1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is a utility pass used for testing the InstructionSimplify analysis. 11 // The analysis is applied to every instruction, and if it simplifies then the 12 // instruction is replaced by the simplification. If you are looking for a pass 13 // that performs serious instruction folding, use the instcombine pass instead. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DiagnosticInfo.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/PatternMatch.h" 31 #include "llvm/Support/Allocator.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/Transforms/Utils/BuildLibCalls.h" 35 #include "llvm/Transforms/Utils/Local.h" 36 37 using namespace llvm; 38 using namespace PatternMatch; 39 40 static cl::opt<bool> 41 ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden, 42 cl::desc("Treat error-reporting calls as cold")); 43 44 static cl::opt<bool> 45 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 46 cl::init(false), 47 cl::desc("Enable unsafe double to float " 48 "shrinking for math lib calls")); 49 50 51 //===----------------------------------------------------------------------===// 52 // Helper Functions 53 //===----------------------------------------------------------------------===// 54 55 static bool ignoreCallingConv(LibFunc::Func Func) { 56 return Func == LibFunc::abs || Func == LibFunc::labs || 57 Func == LibFunc::llabs || Func == LibFunc::strlen; 58 } 59 60 /// isOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 61 /// value is equal or not-equal to zero. 62 static bool isOnlyUsedInZeroEqualityComparison(Value *V) { 63 for (User *U : V->users()) { 64 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 65 if (IC->isEquality()) 66 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 67 if (C->isNullValue()) 68 continue; 69 // Unknown instruction. 70 return false; 71 } 72 return true; 73 } 74 75 /// isOnlyUsedInEqualityComparison - Return true if it is only used in equality 76 /// comparisons with With. 77 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 78 for (User *U : V->users()) { 79 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 80 if (IC->isEquality() && IC->getOperand(1) == With) 81 continue; 82 // Unknown instruction. 83 return false; 84 } 85 return true; 86 } 87 88 static bool callHasFloatingPointArgument(const CallInst *CI) { 89 for (CallInst::const_op_iterator it = CI->op_begin(), e = CI->op_end(); 90 it != e; ++it) { 91 if ((*it)->getType()->isFloatingPointTy()) 92 return true; 93 } 94 return false; 95 } 96 97 /// \brief Check whether the overloaded unary floating point function 98 /// corresponding to \a Ty is available. 99 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty, 100 LibFunc::Func DoubleFn, LibFunc::Func FloatFn, 101 LibFunc::Func LongDoubleFn) { 102 switch (Ty->getTypeID()) { 103 case Type::FloatTyID: 104 return TLI->has(FloatFn); 105 case Type::DoubleTyID: 106 return TLI->has(DoubleFn); 107 default: 108 return TLI->has(LongDoubleFn); 109 } 110 } 111 112 /// \brief Check whether we can use unsafe floating point math for 113 /// the function passed as input. 114 static bool canUseUnsafeFPMath(Function *F) { 115 116 // FIXME: For finer-grain optimization, we need intrinsics to have the same 117 // fast-math flag decorations that are applied to FP instructions. For now, 118 // we have to rely on the function-level unsafe-fp-math attribute to do this 119 // optimization because there's no other way to express that the call can be 120 // relaxed. 121 if (F->hasFnAttribute("unsafe-fp-math")) { 122 Attribute Attr = F->getFnAttribute("unsafe-fp-math"); 123 if (Attr.getValueAsString() == "true") 124 return true; 125 } 126 return false; 127 } 128 129 /// \brief Returns whether \p F matches the signature expected for the 130 /// string/memory copying library function \p Func. 131 /// Acceptable functions are st[rp][n]?cpy, memove, memcpy, and memset. 132 /// Their fortified (_chk) counterparts are also accepted. 133 static bool checkStringCopyLibFuncSignature(Function *F, LibFunc::Func Func) { 134 const DataLayout &DL = F->getParent()->getDataLayout(); 135 FunctionType *FT = F->getFunctionType(); 136 LLVMContext &Context = F->getContext(); 137 Type *PCharTy = Type::getInt8PtrTy(Context); 138 Type *SizeTTy = DL.getIntPtrType(Context); 139 unsigned NumParams = FT->getNumParams(); 140 141 // All string libfuncs return the same type as the first parameter. 142 if (FT->getReturnType() != FT->getParamType(0)) 143 return false; 144 145 switch (Func) { 146 default: 147 llvm_unreachable("Can't check signature for non-string-copy libfunc."); 148 case LibFunc::stpncpy_chk: 149 case LibFunc::strncpy_chk: 150 --NumParams; // fallthrough 151 case LibFunc::stpncpy: 152 case LibFunc::strncpy: { 153 if (NumParams != 3 || FT->getParamType(0) != FT->getParamType(1) || 154 FT->getParamType(0) != PCharTy || !FT->getParamType(2)->isIntegerTy()) 155 return false; 156 break; 157 } 158 case LibFunc::strcpy_chk: 159 case LibFunc::stpcpy_chk: 160 --NumParams; // fallthrough 161 case LibFunc::stpcpy: 162 case LibFunc::strcpy: { 163 if (NumParams != 2 || FT->getParamType(0) != FT->getParamType(1) || 164 FT->getParamType(0) != PCharTy) 165 return false; 166 break; 167 } 168 case LibFunc::memmove_chk: 169 case LibFunc::memcpy_chk: 170 --NumParams; // fallthrough 171 case LibFunc::memmove: 172 case LibFunc::memcpy: { 173 if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() || 174 !FT->getParamType(1)->isPointerTy() || FT->getParamType(2) != SizeTTy) 175 return false; 176 break; 177 } 178 case LibFunc::memset_chk: 179 --NumParams; // fallthrough 180 case LibFunc::memset: { 181 if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() || 182 !FT->getParamType(1)->isIntegerTy() || FT->getParamType(2) != SizeTTy) 183 return false; 184 break; 185 } 186 } 187 // If this is a fortified libcall, the last parameter is a size_t. 188 if (NumParams == FT->getNumParams() - 1) 189 return FT->getParamType(FT->getNumParams() - 1) == SizeTTy; 190 return true; 191 } 192 193 //===----------------------------------------------------------------------===// 194 // String and Memory Library Call Optimizations 195 //===----------------------------------------------------------------------===// 196 197 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 198 Function *Callee = CI->getCalledFunction(); 199 // Verify the "strcat" function prototype. 200 FunctionType *FT = Callee->getFunctionType(); 201 if (FT->getNumParams() != 2|| 202 FT->getReturnType() != B.getInt8PtrTy() || 203 FT->getParamType(0) != FT->getReturnType() || 204 FT->getParamType(1) != FT->getReturnType()) 205 return nullptr; 206 207 // Extract some information from the instruction 208 Value *Dst = CI->getArgOperand(0); 209 Value *Src = CI->getArgOperand(1); 210 211 // See if we can get the length of the input string. 212 uint64_t Len = GetStringLength(Src); 213 if (Len == 0) 214 return nullptr; 215 --Len; // Unbias length. 216 217 // Handle the simple, do-nothing case: strcat(x, "") -> x 218 if (Len == 0) 219 return Dst; 220 221 return emitStrLenMemCpy(Src, Dst, Len, B); 222 } 223 224 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 225 IRBuilder<> &B) { 226 // We need to find the end of the destination string. That's where the 227 // memory is to be moved to. We just generate a call to strlen. 228 Value *DstLen = EmitStrLen(Dst, B, DL, TLI); 229 if (!DstLen) 230 return nullptr; 231 232 // Now that we have the destination's length, we must index into the 233 // destination's pointer to get the actual memcpy destination (end of 234 // the string .. we're concatenating). 235 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 236 237 // We have enough information to now generate the memcpy call to do the 238 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 239 B.CreateMemCpy(CpyDst, Src, 240 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1), 241 1); 242 return Dst; 243 } 244 245 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 246 Function *Callee = CI->getCalledFunction(); 247 // Verify the "strncat" function prototype. 248 FunctionType *FT = Callee->getFunctionType(); 249 if (FT->getNumParams() != 3 || FT->getReturnType() != B.getInt8PtrTy() || 250 FT->getParamType(0) != FT->getReturnType() || 251 FT->getParamType(1) != FT->getReturnType() || 252 !FT->getParamType(2)->isIntegerTy()) 253 return nullptr; 254 255 // Extract some information from the instruction 256 Value *Dst = CI->getArgOperand(0); 257 Value *Src = CI->getArgOperand(1); 258 uint64_t Len; 259 260 // We don't do anything if length is not constant 261 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 262 Len = LengthArg->getZExtValue(); 263 else 264 return nullptr; 265 266 // See if we can get the length of the input string. 267 uint64_t SrcLen = GetStringLength(Src); 268 if (SrcLen == 0) 269 return nullptr; 270 --SrcLen; // Unbias length. 271 272 // Handle the simple, do-nothing cases: 273 // strncat(x, "", c) -> x 274 // strncat(x, c, 0) -> x 275 if (SrcLen == 0 || Len == 0) 276 return Dst; 277 278 // We don't optimize this case 279 if (Len < SrcLen) 280 return nullptr; 281 282 // strncat(x, s, c) -> strcat(x, s) 283 // s is constant so the strcat can be optimized further 284 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 285 } 286 287 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 288 Function *Callee = CI->getCalledFunction(); 289 // Verify the "strchr" function prototype. 290 FunctionType *FT = Callee->getFunctionType(); 291 if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() || 292 FT->getParamType(0) != FT->getReturnType() || 293 !FT->getParamType(1)->isIntegerTy(32)) 294 return nullptr; 295 296 Value *SrcStr = CI->getArgOperand(0); 297 298 // If the second operand is non-constant, see if we can compute the length 299 // of the input string and turn this into memchr. 300 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 301 if (!CharC) { 302 uint64_t Len = GetStringLength(SrcStr); 303 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 304 return nullptr; 305 306 return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 307 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 308 B, DL, TLI); 309 } 310 311 // Otherwise, the character is a constant, see if the first argument is 312 // a string literal. If so, we can constant fold. 313 StringRef Str; 314 if (!getConstantStringInfo(SrcStr, Str)) { 315 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 316 return B.CreateGEP(B.getInt8Ty(), SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr"); 317 return nullptr; 318 } 319 320 // Compute the offset, make sure to handle the case when we're searching for 321 // zero (a weird way to spell strlen). 322 size_t I = (0xFF & CharC->getSExtValue()) == 0 323 ? Str.size() 324 : Str.find(CharC->getSExtValue()); 325 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 326 return Constant::getNullValue(CI->getType()); 327 328 // strchr(s+n,c) -> gep(s+n+i,c) 329 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 330 } 331 332 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 333 Function *Callee = CI->getCalledFunction(); 334 // Verify the "strrchr" function prototype. 335 FunctionType *FT = Callee->getFunctionType(); 336 if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() || 337 FT->getParamType(0) != FT->getReturnType() || 338 !FT->getParamType(1)->isIntegerTy(32)) 339 return nullptr; 340 341 Value *SrcStr = CI->getArgOperand(0); 342 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 343 344 // Cannot fold anything if we're not looking for a constant. 345 if (!CharC) 346 return nullptr; 347 348 StringRef Str; 349 if (!getConstantStringInfo(SrcStr, Str)) { 350 // strrchr(s, 0) -> strchr(s, 0) 351 if (CharC->isZero()) 352 return EmitStrChr(SrcStr, '\0', B, TLI); 353 return nullptr; 354 } 355 356 // Compute the offset. 357 size_t I = (0xFF & CharC->getSExtValue()) == 0 358 ? Str.size() 359 : Str.rfind(CharC->getSExtValue()); 360 if (I == StringRef::npos) // Didn't find the char. Return null. 361 return Constant::getNullValue(CI->getType()); 362 363 // strrchr(s+n,c) -> gep(s+n+i,c) 364 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 365 } 366 367 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 368 Function *Callee = CI->getCalledFunction(); 369 // Verify the "strcmp" function prototype. 370 FunctionType *FT = Callee->getFunctionType(); 371 if (FT->getNumParams() != 2 || !FT->getReturnType()->isIntegerTy(32) || 372 FT->getParamType(0) != FT->getParamType(1) || 373 FT->getParamType(0) != B.getInt8PtrTy()) 374 return nullptr; 375 376 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 377 if (Str1P == Str2P) // strcmp(x,x) -> 0 378 return ConstantInt::get(CI->getType(), 0); 379 380 StringRef Str1, Str2; 381 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 382 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 383 384 // strcmp(x, y) -> cnst (if both x and y are constant strings) 385 if (HasStr1 && HasStr2) 386 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 387 388 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 389 return B.CreateNeg( 390 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 391 392 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 393 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 394 395 // strcmp(P, "x") -> memcmp(P, "x", 2) 396 uint64_t Len1 = GetStringLength(Str1P); 397 uint64_t Len2 = GetStringLength(Str2P); 398 if (Len1 && Len2) { 399 return EmitMemCmp(Str1P, Str2P, 400 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 401 std::min(Len1, Len2)), 402 B, DL, TLI); 403 } 404 405 return nullptr; 406 } 407 408 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 409 Function *Callee = CI->getCalledFunction(); 410 // Verify the "strncmp" function prototype. 411 FunctionType *FT = Callee->getFunctionType(); 412 if (FT->getNumParams() != 3 || !FT->getReturnType()->isIntegerTy(32) || 413 FT->getParamType(0) != FT->getParamType(1) || 414 FT->getParamType(0) != B.getInt8PtrTy() || 415 !FT->getParamType(2)->isIntegerTy()) 416 return nullptr; 417 418 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 419 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 420 return ConstantInt::get(CI->getType(), 0); 421 422 // Get the length argument if it is constant. 423 uint64_t Length; 424 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 425 Length = LengthArg->getZExtValue(); 426 else 427 return nullptr; 428 429 if (Length == 0) // strncmp(x,y,0) -> 0 430 return ConstantInt::get(CI->getType(), 0); 431 432 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 433 return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 434 435 StringRef Str1, Str2; 436 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 437 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 438 439 // strncmp(x, y) -> cnst (if both x and y are constant strings) 440 if (HasStr1 && HasStr2) { 441 StringRef SubStr1 = Str1.substr(0, Length); 442 StringRef SubStr2 = Str2.substr(0, Length); 443 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 444 } 445 446 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 447 return B.CreateNeg( 448 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 449 450 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 451 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 452 453 return nullptr; 454 } 455 456 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 457 Function *Callee = CI->getCalledFunction(); 458 459 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strcpy)) 460 return nullptr; 461 462 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 463 if (Dst == Src) // strcpy(x,x) -> x 464 return Src; 465 466 // See if we can get the length of the input string. 467 uint64_t Len = GetStringLength(Src); 468 if (Len == 0) 469 return nullptr; 470 471 // We have enough information to now generate the memcpy call to do the 472 // copy for us. Make a memcpy to copy the nul byte with align = 1. 473 B.CreateMemCpy(Dst, Src, 474 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1); 475 return Dst; 476 } 477 478 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 479 Function *Callee = CI->getCalledFunction(); 480 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::stpcpy)) 481 return nullptr; 482 483 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 484 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 485 Value *StrLen = EmitStrLen(Src, B, DL, TLI); 486 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 487 } 488 489 // See if we can get the length of the input string. 490 uint64_t Len = GetStringLength(Src); 491 if (Len == 0) 492 return nullptr; 493 494 Type *PT = Callee->getFunctionType()->getParamType(0); 495 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 496 Value *DstEnd = 497 B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 498 499 // We have enough information to now generate the memcpy call to do the 500 // copy for us. Make a memcpy to copy the nul byte with align = 1. 501 B.CreateMemCpy(Dst, Src, LenV, 1); 502 return DstEnd; 503 } 504 505 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 506 Function *Callee = CI->getCalledFunction(); 507 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strncpy)) 508 return nullptr; 509 510 Value *Dst = CI->getArgOperand(0); 511 Value *Src = CI->getArgOperand(1); 512 Value *LenOp = CI->getArgOperand(2); 513 514 // See if we can get the length of the input string. 515 uint64_t SrcLen = GetStringLength(Src); 516 if (SrcLen == 0) 517 return nullptr; 518 --SrcLen; 519 520 if (SrcLen == 0) { 521 // strncpy(x, "", y) -> memset(x, '\0', y, 1) 522 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 523 return Dst; 524 } 525 526 uint64_t Len; 527 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 528 Len = LengthArg->getZExtValue(); 529 else 530 return nullptr; 531 532 if (Len == 0) 533 return Dst; // strncpy(x, y, 0) -> x 534 535 // Let strncpy handle the zero padding 536 if (Len > SrcLen + 1) 537 return nullptr; 538 539 Type *PT = Callee->getFunctionType()->getParamType(0); 540 // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] 541 B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1); 542 543 return Dst; 544 } 545 546 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 547 Function *Callee = CI->getCalledFunction(); 548 FunctionType *FT = Callee->getFunctionType(); 549 if (FT->getNumParams() != 1 || FT->getParamType(0) != B.getInt8PtrTy() || 550 !FT->getReturnType()->isIntegerTy()) 551 return nullptr; 552 553 Value *Src = CI->getArgOperand(0); 554 555 // Constant folding: strlen("xyz") -> 3 556 if (uint64_t Len = GetStringLength(Src)) 557 return ConstantInt::get(CI->getType(), Len - 1); 558 559 // strlen(x?"foo":"bars") --> x ? 3 : 4 560 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 561 uint64_t LenTrue = GetStringLength(SI->getTrueValue()); 562 uint64_t LenFalse = GetStringLength(SI->getFalseValue()); 563 if (LenTrue && LenFalse) { 564 Function *Caller = CI->getParent()->getParent(); 565 emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller, 566 SI->getDebugLoc(), 567 "folded strlen(select) to select of constants"); 568 return B.CreateSelect(SI->getCondition(), 569 ConstantInt::get(CI->getType(), LenTrue - 1), 570 ConstantInt::get(CI->getType(), LenFalse - 1)); 571 } 572 } 573 574 // strlen(x) != 0 --> *x != 0 575 // strlen(x) == 0 --> *x == 0 576 if (isOnlyUsedInZeroEqualityComparison(CI)) 577 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); 578 579 return nullptr; 580 } 581 582 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 583 Function *Callee = CI->getCalledFunction(); 584 FunctionType *FT = Callee->getFunctionType(); 585 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || 586 FT->getParamType(1) != FT->getParamType(0) || 587 FT->getReturnType() != FT->getParamType(0)) 588 return nullptr; 589 590 StringRef S1, S2; 591 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 592 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 593 594 // strpbrk(s, "") -> nullptr 595 // strpbrk("", s) -> nullptr 596 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 597 return Constant::getNullValue(CI->getType()); 598 599 // Constant folding. 600 if (HasS1 && HasS2) { 601 size_t I = S1.find_first_of(S2); 602 if (I == StringRef::npos) // No match. 603 return Constant::getNullValue(CI->getType()); 604 605 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), "strpbrk"); 606 } 607 608 // strpbrk(s, "a") -> strchr(s, 'a') 609 if (HasS2 && S2.size() == 1) 610 return EmitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 611 612 return nullptr; 613 } 614 615 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 616 Function *Callee = CI->getCalledFunction(); 617 FunctionType *FT = Callee->getFunctionType(); 618 if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) || 619 !FT->getParamType(0)->isPointerTy() || 620 !FT->getParamType(1)->isPointerTy()) 621 return nullptr; 622 623 Value *EndPtr = CI->getArgOperand(1); 624 if (isa<ConstantPointerNull>(EndPtr)) { 625 // With a null EndPtr, this function won't capture the main argument. 626 // It would be readonly too, except that it still may write to errno. 627 CI->addAttribute(1, Attribute::NoCapture); 628 } 629 630 return nullptr; 631 } 632 633 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 634 Function *Callee = CI->getCalledFunction(); 635 FunctionType *FT = Callee->getFunctionType(); 636 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || 637 FT->getParamType(1) != FT->getParamType(0) || 638 !FT->getReturnType()->isIntegerTy()) 639 return nullptr; 640 641 StringRef S1, S2; 642 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 643 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 644 645 // strspn(s, "") -> 0 646 // strspn("", s) -> 0 647 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 648 return Constant::getNullValue(CI->getType()); 649 650 // Constant folding. 651 if (HasS1 && HasS2) { 652 size_t Pos = S1.find_first_not_of(S2); 653 if (Pos == StringRef::npos) 654 Pos = S1.size(); 655 return ConstantInt::get(CI->getType(), Pos); 656 } 657 658 return nullptr; 659 } 660 661 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 662 Function *Callee = CI->getCalledFunction(); 663 FunctionType *FT = Callee->getFunctionType(); 664 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || 665 FT->getParamType(1) != FT->getParamType(0) || 666 !FT->getReturnType()->isIntegerTy()) 667 return nullptr; 668 669 StringRef S1, S2; 670 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 671 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 672 673 // strcspn("", s) -> 0 674 if (HasS1 && S1.empty()) 675 return Constant::getNullValue(CI->getType()); 676 677 // Constant folding. 678 if (HasS1 && HasS2) { 679 size_t Pos = S1.find_first_of(S2); 680 if (Pos == StringRef::npos) 681 Pos = S1.size(); 682 return ConstantInt::get(CI->getType(), Pos); 683 } 684 685 // strcspn(s, "") -> strlen(s) 686 if (HasS2 && S2.empty()) 687 return EmitStrLen(CI->getArgOperand(0), B, DL, TLI); 688 689 return nullptr; 690 } 691 692 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 693 Function *Callee = CI->getCalledFunction(); 694 FunctionType *FT = Callee->getFunctionType(); 695 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 696 !FT->getParamType(1)->isPointerTy() || 697 !FT->getReturnType()->isPointerTy()) 698 return nullptr; 699 700 // fold strstr(x, x) -> x. 701 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 702 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 703 704 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 705 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 706 Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI); 707 if (!StrLen) 708 return nullptr; 709 Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 710 StrLen, B, DL, TLI); 711 if (!StrNCmp) 712 return nullptr; 713 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 714 ICmpInst *Old = cast<ICmpInst>(*UI++); 715 Value *Cmp = 716 B.CreateICmp(Old->getPredicate(), StrNCmp, 717 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 718 replaceAllUsesWith(Old, Cmp); 719 } 720 return CI; 721 } 722 723 // See if either input string is a constant string. 724 StringRef SearchStr, ToFindStr; 725 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 726 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 727 728 // fold strstr(x, "") -> x. 729 if (HasStr2 && ToFindStr.empty()) 730 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 731 732 // If both strings are known, constant fold it. 733 if (HasStr1 && HasStr2) { 734 size_t Offset = SearchStr.find(ToFindStr); 735 736 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 737 return Constant::getNullValue(CI->getType()); 738 739 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 740 Value *Result = CastToCStr(CI->getArgOperand(0), B); 741 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); 742 return B.CreateBitCast(Result, CI->getType()); 743 } 744 745 // fold strstr(x, "y") -> strchr(x, 'y'). 746 if (HasStr2 && ToFindStr.size() == 1) { 747 Value *StrChr = EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 748 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 749 } 750 return nullptr; 751 } 752 753 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { 754 Function *Callee = CI->getCalledFunction(); 755 FunctionType *FT = Callee->getFunctionType(); 756 if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() || 757 !FT->getParamType(1)->isIntegerTy(32) || 758 !FT->getParamType(2)->isIntegerTy() || 759 !FT->getReturnType()->isPointerTy()) 760 return nullptr; 761 762 Value *SrcStr = CI->getArgOperand(0); 763 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 764 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 765 766 // memchr(x, y, 0) -> null 767 if (LenC && LenC->isNullValue()) 768 return Constant::getNullValue(CI->getType()); 769 770 // From now on we need at least constant length and string. 771 StringRef Str; 772 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 773 return nullptr; 774 775 // Truncate the string to LenC. If Str is smaller than LenC we will still only 776 // scan the string, as reading past the end of it is undefined and we can just 777 // return null if we don't find the char. 778 Str = Str.substr(0, LenC->getZExtValue()); 779 780 // If the char is variable but the input str and length are not we can turn 781 // this memchr call into a simple bit field test. Of course this only works 782 // when the return value is only checked against null. 783 // 784 // It would be really nice to reuse switch lowering here but we can't change 785 // the CFG at this point. 786 // 787 // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0 788 // after bounds check. 789 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 790 unsigned char Max = 791 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 792 reinterpret_cast<const unsigned char *>(Str.end())); 793 794 // Make sure the bit field we're about to create fits in a register on the 795 // target. 796 // FIXME: On a 64 bit architecture this prevents us from using the 797 // interesting range of alpha ascii chars. We could do better by emitting 798 // two bitfields or shifting the range by 64 if no lower chars are used. 799 if (!DL.fitsInLegalInteger(Max + 1)) 800 return nullptr; 801 802 // For the bit field use a power-of-2 type with at least 8 bits to avoid 803 // creating unnecessary illegal types. 804 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 805 806 // Now build the bit field. 807 APInt Bitfield(Width, 0); 808 for (char C : Str) 809 Bitfield.setBit((unsigned char)C); 810 Value *BitfieldC = B.getInt(Bitfield); 811 812 // First check that the bit field access is within bounds. 813 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 814 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 815 "memchr.bounds"); 816 817 // Create code that checks if the given bit is set in the field. 818 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 819 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 820 821 // Finally merge both checks and cast to pointer type. The inttoptr 822 // implicitly zexts the i1 to intptr type. 823 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 824 } 825 826 // Check if all arguments are constants. If so, we can constant fold. 827 if (!CharC) 828 return nullptr; 829 830 // Compute the offset. 831 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 832 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 833 return Constant::getNullValue(CI->getType()); 834 835 // memchr(s+n,c,l) -> gep(s+n+i,c) 836 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 837 } 838 839 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 840 Function *Callee = CI->getCalledFunction(); 841 FunctionType *FT = Callee->getFunctionType(); 842 if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() || 843 !FT->getParamType(1)->isPointerTy() || 844 !FT->getReturnType()->isIntegerTy(32)) 845 return nullptr; 846 847 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 848 849 if (LHS == RHS) // memcmp(s,s,x) -> 0 850 return Constant::getNullValue(CI->getType()); 851 852 // Make sure we have a constant length. 853 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 854 if (!LenC) 855 return nullptr; 856 uint64_t Len = LenC->getZExtValue(); 857 858 if (Len == 0) // memcmp(s1,s2,0) -> 0 859 return Constant::getNullValue(CI->getType()); 860 861 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 862 if (Len == 1) { 863 Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"), 864 CI->getType(), "lhsv"); 865 Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"), 866 CI->getType(), "rhsv"); 867 return B.CreateSub(LHSV, RHSV, "chardiff"); 868 } 869 870 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 871 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 872 873 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 874 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 875 876 if (getKnownAlignment(LHS, DL, CI) >= PrefAlignment && 877 getKnownAlignment(RHS, DL, CI) >= PrefAlignment) { 878 879 Type *LHSPtrTy = 880 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 881 Type *RHSPtrTy = 882 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 883 884 Value *LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy, "lhsc"), "lhsv"); 885 Value *RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy, "rhsc"), "rhsv"); 886 887 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 888 } 889 } 890 891 // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant) 892 StringRef LHSStr, RHSStr; 893 if (getConstantStringInfo(LHS, LHSStr) && 894 getConstantStringInfo(RHS, RHSStr)) { 895 // Make sure we're not reading out-of-bounds memory. 896 if (Len > LHSStr.size() || Len > RHSStr.size()) 897 return nullptr; 898 // Fold the memcmp and normalize the result. This way we get consistent 899 // results across multiple platforms. 900 uint64_t Ret = 0; 901 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 902 if (Cmp < 0) 903 Ret = -1; 904 else if (Cmp > 0) 905 Ret = 1; 906 return ConstantInt::get(CI->getType(), Ret); 907 } 908 909 return nullptr; 910 } 911 912 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { 913 Function *Callee = CI->getCalledFunction(); 914 915 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy)) 916 return nullptr; 917 918 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) 919 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 920 CI->getArgOperand(2), 1); 921 return CI->getArgOperand(0); 922 } 923 924 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { 925 Function *Callee = CI->getCalledFunction(); 926 927 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove)) 928 return nullptr; 929 930 // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) 931 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 932 CI->getArgOperand(2), 1); 933 return CI->getArgOperand(0); 934 } 935 936 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { 937 Function *Callee = CI->getCalledFunction(); 938 939 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset)) 940 return nullptr; 941 942 // memset(p, v, n) -> llvm.memset(p, v, n, 1) 943 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 944 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 945 return CI->getArgOperand(0); 946 } 947 948 //===----------------------------------------------------------------------===// 949 // Math Library Optimizations 950 //===----------------------------------------------------------------------===// 951 952 /// Return a variant of Val with float type. 953 /// Currently this works in two cases: If Val is an FPExtension of a float 954 /// value to something bigger, simply return the operand. 955 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 956 /// loss of precision do so. 957 static Value *valueHasFloatPrecision(Value *Val) { 958 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 959 Value *Op = Cast->getOperand(0); 960 if (Op->getType()->isFloatTy()) 961 return Op; 962 } 963 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 964 APFloat F = Const->getValueAPF(); 965 bool losesInfo; 966 (void)F.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 967 &losesInfo); 968 if (!losesInfo) 969 return ConstantFP::get(Const->getContext(), F); 970 } 971 return nullptr; 972 } 973 974 //===----------------------------------------------------------------------===// 975 // Double -> Float Shrinking Optimizations for Unary Functions like 'floor' 976 977 Value *LibCallSimplifier::optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 978 bool CheckRetType) { 979 Function *Callee = CI->getCalledFunction(); 980 FunctionType *FT = Callee->getFunctionType(); 981 if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() || 982 !FT->getParamType(0)->isDoubleTy()) 983 return nullptr; 984 985 if (CheckRetType) { 986 // Check if all the uses for function like 'sin' are converted to float. 987 for (User *U : CI->users()) { 988 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 989 if (!Cast || !Cast->getType()->isFloatTy()) 990 return nullptr; 991 } 992 } 993 994 // If this is something like 'floor((double)floatval)', convert to floorf. 995 Value *V = valueHasFloatPrecision(CI->getArgOperand(0)); 996 if (V == nullptr) 997 return nullptr; 998 999 // floor((double)floatval) -> (double)floorf(floatval) 1000 if (Callee->isIntrinsic()) { 1001 Module *M = CI->getParent()->getParent()->getParent(); 1002 Intrinsic::ID IID = Callee->getIntrinsicID(); 1003 Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1004 V = B.CreateCall(F, V); 1005 } else { 1006 // The call is a library call rather than an intrinsic. 1007 V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes()); 1008 } 1009 1010 return B.CreateFPExt(V, B.getDoubleTy()); 1011 } 1012 1013 // Double -> Float Shrinking Optimizations for Binary Functions like 'fmin/fmax' 1014 Value *LibCallSimplifier::optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) { 1015 Function *Callee = CI->getCalledFunction(); 1016 FunctionType *FT = Callee->getFunctionType(); 1017 // Just make sure this has 2 arguments of the same FP type, which match the 1018 // result type. 1019 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || 1020 FT->getParamType(0) != FT->getParamType(1) || 1021 !FT->getParamType(0)->isFloatingPointTy()) 1022 return nullptr; 1023 1024 // If this is something like 'fmin((double)floatval1, (double)floatval2)', 1025 // or fmin(1.0, (double)floatval), then we convert it to fminf. 1026 Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0)); 1027 if (V1 == nullptr) 1028 return nullptr; 1029 Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1)); 1030 if (V2 == nullptr) 1031 return nullptr; 1032 1033 // fmin((double)floatval1, (double)floatval2) 1034 // -> (double)fminf(floatval1, floatval2) 1035 // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP(). 1036 Value *V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B, 1037 Callee->getAttributes()); 1038 return B.CreateFPExt(V, B.getDoubleTy()); 1039 } 1040 1041 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) { 1042 Function *Callee = CI->getCalledFunction(); 1043 Value *Ret = nullptr; 1044 StringRef Name = Callee->getName(); 1045 if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name)) 1046 Ret = optimizeUnaryDoubleFP(CI, B, true); 1047 1048 FunctionType *FT = Callee->getFunctionType(); 1049 // Just make sure this has 1 argument of FP type, which matches the 1050 // result type. 1051 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1052 !FT->getParamType(0)->isFloatingPointTy()) 1053 return Ret; 1054 1055 // cos(-x) -> cos(x) 1056 Value *Op1 = CI->getArgOperand(0); 1057 if (BinaryOperator::isFNeg(Op1)) { 1058 BinaryOperator *BinExpr = cast<BinaryOperator>(Op1); 1059 return B.CreateCall(Callee, BinExpr->getOperand(1), "cos"); 1060 } 1061 return Ret; 1062 } 1063 1064 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) { 1065 Function *Callee = CI->getCalledFunction(); 1066 Value *Ret = nullptr; 1067 StringRef Name = Callee->getName(); 1068 if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name)) 1069 Ret = optimizeUnaryDoubleFP(CI, B, true); 1070 1071 FunctionType *FT = Callee->getFunctionType(); 1072 // Just make sure this has 2 arguments of the same FP type, which match the 1073 // result type. 1074 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || 1075 FT->getParamType(0) != FT->getParamType(1) || 1076 !FT->getParamType(0)->isFloatingPointTy()) 1077 return Ret; 1078 1079 Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1); 1080 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { 1081 // pow(1.0, x) -> 1.0 1082 if (Op1C->isExactlyValue(1.0)) 1083 return Op1C; 1084 // pow(2.0, x) -> exp2(x) 1085 if (Op1C->isExactlyValue(2.0) && 1086 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f, 1087 LibFunc::exp2l)) 1088 return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp2), B, 1089 Callee->getAttributes()); 1090 // pow(10.0, x) -> exp10(x) 1091 if (Op1C->isExactlyValue(10.0) && 1092 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f, 1093 LibFunc::exp10l)) 1094 return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B, 1095 Callee->getAttributes()); 1096 } 1097 1098 // pow(exp(x), y) -> exp(x*y) 1099 // pow(exp2(x), y) -> exp2(x * y) 1100 // We enable these only under fast-math. Besides rounding 1101 // differences the transformation changes overflow and 1102 // underflow behavior quite dramatically. 1103 // Example: x = 1000, y = 0.001. 1104 // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1). 1105 if (canUseUnsafeFPMath(CI->getParent()->getParent())) { 1106 if (auto *OpC = dyn_cast<CallInst>(Op1)) { 1107 IRBuilder<>::FastMathFlagGuard Guard(B); 1108 FastMathFlags FMF; 1109 FMF.setUnsafeAlgebra(); 1110 B.SetFastMathFlags(FMF); 1111 1112 LibFunc::Func Func; 1113 Function *Callee = OpC->getCalledFunction(); 1114 StringRef FuncName = Callee->getName(); 1115 1116 if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func) && 1117 (Func == LibFunc::exp || Func == LibFunc::exp2)) 1118 return EmitUnaryFloatFnCall( 1119 B.CreateFMul(OpC->getArgOperand(0), Op2, "mul"), FuncName, B, 1120 Callee->getAttributes()); 1121 } 1122 } 1123 1124 ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2); 1125 if (!Op2C) 1126 return Ret; 1127 1128 if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 1129 return ConstantFP::get(CI->getType(), 1.0); 1130 1131 if (Op2C->isExactlyValue(0.5) && 1132 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf, 1133 LibFunc::sqrtl) && 1134 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf, 1135 LibFunc::fabsl)) { 1136 // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). 1137 // This is faster than calling pow, and still handles negative zero 1138 // and negative infinity correctly. 1139 // TODO: In fast-math mode, this could be just sqrt(x). 1140 // TODO: In finite-only mode, this could be just fabs(sqrt(x)). 1141 Value *Inf = ConstantFP::getInfinity(CI->getType()); 1142 Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); 1143 Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes()); 1144 Value *FAbs = 1145 EmitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes()); 1146 Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf); 1147 Value *Sel = B.CreateSelect(FCmp, Inf, FAbs); 1148 return Sel; 1149 } 1150 1151 if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x 1152 return Op1; 1153 if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x 1154 return B.CreateFMul(Op1, Op1, "pow2"); 1155 if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x 1156 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip"); 1157 return nullptr; 1158 } 1159 1160 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1161 Function *Callee = CI->getCalledFunction(); 1162 Function *Caller = CI->getParent()->getParent(); 1163 Value *Ret = nullptr; 1164 StringRef Name = Callee->getName(); 1165 if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name)) 1166 Ret = optimizeUnaryDoubleFP(CI, B, true); 1167 1168 FunctionType *FT = Callee->getFunctionType(); 1169 // Just make sure this has 1 argument of FP type, which matches the 1170 // result type. 1171 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1172 !FT->getParamType(0)->isFloatingPointTy()) 1173 return Ret; 1174 1175 Value *Op = CI->getArgOperand(0); 1176 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1177 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1178 LibFunc::Func LdExp = LibFunc::ldexpl; 1179 if (Op->getType()->isFloatTy()) 1180 LdExp = LibFunc::ldexpf; 1181 else if (Op->getType()->isDoubleTy()) 1182 LdExp = LibFunc::ldexp; 1183 1184 if (TLI->has(LdExp)) { 1185 Value *LdExpArg = nullptr; 1186 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 1187 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 1188 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 1189 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 1190 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 1191 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 1192 } 1193 1194 if (LdExpArg) { 1195 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); 1196 if (!Op->getType()->isFloatTy()) 1197 One = ConstantExpr::getFPExtend(One, Op->getType()); 1198 1199 Module *M = Caller->getParent(); 1200 Value *Callee = 1201 M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), 1202 Op->getType(), B.getInt32Ty(), nullptr); 1203 CallInst *CI = B.CreateCall(Callee, {One, LdExpArg}); 1204 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 1205 CI->setCallingConv(F->getCallingConv()); 1206 1207 return CI; 1208 } 1209 } 1210 return Ret; 1211 } 1212 1213 Value *LibCallSimplifier::optimizeFabs(CallInst *CI, IRBuilder<> &B) { 1214 Function *Callee = CI->getCalledFunction(); 1215 Value *Ret = nullptr; 1216 StringRef Name = Callee->getName(); 1217 if (Name == "fabs" && hasFloatVersion(Name)) 1218 Ret = optimizeUnaryDoubleFP(CI, B, false); 1219 1220 FunctionType *FT = Callee->getFunctionType(); 1221 // Make sure this has 1 argument of FP type which matches the result type. 1222 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1223 !FT->getParamType(0)->isFloatingPointTy()) 1224 return Ret; 1225 1226 Value *Op = CI->getArgOperand(0); 1227 if (Instruction *I = dyn_cast<Instruction>(Op)) { 1228 // Fold fabs(x * x) -> x * x; any squared FP value must already be positive. 1229 if (I->getOpcode() == Instruction::FMul) 1230 if (I->getOperand(0) == I->getOperand(1)) 1231 return Op; 1232 } 1233 return Ret; 1234 } 1235 1236 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { 1237 // If we can shrink the call to a float function rather than a double 1238 // function, do that first. 1239 Function *Callee = CI->getCalledFunction(); 1240 StringRef Name = Callee->getName(); 1241 if ((Name == "fmin" && hasFloatVersion(Name)) || 1242 (Name == "fmax" && hasFloatVersion(Name))) { 1243 Value *Ret = optimizeBinaryDoubleFP(CI, B); 1244 if (Ret) 1245 return Ret; 1246 } 1247 1248 // Make sure this has 2 arguments of FP type which match the result type. 1249 FunctionType *FT = Callee->getFunctionType(); 1250 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || 1251 FT->getParamType(0) != FT->getParamType(1) || 1252 !FT->getParamType(0)->isFloatingPointTy()) 1253 return nullptr; 1254 1255 IRBuilder<>::FastMathFlagGuard Guard(B); 1256 FastMathFlags FMF; 1257 Function *F = CI->getParent()->getParent(); 1258 if (canUseUnsafeFPMath(F)) { 1259 // Unsafe algebra sets all fast-math-flags to true. 1260 FMF.setUnsafeAlgebra(); 1261 } else { 1262 // At a minimum, no-nans-fp-math must be true. 1263 Attribute Attr = F->getFnAttribute("no-nans-fp-math"); 1264 if (Attr.getValueAsString() != "true") 1265 return nullptr; 1266 // No-signed-zeros is implied by the definitions of fmax/fmin themselves: 1267 // "Ideally, fmax would be sensitive to the sign of zero, for example 1268 // fmax(-0. 0, +0. 0) would return +0; however, implementation in software 1269 // might be impractical." 1270 FMF.setNoSignedZeros(); 1271 FMF.setNoNaNs(); 1272 } 1273 B.SetFastMathFlags(FMF); 1274 1275 // We have a relaxed floating-point environment. We can ignore NaN-handling 1276 // and transform to a compare and select. We do not have to consider errno or 1277 // exceptions, because fmin/fmax do not have those. 1278 Value *Op0 = CI->getArgOperand(0); 1279 Value *Op1 = CI->getArgOperand(1); 1280 Value *Cmp = Callee->getName().startswith("fmin") ? 1281 B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1); 1282 return B.CreateSelect(Cmp, Op0, Op1); 1283 } 1284 1285 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1286 Function *Callee = CI->getCalledFunction(); 1287 1288 Value *Ret = nullptr; 1289 if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" || 1290 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1291 Ret = optimizeUnaryDoubleFP(CI, B, true); 1292 if (!canUseUnsafeFPMath(CI->getParent()->getParent())) 1293 return Ret; 1294 1295 Value *Op = CI->getArgOperand(0); 1296 if (Instruction *I = dyn_cast<Instruction>(Op)) { 1297 if (I->getOpcode() == Instruction::FMul && I->hasUnsafeAlgebra()) { 1298 // We're looking for a repeated factor in a multiplication tree, 1299 // so we can do this fold: sqrt(x * x) -> fabs(x); 1300 // or this fold: sqrt(x * x * y) -> fabs(x) * sqrt(y). 1301 Value *Op0 = I->getOperand(0); 1302 Value *Op1 = I->getOperand(1); 1303 Value *RepeatOp = nullptr; 1304 Value *OtherOp = nullptr; 1305 if (Op0 == Op1) { 1306 // Simple match: the operands of the multiply are identical. 1307 RepeatOp = Op0; 1308 } else { 1309 // Look for a more complicated pattern: one of the operands is itself 1310 // a multiply, so search for a common factor in that multiply. 1311 // Note: We don't bother looking any deeper than this first level or for 1312 // variations of this pattern because instcombine's visitFMUL and/or the 1313 // reassociation pass should give us this form. 1314 Value *OtherMul0, *OtherMul1; 1315 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1316 // Pattern: sqrt((x * y) * z) 1317 if (OtherMul0 == OtherMul1) { 1318 // Matched: sqrt((x * x) * z) 1319 RepeatOp = OtherMul0; 1320 OtherOp = Op1; 1321 } 1322 } 1323 } 1324 if (RepeatOp) { 1325 // Fast math flags for any created instructions should match the sqrt 1326 // and multiply. 1327 // FIXME: We're not checking the sqrt because it doesn't have 1328 // fast-math-flags (see earlier comment). 1329 IRBuilder<>::FastMathFlagGuard Guard(B); 1330 B.SetFastMathFlags(I->getFastMathFlags()); 1331 // If we found a repeated factor, hoist it out of the square root and 1332 // replace it with the fabs of that factor. 1333 Module *M = Callee->getParent(); 1334 Type *ArgType = Op->getType(); 1335 Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1336 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1337 if (OtherOp) { 1338 // If we found a non-repeated factor, we still need to get its square 1339 // root. We then multiply that by the value that was simplified out 1340 // of the square root calculation. 1341 Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1342 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1343 return B.CreateFMul(FabsCall, SqrtCall); 1344 } 1345 return FabsCall; 1346 } 1347 } 1348 } 1349 return Ret; 1350 } 1351 1352 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { 1353 Function *Callee = CI->getCalledFunction(); 1354 Value *Ret = nullptr; 1355 StringRef Name = Callee->getName(); 1356 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 1357 Ret = optimizeUnaryDoubleFP(CI, B, true); 1358 FunctionType *FT = Callee->getFunctionType(); 1359 1360 // Just make sure this has 1 argument of FP type, which matches the 1361 // result type. 1362 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1363 !FT->getParamType(0)->isFloatingPointTy()) 1364 return Ret; 1365 1366 if (!canUseUnsafeFPMath(CI->getParent()->getParent())) 1367 return Ret; 1368 Value *Op1 = CI->getArgOperand(0); 1369 auto *OpC = dyn_cast<CallInst>(Op1); 1370 if (!OpC) 1371 return Ret; 1372 1373 // tan(atan(x)) -> x 1374 // tanf(atanf(x)) -> x 1375 // tanl(atanl(x)) -> x 1376 LibFunc::Func Func; 1377 Function *F = OpC->getCalledFunction(); 1378 StringRef FuncName = F->getName(); 1379 if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func) && 1380 ((Func == LibFunc::atan && Callee->getName() == "tan") || 1381 (Func == LibFunc::atanf && Callee->getName() == "tanf") || 1382 (Func == LibFunc::atanl && Callee->getName() == "tanl"))) 1383 Ret = OpC->getArgOperand(0); 1384 return Ret; 1385 } 1386 1387 static bool isTrigLibCall(CallInst *CI); 1388 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1389 bool UseFloat, Value *&Sin, Value *&Cos, 1390 Value *&SinCos); 1391 1392 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1393 1394 // Make sure the prototype is as expected, otherwise the rest of the 1395 // function is probably invalid and likely to abort. 1396 if (!isTrigLibCall(CI)) 1397 return nullptr; 1398 1399 Value *Arg = CI->getArgOperand(0); 1400 SmallVector<CallInst *, 1> SinCalls; 1401 SmallVector<CallInst *, 1> CosCalls; 1402 SmallVector<CallInst *, 1> SinCosCalls; 1403 1404 bool IsFloat = Arg->getType()->isFloatTy(); 1405 1406 // Look for all compatible sinpi, cospi and sincospi calls with the same 1407 // argument. If there are enough (in some sense) we can make the 1408 // substitution. 1409 for (User *U : Arg->users()) 1410 classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls, 1411 SinCosCalls); 1412 1413 // It's only worthwhile if both sinpi and cospi are actually used. 1414 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1415 return nullptr; 1416 1417 Value *Sin, *Cos, *SinCos; 1418 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1419 1420 replaceTrigInsts(SinCalls, Sin); 1421 replaceTrigInsts(CosCalls, Cos); 1422 replaceTrigInsts(SinCosCalls, SinCos); 1423 1424 return nullptr; 1425 } 1426 1427 static bool isTrigLibCall(CallInst *CI) { 1428 Function *Callee = CI->getCalledFunction(); 1429 FunctionType *FT = Callee->getFunctionType(); 1430 1431 // We can only hope to do anything useful if we can ignore things like errno 1432 // and floating-point exceptions. 1433 bool AttributesSafe = 1434 CI->hasFnAttr(Attribute::NoUnwind) && CI->hasFnAttr(Attribute::ReadNone); 1435 1436 // Other than that we need float(float) or double(double) 1437 return AttributesSafe && FT->getNumParams() == 1 && 1438 FT->getReturnType() == FT->getParamType(0) && 1439 (FT->getParamType(0)->isFloatTy() || 1440 FT->getParamType(0)->isDoubleTy()); 1441 } 1442 1443 void 1444 LibCallSimplifier::classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat, 1445 SmallVectorImpl<CallInst *> &SinCalls, 1446 SmallVectorImpl<CallInst *> &CosCalls, 1447 SmallVectorImpl<CallInst *> &SinCosCalls) { 1448 CallInst *CI = dyn_cast<CallInst>(Val); 1449 1450 if (!CI) 1451 return; 1452 1453 Function *Callee = CI->getCalledFunction(); 1454 StringRef FuncName = Callee->getName(); 1455 LibFunc::Func Func; 1456 if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) || !isTrigLibCall(CI)) 1457 return; 1458 1459 if (IsFloat) { 1460 if (Func == LibFunc::sinpif) 1461 SinCalls.push_back(CI); 1462 else if (Func == LibFunc::cospif) 1463 CosCalls.push_back(CI); 1464 else if (Func == LibFunc::sincospif_stret) 1465 SinCosCalls.push_back(CI); 1466 } else { 1467 if (Func == LibFunc::sinpi) 1468 SinCalls.push_back(CI); 1469 else if (Func == LibFunc::cospi) 1470 CosCalls.push_back(CI); 1471 else if (Func == LibFunc::sincospi_stret) 1472 SinCosCalls.push_back(CI); 1473 } 1474 } 1475 1476 void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls, 1477 Value *Res) { 1478 for (CallInst *C : Calls) 1479 replaceAllUsesWith(C, Res); 1480 } 1481 1482 void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1483 bool UseFloat, Value *&Sin, Value *&Cos, Value *&SinCos) { 1484 Type *ArgTy = Arg->getType(); 1485 Type *ResTy; 1486 StringRef Name; 1487 1488 Triple T(OrigCallee->getParent()->getTargetTriple()); 1489 if (UseFloat) { 1490 Name = "__sincospif_stret"; 1491 1492 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1493 // x86_64 can't use {float, float} since that would be returned in both 1494 // xmm0 and xmm1, which isn't what a real struct would do. 1495 ResTy = T.getArch() == Triple::x86_64 1496 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1497 : static_cast<Type *>(StructType::get(ArgTy, ArgTy, nullptr)); 1498 } else { 1499 Name = "__sincospi_stret"; 1500 ResTy = StructType::get(ArgTy, ArgTy, nullptr); 1501 } 1502 1503 Module *M = OrigCallee->getParent(); 1504 Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), 1505 ResTy, ArgTy, nullptr); 1506 1507 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1508 // If the argument is an instruction, it must dominate all uses so put our 1509 // sincos call there. 1510 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1511 } else { 1512 // Otherwise (e.g. for a constant) the beginning of the function is as 1513 // good a place as any. 1514 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1515 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1516 } 1517 1518 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1519 1520 if (SinCos->getType()->isStructTy()) { 1521 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1522 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1523 } else { 1524 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1525 "sinpi"); 1526 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1527 "cospi"); 1528 } 1529 } 1530 1531 //===----------------------------------------------------------------------===// 1532 // Integer Library Call Optimizations 1533 //===----------------------------------------------------------------------===// 1534 1535 static bool checkIntUnaryReturnAndParam(Function *Callee) { 1536 FunctionType *FT = Callee->getFunctionType(); 1537 return FT->getNumParams() == 1 && FT->getReturnType()->isIntegerTy(32) && 1538 FT->getParamType(0)->isIntegerTy(); 1539 } 1540 1541 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1542 Function *Callee = CI->getCalledFunction(); 1543 if (!checkIntUnaryReturnAndParam(Callee)) 1544 return nullptr; 1545 Value *Op = CI->getArgOperand(0); 1546 1547 // Constant fold. 1548 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1549 if (CI->isZero()) // ffs(0) -> 0. 1550 return B.getInt32(0); 1551 // ffs(c) -> cttz(c)+1 1552 return B.getInt32(CI->getValue().countTrailingZeros() + 1); 1553 } 1554 1555 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1556 Type *ArgType = Op->getType(); 1557 Value *F = 1558 Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType); 1559 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 1560 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1561 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1562 1563 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1564 return B.CreateSelect(Cond, V, B.getInt32(0)); 1565 } 1566 1567 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1568 Function *Callee = CI->getCalledFunction(); 1569 FunctionType *FT = Callee->getFunctionType(); 1570 // We require integer(integer) where the types agree. 1571 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || 1572 FT->getParamType(0) != FT->getReturnType()) 1573 return nullptr; 1574 1575 // abs(x) -> x >s -1 ? x : -x 1576 Value *Op = CI->getArgOperand(0); 1577 Value *Pos = 1578 B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos"); 1579 Value *Neg = B.CreateNeg(Op, "neg"); 1580 return B.CreateSelect(Pos, Op, Neg); 1581 } 1582 1583 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 1584 if (!checkIntUnaryReturnAndParam(CI->getCalledFunction())) 1585 return nullptr; 1586 1587 // isdigit(c) -> (c-'0') <u 10 1588 Value *Op = CI->getArgOperand(0); 1589 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1590 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1591 return B.CreateZExt(Op, CI->getType()); 1592 } 1593 1594 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 1595 if (!checkIntUnaryReturnAndParam(CI->getCalledFunction())) 1596 return nullptr; 1597 1598 // isascii(c) -> c <u 128 1599 Value *Op = CI->getArgOperand(0); 1600 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1601 return B.CreateZExt(Op, CI->getType()); 1602 } 1603 1604 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 1605 if (!checkIntUnaryReturnAndParam(CI->getCalledFunction())) 1606 return nullptr; 1607 1608 // toascii(c) -> c & 0x7f 1609 return B.CreateAnd(CI->getArgOperand(0), 1610 ConstantInt::get(CI->getType(), 0x7F)); 1611 } 1612 1613 //===----------------------------------------------------------------------===// 1614 // Formatting and IO Library Call Optimizations 1615 //===----------------------------------------------------------------------===// 1616 1617 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 1618 1619 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 1620 int StreamArg) { 1621 // Error reporting calls should be cold, mark them as such. 1622 // This applies even to non-builtin calls: it is only a hint and applies to 1623 // functions that the frontend might not understand as builtins. 1624 1625 // This heuristic was suggested in: 1626 // Improving Static Branch Prediction in a Compiler 1627 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 1628 // Proceedings of PACT'98, Oct. 1998, IEEE 1629 Function *Callee = CI->getCalledFunction(); 1630 1631 if (!CI->hasFnAttr(Attribute::Cold) && 1632 isReportingError(Callee, CI, StreamArg)) { 1633 CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold); 1634 } 1635 1636 return nullptr; 1637 } 1638 1639 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 1640 if (!ColdErrorCalls || !Callee || !Callee->isDeclaration()) 1641 return false; 1642 1643 if (StreamArg < 0) 1644 return true; 1645 1646 // These functions might be considered cold, but only if their stream 1647 // argument is stderr. 1648 1649 if (StreamArg >= (int)CI->getNumArgOperands()) 1650 return false; 1651 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 1652 if (!LI) 1653 return false; 1654 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 1655 if (!GV || !GV->isDeclaration()) 1656 return false; 1657 return GV->getName() == "stderr"; 1658 } 1659 1660 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 1661 // Check for a fixed format string. 1662 StringRef FormatStr; 1663 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 1664 return nullptr; 1665 1666 // Empty format string -> noop. 1667 if (FormatStr.empty()) // Tolerate printf's declared void. 1668 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 1669 1670 // Do not do any of the following transformations if the printf return value 1671 // is used, in general the printf return value is not compatible with either 1672 // putchar() or puts(). 1673 if (!CI->use_empty()) 1674 return nullptr; 1675 1676 // printf("x") -> putchar('x'), even for '%'. 1677 if (FormatStr.size() == 1) { 1678 Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, TLI); 1679 if (CI->use_empty() || !Res) 1680 return Res; 1681 return B.CreateIntCast(Res, CI->getType(), true); 1682 } 1683 1684 // printf("foo\n") --> puts("foo") 1685 if (FormatStr[FormatStr.size() - 1] == '\n' && 1686 FormatStr.find('%') == StringRef::npos) { // No format characters. 1687 // Create a string literal with no \n on it. We expect the constant merge 1688 // pass to be run after this pass, to merge duplicate strings. 1689 FormatStr = FormatStr.drop_back(); 1690 Value *GV = B.CreateGlobalString(FormatStr, "str"); 1691 Value *NewCI = EmitPutS(GV, B, TLI); 1692 return (CI->use_empty() || !NewCI) 1693 ? NewCI 1694 : ConstantInt::get(CI->getType(), FormatStr.size() + 1); 1695 } 1696 1697 // Optimize specific format strings. 1698 // printf("%c", chr) --> putchar(chr) 1699 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 1700 CI->getArgOperand(1)->getType()->isIntegerTy()) { 1701 Value *Res = EmitPutChar(CI->getArgOperand(1), B, TLI); 1702 1703 if (CI->use_empty() || !Res) 1704 return Res; 1705 return B.CreateIntCast(Res, CI->getType(), true); 1706 } 1707 1708 // printf("%s\n", str) --> puts(str) 1709 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 1710 CI->getArgOperand(1)->getType()->isPointerTy()) { 1711 return EmitPutS(CI->getArgOperand(1), B, TLI); 1712 } 1713 return nullptr; 1714 } 1715 1716 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 1717 1718 Function *Callee = CI->getCalledFunction(); 1719 // Require one fixed pointer argument and an integer/void result. 1720 FunctionType *FT = Callee->getFunctionType(); 1721 if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || 1722 !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy())) 1723 return nullptr; 1724 1725 if (Value *V = optimizePrintFString(CI, B)) { 1726 return V; 1727 } 1728 1729 // printf(format, ...) -> iprintf(format, ...) if no floating point 1730 // arguments. 1731 if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) { 1732 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1733 Constant *IPrintFFn = 1734 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 1735 CallInst *New = cast<CallInst>(CI->clone()); 1736 New->setCalledFunction(IPrintFFn); 1737 B.Insert(New); 1738 return New; 1739 } 1740 return nullptr; 1741 } 1742 1743 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 1744 // Check for a fixed format string. 1745 StringRef FormatStr; 1746 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1747 return nullptr; 1748 1749 // If we just have a format string (nothing else crazy) transform it. 1750 if (CI->getNumArgOperands() == 2) { 1751 // Make sure there's no % in the constant array. We could try to handle 1752 // %% -> % in the future if we cared. 1753 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1754 if (FormatStr[i] == '%') 1755 return nullptr; // we found a format specifier, bail out. 1756 1757 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) 1758 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 1759 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 1760 FormatStr.size() + 1), 1761 1); // Copy the null byte. 1762 return ConstantInt::get(CI->getType(), FormatStr.size()); 1763 } 1764 1765 // The remaining optimizations require the format string to be "%s" or "%c" 1766 // and have an extra operand. 1767 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1768 CI->getNumArgOperands() < 3) 1769 return nullptr; 1770 1771 // Decode the second character of the format string. 1772 if (FormatStr[1] == 'c') { 1773 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 1774 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1775 return nullptr; 1776 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 1777 Value *Ptr = CastToCStr(CI->getArgOperand(0), B); 1778 B.CreateStore(V, Ptr); 1779 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 1780 B.CreateStore(B.getInt8(0), Ptr); 1781 1782 return ConstantInt::get(CI->getType(), 1); 1783 } 1784 1785 if (FormatStr[1] == 's') { 1786 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) 1787 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1788 return nullptr; 1789 1790 Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI); 1791 if (!Len) 1792 return nullptr; 1793 Value *IncLen = 1794 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 1795 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1); 1796 1797 // The sprintf result is the unincremented number of bytes in the string. 1798 return B.CreateIntCast(Len, CI->getType(), false); 1799 } 1800 return nullptr; 1801 } 1802 1803 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 1804 Function *Callee = CI->getCalledFunction(); 1805 // Require two fixed pointer arguments and an integer result. 1806 FunctionType *FT = Callee->getFunctionType(); 1807 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 1808 !FT->getParamType(1)->isPointerTy() || 1809 !FT->getReturnType()->isIntegerTy()) 1810 return nullptr; 1811 1812 if (Value *V = optimizeSPrintFString(CI, B)) { 1813 return V; 1814 } 1815 1816 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 1817 // point arguments. 1818 if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) { 1819 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1820 Constant *SIPrintFFn = 1821 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 1822 CallInst *New = cast<CallInst>(CI->clone()); 1823 New->setCalledFunction(SIPrintFFn); 1824 B.Insert(New); 1825 return New; 1826 } 1827 return nullptr; 1828 } 1829 1830 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 1831 optimizeErrorReporting(CI, B, 0); 1832 1833 // All the optimizations depend on the format string. 1834 StringRef FormatStr; 1835 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1836 return nullptr; 1837 1838 // Do not do any of the following transformations if the fprintf return 1839 // value is used, in general the fprintf return value is not compatible 1840 // with fwrite(), fputc() or fputs(). 1841 if (!CI->use_empty()) 1842 return nullptr; 1843 1844 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 1845 if (CI->getNumArgOperands() == 2) { 1846 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1847 if (FormatStr[i] == '%') // Could handle %% -> % if we cared. 1848 return nullptr; // We found a format specifier. 1849 1850 return EmitFWrite( 1851 CI->getArgOperand(1), 1852 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 1853 CI->getArgOperand(0), B, DL, TLI); 1854 } 1855 1856 // The remaining optimizations require the format string to be "%s" or "%c" 1857 // and have an extra operand. 1858 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1859 CI->getNumArgOperands() < 3) 1860 return nullptr; 1861 1862 // Decode the second character of the format string. 1863 if (FormatStr[1] == 'c') { 1864 // fprintf(F, "%c", chr) --> fputc(chr, F) 1865 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1866 return nullptr; 1867 return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 1868 } 1869 1870 if (FormatStr[1] == 's') { 1871 // fprintf(F, "%s", str) --> fputs(str, F) 1872 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1873 return nullptr; 1874 return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 1875 } 1876 return nullptr; 1877 } 1878 1879 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 1880 Function *Callee = CI->getCalledFunction(); 1881 // Require two fixed paramters as pointers and integer result. 1882 FunctionType *FT = Callee->getFunctionType(); 1883 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 1884 !FT->getParamType(1)->isPointerTy() || 1885 !FT->getReturnType()->isIntegerTy()) 1886 return nullptr; 1887 1888 if (Value *V = optimizeFPrintFString(CI, B)) { 1889 return V; 1890 } 1891 1892 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 1893 // floating point arguments. 1894 if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) { 1895 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1896 Constant *FIPrintFFn = 1897 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 1898 CallInst *New = cast<CallInst>(CI->clone()); 1899 New->setCalledFunction(FIPrintFFn); 1900 B.Insert(New); 1901 return New; 1902 } 1903 return nullptr; 1904 } 1905 1906 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 1907 optimizeErrorReporting(CI, B, 3); 1908 1909 Function *Callee = CI->getCalledFunction(); 1910 // Require a pointer, an integer, an integer, a pointer, returning integer. 1911 FunctionType *FT = Callee->getFunctionType(); 1912 if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() || 1913 !FT->getParamType(1)->isIntegerTy() || 1914 !FT->getParamType(2)->isIntegerTy() || 1915 !FT->getParamType(3)->isPointerTy() || 1916 !FT->getReturnType()->isIntegerTy()) 1917 return nullptr; 1918 1919 // Get the element size and count. 1920 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 1921 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1922 if (!SizeC || !CountC) 1923 return nullptr; 1924 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 1925 1926 // If this is writing zero records, remove the call (it's a noop). 1927 if (Bytes == 0) 1928 return ConstantInt::get(CI->getType(), 0); 1929 1930 // If this is writing one byte, turn it into fputc. 1931 // This optimisation is only valid, if the return value is unused. 1932 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 1933 Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char"); 1934 Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, TLI); 1935 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 1936 } 1937 1938 return nullptr; 1939 } 1940 1941 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 1942 optimizeErrorReporting(CI, B, 1); 1943 1944 Function *Callee = CI->getCalledFunction(); 1945 1946 // Require two pointers. Also, we can't optimize if return value is used. 1947 FunctionType *FT = Callee->getFunctionType(); 1948 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 1949 !FT->getParamType(1)->isPointerTy() || !CI->use_empty()) 1950 return nullptr; 1951 1952 // fputs(s,F) --> fwrite(s,1,strlen(s),F) 1953 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 1954 if (!Len) 1955 return nullptr; 1956 1957 // Known to have no uses (see above). 1958 return EmitFWrite( 1959 CI->getArgOperand(0), 1960 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 1961 CI->getArgOperand(1), B, DL, TLI); 1962 } 1963 1964 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 1965 Function *Callee = CI->getCalledFunction(); 1966 // Require one fixed pointer argument and an integer/void result. 1967 FunctionType *FT = Callee->getFunctionType(); 1968 if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || 1969 !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy())) 1970 return nullptr; 1971 1972 // Check for a constant string. 1973 StringRef Str; 1974 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1975 return nullptr; 1976 1977 if (Str.empty() && CI->use_empty()) { 1978 // puts("") -> putchar('\n') 1979 Value *Res = EmitPutChar(B.getInt32('\n'), B, TLI); 1980 if (CI->use_empty() || !Res) 1981 return Res; 1982 return B.CreateIntCast(Res, CI->getType(), true); 1983 } 1984 1985 return nullptr; 1986 } 1987 1988 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 1989 LibFunc::Func Func; 1990 SmallString<20> FloatFuncName = FuncName; 1991 FloatFuncName += 'f'; 1992 if (TLI->getLibFunc(FloatFuncName, Func)) 1993 return TLI->has(Func); 1994 return false; 1995 } 1996 1997 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 1998 IRBuilder<> &Builder) { 1999 LibFunc::Func Func; 2000 Function *Callee = CI->getCalledFunction(); 2001 StringRef FuncName = Callee->getName(); 2002 2003 // Check for string/memory library functions. 2004 if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) { 2005 // Make sure we never change the calling convention. 2006 assert((ignoreCallingConv(Func) || 2007 CI->getCallingConv() == llvm::CallingConv::C) && 2008 "Optimizing string/memory libcall would change the calling convention"); 2009 switch (Func) { 2010 case LibFunc::strcat: 2011 return optimizeStrCat(CI, Builder); 2012 case LibFunc::strncat: 2013 return optimizeStrNCat(CI, Builder); 2014 case LibFunc::strchr: 2015 return optimizeStrChr(CI, Builder); 2016 case LibFunc::strrchr: 2017 return optimizeStrRChr(CI, Builder); 2018 case LibFunc::strcmp: 2019 return optimizeStrCmp(CI, Builder); 2020 case LibFunc::strncmp: 2021 return optimizeStrNCmp(CI, Builder); 2022 case LibFunc::strcpy: 2023 return optimizeStrCpy(CI, Builder); 2024 case LibFunc::stpcpy: 2025 return optimizeStpCpy(CI, Builder); 2026 case LibFunc::strncpy: 2027 return optimizeStrNCpy(CI, Builder); 2028 case LibFunc::strlen: 2029 return optimizeStrLen(CI, Builder); 2030 case LibFunc::strpbrk: 2031 return optimizeStrPBrk(CI, Builder); 2032 case LibFunc::strtol: 2033 case LibFunc::strtod: 2034 case LibFunc::strtof: 2035 case LibFunc::strtoul: 2036 case LibFunc::strtoll: 2037 case LibFunc::strtold: 2038 case LibFunc::strtoull: 2039 return optimizeStrTo(CI, Builder); 2040 case LibFunc::strspn: 2041 return optimizeStrSpn(CI, Builder); 2042 case LibFunc::strcspn: 2043 return optimizeStrCSpn(CI, Builder); 2044 case LibFunc::strstr: 2045 return optimizeStrStr(CI, Builder); 2046 case LibFunc::memchr: 2047 return optimizeMemChr(CI, Builder); 2048 case LibFunc::memcmp: 2049 return optimizeMemCmp(CI, Builder); 2050 case LibFunc::memcpy: 2051 return optimizeMemCpy(CI, Builder); 2052 case LibFunc::memmove: 2053 return optimizeMemMove(CI, Builder); 2054 case LibFunc::memset: 2055 return optimizeMemSet(CI, Builder); 2056 default: 2057 break; 2058 } 2059 } 2060 return nullptr; 2061 } 2062 2063 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 2064 if (CI->isNoBuiltin()) 2065 return nullptr; 2066 2067 LibFunc::Func Func; 2068 Function *Callee = CI->getCalledFunction(); 2069 StringRef FuncName = Callee->getName(); 2070 IRBuilder<> Builder(CI); 2071 bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C; 2072 2073 // Command-line parameter overrides function attribute. 2074 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2075 UnsafeFPShrink = EnableUnsafeFPShrink; 2076 else if (canUseUnsafeFPMath(Callee)) 2077 UnsafeFPShrink = true; 2078 2079 // First, check for intrinsics. 2080 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2081 if (!isCallingConvC) 2082 return nullptr; 2083 switch (II->getIntrinsicID()) { 2084 case Intrinsic::pow: 2085 return optimizePow(CI, Builder); 2086 case Intrinsic::exp2: 2087 return optimizeExp2(CI, Builder); 2088 case Intrinsic::fabs: 2089 return optimizeFabs(CI, Builder); 2090 case Intrinsic::sqrt: 2091 return optimizeSqrt(CI, Builder); 2092 default: 2093 return nullptr; 2094 } 2095 } 2096 2097 // Also try to simplify calls to fortified library functions. 2098 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 2099 // Try to further simplify the result. 2100 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 2101 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 2102 // Use an IR Builder from SimplifiedCI if available instead of CI 2103 // to guarantee we reach all uses we might replace later on. 2104 IRBuilder<> TmpBuilder(SimplifiedCI); 2105 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { 2106 // If we were able to further simplify, remove the now redundant call. 2107 SimplifiedCI->replaceAllUsesWith(V); 2108 SimplifiedCI->eraseFromParent(); 2109 return V; 2110 } 2111 } 2112 return SimplifiedFortifiedCI; 2113 } 2114 2115 // Then check for known library functions. 2116 if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) { 2117 // We never change the calling convention. 2118 if (!ignoreCallingConv(Func) && !isCallingConvC) 2119 return nullptr; 2120 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 2121 return V; 2122 switch (Func) { 2123 case LibFunc::cosf: 2124 case LibFunc::cos: 2125 case LibFunc::cosl: 2126 return optimizeCos(CI, Builder); 2127 case LibFunc::sinpif: 2128 case LibFunc::sinpi: 2129 case LibFunc::cospif: 2130 case LibFunc::cospi: 2131 return optimizeSinCosPi(CI, Builder); 2132 case LibFunc::powf: 2133 case LibFunc::pow: 2134 case LibFunc::powl: 2135 return optimizePow(CI, Builder); 2136 case LibFunc::exp2l: 2137 case LibFunc::exp2: 2138 case LibFunc::exp2f: 2139 return optimizeExp2(CI, Builder); 2140 case LibFunc::fabsf: 2141 case LibFunc::fabs: 2142 case LibFunc::fabsl: 2143 return optimizeFabs(CI, Builder); 2144 case LibFunc::sqrtf: 2145 case LibFunc::sqrt: 2146 case LibFunc::sqrtl: 2147 return optimizeSqrt(CI, Builder); 2148 case LibFunc::ffs: 2149 case LibFunc::ffsl: 2150 case LibFunc::ffsll: 2151 return optimizeFFS(CI, Builder); 2152 case LibFunc::abs: 2153 case LibFunc::labs: 2154 case LibFunc::llabs: 2155 return optimizeAbs(CI, Builder); 2156 case LibFunc::isdigit: 2157 return optimizeIsDigit(CI, Builder); 2158 case LibFunc::isascii: 2159 return optimizeIsAscii(CI, Builder); 2160 case LibFunc::toascii: 2161 return optimizeToAscii(CI, Builder); 2162 case LibFunc::printf: 2163 return optimizePrintF(CI, Builder); 2164 case LibFunc::sprintf: 2165 return optimizeSPrintF(CI, Builder); 2166 case LibFunc::fprintf: 2167 return optimizeFPrintF(CI, Builder); 2168 case LibFunc::fwrite: 2169 return optimizeFWrite(CI, Builder); 2170 case LibFunc::fputs: 2171 return optimizeFPuts(CI, Builder); 2172 case LibFunc::puts: 2173 return optimizePuts(CI, Builder); 2174 case LibFunc::tan: 2175 case LibFunc::tanf: 2176 case LibFunc::tanl: 2177 return optimizeTan(CI, Builder); 2178 case LibFunc::perror: 2179 return optimizeErrorReporting(CI, Builder); 2180 case LibFunc::vfprintf: 2181 case LibFunc::fiprintf: 2182 return optimizeErrorReporting(CI, Builder, 0); 2183 case LibFunc::fputc: 2184 return optimizeErrorReporting(CI, Builder, 1); 2185 case LibFunc::ceil: 2186 case LibFunc::floor: 2187 case LibFunc::rint: 2188 case LibFunc::round: 2189 case LibFunc::nearbyint: 2190 case LibFunc::trunc: 2191 if (hasFloatVersion(FuncName)) 2192 return optimizeUnaryDoubleFP(CI, Builder, false); 2193 return nullptr; 2194 case LibFunc::acos: 2195 case LibFunc::acosh: 2196 case LibFunc::asin: 2197 case LibFunc::asinh: 2198 case LibFunc::atan: 2199 case LibFunc::atanh: 2200 case LibFunc::cbrt: 2201 case LibFunc::cosh: 2202 case LibFunc::exp: 2203 case LibFunc::exp10: 2204 case LibFunc::expm1: 2205 case LibFunc::log: 2206 case LibFunc::log10: 2207 case LibFunc::log1p: 2208 case LibFunc::log2: 2209 case LibFunc::logb: 2210 case LibFunc::sin: 2211 case LibFunc::sinh: 2212 case LibFunc::tanh: 2213 if (UnsafeFPShrink && hasFloatVersion(FuncName)) 2214 return optimizeUnaryDoubleFP(CI, Builder, true); 2215 return nullptr; 2216 case LibFunc::copysign: 2217 if (hasFloatVersion(FuncName)) 2218 return optimizeBinaryDoubleFP(CI, Builder); 2219 return nullptr; 2220 case LibFunc::fminf: 2221 case LibFunc::fmin: 2222 case LibFunc::fminl: 2223 case LibFunc::fmaxf: 2224 case LibFunc::fmax: 2225 case LibFunc::fmaxl: 2226 return optimizeFMinFMax(CI, Builder); 2227 default: 2228 return nullptr; 2229 } 2230 } 2231 return nullptr; 2232 } 2233 2234 LibCallSimplifier::LibCallSimplifier( 2235 const DataLayout &DL, const TargetLibraryInfo *TLI, 2236 function_ref<void(Instruction *, Value *)> Replacer) 2237 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), UnsafeFPShrink(false), 2238 Replacer(Replacer) {} 2239 2240 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 2241 // Indirect through the replacer used in this instance. 2242 Replacer(I, With); 2243 } 2244 2245 // TODO: 2246 // Additional cases that we need to add to this file: 2247 // 2248 // cbrt: 2249 // * cbrt(expN(X)) -> expN(x/3) 2250 // * cbrt(sqrt(x)) -> pow(x,1/6) 2251 // * cbrt(cbrt(x)) -> pow(x,1/9) 2252 // 2253 // exp, expf, expl: 2254 // * exp(log(x)) -> x 2255 // 2256 // log, logf, logl: 2257 // * log(exp(x)) -> x 2258 // * log(x**y) -> y*log(x) 2259 // * log(exp(y)) -> y*log(e) 2260 // * log(exp2(y)) -> y*log(2) 2261 // * log(exp10(y)) -> y*log(10) 2262 // * log(sqrt(x)) -> 0.5*log(x) 2263 // * log(pow(x,y)) -> y*log(x) 2264 // 2265 // lround, lroundf, lroundl: 2266 // * lround(cnst) -> cnst' 2267 // 2268 // pow, powf, powl: 2269 // * pow(exp(x),y) -> exp(x*y) 2270 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2271 // * pow(pow(x,y),z)-> pow(x,y*z) 2272 // 2273 // round, roundf, roundl: 2274 // * round(cnst) -> cnst' 2275 // 2276 // signbit: 2277 // * signbit(cnst) -> cnst' 2278 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2279 // 2280 // sqrt, sqrtf, sqrtl: 2281 // * sqrt(expN(x)) -> expN(x*0.5) 2282 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2283 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2284 // 2285 // tan, tanf, tanl: 2286 // * tan(atan(x)) -> x 2287 // 2288 // trunc, truncf, truncl: 2289 // * trunc(cnst) -> cnst' 2290 // 2291 // 2292 2293 //===----------------------------------------------------------------------===// 2294 // Fortified Library Call Optimizations 2295 //===----------------------------------------------------------------------===// 2296 2297 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2298 unsigned ObjSizeOp, 2299 unsigned SizeOp, 2300 bool isString) { 2301 if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp)) 2302 return true; 2303 if (ConstantInt *ObjSizeCI = 2304 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2305 if (ObjSizeCI->isAllOnesValue()) 2306 return true; 2307 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2308 if (OnlyLowerUnknownSize) 2309 return false; 2310 if (isString) { 2311 uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp)); 2312 // If the length is 0 we don't know how long it is and so we can't 2313 // remove the check. 2314 if (Len == 0) 2315 return false; 2316 return ObjSizeCI->getZExtValue() >= Len; 2317 } 2318 if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp))) 2319 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2320 } 2321 return false; 2322 } 2323 2324 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, IRBuilder<> &B) { 2325 Function *Callee = CI->getCalledFunction(); 2326 2327 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy_chk)) 2328 return nullptr; 2329 2330 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2331 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2332 CI->getArgOperand(2), 1); 2333 return CI->getArgOperand(0); 2334 } 2335 return nullptr; 2336 } 2337 2338 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, IRBuilder<> &B) { 2339 Function *Callee = CI->getCalledFunction(); 2340 2341 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove_chk)) 2342 return nullptr; 2343 2344 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2345 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 2346 CI->getArgOperand(2), 1); 2347 return CI->getArgOperand(0); 2348 } 2349 return nullptr; 2350 } 2351 2352 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, IRBuilder<> &B) { 2353 Function *Callee = CI->getCalledFunction(); 2354 2355 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset_chk)) 2356 return nullptr; 2357 2358 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2359 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2360 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2361 return CI->getArgOperand(0); 2362 } 2363 return nullptr; 2364 } 2365 2366 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 2367 IRBuilder<> &B, 2368 LibFunc::Func Func) { 2369 Function *Callee = CI->getCalledFunction(); 2370 StringRef Name = Callee->getName(); 2371 const DataLayout &DL = CI->getModule()->getDataLayout(); 2372 2373 if (!checkStringCopyLibFuncSignature(Callee, Func)) 2374 return nullptr; 2375 2376 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 2377 *ObjSize = CI->getArgOperand(2); 2378 2379 // __stpcpy_chk(x,x,...) -> x+strlen(x) 2380 if (Func == LibFunc::stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 2381 Value *StrLen = EmitStrLen(Src, B, DL, TLI); 2382 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 2383 } 2384 2385 // If a) we don't have any length information, or b) we know this will 2386 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 2387 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 2388 // TODO: It might be nice to get a maximum length out of the possible 2389 // string lengths for varying. 2390 if (isFortifiedCallFoldable(CI, 2, 1, true)) 2391 return EmitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6)); 2392 2393 if (OnlyLowerUnknownSize) 2394 return nullptr; 2395 2396 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 2397 uint64_t Len = GetStringLength(Src); 2398 if (Len == 0) 2399 return nullptr; 2400 2401 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 2402 Value *LenV = ConstantInt::get(SizeTTy, Len); 2403 Value *Ret = EmitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 2404 // If the function was an __stpcpy_chk, and we were able to fold it into 2405 // a __memcpy_chk, we still need to return the correct end pointer. 2406 if (Ret && Func == LibFunc::stpcpy_chk) 2407 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 2408 return Ret; 2409 } 2410 2411 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 2412 IRBuilder<> &B, 2413 LibFunc::Func Func) { 2414 Function *Callee = CI->getCalledFunction(); 2415 StringRef Name = Callee->getName(); 2416 2417 if (!checkStringCopyLibFuncSignature(Callee, Func)) 2418 return nullptr; 2419 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2420 Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2421 CI->getArgOperand(2), B, TLI, Name.substr(2, 7)); 2422 return Ret; 2423 } 2424 return nullptr; 2425 } 2426 2427 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 2428 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 2429 // Some clang users checked for _chk libcall availability using: 2430 // __has_builtin(__builtin___memcpy_chk) 2431 // When compiling with -fno-builtin, this is always true. 2432 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 2433 // end up with fortified libcalls, which isn't acceptable in a freestanding 2434 // environment which only provides their non-fortified counterparts. 2435 // 2436 // Until we change clang and/or teach external users to check for availability 2437 // differently, disregard the "nobuiltin" attribute and TLI::has. 2438 // 2439 // PR23093. 2440 2441 LibFunc::Func Func; 2442 Function *Callee = CI->getCalledFunction(); 2443 StringRef FuncName = Callee->getName(); 2444 IRBuilder<> Builder(CI); 2445 bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C; 2446 2447 // First, check that this is a known library functions. 2448 if (!TLI->getLibFunc(FuncName, Func)) 2449 return nullptr; 2450 2451 // We never change the calling convention. 2452 if (!ignoreCallingConv(Func) && !isCallingConvC) 2453 return nullptr; 2454 2455 switch (Func) { 2456 case LibFunc::memcpy_chk: 2457 return optimizeMemCpyChk(CI, Builder); 2458 case LibFunc::memmove_chk: 2459 return optimizeMemMoveChk(CI, Builder); 2460 case LibFunc::memset_chk: 2461 return optimizeMemSetChk(CI, Builder); 2462 case LibFunc::stpcpy_chk: 2463 case LibFunc::strcpy_chk: 2464 return optimizeStrpCpyChk(CI, Builder, Func); 2465 case LibFunc::stpncpy_chk: 2466 case LibFunc::strncpy_chk: 2467 return optimizeStrpNCpyChk(CI, Builder, Func); 2468 default: 2469 break; 2470 } 2471 return nullptr; 2472 } 2473 2474 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 2475 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 2476 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 2477