1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the library calls simplifier. It does not implement
11 // any pass, but can't be used by other passes to do simplifications.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Transforms/Utils/Local.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/Loads.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Transforms/Utils/BuildLibCalls.h"
37 
38 using namespace llvm;
39 using namespace PatternMatch;
40 
41 static cl::opt<bool>
42     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
43                          cl::init(false),
44                          cl::desc("Enable unsafe double to float "
45                                   "shrinking for math lib calls"));
46 
47 
48 //===----------------------------------------------------------------------===//
49 // Helper Functions
50 //===----------------------------------------------------------------------===//
51 
52 static bool ignoreCallingConv(LibFunc Func) {
53   return Func == LibFunc_abs || Func == LibFunc_labs ||
54          Func == LibFunc_llabs || Func == LibFunc_strlen;
55 }
56 
57 static bool isCallingConvCCompatible(CallInst *CI) {
58   switch(CI->getCallingConv()) {
59   default:
60     return false;
61   case llvm::CallingConv::C:
62     return true;
63   case llvm::CallingConv::ARM_APCS:
64   case llvm::CallingConv::ARM_AAPCS:
65   case llvm::CallingConv::ARM_AAPCS_VFP: {
66 
67     // The iOS ABI diverges from the standard in some cases, so for now don't
68     // try to simplify those calls.
69     if (Triple(CI->getModule()->getTargetTriple()).isiOS())
70       return false;
71 
72     auto *FuncTy = CI->getFunctionType();
73 
74     if (!FuncTy->getReturnType()->isPointerTy() &&
75         !FuncTy->getReturnType()->isIntegerTy() &&
76         !FuncTy->getReturnType()->isVoidTy())
77       return false;
78 
79     for (auto Param : FuncTy->params()) {
80       if (!Param->isPointerTy() && !Param->isIntegerTy())
81         return false;
82     }
83     return true;
84   }
85   }
86   return false;
87 }
88 
89 /// Return true if it is only used in equality comparisons with With.
90 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
91   for (User *U : V->users()) {
92     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
93       if (IC->isEquality() && IC->getOperand(1) == With)
94         continue;
95     // Unknown instruction.
96     return false;
97   }
98   return true;
99 }
100 
101 static bool callHasFloatingPointArgument(const CallInst *CI) {
102   return any_of(CI->operands(), [](const Use &OI) {
103     return OI->getType()->isFloatingPointTy();
104   });
105 }
106 
107 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
108   if (Base < 2 || Base > 36)
109     // handle special zero base
110     if (Base != 0)
111       return nullptr;
112 
113   char *End;
114   std::string nptr = Str.str();
115   errno = 0;
116   long long int Result = strtoll(nptr.c_str(), &End, Base);
117   if (errno)
118     return nullptr;
119 
120   // if we assume all possible target locales are ASCII supersets,
121   // then if strtoll successfully parses a number on the host,
122   // it will also successfully parse the same way on the target
123   if (*End != '\0')
124     return nullptr;
125 
126   if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
127     return nullptr;
128 
129   return ConstantInt::get(CI->getType(), Result);
130 }
131 
132 static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B,
133                                 const TargetLibraryInfo *TLI) {
134   CallInst *FOpen = dyn_cast<CallInst>(File);
135   if (!FOpen)
136     return false;
137 
138   Function *InnerCallee = FOpen->getCalledFunction();
139   if (!InnerCallee)
140     return false;
141 
142   LibFunc Func;
143   if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
144       Func != LibFunc_fopen)
145     return false;
146 
147   inferLibFuncAttributes(*CI->getCalledFunction(), *TLI);
148   if (PointerMayBeCaptured(File, true, true))
149     return false;
150 
151   return true;
152 }
153 
154 static bool isOnlyUsedInComparisonWithZero(Value *V) {
155   for (User *U : V->users()) {
156     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
157       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
158         if (C->isNullValue())
159           continue;
160     // Unknown instruction.
161     return false;
162   }
163   return true;
164 }
165 
166 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
167                                  const DataLayout &DL) {
168   if (!isOnlyUsedInComparisonWithZero(CI))
169     return false;
170 
171   if (!isDereferenceableAndAlignedPointer(Str, 1, APInt(64, Len), DL))
172     return false;
173 
174   return true;
175 }
176 
177 //===----------------------------------------------------------------------===//
178 // String and Memory Library Call Optimizations
179 //===----------------------------------------------------------------------===//
180 
181 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
182   // Extract some information from the instruction
183   Value *Dst = CI->getArgOperand(0);
184   Value *Src = CI->getArgOperand(1);
185 
186   // See if we can get the length of the input string.
187   uint64_t Len = GetStringLength(Src);
188   if (Len == 0)
189     return nullptr;
190   --Len; // Unbias length.
191 
192   // Handle the simple, do-nothing case: strcat(x, "") -> x
193   if (Len == 0)
194     return Dst;
195 
196   return emitStrLenMemCpy(Src, Dst, Len, B);
197 }
198 
199 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
200                                            IRBuilder<> &B) {
201   // We need to find the end of the destination string.  That's where the
202   // memory is to be moved to. We just generate a call to strlen.
203   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
204   if (!DstLen)
205     return nullptr;
206 
207   // Now that we have the destination's length, we must index into the
208   // destination's pointer to get the actual memcpy destination (end of
209   // the string .. we're concatenating).
210   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
211 
212   // We have enough information to now generate the memcpy call to do the
213   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
214   B.CreateMemCpy(CpyDst, 1, Src, 1,
215                  ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
216   return Dst;
217 }
218 
219 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
220   // Extract some information from the instruction.
221   Value *Dst = CI->getArgOperand(0);
222   Value *Src = CI->getArgOperand(1);
223   uint64_t Len;
224 
225   // We don't do anything if length is not constant.
226   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
227     Len = LengthArg->getZExtValue();
228   else
229     return nullptr;
230 
231   // See if we can get the length of the input string.
232   uint64_t SrcLen = GetStringLength(Src);
233   if (SrcLen == 0)
234     return nullptr;
235   --SrcLen; // Unbias length.
236 
237   // Handle the simple, do-nothing cases:
238   // strncat(x, "", c) -> x
239   // strncat(x,  c, 0) -> x
240   if (SrcLen == 0 || Len == 0)
241     return Dst;
242 
243   // We don't optimize this case.
244   if (Len < SrcLen)
245     return nullptr;
246 
247   // strncat(x, s, c) -> strcat(x, s)
248   // s is constant so the strcat can be optimized further.
249   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
250 }
251 
252 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
253   Function *Callee = CI->getCalledFunction();
254   FunctionType *FT = Callee->getFunctionType();
255   Value *SrcStr = CI->getArgOperand(0);
256 
257   // If the second operand is non-constant, see if we can compute the length
258   // of the input string and turn this into memchr.
259   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
260   if (!CharC) {
261     uint64_t Len = GetStringLength(SrcStr);
262     if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
263       return nullptr;
264 
265     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
266                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
267                       B, DL, TLI);
268   }
269 
270   // Otherwise, the character is a constant, see if the first argument is
271   // a string literal.  If so, we can constant fold.
272   StringRef Str;
273   if (!getConstantStringInfo(SrcStr, Str)) {
274     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
275       return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI),
276                          "strchr");
277     return nullptr;
278   }
279 
280   // Compute the offset, make sure to handle the case when we're searching for
281   // zero (a weird way to spell strlen).
282   size_t I = (0xFF & CharC->getSExtValue()) == 0
283                  ? Str.size()
284                  : Str.find(CharC->getSExtValue());
285   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
286     return Constant::getNullValue(CI->getType());
287 
288   // strchr(s+n,c)  -> gep(s+n+i,c)
289   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
290 }
291 
292 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
293   Value *SrcStr = CI->getArgOperand(0);
294   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
295 
296   // Cannot fold anything if we're not looking for a constant.
297   if (!CharC)
298     return nullptr;
299 
300   StringRef Str;
301   if (!getConstantStringInfo(SrcStr, Str)) {
302     // strrchr(s, 0) -> strchr(s, 0)
303     if (CharC->isZero())
304       return emitStrChr(SrcStr, '\0', B, TLI);
305     return nullptr;
306   }
307 
308   // Compute the offset.
309   size_t I = (0xFF & CharC->getSExtValue()) == 0
310                  ? Str.size()
311                  : Str.rfind(CharC->getSExtValue());
312   if (I == StringRef::npos) // Didn't find the char. Return null.
313     return Constant::getNullValue(CI->getType());
314 
315   // strrchr(s+n,c) -> gep(s+n+i,c)
316   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
317 }
318 
319 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
320   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
321   if (Str1P == Str2P) // strcmp(x,x)  -> 0
322     return ConstantInt::get(CI->getType(), 0);
323 
324   StringRef Str1, Str2;
325   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
326   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
327 
328   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
329   if (HasStr1 && HasStr2)
330     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
331 
332   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
333     return B.CreateNeg(
334         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
335 
336   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
337     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
338 
339   // strcmp(P, "x") -> memcmp(P, "x", 2)
340   uint64_t Len1 = GetStringLength(Str1P);
341   uint64_t Len2 = GetStringLength(Str2P);
342   if (Len1 && Len2) {
343     return emitMemCmp(Str1P, Str2P,
344                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
345                                        std::min(Len1, Len2)),
346                       B, DL, TLI);
347   }
348 
349   // strcmp to memcmp
350   if (!HasStr1 && HasStr2) {
351     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
352       return emitMemCmp(
353           Str1P, Str2P,
354           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
355           TLI);
356   } else if (HasStr1 && !HasStr2) {
357     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
358       return emitMemCmp(
359           Str1P, Str2P,
360           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
361           TLI);
362   }
363 
364   return nullptr;
365 }
366 
367 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
368   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
369   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
370     return ConstantInt::get(CI->getType(), 0);
371 
372   // Get the length argument if it is constant.
373   uint64_t Length;
374   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
375     Length = LengthArg->getZExtValue();
376   else
377     return nullptr;
378 
379   if (Length == 0) // strncmp(x,y,0)   -> 0
380     return ConstantInt::get(CI->getType(), 0);
381 
382   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
383     return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
384 
385   StringRef Str1, Str2;
386   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
387   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
388 
389   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
390   if (HasStr1 && HasStr2) {
391     StringRef SubStr1 = Str1.substr(0, Length);
392     StringRef SubStr2 = Str2.substr(0, Length);
393     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
394   }
395 
396   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
397     return B.CreateNeg(
398         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
399 
400   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
401     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
402 
403   uint64_t Len1 = GetStringLength(Str1P);
404   uint64_t Len2 = GetStringLength(Str2P);
405 
406   // strncmp to memcmp
407   if (!HasStr1 && HasStr2) {
408     Len2 = std::min(Len2, Length);
409     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
410       return emitMemCmp(
411           Str1P, Str2P,
412           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
413           TLI);
414   } else if (HasStr1 && !HasStr2) {
415     Len1 = std::min(Len1, Length);
416     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
417       return emitMemCmp(
418           Str1P, Str2P,
419           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
420           TLI);
421   }
422 
423   return nullptr;
424 }
425 
426 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
427   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
428   if (Dst == Src) // strcpy(x,x)  -> x
429     return Src;
430 
431   // See if we can get the length of the input string.
432   uint64_t Len = GetStringLength(Src);
433   if (Len == 0)
434     return nullptr;
435 
436   // We have enough information to now generate the memcpy call to do the
437   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
438   B.CreateMemCpy(Dst, 1, Src, 1,
439                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
440   return Dst;
441 }
442 
443 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
444   Function *Callee = CI->getCalledFunction();
445   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
446   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
447     Value *StrLen = emitStrLen(Src, B, DL, TLI);
448     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
449   }
450 
451   // See if we can get the length of the input string.
452   uint64_t Len = GetStringLength(Src);
453   if (Len == 0)
454     return nullptr;
455 
456   Type *PT = Callee->getFunctionType()->getParamType(0);
457   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
458   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
459                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
460 
461   // We have enough information to now generate the memcpy call to do the
462   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
463   B.CreateMemCpy(Dst, 1, Src, 1, LenV);
464   return DstEnd;
465 }
466 
467 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
468   Function *Callee = CI->getCalledFunction();
469   Value *Dst = CI->getArgOperand(0);
470   Value *Src = CI->getArgOperand(1);
471   Value *LenOp = CI->getArgOperand(2);
472 
473   // See if we can get the length of the input string.
474   uint64_t SrcLen = GetStringLength(Src);
475   if (SrcLen == 0)
476     return nullptr;
477   --SrcLen;
478 
479   if (SrcLen == 0) {
480     // strncpy(x, "", y) -> memset(align 1 x, '\0', y)
481     B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
482     return Dst;
483   }
484 
485   uint64_t Len;
486   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
487     Len = LengthArg->getZExtValue();
488   else
489     return nullptr;
490 
491   if (Len == 0)
492     return Dst; // strncpy(x, y, 0) -> x
493 
494   // Let strncpy handle the zero padding
495   if (Len > SrcLen + 1)
496     return nullptr;
497 
498   Type *PT = Callee->getFunctionType()->getParamType(0);
499   // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
500   B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len));
501 
502   return Dst;
503 }
504 
505 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B,
506                                                unsigned CharSize) {
507   Value *Src = CI->getArgOperand(0);
508 
509   // Constant folding: strlen("xyz") -> 3
510   if (uint64_t Len = GetStringLength(Src, CharSize))
511     return ConstantInt::get(CI->getType(), Len - 1);
512 
513   // If s is a constant pointer pointing to a string literal, we can fold
514   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
515   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
516   // We only try to simplify strlen when the pointer s points to an array
517   // of i8. Otherwise, we would need to scale the offset x before doing the
518   // subtraction. This will make the optimization more complex, and it's not
519   // very useful because calling strlen for a pointer of other types is
520   // very uncommon.
521   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
522     if (!isGEPBasedOnPointerToString(GEP, CharSize))
523       return nullptr;
524 
525     ConstantDataArraySlice Slice;
526     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
527       uint64_t NullTermIdx;
528       if (Slice.Array == nullptr) {
529         NullTermIdx = 0;
530       } else {
531         NullTermIdx = ~((uint64_t)0);
532         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
533           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
534             NullTermIdx = I;
535             break;
536           }
537         }
538         // If the string does not have '\0', leave it to strlen to compute
539         // its length.
540         if (NullTermIdx == ~((uint64_t)0))
541           return nullptr;
542       }
543 
544       Value *Offset = GEP->getOperand(2);
545       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
546       Known.Zero.flipAllBits();
547       uint64_t ArrSize =
548              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
549 
550       // KnownZero's bits are flipped, so zeros in KnownZero now represent
551       // bits known to be zeros in Offset, and ones in KnowZero represent
552       // bits unknown in Offset. Therefore, Offset is known to be in range
553       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
554       // unsigned-less-than NullTermIdx.
555       //
556       // If Offset is not provably in the range [0, NullTermIdx], we can still
557       // optimize if we can prove that the program has undefined behavior when
558       // Offset is outside that range. That is the case when GEP->getOperand(0)
559       // is a pointer to an object whose memory extent is NullTermIdx+1.
560       if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
561           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
562            NullTermIdx == ArrSize - 1)) {
563         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
564         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
565                            Offset);
566       }
567     }
568 
569     return nullptr;
570   }
571 
572   // strlen(x?"foo":"bars") --> x ? 3 : 4
573   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
574     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
575     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
576     if (LenTrue && LenFalse) {
577       ORE.emit([&]() {
578         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
579                << "folded strlen(select) to select of constants";
580       });
581       return B.CreateSelect(SI->getCondition(),
582                             ConstantInt::get(CI->getType(), LenTrue - 1),
583                             ConstantInt::get(CI->getType(), LenFalse - 1));
584     }
585   }
586 
587   // strlen(x) != 0 --> *x != 0
588   // strlen(x) == 0 --> *x == 0
589   if (isOnlyUsedInZeroEqualityComparison(CI))
590     return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
591 
592   return nullptr;
593 }
594 
595 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
596   return optimizeStringLength(CI, B, 8);
597 }
598 
599 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) {
600   Module &M = *CI->getModule();
601   unsigned WCharSize = TLI->getWCharSize(M) * 8;
602   // We cannot perform this optimization without wchar_size metadata.
603   if (WCharSize == 0)
604     return nullptr;
605 
606   return optimizeStringLength(CI, B, WCharSize);
607 }
608 
609 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
610   StringRef S1, S2;
611   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
612   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
613 
614   // strpbrk(s, "") -> nullptr
615   // strpbrk("", s) -> nullptr
616   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
617     return Constant::getNullValue(CI->getType());
618 
619   // Constant folding.
620   if (HasS1 && HasS2) {
621     size_t I = S1.find_first_of(S2);
622     if (I == StringRef::npos) // No match.
623       return Constant::getNullValue(CI->getType());
624 
625     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
626                        "strpbrk");
627   }
628 
629   // strpbrk(s, "a") -> strchr(s, 'a')
630   if (HasS2 && S2.size() == 1)
631     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
632 
633   return nullptr;
634 }
635 
636 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
637   Value *EndPtr = CI->getArgOperand(1);
638   if (isa<ConstantPointerNull>(EndPtr)) {
639     // With a null EndPtr, this function won't capture the main argument.
640     // It would be readonly too, except that it still may write to errno.
641     CI->addParamAttr(0, Attribute::NoCapture);
642   }
643 
644   return nullptr;
645 }
646 
647 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
648   StringRef S1, S2;
649   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
650   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
651 
652   // strspn(s, "") -> 0
653   // strspn("", s) -> 0
654   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
655     return Constant::getNullValue(CI->getType());
656 
657   // Constant folding.
658   if (HasS1 && HasS2) {
659     size_t Pos = S1.find_first_not_of(S2);
660     if (Pos == StringRef::npos)
661       Pos = S1.size();
662     return ConstantInt::get(CI->getType(), Pos);
663   }
664 
665   return nullptr;
666 }
667 
668 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
669   StringRef S1, S2;
670   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
671   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
672 
673   // strcspn("", s) -> 0
674   if (HasS1 && S1.empty())
675     return Constant::getNullValue(CI->getType());
676 
677   // Constant folding.
678   if (HasS1 && HasS2) {
679     size_t Pos = S1.find_first_of(S2);
680     if (Pos == StringRef::npos)
681       Pos = S1.size();
682     return ConstantInt::get(CI->getType(), Pos);
683   }
684 
685   // strcspn(s, "") -> strlen(s)
686   if (HasS2 && S2.empty())
687     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
688 
689   return nullptr;
690 }
691 
692 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
693   // fold strstr(x, x) -> x.
694   if (CI->getArgOperand(0) == CI->getArgOperand(1))
695     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
696 
697   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
698   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
699     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
700     if (!StrLen)
701       return nullptr;
702     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
703                                  StrLen, B, DL, TLI);
704     if (!StrNCmp)
705       return nullptr;
706     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
707       ICmpInst *Old = cast<ICmpInst>(*UI++);
708       Value *Cmp =
709           B.CreateICmp(Old->getPredicate(), StrNCmp,
710                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
711       replaceAllUsesWith(Old, Cmp);
712     }
713     return CI;
714   }
715 
716   // See if either input string is a constant string.
717   StringRef SearchStr, ToFindStr;
718   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
719   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
720 
721   // fold strstr(x, "") -> x.
722   if (HasStr2 && ToFindStr.empty())
723     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
724 
725   // If both strings are known, constant fold it.
726   if (HasStr1 && HasStr2) {
727     size_t Offset = SearchStr.find(ToFindStr);
728 
729     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
730       return Constant::getNullValue(CI->getType());
731 
732     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
733     Value *Result = castToCStr(CI->getArgOperand(0), B);
734     Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
735     return B.CreateBitCast(Result, CI->getType());
736   }
737 
738   // fold strstr(x, "y") -> strchr(x, 'y').
739   if (HasStr2 && ToFindStr.size() == 1) {
740     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
741     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
742   }
743   return nullptr;
744 }
745 
746 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
747   Value *SrcStr = CI->getArgOperand(0);
748   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
749   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
750 
751   // memchr(x, y, 0) -> null
752   if (LenC && LenC->isZero())
753     return Constant::getNullValue(CI->getType());
754 
755   // From now on we need at least constant length and string.
756   StringRef Str;
757   if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
758     return nullptr;
759 
760   // Truncate the string to LenC. If Str is smaller than LenC we will still only
761   // scan the string, as reading past the end of it is undefined and we can just
762   // return null if we don't find the char.
763   Str = Str.substr(0, LenC->getZExtValue());
764 
765   // If the char is variable but the input str and length are not we can turn
766   // this memchr call into a simple bit field test. Of course this only works
767   // when the return value is only checked against null.
768   //
769   // It would be really nice to reuse switch lowering here but we can't change
770   // the CFG at this point.
771   //
772   // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
773   //   after bounds check.
774   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
775     unsigned char Max =
776         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
777                           reinterpret_cast<const unsigned char *>(Str.end()));
778 
779     // Make sure the bit field we're about to create fits in a register on the
780     // target.
781     // FIXME: On a 64 bit architecture this prevents us from using the
782     // interesting range of alpha ascii chars. We could do better by emitting
783     // two bitfields or shifting the range by 64 if no lower chars are used.
784     if (!DL.fitsInLegalInteger(Max + 1))
785       return nullptr;
786 
787     // For the bit field use a power-of-2 type with at least 8 bits to avoid
788     // creating unnecessary illegal types.
789     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
790 
791     // Now build the bit field.
792     APInt Bitfield(Width, 0);
793     for (char C : Str)
794       Bitfield.setBit((unsigned char)C);
795     Value *BitfieldC = B.getInt(Bitfield);
796 
797     // First check that the bit field access is within bounds.
798     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
799     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
800                                  "memchr.bounds");
801 
802     // Create code that checks if the given bit is set in the field.
803     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
804     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
805 
806     // Finally merge both checks and cast to pointer type. The inttoptr
807     // implicitly zexts the i1 to intptr type.
808     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
809   }
810 
811   // Check if all arguments are constants.  If so, we can constant fold.
812   if (!CharC)
813     return nullptr;
814 
815   // Compute the offset.
816   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
817   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
818     return Constant::getNullValue(CI->getType());
819 
820   // memchr(s+n,c,l) -> gep(s+n+i,c)
821   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
822 }
823 
824 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
825   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
826 
827   if (LHS == RHS) // memcmp(s,s,x) -> 0
828     return Constant::getNullValue(CI->getType());
829 
830   // Make sure we have a constant length.
831   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
832   if (!LenC)
833     return nullptr;
834 
835   uint64_t Len = LenC->getZExtValue();
836   if (Len == 0) // memcmp(s1,s2,0) -> 0
837     return Constant::getNullValue(CI->getType());
838 
839   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
840   if (Len == 1) {
841     Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"),
842                                CI->getType(), "lhsv");
843     Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"),
844                                CI->getType(), "rhsv");
845     return B.CreateSub(LHSV, RHSV, "chardiff");
846   }
847 
848   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
849   // TODO: The case where both inputs are constants does not need to be limited
850   // to legal integers or equality comparison. See block below this.
851   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
852     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
853     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
854 
855     // First, see if we can fold either argument to a constant.
856     Value *LHSV = nullptr;
857     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
858       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
859       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
860     }
861     Value *RHSV = nullptr;
862     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
863       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
864       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
865     }
866 
867     // Don't generate unaligned loads. If either source is constant data,
868     // alignment doesn't matter for that source because there is no load.
869     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
870         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
871       if (!LHSV) {
872         Type *LHSPtrTy =
873             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
874         LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
875       }
876       if (!RHSV) {
877         Type *RHSPtrTy =
878             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
879         RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
880       }
881       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
882     }
883   }
884 
885   // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
886   // TODO: This is limited to i8 arrays.
887   StringRef LHSStr, RHSStr;
888   if (getConstantStringInfo(LHS, LHSStr) &&
889       getConstantStringInfo(RHS, RHSStr)) {
890     // Make sure we're not reading out-of-bounds memory.
891     if (Len > LHSStr.size() || Len > RHSStr.size())
892       return nullptr;
893     // Fold the memcmp and normalize the result.  This way we get consistent
894     // results across multiple platforms.
895     uint64_t Ret = 0;
896     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
897     if (Cmp < 0)
898       Ret = -1;
899     else if (Cmp > 0)
900       Ret = 1;
901     return ConstantInt::get(CI->getType(), Ret);
902   }
903 
904   return nullptr;
905 }
906 
907 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
908   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
909   B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
910                  CI->getArgOperand(2));
911   return CI->getArgOperand(0);
912 }
913 
914 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
915   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
916   B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
917                   CI->getArgOperand(2));
918   return CI->getArgOperand(0);
919 }
920 
921 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
922 static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B,
923                                const TargetLibraryInfo &TLI) {
924   // This has to be a memset of zeros (bzero).
925   auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
926   if (!FillValue || FillValue->getZExtValue() != 0)
927     return nullptr;
928 
929   // TODO: We should handle the case where the malloc has more than one use.
930   // This is necessary to optimize common patterns such as when the result of
931   // the malloc is checked against null or when a memset intrinsic is used in
932   // place of a memset library call.
933   auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
934   if (!Malloc || !Malloc->hasOneUse())
935     return nullptr;
936 
937   // Is the inner call really malloc()?
938   Function *InnerCallee = Malloc->getCalledFunction();
939   if (!InnerCallee)
940     return nullptr;
941 
942   LibFunc Func;
943   if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
944       Func != LibFunc_malloc)
945     return nullptr;
946 
947   // The memset must cover the same number of bytes that are malloc'd.
948   if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
949     return nullptr;
950 
951   // Replace the malloc with a calloc. We need the data layout to know what the
952   // actual size of a 'size_t' parameter is.
953   B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
954   const DataLayout &DL = Malloc->getModule()->getDataLayout();
955   IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
956   Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
957                              Malloc->getArgOperand(0), Malloc->getAttributes(),
958                              B, TLI);
959   if (!Calloc)
960     return nullptr;
961 
962   Malloc->replaceAllUsesWith(Calloc);
963   Malloc->eraseFromParent();
964 
965   return Calloc;
966 }
967 
968 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
969   if (auto *Calloc = foldMallocMemset(CI, B, *TLI))
970     return Calloc;
971 
972   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
973   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
974   B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
975   return CI->getArgOperand(0);
976 }
977 
978 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) {
979   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
980     return emitMalloc(CI->getArgOperand(1), B, DL, TLI);
981 
982   return nullptr;
983 }
984 
985 //===----------------------------------------------------------------------===//
986 // Math Library Optimizations
987 //===----------------------------------------------------------------------===//
988 
989 // Replace a libcall \p CI with a call to intrinsic \p IID
990 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) {
991   // Propagate fast-math flags from the existing call to the new call.
992   IRBuilder<>::FastMathFlagGuard Guard(B);
993   B.setFastMathFlags(CI->getFastMathFlags());
994 
995   Module *M = CI->getModule();
996   Value *V = CI->getArgOperand(0);
997   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
998   CallInst *NewCall = B.CreateCall(F, V);
999   NewCall->takeName(CI);
1000   return NewCall;
1001 }
1002 
1003 /// Return a variant of Val with float type.
1004 /// Currently this works in two cases: If Val is an FPExtension of a float
1005 /// value to something bigger, simply return the operand.
1006 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1007 /// loss of precision do so.
1008 static Value *valueHasFloatPrecision(Value *Val) {
1009   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1010     Value *Op = Cast->getOperand(0);
1011     if (Op->getType()->isFloatTy())
1012       return Op;
1013   }
1014   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1015     APFloat F = Const->getValueAPF();
1016     bool losesInfo;
1017     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1018                     &losesInfo);
1019     if (!losesInfo)
1020       return ConstantFP::get(Const->getContext(), F);
1021   }
1022   return nullptr;
1023 }
1024 
1025 /// Shrink double -> float functions.
1026 static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B,
1027                                bool isBinary, bool isPrecise = false) {
1028   if (!CI->getType()->isDoubleTy())
1029     return nullptr;
1030 
1031   // If not all the uses of the function are converted to float, then bail out.
1032   // This matters if the precision of the result is more important than the
1033   // precision of the arguments.
1034   if (isPrecise)
1035     for (User *U : CI->users()) {
1036       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1037       if (!Cast || !Cast->getType()->isFloatTy())
1038         return nullptr;
1039     }
1040 
1041   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1042   Value *V[2];
1043   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1044   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1045   if (!V[0] || (isBinary && !V[1]))
1046     return nullptr;
1047 
1048   // If call isn't an intrinsic, check that it isn't within a function with the
1049   // same name as the float version of this call, otherwise the result is an
1050   // infinite loop.  For example, from MinGW-w64:
1051   //
1052   // float expf(float val) { return (float) exp((double) val); }
1053   Function *CalleeFn = CI->getCalledFunction();
1054   StringRef CalleeNm = CalleeFn->getName();
1055   AttributeList CalleeAt = CalleeFn->getAttributes();
1056   if (CalleeFn && !CalleeFn->isIntrinsic()) {
1057     const Function *Fn = CI->getFunction();
1058     StringRef FnName = Fn->getName();
1059     if (FnName.back() == 'f' &&
1060         FnName.size() == (CalleeNm.size() + 1) &&
1061         FnName.startswith(CalleeNm))
1062       return nullptr;
1063   }
1064 
1065   // Propagate the math semantics from the current function to the new function.
1066   IRBuilder<>::FastMathFlagGuard Guard(B);
1067   B.setFastMathFlags(CI->getFastMathFlags());
1068 
1069   // g((double) float) -> (double) gf(float)
1070   Value *R;
1071   if (CalleeFn->isIntrinsic()) {
1072     Module *M = CI->getModule();
1073     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1074     Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1075     R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1076   }
1077   else
1078     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeNm, B, CalleeAt)
1079                  : emitUnaryFloatFnCall(V[0], CalleeNm, B, CalleeAt);
1080 
1081   return B.CreateFPExt(R, B.getDoubleTy());
1082 }
1083 
1084 /// Shrink double -> float for unary functions.
1085 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
1086                                     bool isPrecise = false) {
1087   return optimizeDoubleFP(CI, B, false, isPrecise);
1088 }
1089 
1090 /// Shrink double -> float for binary functions.
1091 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B,
1092                                      bool isPrecise = false) {
1093   return optimizeDoubleFP(CI, B, true, isPrecise);
1094 }
1095 
1096 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1097 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) {
1098   if (!CI->isFast())
1099     return nullptr;
1100 
1101   // Propagate fast-math flags from the existing call to new instructions.
1102   IRBuilder<>::FastMathFlagGuard Guard(B);
1103   B.setFastMathFlags(CI->getFastMathFlags());
1104 
1105   Value *Real, *Imag;
1106   if (CI->getNumArgOperands() == 1) {
1107     Value *Op = CI->getArgOperand(0);
1108     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1109     Real = B.CreateExtractValue(Op, 0, "real");
1110     Imag = B.CreateExtractValue(Op, 1, "imag");
1111   } else {
1112     assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
1113     Real = CI->getArgOperand(0);
1114     Imag = CI->getArgOperand(1);
1115   }
1116 
1117   Value *RealReal = B.CreateFMul(Real, Real);
1118   Value *ImagImag = B.CreateFMul(Imag, Imag);
1119 
1120   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1121                                               CI->getType());
1122   return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
1123 }
1124 
1125 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1126                                       IRBuilder<> &B) {
1127   if (!isa<FPMathOperator>(Call))
1128     return nullptr;
1129 
1130   IRBuilder<>::FastMathFlagGuard Guard(B);
1131   B.setFastMathFlags(Call->getFastMathFlags());
1132 
1133   // TODO: Add tan() and other calls.
1134   // TODO: Can this be shared to also handle LLVM intrinsics?
1135   Value *X;
1136   switch (Func) {
1137   case LibFunc_sin:
1138   case LibFunc_sinf:
1139   case LibFunc_sinl:
1140     // sin(-X) --> -sin(X)
1141     if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1142       return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X, "sin"));
1143     break;
1144   case LibFunc_cos:
1145   case LibFunc_cosf:
1146   case LibFunc_cosl:
1147     // cos(-X) --> cos(X)
1148     if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1149       return B.CreateCall(Call->getCalledFunction(), X, "cos");
1150     break;
1151   default:
1152     break;
1153   }
1154   return nullptr;
1155 }
1156 
1157 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
1158   // Multiplications calculated using Addition Chains.
1159   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1160 
1161   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1162 
1163   if (InnerChain[Exp])
1164     return InnerChain[Exp];
1165 
1166   static const unsigned AddChain[33][2] = {
1167       {0, 0}, // Unused.
1168       {0, 0}, // Unused (base case = pow1).
1169       {1, 1}, // Unused (pre-computed).
1170       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1171       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1172       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1173       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1174       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1175   };
1176 
1177   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1178                                  getPow(InnerChain, AddChain[Exp][1], B));
1179   return InnerChain[Exp];
1180 }
1181 
1182 /// Use square root in place of pow(x, +/-0.5).
1183 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) {
1184   // TODO: There is some subset of 'fast' under which these transforms should
1185   // be allowed.
1186   if (!Pow->isFast())
1187     return nullptr;
1188 
1189   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1190   Type *Ty = Pow->getType();
1191 
1192   const APFloat *ExpoF;
1193   if (!match(Expo, m_APFloat(ExpoF)) ||
1194       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1195     return nullptr;
1196 
1197   // If errno is never set, then use the intrinsic for sqrt().
1198   if (Pow->hasFnAttr(Attribute::ReadNone)) {
1199     Function *SqrtFn = Intrinsic::getDeclaration(Pow->getModule(),
1200                                                  Intrinsic::sqrt, Ty);
1201     Sqrt = B.CreateCall(SqrtFn, Base);
1202   }
1203   // Otherwise, use the libcall for sqrt().
1204   else if (hasUnaryFloatFn(TLI, Ty, LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl))
1205     // TODO: We also should check that the target can in fact lower the sqrt()
1206     // libcall. We currently have no way to ask this question, so we ask if
1207     // the target has a sqrt() libcall, which is not exactly the same.
1208     Sqrt = emitUnaryFloatFnCall(Base, TLI->getName(LibFunc_sqrt), B,
1209                                 Pow->getCalledFunction()->getAttributes());
1210   else
1211     return nullptr;
1212 
1213   // If the exponent is negative, then get the reciprocal.
1214   if (ExpoF->isNegative())
1215     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1216 
1217   return Sqrt;
1218 }
1219 
1220 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) {
1221   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1222   Function *Callee = Pow->getCalledFunction();
1223   AttributeList Attrs = Callee->getAttributes();
1224   StringRef Name = Callee->getName();
1225   Module *Module = Pow->getModule();
1226   Type *Ty = Pow->getType();
1227   Value *Shrunk = nullptr;
1228   bool Ignored;
1229 
1230   // Bail out if simplifying libcalls to pow() is disabled.
1231   if (!hasUnaryFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl))
1232     return nullptr;
1233 
1234   // Propagate the math semantics from the call to any created instructions.
1235   IRBuilder<>::FastMathFlagGuard Guard(B);
1236   B.setFastMathFlags(Pow->getFastMathFlags());
1237 
1238   // Shrink pow() to powf() if the arguments are single precision,
1239   // unless the result is expected to be double precision.
1240   if (UnsafeFPShrink &&
1241       Name == TLI->getName(LibFunc_pow) && hasFloatVersion(Name))
1242     Shrunk = optimizeBinaryDoubleFP(Pow, B, true);
1243 
1244   // Evaluate special cases related to the base.
1245 
1246   // pow(1.0, x) -> 1.0
1247   if (match(Base, m_FPOne()))
1248     return Base;
1249 
1250   // pow(2.0, x) -> exp2(x)
1251   if (match(Base, m_SpecificFP(2.0))) {
1252     Value *Exp2 = Intrinsic::getDeclaration(Module, Intrinsic::exp2, Ty);
1253     return B.CreateCall(Exp2, Expo, "exp2");
1254   }
1255 
1256   // pow(10.0, x) -> exp10(x)
1257   if (ConstantFP *BaseC = dyn_cast<ConstantFP>(Base))
1258     // There's no exp10 intrinsic yet, but, maybe, some day there shall be one.
1259     if (BaseC->isExactlyValue(10.0) &&
1260         hasUnaryFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1261       return emitUnaryFloatFnCall(Expo, TLI->getName(LibFunc_exp10), B, Attrs);
1262 
1263   // pow(exp(x), y) -> exp(x * y)
1264   // pow(exp2(x), y) -> exp2(x * y)
1265   // We enable these only with fast-math. Besides rounding differences, the
1266   // transformation changes overflow and underflow behavior quite dramatically.
1267   // Example: x = 1000, y = 0.001.
1268   // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1).
1269   auto *BaseFn = dyn_cast<CallInst>(Base);
1270   if (BaseFn && BaseFn->isFast() && Pow->isFast()) {
1271     LibFunc LibFn;
1272     Function *CalleeFn = BaseFn->getCalledFunction();
1273     if (CalleeFn && TLI->getLibFunc(CalleeFn->getName(), LibFn) &&
1274         (LibFn == LibFunc_exp || LibFn == LibFunc_exp2) && TLI->has(LibFn)) {
1275       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1276       return emitUnaryFloatFnCall(FMul, CalleeFn->getName(), B,
1277                                   CalleeFn->getAttributes());
1278     }
1279   }
1280 
1281   // Evaluate special cases related to the exponent.
1282 
1283   // pow(x, -1.0) -> 1.0 / x
1284   if (match(Expo, m_SpecificFP(-1.0)))
1285     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1286 
1287   // pow(x, 0.0) -> 1.0
1288   if (match(Expo, m_SpecificFP(0.0)))
1289       return ConstantFP::get(Ty, 1.0);
1290 
1291   // pow(x, 1.0) -> x
1292   if (match(Expo, m_FPOne()))
1293     return Base;
1294 
1295   // pow(x, 2.0) -> x * x
1296   if (match(Expo, m_SpecificFP(2.0)))
1297     return B.CreateFMul(Base, Base, "square");
1298 
1299   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1300     return Sqrt;
1301 
1302   // FIXME: Correct the transforms and pull this into replacePowWithSqrt().
1303   ConstantFP *ExpoC = dyn_cast<ConstantFP>(Expo);
1304   if (ExpoC && ExpoC->isExactlyValue(0.5) &&
1305       hasUnaryFloatFn(TLI, Ty, LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) {
1306     // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
1307     // This is faster than calling pow(), and still handles -0.0 and
1308     // negative infinity correctly.
1309     // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
1310     Value *PosInf = ConstantFP::getInfinity(Ty);
1311     Value *NegInf = ConstantFP::getInfinity(Ty, true);
1312 
1313     // TODO: As above, we should lower to the sqrt() intrinsic if the pow() is
1314     // an intrinsic, to match errno semantics.
1315     Value *Sqrt = emitUnaryFloatFnCall(Base, TLI->getName(LibFunc_sqrt),
1316                                        B, Attrs);
1317     Function *FAbsFn = Intrinsic::getDeclaration(Module, Intrinsic::fabs, Ty);
1318     Value *FAbs = B.CreateCall(FAbsFn, Sqrt, "abs");
1319     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1320     Sqrt = B.CreateSelect(FCmp, PosInf, FAbs);
1321     return Sqrt;
1322   }
1323 
1324   // pow(x, n) -> x * x * x * ...
1325   const APFloat *ExpoF;
1326   if (Pow->isFast() && match(Expo, m_APFloat(ExpoF))) {
1327     // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1328     APFloat LimF(ExpoF->getSemantics(), 33.0),
1329             ExpoA(abs(*ExpoF));
1330     if (ExpoA.isInteger() && ExpoA.compare(LimF) == APFloat::cmpLessThan) {
1331       // We will memoize intermediate products of the Addition Chain.
1332       Value *InnerChain[33] = {nullptr};
1333       InnerChain[1] = Base;
1334       InnerChain[2] = B.CreateFMul(Base, Base, "square");
1335 
1336       // We cannot readily convert a non-double type (like float) to a double.
1337       // So we first convert it to something which could be converted to double.
1338       ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1339       Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1340 
1341       // If the exponent is negative, then get the reciprocal.
1342       if (ExpoF->isNegative())
1343         FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1344 
1345       return FMul;
1346     }
1347   }
1348 
1349   return Shrunk;
1350 }
1351 
1352 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1353   Function *Callee = CI->getCalledFunction();
1354   Value *Ret = nullptr;
1355   StringRef Name = Callee->getName();
1356   if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name))
1357     Ret = optimizeUnaryDoubleFP(CI, B, true);
1358 
1359   Value *Op = CI->getArgOperand(0);
1360   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1361   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1362   LibFunc LdExp = LibFunc_ldexpl;
1363   if (Op->getType()->isFloatTy())
1364     LdExp = LibFunc_ldexpf;
1365   else if (Op->getType()->isDoubleTy())
1366     LdExp = LibFunc_ldexp;
1367 
1368   if (TLI->has(LdExp)) {
1369     Value *LdExpArg = nullptr;
1370     if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
1371       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
1372         LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
1373     } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
1374       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
1375         LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
1376     }
1377 
1378     if (LdExpArg) {
1379       Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
1380       if (!Op->getType()->isFloatTy())
1381         One = ConstantExpr::getFPExtend(One, Op->getType());
1382 
1383       Module *M = CI->getModule();
1384       Value *NewCallee =
1385           M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
1386                                  Op->getType(), B.getInt32Ty());
1387       CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg});
1388       if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
1389         CI->setCallingConv(F->getCallingConv());
1390 
1391       return CI;
1392     }
1393   }
1394   return Ret;
1395 }
1396 
1397 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1398   Function *Callee = CI->getCalledFunction();
1399   // If we can shrink the call to a float function rather than a double
1400   // function, do that first.
1401   StringRef Name = Callee->getName();
1402   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1403     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1404       return Ret;
1405 
1406   IRBuilder<>::FastMathFlagGuard Guard(B);
1407   FastMathFlags FMF;
1408   if (CI->isFast()) {
1409     // If the call is 'fast', then anything we create here will also be 'fast'.
1410     FMF.setFast();
1411   } else {
1412     // At a minimum, no-nans-fp-math must be true.
1413     if (!CI->hasNoNaNs())
1414       return nullptr;
1415     // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
1416     // "Ideally, fmax would be sensitive to the sign of zero, for example
1417     // fmax(-0. 0, +0. 0) would return +0; however, implementation in software
1418     // might be impractical."
1419     FMF.setNoSignedZeros();
1420     FMF.setNoNaNs();
1421   }
1422   B.setFastMathFlags(FMF);
1423 
1424   // We have a relaxed floating-point environment. We can ignore NaN-handling
1425   // and transform to a compare and select. We do not have to consider errno or
1426   // exceptions, because fmin/fmax do not have those.
1427   Value *Op0 = CI->getArgOperand(0);
1428   Value *Op1 = CI->getArgOperand(1);
1429   Value *Cmp = Callee->getName().startswith("fmin") ?
1430     B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
1431   return B.CreateSelect(Cmp, Op0, Op1);
1432 }
1433 
1434 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
1435   Function *Callee = CI->getCalledFunction();
1436   Value *Ret = nullptr;
1437   StringRef Name = Callee->getName();
1438   if (UnsafeFPShrink && hasFloatVersion(Name))
1439     Ret = optimizeUnaryDoubleFP(CI, B, true);
1440 
1441   if (!CI->isFast())
1442     return Ret;
1443   Value *Op1 = CI->getArgOperand(0);
1444   auto *OpC = dyn_cast<CallInst>(Op1);
1445 
1446   // The earlier call must also be 'fast' in order to do these transforms.
1447   if (!OpC || !OpC->isFast())
1448     return Ret;
1449 
1450   // log(pow(x,y)) -> y*log(x)
1451   // This is only applicable to log, log2, log10.
1452   if (Name != "log" && Name != "log2" && Name != "log10")
1453     return Ret;
1454 
1455   IRBuilder<>::FastMathFlagGuard Guard(B);
1456   FastMathFlags FMF;
1457   FMF.setFast();
1458   B.setFastMathFlags(FMF);
1459 
1460   LibFunc Func;
1461   Function *F = OpC->getCalledFunction();
1462   if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1463       Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow))
1464     return B.CreateFMul(OpC->getArgOperand(1),
1465       emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B,
1466                            Callee->getAttributes()), "mul");
1467 
1468   // log(exp2(y)) -> y*log(2)
1469   if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) &&
1470       TLI->has(Func) && Func == LibFunc_exp2)
1471     return B.CreateFMul(
1472         OpC->getArgOperand(0),
1473         emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0),
1474                              Callee->getName(), B, Callee->getAttributes()),
1475         "logmul");
1476   return Ret;
1477 }
1478 
1479 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
1480   Function *Callee = CI->getCalledFunction();
1481   Value *Ret = nullptr;
1482   // TODO: Once we have a way (other than checking for the existince of the
1483   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
1484   // condition below.
1485   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
1486                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
1487     Ret = optimizeUnaryDoubleFP(CI, B, true);
1488 
1489   if (!CI->isFast())
1490     return Ret;
1491 
1492   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
1493   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
1494     return Ret;
1495 
1496   // We're looking for a repeated factor in a multiplication tree,
1497   // so we can do this fold: sqrt(x * x) -> fabs(x);
1498   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
1499   Value *Op0 = I->getOperand(0);
1500   Value *Op1 = I->getOperand(1);
1501   Value *RepeatOp = nullptr;
1502   Value *OtherOp = nullptr;
1503   if (Op0 == Op1) {
1504     // Simple match: the operands of the multiply are identical.
1505     RepeatOp = Op0;
1506   } else {
1507     // Look for a more complicated pattern: one of the operands is itself
1508     // a multiply, so search for a common factor in that multiply.
1509     // Note: We don't bother looking any deeper than this first level or for
1510     // variations of this pattern because instcombine's visitFMUL and/or the
1511     // reassociation pass should give us this form.
1512     Value *OtherMul0, *OtherMul1;
1513     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
1514       // Pattern: sqrt((x * y) * z)
1515       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
1516         // Matched: sqrt((x * x) * z)
1517         RepeatOp = OtherMul0;
1518         OtherOp = Op1;
1519       }
1520     }
1521   }
1522   if (!RepeatOp)
1523     return Ret;
1524 
1525   // Fast math flags for any created instructions should match the sqrt
1526   // and multiply.
1527   IRBuilder<>::FastMathFlagGuard Guard(B);
1528   B.setFastMathFlags(I->getFastMathFlags());
1529 
1530   // If we found a repeated factor, hoist it out of the square root and
1531   // replace it with the fabs of that factor.
1532   Module *M = Callee->getParent();
1533   Type *ArgType = I->getType();
1534   Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
1535   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
1536   if (OtherOp) {
1537     // If we found a non-repeated factor, we still need to get its square
1538     // root. We then multiply that by the value that was simplified out
1539     // of the square root calculation.
1540     Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
1541     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
1542     return B.CreateFMul(FabsCall, SqrtCall);
1543   }
1544   return FabsCall;
1545 }
1546 
1547 // TODO: Generalize to handle any trig function and its inverse.
1548 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
1549   Function *Callee = CI->getCalledFunction();
1550   Value *Ret = nullptr;
1551   StringRef Name = Callee->getName();
1552   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
1553     Ret = optimizeUnaryDoubleFP(CI, B, true);
1554 
1555   Value *Op1 = CI->getArgOperand(0);
1556   auto *OpC = dyn_cast<CallInst>(Op1);
1557   if (!OpC)
1558     return Ret;
1559 
1560   // Both calls must be 'fast' in order to remove them.
1561   if (!CI->isFast() || !OpC->isFast())
1562     return Ret;
1563 
1564   // tan(atan(x)) -> x
1565   // tanf(atanf(x)) -> x
1566   // tanl(atanl(x)) -> x
1567   LibFunc Func;
1568   Function *F = OpC->getCalledFunction();
1569   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1570       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
1571        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
1572        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
1573     Ret = OpC->getArgOperand(0);
1574   return Ret;
1575 }
1576 
1577 static bool isTrigLibCall(CallInst *CI) {
1578   // We can only hope to do anything useful if we can ignore things like errno
1579   // and floating-point exceptions.
1580   // We already checked the prototype.
1581   return CI->hasFnAttr(Attribute::NoUnwind) &&
1582          CI->hasFnAttr(Attribute::ReadNone);
1583 }
1584 
1585 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
1586                              bool UseFloat, Value *&Sin, Value *&Cos,
1587                              Value *&SinCos) {
1588   Type *ArgTy = Arg->getType();
1589   Type *ResTy;
1590   StringRef Name;
1591 
1592   Triple T(OrigCallee->getParent()->getTargetTriple());
1593   if (UseFloat) {
1594     Name = "__sincospif_stret";
1595 
1596     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
1597     // x86_64 can't use {float, float} since that would be returned in both
1598     // xmm0 and xmm1, which isn't what a real struct would do.
1599     ResTy = T.getArch() == Triple::x86_64
1600                 ? static_cast<Type *>(VectorType::get(ArgTy, 2))
1601                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
1602   } else {
1603     Name = "__sincospi_stret";
1604     ResTy = StructType::get(ArgTy, ArgTy);
1605   }
1606 
1607   Module *M = OrigCallee->getParent();
1608   Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
1609                                          ResTy, ArgTy);
1610 
1611   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
1612     // If the argument is an instruction, it must dominate all uses so put our
1613     // sincos call there.
1614     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
1615   } else {
1616     // Otherwise (e.g. for a constant) the beginning of the function is as
1617     // good a place as any.
1618     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
1619     B.SetInsertPoint(&EntryBB, EntryBB.begin());
1620   }
1621 
1622   SinCos = B.CreateCall(Callee, Arg, "sincospi");
1623 
1624   if (SinCos->getType()->isStructTy()) {
1625     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
1626     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
1627   } else {
1628     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
1629                                  "sinpi");
1630     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
1631                                  "cospi");
1632   }
1633 }
1634 
1635 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
1636   // Make sure the prototype is as expected, otherwise the rest of the
1637   // function is probably invalid and likely to abort.
1638   if (!isTrigLibCall(CI))
1639     return nullptr;
1640 
1641   Value *Arg = CI->getArgOperand(0);
1642   SmallVector<CallInst *, 1> SinCalls;
1643   SmallVector<CallInst *, 1> CosCalls;
1644   SmallVector<CallInst *, 1> SinCosCalls;
1645 
1646   bool IsFloat = Arg->getType()->isFloatTy();
1647 
1648   // Look for all compatible sinpi, cospi and sincospi calls with the same
1649   // argument. If there are enough (in some sense) we can make the
1650   // substitution.
1651   Function *F = CI->getFunction();
1652   for (User *U : Arg->users())
1653     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
1654 
1655   // It's only worthwhile if both sinpi and cospi are actually used.
1656   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
1657     return nullptr;
1658 
1659   Value *Sin, *Cos, *SinCos;
1660   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
1661 
1662   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
1663                                  Value *Res) {
1664     for (CallInst *C : Calls)
1665       replaceAllUsesWith(C, Res);
1666   };
1667 
1668   replaceTrigInsts(SinCalls, Sin);
1669   replaceTrigInsts(CosCalls, Cos);
1670   replaceTrigInsts(SinCosCalls, SinCos);
1671 
1672   return nullptr;
1673 }
1674 
1675 void LibCallSimplifier::classifyArgUse(
1676     Value *Val, Function *F, bool IsFloat,
1677     SmallVectorImpl<CallInst *> &SinCalls,
1678     SmallVectorImpl<CallInst *> &CosCalls,
1679     SmallVectorImpl<CallInst *> &SinCosCalls) {
1680   CallInst *CI = dyn_cast<CallInst>(Val);
1681 
1682   if (!CI)
1683     return;
1684 
1685   // Don't consider calls in other functions.
1686   if (CI->getFunction() != F)
1687     return;
1688 
1689   Function *Callee = CI->getCalledFunction();
1690   LibFunc Func;
1691   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
1692       !isTrigLibCall(CI))
1693     return;
1694 
1695   if (IsFloat) {
1696     if (Func == LibFunc_sinpif)
1697       SinCalls.push_back(CI);
1698     else if (Func == LibFunc_cospif)
1699       CosCalls.push_back(CI);
1700     else if (Func == LibFunc_sincospif_stret)
1701       SinCosCalls.push_back(CI);
1702   } else {
1703     if (Func == LibFunc_sinpi)
1704       SinCalls.push_back(CI);
1705     else if (Func == LibFunc_cospi)
1706       CosCalls.push_back(CI);
1707     else if (Func == LibFunc_sincospi_stret)
1708       SinCosCalls.push_back(CI);
1709   }
1710 }
1711 
1712 //===----------------------------------------------------------------------===//
1713 // Integer Library Call Optimizations
1714 //===----------------------------------------------------------------------===//
1715 
1716 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
1717   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
1718   Value *Op = CI->getArgOperand(0);
1719   Type *ArgType = Op->getType();
1720   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1721                                        Intrinsic::cttz, ArgType);
1722   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
1723   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
1724   V = B.CreateIntCast(V, B.getInt32Ty(), false);
1725 
1726   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
1727   return B.CreateSelect(Cond, V, B.getInt32(0));
1728 }
1729 
1730 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
1731   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
1732   Value *Op = CI->getArgOperand(0);
1733   Type *ArgType = Op->getType();
1734   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1735                                        Intrinsic::ctlz, ArgType);
1736   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
1737   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
1738                   V);
1739   return B.CreateIntCast(V, CI->getType(), false);
1740 }
1741 
1742 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
1743   // abs(x) -> x <s 0 ? -x : x
1744   // The negation has 'nsw' because abs of INT_MIN is undefined.
1745   Value *X = CI->getArgOperand(0);
1746   Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
1747   Value *NegX = B.CreateNSWNeg(X, "neg");
1748   return B.CreateSelect(IsNeg, NegX, X);
1749 }
1750 
1751 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
1752   // isdigit(c) -> (c-'0') <u 10
1753   Value *Op = CI->getArgOperand(0);
1754   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
1755   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
1756   return B.CreateZExt(Op, CI->getType());
1757 }
1758 
1759 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
1760   // isascii(c) -> c <u 128
1761   Value *Op = CI->getArgOperand(0);
1762   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
1763   return B.CreateZExt(Op, CI->getType());
1764 }
1765 
1766 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
1767   // toascii(c) -> c & 0x7f
1768   return B.CreateAnd(CI->getArgOperand(0),
1769                      ConstantInt::get(CI->getType(), 0x7F));
1770 }
1771 
1772 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) {
1773   StringRef Str;
1774   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
1775     return nullptr;
1776 
1777   return convertStrToNumber(CI, Str, 10);
1778 }
1779 
1780 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) {
1781   StringRef Str;
1782   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
1783     return nullptr;
1784 
1785   if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
1786     return nullptr;
1787 
1788   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
1789     return convertStrToNumber(CI, Str, CInt->getSExtValue());
1790   }
1791 
1792   return nullptr;
1793 }
1794 
1795 //===----------------------------------------------------------------------===//
1796 // Formatting and IO Library Call Optimizations
1797 //===----------------------------------------------------------------------===//
1798 
1799 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
1800 
1801 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
1802                                                  int StreamArg) {
1803   Function *Callee = CI->getCalledFunction();
1804   // Error reporting calls should be cold, mark them as such.
1805   // This applies even to non-builtin calls: it is only a hint and applies to
1806   // functions that the frontend might not understand as builtins.
1807 
1808   // This heuristic was suggested in:
1809   // Improving Static Branch Prediction in a Compiler
1810   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
1811   // Proceedings of PACT'98, Oct. 1998, IEEE
1812   if (!CI->hasFnAttr(Attribute::Cold) &&
1813       isReportingError(Callee, CI, StreamArg)) {
1814     CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
1815   }
1816 
1817   return nullptr;
1818 }
1819 
1820 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
1821   if (!Callee || !Callee->isDeclaration())
1822     return false;
1823 
1824   if (StreamArg < 0)
1825     return true;
1826 
1827   // These functions might be considered cold, but only if their stream
1828   // argument is stderr.
1829 
1830   if (StreamArg >= (int)CI->getNumArgOperands())
1831     return false;
1832   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
1833   if (!LI)
1834     return false;
1835   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
1836   if (!GV || !GV->isDeclaration())
1837     return false;
1838   return GV->getName() == "stderr";
1839 }
1840 
1841 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
1842   // Check for a fixed format string.
1843   StringRef FormatStr;
1844   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
1845     return nullptr;
1846 
1847   // Empty format string -> noop.
1848   if (FormatStr.empty()) // Tolerate printf's declared void.
1849     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
1850 
1851   // Do not do any of the following transformations if the printf return value
1852   // is used, in general the printf return value is not compatible with either
1853   // putchar() or puts().
1854   if (!CI->use_empty())
1855     return nullptr;
1856 
1857   // printf("x") -> putchar('x'), even for "%" and "%%".
1858   if (FormatStr.size() == 1 || FormatStr == "%%")
1859     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
1860 
1861   // printf("%s", "a") --> putchar('a')
1862   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
1863     StringRef ChrStr;
1864     if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
1865       return nullptr;
1866     if (ChrStr.size() != 1)
1867       return nullptr;
1868     return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
1869   }
1870 
1871   // printf("foo\n") --> puts("foo")
1872   if (FormatStr[FormatStr.size() - 1] == '\n' &&
1873       FormatStr.find('%') == StringRef::npos) { // No format characters.
1874     // Create a string literal with no \n on it.  We expect the constant merge
1875     // pass to be run after this pass, to merge duplicate strings.
1876     FormatStr = FormatStr.drop_back();
1877     Value *GV = B.CreateGlobalString(FormatStr, "str");
1878     return emitPutS(GV, B, TLI);
1879   }
1880 
1881   // Optimize specific format strings.
1882   // printf("%c", chr) --> putchar(chr)
1883   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
1884       CI->getArgOperand(1)->getType()->isIntegerTy())
1885     return emitPutChar(CI->getArgOperand(1), B, TLI);
1886 
1887   // printf("%s\n", str) --> puts(str)
1888   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
1889       CI->getArgOperand(1)->getType()->isPointerTy())
1890     return emitPutS(CI->getArgOperand(1), B, TLI);
1891   return nullptr;
1892 }
1893 
1894 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
1895 
1896   Function *Callee = CI->getCalledFunction();
1897   FunctionType *FT = Callee->getFunctionType();
1898   if (Value *V = optimizePrintFString(CI, B)) {
1899     return V;
1900   }
1901 
1902   // printf(format, ...) -> iprintf(format, ...) if no floating point
1903   // arguments.
1904   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
1905     Module *M = B.GetInsertBlock()->getParent()->getParent();
1906     Constant *IPrintFFn =
1907         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
1908     CallInst *New = cast<CallInst>(CI->clone());
1909     New->setCalledFunction(IPrintFFn);
1910     B.Insert(New);
1911     return New;
1912   }
1913   return nullptr;
1914 }
1915 
1916 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
1917   // Check for a fixed format string.
1918   StringRef FormatStr;
1919   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1920     return nullptr;
1921 
1922   // If we just have a format string (nothing else crazy) transform it.
1923   if (CI->getNumArgOperands() == 2) {
1924     // Make sure there's no % in the constant array.  We could try to handle
1925     // %% -> % in the future if we cared.
1926     if (FormatStr.find('%') != StringRef::npos)
1927       return nullptr; // we found a format specifier, bail out.
1928 
1929     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
1930     B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
1931                    ConstantInt::get(DL.getIntPtrType(CI->getContext()),
1932                                     FormatStr.size() + 1)); // Copy the null byte.
1933     return ConstantInt::get(CI->getType(), FormatStr.size());
1934   }
1935 
1936   // The remaining optimizations require the format string to be "%s" or "%c"
1937   // and have an extra operand.
1938   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1939       CI->getNumArgOperands() < 3)
1940     return nullptr;
1941 
1942   // Decode the second character of the format string.
1943   if (FormatStr[1] == 'c') {
1944     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
1945     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1946       return nullptr;
1947     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
1948     Value *Ptr = castToCStr(CI->getArgOperand(0), B);
1949     B.CreateStore(V, Ptr);
1950     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
1951     B.CreateStore(B.getInt8(0), Ptr);
1952 
1953     return ConstantInt::get(CI->getType(), 1);
1954   }
1955 
1956   if (FormatStr[1] == 's') {
1957     // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1958     if (!CI->getArgOperand(2)->getType()->isPointerTy())
1959       return nullptr;
1960 
1961     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
1962     if (!Len)
1963       return nullptr;
1964     Value *IncLen =
1965         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
1966     B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen);
1967 
1968     // The sprintf result is the unincremented number of bytes in the string.
1969     return B.CreateIntCast(Len, CI->getType(), false);
1970   }
1971   return nullptr;
1972 }
1973 
1974 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
1975   Function *Callee = CI->getCalledFunction();
1976   FunctionType *FT = Callee->getFunctionType();
1977   if (Value *V = optimizeSPrintFString(CI, B)) {
1978     return V;
1979   }
1980 
1981   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
1982   // point arguments.
1983   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
1984     Module *M = B.GetInsertBlock()->getParent()->getParent();
1985     Constant *SIPrintFFn =
1986         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
1987     CallInst *New = cast<CallInst>(CI->clone());
1988     New->setCalledFunction(SIPrintFFn);
1989     B.Insert(New);
1990     return New;
1991   }
1992   return nullptr;
1993 }
1994 
1995 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) {
1996   // Check for a fixed format string.
1997   StringRef FormatStr;
1998   if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
1999     return nullptr;
2000 
2001   // Check for size
2002   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2003   if (!Size)
2004     return nullptr;
2005 
2006   uint64_t N = Size->getZExtValue();
2007 
2008   // If we just have a format string (nothing else crazy) transform it.
2009   if (CI->getNumArgOperands() == 3) {
2010     // Make sure there's no % in the constant array.  We could try to handle
2011     // %% -> % in the future if we cared.
2012     if (FormatStr.find('%') != StringRef::npos)
2013       return nullptr; // we found a format specifier, bail out.
2014 
2015     if (N == 0)
2016       return ConstantInt::get(CI->getType(), FormatStr.size());
2017     else if (N < FormatStr.size() + 1)
2018       return nullptr;
2019 
2020     // sprintf(str, size, fmt) -> llvm.memcpy(align 1 str, align 1 fmt,
2021     // strlen(fmt)+1)
2022     B.CreateMemCpy(
2023         CI->getArgOperand(0), 1, CI->getArgOperand(2), 1,
2024         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2025                          FormatStr.size() + 1)); // Copy the null byte.
2026     return ConstantInt::get(CI->getType(), FormatStr.size());
2027   }
2028 
2029   // The remaining optimizations require the format string to be "%s" or "%c"
2030   // and have an extra operand.
2031   if (FormatStr.size() == 2 && FormatStr[0] == '%' &&
2032       CI->getNumArgOperands() == 4) {
2033 
2034     // Decode the second character of the format string.
2035     if (FormatStr[1] == 'c') {
2036       if (N == 0)
2037         return ConstantInt::get(CI->getType(), 1);
2038       else if (N == 1)
2039         return nullptr;
2040 
2041       // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2042       if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2043         return nullptr;
2044       Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2045       Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2046       B.CreateStore(V, Ptr);
2047       Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2048       B.CreateStore(B.getInt8(0), Ptr);
2049 
2050       return ConstantInt::get(CI->getType(), 1);
2051     }
2052 
2053     if (FormatStr[1] == 's') {
2054       // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2055       StringRef Str;
2056       if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2057         return nullptr;
2058 
2059       if (N == 0)
2060         return ConstantInt::get(CI->getType(), Str.size());
2061       else if (N < Str.size() + 1)
2062         return nullptr;
2063 
2064       B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(3), 1,
2065                      ConstantInt::get(CI->getType(), Str.size() + 1));
2066 
2067       // The snprintf result is the unincremented number of bytes in the string.
2068       return ConstantInt::get(CI->getType(), Str.size());
2069     }
2070   }
2071   return nullptr;
2072 }
2073 
2074 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) {
2075   if (Value *V = optimizeSnPrintFString(CI, B)) {
2076     return V;
2077   }
2078 
2079   return nullptr;
2080 }
2081 
2082 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
2083   optimizeErrorReporting(CI, B, 0);
2084 
2085   // All the optimizations depend on the format string.
2086   StringRef FormatStr;
2087   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2088     return nullptr;
2089 
2090   // Do not do any of the following transformations if the fprintf return
2091   // value is used, in general the fprintf return value is not compatible
2092   // with fwrite(), fputc() or fputs().
2093   if (!CI->use_empty())
2094     return nullptr;
2095 
2096   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2097   if (CI->getNumArgOperands() == 2) {
2098     // Could handle %% -> % if we cared.
2099     if (FormatStr.find('%') != StringRef::npos)
2100       return nullptr; // We found a format specifier.
2101 
2102     return emitFWrite(
2103         CI->getArgOperand(1),
2104         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
2105         CI->getArgOperand(0), B, DL, TLI);
2106   }
2107 
2108   // The remaining optimizations require the format string to be "%s" or "%c"
2109   // and have an extra operand.
2110   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2111       CI->getNumArgOperands() < 3)
2112     return nullptr;
2113 
2114   // Decode the second character of the format string.
2115   if (FormatStr[1] == 'c') {
2116     // fprintf(F, "%c", chr) --> fputc(chr, F)
2117     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2118       return nullptr;
2119     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2120   }
2121 
2122   if (FormatStr[1] == 's') {
2123     // fprintf(F, "%s", str) --> fputs(str, F)
2124     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2125       return nullptr;
2126     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2127   }
2128   return nullptr;
2129 }
2130 
2131 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
2132   Function *Callee = CI->getCalledFunction();
2133   FunctionType *FT = Callee->getFunctionType();
2134   if (Value *V = optimizeFPrintFString(CI, B)) {
2135     return V;
2136   }
2137 
2138   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2139   // floating point arguments.
2140   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
2141     Module *M = B.GetInsertBlock()->getParent()->getParent();
2142     Constant *FIPrintFFn =
2143         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2144     CallInst *New = cast<CallInst>(CI->clone());
2145     New->setCalledFunction(FIPrintFFn);
2146     B.Insert(New);
2147     return New;
2148   }
2149   return nullptr;
2150 }
2151 
2152 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
2153   optimizeErrorReporting(CI, B, 3);
2154 
2155   // Get the element size and count.
2156   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2157   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2158   if (SizeC && CountC) {
2159     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2160 
2161     // If this is writing zero records, remove the call (it's a noop).
2162     if (Bytes == 0)
2163       return ConstantInt::get(CI->getType(), 0);
2164 
2165     // If this is writing one byte, turn it into fputc.
2166     // This optimisation is only valid, if the return value is unused.
2167     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2168       Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char");
2169       Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2170       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2171     }
2172   }
2173 
2174   if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2175     return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2176                               CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2177                               TLI);
2178 
2179   return nullptr;
2180 }
2181 
2182 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
2183   optimizeErrorReporting(CI, B, 1);
2184 
2185   // Don't rewrite fputs to fwrite when optimising for size because fwrite
2186   // requires more arguments and thus extra MOVs are required.
2187   if (CI->getFunction()->optForSize())
2188     return nullptr;
2189 
2190   // Check if has any use
2191   if (!CI->use_empty()) {
2192     if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2193       return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2194                                TLI);
2195     else
2196       // We can't optimize if return value is used.
2197       return nullptr;
2198   }
2199 
2200   // fputs(s,F) --> fwrite(s,1,strlen(s),F)
2201   uint64_t Len = GetStringLength(CI->getArgOperand(0));
2202   if (!Len)
2203     return nullptr;
2204 
2205   // Known to have no uses (see above).
2206   return emitFWrite(
2207       CI->getArgOperand(0),
2208       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2209       CI->getArgOperand(1), B, DL, TLI);
2210 }
2211 
2212 Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) {
2213   optimizeErrorReporting(CI, B, 1);
2214 
2215   if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2216     return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2217                              TLI);
2218 
2219   return nullptr;
2220 }
2221 
2222 Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) {
2223   if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI))
2224     return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI);
2225 
2226   return nullptr;
2227 }
2228 
2229 Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) {
2230   if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI))
2231     return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2232                              CI->getArgOperand(2), B, TLI);
2233 
2234   return nullptr;
2235 }
2236 
2237 Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) {
2238   if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2239     return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2240                              CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2241                              TLI);
2242 
2243   return nullptr;
2244 }
2245 
2246 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
2247   // Check for a constant string.
2248   StringRef Str;
2249   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2250     return nullptr;
2251 
2252   if (Str.empty() && CI->use_empty()) {
2253     // puts("") -> putchar('\n')
2254     Value *Res = emitPutChar(B.getInt32('\n'), B, TLI);
2255     if (CI->use_empty() || !Res)
2256       return Res;
2257     return B.CreateIntCast(Res, CI->getType(), true);
2258   }
2259 
2260   return nullptr;
2261 }
2262 
2263 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2264   LibFunc Func;
2265   SmallString<20> FloatFuncName = FuncName;
2266   FloatFuncName += 'f';
2267   if (TLI->getLibFunc(FloatFuncName, Func))
2268     return TLI->has(Func);
2269   return false;
2270 }
2271 
2272 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2273                                                       IRBuilder<> &Builder) {
2274   LibFunc Func;
2275   Function *Callee = CI->getCalledFunction();
2276   // Check for string/memory library functions.
2277   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2278     // Make sure we never change the calling convention.
2279     assert((ignoreCallingConv(Func) ||
2280             isCallingConvCCompatible(CI)) &&
2281       "Optimizing string/memory libcall would change the calling convention");
2282     switch (Func) {
2283     case LibFunc_strcat:
2284       return optimizeStrCat(CI, Builder);
2285     case LibFunc_strncat:
2286       return optimizeStrNCat(CI, Builder);
2287     case LibFunc_strchr:
2288       return optimizeStrChr(CI, Builder);
2289     case LibFunc_strrchr:
2290       return optimizeStrRChr(CI, Builder);
2291     case LibFunc_strcmp:
2292       return optimizeStrCmp(CI, Builder);
2293     case LibFunc_strncmp:
2294       return optimizeStrNCmp(CI, Builder);
2295     case LibFunc_strcpy:
2296       return optimizeStrCpy(CI, Builder);
2297     case LibFunc_stpcpy:
2298       return optimizeStpCpy(CI, Builder);
2299     case LibFunc_strncpy:
2300       return optimizeStrNCpy(CI, Builder);
2301     case LibFunc_strlen:
2302       return optimizeStrLen(CI, Builder);
2303     case LibFunc_strpbrk:
2304       return optimizeStrPBrk(CI, Builder);
2305     case LibFunc_strtol:
2306     case LibFunc_strtod:
2307     case LibFunc_strtof:
2308     case LibFunc_strtoul:
2309     case LibFunc_strtoll:
2310     case LibFunc_strtold:
2311     case LibFunc_strtoull:
2312       return optimizeStrTo(CI, Builder);
2313     case LibFunc_strspn:
2314       return optimizeStrSpn(CI, Builder);
2315     case LibFunc_strcspn:
2316       return optimizeStrCSpn(CI, Builder);
2317     case LibFunc_strstr:
2318       return optimizeStrStr(CI, Builder);
2319     case LibFunc_memchr:
2320       return optimizeMemChr(CI, Builder);
2321     case LibFunc_memcmp:
2322       return optimizeMemCmp(CI, Builder);
2323     case LibFunc_memcpy:
2324       return optimizeMemCpy(CI, Builder);
2325     case LibFunc_memmove:
2326       return optimizeMemMove(CI, Builder);
2327     case LibFunc_memset:
2328       return optimizeMemSet(CI, Builder);
2329     case LibFunc_realloc:
2330       return optimizeRealloc(CI, Builder);
2331     case LibFunc_wcslen:
2332       return optimizeWcslen(CI, Builder);
2333     default:
2334       break;
2335     }
2336   }
2337   return nullptr;
2338 }
2339 
2340 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2341                                                        LibFunc Func,
2342                                                        IRBuilder<> &Builder) {
2343   // Don't optimize calls that require strict floating point semantics.
2344   if (CI->isStrictFP())
2345     return nullptr;
2346 
2347   if (Value *V = optimizeTrigReflections(CI, Func, Builder))
2348     return V;
2349 
2350   switch (Func) {
2351   case LibFunc_sinpif:
2352   case LibFunc_sinpi:
2353   case LibFunc_cospif:
2354   case LibFunc_cospi:
2355     return optimizeSinCosPi(CI, Builder);
2356   case LibFunc_powf:
2357   case LibFunc_pow:
2358   case LibFunc_powl:
2359     return optimizePow(CI, Builder);
2360   case LibFunc_exp2l:
2361   case LibFunc_exp2:
2362   case LibFunc_exp2f:
2363     return optimizeExp2(CI, Builder);
2364   case LibFunc_fabsf:
2365   case LibFunc_fabs:
2366   case LibFunc_fabsl:
2367     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2368   case LibFunc_sqrtf:
2369   case LibFunc_sqrt:
2370   case LibFunc_sqrtl:
2371     return optimizeSqrt(CI, Builder);
2372   case LibFunc_log:
2373   case LibFunc_log10:
2374   case LibFunc_log1p:
2375   case LibFunc_log2:
2376   case LibFunc_logb:
2377     return optimizeLog(CI, Builder);
2378   case LibFunc_tan:
2379   case LibFunc_tanf:
2380   case LibFunc_tanl:
2381     return optimizeTan(CI, Builder);
2382   case LibFunc_ceil:
2383     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2384   case LibFunc_floor:
2385     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2386   case LibFunc_round:
2387     return replaceUnaryCall(CI, Builder, Intrinsic::round);
2388   case LibFunc_nearbyint:
2389     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2390   case LibFunc_rint:
2391     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2392   case LibFunc_trunc:
2393     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
2394   case LibFunc_acos:
2395   case LibFunc_acosh:
2396   case LibFunc_asin:
2397   case LibFunc_asinh:
2398   case LibFunc_atan:
2399   case LibFunc_atanh:
2400   case LibFunc_cbrt:
2401   case LibFunc_cosh:
2402   case LibFunc_exp:
2403   case LibFunc_exp10:
2404   case LibFunc_expm1:
2405   case LibFunc_cos:
2406   case LibFunc_sin:
2407   case LibFunc_sinh:
2408   case LibFunc_tanh:
2409     if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
2410       return optimizeUnaryDoubleFP(CI, Builder, true);
2411     return nullptr;
2412   case LibFunc_copysign:
2413     if (hasFloatVersion(CI->getCalledFunction()->getName()))
2414       return optimizeBinaryDoubleFP(CI, Builder);
2415     return nullptr;
2416   case LibFunc_fminf:
2417   case LibFunc_fmin:
2418   case LibFunc_fminl:
2419   case LibFunc_fmaxf:
2420   case LibFunc_fmax:
2421   case LibFunc_fmaxl:
2422     return optimizeFMinFMax(CI, Builder);
2423   case LibFunc_cabs:
2424   case LibFunc_cabsf:
2425   case LibFunc_cabsl:
2426     return optimizeCAbs(CI, Builder);
2427   default:
2428     return nullptr;
2429   }
2430 }
2431 
2432 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
2433   // TODO: Split out the code below that operates on FP calls so that
2434   //       we can all non-FP calls with the StrictFP attribute to be
2435   //       optimized.
2436   if (CI->isNoBuiltin())
2437     return nullptr;
2438 
2439   LibFunc Func;
2440   Function *Callee = CI->getCalledFunction();
2441 
2442   SmallVector<OperandBundleDef, 2> OpBundles;
2443   CI->getOperandBundlesAsDefs(OpBundles);
2444   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2445   bool isCallingConvC = isCallingConvCCompatible(CI);
2446 
2447   // Command-line parameter overrides instruction attribute.
2448   // This can't be moved to optimizeFloatingPointLibCall() because it may be
2449   // used by the intrinsic optimizations.
2450   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
2451     UnsafeFPShrink = EnableUnsafeFPShrink;
2452   else if (isa<FPMathOperator>(CI) && CI->isFast())
2453     UnsafeFPShrink = true;
2454 
2455   // First, check for intrinsics.
2456   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
2457     if (!isCallingConvC)
2458       return nullptr;
2459     // The FP intrinsics have corresponding constrained versions so we don't
2460     // need to check for the StrictFP attribute here.
2461     switch (II->getIntrinsicID()) {
2462     case Intrinsic::pow:
2463       return optimizePow(CI, Builder);
2464     case Intrinsic::exp2:
2465       return optimizeExp2(CI, Builder);
2466     case Intrinsic::log:
2467       return optimizeLog(CI, Builder);
2468     case Intrinsic::sqrt:
2469       return optimizeSqrt(CI, Builder);
2470     // TODO: Use foldMallocMemset() with memset intrinsic.
2471     default:
2472       return nullptr;
2473     }
2474   }
2475 
2476   // Also try to simplify calls to fortified library functions.
2477   if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
2478     // Try to further simplify the result.
2479     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
2480     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
2481       // Use an IR Builder from SimplifiedCI if available instead of CI
2482       // to guarantee we reach all uses we might replace later on.
2483       IRBuilder<> TmpBuilder(SimplifiedCI);
2484       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
2485         // If we were able to further simplify, remove the now redundant call.
2486         SimplifiedCI->replaceAllUsesWith(V);
2487         SimplifiedCI->eraseFromParent();
2488         return V;
2489       }
2490     }
2491     return SimplifiedFortifiedCI;
2492   }
2493 
2494   // Then check for known library functions.
2495   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2496     // We never change the calling convention.
2497     if (!ignoreCallingConv(Func) && !isCallingConvC)
2498       return nullptr;
2499     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
2500       return V;
2501     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
2502       return V;
2503     switch (Func) {
2504     case LibFunc_ffs:
2505     case LibFunc_ffsl:
2506     case LibFunc_ffsll:
2507       return optimizeFFS(CI, Builder);
2508     case LibFunc_fls:
2509     case LibFunc_flsl:
2510     case LibFunc_flsll:
2511       return optimizeFls(CI, Builder);
2512     case LibFunc_abs:
2513     case LibFunc_labs:
2514     case LibFunc_llabs:
2515       return optimizeAbs(CI, Builder);
2516     case LibFunc_isdigit:
2517       return optimizeIsDigit(CI, Builder);
2518     case LibFunc_isascii:
2519       return optimizeIsAscii(CI, Builder);
2520     case LibFunc_toascii:
2521       return optimizeToAscii(CI, Builder);
2522     case LibFunc_atoi:
2523     case LibFunc_atol:
2524     case LibFunc_atoll:
2525       return optimizeAtoi(CI, Builder);
2526     case LibFunc_strtol:
2527     case LibFunc_strtoll:
2528       return optimizeStrtol(CI, Builder);
2529     case LibFunc_printf:
2530       return optimizePrintF(CI, Builder);
2531     case LibFunc_sprintf:
2532       return optimizeSPrintF(CI, Builder);
2533     case LibFunc_snprintf:
2534       return optimizeSnPrintF(CI, Builder);
2535     case LibFunc_fprintf:
2536       return optimizeFPrintF(CI, Builder);
2537     case LibFunc_fwrite:
2538       return optimizeFWrite(CI, Builder);
2539     case LibFunc_fread:
2540       return optimizeFRead(CI, Builder);
2541     case LibFunc_fputs:
2542       return optimizeFPuts(CI, Builder);
2543     case LibFunc_fgets:
2544       return optimizeFGets(CI, Builder);
2545     case LibFunc_fputc:
2546       return optimizeFPutc(CI, Builder);
2547     case LibFunc_fgetc:
2548       return optimizeFGetc(CI, Builder);
2549     case LibFunc_puts:
2550       return optimizePuts(CI, Builder);
2551     case LibFunc_perror:
2552       return optimizeErrorReporting(CI, Builder);
2553     case LibFunc_vfprintf:
2554     case LibFunc_fiprintf:
2555       return optimizeErrorReporting(CI, Builder, 0);
2556     default:
2557       return nullptr;
2558     }
2559   }
2560   return nullptr;
2561 }
2562 
2563 LibCallSimplifier::LibCallSimplifier(
2564     const DataLayout &DL, const TargetLibraryInfo *TLI,
2565     OptimizationRemarkEmitter &ORE,
2566     function_ref<void(Instruction *, Value *)> Replacer)
2567     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE),
2568       UnsafeFPShrink(false), Replacer(Replacer) {}
2569 
2570 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
2571   // Indirect through the replacer used in this instance.
2572   Replacer(I, With);
2573 }
2574 
2575 // TODO:
2576 //   Additional cases that we need to add to this file:
2577 //
2578 // cbrt:
2579 //   * cbrt(expN(X))  -> expN(x/3)
2580 //   * cbrt(sqrt(x))  -> pow(x,1/6)
2581 //   * cbrt(cbrt(x))  -> pow(x,1/9)
2582 //
2583 // exp, expf, expl:
2584 //   * exp(log(x))  -> x
2585 //
2586 // log, logf, logl:
2587 //   * log(exp(x))   -> x
2588 //   * log(exp(y))   -> y*log(e)
2589 //   * log(exp10(y)) -> y*log(10)
2590 //   * log(sqrt(x))  -> 0.5*log(x)
2591 //
2592 // pow, powf, powl:
2593 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
2594 //   * pow(pow(x,y),z)-> pow(x,y*z)
2595 //
2596 // signbit:
2597 //   * signbit(cnst) -> cnst'
2598 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2599 //
2600 // sqrt, sqrtf, sqrtl:
2601 //   * sqrt(expN(x))  -> expN(x*0.5)
2602 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2603 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2604 //
2605 
2606 //===----------------------------------------------------------------------===//
2607 // Fortified Library Call Optimizations
2608 //===----------------------------------------------------------------------===//
2609 
2610 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
2611                                                          unsigned ObjSizeOp,
2612                                                          unsigned SizeOp,
2613                                                          bool isString) {
2614   if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
2615     return true;
2616   if (ConstantInt *ObjSizeCI =
2617           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
2618     if (ObjSizeCI->isMinusOne())
2619       return true;
2620     // If the object size wasn't -1 (unknown), bail out if we were asked to.
2621     if (OnlyLowerUnknownSize)
2622       return false;
2623     if (isString) {
2624       uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
2625       // If the length is 0 we don't know how long it is and so we can't
2626       // remove the check.
2627       if (Len == 0)
2628         return false;
2629       return ObjSizeCI->getZExtValue() >= Len;
2630     }
2631     if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
2632       return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
2633   }
2634   return false;
2635 }
2636 
2637 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
2638                                                      IRBuilder<> &B) {
2639   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2640     B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
2641                    CI->getArgOperand(2));
2642     return CI->getArgOperand(0);
2643   }
2644   return nullptr;
2645 }
2646 
2647 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
2648                                                       IRBuilder<> &B) {
2649   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2650     B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
2651                     CI->getArgOperand(2));
2652     return CI->getArgOperand(0);
2653   }
2654   return nullptr;
2655 }
2656 
2657 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
2658                                                      IRBuilder<> &B) {
2659   // TODO: Try foldMallocMemset() here.
2660 
2661   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2662     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
2663     B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
2664     return CI->getArgOperand(0);
2665   }
2666   return nullptr;
2667 }
2668 
2669 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
2670                                                       IRBuilder<> &B,
2671                                                       LibFunc Func) {
2672   Function *Callee = CI->getCalledFunction();
2673   StringRef Name = Callee->getName();
2674   const DataLayout &DL = CI->getModule()->getDataLayout();
2675   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
2676         *ObjSize = CI->getArgOperand(2);
2677 
2678   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
2679   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
2680     Value *StrLen = emitStrLen(Src, B, DL, TLI);
2681     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
2682   }
2683 
2684   // If a) we don't have any length information, or b) we know this will
2685   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
2686   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
2687   // TODO: It might be nice to get a maximum length out of the possible
2688   // string lengths for varying.
2689   if (isFortifiedCallFoldable(CI, 2, 1, true))
2690     return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
2691 
2692   if (OnlyLowerUnknownSize)
2693     return nullptr;
2694 
2695   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
2696   uint64_t Len = GetStringLength(Src);
2697   if (Len == 0)
2698     return nullptr;
2699 
2700   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
2701   Value *LenV = ConstantInt::get(SizeTTy, Len);
2702   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
2703   // If the function was an __stpcpy_chk, and we were able to fold it into
2704   // a __memcpy_chk, we still need to return the correct end pointer.
2705   if (Ret && Func == LibFunc_stpcpy_chk)
2706     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
2707   return Ret;
2708 }
2709 
2710 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
2711                                                        IRBuilder<> &B,
2712                                                        LibFunc Func) {
2713   Function *Callee = CI->getCalledFunction();
2714   StringRef Name = Callee->getName();
2715   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2716     Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2717                              CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
2718     return Ret;
2719   }
2720   return nullptr;
2721 }
2722 
2723 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
2724   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
2725   // Some clang users checked for _chk libcall availability using:
2726   //   __has_builtin(__builtin___memcpy_chk)
2727   // When compiling with -fno-builtin, this is always true.
2728   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
2729   // end up with fortified libcalls, which isn't acceptable in a freestanding
2730   // environment which only provides their non-fortified counterparts.
2731   //
2732   // Until we change clang and/or teach external users to check for availability
2733   // differently, disregard the "nobuiltin" attribute and TLI::has.
2734   //
2735   // PR23093.
2736 
2737   LibFunc Func;
2738   Function *Callee = CI->getCalledFunction();
2739 
2740   SmallVector<OperandBundleDef, 2> OpBundles;
2741   CI->getOperandBundlesAsDefs(OpBundles);
2742   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2743   bool isCallingConvC = isCallingConvCCompatible(CI);
2744 
2745   // First, check that this is a known library functions and that the prototype
2746   // is correct.
2747   if (!TLI->getLibFunc(*Callee, Func))
2748     return nullptr;
2749 
2750   // We never change the calling convention.
2751   if (!ignoreCallingConv(Func) && !isCallingConvC)
2752     return nullptr;
2753 
2754   switch (Func) {
2755   case LibFunc_memcpy_chk:
2756     return optimizeMemCpyChk(CI, Builder);
2757   case LibFunc_memmove_chk:
2758     return optimizeMemMoveChk(CI, Builder);
2759   case LibFunc_memset_chk:
2760     return optimizeMemSetChk(CI, Builder);
2761   case LibFunc_stpcpy_chk:
2762   case LibFunc_strcpy_chk:
2763     return optimizeStrpCpyChk(CI, Builder, Func);
2764   case LibFunc_stpncpy_chk:
2765   case LibFunc_strncpy_chk:
2766     return optimizeStrpNCpyChk(CI, Builder, Func);
2767   default:
2768     break;
2769   }
2770   return nullptr;
2771 }
2772 
2773 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
2774     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
2775     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
2776