1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is a utility pass used for testing the InstructionSimplify analysis.
11 // The analysis is applied to every instruction, and if it simplifies then the
12 // instruction is replaced by the simplification.  If you are looking for a pass
13 // that performs serious instruction folding, use the instcombine pass instead.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/KnownBits.h"
35 #include "llvm/Transforms/Utils/BuildLibCalls.h"
36 #include "llvm/Transforms/Utils/Local.h"
37 
38 using namespace llvm;
39 using namespace PatternMatch;
40 
41 static cl::opt<bool>
42     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
43                          cl::init(false),
44                          cl::desc("Enable unsafe double to float "
45                                   "shrinking for math lib calls"));
46 
47 
48 //===----------------------------------------------------------------------===//
49 // Helper Functions
50 //===----------------------------------------------------------------------===//
51 
52 static bool ignoreCallingConv(LibFunc Func) {
53   return Func == LibFunc_abs || Func == LibFunc_labs ||
54          Func == LibFunc_llabs || Func == LibFunc_strlen;
55 }
56 
57 static bool isCallingConvCCompatible(CallInst *CI) {
58   switch(CI->getCallingConv()) {
59   default:
60     return false;
61   case llvm::CallingConv::C:
62     return true;
63   case llvm::CallingConv::ARM_APCS:
64   case llvm::CallingConv::ARM_AAPCS:
65   case llvm::CallingConv::ARM_AAPCS_VFP: {
66 
67     // The iOS ABI diverges from the standard in some cases, so for now don't
68     // try to simplify those calls.
69     if (Triple(CI->getModule()->getTargetTriple()).isiOS())
70       return false;
71 
72     auto *FuncTy = CI->getFunctionType();
73 
74     if (!FuncTy->getReturnType()->isPointerTy() &&
75         !FuncTy->getReturnType()->isIntegerTy() &&
76         !FuncTy->getReturnType()->isVoidTy())
77       return false;
78 
79     for (auto Param : FuncTy->params()) {
80       if (!Param->isPointerTy() && !Param->isIntegerTy())
81         return false;
82     }
83     return true;
84   }
85   }
86   return false;
87 }
88 
89 /// Return true if it is only used in equality comparisons with With.
90 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
91   for (User *U : V->users()) {
92     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
93       if (IC->isEquality() && IC->getOperand(1) == With)
94         continue;
95     // Unknown instruction.
96     return false;
97   }
98   return true;
99 }
100 
101 static bool callHasFloatingPointArgument(const CallInst *CI) {
102   return any_of(CI->operands(), [](const Use &OI) {
103     return OI->getType()->isFloatingPointTy();
104   });
105 }
106 
107 //===----------------------------------------------------------------------===//
108 // String and Memory Library Call Optimizations
109 //===----------------------------------------------------------------------===//
110 
111 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
112   // Extract some information from the instruction
113   Value *Dst = CI->getArgOperand(0);
114   Value *Src = CI->getArgOperand(1);
115 
116   // See if we can get the length of the input string.
117   uint64_t Len = GetStringLength(Src);
118   if (Len == 0)
119     return nullptr;
120   --Len; // Unbias length.
121 
122   // Handle the simple, do-nothing case: strcat(x, "") -> x
123   if (Len == 0)
124     return Dst;
125 
126   return emitStrLenMemCpy(Src, Dst, Len, B);
127 }
128 
129 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
130                                            IRBuilder<> &B) {
131   // We need to find the end of the destination string.  That's where the
132   // memory is to be moved to. We just generate a call to strlen.
133   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
134   if (!DstLen)
135     return nullptr;
136 
137   // Now that we have the destination's length, we must index into the
138   // destination's pointer to get the actual memcpy destination (end of
139   // the string .. we're concatenating).
140   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
141 
142   // We have enough information to now generate the memcpy call to do the
143   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
144   B.CreateMemCpy(CpyDst, Src,
145                  ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1),
146                  1);
147   return Dst;
148 }
149 
150 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
151   // Extract some information from the instruction.
152   Value *Dst = CI->getArgOperand(0);
153   Value *Src = CI->getArgOperand(1);
154   uint64_t Len;
155 
156   // We don't do anything if length is not constant.
157   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
158     Len = LengthArg->getZExtValue();
159   else
160     return nullptr;
161 
162   // See if we can get the length of the input string.
163   uint64_t SrcLen = GetStringLength(Src);
164   if (SrcLen == 0)
165     return nullptr;
166   --SrcLen; // Unbias length.
167 
168   // Handle the simple, do-nothing cases:
169   // strncat(x, "", c) -> x
170   // strncat(x,  c, 0) -> x
171   if (SrcLen == 0 || Len == 0)
172     return Dst;
173 
174   // We don't optimize this case.
175   if (Len < SrcLen)
176     return nullptr;
177 
178   // strncat(x, s, c) -> strcat(x, s)
179   // s is constant so the strcat can be optimized further.
180   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
181 }
182 
183 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
184   Function *Callee = CI->getCalledFunction();
185   FunctionType *FT = Callee->getFunctionType();
186   Value *SrcStr = CI->getArgOperand(0);
187 
188   // If the second operand is non-constant, see if we can compute the length
189   // of the input string and turn this into memchr.
190   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
191   if (!CharC) {
192     uint64_t Len = GetStringLength(SrcStr);
193     if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
194       return nullptr;
195 
196     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
197                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
198                       B, DL, TLI);
199   }
200 
201   // Otherwise, the character is a constant, see if the first argument is
202   // a string literal.  If so, we can constant fold.
203   StringRef Str;
204   if (!getConstantStringInfo(SrcStr, Str)) {
205     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
206       return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI),
207                          "strchr");
208     return nullptr;
209   }
210 
211   // Compute the offset, make sure to handle the case when we're searching for
212   // zero (a weird way to spell strlen).
213   size_t I = (0xFF & CharC->getSExtValue()) == 0
214                  ? Str.size()
215                  : Str.find(CharC->getSExtValue());
216   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
217     return Constant::getNullValue(CI->getType());
218 
219   // strchr(s+n,c)  -> gep(s+n+i,c)
220   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
221 }
222 
223 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
224   Value *SrcStr = CI->getArgOperand(0);
225   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
226 
227   // Cannot fold anything if we're not looking for a constant.
228   if (!CharC)
229     return nullptr;
230 
231   StringRef Str;
232   if (!getConstantStringInfo(SrcStr, Str)) {
233     // strrchr(s, 0) -> strchr(s, 0)
234     if (CharC->isZero())
235       return emitStrChr(SrcStr, '\0', B, TLI);
236     return nullptr;
237   }
238 
239   // Compute the offset.
240   size_t I = (0xFF & CharC->getSExtValue()) == 0
241                  ? Str.size()
242                  : Str.rfind(CharC->getSExtValue());
243   if (I == StringRef::npos) // Didn't find the char. Return null.
244     return Constant::getNullValue(CI->getType());
245 
246   // strrchr(s+n,c) -> gep(s+n+i,c)
247   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
248 }
249 
250 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
251   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
252   if (Str1P == Str2P) // strcmp(x,x)  -> 0
253     return ConstantInt::get(CI->getType(), 0);
254 
255   StringRef Str1, Str2;
256   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
257   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
258 
259   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
260   if (HasStr1 && HasStr2)
261     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
262 
263   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
264     return B.CreateNeg(
265         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
266 
267   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
268     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
269 
270   // strcmp(P, "x") -> memcmp(P, "x", 2)
271   uint64_t Len1 = GetStringLength(Str1P);
272   uint64_t Len2 = GetStringLength(Str2P);
273   if (Len1 && Len2) {
274     return emitMemCmp(Str1P, Str2P,
275                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
276                                        std::min(Len1, Len2)),
277                       B, DL, TLI);
278   }
279 
280   return nullptr;
281 }
282 
283 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
284   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
285   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
286     return ConstantInt::get(CI->getType(), 0);
287 
288   // Get the length argument if it is constant.
289   uint64_t Length;
290   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
291     Length = LengthArg->getZExtValue();
292   else
293     return nullptr;
294 
295   if (Length == 0) // strncmp(x,y,0)   -> 0
296     return ConstantInt::get(CI->getType(), 0);
297 
298   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
299     return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
300 
301   StringRef Str1, Str2;
302   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
303   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
304 
305   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
306   if (HasStr1 && HasStr2) {
307     StringRef SubStr1 = Str1.substr(0, Length);
308     StringRef SubStr2 = Str2.substr(0, Length);
309     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
310   }
311 
312   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
313     return B.CreateNeg(
314         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
315 
316   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
317     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
318 
319   return nullptr;
320 }
321 
322 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
323   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
324   if (Dst == Src) // strcpy(x,x)  -> x
325     return Src;
326 
327   // See if we can get the length of the input string.
328   uint64_t Len = GetStringLength(Src);
329   if (Len == 0)
330     return nullptr;
331 
332   // We have enough information to now generate the memcpy call to do the
333   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
334   B.CreateMemCpy(Dst, Src,
335                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1);
336   return Dst;
337 }
338 
339 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
340   Function *Callee = CI->getCalledFunction();
341   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
342   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
343     Value *StrLen = emitStrLen(Src, B, DL, TLI);
344     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
345   }
346 
347   // See if we can get the length of the input string.
348   uint64_t Len = GetStringLength(Src);
349   if (Len == 0)
350     return nullptr;
351 
352   Type *PT = Callee->getFunctionType()->getParamType(0);
353   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
354   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
355                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
356 
357   // We have enough information to now generate the memcpy call to do the
358   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
359   B.CreateMemCpy(Dst, Src, LenV, 1);
360   return DstEnd;
361 }
362 
363 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
364   Function *Callee = CI->getCalledFunction();
365   Value *Dst = CI->getArgOperand(0);
366   Value *Src = CI->getArgOperand(1);
367   Value *LenOp = CI->getArgOperand(2);
368 
369   // See if we can get the length of the input string.
370   uint64_t SrcLen = GetStringLength(Src);
371   if (SrcLen == 0)
372     return nullptr;
373   --SrcLen;
374 
375   if (SrcLen == 0) {
376     // strncpy(x, "", y) -> memset(x, '\0', y, 1)
377     B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
378     return Dst;
379   }
380 
381   uint64_t Len;
382   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
383     Len = LengthArg->getZExtValue();
384   else
385     return nullptr;
386 
387   if (Len == 0)
388     return Dst; // strncpy(x, y, 0) -> x
389 
390   // Let strncpy handle the zero padding
391   if (Len > SrcLen + 1)
392     return nullptr;
393 
394   Type *PT = Callee->getFunctionType()->getParamType(0);
395   // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
396   B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1);
397 
398   return Dst;
399 }
400 
401 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B,
402                                                unsigned CharSize) {
403   Value *Src = CI->getArgOperand(0);
404 
405   // Constant folding: strlen("xyz") -> 3
406   if (uint64_t Len = GetStringLength(Src, CharSize))
407     return ConstantInt::get(CI->getType(), Len - 1);
408 
409   // If s is a constant pointer pointing to a string literal, we can fold
410   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
411   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
412   // We only try to simplify strlen when the pointer s points to an array
413   // of i8. Otherwise, we would need to scale the offset x before doing the
414   // subtraction. This will make the optimization more complex, and it's not
415   // very useful because calling strlen for a pointer of other types is
416   // very uncommon.
417   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
418     if (!isGEPBasedOnPointerToString(GEP, CharSize))
419       return nullptr;
420 
421     ConstantDataArraySlice Slice;
422     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
423       uint64_t NullTermIdx;
424       if (Slice.Array == nullptr) {
425         NullTermIdx = 0;
426       } else {
427         NullTermIdx = ~((uint64_t)0);
428         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
429           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
430             NullTermIdx = I;
431             break;
432           }
433         }
434         // If the string does not have '\0', leave it to strlen to compute
435         // its length.
436         if (NullTermIdx == ~((uint64_t)0))
437           return nullptr;
438       }
439 
440       Value *Offset = GEP->getOperand(2);
441       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
442       Known.Zero.flipAllBits();
443       uint64_t ArrSize =
444              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
445 
446       // KnownZero's bits are flipped, so zeros in KnownZero now represent
447       // bits known to be zeros in Offset, and ones in KnowZero represent
448       // bits unknown in Offset. Therefore, Offset is known to be in range
449       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
450       // unsigned-less-than NullTermIdx.
451       //
452       // If Offset is not provably in the range [0, NullTermIdx], we can still
453       // optimize if we can prove that the program has undefined behavior when
454       // Offset is outside that range. That is the case when GEP->getOperand(0)
455       // is a pointer to an object whose memory extent is NullTermIdx+1.
456       if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
457           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
458            NullTermIdx == ArrSize - 1)) {
459         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
460         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
461                            Offset);
462       }
463     }
464 
465     return nullptr;
466   }
467 
468   // strlen(x?"foo":"bars") --> x ? 3 : 4
469   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
470     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
471     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
472     if (LenTrue && LenFalse) {
473       ORE.emit([&]() {
474         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
475                << "folded strlen(select) to select of constants";
476       });
477       return B.CreateSelect(SI->getCondition(),
478                             ConstantInt::get(CI->getType(), LenTrue - 1),
479                             ConstantInt::get(CI->getType(), LenFalse - 1));
480     }
481   }
482 
483   // strlen(x) != 0 --> *x != 0
484   // strlen(x) == 0 --> *x == 0
485   if (isOnlyUsedInZeroEqualityComparison(CI))
486     return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
487 
488   return nullptr;
489 }
490 
491 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
492   return optimizeStringLength(CI, B, 8);
493 }
494 
495 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) {
496   Module &M = *CI->getParent()->getParent()->getParent();
497   unsigned WCharSize = TLI->getWCharSize(M) * 8;
498   // We cannot perform this optimization without wchar_size metadata.
499   if (WCharSize == 0)
500     return nullptr;
501 
502   return optimizeStringLength(CI, B, WCharSize);
503 }
504 
505 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
506   StringRef S1, S2;
507   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
508   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
509 
510   // strpbrk(s, "") -> nullptr
511   // strpbrk("", s) -> nullptr
512   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
513     return Constant::getNullValue(CI->getType());
514 
515   // Constant folding.
516   if (HasS1 && HasS2) {
517     size_t I = S1.find_first_of(S2);
518     if (I == StringRef::npos) // No match.
519       return Constant::getNullValue(CI->getType());
520 
521     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
522                        "strpbrk");
523   }
524 
525   // strpbrk(s, "a") -> strchr(s, 'a')
526   if (HasS2 && S2.size() == 1)
527     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
528 
529   return nullptr;
530 }
531 
532 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
533   Value *EndPtr = CI->getArgOperand(1);
534   if (isa<ConstantPointerNull>(EndPtr)) {
535     // With a null EndPtr, this function won't capture the main argument.
536     // It would be readonly too, except that it still may write to errno.
537     CI->addParamAttr(0, Attribute::NoCapture);
538   }
539 
540   return nullptr;
541 }
542 
543 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
544   StringRef S1, S2;
545   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
546   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
547 
548   // strspn(s, "") -> 0
549   // strspn("", s) -> 0
550   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
551     return Constant::getNullValue(CI->getType());
552 
553   // Constant folding.
554   if (HasS1 && HasS2) {
555     size_t Pos = S1.find_first_not_of(S2);
556     if (Pos == StringRef::npos)
557       Pos = S1.size();
558     return ConstantInt::get(CI->getType(), Pos);
559   }
560 
561   return nullptr;
562 }
563 
564 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
565   StringRef S1, S2;
566   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
567   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
568 
569   // strcspn("", s) -> 0
570   if (HasS1 && S1.empty())
571     return Constant::getNullValue(CI->getType());
572 
573   // Constant folding.
574   if (HasS1 && HasS2) {
575     size_t Pos = S1.find_first_of(S2);
576     if (Pos == StringRef::npos)
577       Pos = S1.size();
578     return ConstantInt::get(CI->getType(), Pos);
579   }
580 
581   // strcspn(s, "") -> strlen(s)
582   if (HasS2 && S2.empty())
583     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
584 
585   return nullptr;
586 }
587 
588 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
589   // fold strstr(x, x) -> x.
590   if (CI->getArgOperand(0) == CI->getArgOperand(1))
591     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
592 
593   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
594   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
595     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
596     if (!StrLen)
597       return nullptr;
598     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
599                                  StrLen, B, DL, TLI);
600     if (!StrNCmp)
601       return nullptr;
602     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
603       ICmpInst *Old = cast<ICmpInst>(*UI++);
604       Value *Cmp =
605           B.CreateICmp(Old->getPredicate(), StrNCmp,
606                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
607       replaceAllUsesWith(Old, Cmp);
608     }
609     return CI;
610   }
611 
612   // See if either input string is a constant string.
613   StringRef SearchStr, ToFindStr;
614   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
615   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
616 
617   // fold strstr(x, "") -> x.
618   if (HasStr2 && ToFindStr.empty())
619     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
620 
621   // If both strings are known, constant fold it.
622   if (HasStr1 && HasStr2) {
623     size_t Offset = SearchStr.find(ToFindStr);
624 
625     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
626       return Constant::getNullValue(CI->getType());
627 
628     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
629     Value *Result = castToCStr(CI->getArgOperand(0), B);
630     Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
631     return B.CreateBitCast(Result, CI->getType());
632   }
633 
634   // fold strstr(x, "y") -> strchr(x, 'y').
635   if (HasStr2 && ToFindStr.size() == 1) {
636     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
637     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
638   }
639   return nullptr;
640 }
641 
642 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
643   Value *SrcStr = CI->getArgOperand(0);
644   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
645   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
646 
647   // memchr(x, y, 0) -> null
648   if (LenC && LenC->isZero())
649     return Constant::getNullValue(CI->getType());
650 
651   // From now on we need at least constant length and string.
652   StringRef Str;
653   if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
654     return nullptr;
655 
656   // Truncate the string to LenC. If Str is smaller than LenC we will still only
657   // scan the string, as reading past the end of it is undefined and we can just
658   // return null if we don't find the char.
659   Str = Str.substr(0, LenC->getZExtValue());
660 
661   // If the char is variable but the input str and length are not we can turn
662   // this memchr call into a simple bit field test. Of course this only works
663   // when the return value is only checked against null.
664   //
665   // It would be really nice to reuse switch lowering here but we can't change
666   // the CFG at this point.
667   //
668   // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
669   //   after bounds check.
670   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
671     unsigned char Max =
672         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
673                           reinterpret_cast<const unsigned char *>(Str.end()));
674 
675     // Make sure the bit field we're about to create fits in a register on the
676     // target.
677     // FIXME: On a 64 bit architecture this prevents us from using the
678     // interesting range of alpha ascii chars. We could do better by emitting
679     // two bitfields or shifting the range by 64 if no lower chars are used.
680     if (!DL.fitsInLegalInteger(Max + 1))
681       return nullptr;
682 
683     // For the bit field use a power-of-2 type with at least 8 bits to avoid
684     // creating unnecessary illegal types.
685     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
686 
687     // Now build the bit field.
688     APInt Bitfield(Width, 0);
689     for (char C : Str)
690       Bitfield.setBit((unsigned char)C);
691     Value *BitfieldC = B.getInt(Bitfield);
692 
693     // First check that the bit field access is within bounds.
694     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
695     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
696                                  "memchr.bounds");
697 
698     // Create code that checks if the given bit is set in the field.
699     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
700     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
701 
702     // Finally merge both checks and cast to pointer type. The inttoptr
703     // implicitly zexts the i1 to intptr type.
704     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
705   }
706 
707   // Check if all arguments are constants.  If so, we can constant fold.
708   if (!CharC)
709     return nullptr;
710 
711   // Compute the offset.
712   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
713   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
714     return Constant::getNullValue(CI->getType());
715 
716   // memchr(s+n,c,l) -> gep(s+n+i,c)
717   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
718 }
719 
720 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
721   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
722 
723   if (LHS == RHS) // memcmp(s,s,x) -> 0
724     return Constant::getNullValue(CI->getType());
725 
726   // Make sure we have a constant length.
727   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
728   if (!LenC)
729     return nullptr;
730 
731   uint64_t Len = LenC->getZExtValue();
732   if (Len == 0) // memcmp(s1,s2,0) -> 0
733     return Constant::getNullValue(CI->getType());
734 
735   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
736   if (Len == 1) {
737     Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"),
738                                CI->getType(), "lhsv");
739     Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"),
740                                CI->getType(), "rhsv");
741     return B.CreateSub(LHSV, RHSV, "chardiff");
742   }
743 
744   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
745   // TODO: The case where both inputs are constants does not need to be limited
746   // to legal integers or equality comparison. See block below this.
747   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
748     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
749     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
750 
751     // First, see if we can fold either argument to a constant.
752     Value *LHSV = nullptr;
753     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
754       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
755       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
756     }
757     Value *RHSV = nullptr;
758     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
759       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
760       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
761     }
762 
763     // Don't generate unaligned loads. If either source is constant data,
764     // alignment doesn't matter for that source because there is no load.
765     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
766         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
767       if (!LHSV) {
768         Type *LHSPtrTy =
769             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
770         LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
771       }
772       if (!RHSV) {
773         Type *RHSPtrTy =
774             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
775         RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
776       }
777       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
778     }
779   }
780 
781   // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
782   // TODO: This is limited to i8 arrays.
783   StringRef LHSStr, RHSStr;
784   if (getConstantStringInfo(LHS, LHSStr) &&
785       getConstantStringInfo(RHS, RHSStr)) {
786     // Make sure we're not reading out-of-bounds memory.
787     if (Len > LHSStr.size() || Len > RHSStr.size())
788       return nullptr;
789     // Fold the memcmp and normalize the result.  This way we get consistent
790     // results across multiple platforms.
791     uint64_t Ret = 0;
792     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
793     if (Cmp < 0)
794       Ret = -1;
795     else if (Cmp > 0)
796       Ret = 1;
797     return ConstantInt::get(CI->getType(), Ret);
798   }
799 
800   return nullptr;
801 }
802 
803 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
804   // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
805   B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
806                  CI->getArgOperand(2), 1);
807   return CI->getArgOperand(0);
808 }
809 
810 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
811   // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
812   B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
813                   CI->getArgOperand(2), 1);
814   return CI->getArgOperand(0);
815 }
816 
817 // TODO: Does this belong in BuildLibCalls or should all of those similar
818 // functions be moved here?
819 static Value *emitCalloc(Value *Num, Value *Size, const AttributeList &Attrs,
820                          IRBuilder<> &B, const TargetLibraryInfo &TLI) {
821   LibFunc Func;
822   if (!TLI.getLibFunc("calloc", Func) || !TLI.has(Func))
823     return nullptr;
824 
825   Module *M = B.GetInsertBlock()->getModule();
826   const DataLayout &DL = M->getDataLayout();
827   IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext()));
828   Value *Calloc = M->getOrInsertFunction("calloc", Attrs, B.getInt8PtrTy(),
829                                          PtrType, PtrType);
830   CallInst *CI = B.CreateCall(Calloc, { Num, Size }, "calloc");
831 
832   if (const auto *F = dyn_cast<Function>(Calloc->stripPointerCasts()))
833     CI->setCallingConv(F->getCallingConv());
834 
835   return CI;
836 }
837 
838 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
839 static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B,
840                                const TargetLibraryInfo &TLI) {
841   // This has to be a memset of zeros (bzero).
842   auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
843   if (!FillValue || FillValue->getZExtValue() != 0)
844     return nullptr;
845 
846   // TODO: We should handle the case where the malloc has more than one use.
847   // This is necessary to optimize common patterns such as when the result of
848   // the malloc is checked against null or when a memset intrinsic is used in
849   // place of a memset library call.
850   auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
851   if (!Malloc || !Malloc->hasOneUse())
852     return nullptr;
853 
854   // Is the inner call really malloc()?
855   Function *InnerCallee = Malloc->getCalledFunction();
856   if (!InnerCallee)
857     return nullptr;
858 
859   LibFunc Func;
860   if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
861       Func != LibFunc_malloc)
862     return nullptr;
863 
864   // The memset must cover the same number of bytes that are malloc'd.
865   if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
866     return nullptr;
867 
868   // Replace the malloc with a calloc. We need the data layout to know what the
869   // actual size of a 'size_t' parameter is.
870   B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
871   const DataLayout &DL = Malloc->getModule()->getDataLayout();
872   IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
873   Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
874                              Malloc->getArgOperand(0), Malloc->getAttributes(),
875                              B, TLI);
876   if (!Calloc)
877     return nullptr;
878 
879   Malloc->replaceAllUsesWith(Calloc);
880   Malloc->eraseFromParent();
881 
882   return Calloc;
883 }
884 
885 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
886   if (auto *Calloc = foldMallocMemset(CI, B, *TLI))
887     return Calloc;
888 
889   // memset(p, v, n) -> llvm.memset(p, v, n, 1)
890   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
891   B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
892   return CI->getArgOperand(0);
893 }
894 
895 //===----------------------------------------------------------------------===//
896 // Math Library Optimizations
897 //===----------------------------------------------------------------------===//
898 
899 /// Return a variant of Val with float type.
900 /// Currently this works in two cases: If Val is an FPExtension of a float
901 /// value to something bigger, simply return the operand.
902 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
903 /// loss of precision do so.
904 static Value *valueHasFloatPrecision(Value *Val) {
905   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
906     Value *Op = Cast->getOperand(0);
907     if (Op->getType()->isFloatTy())
908       return Op;
909   }
910   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
911     APFloat F = Const->getValueAPF();
912     bool losesInfo;
913     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
914                     &losesInfo);
915     if (!losesInfo)
916       return ConstantFP::get(Const->getContext(), F);
917   }
918   return nullptr;
919 }
920 
921 /// Shrink double -> float for unary functions like 'floor'.
922 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
923                                     bool CheckRetType) {
924   Function *Callee = CI->getCalledFunction();
925   // We know this libcall has a valid prototype, but we don't know which.
926   if (!CI->getType()->isDoubleTy())
927     return nullptr;
928 
929   if (CheckRetType) {
930     // Check if all the uses for function like 'sin' are converted to float.
931     for (User *U : CI->users()) {
932       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
933       if (!Cast || !Cast->getType()->isFloatTy())
934         return nullptr;
935     }
936   }
937 
938   // If this is something like 'floor((double)floatval)', convert to floorf.
939   Value *V = valueHasFloatPrecision(CI->getArgOperand(0));
940   if (V == nullptr)
941     return nullptr;
942 
943   // If call isn't an intrinsic, check that it isn't within a function with the
944   // same name as the float version of this call.
945   //
946   // e.g. inline float expf(float val) { return (float) exp((double) val); }
947   //
948   // A similar such definition exists in the MinGW-w64 math.h header file which
949   // when compiled with -O2 -ffast-math causes the generation of infinite loops
950   // where expf is called.
951   if (!Callee->isIntrinsic()) {
952     const Function *F = CI->getFunction();
953     StringRef FName = F->getName();
954     StringRef CalleeName = Callee->getName();
955     if ((FName.size() == (CalleeName.size() + 1)) &&
956         (FName.back() == 'f') &&
957         FName.startswith(CalleeName))
958       return nullptr;
959   }
960 
961   // Propagate fast-math flags from the existing call to the new call.
962   IRBuilder<>::FastMathFlagGuard Guard(B);
963   B.setFastMathFlags(CI->getFastMathFlags());
964 
965   // floor((double)floatval) -> (double)floorf(floatval)
966   if (Callee->isIntrinsic()) {
967     Module *M = CI->getModule();
968     Intrinsic::ID IID = Callee->getIntrinsicID();
969     Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
970     V = B.CreateCall(F, V);
971   } else {
972     // The call is a library call rather than an intrinsic.
973     V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
974   }
975 
976   return B.CreateFPExt(V, B.getDoubleTy());
977 }
978 
979 // Replace a libcall \p CI with a call to intrinsic \p IID
980 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) {
981   // Propagate fast-math flags from the existing call to the new call.
982   IRBuilder<>::FastMathFlagGuard Guard(B);
983   B.setFastMathFlags(CI->getFastMathFlags());
984 
985   Module *M = CI->getModule();
986   Value *V = CI->getArgOperand(0);
987   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
988   CallInst *NewCall = B.CreateCall(F, V);
989   NewCall->takeName(CI);
990   return NewCall;
991 }
992 
993 /// Shrink double -> float for binary functions like 'fmin/fmax'.
994 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
995   Function *Callee = CI->getCalledFunction();
996   // We know this libcall has a valid prototype, but we don't know which.
997   if (!CI->getType()->isDoubleTy())
998     return nullptr;
999 
1000   // If this is something like 'fmin((double)floatval1, (double)floatval2)',
1001   // or fmin(1.0, (double)floatval), then we convert it to fminf.
1002   Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0));
1003   if (V1 == nullptr)
1004     return nullptr;
1005   Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1));
1006   if (V2 == nullptr)
1007     return nullptr;
1008 
1009   // Propagate fast-math flags from the existing call to the new call.
1010   IRBuilder<>::FastMathFlagGuard Guard(B);
1011   B.setFastMathFlags(CI->getFastMathFlags());
1012 
1013   // fmin((double)floatval1, (double)floatval2)
1014   //                      -> (double)fminf(floatval1, floatval2)
1015   // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP().
1016   Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
1017                                    Callee->getAttributes());
1018   return B.CreateFPExt(V, B.getDoubleTy());
1019 }
1020 
1021 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1022 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) {
1023   if (!CI->isFast())
1024     return nullptr;
1025 
1026   // Propagate fast-math flags from the existing call to new instructions.
1027   IRBuilder<>::FastMathFlagGuard Guard(B);
1028   B.setFastMathFlags(CI->getFastMathFlags());
1029 
1030   Value *Real, *Imag;
1031   if (CI->getNumArgOperands() == 1) {
1032     Value *Op = CI->getArgOperand(0);
1033     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1034     Real = B.CreateExtractValue(Op, 0, "real");
1035     Imag = B.CreateExtractValue(Op, 1, "imag");
1036   } else {
1037     assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
1038     Real = CI->getArgOperand(0);
1039     Imag = CI->getArgOperand(1);
1040   }
1041 
1042   Value *RealReal = B.CreateFMul(Real, Real);
1043   Value *ImagImag = B.CreateFMul(Imag, Imag);
1044 
1045   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1046                                               CI->getType());
1047   return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
1048 }
1049 
1050 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
1051   Function *Callee = CI->getCalledFunction();
1052   Value *Ret = nullptr;
1053   StringRef Name = Callee->getName();
1054   if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name))
1055     Ret = optimizeUnaryDoubleFP(CI, B, true);
1056 
1057   // cos(-x) -> cos(x)
1058   Value *Op1 = CI->getArgOperand(0);
1059   if (BinaryOperator::isFNeg(Op1)) {
1060     BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
1061     return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
1062   }
1063   return Ret;
1064 }
1065 
1066 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
1067   // Multiplications calculated using Addition Chains.
1068   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1069 
1070   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1071 
1072   if (InnerChain[Exp])
1073     return InnerChain[Exp];
1074 
1075   static const unsigned AddChain[33][2] = {
1076       {0, 0}, // Unused.
1077       {0, 0}, // Unused (base case = pow1).
1078       {1, 1}, // Unused (pre-computed).
1079       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1080       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1081       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1082       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1083       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1084   };
1085 
1086   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1087                                  getPow(InnerChain, AddChain[Exp][1], B));
1088   return InnerChain[Exp];
1089 }
1090 
1091 /// Use square root in place of pow(x, +/-0.5).
1092 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) {
1093   // TODO: There is some subset of 'fast' under which these transforms should
1094   // be allowed.
1095   if (!Pow->isFast())
1096     return nullptr;
1097 
1098   const APFloat *Arg1C;
1099   if (!match(Pow->getArgOperand(1), m_APFloat(Arg1C)))
1100     return nullptr;
1101   if (!Arg1C->isExactlyValue(0.5) && !Arg1C->isExactlyValue(-0.5))
1102     return nullptr;
1103 
1104   // Fast-math flags from the pow() are propagated to all replacement ops.
1105   IRBuilder<>::FastMathFlagGuard Guard(B);
1106   B.setFastMathFlags(Pow->getFastMathFlags());
1107   Type *Ty = Pow->getType();
1108   Value *Sqrt;
1109   if (Pow->hasFnAttr(Attribute::ReadNone)) {
1110     // We know that errno is never set, so replace with an intrinsic:
1111     // pow(x, 0.5) --> llvm.sqrt(x)
1112     // llvm.pow(x, 0.5) --> llvm.sqrt(x)
1113     auto *F = Intrinsic::getDeclaration(Pow->getModule(), Intrinsic::sqrt, Ty);
1114     Sqrt = B.CreateCall(F, Pow->getArgOperand(0));
1115   } else if (hasUnaryFloatFn(TLI, Ty, LibFunc_sqrt, LibFunc_sqrtf,
1116                              LibFunc_sqrtl)) {
1117     // Errno could be set, so we must use a sqrt libcall.
1118     // TODO: We also should check that the target can in fact lower the sqrt
1119     // libcall. We currently have no way to ask this question, so we ask
1120     // whether the target has a sqrt libcall which is not exactly the same.
1121     Sqrt = emitUnaryFloatFnCall(Pow->getArgOperand(0),
1122                                 TLI->getName(LibFunc_sqrt), B,
1123                                 Pow->getCalledFunction()->getAttributes());
1124   } else {
1125     // We can't replace with an intrinsic or a libcall.
1126     return nullptr;
1127   }
1128 
1129   // If this is pow(x, -0.5), get the reciprocal.
1130   if (Arg1C->isExactlyValue(-0.5))
1131     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt);
1132 
1133   return Sqrt;
1134 }
1135 
1136 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
1137   Function *Callee = CI->getCalledFunction();
1138   Value *Ret = nullptr;
1139   StringRef Name = Callee->getName();
1140   if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name))
1141     Ret = optimizeUnaryDoubleFP(CI, B, true);
1142 
1143   Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
1144 
1145   // pow(1.0, x) -> 1.0
1146   if (match(Op1, m_SpecificFP(1.0)))
1147     return Op1;
1148   // pow(2.0, x) -> llvm.exp2(x)
1149   if (match(Op1, m_SpecificFP(2.0))) {
1150     Value *Exp2 = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::exp2,
1151                                             CI->getType());
1152     return B.CreateCall(Exp2, Op2, "exp2");
1153   }
1154 
1155   // There's no llvm.exp10 intrinsic yet, but, maybe, some day there will
1156   // be one.
1157   if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
1158     // pow(10.0, x) -> exp10(x)
1159     if (Op1C->isExactlyValue(10.0) &&
1160         hasUnaryFloatFn(TLI, Op1->getType(), LibFunc_exp10, LibFunc_exp10f,
1161                         LibFunc_exp10l))
1162       return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc_exp10), B,
1163                                   Callee->getAttributes());
1164   }
1165 
1166   // pow(exp(x), y) -> exp(x * y)
1167   // pow(exp2(x), y) -> exp2(x * y)
1168   // We enable these only with fast-math. Besides rounding differences, the
1169   // transformation changes overflow and underflow behavior quite dramatically.
1170   // Example: x = 1000, y = 0.001.
1171   // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1).
1172   auto *OpC = dyn_cast<CallInst>(Op1);
1173   if (OpC && OpC->isFast() && CI->isFast()) {
1174     LibFunc Func;
1175     Function *OpCCallee = OpC->getCalledFunction();
1176     if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) &&
1177         TLI->has(Func) && (Func == LibFunc_exp || Func == LibFunc_exp2)) {
1178       IRBuilder<>::FastMathFlagGuard Guard(B);
1179       B.setFastMathFlags(CI->getFastMathFlags());
1180       Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul");
1181       return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B,
1182                                   OpCCallee->getAttributes());
1183     }
1184   }
1185 
1186   if (Value *Sqrt = replacePowWithSqrt(CI, B))
1187     return Sqrt;
1188 
1189   ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
1190   if (!Op2C)
1191     return Ret;
1192 
1193   if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
1194     return ConstantFP::get(CI->getType(), 1.0);
1195 
1196   // FIXME: Correct the transforms and pull this into replacePowWithSqrt().
1197   if (Op2C->isExactlyValue(0.5) &&
1198       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf,
1199                       LibFunc_sqrtl)) {
1200     // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
1201     // This is faster than calling pow, and still handles negative zero
1202     // and negative infinity correctly.
1203     // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
1204     Value *Inf = ConstantFP::getInfinity(CI->getType());
1205     Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
1206 
1207     // TODO: As above, we should lower to the sqrt intrinsic if the pow is an
1208     // intrinsic, to match errno semantics.
1209     Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes());
1210 
1211     Module *M = Callee->getParent();
1212     Function *FabsF = Intrinsic::getDeclaration(M, Intrinsic::fabs,
1213                                                 CI->getType());
1214     Value *FAbs = B.CreateCall(FabsF, Sqrt);
1215 
1216     Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
1217     Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
1218     return Sel;
1219   }
1220 
1221   // Propagate fast-math-flags from the call to any created instructions.
1222   IRBuilder<>::FastMathFlagGuard Guard(B);
1223   B.setFastMathFlags(CI->getFastMathFlags());
1224   // pow(x, 1.0) --> x
1225   if (Op2C->isExactlyValue(1.0))
1226     return Op1;
1227   // pow(x, 2.0) --> x * x
1228   if (Op2C->isExactlyValue(2.0))
1229     return B.CreateFMul(Op1, Op1, "pow2");
1230   // pow(x, -1.0) --> 1.0 / x
1231   if (Op2C->isExactlyValue(-1.0))
1232     return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
1233 
1234   // In -ffast-math, generate repeated fmul instead of generating pow(x, n).
1235   if (CI->isFast()) {
1236     APFloat V = abs(Op2C->getValueAPF());
1237     // We limit to a max of 7 fmul(s). Thus max exponent is 32.
1238     // This transformation applies to integer exponents only.
1239     if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan ||
1240         !V.isInteger())
1241       return nullptr;
1242 
1243     // We will memoize intermediate products of the Addition Chain.
1244     Value *InnerChain[33] = {nullptr};
1245     InnerChain[1] = Op1;
1246     InnerChain[2] = B.CreateFMul(Op1, Op1);
1247 
1248     // We cannot readily convert a non-double type (like float) to a double.
1249     // So we first convert V to something which could be converted to double.
1250     bool Ignored;
1251     V.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1252 
1253     Value *FMul = getPow(InnerChain, V.convertToDouble(), B);
1254     // For negative exponents simply compute the reciprocal.
1255     if (Op2C->isNegative())
1256       FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul);
1257     return FMul;
1258   }
1259 
1260   return nullptr;
1261 }
1262 
1263 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1264   Function *Callee = CI->getCalledFunction();
1265   Value *Ret = nullptr;
1266   StringRef Name = Callee->getName();
1267   if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name))
1268     Ret = optimizeUnaryDoubleFP(CI, B, true);
1269 
1270   Value *Op = CI->getArgOperand(0);
1271   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1272   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1273   LibFunc LdExp = LibFunc_ldexpl;
1274   if (Op->getType()->isFloatTy())
1275     LdExp = LibFunc_ldexpf;
1276   else if (Op->getType()->isDoubleTy())
1277     LdExp = LibFunc_ldexp;
1278 
1279   if (TLI->has(LdExp)) {
1280     Value *LdExpArg = nullptr;
1281     if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
1282       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
1283         LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
1284     } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
1285       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
1286         LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
1287     }
1288 
1289     if (LdExpArg) {
1290       Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
1291       if (!Op->getType()->isFloatTy())
1292         One = ConstantExpr::getFPExtend(One, Op->getType());
1293 
1294       Module *M = CI->getModule();
1295       Value *NewCallee =
1296           M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
1297                                  Op->getType(), B.getInt32Ty());
1298       CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg});
1299       if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
1300         CI->setCallingConv(F->getCallingConv());
1301 
1302       return CI;
1303     }
1304   }
1305   return Ret;
1306 }
1307 
1308 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1309   Function *Callee = CI->getCalledFunction();
1310   // If we can shrink the call to a float function rather than a double
1311   // function, do that first.
1312   StringRef Name = Callee->getName();
1313   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1314     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1315       return Ret;
1316 
1317   IRBuilder<>::FastMathFlagGuard Guard(B);
1318   FastMathFlags FMF;
1319   if (CI->isFast()) {
1320     // If the call is 'fast', then anything we create here will also be 'fast'.
1321     FMF.setFast();
1322   } else {
1323     // At a minimum, no-nans-fp-math must be true.
1324     if (!CI->hasNoNaNs())
1325       return nullptr;
1326     // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
1327     // "Ideally, fmax would be sensitive to the sign of zero, for example
1328     // fmax(-0. 0, +0. 0) would return +0; however, implementation in software
1329     // might be impractical."
1330     FMF.setNoSignedZeros();
1331     FMF.setNoNaNs();
1332   }
1333   B.setFastMathFlags(FMF);
1334 
1335   // We have a relaxed floating-point environment. We can ignore NaN-handling
1336   // and transform to a compare and select. We do not have to consider errno or
1337   // exceptions, because fmin/fmax do not have those.
1338   Value *Op0 = CI->getArgOperand(0);
1339   Value *Op1 = CI->getArgOperand(1);
1340   Value *Cmp = Callee->getName().startswith("fmin") ?
1341     B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
1342   return B.CreateSelect(Cmp, Op0, Op1);
1343 }
1344 
1345 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
1346   Function *Callee = CI->getCalledFunction();
1347   Value *Ret = nullptr;
1348   StringRef Name = Callee->getName();
1349   if (UnsafeFPShrink && hasFloatVersion(Name))
1350     Ret = optimizeUnaryDoubleFP(CI, B, true);
1351 
1352   if (!CI->isFast())
1353     return Ret;
1354   Value *Op1 = CI->getArgOperand(0);
1355   auto *OpC = dyn_cast<CallInst>(Op1);
1356 
1357   // The earlier call must also be 'fast' in order to do these transforms.
1358   if (!OpC || !OpC->isFast())
1359     return Ret;
1360 
1361   // log(pow(x,y)) -> y*log(x)
1362   // This is only applicable to log, log2, log10.
1363   if (Name != "log" && Name != "log2" && Name != "log10")
1364     return Ret;
1365 
1366   IRBuilder<>::FastMathFlagGuard Guard(B);
1367   FastMathFlags FMF;
1368   FMF.setFast();
1369   B.setFastMathFlags(FMF);
1370 
1371   LibFunc Func;
1372   Function *F = OpC->getCalledFunction();
1373   if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1374       Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow))
1375     return B.CreateFMul(OpC->getArgOperand(1),
1376       emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B,
1377                            Callee->getAttributes()), "mul");
1378 
1379   // log(exp2(y)) -> y*log(2)
1380   if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) &&
1381       TLI->has(Func) && Func == LibFunc_exp2)
1382     return B.CreateFMul(
1383         OpC->getArgOperand(0),
1384         emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0),
1385                              Callee->getName(), B, Callee->getAttributes()),
1386         "logmul");
1387   return Ret;
1388 }
1389 
1390 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
1391   Function *Callee = CI->getCalledFunction();
1392   Value *Ret = nullptr;
1393   // TODO: Once we have a way (other than checking for the existince of the
1394   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
1395   // condition below.
1396   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
1397                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
1398     Ret = optimizeUnaryDoubleFP(CI, B, true);
1399 
1400   if (!CI->isFast())
1401     return Ret;
1402 
1403   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
1404   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
1405     return Ret;
1406 
1407   // We're looking for a repeated factor in a multiplication tree,
1408   // so we can do this fold: sqrt(x * x) -> fabs(x);
1409   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
1410   Value *Op0 = I->getOperand(0);
1411   Value *Op1 = I->getOperand(1);
1412   Value *RepeatOp = nullptr;
1413   Value *OtherOp = nullptr;
1414   if (Op0 == Op1) {
1415     // Simple match: the operands of the multiply are identical.
1416     RepeatOp = Op0;
1417   } else {
1418     // Look for a more complicated pattern: one of the operands is itself
1419     // a multiply, so search for a common factor in that multiply.
1420     // Note: We don't bother looking any deeper than this first level or for
1421     // variations of this pattern because instcombine's visitFMUL and/or the
1422     // reassociation pass should give us this form.
1423     Value *OtherMul0, *OtherMul1;
1424     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
1425       // Pattern: sqrt((x * y) * z)
1426       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
1427         // Matched: sqrt((x * x) * z)
1428         RepeatOp = OtherMul0;
1429         OtherOp = Op1;
1430       }
1431     }
1432   }
1433   if (!RepeatOp)
1434     return Ret;
1435 
1436   // Fast math flags for any created instructions should match the sqrt
1437   // and multiply.
1438   IRBuilder<>::FastMathFlagGuard Guard(B);
1439   B.setFastMathFlags(I->getFastMathFlags());
1440 
1441   // If we found a repeated factor, hoist it out of the square root and
1442   // replace it with the fabs of that factor.
1443   Module *M = Callee->getParent();
1444   Type *ArgType = I->getType();
1445   Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
1446   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
1447   if (OtherOp) {
1448     // If we found a non-repeated factor, we still need to get its square
1449     // root. We then multiply that by the value that was simplified out
1450     // of the square root calculation.
1451     Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
1452     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
1453     return B.CreateFMul(FabsCall, SqrtCall);
1454   }
1455   return FabsCall;
1456 }
1457 
1458 // TODO: Generalize to handle any trig function and its inverse.
1459 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
1460   Function *Callee = CI->getCalledFunction();
1461   Value *Ret = nullptr;
1462   StringRef Name = Callee->getName();
1463   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
1464     Ret = optimizeUnaryDoubleFP(CI, B, true);
1465 
1466   Value *Op1 = CI->getArgOperand(0);
1467   auto *OpC = dyn_cast<CallInst>(Op1);
1468   if (!OpC)
1469     return Ret;
1470 
1471   // Both calls must be 'fast' in order to remove them.
1472   if (!CI->isFast() || !OpC->isFast())
1473     return Ret;
1474 
1475   // tan(atan(x)) -> x
1476   // tanf(atanf(x)) -> x
1477   // tanl(atanl(x)) -> x
1478   LibFunc Func;
1479   Function *F = OpC->getCalledFunction();
1480   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1481       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
1482        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
1483        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
1484     Ret = OpC->getArgOperand(0);
1485   return Ret;
1486 }
1487 
1488 static bool isTrigLibCall(CallInst *CI) {
1489   // We can only hope to do anything useful if we can ignore things like errno
1490   // and floating-point exceptions.
1491   // We already checked the prototype.
1492   return CI->hasFnAttr(Attribute::NoUnwind) &&
1493          CI->hasFnAttr(Attribute::ReadNone);
1494 }
1495 
1496 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
1497                              bool UseFloat, Value *&Sin, Value *&Cos,
1498                              Value *&SinCos) {
1499   Type *ArgTy = Arg->getType();
1500   Type *ResTy;
1501   StringRef Name;
1502 
1503   Triple T(OrigCallee->getParent()->getTargetTriple());
1504   if (UseFloat) {
1505     Name = "__sincospif_stret";
1506 
1507     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
1508     // x86_64 can't use {float, float} since that would be returned in both
1509     // xmm0 and xmm1, which isn't what a real struct would do.
1510     ResTy = T.getArch() == Triple::x86_64
1511                 ? static_cast<Type *>(VectorType::get(ArgTy, 2))
1512                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
1513   } else {
1514     Name = "__sincospi_stret";
1515     ResTy = StructType::get(ArgTy, ArgTy);
1516   }
1517 
1518   Module *M = OrigCallee->getParent();
1519   Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
1520                                          ResTy, ArgTy);
1521 
1522   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
1523     // If the argument is an instruction, it must dominate all uses so put our
1524     // sincos call there.
1525     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
1526   } else {
1527     // Otherwise (e.g. for a constant) the beginning of the function is as
1528     // good a place as any.
1529     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
1530     B.SetInsertPoint(&EntryBB, EntryBB.begin());
1531   }
1532 
1533   SinCos = B.CreateCall(Callee, Arg, "sincospi");
1534 
1535   if (SinCos->getType()->isStructTy()) {
1536     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
1537     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
1538   } else {
1539     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
1540                                  "sinpi");
1541     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
1542                                  "cospi");
1543   }
1544 }
1545 
1546 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
1547   // Make sure the prototype is as expected, otherwise the rest of the
1548   // function is probably invalid and likely to abort.
1549   if (!isTrigLibCall(CI))
1550     return nullptr;
1551 
1552   Value *Arg = CI->getArgOperand(0);
1553   SmallVector<CallInst *, 1> SinCalls;
1554   SmallVector<CallInst *, 1> CosCalls;
1555   SmallVector<CallInst *, 1> SinCosCalls;
1556 
1557   bool IsFloat = Arg->getType()->isFloatTy();
1558 
1559   // Look for all compatible sinpi, cospi and sincospi calls with the same
1560   // argument. If there are enough (in some sense) we can make the
1561   // substitution.
1562   Function *F = CI->getFunction();
1563   for (User *U : Arg->users())
1564     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
1565 
1566   // It's only worthwhile if both sinpi and cospi are actually used.
1567   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
1568     return nullptr;
1569 
1570   Value *Sin, *Cos, *SinCos;
1571   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
1572 
1573   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
1574                                  Value *Res) {
1575     for (CallInst *C : Calls)
1576       replaceAllUsesWith(C, Res);
1577   };
1578 
1579   replaceTrigInsts(SinCalls, Sin);
1580   replaceTrigInsts(CosCalls, Cos);
1581   replaceTrigInsts(SinCosCalls, SinCos);
1582 
1583   return nullptr;
1584 }
1585 
1586 void LibCallSimplifier::classifyArgUse(
1587     Value *Val, Function *F, bool IsFloat,
1588     SmallVectorImpl<CallInst *> &SinCalls,
1589     SmallVectorImpl<CallInst *> &CosCalls,
1590     SmallVectorImpl<CallInst *> &SinCosCalls) {
1591   CallInst *CI = dyn_cast<CallInst>(Val);
1592 
1593   if (!CI)
1594     return;
1595 
1596   // Don't consider calls in other functions.
1597   if (CI->getFunction() != F)
1598     return;
1599 
1600   Function *Callee = CI->getCalledFunction();
1601   LibFunc Func;
1602   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
1603       !isTrigLibCall(CI))
1604     return;
1605 
1606   if (IsFloat) {
1607     if (Func == LibFunc_sinpif)
1608       SinCalls.push_back(CI);
1609     else if (Func == LibFunc_cospif)
1610       CosCalls.push_back(CI);
1611     else if (Func == LibFunc_sincospif_stret)
1612       SinCosCalls.push_back(CI);
1613   } else {
1614     if (Func == LibFunc_sinpi)
1615       SinCalls.push_back(CI);
1616     else if (Func == LibFunc_cospi)
1617       CosCalls.push_back(CI);
1618     else if (Func == LibFunc_sincospi_stret)
1619       SinCosCalls.push_back(CI);
1620   }
1621 }
1622 
1623 //===----------------------------------------------------------------------===//
1624 // Integer Library Call Optimizations
1625 //===----------------------------------------------------------------------===//
1626 
1627 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
1628   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
1629   Value *Op = CI->getArgOperand(0);
1630   Type *ArgType = Op->getType();
1631   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1632                                        Intrinsic::cttz, ArgType);
1633   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
1634   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
1635   V = B.CreateIntCast(V, B.getInt32Ty(), false);
1636 
1637   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
1638   return B.CreateSelect(Cond, V, B.getInt32(0));
1639 }
1640 
1641 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
1642   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
1643   Value *Op = CI->getArgOperand(0);
1644   Type *ArgType = Op->getType();
1645   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1646                                        Intrinsic::ctlz, ArgType);
1647   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
1648   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
1649                   V);
1650   return B.CreateIntCast(V, CI->getType(), false);
1651 }
1652 
1653 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
1654   // abs(x) -> x >s -1 ? x : -x
1655   Value *Op = CI->getArgOperand(0);
1656   Value *Pos =
1657       B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos");
1658   Value *Neg = B.CreateNeg(Op, "neg");
1659   return B.CreateSelect(Pos, Op, Neg);
1660 }
1661 
1662 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
1663   // isdigit(c) -> (c-'0') <u 10
1664   Value *Op = CI->getArgOperand(0);
1665   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
1666   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
1667   return B.CreateZExt(Op, CI->getType());
1668 }
1669 
1670 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
1671   // isascii(c) -> c <u 128
1672   Value *Op = CI->getArgOperand(0);
1673   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
1674   return B.CreateZExt(Op, CI->getType());
1675 }
1676 
1677 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
1678   // toascii(c) -> c & 0x7f
1679   return B.CreateAnd(CI->getArgOperand(0),
1680                      ConstantInt::get(CI->getType(), 0x7F));
1681 }
1682 
1683 //===----------------------------------------------------------------------===//
1684 // Formatting and IO Library Call Optimizations
1685 //===----------------------------------------------------------------------===//
1686 
1687 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
1688 
1689 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
1690                                                  int StreamArg) {
1691   Function *Callee = CI->getCalledFunction();
1692   // Error reporting calls should be cold, mark them as such.
1693   // This applies even to non-builtin calls: it is only a hint and applies to
1694   // functions that the frontend might not understand as builtins.
1695 
1696   // This heuristic was suggested in:
1697   // Improving Static Branch Prediction in a Compiler
1698   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
1699   // Proceedings of PACT'98, Oct. 1998, IEEE
1700   if (!CI->hasFnAttr(Attribute::Cold) &&
1701       isReportingError(Callee, CI, StreamArg)) {
1702     CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
1703   }
1704 
1705   return nullptr;
1706 }
1707 
1708 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
1709   if (!Callee || !Callee->isDeclaration())
1710     return false;
1711 
1712   if (StreamArg < 0)
1713     return true;
1714 
1715   // These functions might be considered cold, but only if their stream
1716   // argument is stderr.
1717 
1718   if (StreamArg >= (int)CI->getNumArgOperands())
1719     return false;
1720   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
1721   if (!LI)
1722     return false;
1723   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
1724   if (!GV || !GV->isDeclaration())
1725     return false;
1726   return GV->getName() == "stderr";
1727 }
1728 
1729 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
1730   // Check for a fixed format string.
1731   StringRef FormatStr;
1732   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
1733     return nullptr;
1734 
1735   // Empty format string -> noop.
1736   if (FormatStr.empty()) // Tolerate printf's declared void.
1737     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
1738 
1739   // Do not do any of the following transformations if the printf return value
1740   // is used, in general the printf return value is not compatible with either
1741   // putchar() or puts().
1742   if (!CI->use_empty())
1743     return nullptr;
1744 
1745   // printf("x") -> putchar('x'), even for "%" and "%%".
1746   if (FormatStr.size() == 1 || FormatStr == "%%")
1747     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
1748 
1749   // printf("%s", "a") --> putchar('a')
1750   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
1751     StringRef ChrStr;
1752     if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
1753       return nullptr;
1754     if (ChrStr.size() != 1)
1755       return nullptr;
1756     return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
1757   }
1758 
1759   // printf("foo\n") --> puts("foo")
1760   if (FormatStr[FormatStr.size() - 1] == '\n' &&
1761       FormatStr.find('%') == StringRef::npos) { // No format characters.
1762     // Create a string literal with no \n on it.  We expect the constant merge
1763     // pass to be run after this pass, to merge duplicate strings.
1764     FormatStr = FormatStr.drop_back();
1765     Value *GV = B.CreateGlobalString(FormatStr, "str");
1766     return emitPutS(GV, B, TLI);
1767   }
1768 
1769   // Optimize specific format strings.
1770   // printf("%c", chr) --> putchar(chr)
1771   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
1772       CI->getArgOperand(1)->getType()->isIntegerTy())
1773     return emitPutChar(CI->getArgOperand(1), B, TLI);
1774 
1775   // printf("%s\n", str) --> puts(str)
1776   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
1777       CI->getArgOperand(1)->getType()->isPointerTy())
1778     return emitPutS(CI->getArgOperand(1), B, TLI);
1779   return nullptr;
1780 }
1781 
1782 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
1783 
1784   Function *Callee = CI->getCalledFunction();
1785   FunctionType *FT = Callee->getFunctionType();
1786   if (Value *V = optimizePrintFString(CI, B)) {
1787     return V;
1788   }
1789 
1790   // printf(format, ...) -> iprintf(format, ...) if no floating point
1791   // arguments.
1792   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
1793     Module *M = B.GetInsertBlock()->getParent()->getParent();
1794     Constant *IPrintFFn =
1795         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
1796     CallInst *New = cast<CallInst>(CI->clone());
1797     New->setCalledFunction(IPrintFFn);
1798     B.Insert(New);
1799     return New;
1800   }
1801   return nullptr;
1802 }
1803 
1804 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
1805   // Check for a fixed format string.
1806   StringRef FormatStr;
1807   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1808     return nullptr;
1809 
1810   // If we just have a format string (nothing else crazy) transform it.
1811   if (CI->getNumArgOperands() == 2) {
1812     // Make sure there's no % in the constant array.  We could try to handle
1813     // %% -> % in the future if we cared.
1814     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1815       if (FormatStr[i] == '%')
1816         return nullptr; // we found a format specifier, bail out.
1817 
1818     // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
1819     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
1820                    ConstantInt::get(DL.getIntPtrType(CI->getContext()),
1821                                     FormatStr.size() + 1),
1822                    1); // Copy the null byte.
1823     return ConstantInt::get(CI->getType(), FormatStr.size());
1824   }
1825 
1826   // The remaining optimizations require the format string to be "%s" or "%c"
1827   // and have an extra operand.
1828   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1829       CI->getNumArgOperands() < 3)
1830     return nullptr;
1831 
1832   // Decode the second character of the format string.
1833   if (FormatStr[1] == 'c') {
1834     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
1835     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1836       return nullptr;
1837     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
1838     Value *Ptr = castToCStr(CI->getArgOperand(0), B);
1839     B.CreateStore(V, Ptr);
1840     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
1841     B.CreateStore(B.getInt8(0), Ptr);
1842 
1843     return ConstantInt::get(CI->getType(), 1);
1844   }
1845 
1846   if (FormatStr[1] == 's') {
1847     // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1848     if (!CI->getArgOperand(2)->getType()->isPointerTy())
1849       return nullptr;
1850 
1851     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
1852     if (!Len)
1853       return nullptr;
1854     Value *IncLen =
1855         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
1856     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
1857 
1858     // The sprintf result is the unincremented number of bytes in the string.
1859     return B.CreateIntCast(Len, CI->getType(), false);
1860   }
1861   return nullptr;
1862 }
1863 
1864 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
1865   Function *Callee = CI->getCalledFunction();
1866   FunctionType *FT = Callee->getFunctionType();
1867   if (Value *V = optimizeSPrintFString(CI, B)) {
1868     return V;
1869   }
1870 
1871   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
1872   // point arguments.
1873   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
1874     Module *M = B.GetInsertBlock()->getParent()->getParent();
1875     Constant *SIPrintFFn =
1876         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
1877     CallInst *New = cast<CallInst>(CI->clone());
1878     New->setCalledFunction(SIPrintFFn);
1879     B.Insert(New);
1880     return New;
1881   }
1882   return nullptr;
1883 }
1884 
1885 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
1886   optimizeErrorReporting(CI, B, 0);
1887 
1888   // All the optimizations depend on the format string.
1889   StringRef FormatStr;
1890   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1891     return nullptr;
1892 
1893   // Do not do any of the following transformations if the fprintf return
1894   // value is used, in general the fprintf return value is not compatible
1895   // with fwrite(), fputc() or fputs().
1896   if (!CI->use_empty())
1897     return nullptr;
1898 
1899   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
1900   if (CI->getNumArgOperands() == 2) {
1901     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1902       if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
1903         return nullptr;        // We found a format specifier.
1904 
1905     return emitFWrite(
1906         CI->getArgOperand(1),
1907         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
1908         CI->getArgOperand(0), B, DL, TLI);
1909   }
1910 
1911   // The remaining optimizations require the format string to be "%s" or "%c"
1912   // and have an extra operand.
1913   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1914       CI->getNumArgOperands() < 3)
1915     return nullptr;
1916 
1917   // Decode the second character of the format string.
1918   if (FormatStr[1] == 'c') {
1919     // fprintf(F, "%c", chr) --> fputc(chr, F)
1920     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1921       return nullptr;
1922     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1923   }
1924 
1925   if (FormatStr[1] == 's') {
1926     // fprintf(F, "%s", str) --> fputs(str, F)
1927     if (!CI->getArgOperand(2)->getType()->isPointerTy())
1928       return nullptr;
1929     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1930   }
1931   return nullptr;
1932 }
1933 
1934 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
1935   Function *Callee = CI->getCalledFunction();
1936   FunctionType *FT = Callee->getFunctionType();
1937   if (Value *V = optimizeFPrintFString(CI, B)) {
1938     return V;
1939   }
1940 
1941   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
1942   // floating point arguments.
1943   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
1944     Module *M = B.GetInsertBlock()->getParent()->getParent();
1945     Constant *FIPrintFFn =
1946         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
1947     CallInst *New = cast<CallInst>(CI->clone());
1948     New->setCalledFunction(FIPrintFFn);
1949     B.Insert(New);
1950     return New;
1951   }
1952   return nullptr;
1953 }
1954 
1955 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
1956   optimizeErrorReporting(CI, B, 3);
1957 
1958   // Get the element size and count.
1959   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
1960   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1961   if (!SizeC || !CountC)
1962     return nullptr;
1963   uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
1964 
1965   // If this is writing zero records, remove the call (it's a noop).
1966   if (Bytes == 0)
1967     return ConstantInt::get(CI->getType(), 0);
1968 
1969   // If this is writing one byte, turn it into fputc.
1970   // This optimisation is only valid, if the return value is unused.
1971   if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
1972     Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char");
1973     Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
1974     return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
1975   }
1976 
1977   return nullptr;
1978 }
1979 
1980 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
1981   optimizeErrorReporting(CI, B, 1);
1982 
1983   // Don't rewrite fputs to fwrite when optimising for size because fwrite
1984   // requires more arguments and thus extra MOVs are required.
1985   if (CI->getParent()->getParent()->optForSize())
1986     return nullptr;
1987 
1988   // We can't optimize if return value is used.
1989   if (!CI->use_empty())
1990     return nullptr;
1991 
1992   // fputs(s,F) --> fwrite(s,1,strlen(s),F)
1993   uint64_t Len = GetStringLength(CI->getArgOperand(0));
1994   if (!Len)
1995     return nullptr;
1996 
1997   // Known to have no uses (see above).
1998   return emitFWrite(
1999       CI->getArgOperand(0),
2000       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2001       CI->getArgOperand(1), B, DL, TLI);
2002 }
2003 
2004 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
2005   // Check for a constant string.
2006   StringRef Str;
2007   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2008     return nullptr;
2009 
2010   if (Str.empty() && CI->use_empty()) {
2011     // puts("") -> putchar('\n')
2012     Value *Res = emitPutChar(B.getInt32('\n'), B, TLI);
2013     if (CI->use_empty() || !Res)
2014       return Res;
2015     return B.CreateIntCast(Res, CI->getType(), true);
2016   }
2017 
2018   return nullptr;
2019 }
2020 
2021 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2022   LibFunc Func;
2023   SmallString<20> FloatFuncName = FuncName;
2024   FloatFuncName += 'f';
2025   if (TLI->getLibFunc(FloatFuncName, Func))
2026     return TLI->has(Func);
2027   return false;
2028 }
2029 
2030 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2031                                                       IRBuilder<> &Builder) {
2032   LibFunc Func;
2033   Function *Callee = CI->getCalledFunction();
2034   // Check for string/memory library functions.
2035   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2036     // Make sure we never change the calling convention.
2037     assert((ignoreCallingConv(Func) ||
2038             isCallingConvCCompatible(CI)) &&
2039       "Optimizing string/memory libcall would change the calling convention");
2040     switch (Func) {
2041     case LibFunc_strcat:
2042       return optimizeStrCat(CI, Builder);
2043     case LibFunc_strncat:
2044       return optimizeStrNCat(CI, Builder);
2045     case LibFunc_strchr:
2046       return optimizeStrChr(CI, Builder);
2047     case LibFunc_strrchr:
2048       return optimizeStrRChr(CI, Builder);
2049     case LibFunc_strcmp:
2050       return optimizeStrCmp(CI, Builder);
2051     case LibFunc_strncmp:
2052       return optimizeStrNCmp(CI, Builder);
2053     case LibFunc_strcpy:
2054       return optimizeStrCpy(CI, Builder);
2055     case LibFunc_stpcpy:
2056       return optimizeStpCpy(CI, Builder);
2057     case LibFunc_strncpy:
2058       return optimizeStrNCpy(CI, Builder);
2059     case LibFunc_strlen:
2060       return optimizeStrLen(CI, Builder);
2061     case LibFunc_strpbrk:
2062       return optimizeStrPBrk(CI, Builder);
2063     case LibFunc_strtol:
2064     case LibFunc_strtod:
2065     case LibFunc_strtof:
2066     case LibFunc_strtoul:
2067     case LibFunc_strtoll:
2068     case LibFunc_strtold:
2069     case LibFunc_strtoull:
2070       return optimizeStrTo(CI, Builder);
2071     case LibFunc_strspn:
2072       return optimizeStrSpn(CI, Builder);
2073     case LibFunc_strcspn:
2074       return optimizeStrCSpn(CI, Builder);
2075     case LibFunc_strstr:
2076       return optimizeStrStr(CI, Builder);
2077     case LibFunc_memchr:
2078       return optimizeMemChr(CI, Builder);
2079     case LibFunc_memcmp:
2080       return optimizeMemCmp(CI, Builder);
2081     case LibFunc_memcpy:
2082       return optimizeMemCpy(CI, Builder);
2083     case LibFunc_memmove:
2084       return optimizeMemMove(CI, Builder);
2085     case LibFunc_memset:
2086       return optimizeMemSet(CI, Builder);
2087     case LibFunc_wcslen:
2088       return optimizeWcslen(CI, Builder);
2089     default:
2090       break;
2091     }
2092   }
2093   return nullptr;
2094 }
2095 
2096 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2097                                                        LibFunc Func,
2098                                                        IRBuilder<> &Builder) {
2099   // Don't optimize calls that require strict floating point semantics.
2100   if (CI->isStrictFP())
2101     return nullptr;
2102 
2103   switch (Func) {
2104   case LibFunc_cosf:
2105   case LibFunc_cos:
2106   case LibFunc_cosl:
2107     return optimizeCos(CI, Builder);
2108   case LibFunc_sinpif:
2109   case LibFunc_sinpi:
2110   case LibFunc_cospif:
2111   case LibFunc_cospi:
2112     return optimizeSinCosPi(CI, Builder);
2113   case LibFunc_powf:
2114   case LibFunc_pow:
2115   case LibFunc_powl:
2116     return optimizePow(CI, Builder);
2117   case LibFunc_exp2l:
2118   case LibFunc_exp2:
2119   case LibFunc_exp2f:
2120     return optimizeExp2(CI, Builder);
2121   case LibFunc_fabsf:
2122   case LibFunc_fabs:
2123   case LibFunc_fabsl:
2124     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2125   case LibFunc_sqrtf:
2126   case LibFunc_sqrt:
2127   case LibFunc_sqrtl:
2128     return optimizeSqrt(CI, Builder);
2129   case LibFunc_log:
2130   case LibFunc_log10:
2131   case LibFunc_log1p:
2132   case LibFunc_log2:
2133   case LibFunc_logb:
2134     return optimizeLog(CI, Builder);
2135   case LibFunc_tan:
2136   case LibFunc_tanf:
2137   case LibFunc_tanl:
2138     return optimizeTan(CI, Builder);
2139   case LibFunc_ceil:
2140     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2141   case LibFunc_floor:
2142     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2143   case LibFunc_round:
2144     return replaceUnaryCall(CI, Builder, Intrinsic::round);
2145   case LibFunc_nearbyint:
2146     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2147   case LibFunc_rint:
2148     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2149   case LibFunc_trunc:
2150     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
2151   case LibFunc_acos:
2152   case LibFunc_acosh:
2153   case LibFunc_asin:
2154   case LibFunc_asinh:
2155   case LibFunc_atan:
2156   case LibFunc_atanh:
2157   case LibFunc_cbrt:
2158   case LibFunc_cosh:
2159   case LibFunc_exp:
2160   case LibFunc_exp10:
2161   case LibFunc_expm1:
2162   case LibFunc_sin:
2163   case LibFunc_sinh:
2164   case LibFunc_tanh:
2165     if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
2166       return optimizeUnaryDoubleFP(CI, Builder, true);
2167     return nullptr;
2168   case LibFunc_copysign:
2169     if (hasFloatVersion(CI->getCalledFunction()->getName()))
2170       return optimizeBinaryDoubleFP(CI, Builder);
2171     return nullptr;
2172   case LibFunc_fminf:
2173   case LibFunc_fmin:
2174   case LibFunc_fminl:
2175   case LibFunc_fmaxf:
2176   case LibFunc_fmax:
2177   case LibFunc_fmaxl:
2178     return optimizeFMinFMax(CI, Builder);
2179   case LibFunc_cabs:
2180   case LibFunc_cabsf:
2181   case LibFunc_cabsl:
2182     return optimizeCAbs(CI, Builder);
2183   default:
2184     return nullptr;
2185   }
2186 }
2187 
2188 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
2189   // TODO: Split out the code below that operates on FP calls so that
2190   //       we can all non-FP calls with the StrictFP attribute to be
2191   //       optimized.
2192   if (CI->isNoBuiltin())
2193     return nullptr;
2194 
2195   LibFunc Func;
2196   Function *Callee = CI->getCalledFunction();
2197 
2198   SmallVector<OperandBundleDef, 2> OpBundles;
2199   CI->getOperandBundlesAsDefs(OpBundles);
2200   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2201   bool isCallingConvC = isCallingConvCCompatible(CI);
2202 
2203   // Command-line parameter overrides instruction attribute.
2204   // This can't be moved to optimizeFloatingPointLibCall() because it may be
2205   // used by the intrinsic optimizations.
2206   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
2207     UnsafeFPShrink = EnableUnsafeFPShrink;
2208   else if (isa<FPMathOperator>(CI) && CI->isFast())
2209     UnsafeFPShrink = true;
2210 
2211   // First, check for intrinsics.
2212   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
2213     if (!isCallingConvC)
2214       return nullptr;
2215     // The FP intrinsics have corresponding constrained versions so we don't
2216     // need to check for the StrictFP attribute here.
2217     switch (II->getIntrinsicID()) {
2218     case Intrinsic::pow:
2219       return optimizePow(CI, Builder);
2220     case Intrinsic::exp2:
2221       return optimizeExp2(CI, Builder);
2222     case Intrinsic::log:
2223       return optimizeLog(CI, Builder);
2224     case Intrinsic::sqrt:
2225       return optimizeSqrt(CI, Builder);
2226     // TODO: Use foldMallocMemset() with memset intrinsic.
2227     default:
2228       return nullptr;
2229     }
2230   }
2231 
2232   // Also try to simplify calls to fortified library functions.
2233   if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
2234     // Try to further simplify the result.
2235     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
2236     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
2237       // Use an IR Builder from SimplifiedCI if available instead of CI
2238       // to guarantee we reach all uses we might replace later on.
2239       IRBuilder<> TmpBuilder(SimplifiedCI);
2240       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
2241         // If we were able to further simplify, remove the now redundant call.
2242         SimplifiedCI->replaceAllUsesWith(V);
2243         SimplifiedCI->eraseFromParent();
2244         return V;
2245       }
2246     }
2247     return SimplifiedFortifiedCI;
2248   }
2249 
2250   // Then check for known library functions.
2251   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2252     // We never change the calling convention.
2253     if (!ignoreCallingConv(Func) && !isCallingConvC)
2254       return nullptr;
2255     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
2256       return V;
2257     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
2258       return V;
2259     switch (Func) {
2260     case LibFunc_ffs:
2261     case LibFunc_ffsl:
2262     case LibFunc_ffsll:
2263       return optimizeFFS(CI, Builder);
2264     case LibFunc_fls:
2265     case LibFunc_flsl:
2266     case LibFunc_flsll:
2267       return optimizeFls(CI, Builder);
2268     case LibFunc_abs:
2269     case LibFunc_labs:
2270     case LibFunc_llabs:
2271       return optimizeAbs(CI, Builder);
2272     case LibFunc_isdigit:
2273       return optimizeIsDigit(CI, Builder);
2274     case LibFunc_isascii:
2275       return optimizeIsAscii(CI, Builder);
2276     case LibFunc_toascii:
2277       return optimizeToAscii(CI, Builder);
2278     case LibFunc_printf:
2279       return optimizePrintF(CI, Builder);
2280     case LibFunc_sprintf:
2281       return optimizeSPrintF(CI, Builder);
2282     case LibFunc_fprintf:
2283       return optimizeFPrintF(CI, Builder);
2284     case LibFunc_fwrite:
2285       return optimizeFWrite(CI, Builder);
2286     case LibFunc_fputs:
2287       return optimizeFPuts(CI, Builder);
2288     case LibFunc_puts:
2289       return optimizePuts(CI, Builder);
2290     case LibFunc_perror:
2291       return optimizeErrorReporting(CI, Builder);
2292     case LibFunc_vfprintf:
2293     case LibFunc_fiprintf:
2294       return optimizeErrorReporting(CI, Builder, 0);
2295     case LibFunc_fputc:
2296       return optimizeErrorReporting(CI, Builder, 1);
2297     default:
2298       return nullptr;
2299     }
2300   }
2301   return nullptr;
2302 }
2303 
2304 LibCallSimplifier::LibCallSimplifier(
2305     const DataLayout &DL, const TargetLibraryInfo *TLI,
2306     OptimizationRemarkEmitter &ORE,
2307     function_ref<void(Instruction *, Value *)> Replacer)
2308     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE),
2309       UnsafeFPShrink(false), Replacer(Replacer) {}
2310 
2311 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
2312   // Indirect through the replacer used in this instance.
2313   Replacer(I, With);
2314 }
2315 
2316 // TODO:
2317 //   Additional cases that we need to add to this file:
2318 //
2319 // cbrt:
2320 //   * cbrt(expN(X))  -> expN(x/3)
2321 //   * cbrt(sqrt(x))  -> pow(x,1/6)
2322 //   * cbrt(cbrt(x))  -> pow(x,1/9)
2323 //
2324 // exp, expf, expl:
2325 //   * exp(log(x))  -> x
2326 //
2327 // log, logf, logl:
2328 //   * log(exp(x))   -> x
2329 //   * log(exp(y))   -> y*log(e)
2330 //   * log(exp10(y)) -> y*log(10)
2331 //   * log(sqrt(x))  -> 0.5*log(x)
2332 //
2333 // pow, powf, powl:
2334 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
2335 //   * pow(pow(x,y),z)-> pow(x,y*z)
2336 //
2337 // signbit:
2338 //   * signbit(cnst) -> cnst'
2339 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2340 //
2341 // sqrt, sqrtf, sqrtl:
2342 //   * sqrt(expN(x))  -> expN(x*0.5)
2343 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2344 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2345 //
2346 
2347 //===----------------------------------------------------------------------===//
2348 // Fortified Library Call Optimizations
2349 //===----------------------------------------------------------------------===//
2350 
2351 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
2352                                                          unsigned ObjSizeOp,
2353                                                          unsigned SizeOp,
2354                                                          bool isString) {
2355   if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
2356     return true;
2357   if (ConstantInt *ObjSizeCI =
2358           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
2359     if (ObjSizeCI->isMinusOne())
2360       return true;
2361     // If the object size wasn't -1 (unknown), bail out if we were asked to.
2362     if (OnlyLowerUnknownSize)
2363       return false;
2364     if (isString) {
2365       uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
2366       // If the length is 0 we don't know how long it is and so we can't
2367       // remove the check.
2368       if (Len == 0)
2369         return false;
2370       return ObjSizeCI->getZExtValue() >= Len;
2371     }
2372     if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
2373       return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
2374   }
2375   return false;
2376 }
2377 
2378 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
2379                                                      IRBuilder<> &B) {
2380   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2381     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2382                    CI->getArgOperand(2), 1);
2383     return CI->getArgOperand(0);
2384   }
2385   return nullptr;
2386 }
2387 
2388 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
2389                                                       IRBuilder<> &B) {
2390   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2391     B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
2392                     CI->getArgOperand(2), 1);
2393     return CI->getArgOperand(0);
2394   }
2395   return nullptr;
2396 }
2397 
2398 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
2399                                                      IRBuilder<> &B) {
2400   // TODO: Try foldMallocMemset() here.
2401 
2402   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2403     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
2404     B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
2405     return CI->getArgOperand(0);
2406   }
2407   return nullptr;
2408 }
2409 
2410 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
2411                                                       IRBuilder<> &B,
2412                                                       LibFunc Func) {
2413   Function *Callee = CI->getCalledFunction();
2414   StringRef Name = Callee->getName();
2415   const DataLayout &DL = CI->getModule()->getDataLayout();
2416   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
2417         *ObjSize = CI->getArgOperand(2);
2418 
2419   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
2420   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
2421     Value *StrLen = emitStrLen(Src, B, DL, TLI);
2422     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
2423   }
2424 
2425   // If a) we don't have any length information, or b) we know this will
2426   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
2427   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
2428   // TODO: It might be nice to get a maximum length out of the possible
2429   // string lengths for varying.
2430   if (isFortifiedCallFoldable(CI, 2, 1, true))
2431     return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
2432 
2433   if (OnlyLowerUnknownSize)
2434     return nullptr;
2435 
2436   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
2437   uint64_t Len = GetStringLength(Src);
2438   if (Len == 0)
2439     return nullptr;
2440 
2441   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
2442   Value *LenV = ConstantInt::get(SizeTTy, Len);
2443   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
2444   // If the function was an __stpcpy_chk, and we were able to fold it into
2445   // a __memcpy_chk, we still need to return the correct end pointer.
2446   if (Ret && Func == LibFunc_stpcpy_chk)
2447     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
2448   return Ret;
2449 }
2450 
2451 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
2452                                                        IRBuilder<> &B,
2453                                                        LibFunc Func) {
2454   Function *Callee = CI->getCalledFunction();
2455   StringRef Name = Callee->getName();
2456   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2457     Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2458                              CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
2459     return Ret;
2460   }
2461   return nullptr;
2462 }
2463 
2464 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
2465   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
2466   // Some clang users checked for _chk libcall availability using:
2467   //   __has_builtin(__builtin___memcpy_chk)
2468   // When compiling with -fno-builtin, this is always true.
2469   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
2470   // end up with fortified libcalls, which isn't acceptable in a freestanding
2471   // environment which only provides their non-fortified counterparts.
2472   //
2473   // Until we change clang and/or teach external users to check for availability
2474   // differently, disregard the "nobuiltin" attribute and TLI::has.
2475   //
2476   // PR23093.
2477 
2478   LibFunc Func;
2479   Function *Callee = CI->getCalledFunction();
2480 
2481   SmallVector<OperandBundleDef, 2> OpBundles;
2482   CI->getOperandBundlesAsDefs(OpBundles);
2483   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2484   bool isCallingConvC = isCallingConvCCompatible(CI);
2485 
2486   // First, check that this is a known library functions and that the prototype
2487   // is correct.
2488   if (!TLI->getLibFunc(*Callee, Func))
2489     return nullptr;
2490 
2491   // We never change the calling convention.
2492   if (!ignoreCallingConv(Func) && !isCallingConvC)
2493     return nullptr;
2494 
2495   switch (Func) {
2496   case LibFunc_memcpy_chk:
2497     return optimizeMemCpyChk(CI, Builder);
2498   case LibFunc_memmove_chk:
2499     return optimizeMemMoveChk(CI, Builder);
2500   case LibFunc_memset_chk:
2501     return optimizeMemSetChk(CI, Builder);
2502   case LibFunc_stpcpy_chk:
2503   case LibFunc_strcpy_chk:
2504     return optimizeStrpCpyChk(CI, Builder, Func);
2505   case LibFunc_stpncpy_chk:
2506   case LibFunc_strncpy_chk:
2507     return optimizeStrpNCpyChk(CI, Builder, Func);
2508   default:
2509     break;
2510   }
2511   return nullptr;
2512 }
2513 
2514 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
2515     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
2516     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
2517