 Value *Result = castToCStr(CI->getArgOperand(0), B); 738 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); 739 return B.CreateBitCast(Result, CI->getType()); 740 } 741 742 // fold strstr(x, "y") -> strchr(x, 'y'). 743 if (HasStr2 && ToFindStr.size() == 1) { 744 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 745 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 746 } 747 return nullptr; 748 } 749 750 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { 751 Value *SrcStr = CI->getArgOperand(0); 752 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 753 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 754 755 // memchr(x, y, 0) -> null 756 if (LenC && LenC->isZero()) 757 return Constant::getNullValue(CI->getType()); 758 759 // From now on we need at least constant length and string. 760 StringRef Str; 761 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 762 return nullptr; 763 764 // Truncate the string to LenC. If Str is smaller than LenC we will still only 765 // scan the string, as reading past the end of it is undefined and we can just 766 // return null if we don't find the char. 767 Str = Str.substr(0, LenC->getZExtValue()); 768 769 // If the char is variable but the input str and length are not we can turn 770 // this memchr call into a simple bit field test. Of course this only works 771 // when the return value is only checked against null. 772 // 773 // It would be really nice to reuse switch lowering here but we can't change 774 // the CFG at this point. 775 // 776 // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0 777 // after bounds check. 778 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 779 unsigned char Max = 780 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 781 reinterpret_cast<const unsigned char *>(Str.end())); 782 783 // Make sure the bit field we're about to create fits in a register on the 784 // target. 785 // FIXME: On a 64 bit architecture this prevents us from using the 786 // interesting range of alpha ascii chars. We could do better by emitting 787 // two bitfields or shifting the range by 64 if no lower chars are used. 788 if (!DL.fitsInLegalInteger(Max + 1)) 789 return nullptr; 790 791 // For the bit field use a power-of-2 type with at least 8 bits to avoid 792 // creating unnecessary illegal types. 793 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 794 795 // Now build the bit field. 796 APInt Bitfield(Width, 0); 797 for (char C : Str) 798 Bitfield.setBit((unsigned char)C); 799 Value *BitfieldC = B.getInt(Bitfield); 800 801 // First check that the bit field access is within bounds. 802 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 803 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 804 "memchr.bounds"); 805 806 // Create code that checks if the given bit is set in the field. 807 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 808 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 809 810 // Finally merge both checks and cast to pointer type. The inttoptr 811 // implicitly zexts the i1 to intptr type. 812 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 813 } 814 815 // Check if all arguments are constants. If so, we can constant fold. 816 if (!CharC) 817 return nullptr; 818 819 // Compute the offset. 820 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 821 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 822 return Constant::getNullValue(CI->getType()); 823 824 // memchr(s+n,c,l) -> gep(s+n+i,c) 825 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 826 } 827 828 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 829 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 830 831 if (LHS == RHS) // memcmp(s,s,x) -> 0 832 return Constant::getNullValue(CI->getType()); 833 834 // Make sure we have a constant length. 835 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 836 if (!LenC) 837 return nullptr; 838 839 uint64_t Len = LenC->getZExtValue(); 840 if (Len == 0) // memcmp(s1,s2,0) -> 0 841 return Constant::getNullValue(CI->getType()); 842 843 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 844 if (Len == 1) { 845 Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"), 846 CI->getType(), "lhsv"); 847 Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"), 848 CI->getType(), "rhsv"); 849 return B.CreateSub(LHSV, RHSV, "chardiff"); 850 } 851 852 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 853 // TODO: The case where both inputs are constants does not need to be limited 854 // to legal integers or equality comparison. See block below this. 855 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 856 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 857 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 858 859 // First, see if we can fold either argument to a constant. 860 Value *LHSV = nullptr; 861 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 862 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 863 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 864 } 865 Value *RHSV = nullptr; 866 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 867 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 868 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 869 } 870 871 // Don't generate unaligned loads. If either source is constant data, 872 // alignment doesn't matter for that source because there is no load. 873 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 874 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 875 if (!LHSV) { 876 Type *LHSPtrTy = 877 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 878 LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 879 } 880 if (!RHSV) { 881 Type *RHSPtrTy = 882 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 883 RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 884 } 885 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 886 } 887 } 888 889 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 890 // TODO: This is limited to i8 arrays. 891 StringRef LHSStr, RHSStr; 892 if (getConstantStringInfo(LHS, LHSStr) && 893 getConstantStringInfo(RHS, RHSStr)) { 894 // Make sure we're not reading out-of-bounds memory. 895 if (Len > LHSStr.size() || Len > RHSStr.size()) 896 return nullptr; 897 // Fold the memcmp and normalize the result. This way we get consistent 898 // results across multiple platforms. 899 uint64_t Ret = 0; 900 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 901 if (Cmp < 0) 902 Ret = -1; 903 else if (Cmp > 0) 904 Ret = 1; 905 return ConstantInt::get(CI->getType(), Ret); 906 } 907 908 return nullptr; 909 } 910 911 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { 912 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 913 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 914 CI->getArgOperand(2)); 915 return CI->getArgOperand(0); 916 } 917 918 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { 919 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 920 B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 921 CI->getArgOperand(2)); 922 return CI->getArgOperand(0); 923 } 924 925 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 926 static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B, 927 const TargetLibraryInfo &TLI) { 928 // This has to be a memset of zeros (bzero). 929 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 930 if (!FillValue || FillValue->getZExtValue() != 0) 931 return nullptr; 932 933 // TODO: We should handle the case where the malloc has more than one use. 934 // This is necessary to optimize common patterns such as when the result of 935 // the malloc is checked against null or when a memset intrinsic is used in 936 // place of a memset library call. 937 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 938 if (!Malloc || !Malloc->hasOneUse()) 939 return nullptr; 940 941 // Is the inner call really malloc()? 942 Function *InnerCallee = Malloc->getCalledFunction(); 943 if (!InnerCallee) 944 return nullptr; 945 946 LibFunc Func; 947 if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) || 948 Func != LibFunc_malloc) 949 return nullptr; 950 951 // The memset must cover the same number of bytes that are malloc'd. 952 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 953 return nullptr; 954 955 // Replace the malloc with a calloc. We need the data layout to know what the 956 // actual size of a 'size_t' parameter is. 957 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 958 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 959 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 960 Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 961 Malloc->getArgOperand(0), Malloc->getAttributes(), 962 B, TLI); 963 if (!Calloc) 964 return nullptr; 965 966 Malloc->replaceAllUsesWith(Calloc); 967 Malloc->eraseFromParent(); 968 969 return Calloc; 970 } 971 972 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { 973 if (auto *Calloc = foldMallocMemset(CI, B, *TLI)) 974 return Calloc; 975 976 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 977 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 978 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 979 return CI->getArgOperand(0); 980 } 981 982 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) { 983 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 984 return emitMalloc(CI->getArgOperand(1), B, DL, TLI); 985 986 return nullptr; 987 } 988 989 //===----------------------------------------------------------------------===// 990 // Math Library Optimizations 991 //===----------------------------------------------------------------------===// 992 993 // Replace a libcall \p CI with a call to intrinsic \p IID 994 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) { 995 // Propagate fast-math flags from the existing call to the new call. 996 IRBuilder<>::FastMathFlagGuard Guard(B); 997 B.setFastMathFlags(CI->getFastMathFlags()); 998 999 Module *M = CI->getModule(); 1000 Value *V = CI->getArgOperand(0); 1001 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1002 CallInst *NewCall = B.CreateCall(F, V); 1003 NewCall->takeName(CI); 1004 return NewCall; 1005 } 1006 1007 /// Return a variant of Val with float type. 1008 /// Currently this works in two cases: If Val is an FPExtension of a float 1009 /// value to something bigger, simply return the operand. 1010 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1011 /// loss of precision do so. 1012 static Value *valueHasFloatPrecision(Value *Val) { 1013 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1014 Value *Op = Cast->getOperand(0); 1015 if (Op->getType()->isFloatTy()) 1016 return Op; 1017 } 1018 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1019 APFloat F = Const->getValueAPF(); 1020 bool losesInfo; 1021 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1022 &losesInfo); 1023 if (!losesInfo) 1024 return ConstantFP::get(Const->getContext(), F); 1025 } 1026 return nullptr; 1027 } 1028 1029 /// Shrink double -> float functions. 1030 static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B, 1031 bool isBinary, bool isPrecise = false) { 1032 if (!CI->getType()->isDoubleTy()) 1033 return nullptr; 1034 1035 // If not all the uses of the function are converted to float, then bail out. 1036 // This matters if the precision of the result is more important than the 1037 // precision of the arguments. 1038 if (isPrecise) 1039 for (User *U : CI->users()) { 1040 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1041 if (!Cast || !Cast->getType()->isFloatTy()) 1042 return nullptr; 1043 } 1044 1045 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1046 Value *V[2]; 1047 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1048 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1049 if (!V[0] || (isBinary && !V[1])) 1050 return nullptr; 1051 1052 // If call isn't an intrinsic, check that it isn't within a function with the 1053 // same name as the float version of this call, otherwise the result is an 1054 // infinite loop. For example, from MinGW-w64: 1055 // 1056 // float expf(float val) { return (float) exp((double) val); } 1057 Function *CalleeFn = CI->getCalledFunction(); 1058 StringRef CalleeNm = CalleeFn->getName(); 1059 AttributeList CalleeAt = CalleeFn->getAttributes(); 1060 if (CalleeFn && !CalleeFn->isIntrinsic()) { 1061 const Function *Fn = CI->getFunction(); 1062 StringRef FnName = Fn->getName(); 1063 if (FnName.back() == 'f' && 1064 FnName.size() == (CalleeNm.size() + 1) && 1065 FnName.startswith(CalleeNm)) 1066 return nullptr; 1067 } 1068 1069 // Propagate the math semantics from the current function to the new function. 1070 IRBuilder<>::FastMathFlagGuard Guard(B); 1071 B.setFastMathFlags(CI->getFastMathFlags()); 1072 1073 // g((double) float) -> (double) gf(float) 1074 Value *R; 1075 if (CalleeFn->isIntrinsic()) { 1076 Module *M = CI->getModule(); 1077 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1078 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1079 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1080 } 1081 else 1082 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeNm, B, CalleeAt) 1083 : emitUnaryFloatFnCall(V[0], CalleeNm, B, CalleeAt); 1084 1085 return B.CreateFPExt(R, B.getDoubleTy()); 1086 } 1087 1088 /// Shrink double -> float for unary functions. 1089 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1090 bool isPrecise = false) { 1091 return optimizeDoubleFP(CI, B, false, isPrecise); 1092 } 1093 1094 /// Shrink double -> float for binary functions. 1095 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1096 bool isPrecise = false) { 1097 return optimizeDoubleFP(CI, B, true, isPrecise); 1098 } 1099 1100 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1101 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) { 1102 if (!CI->isFast()) 1103 return nullptr; 1104 1105 // Propagate fast-math flags from the existing call to new instructions. 1106 IRBuilder<>::FastMathFlagGuard Guard(B); 1107 B.setFastMathFlags(CI->getFastMathFlags()); 1108 1109 Value *Real, *Imag; 1110 if (CI->getNumArgOperands() == 1) { 1111 Value *Op = CI->getArgOperand(0); 1112 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1113 Real = B.CreateExtractValue(Op, 0, "real"); 1114 Imag = B.CreateExtractValue(Op, 1, "imag"); 1115 } else { 1116 assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); 1117 Real = CI->getArgOperand(0); 1118 Imag = CI->getArgOperand(1); 1119 } 1120 1121 Value *RealReal = B.CreateFMul(Real, Real); 1122 Value *ImagImag = B.CreateFMul(Imag, Imag); 1123 1124 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1125 CI->getType()); 1126 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); 1127 } 1128 1129 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1130 IRBuilder<> &B) { 1131 if (!isa<FPMathOperator>(Call)) 1132 return nullptr; 1133 1134 IRBuilder<>::FastMathFlagGuard Guard(B); 1135 B.setFastMathFlags(Call->getFastMathFlags()); 1136 1137 // TODO: Can this be shared to also handle LLVM intrinsics? 1138 Value *X; 1139 switch (Func) { 1140 case LibFunc_sin: 1141 case LibFunc_sinf: 1142 case LibFunc_sinl: 1143 case LibFunc_tan: 1144 case LibFunc_tanf: 1145 case LibFunc_tanl: 1146 // sin(-X) --> -sin(X) 1147 // tan(-X) --> -tan(X) 1148 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1149 return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X)); 1150 break; 1151 case LibFunc_cos: 1152 case LibFunc_cosf: 1153 case LibFunc_cosl: 1154 // cos(-X) --> cos(X) 1155 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1156 return B.CreateCall(Call->getCalledFunction(), X, "cos"); 1157 break; 1158 default: 1159 break; 1160 } 1161 return nullptr; 1162 } 1163 1164 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) { 1165 // Multiplications calculated using Addition Chains. 1166 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1167 1168 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1169 1170 if (InnerChain[Exp]) 1171 return InnerChain[Exp]; 1172 1173 static const unsigned AddChain[33][2] = { 1174 {0, 0}, // Unused. 1175 {0, 0}, // Unused (base case = pow1). 1176 {1, 1}, // Unused (pre-computed). 1177 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1178 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1179 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1180 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1181 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1182 }; 1183 1184 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1185 getPow(InnerChain, AddChain[Exp][1], B)); 1186 return InnerChain[Exp]; 1187 } 1188 1189 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1190 /// exp2(n * x) for pow(2.0 ** n, x); exp10(x) for pow(10.0, x). 1191 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) { 1192 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1193 AttributeList Attrs = Pow->getCalledFunction()->getAttributes(); 1194 Module *Mod = Pow->getModule(); 1195 Type *Ty = Pow->getType(); 1196 bool Ignored; 1197 1198 // Evaluate special cases related to a nested function as the base. 1199 1200 // pow(exp(x), y) -> exp(x * y) 1201 // pow(exp2(x), y) -> exp2(x * y) 1202 // If exp{,2}() is used only once, it is better to fold two transcendental 1203 // math functions into one. If used again, exp{,2}() would still have to be 1204 // called with the original argument, then keep both original transcendental 1205 // functions. However, this transformation is only safe with fully relaxed 1206 // math semantics, since, besides rounding differences, it changes overflow 1207 // and underflow behavior quite dramatically. For example: 1208 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1209 // Whereas: 1210 // exp(1000 * 0.001) = exp(1) 1211 // TODO: Loosen the requirement for fully relaxed math semantics. 1212 // TODO: Handle exp10() when more targets have it available. 1213 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1214 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1215 LibFunc LibFn; 1216 1217 Function *CalleeFn = BaseFn->getCalledFunction(); 1218 if (CalleeFn && 1219 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1220 StringRef ExpName; 1221 Intrinsic::ID ID; 1222 Value *ExpFn; 1223 1224 switch (LibFn) { 1225 default: 1226 return nullptr; 1227 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1228 ExpName = TLI->getName(LibFunc_exp); 1229 ID = Intrinsic::exp; 1230 break; 1231 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1232 ExpName = TLI->getName(LibFunc_exp2); 1233 ID = Intrinsic::exp2; 1234 break; 1235 } 1236 1237 // Create new exp{,2}() with the product as its argument. 1238 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1239 ExpFn = BaseFn->doesNotAccessMemory() 1240 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1241 FMul, ExpName) 1242 : emitUnaryFloatFnCall(FMul, ExpName, B, BaseFn->getAttributes()); 1243 1244 // Since the new exp{,2}() is different from the original one, dead code 1245 // elimination cannot be trusted to remove it, since it may have side 1246 // effects (e.g., errno). When the only consumer for the original 1247 // exp{,2}() is pow(), then it has to be explicitly erased. 1248 BaseFn->replaceAllUsesWith(ExpFn); 1249 BaseFn->eraseFromParent(); 1250 1251 return ExpFn; 1252 } 1253 } 1254 1255 // Evaluate special cases related to a constant base. 1256 1257 const APFloat *BaseF; 1258 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1259 return nullptr; 1260 1261 // pow(2.0 ** n, x) -> exp2(n * x) 1262 if (hasUnaryFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1263 APFloat BaseR = APFloat(1.0); 1264 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1265 BaseR = BaseR / *BaseF; 1266 bool IsInteger = BaseF->isInteger(), 1267 IsReciprocal = BaseR.isInteger(); 1268 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1269 APSInt NI(64, false); 1270 if ((IsInteger || IsReciprocal) && 1271 !NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) && 1272 NI > 1 && NI.isPowerOf2()) { 1273 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1274 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1275 if (Pow->doesNotAccessMemory()) 1276 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1277 FMul, "exp2"); 1278 else 1279 return emitUnaryFloatFnCall(FMul, TLI->getName(LibFunc_exp2), B, Attrs); 1280 } 1281 } 1282 1283 // pow(10.0, x) -> exp10(x) 1284 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1285 if (match(Base, m_SpecificFP(10.0)) && 1286 hasUnaryFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1287 return emitUnaryFloatFnCall(Expo, TLI->getName(LibFunc_exp10), B, Attrs); 1288 1289 return nullptr; 1290 } 1291 1292 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1293 Module *M, IRBuilder<> &B, 1294 const TargetLibraryInfo *TLI) { 1295 // If errno is never set, then use the intrinsic for sqrt(). 1296 if (NoErrno) { 1297 Function *SqrtFn = 1298 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1299 return B.CreateCall(SqrtFn, V, "sqrt"); 1300 } 1301 1302 // Otherwise, use the libcall for sqrt(). 1303 if (hasUnaryFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, 1304 LibFunc_sqrtl)) 1305 // TODO: We also should check that the target can in fact lower the sqrt() 1306 // libcall. We currently have no way to ask this question, so we ask if 1307 // the target has a sqrt() libcall, which is not exactly the same. 1308 return emitUnaryFloatFnCall(V, TLI->getName(LibFunc_sqrt), B, Attrs); 1309 1310 return nullptr; 1311 } 1312 1313 /// Use square root in place of pow(x, +/-0.5). 1314 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) { 1315 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1316 AttributeList Attrs = Pow->getCalledFunction()->getAttributes(); 1317 Module *Mod = Pow->getModule(); 1318 Type *Ty = Pow->getType(); 1319 1320 const APFloat *ExpoF; 1321 if (!match(Expo, m_APFloat(ExpoF)) || 1322 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1323 return nullptr; 1324 1325 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1326 if (!Sqrt) 1327 return nullptr; 1328 1329 // Handle signed zero base by expanding to fabs(sqrt(x)). 1330 if (!Pow->hasNoSignedZeros()) { 1331 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1332 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1333 } 1334 1335 // Handle non finite base by expanding to 1336 // (x == -infinity ? +infinity : sqrt(x)). 1337 if (!Pow->hasNoInfs()) { 1338 Value *PosInf = ConstantFP::getInfinity(Ty), 1339 *NegInf = ConstantFP::getInfinity(Ty, true); 1340 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1341 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1342 } 1343 1344 // If the exponent is negative, then get the reciprocal. 1345 if (ExpoF->isNegative()) 1346 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1347 1348 return Sqrt; 1349 } 1350 1351 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) { 1352 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1353 Function *Callee = Pow->getCalledFunction(); 1354 StringRef Name = Callee->getName(); 1355 Type *Ty = Pow->getType(); 1356 Value *Shrunk = nullptr; 1357 bool Ignored; 1358 1359 // Bail out if simplifying libcalls to pow() is disabled. 1360 if (!hasUnaryFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl)) 1361 return nullptr; 1362 1363 // Propagate the math semantics from the call to any created instructions. 1364 IRBuilder<>::FastMathFlagGuard Guard(B); 1365 B.setFastMathFlags(Pow->getFastMathFlags()); 1366 1367 // Shrink pow() to powf() if the arguments are single precision, 1368 // unless the result is expected to be double precision. 1369 if (UnsafeFPShrink && 1370 Name == TLI->getName(LibFunc_pow) && hasFloatVersion(Name)) 1371 Shrunk = optimizeBinaryDoubleFP(Pow, B, true); 1372 1373 // Evaluate special cases related to the base. 1374 1375 // pow(1.0, x) -> 1.0 1376 if (match(Base, m_FPOne())) 1377 return Base; 1378 1379 if (Value *Exp = replacePowWithExp(Pow, B)) 1380 return Exp; 1381 1382 // Evaluate special cases related to the exponent. 1383 1384 // pow(x, -1.0) -> 1.0 / x 1385 if (match(Expo, m_SpecificFP(-1.0))) 1386 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1387 1388 // pow(x, 0.0) -> 1.0 1389 if (match(Expo, m_SpecificFP(0.0))) 1390 return ConstantFP::get(Ty, 1.0); 1391 1392 // pow(x, 1.0) -> x 1393 if (match(Expo, m_FPOne())) 1394 return Base; 1395 1396 // pow(x, 2.0) -> x * x 1397 if (match(Expo, m_SpecificFP(2.0))) 1398 return B.CreateFMul(Base, Base, "square"); 1399 1400 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1401 return Sqrt; 1402 1403 // pow(x, n) -> x * x * x * ... 1404 const APFloat *ExpoF; 1405 if (Pow->isFast() && match(Expo, m_APFloat(ExpoF))) { 1406 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1407 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1408 // additional fmul. 1409 // TODO: This whole transformation should be backend specific (e.g. some 1410 // backends might prefer libcalls or the limit for the exponent might 1411 // be different) and it should also consider optimizing for size. 1412 APFloat LimF(ExpoF->getSemantics(), 33.0), 1413 ExpoA(abs(*ExpoF)); 1414 if (ExpoA.compare(LimF) == APFloat::cmpLessThan) { 1415 // This transformation applies to integer or integer+0.5 exponents only. 1416 // For integer+0.5, we create a sqrt(Base) call. 1417 Value *Sqrt = nullptr; 1418 if (!ExpoA.isInteger()) { 1419 APFloat Expo2 = ExpoA; 1420 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1421 // is no floating point exception and the result is an integer, then 1422 // ExpoA == integer + 0.5 1423 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1424 return nullptr; 1425 1426 if (!Expo2.isInteger()) 1427 return nullptr; 1428 1429 Sqrt = 1430 getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1431 Pow->doesNotAccessMemory(), Pow->getModule(), B, TLI); 1432 } 1433 1434 // We will memoize intermediate products of the Addition Chain. 1435 Value *InnerChain[33] = {nullptr}; 1436 InnerChain[1] = Base; 1437 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1438 1439 // We cannot readily convert a non-double type (like float) to a double. 1440 // So we first convert it to something which could be converted to double. 1441 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1442 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1443 1444 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1445 if (Sqrt) 1446 FMul = B.CreateFMul(FMul, Sqrt); 1447 1448 // If the exponent is negative, then get the reciprocal. 1449 if (ExpoF->isNegative()) 1450 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1451 1452 return FMul; 1453 } 1454 } 1455 1456 return Shrunk; 1457 } 1458 1459 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1460 Function *Callee = CI->getCalledFunction(); 1461 Value *Ret = nullptr; 1462 StringRef Name = Callee->getName(); 1463 if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name)) 1464 Ret = optimizeUnaryDoubleFP(CI, B, true); 1465 1466 Value *Op = CI->getArgOperand(0); 1467 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1468 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1469 LibFunc LdExp = LibFunc_ldexpl; 1470 if (Op->getType()->isFloatTy()) 1471 LdExp = LibFunc_ldexpf; 1472 else if (Op->getType()->isDoubleTy()) 1473 LdExp = LibFunc_ldexp; 1474 1475 if (TLI->has(LdExp)) { 1476 Value *LdExpArg = nullptr; 1477 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 1478 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 1479 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 1480 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 1481 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 1482 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 1483 } 1484 1485 if (LdExpArg) { 1486 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); 1487 if (!Op->getType()->isFloatTy()) 1488 One = ConstantExpr::getFPExtend(One, Op->getType()); 1489 1490 Module *M = CI->getModule(); 1491 Value *NewCallee = 1492 M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), 1493 Op->getType(), B.getInt32Ty()); 1494 CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg}); 1495 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 1496 CI->setCallingConv(F->getCallingConv()); 1497 1498 return CI; 1499 } 1500 } 1501 return Ret; 1502 } 1503 1504 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { 1505 Function *Callee = CI->getCalledFunction(); 1506 // If we can shrink the call to a float function rather than a double 1507 // function, do that first. 1508 StringRef Name = Callee->getName(); 1509 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1510 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1511 return Ret; 1512 1513 IRBuilder<>::FastMathFlagGuard Guard(B); 1514 FastMathFlags FMF; 1515 if (CI->isFast()) { 1516 // If the call is 'fast', then anything we create here will also be 'fast'. 1517 FMF.setFast(); 1518 } else { 1519 // At a minimum, no-nans-fp-math must be true. 1520 if (!CI->hasNoNaNs()) 1521 return nullptr; 1522 // No-signed-zeros is implied by the definitions of fmax/fmin themselves: 1523 // "Ideally, fmax would be sensitive to the sign of zero, for example 1524 // fmax(-0. 0, +0. 0) would return +0; however, implementation in software 1525 // might be impractical." 1526 FMF.setNoSignedZeros(); 1527 FMF.setNoNaNs(); 1528 } 1529 B.setFastMathFlags(FMF); 1530 1531 // We have a relaxed floating-point environment. We can ignore NaN-handling 1532 // and transform to a compare and select. We do not have to consider errno or 1533 // exceptions, because fmin/fmax do not have those. 1534 Value *Op0 = CI->getArgOperand(0); 1535 Value *Op1 = CI->getArgOperand(1); 1536 Value *Cmp = Callee->getName().startswith("fmin") ? 1537 B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1); 1538 return B.CreateSelect(Cmp, Op0, Op1); 1539 } 1540 1541 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { 1542 Function *Callee = CI->getCalledFunction(); 1543 Value *Ret = nullptr; 1544 StringRef Name = Callee->getName(); 1545 if (UnsafeFPShrink && hasFloatVersion(Name)) 1546 Ret = optimizeUnaryDoubleFP(CI, B, true); 1547 1548 if (!CI->isFast()) 1549 return Ret; 1550 Value *Op1 = CI->getArgOperand(0); 1551 auto *OpC = dyn_cast<CallInst>(Op1); 1552 1553 // The earlier call must also be 'fast' in order to do these transforms. 1554 if (!OpC || !OpC->isFast()) 1555 return Ret; 1556 1557 // log(pow(x,y)) -> y*log(x) 1558 // This is only applicable to log, log2, log10. 1559 if (Name != "log" && Name != "log2" && Name != "log10") 1560 return Ret; 1561 1562 IRBuilder<>::FastMathFlagGuard Guard(B); 1563 FastMathFlags FMF; 1564 FMF.setFast(); 1565 B.setFastMathFlags(FMF); 1566 1567 LibFunc Func; 1568 Function *F = OpC->getCalledFunction(); 1569 if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1570 Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow)) 1571 return B.CreateFMul(OpC->getArgOperand(1), 1572 emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, 1573 Callee->getAttributes()), "mul"); 1574 1575 // log(exp2(y)) -> y*log(2) 1576 if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && 1577 TLI->has(Func) && Func == LibFunc_exp2) 1578 return B.CreateFMul( 1579 OpC->getArgOperand(0), 1580 emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), 1581 Callee->getName(), B, Callee->getAttributes()), 1582 "logmul"); 1583 return Ret; 1584 } 1585 1586 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1587 Function *Callee = CI->getCalledFunction(); 1588 Value *Ret = nullptr; 1589 // TODO: Once we have a way (other than checking for the existince of the 1590 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 1591 // condition below. 1592 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 1593 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1594 Ret = optimizeUnaryDoubleFP(CI, B, true); 1595 1596 if (!CI->isFast()) 1597 return Ret; 1598 1599 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1600 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 1601 return Ret; 1602 1603 // We're looking for a repeated factor in a multiplication tree, 1604 // so we can do this fold: sqrt(x * x) -> fabs(x); 1605 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 1606 Value *Op0 = I->getOperand(0); 1607 Value *Op1 = I->getOperand(1); 1608 Value *RepeatOp = nullptr; 1609 Value *OtherOp = nullptr; 1610 if (Op0 == Op1) { 1611 // Simple match: the operands of the multiply are identical. 1612 RepeatOp = Op0; 1613 } else { 1614 // Look for a more complicated pattern: one of the operands is itself 1615 // a multiply, so search for a common factor in that multiply. 1616 // Note: We don't bother looking any deeper than this first level or for 1617 // variations of this pattern because instcombine's visitFMUL and/or the 1618 // reassociation pass should give us this form. 1619 Value *OtherMul0, *OtherMul1; 1620 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1621 // Pattern: sqrt((x * y) * z) 1622 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 1623 // Matched: sqrt((x * x) * z) 1624 RepeatOp = OtherMul0; 1625 OtherOp = Op1; 1626 } 1627 } 1628 } 1629 if (!RepeatOp) 1630 return Ret; 1631 1632 // Fast math flags for any created instructions should match the sqrt 1633 // and multiply. 1634 IRBuilder<>::FastMathFlagGuard Guard(B); 1635 B.setFastMathFlags(I->getFastMathFlags()); 1636 1637 // If we found a repeated factor, hoist it out of the square root and 1638 // replace it with the fabs of that factor. 1639 Module *M = Callee->getParent(); 1640 Type *ArgType = I->getType(); 1641 Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1642 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1643 if (OtherOp) { 1644 // If we found a non-repeated factor, we still need to get its square 1645 // root. We then multiply that by the value that was simplified out 1646 // of the square root calculation. 1647 Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1648 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1649 return B.CreateFMul(FabsCall, SqrtCall); 1650 } 1651 return FabsCall; 1652 } 1653 1654 // TODO: Generalize to handle any trig function and its inverse. 1655 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { 1656 Function *Callee = CI->getCalledFunction(); 1657 Value *Ret = nullptr; 1658 StringRef Name = Callee->getName(); 1659 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 1660 Ret = optimizeUnaryDoubleFP(CI, B, true); 1661 1662 Value *Op1 = CI->getArgOperand(0); 1663 auto *OpC = dyn_cast<CallInst>(Op1); 1664 if (!OpC) 1665 return Ret; 1666 1667 // Both calls must be 'fast' in order to remove them. 1668 if (!CI->isFast() || !OpC->isFast()) 1669 return Ret; 1670 1671 // tan(atan(x)) -> x 1672 // tanf(atanf(x)) -> x 1673 // tanl(atanl(x)) -> x 1674 LibFunc Func; 1675 Function *F = OpC->getCalledFunction(); 1676 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1677 ((Func == LibFunc_atan && Callee->getName() == "tan") || 1678 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 1679 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 1680 Ret = OpC->getArgOperand(0); 1681 return Ret; 1682 } 1683 1684 static bool isTrigLibCall(CallInst *CI) { 1685 // We can only hope to do anything useful if we can ignore things like errno 1686 // and floating-point exceptions. 1687 // We already checked the prototype. 1688 return CI->hasFnAttr(Attribute::NoUnwind) && 1689 CI->hasFnAttr(Attribute::ReadNone); 1690 } 1691 1692 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1693 bool UseFloat, Value *&Sin, Value *&Cos, 1694 Value *&SinCos) { 1695 Type *ArgTy = Arg->getType(); 1696 Type *ResTy; 1697 StringRef Name; 1698 1699 Triple T(OrigCallee->getParent()->getTargetTriple()); 1700 if (UseFloat) { 1701 Name = "__sincospif_stret"; 1702 1703 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1704 // x86_64 can't use {float, float} since that would be returned in both 1705 // xmm0 and xmm1, which isn't what a real struct would do. 1706 ResTy = T.getArch() == Triple::x86_64 1707 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1708 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 1709 } else { 1710 Name = "__sincospi_stret"; 1711 ResTy = StructType::get(ArgTy, ArgTy); 1712 } 1713 1714 Module *M = OrigCallee->getParent(); 1715 Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), 1716 ResTy, ArgTy); 1717 1718 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1719 // If the argument is an instruction, it must dominate all uses so put our 1720 // sincos call there. 1721 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1722 } else { 1723 // Otherwise (e.g. for a constant) the beginning of the function is as 1724 // good a place as any. 1725 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1726 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1727 } 1728 1729 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1730 1731 if (SinCos->getType()->isStructTy()) { 1732 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1733 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1734 } else { 1735 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1736 "sinpi"); 1737 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1738 "cospi"); 1739 } 1740 } 1741 1742 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1743 // Make sure the prototype is as expected, otherwise the rest of the 1744 // function is probably invalid and likely to abort. 1745 if (!isTrigLibCall(CI)) 1746 return nullptr; 1747 1748 Value *Arg = CI->getArgOperand(0); 1749 SmallVector<CallInst *, 1> SinCalls; 1750 SmallVector<CallInst *, 1> CosCalls; 1751 SmallVector<CallInst *, 1> SinCosCalls; 1752 1753 bool IsFloat = Arg->getType()->isFloatTy(); 1754 1755 // Look for all compatible sinpi, cospi and sincospi calls with the same 1756 // argument. If there are enough (in some sense) we can make the 1757 // substitution. 1758 Function *F = CI->getFunction(); 1759 for (User *U : Arg->users()) 1760 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 1761 1762 // It's only worthwhile if both sinpi and cospi are actually used. 1763 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1764 return nullptr; 1765 1766 Value *Sin, *Cos, *SinCos; 1767 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1768 1769 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 1770 Value *Res) { 1771 for (CallInst *C : Calls) 1772 replaceAllUsesWith(C, Res); 1773 }; 1774 1775 replaceTrigInsts(SinCalls, Sin); 1776 replaceTrigInsts(CosCalls, Cos); 1777 replaceTrigInsts(SinCosCalls, SinCos); 1778 1779 return nullptr; 1780 } 1781 1782 void LibCallSimplifier::classifyArgUse( 1783 Value *Val, Function *F, bool IsFloat, 1784 SmallVectorImpl<CallInst *> &SinCalls, 1785 SmallVectorImpl<CallInst *> &CosCalls, 1786 SmallVectorImpl<CallInst *> &SinCosCalls) { 1787 CallInst *CI = dyn_cast<CallInst>(Val); 1788 1789 if (!CI) 1790 return; 1791 1792 // Don't consider calls in other functions. 1793 if (CI->getFunction() != F) 1794 return; 1795 1796 Function *Callee = CI->getCalledFunction(); 1797 LibFunc Func; 1798 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 1799 !isTrigLibCall(CI)) 1800 return; 1801 1802 if (IsFloat) { 1803 if (Func == LibFunc_sinpif) 1804 SinCalls.push_back(CI); 1805 else if (Func == LibFunc_cospif) 1806 CosCalls.push_back(CI); 1807 else if (Func == LibFunc_sincospif_stret) 1808 SinCosCalls.push_back(CI); 1809 } else { 1810 if (Func == LibFunc_sinpi) 1811 SinCalls.push_back(CI); 1812 else if (Func == LibFunc_cospi) 1813 CosCalls.push_back(CI); 1814 else if (Func == LibFunc_sincospi_stret) 1815 SinCosCalls.push_back(CI); 1816 } 1817 } 1818 1819 //===----------------------------------------------------------------------===// 1820 // Integer Library Call Optimizations 1821 //===----------------------------------------------------------------------===// 1822 1823 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1824 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1825 Value *Op = CI->getArgOperand(0); 1826 Type *ArgType = Op->getType(); 1827 Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1828 Intrinsic::cttz, ArgType); 1829 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 1830 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1831 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1832 1833 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1834 return B.CreateSelect(Cond, V, B.getInt32(0)); 1835 } 1836 1837 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) { 1838 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 1839 Value *Op = CI->getArgOperand(0); 1840 Type *ArgType = Op->getType(); 1841 Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1842 Intrinsic::ctlz, ArgType); 1843 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 1844 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 1845 V); 1846 return B.CreateIntCast(V, CI->getType(), false); 1847 } 1848 1849 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1850 // abs(x) -> x <s 0 ? -x : x 1851 // The negation has 'nsw' because abs of INT_MIN is undefined. 1852 Value *X = CI->getArgOperand(0); 1853 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 1854 Value *NegX = B.CreateNSWNeg(X, "neg"); 1855 return B.CreateSelect(IsNeg, NegX, X); 1856 } 1857 1858 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 1859 // isdigit(c) -> (c-'0') <u 10 1860 Value *Op = CI->getArgOperand(0); 1861 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1862 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1863 return B.CreateZExt(Op, CI->getType()); 1864 } 1865 1866 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 1867 // isascii(c) -> c <u 128 1868 Value *Op = CI->getArgOperand(0); 1869 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1870 return B.CreateZExt(Op, CI->getType()); 1871 } 1872 1873 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 1874 // toascii(c) -> c & 0x7f 1875 return B.CreateAnd(CI->getArgOperand(0), 1876 ConstantInt::get(CI->getType(), 0x7F)); 1877 } 1878 1879 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) { 1880 StringRef Str; 1881 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1882 return nullptr; 1883 1884 return convertStrToNumber(CI, Str, 10); 1885 } 1886 1887 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) { 1888 StringRef Str; 1889 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1890 return nullptr; 1891 1892 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 1893 return nullptr; 1894 1895 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 1896 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 1897 } 1898 1899 return nullptr; 1900 } 1901 1902 //===----------------------------------------------------------------------===// 1903 // Formatting and IO Library Call Optimizations 1904 //===----------------------------------------------------------------------===// 1905 1906 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 1907 1908 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 1909 int StreamArg) { 1910 Function *Callee = CI->getCalledFunction(); 1911 // Error reporting calls should be cold, mark them as such. 1912 // This applies even to non-builtin calls: it is only a hint and applies to 1913 // functions that the frontend might not understand as builtins. 1914 1915 // This heuristic was suggested in: 1916 // Improving Static Branch Prediction in a Compiler 1917 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 1918 // Proceedings of PACT'98, Oct. 1998, IEEE 1919 if (!CI->hasFnAttr(Attribute::Cold) && 1920 isReportingError(Callee, CI, StreamArg)) { 1921 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 1922 } 1923 1924 return nullptr; 1925 } 1926 1927 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 1928 if (!Callee || !Callee->isDeclaration()) 1929 return false; 1930 1931 if (StreamArg < 0) 1932 return true; 1933 1934 // These functions might be considered cold, but only if their stream 1935 // argument is stderr. 1936 1937 if (StreamArg >= (int)CI->getNumArgOperands()) 1938 return false; 1939 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 1940 if (!LI) 1941 return false; 1942 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 1943 if (!GV || !GV->isDeclaration()) 1944 return false; 1945 return GV->getName() == "stderr"; 1946 } 1947 1948 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 1949 // Check for a fixed format string. 1950 StringRef FormatStr; 1951 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 1952 return nullptr; 1953 1954 // Empty format string -> noop. 1955 if (FormatStr.empty()) // Tolerate printf's declared void. 1956 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 1957 1958 // Do not do any of the following transformations if the printf return value 1959 // is used, in general the printf return value is not compatible with either 1960 // putchar() or puts(). 1961 if (!CI->use_empty()) 1962 return nullptr; 1963 1964 // printf("x") -> putchar('x'), even for "%" and "%%". 1965 if (FormatStr.size() == 1 || FormatStr == "%%") 1966 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 1967 1968 // printf("%s", "a") --> putchar('a') 1969 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 1970 StringRef ChrStr; 1971 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 1972 return nullptr; 1973 if (ChrStr.size() != 1) 1974 return nullptr; 1975 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 1976 } 1977 1978 // printf("foo\n") --> puts("foo") 1979 if (FormatStr[FormatStr.size() - 1] == '\n' && 1980 FormatStr.find('%') == StringRef::npos) { // No format characters. 1981 // Create a string literal with no \n on it. We expect the constant merge 1982 // pass to be run after this pass, to merge duplicate strings. 1983 FormatStr = FormatStr.drop_back(); 1984 Value *GV = B.CreateGlobalString(FormatStr, "str"); 1985 return emitPutS(GV, B, TLI); 1986 } 1987 1988 // Optimize specific format strings. 1989 // printf("%c", chr) --> putchar(chr) 1990 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 1991 CI->getArgOperand(1)->getType()->isIntegerTy()) 1992 return emitPutChar(CI->getArgOperand(1), B, TLI); 1993 1994 // printf("%s\n", str) --> puts(str) 1995 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 1996 CI->getArgOperand(1)->getType()->isPointerTy()) 1997 return emitPutS(CI->getArgOperand(1), B, TLI); 1998 return nullptr; 1999 } 2000 2001 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 2002 2003 Function *Callee = CI->getCalledFunction(); 2004 FunctionType *FT = Callee->getFunctionType(); 2005 if (Value *V = optimizePrintFString(CI, B)) { 2006 return V; 2007 } 2008 2009 // printf(format, ...) -> iprintf(format, ...) if no floating point 2010 // arguments. 2011 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2012 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2013 Constant *IPrintFFn = 2014 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2015 CallInst *New = cast<CallInst>(CI->clone()); 2016 New->setCalledFunction(IPrintFFn); 2017 B.Insert(New); 2018 return New; 2019 } 2020 return nullptr; 2021 } 2022 2023 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 2024 // Check for a fixed format string. 2025 StringRef FormatStr; 2026 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2027 return nullptr; 2028 2029 // If we just have a format string (nothing else crazy) transform it. 2030 if (CI->getNumArgOperands() == 2) { 2031 // Make sure there's no % in the constant array. We could try to handle 2032 // %% -> % in the future if we cared. 2033 if (FormatStr.find('%') != StringRef::npos) 2034 return nullptr; // we found a format specifier, bail out. 2035 2036 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2037 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2038 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2039 FormatStr.size() + 1)); // Copy the null byte. 2040 return ConstantInt::get(CI->getType(), FormatStr.size()); 2041 } 2042 2043 // The remaining optimizations require the format string to be "%s" or "%c" 2044 // and have an extra operand. 2045 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2046 CI->getNumArgOperands() < 3) 2047 return nullptr; 2048 2049 // Decode the second character of the format string. 2050 if (FormatStr[1] == 'c') { 2051 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2052 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2053 return nullptr; 2054 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2055 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2056 B.CreateStore(V, Ptr); 2057 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2058 B.CreateStore(B.getInt8(0), Ptr); 2059 2060 return ConstantInt::get(CI->getType(), 1); 2061 } 2062 2063 if (FormatStr[1] == 's') { 2064 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) 2065 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2066 return nullptr; 2067 2068 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2069 if (!Len) 2070 return nullptr; 2071 Value *IncLen = 2072 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2073 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen); 2074 2075 // The sprintf result is the unincremented number of bytes in the string. 2076 return B.CreateIntCast(Len, CI->getType(), false); 2077 } 2078 return nullptr; 2079 } 2080 2081 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 2082 Function *Callee = CI->getCalledFunction(); 2083 FunctionType *FT = Callee->getFunctionType(); 2084 if (Value *V = optimizeSPrintFString(CI, B)) { 2085 return V; 2086 } 2087 2088 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2089 // point arguments. 2090 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2091 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2092 Constant *SIPrintFFn = 2093 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2094 CallInst *New = cast<CallInst>(CI->clone()); 2095 New->setCalledFunction(SIPrintFFn); 2096 B.Insert(New); 2097 return New; 2098 } 2099 return nullptr; 2100 } 2101 2102 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) { 2103 // Check for a fixed format string. 2104 StringRef FormatStr; 2105 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2106 return nullptr; 2107 2108 // Check for size 2109 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2110 if (!Size) 2111 return nullptr; 2112 2113 uint64_t N = Size->getZExtValue(); 2114 2115 // If we just have a format string (nothing else crazy) transform it. 2116 if (CI->getNumArgOperands() == 3) { 2117 // Make sure there's no % in the constant array. We could try to handle 2118 // %% -> % in the future if we cared. 2119 if (FormatStr.find('%') != StringRef::npos) 2120 return nullptr; // we found a format specifier, bail out. 2121 2122 if (N == 0) 2123 return ConstantInt::get(CI->getType(), FormatStr.size()); 2124 else if (N < FormatStr.size() + 1) 2125 return nullptr; 2126 2127 // sprintf(str, size, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, 2128 // strlen(fmt)+1) 2129 B.CreateMemCpy( 2130 CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, 2131 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2132 FormatStr.size() + 1)); // Copy the null byte. 2133 return ConstantInt::get(CI->getType(), FormatStr.size()); 2134 } 2135 2136 // The remaining optimizations require the format string to be "%s" or "%c" 2137 // and have an extra operand. 2138 if (FormatStr.size() == 2 && FormatStr[0] == '%' && 2139 CI->getNumArgOperands() == 4) { 2140 2141 // Decode the second character of the format string. 2142 if (FormatStr[1] == 'c') { 2143 if (N == 0) 2144 return ConstantInt::get(CI->getType(), 1); 2145 else if (N == 1) 2146 return nullptr; 2147 2148 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2149 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2150 return nullptr; 2151 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2152 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2153 B.CreateStore(V, Ptr); 2154 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2155 B.CreateStore(B.getInt8(0), Ptr); 2156 2157 return ConstantInt::get(CI->getType(), 1); 2158 } 2159 2160 if (FormatStr[1] == 's') { 2161 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2162 StringRef Str; 2163 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2164 return nullptr; 2165 2166 if (N == 0) 2167 return ConstantInt::get(CI->getType(), Str.size()); 2168 else if (N < Str.size() + 1) 2169 return nullptr; 2170 2171 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(3), 1, 2172 ConstantInt::get(CI->getType(), Str.size() + 1)); 2173 2174 // The snprintf result is the unincremented number of bytes in the string. 2175 return ConstantInt::get(CI->getType(), Str.size()); 2176 } 2177 } 2178 return nullptr; 2179 } 2180 2181 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) { 2182 if (Value *V = optimizeSnPrintFString(CI, B)) { 2183 return V; 2184 } 2185 2186 return nullptr; 2187 } 2188 2189 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 2190 optimizeErrorReporting(CI, B, 0); 2191 2192 // All the optimizations depend on the format string. 2193 StringRef FormatStr; 2194 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2195 return nullptr; 2196 2197 // Do not do any of the following transformations if the fprintf return 2198 // value is used, in general the fprintf return value is not compatible 2199 // with fwrite(), fputc() or fputs(). 2200 if (!CI->use_empty()) 2201 return nullptr; 2202 2203 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2204 if (CI->getNumArgOperands() == 2) { 2205 // Could handle %% -> % if we cared. 2206 if (FormatStr.find('%') != StringRef::npos) 2207 return nullptr; // We found a format specifier. 2208 2209 return emitFWrite( 2210 CI->getArgOperand(1), 2211 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 2212 CI->getArgOperand(0), B, DL, TLI); 2213 } 2214 2215 // The remaining optimizations require the format string to be "%s" or "%c" 2216 // and have an extra operand. 2217 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2218 CI->getNumArgOperands() < 3) 2219 return nullptr; 2220 2221 // Decode the second character of the format string. 2222 if (FormatStr[1] == 'c') { 2223 // fprintf(F, "%c", chr) --> fputc(chr, F) 2224 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2225 return nullptr; 2226 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2227 } 2228 2229 if (FormatStr[1] == 's') { 2230 // fprintf(F, "%s", str) --> fputs(str, F) 2231 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2232 return nullptr; 2233 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2234 } 2235 return nullptr; 2236 } 2237 2238 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 2239 Function *Callee = CI->getCalledFunction(); 2240 FunctionType *FT = Callee->getFunctionType(); 2241 if (Value *V = optimizeFPrintFString(CI, B)) { 2242 return V; 2243 } 2244 2245 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2246 // floating point arguments. 2247 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2248 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2249 Constant *FIPrintFFn = 2250 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2251 CallInst *New = cast<CallInst>(CI->clone()); 2252 New->setCalledFunction(FIPrintFFn); 2253 B.Insert(New); 2254 return New; 2255 } 2256 return nullptr; 2257 } 2258 2259 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 2260 optimizeErrorReporting(CI, B, 3); 2261 2262 // Get the element size and count. 2263 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2264 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2265 if (SizeC && CountC) { 2266 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2267 2268 // If this is writing zero records, remove the call (it's a noop). 2269 if (Bytes == 0) 2270 return ConstantInt::get(CI->getType(), 0); 2271 2272 // If this is writing one byte, turn it into fputc. 2273 // This optimisation is only valid, if the return value is unused. 2274 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2275 Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char"); 2276 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2277 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2278 } 2279 } 2280 2281 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) 2282 return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2283 CI->getArgOperand(2), CI->getArgOperand(3), B, DL, 2284 TLI); 2285 2286 return nullptr; 2287 } 2288 2289 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 2290 optimizeErrorReporting(CI, B, 1); 2291 2292 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2293 // requires more arguments and thus extra MOVs are required. 2294 if (CI->getFunction()->optForSize()) 2295 return nullptr; 2296 2297 // Check if has any use 2298 if (!CI->use_empty()) { 2299 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) 2300 return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, 2301 TLI); 2302 else 2303 // We can't optimize if return value is used. 2304 return nullptr; 2305 } 2306 2307 // fputs(s,F) --> fwrite(s,1,strlen(s),F) 2308 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2309 if (!Len) 2310 return nullptr; 2311 2312 // Known to have no uses (see above). 2313 return emitFWrite( 2314 CI->getArgOperand(0), 2315 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2316 CI->getArgOperand(1), B, DL, TLI); 2317 } 2318 2319 Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) { 2320 optimizeErrorReporting(CI, B, 1); 2321 2322 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) 2323 return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, 2324 TLI); 2325 2326 return nullptr; 2327 } 2328 2329 Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) { 2330 if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI)) 2331 return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI); 2332 2333 return nullptr; 2334 } 2335 2336 Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) { 2337 if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI)) 2338 return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2339 CI->getArgOperand(2), B, TLI); 2340 2341 return nullptr; 2342 } 2343 2344 Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) { 2345 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) 2346 return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2347 CI->getArgOperand(2), CI->getArgOperand(3), B, DL, 2348 TLI); 2349 2350 return nullptr; 2351 } 2352 2353 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 2354 // Check for a constant string. 2355 StringRef Str; 2356 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2357 return nullptr; 2358 2359 if (Str.empty() && CI->use_empty()) { 2360 // puts("") -> putchar('\n') 2361 Value *Res = emitPutChar(B.getInt32('\n'), B, TLI); 2362 if (CI->use_empty() || !Res) 2363 return Res; 2364 return B.CreateIntCast(Res, CI->getType(), true); 2365 } 2366 2367 return nullptr; 2368 } 2369 2370 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2371 LibFunc Func; 2372 SmallString<20> FloatFuncName = FuncName; 2373 FloatFuncName += 'f'; 2374 if (TLI->getLibFunc(FloatFuncName, Func)) 2375 return TLI->has(Func); 2376 return false; 2377 } 2378 2379 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2380 IRBuilder<> &Builder) { 2381 LibFunc Func; 2382 Function *Callee = CI->getCalledFunction(); 2383 // Check for string/memory library functions. 2384 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2385 // Make sure we never change the calling convention. 2386 assert((ignoreCallingConv(Func) || 2387 isCallingConvCCompatible(CI)) && 2388 "Optimizing string/memory libcall would change the calling convention"); 2389 switch (Func) { 2390 case LibFunc_strcat: 2391 return optimizeStrCat(CI, Builder); 2392 case LibFunc_strncat: 2393 return optimizeStrNCat(CI, Builder); 2394 case LibFunc_strchr: 2395 return optimizeStrChr(CI, Builder); 2396 case LibFunc_strrchr: 2397 return optimizeStrRChr(CI, Builder); 2398 case LibFunc_strcmp: 2399 return optimizeStrCmp(CI, Builder); 2400 case LibFunc_strncmp: 2401 return optimizeStrNCmp(CI, Builder); 2402 case LibFunc_strcpy: 2403 return optimizeStrCpy(CI, Builder); 2404 case LibFunc_stpcpy: 2405 return optimizeStpCpy(CI, Builder); 2406 case LibFunc_strncpy: 2407 return optimizeStrNCpy(CI, Builder); 2408 case LibFunc_strlen: 2409 return optimizeStrLen(CI, Builder); 2410 case LibFunc_strpbrk: 2411 return optimizeStrPBrk(CI, Builder); 2412 case LibFunc_strtol: 2413 case LibFunc_strtod: 2414 case LibFunc_strtof: 2415 case LibFunc_strtoul: 2416 case LibFunc_strtoll: 2417 case LibFunc_strtold: 2418 case LibFunc_strtoull: 2419 return optimizeStrTo(CI, Builder); 2420 case LibFunc_strspn: 2421 return optimizeStrSpn(CI, Builder); 2422 case LibFunc_strcspn: 2423 return optimizeStrCSpn(CI, Builder); 2424 case LibFunc_strstr: 2425 return optimizeStrStr(CI, Builder); 2426 case LibFunc_memchr: 2427 return optimizeMemChr(CI, Builder); 2428 case LibFunc_memcmp: 2429 return optimizeMemCmp(CI, Builder); 2430 case LibFunc_memcpy: 2431 return optimizeMemCpy(CI, Builder); 2432 case LibFunc_memmove: 2433 return optimizeMemMove(CI, Builder); 2434 case LibFunc_memset: 2435 return optimizeMemSet(CI, Builder); 2436 case LibFunc_realloc: 2437 return optimizeRealloc(CI, Builder); 2438 case LibFunc_wcslen: 2439 return optimizeWcslen(CI, Builder); 2440 default: 2441 break; 2442 } 2443 } 2444 return nullptr; 2445 } 2446 2447 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2448 LibFunc Func, 2449 IRBuilder<> &Builder) { 2450 // Don't optimize calls that require strict floating point semantics. 2451 if (CI->isStrictFP()) 2452 return nullptr; 2453 2454 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 2455 return V; 2456 2457 switch (Func) { 2458 case LibFunc_sinpif: 2459 case LibFunc_sinpi: 2460 case LibFunc_cospif: 2461 case LibFunc_cospi: 2462 return optimizeSinCosPi(CI, Builder); 2463 case LibFunc_powf: 2464 case LibFunc_pow: 2465 case LibFunc_powl: 2466 return optimizePow(CI, Builder); 2467 case LibFunc_exp2l: 2468 case LibFunc_exp2: 2469 case LibFunc_exp2f: 2470 return optimizeExp2(CI, Builder); 2471 case LibFunc_fabsf: 2472 case LibFunc_fabs: 2473 case LibFunc_fabsl: 2474 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2475 case LibFunc_sqrtf: 2476 case LibFunc_sqrt: 2477 case LibFunc_sqrtl: 2478 return optimizeSqrt(CI, Builder); 2479 case LibFunc_log: 2480 case LibFunc_log10: 2481 case LibFunc_log1p: 2482 case LibFunc_log2: 2483 case LibFunc_logb: 2484 return optimizeLog(CI, Builder); 2485 case LibFunc_tan: 2486 case LibFunc_tanf: 2487 case LibFunc_tanl: 2488 return optimizeTan(CI, Builder); 2489 case LibFunc_ceil: 2490 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2491 case LibFunc_floor: 2492 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2493 case LibFunc_round: 2494 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2495 case LibFunc_nearbyint: 2496 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2497 case LibFunc_rint: 2498 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2499 case LibFunc_trunc: 2500 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2501 case LibFunc_acos: 2502 case LibFunc_acosh: 2503 case LibFunc_asin: 2504 case LibFunc_asinh: 2505 case LibFunc_atan: 2506 case LibFunc_atanh: 2507 case LibFunc_cbrt: 2508 case LibFunc_cosh: 2509 case LibFunc_exp: 2510 case LibFunc_exp10: 2511 case LibFunc_expm1: 2512 case LibFunc_cos: 2513 case LibFunc_sin: 2514 case LibFunc_sinh: 2515 case LibFunc_tanh: 2516 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 2517 return optimizeUnaryDoubleFP(CI, Builder, true); 2518 return nullptr; 2519 case LibFunc_copysign: 2520 if (hasFloatVersion(CI->getCalledFunction()->getName())) 2521 return optimizeBinaryDoubleFP(CI, Builder); 2522 return nullptr; 2523 case LibFunc_fminf: 2524 case LibFunc_fmin: 2525 case LibFunc_fminl: 2526 case LibFunc_fmaxf: 2527 case LibFunc_fmax: 2528 case LibFunc_fmaxl: 2529 return optimizeFMinFMax(CI, Builder); 2530 case LibFunc_cabs: 2531 case LibFunc_cabsf: 2532 case LibFunc_cabsl: 2533 return optimizeCAbs(CI, Builder); 2534 default: 2535 return nullptr; 2536 } 2537 } 2538 2539 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 2540 // TODO: Split out the code below that operates on FP calls so that 2541 // we can all non-FP calls with the StrictFP attribute to be 2542 // optimized. 2543 if (CI->isNoBuiltin()) 2544 return nullptr; 2545 2546 LibFunc Func; 2547 Function *Callee = CI->getCalledFunction(); 2548 2549 SmallVector<OperandBundleDef, 2> OpBundles; 2550 CI->getOperandBundlesAsDefs(OpBundles); 2551 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2552 bool isCallingConvC = isCallingConvCCompatible(CI); 2553 2554 // Command-line parameter overrides instruction attribute. 2555 // This can't be moved to optimizeFloatingPointLibCall() because it may be 2556 // used by the intrinsic optimizations. 2557 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2558 UnsafeFPShrink = EnableUnsafeFPShrink; 2559 else if (isa<FPMathOperator>(CI) && CI->isFast()) 2560 UnsafeFPShrink = true; 2561 2562 // First, check for intrinsics. 2563 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2564 if (!isCallingConvC) 2565 return nullptr; 2566 // The FP intrinsics have corresponding constrained versions so we don't 2567 // need to check for the StrictFP attribute here. 2568 switch (II->getIntrinsicID()) { 2569 case Intrinsic::pow: 2570 return optimizePow(CI, Builder); 2571 case Intrinsic::exp2: 2572 return optimizeExp2(CI, Builder); 2573 case Intrinsic::log: 2574 return optimizeLog(CI, Builder); 2575 case Intrinsic::sqrt: 2576 return optimizeSqrt(CI, Builder); 2577 // TODO: Use foldMallocMemset() with memset intrinsic. 2578 default: 2579 return nullptr; 2580 } 2581 } 2582 2583 // Also try to simplify calls to fortified library functions. 2584 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 2585 // Try to further simplify the result. 2586 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 2587 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 2588 // Use an IR Builder from SimplifiedCI if available instead of CI 2589 // to guarantee we reach all uses we might replace later on. 2590 IRBuilder<> TmpBuilder(SimplifiedCI); 2591 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { 2592 // If we were able to further simplify, remove the now redundant call. 2593 SimplifiedCI->replaceAllUsesWith(V); 2594 SimplifiedCI->eraseFromParent(); 2595 return V; 2596 } 2597 } 2598 return SimplifiedFortifiedCI; 2599 } 2600 2601 // Then check for known library functions. 2602 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2603 // We never change the calling convention. 2604 if (!ignoreCallingConv(Func) && !isCallingConvC) 2605 return nullptr; 2606 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 2607 return V; 2608 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 2609 return V; 2610 switch (Func) { 2611 case LibFunc_ffs: 2612 case LibFunc_ffsl: 2613 case LibFunc_ffsll: 2614 return optimizeFFS(CI, Builder); 2615 case LibFunc_fls: 2616 case LibFunc_flsl: 2617 case LibFunc_flsll: 2618 return optimizeFls(CI, Builder); 2619 case LibFunc_abs: 2620 case LibFunc_labs: 2621 case LibFunc_llabs: 2622 return optimizeAbs(CI, Builder); 2623 case LibFunc_isdigit: 2624 return optimizeIsDigit(CI, Builder); 2625 case LibFunc_isascii: 2626 return optimizeIsAscii(CI, Builder); 2627 case LibFunc_toascii: 2628 return optimizeToAscii(CI, Builder); 2629 case LibFunc_atoi: 2630 case LibFunc_atol: 2631 case LibFunc_atoll: 2632 return optimizeAtoi(CI, Builder); 2633 case LibFunc_strtol: 2634 case LibFunc_strtoll: 2635 return optimizeStrtol(CI, Builder); 2636 case LibFunc_printf: 2637 return optimizePrintF(CI, Builder); 2638 case LibFunc_sprintf: 2639 return optimizeSPrintF(CI, Builder); 2640 case LibFunc_snprintf: 2641 return optimizeSnPrintF(CI, Builder); 2642 case LibFunc_fprintf: 2643 return optimizeFPrintF(CI, Builder); 2644 case LibFunc_fwrite: 2645 return optimizeFWrite(CI, Builder); 2646 case LibFunc_fread: 2647 return optimizeFRead(CI, Builder); 2648 case LibFunc_fputs: 2649 return optimizeFPuts(CI, Builder); 2650 case LibFunc_fgets: 2651 return optimizeFGets(CI, Builder); 2652 case LibFunc_fputc: 2653 return optimizeFPutc(CI, Builder); 2654 case LibFunc_fgetc: 2655 return optimizeFGetc(CI, Builder); 2656 case LibFunc_puts: 2657 return optimizePuts(CI, Builder); 2658 case LibFunc_perror: 2659 return optimizeErrorReporting(CI, Builder); 2660 case LibFunc_vfprintf: 2661 case LibFunc_fiprintf: 2662 return optimizeErrorReporting(CI, Builder, 0); 2663 default: 2664 return nullptr; 2665 } 2666 } 2667 return nullptr; 2668 } 2669 2670 LibCallSimplifier::LibCallSimplifier( 2671 const DataLayout &DL, const TargetLibraryInfo *TLI, 2672 OptimizationRemarkEmitter &ORE, 2673 function_ref<void(Instruction *, Value *)> Replacer) 2674 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), 2675 UnsafeFPShrink(false), Replacer(Replacer) {} 2676 2677 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 2678 // Indirect through the replacer used in this instance. 2679 Replacer(I, With); 2680 } 2681 2682 // TODO: 2683 // Additional cases that we need to add to this file: 2684 // 2685 // cbrt: 2686 // * cbrt(expN(X)) -> expN(x/3) 2687 // * cbrt(sqrt(x)) -> pow(x,1/6) 2688 // * cbrt(cbrt(x)) -> pow(x,1/9) 2689 // 2690 // exp, expf, expl: 2691 // * exp(log(x)) -> x 2692 // 2693 // log, logf, logl: 2694 // * log(exp(x)) -> x 2695 // * log(exp(y)) -> y*log(e) 2696 // * log(exp10(y)) -> y*log(10) 2697 // * log(sqrt(x)) -> 0.5*log(x) 2698 // 2699 // pow, powf, powl: 2700 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2701 // * pow(pow(x,y),z)-> pow(x,y*z) 2702 // 2703 // signbit: 2704 // * signbit(cnst) -> cnst' 2705 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2706 // 2707 // sqrt, sqrtf, sqrtl: 2708 // * sqrt(expN(x)) -> expN(x*0.5) 2709 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2710 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2711 // 2712 2713 //===----------------------------------------------------------------------===// 2714 // Fortified Library Call Optimizations 2715 //===----------------------------------------------------------------------===// 2716 2717 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2718 unsigned ObjSizeOp, 2719 unsigned SizeOp, 2720 bool isString) { 2721 if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp)) 2722 return true; 2723 if (ConstantInt *ObjSizeCI = 2724 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2725 if (ObjSizeCI->isMinusOne()) 2726 return true; 2727 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2728 if (OnlyLowerUnknownSize) 2729 return false; 2730 if (isString) { 2731 uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp)); 2732 // If the length is 0 we don't know how long it is and so we can't 2733 // remove the check. 2734 if (Len == 0) 2735 return false; 2736 return ObjSizeCI->getZExtValue() >= Len; 2737 } 2738 if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp))) 2739 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2740 } 2741 return false; 2742 } 2743 2744 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 2745 IRBuilder<> &B) { 2746 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2747 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2748 CI->getArgOperand(2)); 2749 return CI->getArgOperand(0); 2750 } 2751 return nullptr; 2752 } 2753 2754 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 2755 IRBuilder<> &B) { 2756 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2757 B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2758 CI->getArgOperand(2)); 2759 return CI->getArgOperand(0); 2760 } 2761 return nullptr; 2762 } 2763 2764 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 2765 IRBuilder<> &B) { 2766 // TODO: Try foldMallocMemset() here. 2767 2768 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2769 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2770 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2771 return CI->getArgOperand(0); 2772 } 2773 return nullptr; 2774 } 2775 2776 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 2777 IRBuilder<> &B, 2778 LibFunc Func) { 2779 Function *Callee = CI->getCalledFunction(); 2780 StringRef Name = Callee->getName(); 2781 const DataLayout &DL = CI->getModule()->getDataLayout(); 2782 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 2783 *ObjSize = CI->getArgOperand(2); 2784 2785 // __stpcpy_chk(x,x,...) -> x+strlen(x) 2786 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 2787 Value *StrLen = emitStrLen(Src, B, DL, TLI); 2788 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 2789 } 2790 2791 // If a) we don't have any length information, or b) we know this will 2792 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 2793 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 2794 // TODO: It might be nice to get a maximum length out of the possible 2795 // string lengths for varying. 2796 if (isFortifiedCallFoldable(CI, 2, 1, true)) 2797 return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6)); 2798 2799 if (OnlyLowerUnknownSize) 2800 return nullptr; 2801 2802 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 2803 uint64_t Len = GetStringLength(Src); 2804 if (Len == 0) 2805 return nullptr; 2806 2807 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 2808 Value *LenV = ConstantInt::get(SizeTTy, Len); 2809 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 2810 // If the function was an __stpcpy_chk, and we were able to fold it into 2811 // a __memcpy_chk, we still need to return the correct end pointer. 2812 if (Ret && Func == LibFunc_stpcpy_chk) 2813 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 2814 return Ret; 2815 } 2816 2817 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 2818 IRBuilder<> &B, 2819 LibFunc Func) { 2820 Function *Callee = CI->getCalledFunction(); 2821 StringRef Name = Callee->getName(); 2822 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2823 Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2824 CI->getArgOperand(2), B, TLI, Name.substr(2, 7)); 2825 return Ret; 2826 } 2827 return nullptr; 2828 } 2829 2830 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 2831 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 2832 // Some clang users checked for _chk libcall availability using: 2833 // __has_builtin(__builtin___memcpy_chk) 2834 // When compiling with -fno-builtin, this is always true. 2835 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 2836 // end up with fortified libcalls, which isn't acceptable in a freestanding 2837 // environment which only provides their non-fortified counterparts. 2838 // 2839 // Until we change clang and/or teach external users to check for availability 2840 // differently, disregard the "nobuiltin" attribute and TLI::has. 2841 // 2842 // PR23093. 2843 2844 LibFunc Func; 2845 Function *Callee = CI->getCalledFunction(); 2846 2847 SmallVector<OperandBundleDef, 2> OpBundles; 2848 CI->getOperandBundlesAsDefs(OpBundles); 2849 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2850 bool isCallingConvC = isCallingConvCCompatible(CI); 2851 2852 // First, check that this is a known library functions and that the prototype 2853 // is correct. 2854 if (!TLI->getLibFunc(*Callee, Func)) 2855 return nullptr; 2856 2857 // We never change the calling convention. 2858 if (!ignoreCallingConv(Func) && !isCallingConvC) 2859 return nullptr; 2860 2861 switch (Func) { 2862 case LibFunc_memcpy_chk: 2863 return optimizeMemCpyChk(CI, Builder); 2864 case LibFunc_memmove_chk: 2865 return optimizeMemMoveChk(CI, Builder); 2866 case LibFunc_memset_chk: 2867 return optimizeMemSetChk(CI, Builder); 2868 case LibFunc_stpcpy_chk: 2869 case LibFunc_strcpy_chk: 2870 return optimizeStrpCpyChk(CI, Builder, Func); 2871 case LibFunc_stpncpy_chk: 2872 case LibFunc_strncpy_chk: 2873 return optimizeStrpNCpyChk(CI, Builder, Func); 2874 default: 2875 break; 2876 } 2877 return nullptr; 2878 } 2879 2880 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 2881 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 2882 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 2883