1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Analysis/BlockFrequencyInfo.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ProfileSummaryInfo.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/KnownBits.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Transforms/Utils/BuildLibCalls.h" 39 #include "llvm/Transforms/Utils/SizeOpts.h" 40 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 static cl::opt<bool> 45 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 46 cl::init(false), 47 cl::desc("Enable unsafe double to float " 48 "shrinking for math lib calls")); 49 50 //===----------------------------------------------------------------------===// 51 // Helper Functions 52 //===----------------------------------------------------------------------===// 53 54 static bool ignoreCallingConv(LibFunc Func) { 55 return Func == LibFunc_abs || Func == LibFunc_labs || 56 Func == LibFunc_llabs || Func == LibFunc_strlen; 57 } 58 59 /// Return true if it is only used in equality comparisons with With. 60 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 61 for (User *U : V->users()) { 62 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 63 if (IC->isEquality() && IC->getOperand(1) == With) 64 continue; 65 // Unknown instruction. 66 return false; 67 } 68 return true; 69 } 70 71 static bool callHasFloatingPointArgument(const CallInst *CI) { 72 return any_of(CI->operands(), [](const Use &OI) { 73 return OI->getType()->isFloatingPointTy(); 74 }); 75 } 76 77 static bool callHasFP128Argument(const CallInst *CI) { 78 return any_of(CI->operands(), [](const Use &OI) { 79 return OI->getType()->isFP128Ty(); 80 }); 81 } 82 83 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 84 if (Base < 2 || Base > 36) 85 // handle special zero base 86 if (Base != 0) 87 return nullptr; 88 89 char *End; 90 std::string nptr = Str.str(); 91 errno = 0; 92 long long int Result = strtoll(nptr.c_str(), &End, Base); 93 if (errno) 94 return nullptr; 95 96 // if we assume all possible target locales are ASCII supersets, 97 // then if strtoll successfully parses a number on the host, 98 // it will also successfully parse the same way on the target 99 if (*End != '\0') 100 return nullptr; 101 102 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 103 return nullptr; 104 105 return ConstantInt::get(CI->getType(), Result); 106 } 107 108 static bool isOnlyUsedInComparisonWithZero(Value *V) { 109 for (User *U : V->users()) { 110 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 111 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 112 if (C->isNullValue()) 113 continue; 114 // Unknown instruction. 115 return false; 116 } 117 return true; 118 } 119 120 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 121 const DataLayout &DL) { 122 if (!isOnlyUsedInComparisonWithZero(CI)) 123 return false; 124 125 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 126 return false; 127 128 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 129 return false; 130 131 return true; 132 } 133 134 static void annotateDereferenceableBytes(CallInst *CI, 135 ArrayRef<unsigned> ArgNos, 136 uint64_t DereferenceableBytes) { 137 const Function *F = CI->getCaller(); 138 if (!F) 139 return; 140 for (unsigned ArgNo : ArgNos) { 141 uint64_t DerefBytes = DereferenceableBytes; 142 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 143 if (!llvm::NullPointerIsDefined(F, AS) || 144 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 145 DerefBytes = std::max(CI->getDereferenceableOrNullBytes( 146 ArgNo + AttributeList::FirstArgIndex), 147 DereferenceableBytes); 148 149 if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) < 150 DerefBytes) { 151 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 152 if (!llvm::NullPointerIsDefined(F, AS) || 153 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 154 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 155 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 156 CI->getContext(), DerefBytes)); 157 } 158 } 159 } 160 161 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, 162 ArrayRef<unsigned> ArgNos) { 163 Function *F = CI->getCaller(); 164 if (!F) 165 return; 166 167 for (unsigned ArgNo : ArgNos) { 168 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef)) 169 CI->addParamAttr(ArgNo, Attribute::NoUndef); 170 171 if (CI->paramHasAttr(ArgNo, Attribute::NonNull)) 172 continue; 173 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 174 if (llvm::NullPointerIsDefined(F, AS)) 175 continue; 176 177 CI->addParamAttr(ArgNo, Attribute::NonNull); 178 annotateDereferenceableBytes(CI, ArgNo, 1); 179 } 180 } 181 182 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 183 Value *Size, const DataLayout &DL) { 184 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 185 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 186 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 187 } else if (isKnownNonZero(Size, DL)) { 188 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 189 const APInt *X, *Y; 190 uint64_t DerefMin = 1; 191 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 192 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 193 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 194 } 195 } 196 } 197 198 //===----------------------------------------------------------------------===// 199 // String and Memory Library Call Optimizations 200 //===----------------------------------------------------------------------===// 201 202 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 203 // Extract some information from the instruction 204 Value *Dst = CI->getArgOperand(0); 205 Value *Src = CI->getArgOperand(1); 206 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 207 208 // See if we can get the length of the input string. 209 uint64_t Len = GetStringLength(Src); 210 if (Len) 211 annotateDereferenceableBytes(CI, 1, Len); 212 else 213 return nullptr; 214 --Len; // Unbias length. 215 216 // Handle the simple, do-nothing case: strcat(x, "") -> x 217 if (Len == 0) 218 return Dst; 219 220 return emitStrLenMemCpy(Src, Dst, Len, B); 221 } 222 223 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 224 IRBuilderBase &B) { 225 // We need to find the end of the destination string. That's where the 226 // memory is to be moved to. We just generate a call to strlen. 227 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 228 if (!DstLen) 229 return nullptr; 230 231 // Now that we have the destination's length, we must index into the 232 // destination's pointer to get the actual memcpy destination (end of 233 // the string .. we're concatenating). 234 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 235 236 // We have enough information to now generate the memcpy call to do the 237 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 238 B.CreateMemCpy( 239 CpyDst, Align(1), Src, Align(1), 240 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 241 return Dst; 242 } 243 244 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 245 // Extract some information from the instruction. 246 Value *Dst = CI->getArgOperand(0); 247 Value *Src = CI->getArgOperand(1); 248 Value *Size = CI->getArgOperand(2); 249 uint64_t Len; 250 annotateNonNullNoUndefBasedOnAccess(CI, 0); 251 if (isKnownNonZero(Size, DL)) 252 annotateNonNullNoUndefBasedOnAccess(CI, 1); 253 254 // We don't do anything if length is not constant. 255 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 256 if (LengthArg) { 257 Len = LengthArg->getZExtValue(); 258 // strncat(x, c, 0) -> x 259 if (!Len) 260 return Dst; 261 } else { 262 return nullptr; 263 } 264 265 // See if we can get the length of the input string. 266 uint64_t SrcLen = GetStringLength(Src); 267 if (SrcLen) { 268 annotateDereferenceableBytes(CI, 1, SrcLen); 269 --SrcLen; // Unbias length. 270 } else { 271 return nullptr; 272 } 273 274 // strncat(x, "", c) -> x 275 if (SrcLen == 0) 276 return Dst; 277 278 // We don't optimize this case. 279 if (Len < SrcLen) 280 return nullptr; 281 282 // strncat(x, s, c) -> strcat(x, s) 283 // s is constant so the strcat can be optimized further. 284 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 285 } 286 287 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 288 Function *Callee = CI->getCalledFunction(); 289 FunctionType *FT = Callee->getFunctionType(); 290 Value *SrcStr = CI->getArgOperand(0); 291 annotateNonNullNoUndefBasedOnAccess(CI, 0); 292 293 // If the second operand is non-constant, see if we can compute the length 294 // of the input string and turn this into memchr. 295 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 296 if (!CharC) { 297 uint64_t Len = GetStringLength(SrcStr); 298 if (Len) 299 annotateDereferenceableBytes(CI, 0, Len); 300 else 301 return nullptr; 302 if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 303 return nullptr; 304 305 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 306 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 307 B, DL, TLI); 308 } 309 310 // Otherwise, the character is a constant, see if the first argument is 311 // a string literal. If so, we can constant fold. 312 StringRef Str; 313 if (!getConstantStringInfo(SrcStr, Str)) { 314 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 315 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 316 return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 317 return nullptr; 318 } 319 320 // Compute the offset, make sure to handle the case when we're searching for 321 // zero (a weird way to spell strlen). 322 size_t I = (0xFF & CharC->getSExtValue()) == 0 323 ? Str.size() 324 : Str.find(CharC->getSExtValue()); 325 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 326 return Constant::getNullValue(CI->getType()); 327 328 // strchr(s+n,c) -> gep(s+n+i,c) 329 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 330 } 331 332 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 333 Value *SrcStr = CI->getArgOperand(0); 334 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 335 annotateNonNullNoUndefBasedOnAccess(CI, 0); 336 337 // Cannot fold anything if we're not looking for a constant. 338 if (!CharC) 339 return nullptr; 340 341 StringRef Str; 342 if (!getConstantStringInfo(SrcStr, Str)) { 343 // strrchr(s, 0) -> strchr(s, 0) 344 if (CharC->isZero()) 345 return emitStrChr(SrcStr, '\0', B, TLI); 346 return nullptr; 347 } 348 349 // Compute the offset. 350 size_t I = (0xFF & CharC->getSExtValue()) == 0 351 ? Str.size() 352 : Str.rfind(CharC->getSExtValue()); 353 if (I == StringRef::npos) // Didn't find the char. Return null. 354 return Constant::getNullValue(CI->getType()); 355 356 // strrchr(s+n,c) -> gep(s+n+i,c) 357 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 358 } 359 360 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 361 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 362 if (Str1P == Str2P) // strcmp(x,x) -> 0 363 return ConstantInt::get(CI->getType(), 0); 364 365 StringRef Str1, Str2; 366 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 367 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 368 369 // strcmp(x, y) -> cnst (if both x and y are constant strings) 370 if (HasStr1 && HasStr2) 371 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 372 373 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 374 return B.CreateNeg(B.CreateZExt( 375 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 376 377 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 378 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 379 CI->getType()); 380 381 // strcmp(P, "x") -> memcmp(P, "x", 2) 382 uint64_t Len1 = GetStringLength(Str1P); 383 if (Len1) 384 annotateDereferenceableBytes(CI, 0, Len1); 385 uint64_t Len2 = GetStringLength(Str2P); 386 if (Len2) 387 annotateDereferenceableBytes(CI, 1, Len2); 388 389 if (Len1 && Len2) { 390 return emitMemCmp(Str1P, Str2P, 391 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 392 std::min(Len1, Len2)), 393 B, DL, TLI); 394 } 395 396 // strcmp to memcmp 397 if (!HasStr1 && HasStr2) { 398 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 399 return emitMemCmp( 400 Str1P, Str2P, 401 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 402 TLI); 403 } else if (HasStr1 && !HasStr2) { 404 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 405 return emitMemCmp( 406 Str1P, Str2P, 407 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 408 TLI); 409 } 410 411 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 412 return nullptr; 413 } 414 415 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 416 Value *Str1P = CI->getArgOperand(0); 417 Value *Str2P = CI->getArgOperand(1); 418 Value *Size = CI->getArgOperand(2); 419 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 420 return ConstantInt::get(CI->getType(), 0); 421 422 if (isKnownNonZero(Size, DL)) 423 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 424 // Get the length argument if it is constant. 425 uint64_t Length; 426 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 427 Length = LengthArg->getZExtValue(); 428 else 429 return nullptr; 430 431 if (Length == 0) // strncmp(x,y,0) -> 0 432 return ConstantInt::get(CI->getType(), 0); 433 434 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 435 return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI); 436 437 StringRef Str1, Str2; 438 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 439 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 440 441 // strncmp(x, y) -> cnst (if both x and y are constant strings) 442 if (HasStr1 && HasStr2) { 443 StringRef SubStr1 = Str1.substr(0, Length); 444 StringRef SubStr2 = Str2.substr(0, Length); 445 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 446 } 447 448 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 449 return B.CreateNeg(B.CreateZExt( 450 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 451 452 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 453 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 454 CI->getType()); 455 456 uint64_t Len1 = GetStringLength(Str1P); 457 if (Len1) 458 annotateDereferenceableBytes(CI, 0, Len1); 459 uint64_t Len2 = GetStringLength(Str2P); 460 if (Len2) 461 annotateDereferenceableBytes(CI, 1, Len2); 462 463 // strncmp to memcmp 464 if (!HasStr1 && HasStr2) { 465 Len2 = std::min(Len2, Length); 466 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 467 return emitMemCmp( 468 Str1P, Str2P, 469 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 470 TLI); 471 } else if (HasStr1 && !HasStr2) { 472 Len1 = std::min(Len1, Length); 473 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 474 return emitMemCmp( 475 Str1P, Str2P, 476 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 477 TLI); 478 } 479 480 return nullptr; 481 } 482 483 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 484 Value *Src = CI->getArgOperand(0); 485 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 486 uint64_t SrcLen = GetStringLength(Src); 487 if (SrcLen && Size) { 488 annotateDereferenceableBytes(CI, 0, SrcLen); 489 if (SrcLen <= Size->getZExtValue() + 1) 490 return emitStrDup(Src, B, TLI); 491 } 492 493 return nullptr; 494 } 495 496 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 497 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 498 if (Dst == Src) // strcpy(x,x) -> x 499 return Src; 500 501 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 502 // See if we can get the length of the input string. 503 uint64_t Len = GetStringLength(Src); 504 if (Len) 505 annotateDereferenceableBytes(CI, 1, Len); 506 else 507 return nullptr; 508 509 // We have enough information to now generate the memcpy call to do the 510 // copy for us. Make a memcpy to copy the nul byte with align = 1. 511 CallInst *NewCI = 512 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 513 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 514 NewCI->setAttributes(CI->getAttributes()); 515 NewCI->removeAttributes(AttributeList::ReturnIndex, 516 AttributeFuncs::typeIncompatible(NewCI->getType())); 517 return Dst; 518 } 519 520 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 521 Function *Callee = CI->getCalledFunction(); 522 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 523 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 524 Value *StrLen = emitStrLen(Src, B, DL, TLI); 525 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 526 } 527 528 // See if we can get the length of the input string. 529 uint64_t Len = GetStringLength(Src); 530 if (Len) 531 annotateDereferenceableBytes(CI, 1, Len); 532 else 533 return nullptr; 534 535 Type *PT = Callee->getFunctionType()->getParamType(0); 536 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 537 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 538 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 539 540 // We have enough information to now generate the memcpy call to do the 541 // copy for us. Make a memcpy to copy the nul byte with align = 1. 542 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 543 NewCI->setAttributes(CI->getAttributes()); 544 NewCI->removeAttributes(AttributeList::ReturnIndex, 545 AttributeFuncs::typeIncompatible(NewCI->getType())); 546 return DstEnd; 547 } 548 549 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) { 550 Function *Callee = CI->getCalledFunction(); 551 Value *Dst = CI->getArgOperand(0); 552 Value *Src = CI->getArgOperand(1); 553 Value *Size = CI->getArgOperand(2); 554 annotateNonNullNoUndefBasedOnAccess(CI, 0); 555 if (isKnownNonZero(Size, DL)) 556 annotateNonNullNoUndefBasedOnAccess(CI, 1); 557 558 uint64_t Len; 559 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 560 Len = LengthArg->getZExtValue(); 561 else 562 return nullptr; 563 564 // strncpy(x, y, 0) -> x 565 if (Len == 0) 566 return Dst; 567 568 // See if we can get the length of the input string. 569 uint64_t SrcLen = GetStringLength(Src); 570 if (SrcLen) { 571 annotateDereferenceableBytes(CI, 1, SrcLen); 572 --SrcLen; // Unbias length. 573 } else { 574 return nullptr; 575 } 576 577 if (SrcLen == 0) { 578 // strncpy(x, "", y) -> memset(align 1 x, '\0', y) 579 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, Align(1)); 580 AttrBuilder ArgAttrs(CI->getAttributes().getParamAttributes(0)); 581 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 582 CI->getContext(), 0, ArgAttrs)); 583 return Dst; 584 } 585 586 // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4) 587 if (Len > SrcLen + 1) { 588 if (Len <= 128) { 589 StringRef Str; 590 if (!getConstantStringInfo(Src, Str)) 591 return nullptr; 592 std::string SrcStr = Str.str(); 593 SrcStr.resize(Len, '\0'); 594 Src = B.CreateGlobalString(SrcStr, "str"); 595 } else { 596 return nullptr; 597 } 598 } 599 600 Type *PT = Callee->getFunctionType()->getParamType(0); 601 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 602 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 603 ConstantInt::get(DL.getIntPtrType(PT), Len)); 604 NewCI->setAttributes(CI->getAttributes()); 605 NewCI->removeAttributes(AttributeList::ReturnIndex, 606 AttributeFuncs::typeIncompatible(NewCI->getType())); 607 return Dst; 608 } 609 610 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 611 unsigned CharSize) { 612 Value *Src = CI->getArgOperand(0); 613 614 // Constant folding: strlen("xyz") -> 3 615 if (uint64_t Len = GetStringLength(Src, CharSize)) 616 return ConstantInt::get(CI->getType(), Len - 1); 617 618 // If s is a constant pointer pointing to a string literal, we can fold 619 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 620 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 621 // We only try to simplify strlen when the pointer s points to an array 622 // of i8. Otherwise, we would need to scale the offset x before doing the 623 // subtraction. This will make the optimization more complex, and it's not 624 // very useful because calling strlen for a pointer of other types is 625 // very uncommon. 626 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 627 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 628 return nullptr; 629 630 ConstantDataArraySlice Slice; 631 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 632 uint64_t NullTermIdx; 633 if (Slice.Array == nullptr) { 634 NullTermIdx = 0; 635 } else { 636 NullTermIdx = ~((uint64_t)0); 637 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 638 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 639 NullTermIdx = I; 640 break; 641 } 642 } 643 // If the string does not have '\0', leave it to strlen to compute 644 // its length. 645 if (NullTermIdx == ~((uint64_t)0)) 646 return nullptr; 647 } 648 649 Value *Offset = GEP->getOperand(2); 650 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 651 Known.Zero.flipAllBits(); 652 uint64_t ArrSize = 653 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 654 655 // KnownZero's bits are flipped, so zeros in KnownZero now represent 656 // bits known to be zeros in Offset, and ones in KnowZero represent 657 // bits unknown in Offset. Therefore, Offset is known to be in range 658 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 659 // unsigned-less-than NullTermIdx. 660 // 661 // If Offset is not provably in the range [0, NullTermIdx], we can still 662 // optimize if we can prove that the program has undefined behavior when 663 // Offset is outside that range. That is the case when GEP->getOperand(0) 664 // is a pointer to an object whose memory extent is NullTermIdx+1. 665 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 666 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 667 NullTermIdx == ArrSize - 1)) { 668 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 669 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 670 Offset); 671 } 672 } 673 } 674 675 // strlen(x?"foo":"bars") --> x ? 3 : 4 676 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 677 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 678 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 679 if (LenTrue && LenFalse) { 680 ORE.emit([&]() { 681 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 682 << "folded strlen(select) to select of constants"; 683 }); 684 return B.CreateSelect(SI->getCondition(), 685 ConstantInt::get(CI->getType(), LenTrue - 1), 686 ConstantInt::get(CI->getType(), LenFalse - 1)); 687 } 688 } 689 690 // strlen(x) != 0 --> *x != 0 691 // strlen(x) == 0 --> *x == 0 692 if (isOnlyUsedInZeroEqualityComparison(CI)) 693 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), 694 CI->getType()); 695 696 return nullptr; 697 } 698 699 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 700 if (Value *V = optimizeStringLength(CI, B, 8)) 701 return V; 702 annotateNonNullNoUndefBasedOnAccess(CI, 0); 703 return nullptr; 704 } 705 706 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 707 Module &M = *CI->getModule(); 708 unsigned WCharSize = TLI->getWCharSize(M) * 8; 709 // We cannot perform this optimization without wchar_size metadata. 710 if (WCharSize == 0) 711 return nullptr; 712 713 return optimizeStringLength(CI, B, WCharSize); 714 } 715 716 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 717 StringRef S1, S2; 718 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 719 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 720 721 // strpbrk(s, "") -> nullptr 722 // strpbrk("", s) -> nullptr 723 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 724 return Constant::getNullValue(CI->getType()); 725 726 // Constant folding. 727 if (HasS1 && HasS2) { 728 size_t I = S1.find_first_of(S2); 729 if (I == StringRef::npos) // No match. 730 return Constant::getNullValue(CI->getType()); 731 732 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 733 "strpbrk"); 734 } 735 736 // strpbrk(s, "a") -> strchr(s, 'a') 737 if (HasS2 && S2.size() == 1) 738 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 739 740 return nullptr; 741 } 742 743 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 744 Value *EndPtr = CI->getArgOperand(1); 745 if (isa<ConstantPointerNull>(EndPtr)) { 746 // With a null EndPtr, this function won't capture the main argument. 747 // It would be readonly too, except that it still may write to errno. 748 CI->addParamAttr(0, Attribute::NoCapture); 749 } 750 751 return nullptr; 752 } 753 754 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 755 StringRef S1, S2; 756 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 757 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 758 759 // strspn(s, "") -> 0 760 // strspn("", s) -> 0 761 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 762 return Constant::getNullValue(CI->getType()); 763 764 // Constant folding. 765 if (HasS1 && HasS2) { 766 size_t Pos = S1.find_first_not_of(S2); 767 if (Pos == StringRef::npos) 768 Pos = S1.size(); 769 return ConstantInt::get(CI->getType(), Pos); 770 } 771 772 return nullptr; 773 } 774 775 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 776 StringRef S1, S2; 777 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 778 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 779 780 // strcspn("", s) -> 0 781 if (HasS1 && S1.empty()) 782 return Constant::getNullValue(CI->getType()); 783 784 // Constant folding. 785 if (HasS1 && HasS2) { 786 size_t Pos = S1.find_first_of(S2); 787 if (Pos == StringRef::npos) 788 Pos = S1.size(); 789 return ConstantInt::get(CI->getType(), Pos); 790 } 791 792 // strcspn(s, "") -> strlen(s) 793 if (HasS2 && S2.empty()) 794 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 795 796 return nullptr; 797 } 798 799 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 800 // fold strstr(x, x) -> x. 801 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 802 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 803 804 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 805 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 806 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 807 if (!StrLen) 808 return nullptr; 809 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 810 StrLen, B, DL, TLI); 811 if (!StrNCmp) 812 return nullptr; 813 for (User *U : llvm::make_early_inc_range(CI->users())) { 814 ICmpInst *Old = cast<ICmpInst>(U); 815 Value *Cmp = 816 B.CreateICmp(Old->getPredicate(), StrNCmp, 817 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 818 replaceAllUsesWith(Old, Cmp); 819 } 820 return CI; 821 } 822 823 // See if either input string is a constant string. 824 StringRef SearchStr, ToFindStr; 825 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 826 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 827 828 // fold strstr(x, "") -> x. 829 if (HasStr2 && ToFindStr.empty()) 830 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 831 832 // If both strings are known, constant fold it. 833 if (HasStr1 && HasStr2) { 834 size_t Offset = SearchStr.find(ToFindStr); 835 836 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 837 return Constant::getNullValue(CI->getType()); 838 839 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 840 Value *Result = castToCStr(CI->getArgOperand(0), B); 841 Result = 842 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 843 return B.CreateBitCast(Result, CI->getType()); 844 } 845 846 // fold strstr(x, "y") -> strchr(x, 'y'). 847 if (HasStr2 && ToFindStr.size() == 1) { 848 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 849 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 850 } 851 852 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 853 return nullptr; 854 } 855 856 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 857 if (isKnownNonZero(CI->getOperand(2), DL)) 858 annotateNonNullNoUndefBasedOnAccess(CI, 0); 859 return nullptr; 860 } 861 862 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 863 Value *SrcStr = CI->getArgOperand(0); 864 Value *Size = CI->getArgOperand(2); 865 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 866 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 867 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 868 869 // memchr(x, y, 0) -> null 870 if (LenC) { 871 if (LenC->isZero()) 872 return Constant::getNullValue(CI->getType()); 873 } else { 874 // From now on we need at least constant length and string. 875 return nullptr; 876 } 877 878 StringRef Str; 879 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 880 return nullptr; 881 882 // Truncate the string to LenC. If Str is smaller than LenC we will still only 883 // scan the string, as reading past the end of it is undefined and we can just 884 // return null if we don't find the char. 885 Str = Str.substr(0, LenC->getZExtValue()); 886 887 // If the char is variable but the input str and length are not we can turn 888 // this memchr call into a simple bit field test. Of course this only works 889 // when the return value is only checked against null. 890 // 891 // It would be really nice to reuse switch lowering here but we can't change 892 // the CFG at this point. 893 // 894 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 895 // != 0 896 // after bounds check. 897 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 898 unsigned char Max = 899 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 900 reinterpret_cast<const unsigned char *>(Str.end())); 901 902 // Make sure the bit field we're about to create fits in a register on the 903 // target. 904 // FIXME: On a 64 bit architecture this prevents us from using the 905 // interesting range of alpha ascii chars. We could do better by emitting 906 // two bitfields or shifting the range by 64 if no lower chars are used. 907 if (!DL.fitsInLegalInteger(Max + 1)) 908 return nullptr; 909 910 // For the bit field use a power-of-2 type with at least 8 bits to avoid 911 // creating unnecessary illegal types. 912 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 913 914 // Now build the bit field. 915 APInt Bitfield(Width, 0); 916 for (char C : Str) 917 Bitfield.setBit((unsigned char)C); 918 Value *BitfieldC = B.getInt(Bitfield); 919 920 // Adjust width of "C" to the bitfield width, then mask off the high bits. 921 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 922 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 923 924 // First check that the bit field access is within bounds. 925 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 926 "memchr.bounds"); 927 928 // Create code that checks if the given bit is set in the field. 929 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 930 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 931 932 // Finally merge both checks and cast to pointer type. The inttoptr 933 // implicitly zexts the i1 to intptr type. 934 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 935 } 936 937 // Check if all arguments are constants. If so, we can constant fold. 938 if (!CharC) 939 return nullptr; 940 941 // Compute the offset. 942 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 943 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 944 return Constant::getNullValue(CI->getType()); 945 946 // memchr(s+n,c,l) -> gep(s+n+i,c) 947 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 948 } 949 950 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 951 uint64_t Len, IRBuilderBase &B, 952 const DataLayout &DL) { 953 if (Len == 0) // memcmp(s1,s2,0) -> 0 954 return Constant::getNullValue(CI->getType()); 955 956 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 957 if (Len == 1) { 958 Value *LHSV = 959 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 960 CI->getType(), "lhsv"); 961 Value *RHSV = 962 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 963 CI->getType(), "rhsv"); 964 return B.CreateSub(LHSV, RHSV, "chardiff"); 965 } 966 967 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 968 // TODO: The case where both inputs are constants does not need to be limited 969 // to legal integers or equality comparison. See block below this. 970 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 971 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 972 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 973 974 // First, see if we can fold either argument to a constant. 975 Value *LHSV = nullptr; 976 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 977 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 978 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 979 } 980 Value *RHSV = nullptr; 981 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 982 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 983 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 984 } 985 986 // Don't generate unaligned loads. If either source is constant data, 987 // alignment doesn't matter for that source because there is no load. 988 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 989 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 990 if (!LHSV) { 991 Type *LHSPtrTy = 992 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 993 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 994 } 995 if (!RHSV) { 996 Type *RHSPtrTy = 997 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 998 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 999 } 1000 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1001 } 1002 } 1003 1004 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 1005 // TODO: This is limited to i8 arrays. 1006 StringRef LHSStr, RHSStr; 1007 if (getConstantStringInfo(LHS, LHSStr) && 1008 getConstantStringInfo(RHS, RHSStr)) { 1009 // Make sure we're not reading out-of-bounds memory. 1010 if (Len > LHSStr.size() || Len > RHSStr.size()) 1011 return nullptr; 1012 // Fold the memcmp and normalize the result. This way we get consistent 1013 // results across multiple platforms. 1014 uint64_t Ret = 0; 1015 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 1016 if (Cmp < 0) 1017 Ret = -1; 1018 else if (Cmp > 0) 1019 Ret = 1; 1020 return ConstantInt::get(CI->getType(), Ret); 1021 } 1022 1023 return nullptr; 1024 } 1025 1026 // Most simplifications for memcmp also apply to bcmp. 1027 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1028 IRBuilderBase &B) { 1029 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1030 Value *Size = CI->getArgOperand(2); 1031 1032 if (LHS == RHS) // memcmp(s,s,x) -> 0 1033 return Constant::getNullValue(CI->getType()); 1034 1035 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1036 // Handle constant lengths. 1037 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1038 if (!LenC) 1039 return nullptr; 1040 1041 // memcmp(d,s,0) -> 0 1042 if (LenC->getZExtValue() == 0) 1043 return Constant::getNullValue(CI->getType()); 1044 1045 if (Value *Res = 1046 optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL)) 1047 return Res; 1048 return nullptr; 1049 } 1050 1051 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1052 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1053 return V; 1054 1055 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1056 // bcmp can be more efficient than memcmp because it only has to know that 1057 // there is a difference, not how different one is to the other. 1058 if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) { 1059 Value *LHS = CI->getArgOperand(0); 1060 Value *RHS = CI->getArgOperand(1); 1061 Value *Size = CI->getArgOperand(2); 1062 return emitBCmp(LHS, RHS, Size, B, DL, TLI); 1063 } 1064 1065 return nullptr; 1066 } 1067 1068 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1069 return optimizeMemCmpBCmpCommon(CI, B); 1070 } 1071 1072 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1073 Value *Size = CI->getArgOperand(2); 1074 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1075 if (isa<IntrinsicInst>(CI)) 1076 return nullptr; 1077 1078 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1079 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1080 CI->getArgOperand(1), Align(1), Size); 1081 NewCI->setAttributes(CI->getAttributes()); 1082 NewCI->removeAttributes(AttributeList::ReturnIndex, 1083 AttributeFuncs::typeIncompatible(NewCI->getType())); 1084 return CI->getArgOperand(0); 1085 } 1086 1087 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1088 Value *Dst = CI->getArgOperand(0); 1089 Value *Src = CI->getArgOperand(1); 1090 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1091 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1092 StringRef SrcStr; 1093 if (CI->use_empty() && Dst == Src) 1094 return Dst; 1095 // memccpy(d, s, c, 0) -> nullptr 1096 if (N) { 1097 if (N->isNullValue()) 1098 return Constant::getNullValue(CI->getType()); 1099 if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0, 1100 /*TrimAtNul=*/false) || 1101 !StopChar) 1102 return nullptr; 1103 } else { 1104 return nullptr; 1105 } 1106 1107 // Wrap arg 'c' of type int to char 1108 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1109 if (Pos == StringRef::npos) { 1110 if (N->getZExtValue() <= SrcStr.size()) { 1111 B.CreateMemCpy(Dst, Align(1), Src, Align(1), CI->getArgOperand(3)); 1112 return Constant::getNullValue(CI->getType()); 1113 } 1114 return nullptr; 1115 } 1116 1117 Value *NewN = 1118 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1119 // memccpy -> llvm.memcpy 1120 B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN); 1121 return Pos + 1 <= N->getZExtValue() 1122 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1123 : Constant::getNullValue(CI->getType()); 1124 } 1125 1126 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1127 Value *Dst = CI->getArgOperand(0); 1128 Value *N = CI->getArgOperand(2); 1129 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1130 CallInst *NewCI = 1131 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1132 // Propagate attributes, but memcpy has no return value, so make sure that 1133 // any return attributes are compliant. 1134 // TODO: Attach return value attributes to the 1st operand to preserve them? 1135 NewCI->setAttributes(CI->getAttributes()); 1136 NewCI->removeAttributes(AttributeList::ReturnIndex, 1137 AttributeFuncs::typeIncompatible(NewCI->getType())); 1138 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1139 } 1140 1141 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1142 Value *Size = CI->getArgOperand(2); 1143 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1144 if (isa<IntrinsicInst>(CI)) 1145 return nullptr; 1146 1147 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1148 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1149 CI->getArgOperand(1), Align(1), Size); 1150 NewCI->setAttributes(CI->getAttributes()); 1151 NewCI->removeAttributes(AttributeList::ReturnIndex, 1152 AttributeFuncs::typeIncompatible(NewCI->getType())); 1153 return CI->getArgOperand(0); 1154 } 1155 1156 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 1157 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilderBase &B) { 1158 // This has to be a memset of zeros (bzero). 1159 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 1160 if (!FillValue || FillValue->getZExtValue() != 0) 1161 return nullptr; 1162 1163 // TODO: We should handle the case where the malloc has more than one use. 1164 // This is necessary to optimize common patterns such as when the result of 1165 // the malloc is checked against null or when a memset intrinsic is used in 1166 // place of a memset library call. 1167 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 1168 if (!Malloc || !Malloc->hasOneUse()) 1169 return nullptr; 1170 1171 // Is the inner call really malloc()? 1172 Function *InnerCallee = Malloc->getCalledFunction(); 1173 if (!InnerCallee) 1174 return nullptr; 1175 1176 LibFunc Func; 1177 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 1178 Func != LibFunc_malloc) 1179 return nullptr; 1180 1181 // The memset must cover the same number of bytes that are malloc'd. 1182 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 1183 return nullptr; 1184 1185 // Replace the malloc with a calloc. We need the data layout to know what the 1186 // actual size of a 'size_t' parameter is. 1187 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 1188 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 1189 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 1190 if (Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 1191 Malloc->getArgOperand(0), 1192 Malloc->getAttributes(), B, *TLI)) { 1193 substituteInParent(Malloc, Calloc); 1194 return Calloc; 1195 } 1196 1197 return nullptr; 1198 } 1199 1200 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1201 Value *Size = CI->getArgOperand(2); 1202 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1203 if (isa<IntrinsicInst>(CI)) 1204 return nullptr; 1205 1206 if (auto *Calloc = foldMallocMemset(CI, B)) 1207 return Calloc; 1208 1209 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1210 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1211 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1212 NewCI->setAttributes(CI->getAttributes()); 1213 NewCI->removeAttributes(AttributeList::ReturnIndex, 1214 AttributeFuncs::typeIncompatible(NewCI->getType())); 1215 return CI->getArgOperand(0); 1216 } 1217 1218 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1219 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1220 return emitMalloc(CI->getArgOperand(1), B, DL, TLI); 1221 1222 return nullptr; 1223 } 1224 1225 //===----------------------------------------------------------------------===// 1226 // Math Library Optimizations 1227 //===----------------------------------------------------------------------===// 1228 1229 // Replace a libcall \p CI with a call to intrinsic \p IID 1230 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1231 Intrinsic::ID IID) { 1232 // Propagate fast-math flags from the existing call to the new call. 1233 IRBuilderBase::FastMathFlagGuard Guard(B); 1234 B.setFastMathFlags(CI->getFastMathFlags()); 1235 1236 Module *M = CI->getModule(); 1237 Value *V = CI->getArgOperand(0); 1238 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1239 CallInst *NewCall = B.CreateCall(F, V); 1240 NewCall->takeName(CI); 1241 return NewCall; 1242 } 1243 1244 /// Return a variant of Val with float type. 1245 /// Currently this works in two cases: If Val is an FPExtension of a float 1246 /// value to something bigger, simply return the operand. 1247 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1248 /// loss of precision do so. 1249 static Value *valueHasFloatPrecision(Value *Val) { 1250 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1251 Value *Op = Cast->getOperand(0); 1252 if (Op->getType()->isFloatTy()) 1253 return Op; 1254 } 1255 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1256 APFloat F = Const->getValueAPF(); 1257 bool losesInfo; 1258 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1259 &losesInfo); 1260 if (!losesInfo) 1261 return ConstantFP::get(Const->getContext(), F); 1262 } 1263 return nullptr; 1264 } 1265 1266 /// Shrink double -> float functions. 1267 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1268 bool isBinary, bool isPrecise = false) { 1269 Function *CalleeFn = CI->getCalledFunction(); 1270 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1271 return nullptr; 1272 1273 // If not all the uses of the function are converted to float, then bail out. 1274 // This matters if the precision of the result is more important than the 1275 // precision of the arguments. 1276 if (isPrecise) 1277 for (User *U : CI->users()) { 1278 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1279 if (!Cast || !Cast->getType()->isFloatTy()) 1280 return nullptr; 1281 } 1282 1283 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1284 Value *V[2]; 1285 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1286 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1287 if (!V[0] || (isBinary && !V[1])) 1288 return nullptr; 1289 1290 // If call isn't an intrinsic, check that it isn't within a function with the 1291 // same name as the float version of this call, otherwise the result is an 1292 // infinite loop. For example, from MinGW-w64: 1293 // 1294 // float expf(float val) { return (float) exp((double) val); } 1295 StringRef CalleeName = CalleeFn->getName(); 1296 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1297 if (!IsIntrinsic) { 1298 StringRef CallerName = CI->getFunction()->getName(); 1299 if (!CallerName.empty() && CallerName.back() == 'f' && 1300 CallerName.size() == (CalleeName.size() + 1) && 1301 CallerName.startswith(CalleeName)) 1302 return nullptr; 1303 } 1304 1305 // Propagate the math semantics from the current function to the new function. 1306 IRBuilderBase::FastMathFlagGuard Guard(B); 1307 B.setFastMathFlags(CI->getFastMathFlags()); 1308 1309 // g((double) float) -> (double) gf(float) 1310 Value *R; 1311 if (IsIntrinsic) { 1312 Module *M = CI->getModule(); 1313 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1314 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1315 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1316 } else { 1317 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1318 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs) 1319 : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs); 1320 } 1321 return B.CreateFPExt(R, B.getDoubleTy()); 1322 } 1323 1324 /// Shrink double -> float for unary functions. 1325 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1326 bool isPrecise = false) { 1327 return optimizeDoubleFP(CI, B, false, isPrecise); 1328 } 1329 1330 /// Shrink double -> float for binary functions. 1331 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1332 bool isPrecise = false) { 1333 return optimizeDoubleFP(CI, B, true, isPrecise); 1334 } 1335 1336 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1337 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1338 if (!CI->isFast()) 1339 return nullptr; 1340 1341 // Propagate fast-math flags from the existing call to new instructions. 1342 IRBuilderBase::FastMathFlagGuard Guard(B); 1343 B.setFastMathFlags(CI->getFastMathFlags()); 1344 1345 Value *Real, *Imag; 1346 if (CI->getNumArgOperands() == 1) { 1347 Value *Op = CI->getArgOperand(0); 1348 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1349 Real = B.CreateExtractValue(Op, 0, "real"); 1350 Imag = B.CreateExtractValue(Op, 1, "imag"); 1351 } else { 1352 assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); 1353 Real = CI->getArgOperand(0); 1354 Imag = CI->getArgOperand(1); 1355 } 1356 1357 Value *RealReal = B.CreateFMul(Real, Real); 1358 Value *ImagImag = B.CreateFMul(Imag, Imag); 1359 1360 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1361 CI->getType()); 1362 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); 1363 } 1364 1365 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1366 IRBuilderBase &B) { 1367 if (!isa<FPMathOperator>(Call)) 1368 return nullptr; 1369 1370 IRBuilderBase::FastMathFlagGuard Guard(B); 1371 B.setFastMathFlags(Call->getFastMathFlags()); 1372 1373 // TODO: Can this be shared to also handle LLVM intrinsics? 1374 Value *X; 1375 switch (Func) { 1376 case LibFunc_sin: 1377 case LibFunc_sinf: 1378 case LibFunc_sinl: 1379 case LibFunc_tan: 1380 case LibFunc_tanf: 1381 case LibFunc_tanl: 1382 // sin(-X) --> -sin(X) 1383 // tan(-X) --> -tan(X) 1384 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1385 return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X)); 1386 break; 1387 case LibFunc_cos: 1388 case LibFunc_cosf: 1389 case LibFunc_cosl: 1390 // cos(-X) --> cos(X) 1391 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1392 return B.CreateCall(Call->getCalledFunction(), X, "cos"); 1393 break; 1394 default: 1395 break; 1396 } 1397 return nullptr; 1398 } 1399 1400 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) { 1401 // Multiplications calculated using Addition Chains. 1402 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1403 1404 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1405 1406 if (InnerChain[Exp]) 1407 return InnerChain[Exp]; 1408 1409 static const unsigned AddChain[33][2] = { 1410 {0, 0}, // Unused. 1411 {0, 0}, // Unused (base case = pow1). 1412 {1, 1}, // Unused (pre-computed). 1413 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1414 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1415 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1416 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1417 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1418 }; 1419 1420 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1421 getPow(InnerChain, AddChain[Exp][1], B)); 1422 return InnerChain[Exp]; 1423 } 1424 1425 // Return a properly extended 32-bit integer if the operation is an itofp. 1426 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B) { 1427 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1428 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1429 // Make sure that the exponent fits inside an int32_t, 1430 // thus avoiding any range issues that FP has not. 1431 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); 1432 if (BitWidth < 32 || 1433 (BitWidth == 32 && isa<SIToFPInst>(I2F))) 1434 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getInt32Ty()) 1435 : B.CreateZExt(Op, B.getInt32Ty()); 1436 } 1437 1438 return nullptr; 1439 } 1440 1441 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1442 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 1443 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 1444 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 1445 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1446 AttributeList Attrs; // Attributes are only meaningful on the original call 1447 Module *Mod = Pow->getModule(); 1448 Type *Ty = Pow->getType(); 1449 bool Ignored; 1450 1451 // Evaluate special cases related to a nested function as the base. 1452 1453 // pow(exp(x), y) -> exp(x * y) 1454 // pow(exp2(x), y) -> exp2(x * y) 1455 // If exp{,2}() is used only once, it is better to fold two transcendental 1456 // math functions into one. If used again, exp{,2}() would still have to be 1457 // called with the original argument, then keep both original transcendental 1458 // functions. However, this transformation is only safe with fully relaxed 1459 // math semantics, since, besides rounding differences, it changes overflow 1460 // and underflow behavior quite dramatically. For example: 1461 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1462 // Whereas: 1463 // exp(1000 * 0.001) = exp(1) 1464 // TODO: Loosen the requirement for fully relaxed math semantics. 1465 // TODO: Handle exp10() when more targets have it available. 1466 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1467 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1468 LibFunc LibFn; 1469 1470 Function *CalleeFn = BaseFn->getCalledFunction(); 1471 if (CalleeFn && 1472 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1473 StringRef ExpName; 1474 Intrinsic::ID ID; 1475 Value *ExpFn; 1476 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 1477 1478 switch (LibFn) { 1479 default: 1480 return nullptr; 1481 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1482 ExpName = TLI->getName(LibFunc_exp); 1483 ID = Intrinsic::exp; 1484 LibFnFloat = LibFunc_expf; 1485 LibFnDouble = LibFunc_exp; 1486 LibFnLongDouble = LibFunc_expl; 1487 break; 1488 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1489 ExpName = TLI->getName(LibFunc_exp2); 1490 ID = Intrinsic::exp2; 1491 LibFnFloat = LibFunc_exp2f; 1492 LibFnDouble = LibFunc_exp2; 1493 LibFnLongDouble = LibFunc_exp2l; 1494 break; 1495 } 1496 1497 // Create new exp{,2}() with the product as its argument. 1498 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1499 ExpFn = BaseFn->doesNotAccessMemory() 1500 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1501 FMul, ExpName) 1502 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1503 LibFnLongDouble, B, 1504 BaseFn->getAttributes()); 1505 1506 // Since the new exp{,2}() is different from the original one, dead code 1507 // elimination cannot be trusted to remove it, since it may have side 1508 // effects (e.g., errno). When the only consumer for the original 1509 // exp{,2}() is pow(), then it has to be explicitly erased. 1510 substituteInParent(BaseFn, ExpFn); 1511 return ExpFn; 1512 } 1513 } 1514 1515 // Evaluate special cases related to a constant base. 1516 1517 const APFloat *BaseF; 1518 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1519 return nullptr; 1520 1521 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 1522 if (match(Base, m_SpecificFP(2.0)) && 1523 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 1524 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1525 if (Value *ExpoI = getIntToFPVal(Expo, B)) 1526 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI, 1527 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1528 B, Attrs); 1529 } 1530 1531 // pow(2.0 ** n, x) -> exp2(n * x) 1532 if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1533 APFloat BaseR = APFloat(1.0); 1534 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1535 BaseR = BaseR / *BaseF; 1536 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1537 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1538 APSInt NI(64, false); 1539 if ((IsInteger || IsReciprocal) && 1540 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1541 APFloat::opOK && 1542 NI > 1 && NI.isPowerOf2()) { 1543 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1544 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1545 if (Pow->doesNotAccessMemory()) 1546 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1547 FMul, "exp2"); 1548 else 1549 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1550 LibFunc_exp2l, B, Attrs); 1551 } 1552 } 1553 1554 // pow(10.0, x) -> exp10(x) 1555 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1556 if (match(Base, m_SpecificFP(10.0)) && 1557 hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1558 return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f, 1559 LibFunc_exp10l, B, Attrs); 1560 1561 // pow(x, y) -> exp2(log2(x) * y) 1562 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 1563 !BaseF->isNegative()) { 1564 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 1565 // Luckily optimizePow has already handled the x == 1 case. 1566 assert(!match(Base, m_FPOne()) && 1567 "pow(1.0, y) should have been simplified earlier!"); 1568 1569 Value *Log = nullptr; 1570 if (Ty->isFloatTy()) 1571 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 1572 else if (Ty->isDoubleTy()) 1573 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 1574 1575 if (Log) { 1576 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 1577 if (Pow->doesNotAccessMemory()) 1578 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1579 FMul, "exp2"); 1580 else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) 1581 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1582 LibFunc_exp2l, B, Attrs); 1583 } 1584 } 1585 1586 return nullptr; 1587 } 1588 1589 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1590 Module *M, IRBuilderBase &B, 1591 const TargetLibraryInfo *TLI) { 1592 // If errno is never set, then use the intrinsic for sqrt(). 1593 if (NoErrno) { 1594 Function *SqrtFn = 1595 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1596 return B.CreateCall(SqrtFn, V, "sqrt"); 1597 } 1598 1599 // Otherwise, use the libcall for sqrt(). 1600 if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) 1601 // TODO: We also should check that the target can in fact lower the sqrt() 1602 // libcall. We currently have no way to ask this question, so we ask if 1603 // the target has a sqrt() libcall, which is not exactly the same. 1604 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1605 LibFunc_sqrtl, B, Attrs); 1606 1607 return nullptr; 1608 } 1609 1610 /// Use square root in place of pow(x, +/-0.5). 1611 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 1612 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1613 AttributeList Attrs; // Attributes are only meaningful on the original call 1614 Module *Mod = Pow->getModule(); 1615 Type *Ty = Pow->getType(); 1616 1617 const APFloat *ExpoF; 1618 if (!match(Expo, m_APFloat(ExpoF)) || 1619 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1620 return nullptr; 1621 1622 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 1623 // so that requires fast-math-flags (afn or reassoc). 1624 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 1625 return nullptr; 1626 1627 // If we have a pow() library call (accesses memory) and we can't guarantee 1628 // that the base is not an infinity, give up: 1629 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 1630 // errno), but sqrt(-Inf) is required by various standards to set errno. 1631 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 1632 !isKnownNeverInfinity(Base, TLI)) 1633 return nullptr; 1634 1635 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1636 if (!Sqrt) 1637 return nullptr; 1638 1639 // Handle signed zero base by expanding to fabs(sqrt(x)). 1640 if (!Pow->hasNoSignedZeros()) { 1641 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1642 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1643 } 1644 1645 // Handle non finite base by expanding to 1646 // (x == -infinity ? +infinity : sqrt(x)). 1647 if (!Pow->hasNoInfs()) { 1648 Value *PosInf = ConstantFP::getInfinity(Ty), 1649 *NegInf = ConstantFP::getInfinity(Ty, true); 1650 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1651 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1652 } 1653 1654 // If the exponent is negative, then get the reciprocal. 1655 if (ExpoF->isNegative()) 1656 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1657 1658 return Sqrt; 1659 } 1660 1661 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1662 IRBuilderBase &B) { 1663 Value *Args[] = {Base, Expo}; 1664 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType()); 1665 return B.CreateCall(F, Args); 1666 } 1667 1668 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 1669 Value *Base = Pow->getArgOperand(0); 1670 Value *Expo = Pow->getArgOperand(1); 1671 Function *Callee = Pow->getCalledFunction(); 1672 StringRef Name = Callee->getName(); 1673 Type *Ty = Pow->getType(); 1674 Module *M = Pow->getModule(); 1675 bool AllowApprox = Pow->hasApproxFunc(); 1676 bool Ignored; 1677 1678 // Propagate the math semantics from the call to any created instructions. 1679 IRBuilderBase::FastMathFlagGuard Guard(B); 1680 B.setFastMathFlags(Pow->getFastMathFlags()); 1681 // Evaluate special cases related to the base. 1682 1683 // pow(1.0, x) -> 1.0 1684 if (match(Base, m_FPOne())) 1685 return Base; 1686 1687 if (Value *Exp = replacePowWithExp(Pow, B)) 1688 return Exp; 1689 1690 // Evaluate special cases related to the exponent. 1691 1692 // pow(x, -1.0) -> 1.0 / x 1693 if (match(Expo, m_SpecificFP(-1.0))) 1694 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1695 1696 // pow(x, +/-0.0) -> 1.0 1697 if (match(Expo, m_AnyZeroFP())) 1698 return ConstantFP::get(Ty, 1.0); 1699 1700 // pow(x, 1.0) -> x 1701 if (match(Expo, m_FPOne())) 1702 return Base; 1703 1704 // pow(x, 2.0) -> x * x 1705 if (match(Expo, m_SpecificFP(2.0))) 1706 return B.CreateFMul(Base, Base, "square"); 1707 1708 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1709 return Sqrt; 1710 1711 // pow(x, n) -> x * x * x * ... 1712 const APFloat *ExpoF; 1713 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 1714 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 1715 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1716 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1717 // additional fmul. 1718 // TODO: This whole transformation should be backend specific (e.g. some 1719 // backends might prefer libcalls or the limit for the exponent might 1720 // be different) and it should also consider optimizing for size. 1721 APFloat LimF(ExpoF->getSemantics(), 33), 1722 ExpoA(abs(*ExpoF)); 1723 if (ExpoA < LimF) { 1724 // This transformation applies to integer or integer+0.5 exponents only. 1725 // For integer+0.5, we create a sqrt(Base) call. 1726 Value *Sqrt = nullptr; 1727 if (!ExpoA.isInteger()) { 1728 APFloat Expo2 = ExpoA; 1729 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1730 // is no floating point exception and the result is an integer, then 1731 // ExpoA == integer + 0.5 1732 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1733 return nullptr; 1734 1735 if (!Expo2.isInteger()) 1736 return nullptr; 1737 1738 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1739 Pow->doesNotAccessMemory(), M, B, TLI); 1740 if (!Sqrt) 1741 return nullptr; 1742 } 1743 1744 // We will memoize intermediate products of the Addition Chain. 1745 Value *InnerChain[33] = {nullptr}; 1746 InnerChain[1] = Base; 1747 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1748 1749 // We cannot readily convert a non-double type (like float) to a double. 1750 // So we first convert it to something which could be converted to double. 1751 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1752 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1753 1754 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1755 if (Sqrt) 1756 FMul = B.CreateFMul(FMul, Sqrt); 1757 1758 // If the exponent is negative, then get the reciprocal. 1759 if (ExpoF->isNegative()) 1760 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1761 1762 return FMul; 1763 } 1764 1765 APSInt IntExpo(32, /*isUnsigned=*/false); 1766 // powf(x, n) -> powi(x, n) if n is a constant signed integer value 1767 if (ExpoF->isInteger() && 1768 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 1769 APFloat::opOK) { 1770 return createPowWithIntegerExponent( 1771 Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B); 1772 } 1773 } 1774 1775 // powf(x, itofp(y)) -> powi(x, y) 1776 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 1777 if (Value *ExpoI = getIntToFPVal(Expo, B)) 1778 return createPowWithIntegerExponent(Base, ExpoI, M, B); 1779 } 1780 1781 // Shrink pow() to powf() if the arguments are single precision, 1782 // unless the result is expected to be double precision. 1783 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 1784 hasFloatVersion(Name)) { 1785 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, true)) 1786 return Shrunk; 1787 } 1788 1789 return nullptr; 1790 } 1791 1792 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 1793 Function *Callee = CI->getCalledFunction(); 1794 AttributeList Attrs; // Attributes are only meaningful on the original call 1795 StringRef Name = Callee->getName(); 1796 Value *Ret = nullptr; 1797 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 1798 hasFloatVersion(Name)) 1799 Ret = optimizeUnaryDoubleFP(CI, B, true); 1800 1801 Type *Ty = CI->getType(); 1802 Value *Op = CI->getArgOperand(0); 1803 1804 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1805 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1806 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 1807 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1808 if (Value *Exp = getIntToFPVal(Op, B)) 1809 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 1810 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1811 B, Attrs); 1812 } 1813 1814 return Ret; 1815 } 1816 1817 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 1818 // If we can shrink the call to a float function rather than a double 1819 // function, do that first. 1820 Function *Callee = CI->getCalledFunction(); 1821 StringRef Name = Callee->getName(); 1822 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1823 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1824 return Ret; 1825 1826 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 1827 // the intrinsics for improved optimization (for example, vectorization). 1828 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 1829 // From the C standard draft WG14/N1256: 1830 // "Ideally, fmax would be sensitive to the sign of zero, for example 1831 // fmax(-0.0, +0.0) would return +0; however, implementation in software 1832 // might be impractical." 1833 IRBuilderBase::FastMathFlagGuard Guard(B); 1834 FastMathFlags FMF = CI->getFastMathFlags(); 1835 FMF.setNoSignedZeros(); 1836 B.setFastMathFlags(FMF); 1837 1838 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 1839 : Intrinsic::maxnum; 1840 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 1841 return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) }); 1842 } 1843 1844 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 1845 Function *LogFn = Log->getCalledFunction(); 1846 AttributeList Attrs; // Attributes are only meaningful on the original call 1847 StringRef LogNm = LogFn->getName(); 1848 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 1849 Module *Mod = Log->getModule(); 1850 Type *Ty = Log->getType(); 1851 Value *Ret = nullptr; 1852 1853 if (UnsafeFPShrink && hasFloatVersion(LogNm)) 1854 Ret = optimizeUnaryDoubleFP(Log, B, true); 1855 1856 // The earlier call must also be 'fast' in order to do these transforms. 1857 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 1858 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 1859 return Ret; 1860 1861 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 1862 1863 // This is only applicable to log(), log2(), log10(). 1864 if (TLI->getLibFunc(LogNm, LogLb)) 1865 switch (LogLb) { 1866 case LibFunc_logf: 1867 LogID = Intrinsic::log; 1868 ExpLb = LibFunc_expf; 1869 Exp2Lb = LibFunc_exp2f; 1870 Exp10Lb = LibFunc_exp10f; 1871 PowLb = LibFunc_powf; 1872 break; 1873 case LibFunc_log: 1874 LogID = Intrinsic::log; 1875 ExpLb = LibFunc_exp; 1876 Exp2Lb = LibFunc_exp2; 1877 Exp10Lb = LibFunc_exp10; 1878 PowLb = LibFunc_pow; 1879 break; 1880 case LibFunc_logl: 1881 LogID = Intrinsic::log; 1882 ExpLb = LibFunc_expl; 1883 Exp2Lb = LibFunc_exp2l; 1884 Exp10Lb = LibFunc_exp10l; 1885 PowLb = LibFunc_powl; 1886 break; 1887 case LibFunc_log2f: 1888 LogID = Intrinsic::log2; 1889 ExpLb = LibFunc_expf; 1890 Exp2Lb = LibFunc_exp2f; 1891 Exp10Lb = LibFunc_exp10f; 1892 PowLb = LibFunc_powf; 1893 break; 1894 case LibFunc_log2: 1895 LogID = Intrinsic::log2; 1896 ExpLb = LibFunc_exp; 1897 Exp2Lb = LibFunc_exp2; 1898 Exp10Lb = LibFunc_exp10; 1899 PowLb = LibFunc_pow; 1900 break; 1901 case LibFunc_log2l: 1902 LogID = Intrinsic::log2; 1903 ExpLb = LibFunc_expl; 1904 Exp2Lb = LibFunc_exp2l; 1905 Exp10Lb = LibFunc_exp10l; 1906 PowLb = LibFunc_powl; 1907 break; 1908 case LibFunc_log10f: 1909 LogID = Intrinsic::log10; 1910 ExpLb = LibFunc_expf; 1911 Exp2Lb = LibFunc_exp2f; 1912 Exp10Lb = LibFunc_exp10f; 1913 PowLb = LibFunc_powf; 1914 break; 1915 case LibFunc_log10: 1916 LogID = Intrinsic::log10; 1917 ExpLb = LibFunc_exp; 1918 Exp2Lb = LibFunc_exp2; 1919 Exp10Lb = LibFunc_exp10; 1920 PowLb = LibFunc_pow; 1921 break; 1922 case LibFunc_log10l: 1923 LogID = Intrinsic::log10; 1924 ExpLb = LibFunc_expl; 1925 Exp2Lb = LibFunc_exp2l; 1926 Exp10Lb = LibFunc_exp10l; 1927 PowLb = LibFunc_powl; 1928 break; 1929 default: 1930 return Ret; 1931 } 1932 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 1933 LogID == Intrinsic::log10) { 1934 if (Ty->getScalarType()->isFloatTy()) { 1935 ExpLb = LibFunc_expf; 1936 Exp2Lb = LibFunc_exp2f; 1937 Exp10Lb = LibFunc_exp10f; 1938 PowLb = LibFunc_powf; 1939 } else if (Ty->getScalarType()->isDoubleTy()) { 1940 ExpLb = LibFunc_exp; 1941 Exp2Lb = LibFunc_exp2; 1942 Exp10Lb = LibFunc_exp10; 1943 PowLb = LibFunc_pow; 1944 } else 1945 return Ret; 1946 } else 1947 return Ret; 1948 1949 IRBuilderBase::FastMathFlagGuard Guard(B); 1950 B.setFastMathFlags(FastMathFlags::getFast()); 1951 1952 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 1953 LibFunc ArgLb = NotLibFunc; 1954 TLI->getLibFunc(*Arg, ArgLb); 1955 1956 // log(pow(x,y)) -> y*log(x) 1957 if (ArgLb == PowLb || ArgID == Intrinsic::pow) { 1958 Value *LogX = 1959 Log->doesNotAccessMemory() 1960 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 1961 Arg->getOperand(0), "log") 1962 : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs); 1963 Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul"); 1964 // Since pow() may have side effects, e.g. errno, 1965 // dead code elimination may not be trusted to remove it. 1966 substituteInParent(Arg, MulY); 1967 return MulY; 1968 } 1969 1970 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 1971 // TODO: There is no exp10() intrinsic yet. 1972 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 1973 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 1974 Constant *Eul; 1975 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 1976 // FIXME: Add more precise value of e for long double. 1977 Eul = ConstantFP::get(Log->getType(), numbers::e); 1978 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 1979 Eul = ConstantFP::get(Log->getType(), 2.0); 1980 else 1981 Eul = ConstantFP::get(Log->getType(), 10.0); 1982 Value *LogE = Log->doesNotAccessMemory() 1983 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 1984 Eul, "log") 1985 : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs); 1986 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 1987 // Since exp() may have side effects, e.g. errno, 1988 // dead code elimination may not be trusted to remove it. 1989 substituteInParent(Arg, MulY); 1990 return MulY; 1991 } 1992 1993 return Ret; 1994 } 1995 1996 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 1997 Function *Callee = CI->getCalledFunction(); 1998 Value *Ret = nullptr; 1999 // TODO: Once we have a way (other than checking for the existince of the 2000 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 2001 // condition below. 2002 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 2003 Callee->getIntrinsicID() == Intrinsic::sqrt)) 2004 Ret = optimizeUnaryDoubleFP(CI, B, true); 2005 2006 if (!CI->isFast()) 2007 return Ret; 2008 2009 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 2010 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 2011 return Ret; 2012 2013 // We're looking for a repeated factor in a multiplication tree, 2014 // so we can do this fold: sqrt(x * x) -> fabs(x); 2015 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 2016 Value *Op0 = I->getOperand(0); 2017 Value *Op1 = I->getOperand(1); 2018 Value *RepeatOp = nullptr; 2019 Value *OtherOp = nullptr; 2020 if (Op0 == Op1) { 2021 // Simple match: the operands of the multiply are identical. 2022 RepeatOp = Op0; 2023 } else { 2024 // Look for a more complicated pattern: one of the operands is itself 2025 // a multiply, so search for a common factor in that multiply. 2026 // Note: We don't bother looking any deeper than this first level or for 2027 // variations of this pattern because instcombine's visitFMUL and/or the 2028 // reassociation pass should give us this form. 2029 Value *OtherMul0, *OtherMul1; 2030 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 2031 // Pattern: sqrt((x * y) * z) 2032 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 2033 // Matched: sqrt((x * x) * z) 2034 RepeatOp = OtherMul0; 2035 OtherOp = Op1; 2036 } 2037 } 2038 } 2039 if (!RepeatOp) 2040 return Ret; 2041 2042 // Fast math flags for any created instructions should match the sqrt 2043 // and multiply. 2044 IRBuilderBase::FastMathFlagGuard Guard(B); 2045 B.setFastMathFlags(I->getFastMathFlags()); 2046 2047 // If we found a repeated factor, hoist it out of the square root and 2048 // replace it with the fabs of that factor. 2049 Module *M = Callee->getParent(); 2050 Type *ArgType = I->getType(); 2051 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 2052 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 2053 if (OtherOp) { 2054 // If we found a non-repeated factor, we still need to get its square 2055 // root. We then multiply that by the value that was simplified out 2056 // of the square root calculation. 2057 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 2058 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 2059 return B.CreateFMul(FabsCall, SqrtCall); 2060 } 2061 return FabsCall; 2062 } 2063 2064 // TODO: Generalize to handle any trig function and its inverse. 2065 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) { 2066 Function *Callee = CI->getCalledFunction(); 2067 Value *Ret = nullptr; 2068 StringRef Name = Callee->getName(); 2069 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 2070 Ret = optimizeUnaryDoubleFP(CI, B, true); 2071 2072 Value *Op1 = CI->getArgOperand(0); 2073 auto *OpC = dyn_cast<CallInst>(Op1); 2074 if (!OpC) 2075 return Ret; 2076 2077 // Both calls must be 'fast' in order to remove them. 2078 if (!CI->isFast() || !OpC->isFast()) 2079 return Ret; 2080 2081 // tan(atan(x)) -> x 2082 // tanf(atanf(x)) -> x 2083 // tanl(atanl(x)) -> x 2084 LibFunc Func; 2085 Function *F = OpC->getCalledFunction(); 2086 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 2087 ((Func == LibFunc_atan && Callee->getName() == "tan") || 2088 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 2089 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 2090 Ret = OpC->getArgOperand(0); 2091 return Ret; 2092 } 2093 2094 static bool isTrigLibCall(CallInst *CI) { 2095 // We can only hope to do anything useful if we can ignore things like errno 2096 // and floating-point exceptions. 2097 // We already checked the prototype. 2098 return CI->hasFnAttr(Attribute::NoUnwind) && 2099 CI->hasFnAttr(Attribute::ReadNone); 2100 } 2101 2102 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2103 bool UseFloat, Value *&Sin, Value *&Cos, 2104 Value *&SinCos) { 2105 Type *ArgTy = Arg->getType(); 2106 Type *ResTy; 2107 StringRef Name; 2108 2109 Triple T(OrigCallee->getParent()->getTargetTriple()); 2110 if (UseFloat) { 2111 Name = "__sincospif_stret"; 2112 2113 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2114 // x86_64 can't use {float, float} since that would be returned in both 2115 // xmm0 and xmm1, which isn't what a real struct would do. 2116 ResTy = T.getArch() == Triple::x86_64 2117 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2118 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2119 } else { 2120 Name = "__sincospi_stret"; 2121 ResTy = StructType::get(ArgTy, ArgTy); 2122 } 2123 2124 Module *M = OrigCallee->getParent(); 2125 FunctionCallee Callee = 2126 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); 2127 2128 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2129 // If the argument is an instruction, it must dominate all uses so put our 2130 // sincos call there. 2131 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2132 } else { 2133 // Otherwise (e.g. for a constant) the beginning of the function is as 2134 // good a place as any. 2135 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2136 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2137 } 2138 2139 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2140 2141 if (SinCos->getType()->isStructTy()) { 2142 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2143 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2144 } else { 2145 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2146 "sinpi"); 2147 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2148 "cospi"); 2149 } 2150 } 2151 2152 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) { 2153 // Make sure the prototype is as expected, otherwise the rest of the 2154 // function is probably invalid and likely to abort. 2155 if (!isTrigLibCall(CI)) 2156 return nullptr; 2157 2158 Value *Arg = CI->getArgOperand(0); 2159 SmallVector<CallInst *, 1> SinCalls; 2160 SmallVector<CallInst *, 1> CosCalls; 2161 SmallVector<CallInst *, 1> SinCosCalls; 2162 2163 bool IsFloat = Arg->getType()->isFloatTy(); 2164 2165 // Look for all compatible sinpi, cospi and sincospi calls with the same 2166 // argument. If there are enough (in some sense) we can make the 2167 // substitution. 2168 Function *F = CI->getFunction(); 2169 for (User *U : Arg->users()) 2170 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2171 2172 // It's only worthwhile if both sinpi and cospi are actually used. 2173 if (SinCalls.empty() || CosCalls.empty()) 2174 return nullptr; 2175 2176 Value *Sin, *Cos, *SinCos; 2177 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 2178 2179 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2180 Value *Res) { 2181 for (CallInst *C : Calls) 2182 replaceAllUsesWith(C, Res); 2183 }; 2184 2185 replaceTrigInsts(SinCalls, Sin); 2186 replaceTrigInsts(CosCalls, Cos); 2187 replaceTrigInsts(SinCosCalls, SinCos); 2188 2189 return nullptr; 2190 } 2191 2192 void LibCallSimplifier::classifyArgUse( 2193 Value *Val, Function *F, bool IsFloat, 2194 SmallVectorImpl<CallInst *> &SinCalls, 2195 SmallVectorImpl<CallInst *> &CosCalls, 2196 SmallVectorImpl<CallInst *> &SinCosCalls) { 2197 CallInst *CI = dyn_cast<CallInst>(Val); 2198 2199 if (!CI || CI->use_empty()) 2200 return; 2201 2202 // Don't consider calls in other functions. 2203 if (CI->getFunction() != F) 2204 return; 2205 2206 Function *Callee = CI->getCalledFunction(); 2207 LibFunc Func; 2208 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 2209 !isTrigLibCall(CI)) 2210 return; 2211 2212 if (IsFloat) { 2213 if (Func == LibFunc_sinpif) 2214 SinCalls.push_back(CI); 2215 else if (Func == LibFunc_cospif) 2216 CosCalls.push_back(CI); 2217 else if (Func == LibFunc_sincospif_stret) 2218 SinCosCalls.push_back(CI); 2219 } else { 2220 if (Func == LibFunc_sinpi) 2221 SinCalls.push_back(CI); 2222 else if (Func == LibFunc_cospi) 2223 CosCalls.push_back(CI); 2224 else if (Func == LibFunc_sincospi_stret) 2225 SinCosCalls.push_back(CI); 2226 } 2227 } 2228 2229 //===----------------------------------------------------------------------===// 2230 // Integer Library Call Optimizations 2231 //===----------------------------------------------------------------------===// 2232 2233 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 2234 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 2235 Value *Op = CI->getArgOperand(0); 2236 Type *ArgType = Op->getType(); 2237 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2238 Intrinsic::cttz, ArgType); 2239 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 2240 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 2241 V = B.CreateIntCast(V, B.getInt32Ty(), false); 2242 2243 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 2244 return B.CreateSelect(Cond, V, B.getInt32(0)); 2245 } 2246 2247 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 2248 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 2249 Value *Op = CI->getArgOperand(0); 2250 Type *ArgType = Op->getType(); 2251 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2252 Intrinsic::ctlz, ArgType); 2253 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 2254 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 2255 V); 2256 return B.CreateIntCast(V, CI->getType(), false); 2257 } 2258 2259 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 2260 // abs(x) -> x <s 0 ? -x : x 2261 // The negation has 'nsw' because abs of INT_MIN is undefined. 2262 Value *X = CI->getArgOperand(0); 2263 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 2264 Value *NegX = B.CreateNSWNeg(X, "neg"); 2265 return B.CreateSelect(IsNeg, NegX, X); 2266 } 2267 2268 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 2269 // isdigit(c) -> (c-'0') <u 10 2270 Value *Op = CI->getArgOperand(0); 2271 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 2272 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 2273 return B.CreateZExt(Op, CI->getType()); 2274 } 2275 2276 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 2277 // isascii(c) -> c <u 128 2278 Value *Op = CI->getArgOperand(0); 2279 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 2280 return B.CreateZExt(Op, CI->getType()); 2281 } 2282 2283 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 2284 // toascii(c) -> c & 0x7f 2285 return B.CreateAnd(CI->getArgOperand(0), 2286 ConstantInt::get(CI->getType(), 0x7F)); 2287 } 2288 2289 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 2290 StringRef Str; 2291 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2292 return nullptr; 2293 2294 return convertStrToNumber(CI, Str, 10); 2295 } 2296 2297 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) { 2298 StringRef Str; 2299 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2300 return nullptr; 2301 2302 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 2303 return nullptr; 2304 2305 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2306 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 2307 } 2308 2309 return nullptr; 2310 } 2311 2312 //===----------------------------------------------------------------------===// 2313 // Formatting and IO Library Call Optimizations 2314 //===----------------------------------------------------------------------===// 2315 2316 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2317 2318 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 2319 int StreamArg) { 2320 Function *Callee = CI->getCalledFunction(); 2321 // Error reporting calls should be cold, mark them as such. 2322 // This applies even to non-builtin calls: it is only a hint and applies to 2323 // functions that the frontend might not understand as builtins. 2324 2325 // This heuristic was suggested in: 2326 // Improving Static Branch Prediction in a Compiler 2327 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2328 // Proceedings of PACT'98, Oct. 1998, IEEE 2329 if (!CI->hasFnAttr(Attribute::Cold) && 2330 isReportingError(Callee, CI, StreamArg)) { 2331 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 2332 } 2333 2334 return nullptr; 2335 } 2336 2337 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2338 if (!Callee || !Callee->isDeclaration()) 2339 return false; 2340 2341 if (StreamArg < 0) 2342 return true; 2343 2344 // These functions might be considered cold, but only if their stream 2345 // argument is stderr. 2346 2347 if (StreamArg >= (int)CI->getNumArgOperands()) 2348 return false; 2349 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2350 if (!LI) 2351 return false; 2352 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2353 if (!GV || !GV->isDeclaration()) 2354 return false; 2355 return GV->getName() == "stderr"; 2356 } 2357 2358 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 2359 // Check for a fixed format string. 2360 StringRef FormatStr; 2361 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2362 return nullptr; 2363 2364 // Empty format string -> noop. 2365 if (FormatStr.empty()) // Tolerate printf's declared void. 2366 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2367 2368 // Do not do any of the following transformations if the printf return value 2369 // is used, in general the printf return value is not compatible with either 2370 // putchar() or puts(). 2371 if (!CI->use_empty()) 2372 return nullptr; 2373 2374 // printf("x") -> putchar('x'), even for "%" and "%%". 2375 if (FormatStr.size() == 1 || FormatStr == "%%") 2376 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 2377 2378 // printf("%s", "a") --> putchar('a') 2379 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 2380 StringRef ChrStr; 2381 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 2382 return nullptr; 2383 if (ChrStr.size() != 1) 2384 return nullptr; 2385 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 2386 } 2387 2388 // printf("foo\n") --> puts("foo") 2389 if (FormatStr[FormatStr.size() - 1] == '\n' && 2390 FormatStr.find('%') == StringRef::npos) { // No format characters. 2391 // Create a string literal with no \n on it. We expect the constant merge 2392 // pass to be run after this pass, to merge duplicate strings. 2393 FormatStr = FormatStr.drop_back(); 2394 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2395 return emitPutS(GV, B, TLI); 2396 } 2397 2398 // Optimize specific format strings. 2399 // printf("%c", chr) --> putchar(chr) 2400 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 2401 CI->getArgOperand(1)->getType()->isIntegerTy()) 2402 return emitPutChar(CI->getArgOperand(1), B, TLI); 2403 2404 // printf("%s\n", str) --> puts(str) 2405 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 2406 CI->getArgOperand(1)->getType()->isPointerTy()) 2407 return emitPutS(CI->getArgOperand(1), B, TLI); 2408 return nullptr; 2409 } 2410 2411 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 2412 2413 Function *Callee = CI->getCalledFunction(); 2414 FunctionType *FT = Callee->getFunctionType(); 2415 if (Value *V = optimizePrintFString(CI, B)) { 2416 return V; 2417 } 2418 2419 // printf(format, ...) -> iprintf(format, ...) if no floating point 2420 // arguments. 2421 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2422 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2423 FunctionCallee IPrintFFn = 2424 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2425 CallInst *New = cast<CallInst>(CI->clone()); 2426 New->setCalledFunction(IPrintFFn); 2427 B.Insert(New); 2428 return New; 2429 } 2430 2431 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2432 // arguments. 2433 if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) { 2434 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2435 auto SmallPrintFFn = 2436 M->getOrInsertFunction(TLI->getName(LibFunc_small_printf), 2437 FT, Callee->getAttributes()); 2438 CallInst *New = cast<CallInst>(CI->clone()); 2439 New->setCalledFunction(SmallPrintFFn); 2440 B.Insert(New); 2441 return New; 2442 } 2443 2444 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2445 return nullptr; 2446 } 2447 2448 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 2449 IRBuilderBase &B) { 2450 // Check for a fixed format string. 2451 StringRef FormatStr; 2452 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2453 return nullptr; 2454 2455 // If we just have a format string (nothing else crazy) transform it. 2456 if (CI->getNumArgOperands() == 2) { 2457 // Make sure there's no % in the constant array. We could try to handle 2458 // %% -> % in the future if we cared. 2459 if (FormatStr.find('%') != StringRef::npos) 2460 return nullptr; // we found a format specifier, bail out. 2461 2462 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2463 B.CreateMemCpy( 2464 CI->getArgOperand(0), Align(1), CI->getArgOperand(1), Align(1), 2465 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2466 FormatStr.size() + 1)); // Copy the null byte. 2467 return ConstantInt::get(CI->getType(), FormatStr.size()); 2468 } 2469 2470 // The remaining optimizations require the format string to be "%s" or "%c" 2471 // and have an extra operand. 2472 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2473 CI->getNumArgOperands() < 3) 2474 return nullptr; 2475 2476 // Decode the second character of the format string. 2477 if (FormatStr[1] == 'c') { 2478 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2479 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2480 return nullptr; 2481 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2482 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2483 B.CreateStore(V, Ptr); 2484 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2485 B.CreateStore(B.getInt8(0), Ptr); 2486 2487 return ConstantInt::get(CI->getType(), 1); 2488 } 2489 2490 if (FormatStr[1] == 's') { 2491 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2492 // strlen(str)+1) 2493 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2494 return nullptr; 2495 2496 if (CI->use_empty()) 2497 // sprintf(dest, "%s", str) -> strcpy(dest, str) 2498 return emitStrCpy(CI->getArgOperand(0), CI->getArgOperand(2), B, TLI); 2499 2500 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 2501 if (SrcLen) { 2502 B.CreateMemCpy( 2503 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2504 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 2505 // Returns total number of characters written without null-character. 2506 return ConstantInt::get(CI->getType(), SrcLen - 1); 2507 } else if (Value *V = emitStpCpy(CI->getArgOperand(0), CI->getArgOperand(2), 2508 B, TLI)) { 2509 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 2510 Value *PtrDiff = B.CreatePtrDiff(V, CI->getArgOperand(0)); 2511 return B.CreateIntCast(PtrDiff, CI->getType(), false); 2512 } 2513 2514 bool OptForSize = CI->getFunction()->hasOptSize() || 2515 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2516 PGSOQueryType::IRPass); 2517 if (OptForSize) 2518 return nullptr; 2519 2520 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2521 if (!Len) 2522 return nullptr; 2523 Value *IncLen = 2524 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2525 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(2), 2526 Align(1), IncLen); 2527 2528 // The sprintf result is the unincremented number of bytes in the string. 2529 return B.CreateIntCast(Len, CI->getType(), false); 2530 } 2531 return nullptr; 2532 } 2533 2534 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 2535 Function *Callee = CI->getCalledFunction(); 2536 FunctionType *FT = Callee->getFunctionType(); 2537 if (Value *V = optimizeSPrintFString(CI, B)) { 2538 return V; 2539 } 2540 2541 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2542 // point arguments. 2543 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2544 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2545 FunctionCallee SIPrintFFn = 2546 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2547 CallInst *New = cast<CallInst>(CI->clone()); 2548 New->setCalledFunction(SIPrintFFn); 2549 B.Insert(New); 2550 return New; 2551 } 2552 2553 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2554 // floating point arguments. 2555 if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) { 2556 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2557 auto SmallSPrintFFn = 2558 M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf), 2559 FT, Callee->getAttributes()); 2560 CallInst *New = cast<CallInst>(CI->clone()); 2561 New->setCalledFunction(SmallSPrintFFn); 2562 B.Insert(New); 2563 return New; 2564 } 2565 2566 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 2567 return nullptr; 2568 } 2569 2570 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 2571 IRBuilderBase &B) { 2572 // Check for size 2573 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2574 if (!Size) 2575 return nullptr; 2576 2577 uint64_t N = Size->getZExtValue(); 2578 // Check for a fixed format string. 2579 StringRef FormatStr; 2580 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2581 return nullptr; 2582 2583 // If we just have a format string (nothing else crazy) transform it. 2584 if (CI->getNumArgOperands() == 3) { 2585 // Make sure there's no % in the constant array. We could try to handle 2586 // %% -> % in the future if we cared. 2587 if (FormatStr.find('%') != StringRef::npos) 2588 return nullptr; // we found a format specifier, bail out. 2589 2590 if (N == 0) 2591 return ConstantInt::get(CI->getType(), FormatStr.size()); 2592 else if (N < FormatStr.size() + 1) 2593 return nullptr; 2594 2595 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2596 // strlen(fmt)+1) 2597 B.CreateMemCpy( 2598 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2599 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2600 FormatStr.size() + 1)); // Copy the null byte. 2601 return ConstantInt::get(CI->getType(), FormatStr.size()); 2602 } 2603 2604 // The remaining optimizations require the format string to be "%s" or "%c" 2605 // and have an extra operand. 2606 if (FormatStr.size() == 2 && FormatStr[0] == '%' && 2607 CI->getNumArgOperands() == 4) { 2608 2609 // Decode the second character of the format string. 2610 if (FormatStr[1] == 'c') { 2611 if (N == 0) 2612 return ConstantInt::get(CI->getType(), 1); 2613 else if (N == 1) 2614 return nullptr; 2615 2616 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2617 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2618 return nullptr; 2619 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2620 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2621 B.CreateStore(V, Ptr); 2622 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2623 B.CreateStore(B.getInt8(0), Ptr); 2624 2625 return ConstantInt::get(CI->getType(), 1); 2626 } 2627 2628 if (FormatStr[1] == 's') { 2629 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2630 StringRef Str; 2631 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2632 return nullptr; 2633 2634 if (N == 0) 2635 return ConstantInt::get(CI->getType(), Str.size()); 2636 else if (N < Str.size() + 1) 2637 return nullptr; 2638 2639 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(3), 2640 Align(1), ConstantInt::get(CI->getType(), Str.size() + 1)); 2641 2642 // The snprintf result is the unincremented number of bytes in the string. 2643 return ConstantInt::get(CI->getType(), Str.size()); 2644 } 2645 } 2646 return nullptr; 2647 } 2648 2649 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 2650 if (Value *V = optimizeSnPrintFString(CI, B)) { 2651 return V; 2652 } 2653 2654 if (isKnownNonZero(CI->getOperand(1), DL)) 2655 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2656 return nullptr; 2657 } 2658 2659 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 2660 IRBuilderBase &B) { 2661 optimizeErrorReporting(CI, B, 0); 2662 2663 // All the optimizations depend on the format string. 2664 StringRef FormatStr; 2665 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2666 return nullptr; 2667 2668 // Do not do any of the following transformations if the fprintf return 2669 // value is used, in general the fprintf return value is not compatible 2670 // with fwrite(), fputc() or fputs(). 2671 if (!CI->use_empty()) 2672 return nullptr; 2673 2674 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2675 if (CI->getNumArgOperands() == 2) { 2676 // Could handle %% -> % if we cared. 2677 if (FormatStr.find('%') != StringRef::npos) 2678 return nullptr; // We found a format specifier. 2679 2680 return emitFWrite( 2681 CI->getArgOperand(1), 2682 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 2683 CI->getArgOperand(0), B, DL, TLI); 2684 } 2685 2686 // The remaining optimizations require the format string to be "%s" or "%c" 2687 // and have an extra operand. 2688 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2689 CI->getNumArgOperands() < 3) 2690 return nullptr; 2691 2692 // Decode the second character of the format string. 2693 if (FormatStr[1] == 'c') { 2694 // fprintf(F, "%c", chr) --> fputc(chr, F) 2695 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2696 return nullptr; 2697 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2698 } 2699 2700 if (FormatStr[1] == 's') { 2701 // fprintf(F, "%s", str) --> fputs(str, F) 2702 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2703 return nullptr; 2704 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2705 } 2706 return nullptr; 2707 } 2708 2709 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 2710 Function *Callee = CI->getCalledFunction(); 2711 FunctionType *FT = Callee->getFunctionType(); 2712 if (Value *V = optimizeFPrintFString(CI, B)) { 2713 return V; 2714 } 2715 2716 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2717 // floating point arguments. 2718 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2719 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2720 FunctionCallee FIPrintFFn = 2721 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2722 CallInst *New = cast<CallInst>(CI->clone()); 2723 New->setCalledFunction(FIPrintFFn); 2724 B.Insert(New); 2725 return New; 2726 } 2727 2728 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2729 // 128-bit floating point arguments. 2730 if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) { 2731 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2732 auto SmallFPrintFFn = 2733 M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf), 2734 FT, Callee->getAttributes()); 2735 CallInst *New = cast<CallInst>(CI->clone()); 2736 New->setCalledFunction(SmallFPrintFFn); 2737 B.Insert(New); 2738 return New; 2739 } 2740 2741 return nullptr; 2742 } 2743 2744 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 2745 optimizeErrorReporting(CI, B, 3); 2746 2747 // Get the element size and count. 2748 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2749 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2750 if (SizeC && CountC) { 2751 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2752 2753 // If this is writing zero records, remove the call (it's a noop). 2754 if (Bytes == 0) 2755 return ConstantInt::get(CI->getType(), 0); 2756 2757 // If this is writing one byte, turn it into fputc. 2758 // This optimisation is only valid, if the return value is unused. 2759 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2760 Value *Char = B.CreateLoad(B.getInt8Ty(), 2761 castToCStr(CI->getArgOperand(0), B), "char"); 2762 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2763 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2764 } 2765 } 2766 2767 return nullptr; 2768 } 2769 2770 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 2771 optimizeErrorReporting(CI, B, 1); 2772 2773 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2774 // requires more arguments and thus extra MOVs are required. 2775 bool OptForSize = CI->getFunction()->hasOptSize() || 2776 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2777 PGSOQueryType::IRPass); 2778 if (OptForSize) 2779 return nullptr; 2780 2781 // We can't optimize if return value is used. 2782 if (!CI->use_empty()) 2783 return nullptr; 2784 2785 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2786 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2787 if (!Len) 2788 return nullptr; 2789 2790 // Known to have no uses (see above). 2791 return emitFWrite( 2792 CI->getArgOperand(0), 2793 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2794 CI->getArgOperand(1), B, DL, TLI); 2795 } 2796 2797 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 2798 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2799 if (!CI->use_empty()) 2800 return nullptr; 2801 2802 // Check for a constant string. 2803 // puts("") -> putchar('\n') 2804 StringRef Str; 2805 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 2806 return emitPutChar(B.getInt32('\n'), B, TLI); 2807 2808 return nullptr; 2809 } 2810 2811 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 2812 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 2813 return B.CreateMemMove(CI->getArgOperand(1), Align(1), CI->getArgOperand(0), 2814 Align(1), CI->getArgOperand(2)); 2815 } 2816 2817 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2818 LibFunc Func; 2819 SmallString<20> FloatFuncName = FuncName; 2820 FloatFuncName += 'f'; 2821 if (TLI->getLibFunc(FloatFuncName, Func)) 2822 return TLI->has(Func); 2823 return false; 2824 } 2825 2826 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2827 IRBuilderBase &Builder) { 2828 LibFunc Func; 2829 Function *Callee = CI->getCalledFunction(); 2830 // Check for string/memory library functions. 2831 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2832 // Make sure we never change the calling convention. 2833 assert( 2834 (ignoreCallingConv(Func) || 2835 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) && 2836 "Optimizing string/memory libcall would change the calling convention"); 2837 switch (Func) { 2838 case LibFunc_strcat: 2839 return optimizeStrCat(CI, Builder); 2840 case LibFunc_strncat: 2841 return optimizeStrNCat(CI, Builder); 2842 case LibFunc_strchr: 2843 return optimizeStrChr(CI, Builder); 2844 case LibFunc_strrchr: 2845 return optimizeStrRChr(CI, Builder); 2846 case LibFunc_strcmp: 2847 return optimizeStrCmp(CI, Builder); 2848 case LibFunc_strncmp: 2849 return optimizeStrNCmp(CI, Builder); 2850 case LibFunc_strcpy: 2851 return optimizeStrCpy(CI, Builder); 2852 case LibFunc_stpcpy: 2853 return optimizeStpCpy(CI, Builder); 2854 case LibFunc_strncpy: 2855 return optimizeStrNCpy(CI, Builder); 2856 case LibFunc_strlen: 2857 return optimizeStrLen(CI, Builder); 2858 case LibFunc_strpbrk: 2859 return optimizeStrPBrk(CI, Builder); 2860 case LibFunc_strndup: 2861 return optimizeStrNDup(CI, Builder); 2862 case LibFunc_strtol: 2863 case LibFunc_strtod: 2864 case LibFunc_strtof: 2865 case LibFunc_strtoul: 2866 case LibFunc_strtoll: 2867 case LibFunc_strtold: 2868 case LibFunc_strtoull: 2869 return optimizeStrTo(CI, Builder); 2870 case LibFunc_strspn: 2871 return optimizeStrSpn(CI, Builder); 2872 case LibFunc_strcspn: 2873 return optimizeStrCSpn(CI, Builder); 2874 case LibFunc_strstr: 2875 return optimizeStrStr(CI, Builder); 2876 case LibFunc_memchr: 2877 return optimizeMemChr(CI, Builder); 2878 case LibFunc_memrchr: 2879 return optimizeMemRChr(CI, Builder); 2880 case LibFunc_bcmp: 2881 return optimizeBCmp(CI, Builder); 2882 case LibFunc_memcmp: 2883 return optimizeMemCmp(CI, Builder); 2884 case LibFunc_memcpy: 2885 return optimizeMemCpy(CI, Builder); 2886 case LibFunc_memccpy: 2887 return optimizeMemCCpy(CI, Builder); 2888 case LibFunc_mempcpy: 2889 return optimizeMemPCpy(CI, Builder); 2890 case LibFunc_memmove: 2891 return optimizeMemMove(CI, Builder); 2892 case LibFunc_memset: 2893 return optimizeMemSet(CI, Builder); 2894 case LibFunc_realloc: 2895 return optimizeRealloc(CI, Builder); 2896 case LibFunc_wcslen: 2897 return optimizeWcslen(CI, Builder); 2898 case LibFunc_bcopy: 2899 return optimizeBCopy(CI, Builder); 2900 default: 2901 break; 2902 } 2903 } 2904 return nullptr; 2905 } 2906 2907 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2908 LibFunc Func, 2909 IRBuilderBase &Builder) { 2910 // Don't optimize calls that require strict floating point semantics. 2911 if (CI->isStrictFP()) 2912 return nullptr; 2913 2914 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 2915 return V; 2916 2917 switch (Func) { 2918 case LibFunc_sinpif: 2919 case LibFunc_sinpi: 2920 case LibFunc_cospif: 2921 case LibFunc_cospi: 2922 return optimizeSinCosPi(CI, Builder); 2923 case LibFunc_powf: 2924 case LibFunc_pow: 2925 case LibFunc_powl: 2926 return optimizePow(CI, Builder); 2927 case LibFunc_exp2l: 2928 case LibFunc_exp2: 2929 case LibFunc_exp2f: 2930 return optimizeExp2(CI, Builder); 2931 case LibFunc_fabsf: 2932 case LibFunc_fabs: 2933 case LibFunc_fabsl: 2934 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2935 case LibFunc_sqrtf: 2936 case LibFunc_sqrt: 2937 case LibFunc_sqrtl: 2938 return optimizeSqrt(CI, Builder); 2939 case LibFunc_logf: 2940 case LibFunc_log: 2941 case LibFunc_logl: 2942 case LibFunc_log10f: 2943 case LibFunc_log10: 2944 case LibFunc_log10l: 2945 case LibFunc_log1pf: 2946 case LibFunc_log1p: 2947 case LibFunc_log1pl: 2948 case LibFunc_log2f: 2949 case LibFunc_log2: 2950 case LibFunc_log2l: 2951 case LibFunc_logbf: 2952 case LibFunc_logb: 2953 case LibFunc_logbl: 2954 return optimizeLog(CI, Builder); 2955 case LibFunc_tan: 2956 case LibFunc_tanf: 2957 case LibFunc_tanl: 2958 return optimizeTan(CI, Builder); 2959 case LibFunc_ceil: 2960 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2961 case LibFunc_floor: 2962 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2963 case LibFunc_round: 2964 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2965 case LibFunc_roundeven: 2966 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 2967 case LibFunc_nearbyint: 2968 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2969 case LibFunc_rint: 2970 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2971 case LibFunc_trunc: 2972 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2973 case LibFunc_acos: 2974 case LibFunc_acosh: 2975 case LibFunc_asin: 2976 case LibFunc_asinh: 2977 case LibFunc_atan: 2978 case LibFunc_atanh: 2979 case LibFunc_cbrt: 2980 case LibFunc_cosh: 2981 case LibFunc_exp: 2982 case LibFunc_exp10: 2983 case LibFunc_expm1: 2984 case LibFunc_cos: 2985 case LibFunc_sin: 2986 case LibFunc_sinh: 2987 case LibFunc_tanh: 2988 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 2989 return optimizeUnaryDoubleFP(CI, Builder, true); 2990 return nullptr; 2991 case LibFunc_copysign: 2992 if (hasFloatVersion(CI->getCalledFunction()->getName())) 2993 return optimizeBinaryDoubleFP(CI, Builder); 2994 return nullptr; 2995 case LibFunc_fminf: 2996 case LibFunc_fmin: 2997 case LibFunc_fminl: 2998 case LibFunc_fmaxf: 2999 case LibFunc_fmax: 3000 case LibFunc_fmaxl: 3001 return optimizeFMinFMax(CI, Builder); 3002 case LibFunc_cabs: 3003 case LibFunc_cabsf: 3004 case LibFunc_cabsl: 3005 return optimizeCAbs(CI, Builder); 3006 default: 3007 return nullptr; 3008 } 3009 } 3010 3011 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 3012 // TODO: Split out the code below that operates on FP calls so that 3013 // we can all non-FP calls with the StrictFP attribute to be 3014 // optimized. 3015 if (CI->isNoBuiltin()) 3016 return nullptr; 3017 3018 LibFunc Func; 3019 Function *Callee = CI->getCalledFunction(); 3020 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3021 3022 SmallVector<OperandBundleDef, 2> OpBundles; 3023 CI->getOperandBundlesAsDefs(OpBundles); 3024 3025 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3026 Builder.setDefaultOperandBundles(OpBundles); 3027 3028 // Command-line parameter overrides instruction attribute. 3029 // This can't be moved to optimizeFloatingPointLibCall() because it may be 3030 // used by the intrinsic optimizations. 3031 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 3032 UnsafeFPShrink = EnableUnsafeFPShrink; 3033 else if (isa<FPMathOperator>(CI) && CI->isFast()) 3034 UnsafeFPShrink = true; 3035 3036 // First, check for intrinsics. 3037 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 3038 if (!IsCallingConvC) 3039 return nullptr; 3040 // The FP intrinsics have corresponding constrained versions so we don't 3041 // need to check for the StrictFP attribute here. 3042 switch (II->getIntrinsicID()) { 3043 case Intrinsic::pow: 3044 return optimizePow(CI, Builder); 3045 case Intrinsic::exp2: 3046 return optimizeExp2(CI, Builder); 3047 case Intrinsic::log: 3048 case Intrinsic::log2: 3049 case Intrinsic::log10: 3050 return optimizeLog(CI, Builder); 3051 case Intrinsic::sqrt: 3052 return optimizeSqrt(CI, Builder); 3053 // TODO: Use foldMallocMemset() with memset intrinsic. 3054 case Intrinsic::memset: 3055 return optimizeMemSet(CI, Builder); 3056 case Intrinsic::memcpy: 3057 return optimizeMemCpy(CI, Builder); 3058 case Intrinsic::memmove: 3059 return optimizeMemMove(CI, Builder); 3060 default: 3061 return nullptr; 3062 } 3063 } 3064 3065 // Also try to simplify calls to fortified library functions. 3066 if (Value *SimplifiedFortifiedCI = 3067 FortifiedSimplifier.optimizeCall(CI, Builder)) { 3068 // Try to further simplify the result. 3069 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 3070 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 3071 // Ensure that SimplifiedCI's uses are complete, since some calls have 3072 // their uses analyzed. 3073 replaceAllUsesWith(CI, SimplifiedCI); 3074 3075 // Set insertion point to SimplifiedCI to guarantee we reach all uses 3076 // we might replace later on. 3077 IRBuilderBase::InsertPointGuard Guard(Builder); 3078 Builder.SetInsertPoint(SimplifiedCI); 3079 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) { 3080 // If we were able to further simplify, remove the now redundant call. 3081 substituteInParent(SimplifiedCI, V); 3082 return V; 3083 } 3084 } 3085 return SimplifiedFortifiedCI; 3086 } 3087 3088 // Then check for known library functions. 3089 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 3090 // We never change the calling convention. 3091 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3092 return nullptr; 3093 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 3094 return V; 3095 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 3096 return V; 3097 switch (Func) { 3098 case LibFunc_ffs: 3099 case LibFunc_ffsl: 3100 case LibFunc_ffsll: 3101 return optimizeFFS(CI, Builder); 3102 case LibFunc_fls: 3103 case LibFunc_flsl: 3104 case LibFunc_flsll: 3105 return optimizeFls(CI, Builder); 3106 case LibFunc_abs: 3107 case LibFunc_labs: 3108 case LibFunc_llabs: 3109 return optimizeAbs(CI, Builder); 3110 case LibFunc_isdigit: 3111 return optimizeIsDigit(CI, Builder); 3112 case LibFunc_isascii: 3113 return optimizeIsAscii(CI, Builder); 3114 case LibFunc_toascii: 3115 return optimizeToAscii(CI, Builder); 3116 case LibFunc_atoi: 3117 case LibFunc_atol: 3118 case LibFunc_atoll: 3119 return optimizeAtoi(CI, Builder); 3120 case LibFunc_strtol: 3121 case LibFunc_strtoll: 3122 return optimizeStrtol(CI, Builder); 3123 case LibFunc_printf: 3124 return optimizePrintF(CI, Builder); 3125 case LibFunc_sprintf: 3126 return optimizeSPrintF(CI, Builder); 3127 case LibFunc_snprintf: 3128 return optimizeSnPrintF(CI, Builder); 3129 case LibFunc_fprintf: 3130 return optimizeFPrintF(CI, Builder); 3131 case LibFunc_fwrite: 3132 return optimizeFWrite(CI, Builder); 3133 case LibFunc_fputs: 3134 return optimizeFPuts(CI, Builder); 3135 case LibFunc_puts: 3136 return optimizePuts(CI, Builder); 3137 case LibFunc_perror: 3138 return optimizeErrorReporting(CI, Builder); 3139 case LibFunc_vfprintf: 3140 case LibFunc_fiprintf: 3141 return optimizeErrorReporting(CI, Builder, 0); 3142 default: 3143 return nullptr; 3144 } 3145 } 3146 return nullptr; 3147 } 3148 3149 LibCallSimplifier::LibCallSimplifier( 3150 const DataLayout &DL, const TargetLibraryInfo *TLI, 3151 OptimizationRemarkEmitter &ORE, 3152 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 3153 function_ref<void(Instruction *, Value *)> Replacer, 3154 function_ref<void(Instruction *)> Eraser) 3155 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 3156 UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {} 3157 3158 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 3159 // Indirect through the replacer used in this instance. 3160 Replacer(I, With); 3161 } 3162 3163 void LibCallSimplifier::eraseFromParent(Instruction *I) { 3164 Eraser(I); 3165 } 3166 3167 // TODO: 3168 // Additional cases that we need to add to this file: 3169 // 3170 // cbrt: 3171 // * cbrt(expN(X)) -> expN(x/3) 3172 // * cbrt(sqrt(x)) -> pow(x,1/6) 3173 // * cbrt(cbrt(x)) -> pow(x,1/9) 3174 // 3175 // exp, expf, expl: 3176 // * exp(log(x)) -> x 3177 // 3178 // log, logf, logl: 3179 // * log(exp(x)) -> x 3180 // * log(exp(y)) -> y*log(e) 3181 // * log(exp10(y)) -> y*log(10) 3182 // * log(sqrt(x)) -> 0.5*log(x) 3183 // 3184 // pow, powf, powl: 3185 // * pow(sqrt(x),y) -> pow(x,y*0.5) 3186 // * pow(pow(x,y),z)-> pow(x,y*z) 3187 // 3188 // signbit: 3189 // * signbit(cnst) -> cnst' 3190 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 3191 // 3192 // sqrt, sqrtf, sqrtl: 3193 // * sqrt(expN(x)) -> expN(x*0.5) 3194 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 3195 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 3196 // 3197 3198 //===----------------------------------------------------------------------===// 3199 // Fortified Library Call Optimizations 3200 //===----------------------------------------------------------------------===// 3201 3202 bool 3203 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 3204 unsigned ObjSizeOp, 3205 Optional<unsigned> SizeOp, 3206 Optional<unsigned> StrOp, 3207 Optional<unsigned> FlagOp) { 3208 // If this function takes a flag argument, the implementation may use it to 3209 // perform extra checks. Don't fold into the non-checking variant. 3210 if (FlagOp) { 3211 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 3212 if (!Flag || !Flag->isZero()) 3213 return false; 3214 } 3215 3216 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 3217 return true; 3218 3219 if (ConstantInt *ObjSizeCI = 3220 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 3221 if (ObjSizeCI->isMinusOne()) 3222 return true; 3223 // If the object size wasn't -1 (unknown), bail out if we were asked to. 3224 if (OnlyLowerUnknownSize) 3225 return false; 3226 if (StrOp) { 3227 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 3228 // If the length is 0 we don't know how long it is and so we can't 3229 // remove the check. 3230 if (Len) 3231 annotateDereferenceableBytes(CI, *StrOp, Len); 3232 else 3233 return false; 3234 return ObjSizeCI->getZExtValue() >= Len; 3235 } 3236 3237 if (SizeOp) { 3238 if (ConstantInt *SizeCI = 3239 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 3240 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 3241 } 3242 } 3243 return false; 3244 } 3245 3246 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 3247 IRBuilderBase &B) { 3248 if (isFortifiedCallFoldable(CI, 3, 2)) { 3249 CallInst *NewCI = 3250 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3251 Align(1), CI->getArgOperand(2)); 3252 NewCI->setAttributes(CI->getAttributes()); 3253 NewCI->removeAttributes(AttributeList::ReturnIndex, 3254 AttributeFuncs::typeIncompatible(NewCI->getType())); 3255 return CI->getArgOperand(0); 3256 } 3257 return nullptr; 3258 } 3259 3260 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 3261 IRBuilderBase &B) { 3262 if (isFortifiedCallFoldable(CI, 3, 2)) { 3263 CallInst *NewCI = 3264 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3265 Align(1), CI->getArgOperand(2)); 3266 NewCI->setAttributes(CI->getAttributes()); 3267 NewCI->removeAttributes(AttributeList::ReturnIndex, 3268 AttributeFuncs::typeIncompatible(NewCI->getType())); 3269 return CI->getArgOperand(0); 3270 } 3271 return nullptr; 3272 } 3273 3274 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 3275 IRBuilderBase &B) { 3276 // TODO: Try foldMallocMemset() here. 3277 3278 if (isFortifiedCallFoldable(CI, 3, 2)) { 3279 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 3280 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 3281 CI->getArgOperand(2), Align(1)); 3282 NewCI->setAttributes(CI->getAttributes()); 3283 NewCI->removeAttributes(AttributeList::ReturnIndex, 3284 AttributeFuncs::typeIncompatible(NewCI->getType())); 3285 return CI->getArgOperand(0); 3286 } 3287 return nullptr; 3288 } 3289 3290 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 3291 IRBuilderBase &B) { 3292 const DataLayout &DL = CI->getModule()->getDataLayout(); 3293 if (isFortifiedCallFoldable(CI, 3, 2)) 3294 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3295 CI->getArgOperand(2), B, DL, TLI)) { 3296 CallInst *NewCI = cast<CallInst>(Call); 3297 NewCI->setAttributes(CI->getAttributes()); 3298 NewCI->removeAttributes( 3299 AttributeList::ReturnIndex, 3300 AttributeFuncs::typeIncompatible(NewCI->getType())); 3301 return NewCI; 3302 } 3303 return nullptr; 3304 } 3305 3306 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 3307 IRBuilderBase &B, 3308 LibFunc Func) { 3309 const DataLayout &DL = CI->getModule()->getDataLayout(); 3310 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 3311 *ObjSize = CI->getArgOperand(2); 3312 3313 // __stpcpy_chk(x,x,...) -> x+strlen(x) 3314 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 3315 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3316 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3317 } 3318 3319 // If a) we don't have any length information, or b) we know this will 3320 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3321 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3322 // TODO: It might be nice to get a maximum length out of the possible 3323 // string lengths for varying. 3324 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 3325 if (Func == LibFunc_strcpy_chk) 3326 return emitStrCpy(Dst, Src, B, TLI); 3327 else 3328 return emitStpCpy(Dst, Src, B, TLI); 3329 } 3330 3331 if (OnlyLowerUnknownSize) 3332 return nullptr; 3333 3334 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3335 uint64_t Len = GetStringLength(Src); 3336 if (Len) 3337 annotateDereferenceableBytes(CI, 1, Len); 3338 else 3339 return nullptr; 3340 3341 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 3342 Value *LenV = ConstantInt::get(SizeTTy, Len); 3343 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 3344 // If the function was an __stpcpy_chk, and we were able to fold it into 3345 // a __memcpy_chk, we still need to return the correct end pointer. 3346 if (Ret && Func == LibFunc_stpcpy_chk) 3347 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 3348 return Ret; 3349 } 3350 3351 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 3352 IRBuilderBase &B) { 3353 if (isFortifiedCallFoldable(CI, 1, None, 0)) 3354 return emitStrLen(CI->getArgOperand(0), B, CI->getModule()->getDataLayout(), 3355 TLI); 3356 return nullptr; 3357 } 3358 3359 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 3360 IRBuilderBase &B, 3361 LibFunc Func) { 3362 if (isFortifiedCallFoldable(CI, 3, 2)) { 3363 if (Func == LibFunc_strncpy_chk) 3364 return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3365 CI->getArgOperand(2), B, TLI); 3366 else 3367 return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3368 CI->getArgOperand(2), B, TLI); 3369 } 3370 3371 return nullptr; 3372 } 3373 3374 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 3375 IRBuilderBase &B) { 3376 if (isFortifiedCallFoldable(CI, 4, 3)) 3377 return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3378 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI); 3379 3380 return nullptr; 3381 } 3382 3383 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 3384 IRBuilderBase &B) { 3385 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 3386 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 3387 return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3388 CI->getArgOperand(4), VariadicArgs, B, TLI); 3389 } 3390 3391 return nullptr; 3392 } 3393 3394 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3395 IRBuilderBase &B) { 3396 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3397 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 3398 return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs, 3399 B, TLI); 3400 } 3401 3402 return nullptr; 3403 } 3404 3405 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3406 IRBuilderBase &B) { 3407 if (isFortifiedCallFoldable(CI, 2)) 3408 return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI); 3409 3410 return nullptr; 3411 } 3412 3413 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3414 IRBuilderBase &B) { 3415 if (isFortifiedCallFoldable(CI, 3)) 3416 return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3417 CI->getArgOperand(2), B, TLI); 3418 3419 return nullptr; 3420 } 3421 3422 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3423 IRBuilderBase &B) { 3424 if (isFortifiedCallFoldable(CI, 3)) 3425 return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3426 CI->getArgOperand(2), B, TLI); 3427 3428 return nullptr; 3429 } 3430 3431 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3432 IRBuilderBase &B) { 3433 if (isFortifiedCallFoldable(CI, 3)) 3434 return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3435 CI->getArgOperand(2), B, TLI); 3436 3437 return nullptr; 3438 } 3439 3440 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3441 IRBuilderBase &B) { 3442 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3443 return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3444 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI); 3445 3446 return nullptr; 3447 } 3448 3449 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3450 IRBuilderBase &B) { 3451 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3452 return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3453 CI->getArgOperand(4), B, TLI); 3454 3455 return nullptr; 3456 } 3457 3458 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 3459 IRBuilderBase &Builder) { 3460 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3461 // Some clang users checked for _chk libcall availability using: 3462 // __has_builtin(__builtin___memcpy_chk) 3463 // When compiling with -fno-builtin, this is always true. 3464 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3465 // end up with fortified libcalls, which isn't acceptable in a freestanding 3466 // environment which only provides their non-fortified counterparts. 3467 // 3468 // Until we change clang and/or teach external users to check for availability 3469 // differently, disregard the "nobuiltin" attribute and TLI::has. 3470 // 3471 // PR23093. 3472 3473 LibFunc Func; 3474 Function *Callee = CI->getCalledFunction(); 3475 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3476 3477 SmallVector<OperandBundleDef, 2> OpBundles; 3478 CI->getOperandBundlesAsDefs(OpBundles); 3479 3480 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3481 Builder.setDefaultOperandBundles(OpBundles); 3482 3483 // First, check that this is a known library functions and that the prototype 3484 // is correct. 3485 if (!TLI->getLibFunc(*Callee, Func)) 3486 return nullptr; 3487 3488 // We never change the calling convention. 3489 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3490 return nullptr; 3491 3492 switch (Func) { 3493 case LibFunc_memcpy_chk: 3494 return optimizeMemCpyChk(CI, Builder); 3495 case LibFunc_mempcpy_chk: 3496 return optimizeMemPCpyChk(CI, Builder); 3497 case LibFunc_memmove_chk: 3498 return optimizeMemMoveChk(CI, Builder); 3499 case LibFunc_memset_chk: 3500 return optimizeMemSetChk(CI, Builder); 3501 case LibFunc_stpcpy_chk: 3502 case LibFunc_strcpy_chk: 3503 return optimizeStrpCpyChk(CI, Builder, Func); 3504 case LibFunc_strlen_chk: 3505 return optimizeStrLenChk(CI, Builder); 3506 case LibFunc_stpncpy_chk: 3507 case LibFunc_strncpy_chk: 3508 return optimizeStrpNCpyChk(CI, Builder, Func); 3509 case LibFunc_memccpy_chk: 3510 return optimizeMemCCpyChk(CI, Builder); 3511 case LibFunc_snprintf_chk: 3512 return optimizeSNPrintfChk(CI, Builder); 3513 case LibFunc_sprintf_chk: 3514 return optimizeSPrintfChk(CI, Builder); 3515 case LibFunc_strcat_chk: 3516 return optimizeStrCatChk(CI, Builder); 3517 case LibFunc_strlcat_chk: 3518 return optimizeStrLCat(CI, Builder); 3519 case LibFunc_strncat_chk: 3520 return optimizeStrNCatChk(CI, Builder); 3521 case LibFunc_strlcpy_chk: 3522 return optimizeStrLCpyChk(CI, Builder); 3523 case LibFunc_vsnprintf_chk: 3524 return optimizeVSNPrintfChk(CI, Builder); 3525 case LibFunc_vsprintf_chk: 3526 return optimizeVSPrintfChk(CI, Builder); 3527 default: 3528 break; 3529 } 3530 return nullptr; 3531 } 3532 3533 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3534 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3535 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 3536