1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Transforms/Utils/Local.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/CaptureTracking.h"
27 #include "llvm/Analysis/Loads.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Transforms/Utils/BuildLibCalls.h"
40 #include "llvm/Transforms/Utils/SizeOpts.h"
41 
42 using namespace llvm;
43 using namespace PatternMatch;
44 
45 static cl::opt<bool>
46     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
47                          cl::init(false),
48                          cl::desc("Enable unsafe double to float "
49                                   "shrinking for math lib calls"));
50 
51 //===----------------------------------------------------------------------===//
52 // Helper Functions
53 //===----------------------------------------------------------------------===//
54 
55 static bool ignoreCallingConv(LibFunc Func) {
56   return Func == LibFunc_abs || Func == LibFunc_labs ||
57          Func == LibFunc_llabs || Func == LibFunc_strlen;
58 }
59 
60 static bool isCallingConvCCompatible(CallInst *CI) {
61   switch(CI->getCallingConv()) {
62   default:
63     return false;
64   case llvm::CallingConv::C:
65     return true;
66   case llvm::CallingConv::ARM_APCS:
67   case llvm::CallingConv::ARM_AAPCS:
68   case llvm::CallingConv::ARM_AAPCS_VFP: {
69 
70     // The iOS ABI diverges from the standard in some cases, so for now don't
71     // try to simplify those calls.
72     if (Triple(CI->getModule()->getTargetTriple()).isiOS())
73       return false;
74 
75     auto *FuncTy = CI->getFunctionType();
76 
77     if (!FuncTy->getReturnType()->isPointerTy() &&
78         !FuncTy->getReturnType()->isIntegerTy() &&
79         !FuncTy->getReturnType()->isVoidTy())
80       return false;
81 
82     for (auto Param : FuncTy->params()) {
83       if (!Param->isPointerTy() && !Param->isIntegerTy())
84         return false;
85     }
86     return true;
87   }
88   }
89   return false;
90 }
91 
92 /// Return true if it is only used in equality comparisons with With.
93 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
94   for (User *U : V->users()) {
95     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
96       if (IC->isEquality() && IC->getOperand(1) == With)
97         continue;
98     // Unknown instruction.
99     return false;
100   }
101   return true;
102 }
103 
104 static bool callHasFloatingPointArgument(const CallInst *CI) {
105   return any_of(CI->operands(), [](const Use &OI) {
106     return OI->getType()->isFloatingPointTy();
107   });
108 }
109 
110 static bool callHasFP128Argument(const CallInst *CI) {
111   return any_of(CI->operands(), [](const Use &OI) {
112     return OI->getType()->isFP128Ty();
113   });
114 }
115 
116 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
117   if (Base < 2 || Base > 36)
118     // handle special zero base
119     if (Base != 0)
120       return nullptr;
121 
122   char *End;
123   std::string nptr = Str.str();
124   errno = 0;
125   long long int Result = strtoll(nptr.c_str(), &End, Base);
126   if (errno)
127     return nullptr;
128 
129   // if we assume all possible target locales are ASCII supersets,
130   // then if strtoll successfully parses a number on the host,
131   // it will also successfully parse the same way on the target
132   if (*End != '\0')
133     return nullptr;
134 
135   if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
136     return nullptr;
137 
138   return ConstantInt::get(CI->getType(), Result);
139 }
140 
141 static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B,
142                                 const TargetLibraryInfo *TLI) {
143   CallInst *FOpen = dyn_cast<CallInst>(File);
144   if (!FOpen)
145     return false;
146 
147   Function *InnerCallee = FOpen->getCalledFunction();
148   if (!InnerCallee)
149     return false;
150 
151   LibFunc Func;
152   if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
153       Func != LibFunc_fopen)
154     return false;
155 
156   inferLibFuncAttributes(*CI->getCalledFunction(), *TLI);
157   if (PointerMayBeCaptured(File, true, true))
158     return false;
159 
160   return true;
161 }
162 
163 static bool isOnlyUsedInComparisonWithZero(Value *V) {
164   for (User *U : V->users()) {
165     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
166       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
167         if (C->isNullValue())
168           continue;
169     // Unknown instruction.
170     return false;
171   }
172   return true;
173 }
174 
175 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
176                                  const DataLayout &DL) {
177   if (!isOnlyUsedInComparisonWithZero(CI))
178     return false;
179 
180   if (!isDereferenceableAndAlignedPointer(Str, Align::None(), APInt(64, Len),
181                                           DL))
182     return false;
183 
184   if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
185     return false;
186 
187   return true;
188 }
189 
190 static void annotateDereferenceableBytes(CallInst *CI,
191                                          ArrayRef<unsigned> ArgNos,
192                                          uint64_t DereferenceableBytes) {
193   const Function *F = CI->getCaller();
194   if (!F)
195     return;
196   for (unsigned ArgNo : ArgNos) {
197     uint64_t DerefBytes = DereferenceableBytes;
198     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
199     if (!llvm::NullPointerIsDefined(F, AS) ||
200         CI->paramHasAttr(ArgNo, Attribute::NonNull))
201       DerefBytes = std::max(CI->getDereferenceableOrNullBytes(
202                                 ArgNo + AttributeList::FirstArgIndex),
203                             DereferenceableBytes);
204 
205     if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) <
206         DerefBytes) {
207       CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
208       if (!llvm::NullPointerIsDefined(F, AS) ||
209           CI->paramHasAttr(ArgNo, Attribute::NonNull))
210         CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
211       CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
212                                   CI->getContext(), DerefBytes));
213     }
214   }
215 }
216 
217 static void annotateNonNullBasedOnAccess(CallInst *CI,
218                                          ArrayRef<unsigned> ArgNos) {
219   Function *F = CI->getCaller();
220   if (!F)
221     return;
222 
223   for (unsigned ArgNo : ArgNos) {
224     if (CI->paramHasAttr(ArgNo, Attribute::NonNull))
225       continue;
226     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
227     if (llvm::NullPointerIsDefined(F, AS))
228       continue;
229 
230     CI->addParamAttr(ArgNo, Attribute::NonNull);
231     annotateDereferenceableBytes(CI, ArgNo, 1);
232   }
233 }
234 
235 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
236                                Value *Size, const DataLayout &DL) {
237   if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
238     annotateNonNullBasedOnAccess(CI, ArgNos);
239     annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
240   } else if (isKnownNonZero(Size, DL)) {
241     annotateNonNullBasedOnAccess(CI, ArgNos);
242     const APInt *X, *Y;
243     uint64_t DerefMin = 1;
244     if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
245       DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
246       annotateDereferenceableBytes(CI, ArgNos, DerefMin);
247     }
248   }
249 }
250 
251 //===----------------------------------------------------------------------===//
252 // String and Memory Library Call Optimizations
253 //===----------------------------------------------------------------------===//
254 
255 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
256   // Extract some information from the instruction
257   Value *Dst = CI->getArgOperand(0);
258   Value *Src = CI->getArgOperand(1);
259   annotateNonNullBasedOnAccess(CI, {0, 1});
260 
261   // See if we can get the length of the input string.
262   uint64_t Len = GetStringLength(Src);
263   if (Len)
264     annotateDereferenceableBytes(CI, 1, Len);
265   else
266     return nullptr;
267   --Len; // Unbias length.
268 
269   // Handle the simple, do-nothing case: strcat(x, "") -> x
270   if (Len == 0)
271     return Dst;
272 
273   return emitStrLenMemCpy(Src, Dst, Len, B);
274 }
275 
276 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
277                                            IRBuilder<> &B) {
278   // We need to find the end of the destination string.  That's where the
279   // memory is to be moved to. We just generate a call to strlen.
280   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
281   if (!DstLen)
282     return nullptr;
283 
284   // Now that we have the destination's length, we must index into the
285   // destination's pointer to get the actual memcpy destination (end of
286   // the string .. we're concatenating).
287   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
288 
289   // We have enough information to now generate the memcpy call to do the
290   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
291   B.CreateMemCpy(CpyDst, 1, Src, 1,
292                  ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
293   return Dst;
294 }
295 
296 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
297   // Extract some information from the instruction.
298   Value *Dst = CI->getArgOperand(0);
299   Value *Src = CI->getArgOperand(1);
300   Value *Size = CI->getArgOperand(2);
301   uint64_t Len;
302   annotateNonNullBasedOnAccess(CI, 0);
303   if (isKnownNonZero(Size, DL))
304     annotateNonNullBasedOnAccess(CI, 1);
305 
306   // We don't do anything if length is not constant.
307   ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
308   if (LengthArg) {
309     Len = LengthArg->getZExtValue();
310     // strncat(x, c, 0) -> x
311     if (!Len)
312       return Dst;
313   } else {
314     return nullptr;
315   }
316 
317   // See if we can get the length of the input string.
318   uint64_t SrcLen = GetStringLength(Src);
319   if (SrcLen) {
320     annotateDereferenceableBytes(CI, 1, SrcLen);
321     --SrcLen; // Unbias length.
322   } else {
323     return nullptr;
324   }
325 
326   // strncat(x, "", c) -> x
327   if (SrcLen == 0)
328     return Dst;
329 
330   // We don't optimize this case.
331   if (Len < SrcLen)
332     return nullptr;
333 
334   // strncat(x, s, c) -> strcat(x, s)
335   // s is constant so the strcat can be optimized further.
336   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
337 }
338 
339 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
340   Function *Callee = CI->getCalledFunction();
341   FunctionType *FT = Callee->getFunctionType();
342   Value *SrcStr = CI->getArgOperand(0);
343   annotateNonNullBasedOnAccess(CI, 0);
344 
345   // If the second operand is non-constant, see if we can compute the length
346   // of the input string and turn this into memchr.
347   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
348   if (!CharC) {
349     uint64_t Len = GetStringLength(SrcStr);
350     if (Len)
351       annotateDereferenceableBytes(CI, 0, Len);
352     else
353       return nullptr;
354     if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
355       return nullptr;
356 
357     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
358                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
359                       B, DL, TLI);
360   }
361 
362   // Otherwise, the character is a constant, see if the first argument is
363   // a string literal.  If so, we can constant fold.
364   StringRef Str;
365   if (!getConstantStringInfo(SrcStr, Str)) {
366     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
367       if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
368         return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
369     return nullptr;
370   }
371 
372   // Compute the offset, make sure to handle the case when we're searching for
373   // zero (a weird way to spell strlen).
374   size_t I = (0xFF & CharC->getSExtValue()) == 0
375                  ? Str.size()
376                  : Str.find(CharC->getSExtValue());
377   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
378     return Constant::getNullValue(CI->getType());
379 
380   // strchr(s+n,c)  -> gep(s+n+i,c)
381   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
382 }
383 
384 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
385   Value *SrcStr = CI->getArgOperand(0);
386   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
387   annotateNonNullBasedOnAccess(CI, 0);
388 
389   // Cannot fold anything if we're not looking for a constant.
390   if (!CharC)
391     return nullptr;
392 
393   StringRef Str;
394   if (!getConstantStringInfo(SrcStr, Str)) {
395     // strrchr(s, 0) -> strchr(s, 0)
396     if (CharC->isZero())
397       return emitStrChr(SrcStr, '\0', B, TLI);
398     return nullptr;
399   }
400 
401   // Compute the offset.
402   size_t I = (0xFF & CharC->getSExtValue()) == 0
403                  ? Str.size()
404                  : Str.rfind(CharC->getSExtValue());
405   if (I == StringRef::npos) // Didn't find the char. Return null.
406     return Constant::getNullValue(CI->getType());
407 
408   // strrchr(s+n,c) -> gep(s+n+i,c)
409   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
410 }
411 
412 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
413   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
414   if (Str1P == Str2P) // strcmp(x,x)  -> 0
415     return ConstantInt::get(CI->getType(), 0);
416 
417   StringRef Str1, Str2;
418   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
419   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
420 
421   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
422   if (HasStr1 && HasStr2)
423     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
424 
425   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
426     return B.CreateNeg(B.CreateZExt(
427         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
428 
429   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
430     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
431                         CI->getType());
432 
433   // strcmp(P, "x") -> memcmp(P, "x", 2)
434   uint64_t Len1 = GetStringLength(Str1P);
435   if (Len1)
436     annotateDereferenceableBytes(CI, 0, Len1);
437   uint64_t Len2 = GetStringLength(Str2P);
438   if (Len2)
439     annotateDereferenceableBytes(CI, 1, Len2);
440 
441   if (Len1 && Len2) {
442     return emitMemCmp(Str1P, Str2P,
443                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
444                                        std::min(Len1, Len2)),
445                       B, DL, TLI);
446   }
447 
448   // strcmp to memcmp
449   if (!HasStr1 && HasStr2) {
450     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
451       return emitMemCmp(
452           Str1P, Str2P,
453           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
454           TLI);
455   } else if (HasStr1 && !HasStr2) {
456     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
457       return emitMemCmp(
458           Str1P, Str2P,
459           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
460           TLI);
461   }
462 
463   annotateNonNullBasedOnAccess(CI, {0, 1});
464   return nullptr;
465 }
466 
467 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
468   Value *Str1P = CI->getArgOperand(0);
469   Value *Str2P = CI->getArgOperand(1);
470   Value *Size = CI->getArgOperand(2);
471   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
472     return ConstantInt::get(CI->getType(), 0);
473 
474   if (isKnownNonZero(Size, DL))
475     annotateNonNullBasedOnAccess(CI, {0, 1});
476   // Get the length argument if it is constant.
477   uint64_t Length;
478   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
479     Length = LengthArg->getZExtValue();
480   else
481     return nullptr;
482 
483   if (Length == 0) // strncmp(x,y,0)   -> 0
484     return ConstantInt::get(CI->getType(), 0);
485 
486   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
487     return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI);
488 
489   StringRef Str1, Str2;
490   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
491   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
492 
493   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
494   if (HasStr1 && HasStr2) {
495     StringRef SubStr1 = Str1.substr(0, Length);
496     StringRef SubStr2 = Str2.substr(0, Length);
497     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
498   }
499 
500   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
501     return B.CreateNeg(B.CreateZExt(
502         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
503 
504   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
505     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
506                         CI->getType());
507 
508   uint64_t Len1 = GetStringLength(Str1P);
509   if (Len1)
510     annotateDereferenceableBytes(CI, 0, Len1);
511   uint64_t Len2 = GetStringLength(Str2P);
512   if (Len2)
513     annotateDereferenceableBytes(CI, 1, Len2);
514 
515   // strncmp to memcmp
516   if (!HasStr1 && HasStr2) {
517     Len2 = std::min(Len2, Length);
518     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
519       return emitMemCmp(
520           Str1P, Str2P,
521           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
522           TLI);
523   } else if (HasStr1 && !HasStr2) {
524     Len1 = std::min(Len1, Length);
525     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
526       return emitMemCmp(
527           Str1P, Str2P,
528           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
529           TLI);
530   }
531 
532   return nullptr;
533 }
534 
535 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilder<> &B) {
536   Value *Src = CI->getArgOperand(0);
537   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
538   uint64_t SrcLen = GetStringLength(Src);
539   if (SrcLen && Size) {
540     annotateDereferenceableBytes(CI, 0, SrcLen);
541     if (SrcLen <= Size->getZExtValue() + 1)
542       return emitStrDup(Src, B, TLI);
543   }
544 
545   return nullptr;
546 }
547 
548 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
549   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
550   if (Dst == Src) // strcpy(x,x)  -> x
551     return Src;
552 
553   annotateNonNullBasedOnAccess(CI, {0, 1});
554   // See if we can get the length of the input string.
555   uint64_t Len = GetStringLength(Src);
556   if (Len)
557     annotateDereferenceableBytes(CI, 1, Len);
558   else
559     return nullptr;
560 
561   // We have enough information to now generate the memcpy call to do the
562   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
563   CallInst *NewCI =
564       B.CreateMemCpy(Dst, 1, Src, 1,
565                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
566   NewCI->setAttributes(CI->getAttributes());
567   return Dst;
568 }
569 
570 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
571   Function *Callee = CI->getCalledFunction();
572   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
573   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
574     Value *StrLen = emitStrLen(Src, B, DL, TLI);
575     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
576   }
577 
578   // See if we can get the length of the input string.
579   uint64_t Len = GetStringLength(Src);
580   if (Len)
581     annotateDereferenceableBytes(CI, 1, Len);
582   else
583     return nullptr;
584 
585   Type *PT = Callee->getFunctionType()->getParamType(0);
586   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
587   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
588                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
589 
590   // We have enough information to now generate the memcpy call to do the
591   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
592   CallInst *NewCI = B.CreateMemCpy(Dst, 1, Src, 1, LenV);
593   NewCI->setAttributes(CI->getAttributes());
594   return DstEnd;
595 }
596 
597 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
598   Function *Callee = CI->getCalledFunction();
599   Value *Dst = CI->getArgOperand(0);
600   Value *Src = CI->getArgOperand(1);
601   Value *Size = CI->getArgOperand(2);
602   annotateNonNullBasedOnAccess(CI, 0);
603   if (isKnownNonZero(Size, DL))
604     annotateNonNullBasedOnAccess(CI, 1);
605 
606   uint64_t Len;
607   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
608     Len = LengthArg->getZExtValue();
609   else
610     return nullptr;
611 
612   // strncpy(x, y, 0) -> x
613   if (Len == 0)
614     return Dst;
615 
616   // See if we can get the length of the input string.
617   uint64_t SrcLen = GetStringLength(Src);
618   if (SrcLen) {
619     annotateDereferenceableBytes(CI, 1, SrcLen);
620     --SrcLen; // Unbias length.
621   } else {
622     return nullptr;
623   }
624 
625   if (SrcLen == 0) {
626     // strncpy(x, "", y) -> memset(align 1 x, '\0', y)
627     CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, Align::None());
628     AttrBuilder ArgAttrs(CI->getAttributes().getParamAttributes(0));
629     NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
630         CI->getContext(), 0, ArgAttrs));
631     return Dst;
632   }
633 
634   // Let strncpy handle the zero padding
635   if (Len > SrcLen + 1)
636     return nullptr;
637 
638   Type *PT = Callee->getFunctionType()->getParamType(0);
639   // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
640   CallInst *NewCI = B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len));
641   NewCI->setAttributes(CI->getAttributes());
642   return Dst;
643 }
644 
645 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B,
646                                                unsigned CharSize) {
647   Value *Src = CI->getArgOperand(0);
648 
649   // Constant folding: strlen("xyz") -> 3
650   if (uint64_t Len = GetStringLength(Src, CharSize))
651     return ConstantInt::get(CI->getType(), Len - 1);
652 
653   // If s is a constant pointer pointing to a string literal, we can fold
654   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
655   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
656   // We only try to simplify strlen when the pointer s points to an array
657   // of i8. Otherwise, we would need to scale the offset x before doing the
658   // subtraction. This will make the optimization more complex, and it's not
659   // very useful because calling strlen for a pointer of other types is
660   // very uncommon.
661   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
662     if (!isGEPBasedOnPointerToString(GEP, CharSize))
663       return nullptr;
664 
665     ConstantDataArraySlice Slice;
666     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
667       uint64_t NullTermIdx;
668       if (Slice.Array == nullptr) {
669         NullTermIdx = 0;
670       } else {
671         NullTermIdx = ~((uint64_t)0);
672         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
673           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
674             NullTermIdx = I;
675             break;
676           }
677         }
678         // If the string does not have '\0', leave it to strlen to compute
679         // its length.
680         if (NullTermIdx == ~((uint64_t)0))
681           return nullptr;
682       }
683 
684       Value *Offset = GEP->getOperand(2);
685       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
686       Known.Zero.flipAllBits();
687       uint64_t ArrSize =
688              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
689 
690       // KnownZero's bits are flipped, so zeros in KnownZero now represent
691       // bits known to be zeros in Offset, and ones in KnowZero represent
692       // bits unknown in Offset. Therefore, Offset is known to be in range
693       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
694       // unsigned-less-than NullTermIdx.
695       //
696       // If Offset is not provably in the range [0, NullTermIdx], we can still
697       // optimize if we can prove that the program has undefined behavior when
698       // Offset is outside that range. That is the case when GEP->getOperand(0)
699       // is a pointer to an object whose memory extent is NullTermIdx+1.
700       if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
701           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
702            NullTermIdx == ArrSize - 1)) {
703         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
704         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
705                            Offset);
706       }
707     }
708 
709     return nullptr;
710   }
711 
712   // strlen(x?"foo":"bars") --> x ? 3 : 4
713   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
714     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
715     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
716     if (LenTrue && LenFalse) {
717       ORE.emit([&]() {
718         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
719                << "folded strlen(select) to select of constants";
720       });
721       return B.CreateSelect(SI->getCondition(),
722                             ConstantInt::get(CI->getType(), LenTrue - 1),
723                             ConstantInt::get(CI->getType(), LenFalse - 1));
724     }
725   }
726 
727   // strlen(x) != 0 --> *x != 0
728   // strlen(x) == 0 --> *x == 0
729   if (isOnlyUsedInZeroEqualityComparison(CI))
730     return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"),
731                         CI->getType());
732 
733   return nullptr;
734 }
735 
736 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
737   if (Value *V = optimizeStringLength(CI, B, 8))
738     return V;
739   annotateNonNullBasedOnAccess(CI, 0);
740   return nullptr;
741 }
742 
743 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) {
744   Module &M = *CI->getModule();
745   unsigned WCharSize = TLI->getWCharSize(M) * 8;
746   // We cannot perform this optimization without wchar_size metadata.
747   if (WCharSize == 0)
748     return nullptr;
749 
750   return optimizeStringLength(CI, B, WCharSize);
751 }
752 
753 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
754   StringRef S1, S2;
755   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
756   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
757 
758   // strpbrk(s, "") -> nullptr
759   // strpbrk("", s) -> nullptr
760   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
761     return Constant::getNullValue(CI->getType());
762 
763   // Constant folding.
764   if (HasS1 && HasS2) {
765     size_t I = S1.find_first_of(S2);
766     if (I == StringRef::npos) // No match.
767       return Constant::getNullValue(CI->getType());
768 
769     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
770                        "strpbrk");
771   }
772 
773   // strpbrk(s, "a") -> strchr(s, 'a')
774   if (HasS2 && S2.size() == 1)
775     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
776 
777   return nullptr;
778 }
779 
780 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
781   Value *EndPtr = CI->getArgOperand(1);
782   if (isa<ConstantPointerNull>(EndPtr)) {
783     // With a null EndPtr, this function won't capture the main argument.
784     // It would be readonly too, except that it still may write to errno.
785     CI->addParamAttr(0, Attribute::NoCapture);
786   }
787 
788   return nullptr;
789 }
790 
791 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
792   StringRef S1, S2;
793   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
794   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
795 
796   // strspn(s, "") -> 0
797   // strspn("", s) -> 0
798   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
799     return Constant::getNullValue(CI->getType());
800 
801   // Constant folding.
802   if (HasS1 && HasS2) {
803     size_t Pos = S1.find_first_not_of(S2);
804     if (Pos == StringRef::npos)
805       Pos = S1.size();
806     return ConstantInt::get(CI->getType(), Pos);
807   }
808 
809   return nullptr;
810 }
811 
812 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
813   StringRef S1, S2;
814   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
815   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
816 
817   // strcspn("", s) -> 0
818   if (HasS1 && S1.empty())
819     return Constant::getNullValue(CI->getType());
820 
821   // Constant folding.
822   if (HasS1 && HasS2) {
823     size_t Pos = S1.find_first_of(S2);
824     if (Pos == StringRef::npos)
825       Pos = S1.size();
826     return ConstantInt::get(CI->getType(), Pos);
827   }
828 
829   // strcspn(s, "") -> strlen(s)
830   if (HasS2 && S2.empty())
831     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
832 
833   return nullptr;
834 }
835 
836 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
837   // fold strstr(x, x) -> x.
838   if (CI->getArgOperand(0) == CI->getArgOperand(1))
839     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
840 
841   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
842   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
843     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
844     if (!StrLen)
845       return nullptr;
846     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
847                                  StrLen, B, DL, TLI);
848     if (!StrNCmp)
849       return nullptr;
850     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
851       ICmpInst *Old = cast<ICmpInst>(*UI++);
852       Value *Cmp =
853           B.CreateICmp(Old->getPredicate(), StrNCmp,
854                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
855       replaceAllUsesWith(Old, Cmp);
856     }
857     return CI;
858   }
859 
860   // See if either input string is a constant string.
861   StringRef SearchStr, ToFindStr;
862   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
863   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
864 
865   // fold strstr(x, "") -> x.
866   if (HasStr2 && ToFindStr.empty())
867     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
868 
869   // If both strings are known, constant fold it.
870   if (HasStr1 && HasStr2) {
871     size_t Offset = SearchStr.find(ToFindStr);
872 
873     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
874       return Constant::getNullValue(CI->getType());
875 
876     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
877     Value *Result = castToCStr(CI->getArgOperand(0), B);
878     Result =
879         B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
880     return B.CreateBitCast(Result, CI->getType());
881   }
882 
883   // fold strstr(x, "y") -> strchr(x, 'y').
884   if (HasStr2 && ToFindStr.size() == 1) {
885     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
886     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
887   }
888 
889   annotateNonNullBasedOnAccess(CI, {0, 1});
890   return nullptr;
891 }
892 
893 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilder<> &B) {
894   if (isKnownNonZero(CI->getOperand(2), DL))
895     annotateNonNullBasedOnAccess(CI, 0);
896   return nullptr;
897 }
898 
899 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
900   Value *SrcStr = CI->getArgOperand(0);
901   Value *Size = CI->getArgOperand(2);
902   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
903   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
904   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
905 
906   // memchr(x, y, 0) -> null
907   if (LenC) {
908     if (LenC->isZero())
909       return Constant::getNullValue(CI->getType());
910   } else {
911     // From now on we need at least constant length and string.
912     return nullptr;
913   }
914 
915   StringRef Str;
916   if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
917     return nullptr;
918 
919   // Truncate the string to LenC. If Str is smaller than LenC we will still only
920   // scan the string, as reading past the end of it is undefined and we can just
921   // return null if we don't find the char.
922   Str = Str.substr(0, LenC->getZExtValue());
923 
924   // If the char is variable but the input str and length are not we can turn
925   // this memchr call into a simple bit field test. Of course this only works
926   // when the return value is only checked against null.
927   //
928   // It would be really nice to reuse switch lowering here but we can't change
929   // the CFG at this point.
930   //
931   // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
932   // != 0
933   //   after bounds check.
934   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
935     unsigned char Max =
936         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
937                           reinterpret_cast<const unsigned char *>(Str.end()));
938 
939     // Make sure the bit field we're about to create fits in a register on the
940     // target.
941     // FIXME: On a 64 bit architecture this prevents us from using the
942     // interesting range of alpha ascii chars. We could do better by emitting
943     // two bitfields or shifting the range by 64 if no lower chars are used.
944     if (!DL.fitsInLegalInteger(Max + 1))
945       return nullptr;
946 
947     // For the bit field use a power-of-2 type with at least 8 bits to avoid
948     // creating unnecessary illegal types.
949     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
950 
951     // Now build the bit field.
952     APInt Bitfield(Width, 0);
953     for (char C : Str)
954       Bitfield.setBit((unsigned char)C);
955     Value *BitfieldC = B.getInt(Bitfield);
956 
957     // Adjust width of "C" to the bitfield width, then mask off the high bits.
958     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
959     C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
960 
961     // First check that the bit field access is within bounds.
962     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
963                                  "memchr.bounds");
964 
965     // Create code that checks if the given bit is set in the field.
966     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
967     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
968 
969     // Finally merge both checks and cast to pointer type. The inttoptr
970     // implicitly zexts the i1 to intptr type.
971     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
972   }
973 
974   // Check if all arguments are constants.  If so, we can constant fold.
975   if (!CharC)
976     return nullptr;
977 
978   // Compute the offset.
979   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
980   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
981     return Constant::getNullValue(CI->getType());
982 
983   // memchr(s+n,c,l) -> gep(s+n+i,c)
984   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
985 }
986 
987 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
988                                          uint64_t Len, IRBuilder<> &B,
989                                          const DataLayout &DL) {
990   if (Len == 0) // memcmp(s1,s2,0) -> 0
991     return Constant::getNullValue(CI->getType());
992 
993   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
994   if (Len == 1) {
995     Value *LHSV =
996         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
997                      CI->getType(), "lhsv");
998     Value *RHSV =
999         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
1000                      CI->getType(), "rhsv");
1001     return B.CreateSub(LHSV, RHSV, "chardiff");
1002   }
1003 
1004   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
1005   // TODO: The case where both inputs are constants does not need to be limited
1006   // to legal integers or equality comparison. See block below this.
1007   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
1008     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
1009     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
1010 
1011     // First, see if we can fold either argument to a constant.
1012     Value *LHSV = nullptr;
1013     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
1014       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
1015       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
1016     }
1017     Value *RHSV = nullptr;
1018     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
1019       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
1020       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
1021     }
1022 
1023     // Don't generate unaligned loads. If either source is constant data,
1024     // alignment doesn't matter for that source because there is no load.
1025     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
1026         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
1027       if (!LHSV) {
1028         Type *LHSPtrTy =
1029             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
1030         LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
1031       }
1032       if (!RHSV) {
1033         Type *RHSPtrTy =
1034             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
1035         RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
1036       }
1037       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1038     }
1039   }
1040 
1041   // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
1042   // TODO: This is limited to i8 arrays.
1043   StringRef LHSStr, RHSStr;
1044   if (getConstantStringInfo(LHS, LHSStr) &&
1045       getConstantStringInfo(RHS, RHSStr)) {
1046     // Make sure we're not reading out-of-bounds memory.
1047     if (Len > LHSStr.size() || Len > RHSStr.size())
1048       return nullptr;
1049     // Fold the memcmp and normalize the result.  This way we get consistent
1050     // results across multiple platforms.
1051     uint64_t Ret = 0;
1052     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
1053     if (Cmp < 0)
1054       Ret = -1;
1055     else if (Cmp > 0)
1056       Ret = 1;
1057     return ConstantInt::get(CI->getType(), Ret);
1058   }
1059 
1060   return nullptr;
1061 }
1062 
1063 // Most simplifications for memcmp also apply to bcmp.
1064 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1065                                                    IRBuilder<> &B) {
1066   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1067   Value *Size = CI->getArgOperand(2);
1068 
1069   if (LHS == RHS) // memcmp(s,s,x) -> 0
1070     return Constant::getNullValue(CI->getType());
1071 
1072   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1073   // Handle constant lengths.
1074   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1075   if (!LenC)
1076     return nullptr;
1077 
1078   // memcmp(d,s,0) -> 0
1079   if (LenC->getZExtValue() == 0)
1080     return Constant::getNullValue(CI->getType());
1081 
1082   if (Value *Res =
1083           optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL))
1084     return Res;
1085   return nullptr;
1086 }
1087 
1088 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
1089   if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1090     return V;
1091 
1092   // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1093   // bcmp can be more efficient than memcmp because it only has to know that
1094   // there is a difference, not how different one is to the other.
1095   if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) {
1096     Value *LHS = CI->getArgOperand(0);
1097     Value *RHS = CI->getArgOperand(1);
1098     Value *Size = CI->getArgOperand(2);
1099     return emitBCmp(LHS, RHS, Size, B, DL, TLI);
1100   }
1101 
1102   return nullptr;
1103 }
1104 
1105 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilder<> &B) {
1106   return optimizeMemCmpBCmpCommon(CI, B);
1107 }
1108 
1109 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
1110   Value *Size = CI->getArgOperand(2);
1111   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1112   if (isa<IntrinsicInst>(CI))
1113     return nullptr;
1114 
1115   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1116   CallInst *NewCI =
1117       B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, Size);
1118   NewCI->setAttributes(CI->getAttributes());
1119   return CI->getArgOperand(0);
1120 }
1121 
1122 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilder<> &B) {
1123   Value *Dst = CI->getArgOperand(0);
1124   Value *Src = CI->getArgOperand(1);
1125   ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1126   ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1127   StringRef SrcStr;
1128   if (CI->use_empty() && Dst == Src)
1129     return Dst;
1130   // memccpy(d, s, c, 0) -> nullptr
1131   if (N) {
1132     if (N->isNullValue())
1133       return Constant::getNullValue(CI->getType());
1134     if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0,
1135                                /*TrimAtNul=*/false) ||
1136         !StopChar)
1137       return nullptr;
1138   } else {
1139     return nullptr;
1140   }
1141 
1142   // Wrap arg 'c' of type int to char
1143   size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1144   if (Pos == StringRef::npos) {
1145     if (N->getZExtValue() <= SrcStr.size()) {
1146       B.CreateMemCpy(Dst, 1, Src, 1, CI->getArgOperand(3));
1147       return Constant::getNullValue(CI->getType());
1148     }
1149     return nullptr;
1150   }
1151 
1152   Value *NewN =
1153       ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1154   // memccpy -> llvm.memcpy
1155   B.CreateMemCpy(Dst, 1, Src, 1, NewN);
1156   return Pos + 1 <= N->getZExtValue()
1157              ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1158              : Constant::getNullValue(CI->getType());
1159 }
1160 
1161 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilder<> &B) {
1162   Value *Dst = CI->getArgOperand(0);
1163   Value *N = CI->getArgOperand(2);
1164   // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1165   CallInst *NewCI = B.CreateMemCpy(Dst, 1, CI->getArgOperand(1), 1, N);
1166   NewCI->setAttributes(CI->getAttributes());
1167   return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1168 }
1169 
1170 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
1171   Value *Size = CI->getArgOperand(2);
1172   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1173   if (isa<IntrinsicInst>(CI))
1174     return nullptr;
1175 
1176   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1177   CallInst *NewCI =
1178       B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, Size);
1179   NewCI->setAttributes(CI->getAttributes());
1180   return CI->getArgOperand(0);
1181 }
1182 
1183 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
1184 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilder<> &B) {
1185   // This has to be a memset of zeros (bzero).
1186   auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
1187   if (!FillValue || FillValue->getZExtValue() != 0)
1188     return nullptr;
1189 
1190   // TODO: We should handle the case where the malloc has more than one use.
1191   // This is necessary to optimize common patterns such as when the result of
1192   // the malloc is checked against null or when a memset intrinsic is used in
1193   // place of a memset library call.
1194   auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
1195   if (!Malloc || !Malloc->hasOneUse())
1196     return nullptr;
1197 
1198   // Is the inner call really malloc()?
1199   Function *InnerCallee = Malloc->getCalledFunction();
1200   if (!InnerCallee)
1201     return nullptr;
1202 
1203   LibFunc Func;
1204   if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
1205       Func != LibFunc_malloc)
1206     return nullptr;
1207 
1208   // The memset must cover the same number of bytes that are malloc'd.
1209   if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
1210     return nullptr;
1211 
1212   // Replace the malloc with a calloc. We need the data layout to know what the
1213   // actual size of a 'size_t' parameter is.
1214   B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
1215   const DataLayout &DL = Malloc->getModule()->getDataLayout();
1216   IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
1217   if (Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
1218                                  Malloc->getArgOperand(0),
1219                                  Malloc->getAttributes(), B, *TLI)) {
1220     substituteInParent(Malloc, Calloc);
1221     return Calloc;
1222   }
1223 
1224   return nullptr;
1225 }
1226 
1227 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
1228   Value *Size = CI->getArgOperand(2);
1229   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1230   if (isa<IntrinsicInst>(CI))
1231     return nullptr;
1232 
1233   if (auto *Calloc = foldMallocMemset(CI, B))
1234     return Calloc;
1235 
1236   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1237   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1238   CallInst *NewCI =
1239       B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align::None());
1240   NewCI->setAttributes(CI->getAttributes());
1241   return CI->getArgOperand(0);
1242 }
1243 
1244 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) {
1245   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1246     return emitMalloc(CI->getArgOperand(1), B, DL, TLI);
1247 
1248   return nullptr;
1249 }
1250 
1251 //===----------------------------------------------------------------------===//
1252 // Math Library Optimizations
1253 //===----------------------------------------------------------------------===//
1254 
1255 // Replace a libcall \p CI with a call to intrinsic \p IID
1256 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) {
1257   // Propagate fast-math flags from the existing call to the new call.
1258   IRBuilder<>::FastMathFlagGuard Guard(B);
1259   B.setFastMathFlags(CI->getFastMathFlags());
1260 
1261   Module *M = CI->getModule();
1262   Value *V = CI->getArgOperand(0);
1263   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1264   CallInst *NewCall = B.CreateCall(F, V);
1265   NewCall->takeName(CI);
1266   return NewCall;
1267 }
1268 
1269 /// Return a variant of Val with float type.
1270 /// Currently this works in two cases: If Val is an FPExtension of a float
1271 /// value to something bigger, simply return the operand.
1272 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1273 /// loss of precision do so.
1274 static Value *valueHasFloatPrecision(Value *Val) {
1275   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1276     Value *Op = Cast->getOperand(0);
1277     if (Op->getType()->isFloatTy())
1278       return Op;
1279   }
1280   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1281     APFloat F = Const->getValueAPF();
1282     bool losesInfo;
1283     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1284                     &losesInfo);
1285     if (!losesInfo)
1286       return ConstantFP::get(Const->getContext(), F);
1287   }
1288   return nullptr;
1289 }
1290 
1291 /// Shrink double -> float functions.
1292 static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B,
1293                                bool isBinary, bool isPrecise = false) {
1294   Function *CalleeFn = CI->getCalledFunction();
1295   if (!CI->getType()->isDoubleTy() || !CalleeFn)
1296     return nullptr;
1297 
1298   // If not all the uses of the function are converted to float, then bail out.
1299   // This matters if the precision of the result is more important than the
1300   // precision of the arguments.
1301   if (isPrecise)
1302     for (User *U : CI->users()) {
1303       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1304       if (!Cast || !Cast->getType()->isFloatTy())
1305         return nullptr;
1306     }
1307 
1308   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1309   Value *V[2];
1310   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1311   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1312   if (!V[0] || (isBinary && !V[1]))
1313     return nullptr;
1314 
1315   // If call isn't an intrinsic, check that it isn't within a function with the
1316   // same name as the float version of this call, otherwise the result is an
1317   // infinite loop.  For example, from MinGW-w64:
1318   //
1319   // float expf(float val) { return (float) exp((double) val); }
1320   StringRef CalleeName = CalleeFn->getName();
1321   bool IsIntrinsic = CalleeFn->isIntrinsic();
1322   if (!IsIntrinsic) {
1323     StringRef CallerName = CI->getFunction()->getName();
1324     if (!CallerName.empty() && CallerName.back() == 'f' &&
1325         CallerName.size() == (CalleeName.size() + 1) &&
1326         CallerName.startswith(CalleeName))
1327       return nullptr;
1328   }
1329 
1330   // Propagate the math semantics from the current function to the new function.
1331   IRBuilder<>::FastMathFlagGuard Guard(B);
1332   B.setFastMathFlags(CI->getFastMathFlags());
1333 
1334   // g((double) float) -> (double) gf(float)
1335   Value *R;
1336   if (IsIntrinsic) {
1337     Module *M = CI->getModule();
1338     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1339     Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1340     R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1341   } else {
1342     AttributeList CalleeAttrs = CalleeFn->getAttributes();
1343     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs)
1344                  : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs);
1345   }
1346   return B.CreateFPExt(R, B.getDoubleTy());
1347 }
1348 
1349 /// Shrink double -> float for unary functions.
1350 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
1351                                     bool isPrecise = false) {
1352   return optimizeDoubleFP(CI, B, false, isPrecise);
1353 }
1354 
1355 /// Shrink double -> float for binary functions.
1356 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B,
1357                                      bool isPrecise = false) {
1358   return optimizeDoubleFP(CI, B, true, isPrecise);
1359 }
1360 
1361 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1362 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) {
1363   if (!CI->isFast())
1364     return nullptr;
1365 
1366   // Propagate fast-math flags from the existing call to new instructions.
1367   IRBuilder<>::FastMathFlagGuard Guard(B);
1368   B.setFastMathFlags(CI->getFastMathFlags());
1369 
1370   Value *Real, *Imag;
1371   if (CI->getNumArgOperands() == 1) {
1372     Value *Op = CI->getArgOperand(0);
1373     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1374     Real = B.CreateExtractValue(Op, 0, "real");
1375     Imag = B.CreateExtractValue(Op, 1, "imag");
1376   } else {
1377     assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
1378     Real = CI->getArgOperand(0);
1379     Imag = CI->getArgOperand(1);
1380   }
1381 
1382   Value *RealReal = B.CreateFMul(Real, Real);
1383   Value *ImagImag = B.CreateFMul(Imag, Imag);
1384 
1385   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1386                                               CI->getType());
1387   return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
1388 }
1389 
1390 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1391                                       IRBuilder<> &B) {
1392   if (!isa<FPMathOperator>(Call))
1393     return nullptr;
1394 
1395   IRBuilder<>::FastMathFlagGuard Guard(B);
1396   B.setFastMathFlags(Call->getFastMathFlags());
1397 
1398   // TODO: Can this be shared to also handle LLVM intrinsics?
1399   Value *X;
1400   switch (Func) {
1401   case LibFunc_sin:
1402   case LibFunc_sinf:
1403   case LibFunc_sinl:
1404   case LibFunc_tan:
1405   case LibFunc_tanf:
1406   case LibFunc_tanl:
1407     // sin(-X) --> -sin(X)
1408     // tan(-X) --> -tan(X)
1409     if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1410       return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X));
1411     break;
1412   case LibFunc_cos:
1413   case LibFunc_cosf:
1414   case LibFunc_cosl:
1415     // cos(-X) --> cos(X)
1416     if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1417       return B.CreateCall(Call->getCalledFunction(), X, "cos");
1418     break;
1419   default:
1420     break;
1421   }
1422   return nullptr;
1423 }
1424 
1425 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
1426   // Multiplications calculated using Addition Chains.
1427   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1428 
1429   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1430 
1431   if (InnerChain[Exp])
1432     return InnerChain[Exp];
1433 
1434   static const unsigned AddChain[33][2] = {
1435       {0, 0}, // Unused.
1436       {0, 0}, // Unused (base case = pow1).
1437       {1, 1}, // Unused (pre-computed).
1438       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1439       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1440       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1441       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1442       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1443   };
1444 
1445   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1446                                  getPow(InnerChain, AddChain[Exp][1], B));
1447   return InnerChain[Exp];
1448 }
1449 
1450 // Return a properly extended 32-bit integer if the operation is an itofp.
1451 static Value *getIntToFPVal(Value *I2F, IRBuilder<> &B) {
1452   if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
1453     Value *Op = cast<Instruction>(I2F)->getOperand(0);
1454     // Make sure that the exponent fits inside an int32_t,
1455     // thus avoiding any range issues that FP has not.
1456     unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1457     if (BitWidth < 32 ||
1458         (BitWidth == 32 && isa<SIToFPInst>(I2F)))
1459       return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getInt32Ty())
1460                                   : B.CreateZExt(Op, B.getInt32Ty());
1461   }
1462 
1463   return nullptr;
1464 }
1465 
1466 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1467 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1468 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1469 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) {
1470   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1471   AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
1472   Module *Mod = Pow->getModule();
1473   Type *Ty = Pow->getType();
1474   bool Ignored;
1475 
1476   // Evaluate special cases related to a nested function as the base.
1477 
1478   // pow(exp(x), y) -> exp(x * y)
1479   // pow(exp2(x), y) -> exp2(x * y)
1480   // If exp{,2}() is used only once, it is better to fold two transcendental
1481   // math functions into one.  If used again, exp{,2}() would still have to be
1482   // called with the original argument, then keep both original transcendental
1483   // functions.  However, this transformation is only safe with fully relaxed
1484   // math semantics, since, besides rounding differences, it changes overflow
1485   // and underflow behavior quite dramatically.  For example:
1486   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1487   // Whereas:
1488   //   exp(1000 * 0.001) = exp(1)
1489   // TODO: Loosen the requirement for fully relaxed math semantics.
1490   // TODO: Handle exp10() when more targets have it available.
1491   CallInst *BaseFn = dyn_cast<CallInst>(Base);
1492   if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1493     LibFunc LibFn;
1494 
1495     Function *CalleeFn = BaseFn->getCalledFunction();
1496     if (CalleeFn &&
1497         TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) {
1498       StringRef ExpName;
1499       Intrinsic::ID ID;
1500       Value *ExpFn;
1501       LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
1502 
1503       switch (LibFn) {
1504       default:
1505         return nullptr;
1506       case LibFunc_expf:  case LibFunc_exp:  case LibFunc_expl:
1507         ExpName = TLI->getName(LibFunc_exp);
1508         ID = Intrinsic::exp;
1509         LibFnFloat = LibFunc_expf;
1510         LibFnDouble = LibFunc_exp;
1511         LibFnLongDouble = LibFunc_expl;
1512         break;
1513       case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1514         ExpName = TLI->getName(LibFunc_exp2);
1515         ID = Intrinsic::exp2;
1516         LibFnFloat = LibFunc_exp2f;
1517         LibFnDouble = LibFunc_exp2;
1518         LibFnLongDouble = LibFunc_exp2l;
1519         break;
1520       }
1521 
1522       // Create new exp{,2}() with the product as its argument.
1523       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1524       ExpFn = BaseFn->doesNotAccessMemory()
1525               ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1526                              FMul, ExpName)
1527               : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1528                                      LibFnLongDouble, B,
1529                                      BaseFn->getAttributes());
1530 
1531       // Since the new exp{,2}() is different from the original one, dead code
1532       // elimination cannot be trusted to remove it, since it may have side
1533       // effects (e.g., errno).  When the only consumer for the original
1534       // exp{,2}() is pow(), then it has to be explicitly erased.
1535       substituteInParent(BaseFn, ExpFn);
1536       return ExpFn;
1537     }
1538   }
1539 
1540   // Evaluate special cases related to a constant base.
1541 
1542   const APFloat *BaseF;
1543   if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1544     return nullptr;
1545 
1546   // pow(2.0, itofp(x)) -> ldexp(1.0, x)
1547   if (match(Base, m_SpecificFP(2.0)) &&
1548       (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
1549       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1550     if (Value *ExpoI = getIntToFPVal(Expo, B))
1551       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI,
1552                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1553                                    B, Attrs);
1554   }
1555 
1556   // pow(2.0 ** n, x) -> exp2(n * x)
1557   if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1558     APFloat BaseR = APFloat(1.0);
1559     BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1560     BaseR = BaseR / *BaseF;
1561     bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
1562     const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1563     APSInt NI(64, false);
1564     if ((IsInteger || IsReciprocal) &&
1565         NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
1566             APFloat::opOK &&
1567         NI > 1 && NI.isPowerOf2()) {
1568       double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1569       Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1570       if (Pow->doesNotAccessMemory())
1571         return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1572                             FMul, "exp2");
1573       else
1574         return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1575                                     LibFunc_exp2l, B, Attrs);
1576     }
1577   }
1578 
1579   // pow(10.0, x) -> exp10(x)
1580   // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1581   if (match(Base, m_SpecificFP(10.0)) &&
1582       hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1583     return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f,
1584                                 LibFunc_exp10l, B, Attrs);
1585 
1586   // pow(n, x) -> exp2(log2(n) * x)
1587   if (Pow->hasOneUse() && Pow->hasApproxFunc() && Pow->hasNoNaNs() &&
1588       Pow->hasNoInfs() && BaseF->isNormal() && !BaseF->isNegative()) {
1589     Value *Log = nullptr;
1590     if (Ty->isFloatTy())
1591       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
1592     else if (Ty->isDoubleTy())
1593       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
1594 
1595     if (Log) {
1596       Value *FMul = B.CreateFMul(Log, Expo, "mul");
1597       if (Pow->doesNotAccessMemory())
1598         return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1599                             FMul, "exp2");
1600       else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l))
1601         return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1602                                     LibFunc_exp2l, B, Attrs);
1603     }
1604   }
1605 
1606   return nullptr;
1607 }
1608 
1609 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1610                           Module *M, IRBuilder<> &B,
1611                           const TargetLibraryInfo *TLI) {
1612   // If errno is never set, then use the intrinsic for sqrt().
1613   if (NoErrno) {
1614     Function *SqrtFn =
1615         Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1616     return B.CreateCall(SqrtFn, V, "sqrt");
1617   }
1618 
1619   // Otherwise, use the libcall for sqrt().
1620   if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl))
1621     // TODO: We also should check that the target can in fact lower the sqrt()
1622     // libcall. We currently have no way to ask this question, so we ask if
1623     // the target has a sqrt() libcall, which is not exactly the same.
1624     return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1625                                 LibFunc_sqrtl, B, Attrs);
1626 
1627   return nullptr;
1628 }
1629 
1630 /// Use square root in place of pow(x, +/-0.5).
1631 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) {
1632   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1633   AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
1634   Module *Mod = Pow->getModule();
1635   Type *Ty = Pow->getType();
1636 
1637   const APFloat *ExpoF;
1638   if (!match(Expo, m_APFloat(ExpoF)) ||
1639       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1640     return nullptr;
1641 
1642   Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1643   if (!Sqrt)
1644     return nullptr;
1645 
1646   // Handle signed zero base by expanding to fabs(sqrt(x)).
1647   if (!Pow->hasNoSignedZeros()) {
1648     Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1649     Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1650   }
1651 
1652   // Handle non finite base by expanding to
1653   // (x == -infinity ? +infinity : sqrt(x)).
1654   if (!Pow->hasNoInfs()) {
1655     Value *PosInf = ConstantFP::getInfinity(Ty),
1656           *NegInf = ConstantFP::getInfinity(Ty, true);
1657     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1658     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1659   }
1660 
1661   // If the exponent is negative, then get the reciprocal.
1662   if (ExpoF->isNegative())
1663     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1664 
1665   return Sqrt;
1666 }
1667 
1668 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
1669                                            IRBuilder<> &B) {
1670   Value *Args[] = {Base, Expo};
1671   Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType());
1672   return B.CreateCall(F, Args);
1673 }
1674 
1675 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) {
1676   Value *Base = Pow->getArgOperand(0);
1677   Value *Expo = Pow->getArgOperand(1);
1678   Function *Callee = Pow->getCalledFunction();
1679   StringRef Name = Callee->getName();
1680   Type *Ty = Pow->getType();
1681   Module *M = Pow->getModule();
1682   Value *Shrunk = nullptr;
1683   bool AllowApprox = Pow->hasApproxFunc();
1684   bool Ignored;
1685 
1686   // Bail out if simplifying libcalls to pow() is disabled.
1687   if (!hasFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl))
1688     return nullptr;
1689 
1690   // Propagate the math semantics from the call to any created instructions.
1691   IRBuilder<>::FastMathFlagGuard Guard(B);
1692   B.setFastMathFlags(Pow->getFastMathFlags());
1693 
1694   // Shrink pow() to powf() if the arguments are single precision,
1695   // unless the result is expected to be double precision.
1696   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
1697       hasFloatVersion(Name))
1698     Shrunk = optimizeBinaryDoubleFP(Pow, B, true);
1699 
1700   // Evaluate special cases related to the base.
1701 
1702   // pow(1.0, x) -> 1.0
1703   if (match(Base, m_FPOne()))
1704     return Base;
1705 
1706   if (Value *Exp = replacePowWithExp(Pow, B))
1707     return Exp;
1708 
1709   // Evaluate special cases related to the exponent.
1710 
1711   // pow(x, -1.0) -> 1.0 / x
1712   if (match(Expo, m_SpecificFP(-1.0)))
1713     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1714 
1715   // pow(x, +/-0.0) -> 1.0
1716   if (match(Expo, m_AnyZeroFP()))
1717     return ConstantFP::get(Ty, 1.0);
1718 
1719   // pow(x, 1.0) -> x
1720   if (match(Expo, m_FPOne()))
1721     return Base;
1722 
1723   // pow(x, 2.0) -> x * x
1724   if (match(Expo, m_SpecificFP(2.0)))
1725     return B.CreateFMul(Base, Base, "square");
1726 
1727   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1728     return Sqrt;
1729 
1730   // pow(x, n) -> x * x * x * ...
1731   const APFloat *ExpoF;
1732   if (AllowApprox && match(Expo, m_APFloat(ExpoF))) {
1733     // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1734     // If the exponent is an integer+0.5 we generate a call to sqrt and an
1735     // additional fmul.
1736     // TODO: This whole transformation should be backend specific (e.g. some
1737     //       backends might prefer libcalls or the limit for the exponent might
1738     //       be different) and it should also consider optimizing for size.
1739     APFloat LimF(ExpoF->getSemantics(), 33),
1740             ExpoA(abs(*ExpoF));
1741     if (ExpoA.compare(LimF) == APFloat::cmpLessThan) {
1742       // This transformation applies to integer or integer+0.5 exponents only.
1743       // For integer+0.5, we create a sqrt(Base) call.
1744       Value *Sqrt = nullptr;
1745       if (!ExpoA.isInteger()) {
1746         APFloat Expo2 = ExpoA;
1747         // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1748         // is no floating point exception and the result is an integer, then
1749         // ExpoA == integer + 0.5
1750         if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
1751           return nullptr;
1752 
1753         if (!Expo2.isInteger())
1754           return nullptr;
1755 
1756         Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
1757                            Pow->doesNotAccessMemory(), M, B, TLI);
1758       }
1759 
1760       // We will memoize intermediate products of the Addition Chain.
1761       Value *InnerChain[33] = {nullptr};
1762       InnerChain[1] = Base;
1763       InnerChain[2] = B.CreateFMul(Base, Base, "square");
1764 
1765       // We cannot readily convert a non-double type (like float) to a double.
1766       // So we first convert it to something which could be converted to double.
1767       ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1768       Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1769 
1770       // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
1771       if (Sqrt)
1772         FMul = B.CreateFMul(FMul, Sqrt);
1773 
1774       // If the exponent is negative, then get the reciprocal.
1775       if (ExpoF->isNegative())
1776         FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1777 
1778       return FMul;
1779     }
1780 
1781     APSInt IntExpo(32, /*isUnsigned=*/false);
1782     // powf(x, n) -> powi(x, n) if n is a constant signed integer value
1783     if (ExpoF->isInteger() &&
1784         ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
1785             APFloat::opOK) {
1786       return createPowWithIntegerExponent(
1787           Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B);
1788     }
1789   }
1790 
1791   // powf(x, itofp(y)) -> powi(x, y)
1792   if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
1793     if (Value *ExpoI = getIntToFPVal(Expo, B))
1794       return createPowWithIntegerExponent(Base, ExpoI, M, B);
1795   }
1796 
1797   return Shrunk;
1798 }
1799 
1800 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1801   Function *Callee = CI->getCalledFunction();
1802   StringRef Name = Callee->getName();
1803   Value *Ret = nullptr;
1804   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
1805       hasFloatVersion(Name))
1806     Ret = optimizeUnaryDoubleFP(CI, B, true);
1807 
1808   Type *Ty = CI->getType();
1809   Value *Op = CI->getArgOperand(0);
1810 
1811   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1812   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1813   if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
1814       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1815     if (Value *Exp = getIntToFPVal(Op, B))
1816       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
1817                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1818                                    B, CI->getCalledFunction()->getAttributes());
1819   }
1820 
1821   return Ret;
1822 }
1823 
1824 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1825   // If we can shrink the call to a float function rather than a double
1826   // function, do that first.
1827   Function *Callee = CI->getCalledFunction();
1828   StringRef Name = Callee->getName();
1829   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1830     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1831       return Ret;
1832 
1833   // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
1834   // the intrinsics for improved optimization (for example, vectorization).
1835   // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
1836   // From the C standard draft WG14/N1256:
1837   // "Ideally, fmax would be sensitive to the sign of zero, for example
1838   // fmax(-0.0, +0.0) would return +0; however, implementation in software
1839   // might be impractical."
1840   IRBuilder<>::FastMathFlagGuard Guard(B);
1841   FastMathFlags FMF = CI->getFastMathFlags();
1842   FMF.setNoSignedZeros();
1843   B.setFastMathFlags(FMF);
1844 
1845   Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
1846                                                            : Intrinsic::maxnum;
1847   Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
1848   return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) });
1849 }
1850 
1851 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilder<> &B) {
1852   Function *LogFn = Log->getCalledFunction();
1853   AttributeList Attrs = LogFn->getAttributes();
1854   StringRef LogNm = LogFn->getName();
1855   Intrinsic::ID LogID = LogFn->getIntrinsicID();
1856   Module *Mod = Log->getModule();
1857   Type *Ty = Log->getType();
1858   Value *Ret = nullptr;
1859 
1860   if (UnsafeFPShrink && hasFloatVersion(LogNm))
1861     Ret = optimizeUnaryDoubleFP(Log, B, true);
1862 
1863   // The earlier call must also be 'fast' in order to do these transforms.
1864   CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
1865   if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
1866     return Ret;
1867 
1868   LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
1869 
1870   // This is only applicable to log(), log2(), log10().
1871   if (TLI->getLibFunc(LogNm, LogLb))
1872     switch (LogLb) {
1873     case LibFunc_logf:
1874       LogID = Intrinsic::log;
1875       ExpLb = LibFunc_expf;
1876       Exp2Lb = LibFunc_exp2f;
1877       Exp10Lb = LibFunc_exp10f;
1878       PowLb = LibFunc_powf;
1879       break;
1880     case LibFunc_log:
1881       LogID = Intrinsic::log;
1882       ExpLb = LibFunc_exp;
1883       Exp2Lb = LibFunc_exp2;
1884       Exp10Lb = LibFunc_exp10;
1885       PowLb = LibFunc_pow;
1886       break;
1887     case LibFunc_logl:
1888       LogID = Intrinsic::log;
1889       ExpLb = LibFunc_expl;
1890       Exp2Lb = LibFunc_exp2l;
1891       Exp10Lb = LibFunc_exp10l;
1892       PowLb = LibFunc_powl;
1893       break;
1894     case LibFunc_log2f:
1895       LogID = Intrinsic::log2;
1896       ExpLb = LibFunc_expf;
1897       Exp2Lb = LibFunc_exp2f;
1898       Exp10Lb = LibFunc_exp10f;
1899       PowLb = LibFunc_powf;
1900       break;
1901     case LibFunc_log2:
1902       LogID = Intrinsic::log2;
1903       ExpLb = LibFunc_exp;
1904       Exp2Lb = LibFunc_exp2;
1905       Exp10Lb = LibFunc_exp10;
1906       PowLb = LibFunc_pow;
1907       break;
1908     case LibFunc_log2l:
1909       LogID = Intrinsic::log2;
1910       ExpLb = LibFunc_expl;
1911       Exp2Lb = LibFunc_exp2l;
1912       Exp10Lb = LibFunc_exp10l;
1913       PowLb = LibFunc_powl;
1914       break;
1915     case LibFunc_log10f:
1916       LogID = Intrinsic::log10;
1917       ExpLb = LibFunc_expf;
1918       Exp2Lb = LibFunc_exp2f;
1919       Exp10Lb = LibFunc_exp10f;
1920       PowLb = LibFunc_powf;
1921       break;
1922     case LibFunc_log10:
1923       LogID = Intrinsic::log10;
1924       ExpLb = LibFunc_exp;
1925       Exp2Lb = LibFunc_exp2;
1926       Exp10Lb = LibFunc_exp10;
1927       PowLb = LibFunc_pow;
1928       break;
1929     case LibFunc_log10l:
1930       LogID = Intrinsic::log10;
1931       ExpLb = LibFunc_expl;
1932       Exp2Lb = LibFunc_exp2l;
1933       Exp10Lb = LibFunc_exp10l;
1934       PowLb = LibFunc_powl;
1935       break;
1936     default:
1937       return Ret;
1938     }
1939   else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
1940            LogID == Intrinsic::log10) {
1941     if (Ty->getScalarType()->isFloatTy()) {
1942       ExpLb = LibFunc_expf;
1943       Exp2Lb = LibFunc_exp2f;
1944       Exp10Lb = LibFunc_exp10f;
1945       PowLb = LibFunc_powf;
1946     } else if (Ty->getScalarType()->isDoubleTy()) {
1947       ExpLb = LibFunc_exp;
1948       Exp2Lb = LibFunc_exp2;
1949       Exp10Lb = LibFunc_exp10;
1950       PowLb = LibFunc_pow;
1951     } else
1952       return Ret;
1953   } else
1954     return Ret;
1955 
1956   IRBuilder<>::FastMathFlagGuard Guard(B);
1957   B.setFastMathFlags(FastMathFlags::getFast());
1958 
1959   Intrinsic::ID ArgID = Arg->getIntrinsicID();
1960   LibFunc ArgLb = NotLibFunc;
1961   TLI->getLibFunc(Arg, ArgLb);
1962 
1963   // log(pow(x,y)) -> y*log(x)
1964   if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
1965     Value *LogX =
1966         Log->doesNotAccessMemory()
1967             ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1968                            Arg->getOperand(0), "log")
1969             : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs);
1970     Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
1971     // Since pow() may have side effects, e.g. errno,
1972     // dead code elimination may not be trusted to remove it.
1973     substituteInParent(Arg, MulY);
1974     return MulY;
1975   }
1976 
1977   // log(exp{,2,10}(y)) -> y*log({e,2,10})
1978   // TODO: There is no exp10() intrinsic yet.
1979   if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
1980            ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
1981     Constant *Eul;
1982     if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
1983       // FIXME: Add more precise value of e for long double.
1984       Eul = ConstantFP::get(Log->getType(), numbers::e);
1985     else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
1986       Eul = ConstantFP::get(Log->getType(), 2.0);
1987     else
1988       Eul = ConstantFP::get(Log->getType(), 10.0);
1989     Value *LogE = Log->doesNotAccessMemory()
1990                       ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1991                                      Eul, "log")
1992                       : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs);
1993     Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
1994     // Since exp() may have side effects, e.g. errno,
1995     // dead code elimination may not be trusted to remove it.
1996     substituteInParent(Arg, MulY);
1997     return MulY;
1998   }
1999 
2000   return Ret;
2001 }
2002 
2003 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
2004   Function *Callee = CI->getCalledFunction();
2005   Value *Ret = nullptr;
2006   // TODO: Once we have a way (other than checking for the existince of the
2007   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
2008   // condition below.
2009   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
2010                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
2011     Ret = optimizeUnaryDoubleFP(CI, B, true);
2012 
2013   if (!CI->isFast())
2014     return Ret;
2015 
2016   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
2017   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
2018     return Ret;
2019 
2020   // We're looking for a repeated factor in a multiplication tree,
2021   // so we can do this fold: sqrt(x * x) -> fabs(x);
2022   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2023   Value *Op0 = I->getOperand(0);
2024   Value *Op1 = I->getOperand(1);
2025   Value *RepeatOp = nullptr;
2026   Value *OtherOp = nullptr;
2027   if (Op0 == Op1) {
2028     // Simple match: the operands of the multiply are identical.
2029     RepeatOp = Op0;
2030   } else {
2031     // Look for a more complicated pattern: one of the operands is itself
2032     // a multiply, so search for a common factor in that multiply.
2033     // Note: We don't bother looking any deeper than this first level or for
2034     // variations of this pattern because instcombine's visitFMUL and/or the
2035     // reassociation pass should give us this form.
2036     Value *OtherMul0, *OtherMul1;
2037     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
2038       // Pattern: sqrt((x * y) * z)
2039       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
2040         // Matched: sqrt((x * x) * z)
2041         RepeatOp = OtherMul0;
2042         OtherOp = Op1;
2043       }
2044     }
2045   }
2046   if (!RepeatOp)
2047     return Ret;
2048 
2049   // Fast math flags for any created instructions should match the sqrt
2050   // and multiply.
2051   IRBuilder<>::FastMathFlagGuard Guard(B);
2052   B.setFastMathFlags(I->getFastMathFlags());
2053 
2054   // If we found a repeated factor, hoist it out of the square root and
2055   // replace it with the fabs of that factor.
2056   Module *M = Callee->getParent();
2057   Type *ArgType = I->getType();
2058   Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
2059   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
2060   if (OtherOp) {
2061     // If we found a non-repeated factor, we still need to get its square
2062     // root. We then multiply that by the value that was simplified out
2063     // of the square root calculation.
2064     Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
2065     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
2066     return B.CreateFMul(FabsCall, SqrtCall);
2067   }
2068   return FabsCall;
2069 }
2070 
2071 // TODO: Generalize to handle any trig function and its inverse.
2072 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
2073   Function *Callee = CI->getCalledFunction();
2074   Value *Ret = nullptr;
2075   StringRef Name = Callee->getName();
2076   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
2077     Ret = optimizeUnaryDoubleFP(CI, B, true);
2078 
2079   Value *Op1 = CI->getArgOperand(0);
2080   auto *OpC = dyn_cast<CallInst>(Op1);
2081   if (!OpC)
2082     return Ret;
2083 
2084   // Both calls must be 'fast' in order to remove them.
2085   if (!CI->isFast() || !OpC->isFast())
2086     return Ret;
2087 
2088   // tan(atan(x)) -> x
2089   // tanf(atanf(x)) -> x
2090   // tanl(atanl(x)) -> x
2091   LibFunc Func;
2092   Function *F = OpC->getCalledFunction();
2093   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
2094       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
2095        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
2096        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
2097     Ret = OpC->getArgOperand(0);
2098   return Ret;
2099 }
2100 
2101 static bool isTrigLibCall(CallInst *CI) {
2102   // We can only hope to do anything useful if we can ignore things like errno
2103   // and floating-point exceptions.
2104   // We already checked the prototype.
2105   return CI->hasFnAttr(Attribute::NoUnwind) &&
2106          CI->hasFnAttr(Attribute::ReadNone);
2107 }
2108 
2109 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
2110                              bool UseFloat, Value *&Sin, Value *&Cos,
2111                              Value *&SinCos) {
2112   Type *ArgTy = Arg->getType();
2113   Type *ResTy;
2114   StringRef Name;
2115 
2116   Triple T(OrigCallee->getParent()->getTargetTriple());
2117   if (UseFloat) {
2118     Name = "__sincospif_stret";
2119 
2120     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2121     // x86_64 can't use {float, float} since that would be returned in both
2122     // xmm0 and xmm1, which isn't what a real struct would do.
2123     ResTy = T.getArch() == Triple::x86_64
2124                 ? static_cast<Type *>(VectorType::get(ArgTy, 2))
2125                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2126   } else {
2127     Name = "__sincospi_stret";
2128     ResTy = StructType::get(ArgTy, ArgTy);
2129   }
2130 
2131   Module *M = OrigCallee->getParent();
2132   FunctionCallee Callee =
2133       M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy);
2134 
2135   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2136     // If the argument is an instruction, it must dominate all uses so put our
2137     // sincos call there.
2138     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2139   } else {
2140     // Otherwise (e.g. for a constant) the beginning of the function is as
2141     // good a place as any.
2142     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2143     B.SetInsertPoint(&EntryBB, EntryBB.begin());
2144   }
2145 
2146   SinCos = B.CreateCall(Callee, Arg, "sincospi");
2147 
2148   if (SinCos->getType()->isStructTy()) {
2149     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2150     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2151   } else {
2152     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2153                                  "sinpi");
2154     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2155                                  "cospi");
2156   }
2157 }
2158 
2159 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
2160   // Make sure the prototype is as expected, otherwise the rest of the
2161   // function is probably invalid and likely to abort.
2162   if (!isTrigLibCall(CI))
2163     return nullptr;
2164 
2165   Value *Arg = CI->getArgOperand(0);
2166   SmallVector<CallInst *, 1> SinCalls;
2167   SmallVector<CallInst *, 1> CosCalls;
2168   SmallVector<CallInst *, 1> SinCosCalls;
2169 
2170   bool IsFloat = Arg->getType()->isFloatTy();
2171 
2172   // Look for all compatible sinpi, cospi and sincospi calls with the same
2173   // argument. If there are enough (in some sense) we can make the
2174   // substitution.
2175   Function *F = CI->getFunction();
2176   for (User *U : Arg->users())
2177     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2178 
2179   // It's only worthwhile if both sinpi and cospi are actually used.
2180   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
2181     return nullptr;
2182 
2183   Value *Sin, *Cos, *SinCos;
2184   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
2185 
2186   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2187                                  Value *Res) {
2188     for (CallInst *C : Calls)
2189       replaceAllUsesWith(C, Res);
2190   };
2191 
2192   replaceTrigInsts(SinCalls, Sin);
2193   replaceTrigInsts(CosCalls, Cos);
2194   replaceTrigInsts(SinCosCalls, SinCos);
2195 
2196   return nullptr;
2197 }
2198 
2199 void LibCallSimplifier::classifyArgUse(
2200     Value *Val, Function *F, bool IsFloat,
2201     SmallVectorImpl<CallInst *> &SinCalls,
2202     SmallVectorImpl<CallInst *> &CosCalls,
2203     SmallVectorImpl<CallInst *> &SinCosCalls) {
2204   CallInst *CI = dyn_cast<CallInst>(Val);
2205 
2206   if (!CI)
2207     return;
2208 
2209   // Don't consider calls in other functions.
2210   if (CI->getFunction() != F)
2211     return;
2212 
2213   Function *Callee = CI->getCalledFunction();
2214   LibFunc Func;
2215   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
2216       !isTrigLibCall(CI))
2217     return;
2218 
2219   if (IsFloat) {
2220     if (Func == LibFunc_sinpif)
2221       SinCalls.push_back(CI);
2222     else if (Func == LibFunc_cospif)
2223       CosCalls.push_back(CI);
2224     else if (Func == LibFunc_sincospif_stret)
2225       SinCosCalls.push_back(CI);
2226   } else {
2227     if (Func == LibFunc_sinpi)
2228       SinCalls.push_back(CI);
2229     else if (Func == LibFunc_cospi)
2230       CosCalls.push_back(CI);
2231     else if (Func == LibFunc_sincospi_stret)
2232       SinCosCalls.push_back(CI);
2233   }
2234 }
2235 
2236 //===----------------------------------------------------------------------===//
2237 // Integer Library Call Optimizations
2238 //===----------------------------------------------------------------------===//
2239 
2240 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
2241   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
2242   Value *Op = CI->getArgOperand(0);
2243   Type *ArgType = Op->getType();
2244   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2245                                           Intrinsic::cttz, ArgType);
2246   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
2247   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
2248   V = B.CreateIntCast(V, B.getInt32Ty(), false);
2249 
2250   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
2251   return B.CreateSelect(Cond, V, B.getInt32(0));
2252 }
2253 
2254 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
2255   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
2256   Value *Op = CI->getArgOperand(0);
2257   Type *ArgType = Op->getType();
2258   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2259                                           Intrinsic::ctlz, ArgType);
2260   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
2261   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
2262                   V);
2263   return B.CreateIntCast(V, CI->getType(), false);
2264 }
2265 
2266 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
2267   // abs(x) -> x <s 0 ? -x : x
2268   // The negation has 'nsw' because abs of INT_MIN is undefined.
2269   Value *X = CI->getArgOperand(0);
2270   Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
2271   Value *NegX = B.CreateNSWNeg(X, "neg");
2272   return B.CreateSelect(IsNeg, NegX, X);
2273 }
2274 
2275 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
2276   // isdigit(c) -> (c-'0') <u 10
2277   Value *Op = CI->getArgOperand(0);
2278   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
2279   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
2280   return B.CreateZExt(Op, CI->getType());
2281 }
2282 
2283 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
2284   // isascii(c) -> c <u 128
2285   Value *Op = CI->getArgOperand(0);
2286   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
2287   return B.CreateZExt(Op, CI->getType());
2288 }
2289 
2290 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
2291   // toascii(c) -> c & 0x7f
2292   return B.CreateAnd(CI->getArgOperand(0),
2293                      ConstantInt::get(CI->getType(), 0x7F));
2294 }
2295 
2296 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) {
2297   StringRef Str;
2298   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2299     return nullptr;
2300 
2301   return convertStrToNumber(CI, Str, 10);
2302 }
2303 
2304 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) {
2305   StringRef Str;
2306   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2307     return nullptr;
2308 
2309   if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
2310     return nullptr;
2311 
2312   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2313     return convertStrToNumber(CI, Str, CInt->getSExtValue());
2314   }
2315 
2316   return nullptr;
2317 }
2318 
2319 //===----------------------------------------------------------------------===//
2320 // Formatting and IO Library Call Optimizations
2321 //===----------------------------------------------------------------------===//
2322 
2323 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2324 
2325 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
2326                                                  int StreamArg) {
2327   Function *Callee = CI->getCalledFunction();
2328   // Error reporting calls should be cold, mark them as such.
2329   // This applies even to non-builtin calls: it is only a hint and applies to
2330   // functions that the frontend might not understand as builtins.
2331 
2332   // This heuristic was suggested in:
2333   // Improving Static Branch Prediction in a Compiler
2334   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2335   // Proceedings of PACT'98, Oct. 1998, IEEE
2336   if (!CI->hasFnAttr(Attribute::Cold) &&
2337       isReportingError(Callee, CI, StreamArg)) {
2338     CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
2339   }
2340 
2341   return nullptr;
2342 }
2343 
2344 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2345   if (!Callee || !Callee->isDeclaration())
2346     return false;
2347 
2348   if (StreamArg < 0)
2349     return true;
2350 
2351   // These functions might be considered cold, but only if their stream
2352   // argument is stderr.
2353 
2354   if (StreamArg >= (int)CI->getNumArgOperands())
2355     return false;
2356   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2357   if (!LI)
2358     return false;
2359   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
2360   if (!GV || !GV->isDeclaration())
2361     return false;
2362   return GV->getName() == "stderr";
2363 }
2364 
2365 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
2366   // Check for a fixed format string.
2367   StringRef FormatStr;
2368   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2369     return nullptr;
2370 
2371   // Empty format string -> noop.
2372   if (FormatStr.empty()) // Tolerate printf's declared void.
2373     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2374 
2375   // Do not do any of the following transformations if the printf return value
2376   // is used, in general the printf return value is not compatible with either
2377   // putchar() or puts().
2378   if (!CI->use_empty())
2379     return nullptr;
2380 
2381   // printf("x") -> putchar('x'), even for "%" and "%%".
2382   if (FormatStr.size() == 1 || FormatStr == "%%")
2383     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
2384 
2385   // printf("%s", "a") --> putchar('a')
2386   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
2387     StringRef ChrStr;
2388     if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
2389       return nullptr;
2390     if (ChrStr.size() != 1)
2391       return nullptr;
2392     return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
2393   }
2394 
2395   // printf("foo\n") --> puts("foo")
2396   if (FormatStr[FormatStr.size() - 1] == '\n' &&
2397       FormatStr.find('%') == StringRef::npos) { // No format characters.
2398     // Create a string literal with no \n on it.  We expect the constant merge
2399     // pass to be run after this pass, to merge duplicate strings.
2400     FormatStr = FormatStr.drop_back();
2401     Value *GV = B.CreateGlobalString(FormatStr, "str");
2402     return emitPutS(GV, B, TLI);
2403   }
2404 
2405   // Optimize specific format strings.
2406   // printf("%c", chr) --> putchar(chr)
2407   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
2408       CI->getArgOperand(1)->getType()->isIntegerTy())
2409     return emitPutChar(CI->getArgOperand(1), B, TLI);
2410 
2411   // printf("%s\n", str) --> puts(str)
2412   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
2413       CI->getArgOperand(1)->getType()->isPointerTy())
2414     return emitPutS(CI->getArgOperand(1), B, TLI);
2415   return nullptr;
2416 }
2417 
2418 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
2419 
2420   Function *Callee = CI->getCalledFunction();
2421   FunctionType *FT = Callee->getFunctionType();
2422   if (Value *V = optimizePrintFString(CI, B)) {
2423     return V;
2424   }
2425 
2426   // printf(format, ...) -> iprintf(format, ...) if no floating point
2427   // arguments.
2428   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
2429     Module *M = B.GetInsertBlock()->getParent()->getParent();
2430     FunctionCallee IPrintFFn =
2431         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
2432     CallInst *New = cast<CallInst>(CI->clone());
2433     New->setCalledFunction(IPrintFFn);
2434     B.Insert(New);
2435     return New;
2436   }
2437 
2438   // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2439   // arguments.
2440   if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) {
2441     Module *M = B.GetInsertBlock()->getParent()->getParent();
2442     auto SmallPrintFFn =
2443         M->getOrInsertFunction(TLI->getName(LibFunc_small_printf),
2444                                FT, Callee->getAttributes());
2445     CallInst *New = cast<CallInst>(CI->clone());
2446     New->setCalledFunction(SmallPrintFFn);
2447     B.Insert(New);
2448     return New;
2449   }
2450 
2451   annotateNonNullBasedOnAccess(CI, 0);
2452   return nullptr;
2453 }
2454 
2455 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
2456   // Check for a fixed format string.
2457   StringRef FormatStr;
2458   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2459     return nullptr;
2460 
2461   // If we just have a format string (nothing else crazy) transform it.
2462   if (CI->getNumArgOperands() == 2) {
2463     // Make sure there's no % in the constant array.  We could try to handle
2464     // %% -> % in the future if we cared.
2465     if (FormatStr.find('%') != StringRef::npos)
2466       return nullptr; // we found a format specifier, bail out.
2467 
2468     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2469     B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
2470                    ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2471                                     FormatStr.size() + 1)); // Copy the null byte.
2472     return ConstantInt::get(CI->getType(), FormatStr.size());
2473   }
2474 
2475   // The remaining optimizations require the format string to be "%s" or "%c"
2476   // and have an extra operand.
2477   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2478       CI->getNumArgOperands() < 3)
2479     return nullptr;
2480 
2481   // Decode the second character of the format string.
2482   if (FormatStr[1] == 'c') {
2483     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2484     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2485       return nullptr;
2486     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2487     Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2488     B.CreateStore(V, Ptr);
2489     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2490     B.CreateStore(B.getInt8(0), Ptr);
2491 
2492     return ConstantInt::get(CI->getType(), 1);
2493   }
2494 
2495   if (FormatStr[1] == 's') {
2496     // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2497     // strlen(str)+1)
2498     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2499       return nullptr;
2500 
2501     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2502     if (!Len)
2503       return nullptr;
2504     Value *IncLen =
2505         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2506     B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen);
2507 
2508     // The sprintf result is the unincremented number of bytes in the string.
2509     return B.CreateIntCast(Len, CI->getType(), false);
2510   }
2511   return nullptr;
2512 }
2513 
2514 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
2515   Function *Callee = CI->getCalledFunction();
2516   FunctionType *FT = Callee->getFunctionType();
2517   if (Value *V = optimizeSPrintFString(CI, B)) {
2518     return V;
2519   }
2520 
2521   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2522   // point arguments.
2523   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
2524     Module *M = B.GetInsertBlock()->getParent()->getParent();
2525     FunctionCallee SIPrintFFn =
2526         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
2527     CallInst *New = cast<CallInst>(CI->clone());
2528     New->setCalledFunction(SIPrintFFn);
2529     B.Insert(New);
2530     return New;
2531   }
2532 
2533   // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
2534   // floating point arguments.
2535   if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) {
2536     Module *M = B.GetInsertBlock()->getParent()->getParent();
2537     auto SmallSPrintFFn =
2538         M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf),
2539                                FT, Callee->getAttributes());
2540     CallInst *New = cast<CallInst>(CI->clone());
2541     New->setCalledFunction(SmallSPrintFFn);
2542     B.Insert(New);
2543     return New;
2544   }
2545 
2546   annotateNonNullBasedOnAccess(CI, {0, 1});
2547   return nullptr;
2548 }
2549 
2550 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) {
2551   // Check for size
2552   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2553   if (!Size)
2554     return nullptr;
2555 
2556   uint64_t N = Size->getZExtValue();
2557   // Check for a fixed format string.
2558   StringRef FormatStr;
2559   if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2560     return nullptr;
2561 
2562   // If we just have a format string (nothing else crazy) transform it.
2563   if (CI->getNumArgOperands() == 3) {
2564     // Make sure there's no % in the constant array.  We could try to handle
2565     // %% -> % in the future if we cared.
2566     if (FormatStr.find('%') != StringRef::npos)
2567       return nullptr; // we found a format specifier, bail out.
2568 
2569     if (N == 0)
2570       return ConstantInt::get(CI->getType(), FormatStr.size());
2571     else if (N < FormatStr.size() + 1)
2572       return nullptr;
2573 
2574     // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2575     // strlen(fmt)+1)
2576     B.CreateMemCpy(
2577         CI->getArgOperand(0), 1, CI->getArgOperand(2), 1,
2578         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2579                          FormatStr.size() + 1)); // Copy the null byte.
2580     return ConstantInt::get(CI->getType(), FormatStr.size());
2581   }
2582 
2583   // The remaining optimizations require the format string to be "%s" or "%c"
2584   // and have an extra operand.
2585   if (FormatStr.size() == 2 && FormatStr[0] == '%' &&
2586       CI->getNumArgOperands() == 4) {
2587 
2588     // Decode the second character of the format string.
2589     if (FormatStr[1] == 'c') {
2590       if (N == 0)
2591         return ConstantInt::get(CI->getType(), 1);
2592       else if (N == 1)
2593         return nullptr;
2594 
2595       // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2596       if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2597         return nullptr;
2598       Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2599       Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2600       B.CreateStore(V, Ptr);
2601       Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2602       B.CreateStore(B.getInt8(0), Ptr);
2603 
2604       return ConstantInt::get(CI->getType(), 1);
2605     }
2606 
2607     if (FormatStr[1] == 's') {
2608       // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2609       StringRef Str;
2610       if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2611         return nullptr;
2612 
2613       if (N == 0)
2614         return ConstantInt::get(CI->getType(), Str.size());
2615       else if (N < Str.size() + 1)
2616         return nullptr;
2617 
2618       B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(3), 1,
2619                      ConstantInt::get(CI->getType(), Str.size() + 1));
2620 
2621       // The snprintf result is the unincremented number of bytes in the string.
2622       return ConstantInt::get(CI->getType(), Str.size());
2623     }
2624   }
2625   return nullptr;
2626 }
2627 
2628 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) {
2629   if (Value *V = optimizeSnPrintFString(CI, B)) {
2630     return V;
2631   }
2632 
2633   if (isKnownNonZero(CI->getOperand(1), DL))
2634     annotateNonNullBasedOnAccess(CI, 0);
2635   return nullptr;
2636 }
2637 
2638 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
2639   optimizeErrorReporting(CI, B, 0);
2640 
2641   // All the optimizations depend on the format string.
2642   StringRef FormatStr;
2643   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2644     return nullptr;
2645 
2646   // Do not do any of the following transformations if the fprintf return
2647   // value is used, in general the fprintf return value is not compatible
2648   // with fwrite(), fputc() or fputs().
2649   if (!CI->use_empty())
2650     return nullptr;
2651 
2652   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2653   if (CI->getNumArgOperands() == 2) {
2654     // Could handle %% -> % if we cared.
2655     if (FormatStr.find('%') != StringRef::npos)
2656       return nullptr; // We found a format specifier.
2657 
2658     return emitFWrite(
2659         CI->getArgOperand(1),
2660         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
2661         CI->getArgOperand(0), B, DL, TLI);
2662   }
2663 
2664   // The remaining optimizations require the format string to be "%s" or "%c"
2665   // and have an extra operand.
2666   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2667       CI->getNumArgOperands() < 3)
2668     return nullptr;
2669 
2670   // Decode the second character of the format string.
2671   if (FormatStr[1] == 'c') {
2672     // fprintf(F, "%c", chr) --> fputc(chr, F)
2673     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2674       return nullptr;
2675     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2676   }
2677 
2678   if (FormatStr[1] == 's') {
2679     // fprintf(F, "%s", str) --> fputs(str, F)
2680     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2681       return nullptr;
2682     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2683   }
2684   return nullptr;
2685 }
2686 
2687 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
2688   Function *Callee = CI->getCalledFunction();
2689   FunctionType *FT = Callee->getFunctionType();
2690   if (Value *V = optimizeFPrintFString(CI, B)) {
2691     return V;
2692   }
2693 
2694   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2695   // floating point arguments.
2696   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
2697     Module *M = B.GetInsertBlock()->getParent()->getParent();
2698     FunctionCallee FIPrintFFn =
2699         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2700     CallInst *New = cast<CallInst>(CI->clone());
2701     New->setCalledFunction(FIPrintFFn);
2702     B.Insert(New);
2703     return New;
2704   }
2705 
2706   // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
2707   // 128-bit floating point arguments.
2708   if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) {
2709     Module *M = B.GetInsertBlock()->getParent()->getParent();
2710     auto SmallFPrintFFn =
2711         M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf),
2712                                FT, Callee->getAttributes());
2713     CallInst *New = cast<CallInst>(CI->clone());
2714     New->setCalledFunction(SmallFPrintFFn);
2715     B.Insert(New);
2716     return New;
2717   }
2718 
2719   return nullptr;
2720 }
2721 
2722 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
2723   optimizeErrorReporting(CI, B, 3);
2724 
2725   // Get the element size and count.
2726   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2727   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2728   if (SizeC && CountC) {
2729     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2730 
2731     // If this is writing zero records, remove the call (it's a noop).
2732     if (Bytes == 0)
2733       return ConstantInt::get(CI->getType(), 0);
2734 
2735     // If this is writing one byte, turn it into fputc.
2736     // This optimisation is only valid, if the return value is unused.
2737     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2738       Value *Char = B.CreateLoad(B.getInt8Ty(),
2739                                  castToCStr(CI->getArgOperand(0), B), "char");
2740       Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2741       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2742     }
2743   }
2744 
2745   if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2746     return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2747                               CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2748                               TLI);
2749 
2750   return nullptr;
2751 }
2752 
2753 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
2754   optimizeErrorReporting(CI, B, 1);
2755 
2756   // Don't rewrite fputs to fwrite when optimising for size because fwrite
2757   // requires more arguments and thus extra MOVs are required.
2758   bool OptForSize = CI->getFunction()->hasOptSize() ||
2759                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2760                                                 PGSOQueryType::IRPass);
2761   if (OptForSize)
2762     return nullptr;
2763 
2764   // Check if has any use
2765   if (!CI->use_empty()) {
2766     if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2767       return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2768                                TLI);
2769     else
2770       // We can't optimize if return value is used.
2771       return nullptr;
2772   }
2773 
2774   // fputs(s,F) --> fwrite(s,strlen(s),1,F)
2775   uint64_t Len = GetStringLength(CI->getArgOperand(0));
2776   if (!Len)
2777     return nullptr;
2778 
2779   // Known to have no uses (see above).
2780   return emitFWrite(
2781       CI->getArgOperand(0),
2782       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2783       CI->getArgOperand(1), B, DL, TLI);
2784 }
2785 
2786 Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) {
2787   optimizeErrorReporting(CI, B, 1);
2788 
2789   if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2790     return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2791                              TLI);
2792 
2793   return nullptr;
2794 }
2795 
2796 Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) {
2797   if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI))
2798     return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI);
2799 
2800   return nullptr;
2801 }
2802 
2803 Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) {
2804   if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI))
2805     return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2806                              CI->getArgOperand(2), B, TLI);
2807 
2808   return nullptr;
2809 }
2810 
2811 Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) {
2812   if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2813     return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2814                              CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2815                              TLI);
2816 
2817   return nullptr;
2818 }
2819 
2820 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
2821   annotateNonNullBasedOnAccess(CI, 0);
2822   if (!CI->use_empty())
2823     return nullptr;
2824 
2825   // Check for a constant string.
2826   // puts("") -> putchar('\n')
2827   StringRef Str;
2828   if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
2829     return emitPutChar(B.getInt32('\n'), B, TLI);
2830 
2831   return nullptr;
2832 }
2833 
2834 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilder<> &B) {
2835   // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
2836   return B.CreateMemMove(CI->getArgOperand(1), 1, CI->getArgOperand(0), 1,
2837                          CI->getArgOperand(2));
2838 }
2839 
2840 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2841   LibFunc Func;
2842   SmallString<20> FloatFuncName = FuncName;
2843   FloatFuncName += 'f';
2844   if (TLI->getLibFunc(FloatFuncName, Func))
2845     return TLI->has(Func);
2846   return false;
2847 }
2848 
2849 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2850                                                       IRBuilder<> &Builder) {
2851   LibFunc Func;
2852   Function *Callee = CI->getCalledFunction();
2853   // Check for string/memory library functions.
2854   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2855     // Make sure we never change the calling convention.
2856     assert((ignoreCallingConv(Func) ||
2857             isCallingConvCCompatible(CI)) &&
2858       "Optimizing string/memory libcall would change the calling convention");
2859     switch (Func) {
2860     case LibFunc_strcat:
2861       return optimizeStrCat(CI, Builder);
2862     case LibFunc_strncat:
2863       return optimizeStrNCat(CI, Builder);
2864     case LibFunc_strchr:
2865       return optimizeStrChr(CI, Builder);
2866     case LibFunc_strrchr:
2867       return optimizeStrRChr(CI, Builder);
2868     case LibFunc_strcmp:
2869       return optimizeStrCmp(CI, Builder);
2870     case LibFunc_strncmp:
2871       return optimizeStrNCmp(CI, Builder);
2872     case LibFunc_strcpy:
2873       return optimizeStrCpy(CI, Builder);
2874     case LibFunc_stpcpy:
2875       return optimizeStpCpy(CI, Builder);
2876     case LibFunc_strncpy:
2877       return optimizeStrNCpy(CI, Builder);
2878     case LibFunc_strlen:
2879       return optimizeStrLen(CI, Builder);
2880     case LibFunc_strpbrk:
2881       return optimizeStrPBrk(CI, Builder);
2882     case LibFunc_strndup:
2883       return optimizeStrNDup(CI, Builder);
2884     case LibFunc_strtol:
2885     case LibFunc_strtod:
2886     case LibFunc_strtof:
2887     case LibFunc_strtoul:
2888     case LibFunc_strtoll:
2889     case LibFunc_strtold:
2890     case LibFunc_strtoull:
2891       return optimizeStrTo(CI, Builder);
2892     case LibFunc_strspn:
2893       return optimizeStrSpn(CI, Builder);
2894     case LibFunc_strcspn:
2895       return optimizeStrCSpn(CI, Builder);
2896     case LibFunc_strstr:
2897       return optimizeStrStr(CI, Builder);
2898     case LibFunc_memchr:
2899       return optimizeMemChr(CI, Builder);
2900     case LibFunc_memrchr:
2901       return optimizeMemRChr(CI, Builder);
2902     case LibFunc_bcmp:
2903       return optimizeBCmp(CI, Builder);
2904     case LibFunc_memcmp:
2905       return optimizeMemCmp(CI, Builder);
2906     case LibFunc_memcpy:
2907       return optimizeMemCpy(CI, Builder);
2908     case LibFunc_memccpy:
2909       return optimizeMemCCpy(CI, Builder);
2910     case LibFunc_mempcpy:
2911       return optimizeMemPCpy(CI, Builder);
2912     case LibFunc_memmove:
2913       return optimizeMemMove(CI, Builder);
2914     case LibFunc_memset:
2915       return optimizeMemSet(CI, Builder);
2916     case LibFunc_realloc:
2917       return optimizeRealloc(CI, Builder);
2918     case LibFunc_wcslen:
2919       return optimizeWcslen(CI, Builder);
2920     case LibFunc_bcopy:
2921       return optimizeBCopy(CI, Builder);
2922     default:
2923       break;
2924     }
2925   }
2926   return nullptr;
2927 }
2928 
2929 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2930                                                        LibFunc Func,
2931                                                        IRBuilder<> &Builder) {
2932   // Don't optimize calls that require strict floating point semantics.
2933   if (CI->isStrictFP())
2934     return nullptr;
2935 
2936   if (Value *V = optimizeTrigReflections(CI, Func, Builder))
2937     return V;
2938 
2939   switch (Func) {
2940   case LibFunc_sinpif:
2941   case LibFunc_sinpi:
2942   case LibFunc_cospif:
2943   case LibFunc_cospi:
2944     return optimizeSinCosPi(CI, Builder);
2945   case LibFunc_powf:
2946   case LibFunc_pow:
2947   case LibFunc_powl:
2948     return optimizePow(CI, Builder);
2949   case LibFunc_exp2l:
2950   case LibFunc_exp2:
2951   case LibFunc_exp2f:
2952     return optimizeExp2(CI, Builder);
2953   case LibFunc_fabsf:
2954   case LibFunc_fabs:
2955   case LibFunc_fabsl:
2956     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2957   case LibFunc_sqrtf:
2958   case LibFunc_sqrt:
2959   case LibFunc_sqrtl:
2960     return optimizeSqrt(CI, Builder);
2961   case LibFunc_logf:
2962   case LibFunc_log:
2963   case LibFunc_logl:
2964   case LibFunc_log10f:
2965   case LibFunc_log10:
2966   case LibFunc_log10l:
2967   case LibFunc_log1pf:
2968   case LibFunc_log1p:
2969   case LibFunc_log1pl:
2970   case LibFunc_log2f:
2971   case LibFunc_log2:
2972   case LibFunc_log2l:
2973   case LibFunc_logbf:
2974   case LibFunc_logb:
2975   case LibFunc_logbl:
2976     return optimizeLog(CI, Builder);
2977   case LibFunc_tan:
2978   case LibFunc_tanf:
2979   case LibFunc_tanl:
2980     return optimizeTan(CI, Builder);
2981   case LibFunc_ceil:
2982     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2983   case LibFunc_floor:
2984     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2985   case LibFunc_round:
2986     return replaceUnaryCall(CI, Builder, Intrinsic::round);
2987   case LibFunc_nearbyint:
2988     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2989   case LibFunc_rint:
2990     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2991   case LibFunc_trunc:
2992     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
2993   case LibFunc_acos:
2994   case LibFunc_acosh:
2995   case LibFunc_asin:
2996   case LibFunc_asinh:
2997   case LibFunc_atan:
2998   case LibFunc_atanh:
2999   case LibFunc_cbrt:
3000   case LibFunc_cosh:
3001   case LibFunc_exp:
3002   case LibFunc_exp10:
3003   case LibFunc_expm1:
3004   case LibFunc_cos:
3005   case LibFunc_sin:
3006   case LibFunc_sinh:
3007   case LibFunc_tanh:
3008     if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
3009       return optimizeUnaryDoubleFP(CI, Builder, true);
3010     return nullptr;
3011   case LibFunc_copysign:
3012     if (hasFloatVersion(CI->getCalledFunction()->getName()))
3013       return optimizeBinaryDoubleFP(CI, Builder);
3014     return nullptr;
3015   case LibFunc_fminf:
3016   case LibFunc_fmin:
3017   case LibFunc_fminl:
3018   case LibFunc_fmaxf:
3019   case LibFunc_fmax:
3020   case LibFunc_fmaxl:
3021     return optimizeFMinFMax(CI, Builder);
3022   case LibFunc_cabs:
3023   case LibFunc_cabsf:
3024   case LibFunc_cabsl:
3025     return optimizeCAbs(CI, Builder);
3026   default:
3027     return nullptr;
3028   }
3029 }
3030 
3031 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
3032   // TODO: Split out the code below that operates on FP calls so that
3033   //       we can all non-FP calls with the StrictFP attribute to be
3034   //       optimized.
3035   if (CI->isNoBuiltin())
3036     return nullptr;
3037 
3038   LibFunc Func;
3039   Function *Callee = CI->getCalledFunction();
3040 
3041   SmallVector<OperandBundleDef, 2> OpBundles;
3042   CI->getOperandBundlesAsDefs(OpBundles);
3043   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
3044   bool isCallingConvC = isCallingConvCCompatible(CI);
3045 
3046   // Command-line parameter overrides instruction attribute.
3047   // This can't be moved to optimizeFloatingPointLibCall() because it may be
3048   // used by the intrinsic optimizations.
3049   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
3050     UnsafeFPShrink = EnableUnsafeFPShrink;
3051   else if (isa<FPMathOperator>(CI) && CI->isFast())
3052     UnsafeFPShrink = true;
3053 
3054   // First, check for intrinsics.
3055   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
3056     if (!isCallingConvC)
3057       return nullptr;
3058     // The FP intrinsics have corresponding constrained versions so we don't
3059     // need to check for the StrictFP attribute here.
3060     switch (II->getIntrinsicID()) {
3061     case Intrinsic::pow:
3062       return optimizePow(CI, Builder);
3063     case Intrinsic::exp2:
3064       return optimizeExp2(CI, Builder);
3065     case Intrinsic::log:
3066     case Intrinsic::log2:
3067     case Intrinsic::log10:
3068       return optimizeLog(CI, Builder);
3069     case Intrinsic::sqrt:
3070       return optimizeSqrt(CI, Builder);
3071     // TODO: Use foldMallocMemset() with memset intrinsic.
3072     case Intrinsic::memset:
3073       return optimizeMemSet(CI, Builder);
3074     case Intrinsic::memcpy:
3075       return optimizeMemCpy(CI, Builder);
3076     case Intrinsic::memmove:
3077       return optimizeMemMove(CI, Builder);
3078     default:
3079       return nullptr;
3080     }
3081   }
3082 
3083   // Also try to simplify calls to fortified library functions.
3084   if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
3085     // Try to further simplify the result.
3086     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
3087     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
3088       // Use an IR Builder from SimplifiedCI if available instead of CI
3089       // to guarantee we reach all uses we might replace later on.
3090       IRBuilder<> TmpBuilder(SimplifiedCI);
3091       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
3092         // If we were able to further simplify, remove the now redundant call.
3093         substituteInParent(SimplifiedCI, V);
3094         return V;
3095       }
3096     }
3097     return SimplifiedFortifiedCI;
3098   }
3099 
3100   // Then check for known library functions.
3101   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
3102     // We never change the calling convention.
3103     if (!ignoreCallingConv(Func) && !isCallingConvC)
3104       return nullptr;
3105     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3106       return V;
3107     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3108       return V;
3109     switch (Func) {
3110     case LibFunc_ffs:
3111     case LibFunc_ffsl:
3112     case LibFunc_ffsll:
3113       return optimizeFFS(CI, Builder);
3114     case LibFunc_fls:
3115     case LibFunc_flsl:
3116     case LibFunc_flsll:
3117       return optimizeFls(CI, Builder);
3118     case LibFunc_abs:
3119     case LibFunc_labs:
3120     case LibFunc_llabs:
3121       return optimizeAbs(CI, Builder);
3122     case LibFunc_isdigit:
3123       return optimizeIsDigit(CI, Builder);
3124     case LibFunc_isascii:
3125       return optimizeIsAscii(CI, Builder);
3126     case LibFunc_toascii:
3127       return optimizeToAscii(CI, Builder);
3128     case LibFunc_atoi:
3129     case LibFunc_atol:
3130     case LibFunc_atoll:
3131       return optimizeAtoi(CI, Builder);
3132     case LibFunc_strtol:
3133     case LibFunc_strtoll:
3134       return optimizeStrtol(CI, Builder);
3135     case LibFunc_printf:
3136       return optimizePrintF(CI, Builder);
3137     case LibFunc_sprintf:
3138       return optimizeSPrintF(CI, Builder);
3139     case LibFunc_snprintf:
3140       return optimizeSnPrintF(CI, Builder);
3141     case LibFunc_fprintf:
3142       return optimizeFPrintF(CI, Builder);
3143     case LibFunc_fwrite:
3144       return optimizeFWrite(CI, Builder);
3145     case LibFunc_fread:
3146       return optimizeFRead(CI, Builder);
3147     case LibFunc_fputs:
3148       return optimizeFPuts(CI, Builder);
3149     case LibFunc_fgets:
3150       return optimizeFGets(CI, Builder);
3151     case LibFunc_fputc:
3152       return optimizeFPutc(CI, Builder);
3153     case LibFunc_fgetc:
3154       return optimizeFGetc(CI, Builder);
3155     case LibFunc_puts:
3156       return optimizePuts(CI, Builder);
3157     case LibFunc_perror:
3158       return optimizeErrorReporting(CI, Builder);
3159     case LibFunc_vfprintf:
3160     case LibFunc_fiprintf:
3161       return optimizeErrorReporting(CI, Builder, 0);
3162     default:
3163       return nullptr;
3164     }
3165   }
3166   return nullptr;
3167 }
3168 
3169 LibCallSimplifier::LibCallSimplifier(
3170     const DataLayout &DL, const TargetLibraryInfo *TLI,
3171     OptimizationRemarkEmitter &ORE,
3172     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
3173     function_ref<void(Instruction *, Value *)> Replacer,
3174     function_ref<void(Instruction *)> Eraser)
3175     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
3176       UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {}
3177 
3178 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3179   // Indirect through the replacer used in this instance.
3180   Replacer(I, With);
3181 }
3182 
3183 void LibCallSimplifier::eraseFromParent(Instruction *I) {
3184   Eraser(I);
3185 }
3186 
3187 // TODO:
3188 //   Additional cases that we need to add to this file:
3189 //
3190 // cbrt:
3191 //   * cbrt(expN(X))  -> expN(x/3)
3192 //   * cbrt(sqrt(x))  -> pow(x,1/6)
3193 //   * cbrt(cbrt(x))  -> pow(x,1/9)
3194 //
3195 // exp, expf, expl:
3196 //   * exp(log(x))  -> x
3197 //
3198 // log, logf, logl:
3199 //   * log(exp(x))   -> x
3200 //   * log(exp(y))   -> y*log(e)
3201 //   * log(exp10(y)) -> y*log(10)
3202 //   * log(sqrt(x))  -> 0.5*log(x)
3203 //
3204 // pow, powf, powl:
3205 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
3206 //   * pow(pow(x,y),z)-> pow(x,y*z)
3207 //
3208 // signbit:
3209 //   * signbit(cnst) -> cnst'
3210 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3211 //
3212 // sqrt, sqrtf, sqrtl:
3213 //   * sqrt(expN(x))  -> expN(x*0.5)
3214 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3215 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3216 //
3217 
3218 //===----------------------------------------------------------------------===//
3219 // Fortified Library Call Optimizations
3220 //===----------------------------------------------------------------------===//
3221 
3222 bool
3223 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
3224                                                     unsigned ObjSizeOp,
3225                                                     Optional<unsigned> SizeOp,
3226                                                     Optional<unsigned> StrOp,
3227                                                     Optional<unsigned> FlagOp) {
3228   // If this function takes a flag argument, the implementation may use it to
3229   // perform extra checks. Don't fold into the non-checking variant.
3230   if (FlagOp) {
3231     ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
3232     if (!Flag || !Flag->isZero())
3233       return false;
3234   }
3235 
3236   if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
3237     return true;
3238 
3239   if (ConstantInt *ObjSizeCI =
3240           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
3241     if (ObjSizeCI->isMinusOne())
3242       return true;
3243     // If the object size wasn't -1 (unknown), bail out if we were asked to.
3244     if (OnlyLowerUnknownSize)
3245       return false;
3246     if (StrOp) {
3247       uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
3248       // If the length is 0 we don't know how long it is and so we can't
3249       // remove the check.
3250       if (Len)
3251         annotateDereferenceableBytes(CI, *StrOp, Len);
3252       else
3253         return false;
3254       return ObjSizeCI->getZExtValue() >= Len;
3255     }
3256 
3257     if (SizeOp) {
3258       if (ConstantInt *SizeCI =
3259               dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
3260         return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
3261     }
3262   }
3263   return false;
3264 }
3265 
3266 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
3267                                                      IRBuilder<> &B) {
3268   if (isFortifiedCallFoldable(CI, 3, 2)) {
3269     CallInst *NewCI = B.CreateMemCpy(
3270         CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, CI->getArgOperand(2));
3271     NewCI->setAttributes(CI->getAttributes());
3272     return CI->getArgOperand(0);
3273   }
3274   return nullptr;
3275 }
3276 
3277 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
3278                                                       IRBuilder<> &B) {
3279   if (isFortifiedCallFoldable(CI, 3, 2)) {
3280     CallInst *NewCI = B.CreateMemMove(
3281         CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, CI->getArgOperand(2));
3282     NewCI->setAttributes(CI->getAttributes());
3283     return CI->getArgOperand(0);
3284   }
3285   return nullptr;
3286 }
3287 
3288 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
3289                                                      IRBuilder<> &B) {
3290   // TODO: Try foldMallocMemset() here.
3291 
3292   if (isFortifiedCallFoldable(CI, 3, 2)) {
3293     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
3294     CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
3295                                      CI->getArgOperand(2), Align::None());
3296     NewCI->setAttributes(CI->getAttributes());
3297     return CI->getArgOperand(0);
3298   }
3299   return nullptr;
3300 }
3301 
3302 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
3303                                                       IRBuilder<> &B,
3304                                                       LibFunc Func) {
3305   const DataLayout &DL = CI->getModule()->getDataLayout();
3306   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
3307         *ObjSize = CI->getArgOperand(2);
3308 
3309   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
3310   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
3311     Value *StrLen = emitStrLen(Src, B, DL, TLI);
3312     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
3313   }
3314 
3315   // If a) we don't have any length information, or b) we know this will
3316   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3317   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3318   // TODO: It might be nice to get a maximum length out of the possible
3319   // string lengths for varying.
3320   if (isFortifiedCallFoldable(CI, 2, None, 1)) {
3321     if (Func == LibFunc_strcpy_chk)
3322       return emitStrCpy(Dst, Src, B, TLI);
3323     else
3324       return emitStpCpy(Dst, Src, B, TLI);
3325   }
3326 
3327   if (OnlyLowerUnknownSize)
3328     return nullptr;
3329 
3330   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3331   uint64_t Len = GetStringLength(Src);
3332   if (Len)
3333     annotateDereferenceableBytes(CI, 1, Len);
3334   else
3335     return nullptr;
3336 
3337   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
3338   Value *LenV = ConstantInt::get(SizeTTy, Len);
3339   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
3340   // If the function was an __stpcpy_chk, and we were able to fold it into
3341   // a __memcpy_chk, we still need to return the correct end pointer.
3342   if (Ret && Func == LibFunc_stpcpy_chk)
3343     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
3344   return Ret;
3345 }
3346 
3347 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
3348                                                        IRBuilder<> &B,
3349                                                        LibFunc Func) {
3350   if (isFortifiedCallFoldable(CI, 3, 2)) {
3351     if (Func == LibFunc_strncpy_chk)
3352       return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3353                                CI->getArgOperand(2), B, TLI);
3354     else
3355       return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3356                          CI->getArgOperand(2), B, TLI);
3357   }
3358 
3359   return nullptr;
3360 }
3361 
3362 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
3363                                                       IRBuilder<> &B) {
3364   if (isFortifiedCallFoldable(CI, 4, 3))
3365     return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3366                        CI->getArgOperand(2), CI->getArgOperand(3), B, TLI);
3367 
3368   return nullptr;
3369 }
3370 
3371 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
3372                                                        IRBuilder<> &B) {
3373   if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
3374     SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 5, CI->arg_end());
3375     return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3376                         CI->getArgOperand(4), VariadicArgs, B, TLI);
3377   }
3378 
3379   return nullptr;
3380 }
3381 
3382 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
3383                                                       IRBuilder<> &B) {
3384   if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
3385     SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 4, CI->arg_end());
3386     return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs,
3387                        B, TLI);
3388   }
3389 
3390   return nullptr;
3391 }
3392 
3393 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
3394                                                      IRBuilder<> &B) {
3395   if (isFortifiedCallFoldable(CI, 2))
3396     return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI);
3397 
3398   return nullptr;
3399 }
3400 
3401 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
3402                                                    IRBuilder<> &B) {
3403   if (isFortifiedCallFoldable(CI, 3))
3404     return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
3405                        CI->getArgOperand(2), B, TLI);
3406 
3407   return nullptr;
3408 }
3409 
3410 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
3411                                                       IRBuilder<> &B) {
3412   if (isFortifiedCallFoldable(CI, 3))
3413     return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
3414                        CI->getArgOperand(2), B, TLI);
3415 
3416   return nullptr;
3417 }
3418 
3419 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
3420                                                       IRBuilder<> &B) {
3421   if (isFortifiedCallFoldable(CI, 3))
3422     return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3423                        CI->getArgOperand(2), B, TLI);
3424 
3425   return nullptr;
3426 }
3427 
3428 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
3429                                                         IRBuilder<> &B) {
3430   if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
3431     return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3432                          CI->getArgOperand(4), CI->getArgOperand(5), B, TLI);
3433 
3434   return nullptr;
3435 }
3436 
3437 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
3438                                                        IRBuilder<> &B) {
3439   if (isFortifiedCallFoldable(CI, 2, None, None, 1))
3440     return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3441                         CI->getArgOperand(4), B, TLI);
3442 
3443   return nullptr;
3444 }
3445 
3446 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
3447   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
3448   // Some clang users checked for _chk libcall availability using:
3449   //   __has_builtin(__builtin___memcpy_chk)
3450   // When compiling with -fno-builtin, this is always true.
3451   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
3452   // end up with fortified libcalls, which isn't acceptable in a freestanding
3453   // environment which only provides their non-fortified counterparts.
3454   //
3455   // Until we change clang and/or teach external users to check for availability
3456   // differently, disregard the "nobuiltin" attribute and TLI::has.
3457   //
3458   // PR23093.
3459 
3460   LibFunc Func;
3461   Function *Callee = CI->getCalledFunction();
3462 
3463   SmallVector<OperandBundleDef, 2> OpBundles;
3464   CI->getOperandBundlesAsDefs(OpBundles);
3465   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
3466   bool isCallingConvC = isCallingConvCCompatible(CI);
3467 
3468   // First, check that this is a known library functions and that the prototype
3469   // is correct.
3470   if (!TLI->getLibFunc(*Callee, Func))
3471     return nullptr;
3472 
3473   // We never change the calling convention.
3474   if (!ignoreCallingConv(Func) && !isCallingConvC)
3475     return nullptr;
3476 
3477   switch (Func) {
3478   case LibFunc_memcpy_chk:
3479     return optimizeMemCpyChk(CI, Builder);
3480   case LibFunc_memmove_chk:
3481     return optimizeMemMoveChk(CI, Builder);
3482   case LibFunc_memset_chk:
3483     return optimizeMemSetChk(CI, Builder);
3484   case LibFunc_stpcpy_chk:
3485   case LibFunc_strcpy_chk:
3486     return optimizeStrpCpyChk(CI, Builder, Func);
3487   case LibFunc_stpncpy_chk:
3488   case LibFunc_strncpy_chk:
3489     return optimizeStrpNCpyChk(CI, Builder, Func);
3490   case LibFunc_memccpy_chk:
3491     return optimizeMemCCpyChk(CI, Builder);
3492   case LibFunc_snprintf_chk:
3493     return optimizeSNPrintfChk(CI, Builder);
3494   case LibFunc_sprintf_chk:
3495     return optimizeSPrintfChk(CI, Builder);
3496   case LibFunc_strcat_chk:
3497     return optimizeStrCatChk(CI, Builder);
3498   case LibFunc_strlcat_chk:
3499     return optimizeStrLCat(CI, Builder);
3500   case LibFunc_strncat_chk:
3501     return optimizeStrNCatChk(CI, Builder);
3502   case LibFunc_strlcpy_chk:
3503     return optimizeStrLCpyChk(CI, Builder);
3504   case LibFunc_vsnprintf_chk:
3505     return optimizeVSNPrintfChk(CI, Builder);
3506   case LibFunc_vsprintf_chk:
3507     return optimizeVSPrintfChk(CI, Builder);
3508   default:
3509     break;
3510   }
3511   return nullptr;
3512 }
3513 
3514 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
3515     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
3516     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
3517