1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Transforms/Utils/BuildLibCalls.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Transforms/Utils/SizeOpts.h" 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 static cl::opt<bool> 40 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 41 cl::init(false), 42 cl::desc("Enable unsafe double to float " 43 "shrinking for math lib calls")); 44 45 //===----------------------------------------------------------------------===// 46 // Helper Functions 47 //===----------------------------------------------------------------------===// 48 49 static bool ignoreCallingConv(LibFunc Func) { 50 return Func == LibFunc_abs || Func == LibFunc_labs || 51 Func == LibFunc_llabs || Func == LibFunc_strlen; 52 } 53 54 /// Return true if it is only used in equality comparisons with With. 55 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 56 for (User *U : V->users()) { 57 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 58 if (IC->isEquality() && IC->getOperand(1) == With) 59 continue; 60 // Unknown instruction. 61 return false; 62 } 63 return true; 64 } 65 66 static bool callHasFloatingPointArgument(const CallInst *CI) { 67 return any_of(CI->operands(), [](const Use &OI) { 68 return OI->getType()->isFloatingPointTy(); 69 }); 70 } 71 72 static bool callHasFP128Argument(const CallInst *CI) { 73 return any_of(CI->operands(), [](const Use &OI) { 74 return OI->getType()->isFP128Ty(); 75 }); 76 } 77 78 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 79 if (Base < 2 || Base > 36) 80 // handle special zero base 81 if (Base != 0) 82 return nullptr; 83 84 char *End; 85 std::string nptr = Str.str(); 86 errno = 0; 87 long long int Result = strtoll(nptr.c_str(), &End, Base); 88 if (errno) 89 return nullptr; 90 91 // if we assume all possible target locales are ASCII supersets, 92 // then if strtoll successfully parses a number on the host, 93 // it will also successfully parse the same way on the target 94 if (*End != '\0') 95 return nullptr; 96 97 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 98 return nullptr; 99 100 return ConstantInt::get(CI->getType(), Result); 101 } 102 103 static bool isOnlyUsedInComparisonWithZero(Value *V) { 104 for (User *U : V->users()) { 105 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 106 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 107 if (C->isNullValue()) 108 continue; 109 // Unknown instruction. 110 return false; 111 } 112 return true; 113 } 114 115 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 116 const DataLayout &DL) { 117 if (!isOnlyUsedInComparisonWithZero(CI)) 118 return false; 119 120 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 121 return false; 122 123 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 124 return false; 125 126 return true; 127 } 128 129 static void annotateDereferenceableBytes(CallInst *CI, 130 ArrayRef<unsigned> ArgNos, 131 uint64_t DereferenceableBytes) { 132 const Function *F = CI->getCaller(); 133 if (!F) 134 return; 135 for (unsigned ArgNo : ArgNos) { 136 uint64_t DerefBytes = DereferenceableBytes; 137 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 138 if (!llvm::NullPointerIsDefined(F, AS) || 139 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 140 DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo), 141 DereferenceableBytes); 142 143 if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) { 144 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 145 if (!llvm::NullPointerIsDefined(F, AS) || 146 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 147 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 148 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 149 CI->getContext(), DerefBytes)); 150 } 151 } 152 } 153 154 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, 155 ArrayRef<unsigned> ArgNos) { 156 Function *F = CI->getCaller(); 157 if (!F) 158 return; 159 160 for (unsigned ArgNo : ArgNos) { 161 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef)) 162 CI->addParamAttr(ArgNo, Attribute::NoUndef); 163 164 if (CI->paramHasAttr(ArgNo, Attribute::NonNull)) 165 continue; 166 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 167 if (llvm::NullPointerIsDefined(F, AS)) 168 continue; 169 170 CI->addParamAttr(ArgNo, Attribute::NonNull); 171 annotateDereferenceableBytes(CI, ArgNo, 1); 172 } 173 } 174 175 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 176 Value *Size, const DataLayout &DL) { 177 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 178 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 179 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 180 } else if (isKnownNonZero(Size, DL)) { 181 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 182 const APInt *X, *Y; 183 uint64_t DerefMin = 1; 184 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 185 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 186 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 187 } 188 } 189 } 190 191 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for 192 // easier chaining. Calls to emit* and B.createCall should probably be wrapped 193 // in this function when New is created to replace Old. Callers should take 194 // care to check Old.isMustTailCall() if they aren't replacing Old directly 195 // with New. 196 static Value *copyFlags(const CallInst &Old, Value *New) { 197 assert(!Old.isMustTailCall() && "do not copy musttail call flags"); 198 assert(!Old.isNoTailCall() && "do not copy notail call flags"); 199 if (auto *NewCI = dyn_cast_or_null<CallInst>(New)) 200 NewCI->setTailCallKind(Old.getTailCallKind()); 201 return New; 202 } 203 204 //===----------------------------------------------------------------------===// 205 // String and Memory Library Call Optimizations 206 //===----------------------------------------------------------------------===// 207 208 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 209 // Extract some information from the instruction 210 Value *Dst = CI->getArgOperand(0); 211 Value *Src = CI->getArgOperand(1); 212 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 213 214 // See if we can get the length of the input string. 215 uint64_t Len = GetStringLength(Src); 216 if (Len) 217 annotateDereferenceableBytes(CI, 1, Len); 218 else 219 return nullptr; 220 --Len; // Unbias length. 221 222 // Handle the simple, do-nothing case: strcat(x, "") -> x 223 if (Len == 0) 224 return Dst; 225 226 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B)); 227 } 228 229 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 230 IRBuilderBase &B) { 231 // We need to find the end of the destination string. That's where the 232 // memory is to be moved to. We just generate a call to strlen. 233 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 234 if (!DstLen) 235 return nullptr; 236 237 // Now that we have the destination's length, we must index into the 238 // destination's pointer to get the actual memcpy destination (end of 239 // the string .. we're concatenating). 240 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 241 242 // We have enough information to now generate the memcpy call to do the 243 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 244 B.CreateMemCpy( 245 CpyDst, Align(1), Src, Align(1), 246 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 247 return Dst; 248 } 249 250 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 251 // Extract some information from the instruction. 252 Value *Dst = CI->getArgOperand(0); 253 Value *Src = CI->getArgOperand(1); 254 Value *Size = CI->getArgOperand(2); 255 uint64_t Len; 256 annotateNonNullNoUndefBasedOnAccess(CI, 0); 257 if (isKnownNonZero(Size, DL)) 258 annotateNonNullNoUndefBasedOnAccess(CI, 1); 259 260 // We don't do anything if length is not constant. 261 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 262 if (LengthArg) { 263 Len = LengthArg->getZExtValue(); 264 // strncat(x, c, 0) -> x 265 if (!Len) 266 return Dst; 267 } else { 268 return nullptr; 269 } 270 271 // See if we can get the length of the input string. 272 uint64_t SrcLen = GetStringLength(Src); 273 if (SrcLen) { 274 annotateDereferenceableBytes(CI, 1, SrcLen); 275 --SrcLen; // Unbias length. 276 } else { 277 return nullptr; 278 } 279 280 // strncat(x, "", c) -> x 281 if (SrcLen == 0) 282 return Dst; 283 284 // We don't optimize this case. 285 if (Len < SrcLen) 286 return nullptr; 287 288 // strncat(x, s, c) -> strcat(x, s) 289 // s is constant so the strcat can be optimized further. 290 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B)); 291 } 292 293 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 294 Function *Callee = CI->getCalledFunction(); 295 FunctionType *FT = Callee->getFunctionType(); 296 Value *SrcStr = CI->getArgOperand(0); 297 annotateNonNullNoUndefBasedOnAccess(CI, 0); 298 299 // If the second operand is non-constant, see if we can compute the length 300 // of the input string and turn this into memchr. 301 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 302 if (!CharC) { 303 uint64_t Len = GetStringLength(SrcStr); 304 if (Len) 305 annotateDereferenceableBytes(CI, 0, Len); 306 else 307 return nullptr; 308 if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 309 return nullptr; 310 311 return copyFlags( 312 *CI, 313 emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 314 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), B, 315 DL, TLI)); 316 } 317 318 // Otherwise, the character is a constant, see if the first argument is 319 // a string literal. If so, we can constant fold. 320 StringRef Str; 321 if (!getConstantStringInfo(SrcStr, Str)) { 322 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 323 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 324 return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 325 return nullptr; 326 } 327 328 // Compute the offset, make sure to handle the case when we're searching for 329 // zero (a weird way to spell strlen). 330 size_t I = (0xFF & CharC->getSExtValue()) == 0 331 ? Str.size() 332 : Str.find(CharC->getSExtValue()); 333 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 334 return Constant::getNullValue(CI->getType()); 335 336 // strchr(s+n,c) -> gep(s+n+i,c) 337 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 338 } 339 340 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 341 Value *SrcStr = CI->getArgOperand(0); 342 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 343 annotateNonNullNoUndefBasedOnAccess(CI, 0); 344 345 // Cannot fold anything if we're not looking for a constant. 346 if (!CharC) 347 return nullptr; 348 349 StringRef Str; 350 if (!getConstantStringInfo(SrcStr, Str)) { 351 // strrchr(s, 0) -> strchr(s, 0) 352 if (CharC->isZero()) 353 return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI)); 354 return nullptr; 355 } 356 357 // Compute the offset. 358 size_t I = (0xFF & CharC->getSExtValue()) == 0 359 ? Str.size() 360 : Str.rfind(CharC->getSExtValue()); 361 if (I == StringRef::npos) // Didn't find the char. Return null. 362 return Constant::getNullValue(CI->getType()); 363 364 // strrchr(s+n,c) -> gep(s+n+i,c) 365 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 366 } 367 368 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 369 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 370 if (Str1P == Str2P) // strcmp(x,x) -> 0 371 return ConstantInt::get(CI->getType(), 0); 372 373 StringRef Str1, Str2; 374 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 375 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 376 377 // strcmp(x, y) -> cnst (if both x and y are constant strings) 378 if (HasStr1 && HasStr2) 379 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 380 381 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 382 return B.CreateNeg(B.CreateZExt( 383 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 384 385 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 386 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 387 CI->getType()); 388 389 // strcmp(P, "x") -> memcmp(P, "x", 2) 390 uint64_t Len1 = GetStringLength(Str1P); 391 if (Len1) 392 annotateDereferenceableBytes(CI, 0, Len1); 393 uint64_t Len2 = GetStringLength(Str2P); 394 if (Len2) 395 annotateDereferenceableBytes(CI, 1, Len2); 396 397 if (Len1 && Len2) { 398 return copyFlags( 399 *CI, emitMemCmp(Str1P, Str2P, 400 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 401 std::min(Len1, Len2)), 402 B, DL, TLI)); 403 } 404 405 // strcmp to memcmp 406 if (!HasStr1 && HasStr2) { 407 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 408 return copyFlags( 409 *CI, 410 emitMemCmp(Str1P, Str2P, 411 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 412 B, DL, TLI)); 413 } else if (HasStr1 && !HasStr2) { 414 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 415 return copyFlags( 416 *CI, 417 emitMemCmp(Str1P, Str2P, 418 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 419 B, DL, TLI)); 420 } 421 422 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 423 return nullptr; 424 } 425 426 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 427 Value *Str1P = CI->getArgOperand(0); 428 Value *Str2P = CI->getArgOperand(1); 429 Value *Size = CI->getArgOperand(2); 430 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 431 return ConstantInt::get(CI->getType(), 0); 432 433 if (isKnownNonZero(Size, DL)) 434 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 435 // Get the length argument if it is constant. 436 uint64_t Length; 437 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 438 Length = LengthArg->getZExtValue(); 439 else 440 return nullptr; 441 442 if (Length == 0) // strncmp(x,y,0) -> 0 443 return ConstantInt::get(CI->getType(), 0); 444 445 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 446 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI)); 447 448 StringRef Str1, Str2; 449 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 450 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 451 452 // strncmp(x, y) -> cnst (if both x and y are constant strings) 453 if (HasStr1 && HasStr2) { 454 StringRef SubStr1 = Str1.substr(0, Length); 455 StringRef SubStr2 = Str2.substr(0, Length); 456 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 457 } 458 459 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 460 return B.CreateNeg(B.CreateZExt( 461 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 462 463 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 464 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 465 CI->getType()); 466 467 uint64_t Len1 = GetStringLength(Str1P); 468 if (Len1) 469 annotateDereferenceableBytes(CI, 0, Len1); 470 uint64_t Len2 = GetStringLength(Str2P); 471 if (Len2) 472 annotateDereferenceableBytes(CI, 1, Len2); 473 474 // strncmp to memcmp 475 if (!HasStr1 && HasStr2) { 476 Len2 = std::min(Len2, Length); 477 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 478 return copyFlags( 479 *CI, 480 emitMemCmp(Str1P, Str2P, 481 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 482 B, DL, TLI)); 483 } else if (HasStr1 && !HasStr2) { 484 Len1 = std::min(Len1, Length); 485 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 486 return copyFlags( 487 *CI, 488 emitMemCmp(Str1P, Str2P, 489 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 490 B, DL, TLI)); 491 } 492 493 return nullptr; 494 } 495 496 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 497 Value *Src = CI->getArgOperand(0); 498 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 499 uint64_t SrcLen = GetStringLength(Src); 500 if (SrcLen && Size) { 501 annotateDereferenceableBytes(CI, 0, SrcLen); 502 if (SrcLen <= Size->getZExtValue() + 1) 503 return copyFlags(*CI, emitStrDup(Src, B, TLI)); 504 } 505 506 return nullptr; 507 } 508 509 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 510 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 511 if (Dst == Src) // strcpy(x,x) -> x 512 return Src; 513 514 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 515 // See if we can get the length of the input string. 516 uint64_t Len = GetStringLength(Src); 517 if (Len) 518 annotateDereferenceableBytes(CI, 1, Len); 519 else 520 return nullptr; 521 522 // We have enough information to now generate the memcpy call to do the 523 // copy for us. Make a memcpy to copy the nul byte with align = 1. 524 CallInst *NewCI = 525 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 526 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 527 NewCI->setAttributes(CI->getAttributes()); 528 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 529 copyFlags(*CI, NewCI); 530 return Dst; 531 } 532 533 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 534 Function *Callee = CI->getCalledFunction(); 535 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 536 537 // stpcpy(d,s) -> strcpy(d,s) if the result is not used. 538 if (CI->use_empty()) 539 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 540 541 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 542 Value *StrLen = emitStrLen(Src, B, DL, TLI); 543 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 544 } 545 546 // See if we can get the length of the input string. 547 uint64_t Len = GetStringLength(Src); 548 if (Len) 549 annotateDereferenceableBytes(CI, 1, Len); 550 else 551 return nullptr; 552 553 Type *PT = Callee->getFunctionType()->getParamType(0); 554 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 555 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 556 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 557 558 // We have enough information to now generate the memcpy call to do the 559 // copy for us. Make a memcpy to copy the nul byte with align = 1. 560 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 561 NewCI->setAttributes(CI->getAttributes()); 562 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 563 copyFlags(*CI, NewCI); 564 return DstEnd; 565 } 566 567 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) { 568 Function *Callee = CI->getCalledFunction(); 569 Value *Dst = CI->getArgOperand(0); 570 Value *Src = CI->getArgOperand(1); 571 Value *Size = CI->getArgOperand(2); 572 annotateNonNullNoUndefBasedOnAccess(CI, 0); 573 if (isKnownNonZero(Size, DL)) 574 annotateNonNullNoUndefBasedOnAccess(CI, 1); 575 576 uint64_t Len; 577 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 578 Len = LengthArg->getZExtValue(); 579 else 580 return nullptr; 581 582 // strncpy(x, y, 0) -> x 583 if (Len == 0) 584 return Dst; 585 586 // See if we can get the length of the input string. 587 uint64_t SrcLen = GetStringLength(Src); 588 if (SrcLen) { 589 annotateDereferenceableBytes(CI, 1, SrcLen); 590 --SrcLen; // Unbias length. 591 } else { 592 return nullptr; 593 } 594 595 if (SrcLen == 0) { 596 // strncpy(x, "", y) -> memset(x, '\0', y) 597 Align MemSetAlign = 598 CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne(); 599 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign); 600 AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0)); 601 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 602 CI->getContext(), 0, ArgAttrs)); 603 copyFlags(*CI, NewCI); 604 return Dst; 605 } 606 607 // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4) 608 if (Len > SrcLen + 1) { 609 if (Len <= 128) { 610 StringRef Str; 611 if (!getConstantStringInfo(Src, Str)) 612 return nullptr; 613 std::string SrcStr = Str.str(); 614 SrcStr.resize(Len, '\0'); 615 Src = B.CreateGlobalString(SrcStr, "str"); 616 } else { 617 return nullptr; 618 } 619 } 620 621 Type *PT = Callee->getFunctionType()->getParamType(0); 622 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 623 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 624 ConstantInt::get(DL.getIntPtrType(PT), Len)); 625 NewCI->setAttributes(CI->getAttributes()); 626 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 627 copyFlags(*CI, NewCI); 628 return Dst; 629 } 630 631 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 632 unsigned CharSize) { 633 Value *Src = CI->getArgOperand(0); 634 635 // Constant folding: strlen("xyz") -> 3 636 if (uint64_t Len = GetStringLength(Src, CharSize)) 637 return ConstantInt::get(CI->getType(), Len - 1); 638 639 // If s is a constant pointer pointing to a string literal, we can fold 640 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 641 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 642 // We only try to simplify strlen when the pointer s points to an array 643 // of i8. Otherwise, we would need to scale the offset x before doing the 644 // subtraction. This will make the optimization more complex, and it's not 645 // very useful because calling strlen for a pointer of other types is 646 // very uncommon. 647 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 648 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 649 return nullptr; 650 651 ConstantDataArraySlice Slice; 652 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 653 uint64_t NullTermIdx; 654 if (Slice.Array == nullptr) { 655 NullTermIdx = 0; 656 } else { 657 NullTermIdx = ~((uint64_t)0); 658 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 659 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 660 NullTermIdx = I; 661 break; 662 } 663 } 664 // If the string does not have '\0', leave it to strlen to compute 665 // its length. 666 if (NullTermIdx == ~((uint64_t)0)) 667 return nullptr; 668 } 669 670 Value *Offset = GEP->getOperand(2); 671 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 672 uint64_t ArrSize = 673 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 674 675 // If Offset is not provably in the range [0, NullTermIdx], we can still 676 // optimize if we can prove that the program has undefined behavior when 677 // Offset is outside that range. That is the case when GEP->getOperand(0) 678 // is a pointer to an object whose memory extent is NullTermIdx+1. 679 if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) || 680 (isa<GlobalVariable>(GEP->getOperand(0)) && 681 NullTermIdx == ArrSize - 1)) { 682 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 683 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 684 Offset); 685 } 686 } 687 } 688 689 // strlen(x?"foo":"bars") --> x ? 3 : 4 690 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 691 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 692 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 693 if (LenTrue && LenFalse) { 694 ORE.emit([&]() { 695 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 696 << "folded strlen(select) to select of constants"; 697 }); 698 return B.CreateSelect(SI->getCondition(), 699 ConstantInt::get(CI->getType(), LenTrue - 1), 700 ConstantInt::get(CI->getType(), LenFalse - 1)); 701 } 702 } 703 704 // strlen(x) != 0 --> *x != 0 705 // strlen(x) == 0 --> *x == 0 706 if (isOnlyUsedInZeroEqualityComparison(CI)) 707 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), 708 CI->getType()); 709 710 return nullptr; 711 } 712 713 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 714 if (Value *V = optimizeStringLength(CI, B, 8)) 715 return V; 716 annotateNonNullNoUndefBasedOnAccess(CI, 0); 717 return nullptr; 718 } 719 720 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 721 Module &M = *CI->getModule(); 722 unsigned WCharSize = TLI->getWCharSize(M) * 8; 723 // We cannot perform this optimization without wchar_size metadata. 724 if (WCharSize == 0) 725 return nullptr; 726 727 return optimizeStringLength(CI, B, WCharSize); 728 } 729 730 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 731 StringRef S1, S2; 732 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 733 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 734 735 // strpbrk(s, "") -> nullptr 736 // strpbrk("", s) -> nullptr 737 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 738 return Constant::getNullValue(CI->getType()); 739 740 // Constant folding. 741 if (HasS1 && HasS2) { 742 size_t I = S1.find_first_of(S2); 743 if (I == StringRef::npos) // No match. 744 return Constant::getNullValue(CI->getType()); 745 746 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 747 "strpbrk"); 748 } 749 750 // strpbrk(s, "a") -> strchr(s, 'a') 751 if (HasS2 && S2.size() == 1) 752 return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI)); 753 754 return nullptr; 755 } 756 757 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 758 Value *EndPtr = CI->getArgOperand(1); 759 if (isa<ConstantPointerNull>(EndPtr)) { 760 // With a null EndPtr, this function won't capture the main argument. 761 // It would be readonly too, except that it still may write to errno. 762 CI->addParamAttr(0, Attribute::NoCapture); 763 } 764 765 return nullptr; 766 } 767 768 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 769 StringRef S1, S2; 770 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 771 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 772 773 // strspn(s, "") -> 0 774 // strspn("", s) -> 0 775 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 776 return Constant::getNullValue(CI->getType()); 777 778 // Constant folding. 779 if (HasS1 && HasS2) { 780 size_t Pos = S1.find_first_not_of(S2); 781 if (Pos == StringRef::npos) 782 Pos = S1.size(); 783 return ConstantInt::get(CI->getType(), Pos); 784 } 785 786 return nullptr; 787 } 788 789 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 790 StringRef S1, S2; 791 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 792 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 793 794 // strcspn("", s) -> 0 795 if (HasS1 && S1.empty()) 796 return Constant::getNullValue(CI->getType()); 797 798 // Constant folding. 799 if (HasS1 && HasS2) { 800 size_t Pos = S1.find_first_of(S2); 801 if (Pos == StringRef::npos) 802 Pos = S1.size(); 803 return ConstantInt::get(CI->getType(), Pos); 804 } 805 806 // strcspn(s, "") -> strlen(s) 807 if (HasS2 && S2.empty()) 808 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI)); 809 810 return nullptr; 811 } 812 813 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 814 // fold strstr(x, x) -> x. 815 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 816 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 817 818 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 819 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 820 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 821 if (!StrLen) 822 return nullptr; 823 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 824 StrLen, B, DL, TLI); 825 if (!StrNCmp) 826 return nullptr; 827 for (User *U : llvm::make_early_inc_range(CI->users())) { 828 ICmpInst *Old = cast<ICmpInst>(U); 829 Value *Cmp = 830 B.CreateICmp(Old->getPredicate(), StrNCmp, 831 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 832 replaceAllUsesWith(Old, Cmp); 833 } 834 return CI; 835 } 836 837 // See if either input string is a constant string. 838 StringRef SearchStr, ToFindStr; 839 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 840 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 841 842 // fold strstr(x, "") -> x. 843 if (HasStr2 && ToFindStr.empty()) 844 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 845 846 // If both strings are known, constant fold it. 847 if (HasStr1 && HasStr2) { 848 size_t Offset = SearchStr.find(ToFindStr); 849 850 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 851 return Constant::getNullValue(CI->getType()); 852 853 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 854 Value *Result = castToCStr(CI->getArgOperand(0), B); 855 Result = 856 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 857 return B.CreateBitCast(Result, CI->getType()); 858 } 859 860 // fold strstr(x, "y") -> strchr(x, 'y'). 861 if (HasStr2 && ToFindStr.size() == 1) { 862 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 863 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 864 } 865 866 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 867 return nullptr; 868 } 869 870 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 871 if (isKnownNonZero(CI->getOperand(2), DL)) 872 annotateNonNullNoUndefBasedOnAccess(CI, 0); 873 return nullptr; 874 } 875 876 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 877 Value *SrcStr = CI->getArgOperand(0); 878 Value *Size = CI->getArgOperand(2); 879 if (isKnownNonZero(Size, DL)) 880 annotateNonNullNoUndefBasedOnAccess(CI, 0); 881 882 Value *CharVal = CI->getArgOperand(1); 883 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 884 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 885 886 // memchr(x, y, 0) -> null 887 if (LenC) { 888 if (LenC->isZero()) 889 return Constant::getNullValue(CI->getType()); 890 891 if (LenC->isOne()) { 892 // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y, 893 // constant or otherwise. 894 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0"); 895 // Slice off the character's high end bits. 896 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 897 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp"); 898 Value *NullPtr = Constant::getNullValue(CI->getType()); 899 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel"); 900 } 901 } 902 903 StringRef Str; 904 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 905 return nullptr; 906 907 if (CharC) { 908 size_t Pos = Str.find(CharC->getZExtValue()); 909 if (Pos == StringRef::npos) 910 // When the character is not in the source array fold the result 911 // to null regardless of Size. 912 return Constant::getNullValue(CI->getType()); 913 914 // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos 915 // When the constant Size is less than or equal to the character 916 // position also fold the result to null. 917 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos), 918 "memchr.cmp"); 919 Value *NullPtr = Constant::getNullValue(CI->getType()); 920 Value *SrcPlus = 921 B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), "memchr.ptr"); 922 return B.CreateSelect(Cmp, NullPtr, SrcPlus); 923 } 924 925 if (!LenC) 926 // From now on we need a constant length and constant array. 927 return nullptr; 928 929 // Truncate the string to LenC. 930 Str = Str.substr(0, LenC->getZExtValue()); 931 932 // If the char is variable but the input str and length are not we can turn 933 // this memchr call into a simple bit field test. Of course this only works 934 // when the return value is only checked against null. 935 // 936 // It would be really nice to reuse switch lowering here but we can't change 937 // the CFG at this point. 938 // 939 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 940 // != 0 941 // after bounds check. 942 if (Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI)) 943 return nullptr; 944 945 unsigned char Max = 946 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 947 reinterpret_cast<const unsigned char *>(Str.end())); 948 949 // Make sure the bit field we're about to create fits in a register on the 950 // target. 951 // FIXME: On a 64 bit architecture this prevents us from using the 952 // interesting range of alpha ascii chars. We could do better by emitting 953 // two bitfields or shifting the range by 64 if no lower chars are used. 954 if (!DL.fitsInLegalInteger(Max + 1)) 955 return nullptr; 956 957 // For the bit field use a power-of-2 type with at least 8 bits to avoid 958 // creating unnecessary illegal types. 959 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 960 961 // Now build the bit field. 962 APInt Bitfield(Width, 0); 963 for (char C : Str) 964 Bitfield.setBit((unsigned char)C); 965 Value *BitfieldC = B.getInt(Bitfield); 966 967 // Adjust width of "C" to the bitfield width, then mask off the high bits. 968 Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType()); 969 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 970 971 // First check that the bit field access is within bounds. 972 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 973 "memchr.bounds"); 974 975 // Create code that checks if the given bit is set in the field. 976 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 977 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 978 979 // Finally merge both checks and cast to pointer type. The inttoptr 980 // implicitly zexts the i1 to intptr type. 981 return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"), 982 CI->getType()); 983 } 984 985 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 986 uint64_t Len, IRBuilderBase &B, 987 const DataLayout &DL) { 988 if (Len == 0) // memcmp(s1,s2,0) -> 0 989 return Constant::getNullValue(CI->getType()); 990 991 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 992 if (Len == 1) { 993 Value *LHSV = 994 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 995 CI->getType(), "lhsv"); 996 Value *RHSV = 997 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 998 CI->getType(), "rhsv"); 999 return B.CreateSub(LHSV, RHSV, "chardiff"); 1000 } 1001 1002 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 1003 // TODO: The case where both inputs are constants does not need to be limited 1004 // to legal integers or equality comparison. See block below this. 1005 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 1006 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 1007 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 1008 1009 // First, see if we can fold either argument to a constant. 1010 Value *LHSV = nullptr; 1011 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 1012 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 1013 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 1014 } 1015 Value *RHSV = nullptr; 1016 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 1017 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 1018 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 1019 } 1020 1021 // Don't generate unaligned loads. If either source is constant data, 1022 // alignment doesn't matter for that source because there is no load. 1023 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 1024 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 1025 if (!LHSV) { 1026 Type *LHSPtrTy = 1027 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 1028 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 1029 } 1030 if (!RHSV) { 1031 Type *RHSPtrTy = 1032 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 1033 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 1034 } 1035 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1036 } 1037 } 1038 1039 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 1040 // TODO: This is limited to i8 arrays. 1041 StringRef LHSStr, RHSStr; 1042 if (getConstantStringInfo(LHS, LHSStr) && 1043 getConstantStringInfo(RHS, RHSStr)) { 1044 // Make sure we're not reading out-of-bounds memory. 1045 if (Len > LHSStr.size() || Len > RHSStr.size()) 1046 return nullptr; 1047 // Fold the memcmp and normalize the result. This way we get consistent 1048 // results across multiple platforms. 1049 uint64_t Ret = 0; 1050 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 1051 if (Cmp < 0) 1052 Ret = -1; 1053 else if (Cmp > 0) 1054 Ret = 1; 1055 return ConstantInt::get(CI->getType(), Ret); 1056 } 1057 1058 return nullptr; 1059 } 1060 1061 // Most simplifications for memcmp also apply to bcmp. 1062 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1063 IRBuilderBase &B) { 1064 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1065 Value *Size = CI->getArgOperand(2); 1066 1067 if (LHS == RHS) // memcmp(s,s,x) -> 0 1068 return Constant::getNullValue(CI->getType()); 1069 1070 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1071 // Handle constant lengths. 1072 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1073 if (!LenC) 1074 return nullptr; 1075 1076 // memcmp(d,s,0) -> 0 1077 if (LenC->getZExtValue() == 0) 1078 return Constant::getNullValue(CI->getType()); 1079 1080 if (Value *Res = 1081 optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL)) 1082 return Res; 1083 return nullptr; 1084 } 1085 1086 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1087 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1088 return V; 1089 1090 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1091 // bcmp can be more efficient than memcmp because it only has to know that 1092 // there is a difference, not how different one is to the other. 1093 if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) { 1094 Value *LHS = CI->getArgOperand(0); 1095 Value *RHS = CI->getArgOperand(1); 1096 Value *Size = CI->getArgOperand(2); 1097 return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI)); 1098 } 1099 1100 return nullptr; 1101 } 1102 1103 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1104 return optimizeMemCmpBCmpCommon(CI, B); 1105 } 1106 1107 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1108 Value *Size = CI->getArgOperand(2); 1109 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1110 if (isa<IntrinsicInst>(CI)) 1111 return nullptr; 1112 1113 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1114 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1115 CI->getArgOperand(1), Align(1), Size); 1116 NewCI->setAttributes(CI->getAttributes()); 1117 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1118 copyFlags(*CI, NewCI); 1119 return CI->getArgOperand(0); 1120 } 1121 1122 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1123 Value *Dst = CI->getArgOperand(0); 1124 Value *Src = CI->getArgOperand(1); 1125 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1126 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1127 StringRef SrcStr; 1128 if (CI->use_empty() && Dst == Src) 1129 return Dst; 1130 // memccpy(d, s, c, 0) -> nullptr 1131 if (N) { 1132 if (N->isNullValue()) 1133 return Constant::getNullValue(CI->getType()); 1134 if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0, 1135 /*TrimAtNul=*/false) || 1136 !StopChar) 1137 return nullptr; 1138 } else { 1139 return nullptr; 1140 } 1141 1142 // Wrap arg 'c' of type int to char 1143 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1144 if (Pos == StringRef::npos) { 1145 if (N->getZExtValue() <= SrcStr.size()) { 1146 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), 1147 CI->getArgOperand(3))); 1148 return Constant::getNullValue(CI->getType()); 1149 } 1150 return nullptr; 1151 } 1152 1153 Value *NewN = 1154 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1155 // memccpy -> llvm.memcpy 1156 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN)); 1157 return Pos + 1 <= N->getZExtValue() 1158 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1159 : Constant::getNullValue(CI->getType()); 1160 } 1161 1162 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1163 Value *Dst = CI->getArgOperand(0); 1164 Value *N = CI->getArgOperand(2); 1165 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1166 CallInst *NewCI = 1167 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1168 // Propagate attributes, but memcpy has no return value, so make sure that 1169 // any return attributes are compliant. 1170 // TODO: Attach return value attributes to the 1st operand to preserve them? 1171 NewCI->setAttributes(CI->getAttributes()); 1172 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1173 copyFlags(*CI, NewCI); 1174 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1175 } 1176 1177 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1178 Value *Size = CI->getArgOperand(2); 1179 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1180 if (isa<IntrinsicInst>(CI)) 1181 return nullptr; 1182 1183 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1184 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1185 CI->getArgOperand(1), Align(1), Size); 1186 NewCI->setAttributes(CI->getAttributes()); 1187 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1188 copyFlags(*CI, NewCI); 1189 return CI->getArgOperand(0); 1190 } 1191 1192 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1193 Value *Size = CI->getArgOperand(2); 1194 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1195 if (isa<IntrinsicInst>(CI)) 1196 return nullptr; 1197 1198 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1199 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1200 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1201 NewCI->setAttributes(CI->getAttributes()); 1202 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1203 copyFlags(*CI, NewCI); 1204 return CI->getArgOperand(0); 1205 } 1206 1207 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1208 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1209 return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI)); 1210 1211 return nullptr; 1212 } 1213 1214 //===----------------------------------------------------------------------===// 1215 // Math Library Optimizations 1216 //===----------------------------------------------------------------------===// 1217 1218 // Replace a libcall \p CI with a call to intrinsic \p IID 1219 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1220 Intrinsic::ID IID) { 1221 // Propagate fast-math flags from the existing call to the new call. 1222 IRBuilderBase::FastMathFlagGuard Guard(B); 1223 B.setFastMathFlags(CI->getFastMathFlags()); 1224 1225 Module *M = CI->getModule(); 1226 Value *V = CI->getArgOperand(0); 1227 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1228 CallInst *NewCall = B.CreateCall(F, V); 1229 NewCall->takeName(CI); 1230 return copyFlags(*CI, NewCall); 1231 } 1232 1233 /// Return a variant of Val with float type. 1234 /// Currently this works in two cases: If Val is an FPExtension of a float 1235 /// value to something bigger, simply return the operand. 1236 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1237 /// loss of precision do so. 1238 static Value *valueHasFloatPrecision(Value *Val) { 1239 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1240 Value *Op = Cast->getOperand(0); 1241 if (Op->getType()->isFloatTy()) 1242 return Op; 1243 } 1244 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1245 APFloat F = Const->getValueAPF(); 1246 bool losesInfo; 1247 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1248 &losesInfo); 1249 if (!losesInfo) 1250 return ConstantFP::get(Const->getContext(), F); 1251 } 1252 return nullptr; 1253 } 1254 1255 /// Shrink double -> float functions. 1256 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1257 bool isBinary, bool isPrecise = false) { 1258 Function *CalleeFn = CI->getCalledFunction(); 1259 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1260 return nullptr; 1261 1262 // If not all the uses of the function are converted to float, then bail out. 1263 // This matters if the precision of the result is more important than the 1264 // precision of the arguments. 1265 if (isPrecise) 1266 for (User *U : CI->users()) { 1267 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1268 if (!Cast || !Cast->getType()->isFloatTy()) 1269 return nullptr; 1270 } 1271 1272 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1273 Value *V[2]; 1274 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1275 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1276 if (!V[0] || (isBinary && !V[1])) 1277 return nullptr; 1278 1279 // If call isn't an intrinsic, check that it isn't within a function with the 1280 // same name as the float version of this call, otherwise the result is an 1281 // infinite loop. For example, from MinGW-w64: 1282 // 1283 // float expf(float val) { return (float) exp((double) val); } 1284 StringRef CalleeName = CalleeFn->getName(); 1285 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1286 if (!IsIntrinsic) { 1287 StringRef CallerName = CI->getFunction()->getName(); 1288 if (!CallerName.empty() && CallerName.back() == 'f' && 1289 CallerName.size() == (CalleeName.size() + 1) && 1290 CallerName.startswith(CalleeName)) 1291 return nullptr; 1292 } 1293 1294 // Propagate the math semantics from the current function to the new function. 1295 IRBuilderBase::FastMathFlagGuard Guard(B); 1296 B.setFastMathFlags(CI->getFastMathFlags()); 1297 1298 // g((double) float) -> (double) gf(float) 1299 Value *R; 1300 if (IsIntrinsic) { 1301 Module *M = CI->getModule(); 1302 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1303 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1304 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1305 } else { 1306 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1307 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs) 1308 : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs); 1309 } 1310 return B.CreateFPExt(R, B.getDoubleTy()); 1311 } 1312 1313 /// Shrink double -> float for unary functions. 1314 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1315 bool isPrecise = false) { 1316 return optimizeDoubleFP(CI, B, false, isPrecise); 1317 } 1318 1319 /// Shrink double -> float for binary functions. 1320 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1321 bool isPrecise = false) { 1322 return optimizeDoubleFP(CI, B, true, isPrecise); 1323 } 1324 1325 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1326 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1327 if (!CI->isFast()) 1328 return nullptr; 1329 1330 // Propagate fast-math flags from the existing call to new instructions. 1331 IRBuilderBase::FastMathFlagGuard Guard(B); 1332 B.setFastMathFlags(CI->getFastMathFlags()); 1333 1334 Value *Real, *Imag; 1335 if (CI->arg_size() == 1) { 1336 Value *Op = CI->getArgOperand(0); 1337 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1338 Real = B.CreateExtractValue(Op, 0, "real"); 1339 Imag = B.CreateExtractValue(Op, 1, "imag"); 1340 } else { 1341 assert(CI->arg_size() == 2 && "Unexpected signature for cabs!"); 1342 Real = CI->getArgOperand(0); 1343 Imag = CI->getArgOperand(1); 1344 } 1345 1346 Value *RealReal = B.CreateFMul(Real, Real); 1347 Value *ImagImag = B.CreateFMul(Imag, Imag); 1348 1349 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1350 CI->getType()); 1351 return copyFlags( 1352 *CI, B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs")); 1353 } 1354 1355 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1356 IRBuilderBase &B) { 1357 if (!isa<FPMathOperator>(Call)) 1358 return nullptr; 1359 1360 IRBuilderBase::FastMathFlagGuard Guard(B); 1361 B.setFastMathFlags(Call->getFastMathFlags()); 1362 1363 // TODO: Can this be shared to also handle LLVM intrinsics? 1364 Value *X; 1365 switch (Func) { 1366 case LibFunc_sin: 1367 case LibFunc_sinf: 1368 case LibFunc_sinl: 1369 case LibFunc_tan: 1370 case LibFunc_tanf: 1371 case LibFunc_tanl: 1372 // sin(-X) --> -sin(X) 1373 // tan(-X) --> -tan(X) 1374 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1375 return B.CreateFNeg( 1376 copyFlags(*Call, B.CreateCall(Call->getCalledFunction(), X))); 1377 break; 1378 case LibFunc_cos: 1379 case LibFunc_cosf: 1380 case LibFunc_cosl: 1381 // cos(-X) --> cos(X) 1382 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1383 return copyFlags(*Call, 1384 B.CreateCall(Call->getCalledFunction(), X, "cos")); 1385 break; 1386 default: 1387 break; 1388 } 1389 return nullptr; 1390 } 1391 1392 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) { 1393 // Multiplications calculated using Addition Chains. 1394 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1395 1396 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1397 1398 if (InnerChain[Exp]) 1399 return InnerChain[Exp]; 1400 1401 static const unsigned AddChain[33][2] = { 1402 {0, 0}, // Unused. 1403 {0, 0}, // Unused (base case = pow1). 1404 {1, 1}, // Unused (pre-computed). 1405 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1406 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1407 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1408 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1409 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1410 }; 1411 1412 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1413 getPow(InnerChain, AddChain[Exp][1], B)); 1414 return InnerChain[Exp]; 1415 } 1416 1417 // Return a properly extended integer (DstWidth bits wide) if the operation is 1418 // an itofp. 1419 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) { 1420 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1421 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1422 // Make sure that the exponent fits inside an "int" of size DstWidth, 1423 // thus avoiding any range issues that FP has not. 1424 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); 1425 if (BitWidth < DstWidth || 1426 (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) 1427 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth)) 1428 : B.CreateZExt(Op, B.getIntNTy(DstWidth)); 1429 } 1430 1431 return nullptr; 1432 } 1433 1434 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1435 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 1436 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 1437 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 1438 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1439 AttributeList Attrs; // Attributes are only meaningful on the original call 1440 Module *Mod = Pow->getModule(); 1441 Type *Ty = Pow->getType(); 1442 bool Ignored; 1443 1444 // Evaluate special cases related to a nested function as the base. 1445 1446 // pow(exp(x), y) -> exp(x * y) 1447 // pow(exp2(x), y) -> exp2(x * y) 1448 // If exp{,2}() is used only once, it is better to fold two transcendental 1449 // math functions into one. If used again, exp{,2}() would still have to be 1450 // called with the original argument, then keep both original transcendental 1451 // functions. However, this transformation is only safe with fully relaxed 1452 // math semantics, since, besides rounding differences, it changes overflow 1453 // and underflow behavior quite dramatically. For example: 1454 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1455 // Whereas: 1456 // exp(1000 * 0.001) = exp(1) 1457 // TODO: Loosen the requirement for fully relaxed math semantics. 1458 // TODO: Handle exp10() when more targets have it available. 1459 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1460 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1461 LibFunc LibFn; 1462 1463 Function *CalleeFn = BaseFn->getCalledFunction(); 1464 if (CalleeFn && 1465 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1466 StringRef ExpName; 1467 Intrinsic::ID ID; 1468 Value *ExpFn; 1469 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 1470 1471 switch (LibFn) { 1472 default: 1473 return nullptr; 1474 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1475 ExpName = TLI->getName(LibFunc_exp); 1476 ID = Intrinsic::exp; 1477 LibFnFloat = LibFunc_expf; 1478 LibFnDouble = LibFunc_exp; 1479 LibFnLongDouble = LibFunc_expl; 1480 break; 1481 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1482 ExpName = TLI->getName(LibFunc_exp2); 1483 ID = Intrinsic::exp2; 1484 LibFnFloat = LibFunc_exp2f; 1485 LibFnDouble = LibFunc_exp2; 1486 LibFnLongDouble = LibFunc_exp2l; 1487 break; 1488 } 1489 1490 // Create new exp{,2}() with the product as its argument. 1491 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1492 ExpFn = BaseFn->doesNotAccessMemory() 1493 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1494 FMul, ExpName) 1495 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1496 LibFnLongDouble, B, 1497 BaseFn->getAttributes()); 1498 1499 // Since the new exp{,2}() is different from the original one, dead code 1500 // elimination cannot be trusted to remove it, since it may have side 1501 // effects (e.g., errno). When the only consumer for the original 1502 // exp{,2}() is pow(), then it has to be explicitly erased. 1503 substituteInParent(BaseFn, ExpFn); 1504 return ExpFn; 1505 } 1506 } 1507 1508 // Evaluate special cases related to a constant base. 1509 1510 const APFloat *BaseF; 1511 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1512 return nullptr; 1513 1514 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 1515 if (match(Base, m_SpecificFP(2.0)) && 1516 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 1517 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1518 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1519 return copyFlags(*Pow, 1520 emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, 1521 TLI, LibFunc_ldexp, LibFunc_ldexpf, 1522 LibFunc_ldexpl, B, Attrs)); 1523 } 1524 1525 // pow(2.0 ** n, x) -> exp2(n * x) 1526 if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1527 APFloat BaseR = APFloat(1.0); 1528 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1529 BaseR = BaseR / *BaseF; 1530 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1531 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1532 APSInt NI(64, false); 1533 if ((IsInteger || IsReciprocal) && 1534 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1535 APFloat::opOK && 1536 NI > 1 && NI.isPowerOf2()) { 1537 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1538 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1539 if (Pow->doesNotAccessMemory()) 1540 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 1541 Mod, Intrinsic::exp2, Ty), 1542 FMul, "exp2")); 1543 else 1544 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 1545 LibFunc_exp2f, 1546 LibFunc_exp2l, B, Attrs)); 1547 } 1548 } 1549 1550 // pow(10.0, x) -> exp10(x) 1551 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1552 if (match(Base, m_SpecificFP(10.0)) && 1553 hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1554 return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, 1555 LibFunc_exp10f, LibFunc_exp10l, 1556 B, Attrs)); 1557 1558 // pow(x, y) -> exp2(log2(x) * y) 1559 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 1560 !BaseF->isNegative()) { 1561 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 1562 // Luckily optimizePow has already handled the x == 1 case. 1563 assert(!match(Base, m_FPOne()) && 1564 "pow(1.0, y) should have been simplified earlier!"); 1565 1566 Value *Log = nullptr; 1567 if (Ty->isFloatTy()) 1568 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 1569 else if (Ty->isDoubleTy()) 1570 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 1571 1572 if (Log) { 1573 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 1574 if (Pow->doesNotAccessMemory()) 1575 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 1576 Mod, Intrinsic::exp2, Ty), 1577 FMul, "exp2")); 1578 else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) 1579 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 1580 LibFunc_exp2f, 1581 LibFunc_exp2l, B, Attrs)); 1582 } 1583 } 1584 1585 return nullptr; 1586 } 1587 1588 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1589 Module *M, IRBuilderBase &B, 1590 const TargetLibraryInfo *TLI) { 1591 // If errno is never set, then use the intrinsic for sqrt(). 1592 if (NoErrno) { 1593 Function *SqrtFn = 1594 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1595 return B.CreateCall(SqrtFn, V, "sqrt"); 1596 } 1597 1598 // Otherwise, use the libcall for sqrt(). 1599 if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) 1600 // TODO: We also should check that the target can in fact lower the sqrt() 1601 // libcall. We currently have no way to ask this question, so we ask if 1602 // the target has a sqrt() libcall, which is not exactly the same. 1603 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1604 LibFunc_sqrtl, B, Attrs); 1605 1606 return nullptr; 1607 } 1608 1609 /// Use square root in place of pow(x, +/-0.5). 1610 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 1611 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1612 AttributeList Attrs; // Attributes are only meaningful on the original call 1613 Module *Mod = Pow->getModule(); 1614 Type *Ty = Pow->getType(); 1615 1616 const APFloat *ExpoF; 1617 if (!match(Expo, m_APFloat(ExpoF)) || 1618 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1619 return nullptr; 1620 1621 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 1622 // so that requires fast-math-flags (afn or reassoc). 1623 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 1624 return nullptr; 1625 1626 // If we have a pow() library call (accesses memory) and we can't guarantee 1627 // that the base is not an infinity, give up: 1628 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 1629 // errno), but sqrt(-Inf) is required by various standards to set errno. 1630 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 1631 !isKnownNeverInfinity(Base, TLI)) 1632 return nullptr; 1633 1634 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1635 if (!Sqrt) 1636 return nullptr; 1637 1638 // Handle signed zero base by expanding to fabs(sqrt(x)). 1639 if (!Pow->hasNoSignedZeros()) { 1640 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1641 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1642 } 1643 1644 Sqrt = copyFlags(*Pow, Sqrt); 1645 1646 // Handle non finite base by expanding to 1647 // (x == -infinity ? +infinity : sqrt(x)). 1648 if (!Pow->hasNoInfs()) { 1649 Value *PosInf = ConstantFP::getInfinity(Ty), 1650 *NegInf = ConstantFP::getInfinity(Ty, true); 1651 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1652 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1653 } 1654 1655 // If the exponent is negative, then get the reciprocal. 1656 if (ExpoF->isNegative()) 1657 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1658 1659 return Sqrt; 1660 } 1661 1662 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1663 IRBuilderBase &B) { 1664 Value *Args[] = {Base, Expo}; 1665 Type *Types[] = {Base->getType(), Expo->getType()}; 1666 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types); 1667 return B.CreateCall(F, Args); 1668 } 1669 1670 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 1671 Value *Base = Pow->getArgOperand(0); 1672 Value *Expo = Pow->getArgOperand(1); 1673 Function *Callee = Pow->getCalledFunction(); 1674 StringRef Name = Callee->getName(); 1675 Type *Ty = Pow->getType(); 1676 Module *M = Pow->getModule(); 1677 bool AllowApprox = Pow->hasApproxFunc(); 1678 bool Ignored; 1679 1680 // Propagate the math semantics from the call to any created instructions. 1681 IRBuilderBase::FastMathFlagGuard Guard(B); 1682 B.setFastMathFlags(Pow->getFastMathFlags()); 1683 // Evaluate special cases related to the base. 1684 1685 // pow(1.0, x) -> 1.0 1686 if (match(Base, m_FPOne())) 1687 return Base; 1688 1689 if (Value *Exp = replacePowWithExp(Pow, B)) 1690 return Exp; 1691 1692 // Evaluate special cases related to the exponent. 1693 1694 // pow(x, -1.0) -> 1.0 / x 1695 if (match(Expo, m_SpecificFP(-1.0))) 1696 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1697 1698 // pow(x, +/-0.0) -> 1.0 1699 if (match(Expo, m_AnyZeroFP())) 1700 return ConstantFP::get(Ty, 1.0); 1701 1702 // pow(x, 1.0) -> x 1703 if (match(Expo, m_FPOne())) 1704 return Base; 1705 1706 // pow(x, 2.0) -> x * x 1707 if (match(Expo, m_SpecificFP(2.0))) 1708 return B.CreateFMul(Base, Base, "square"); 1709 1710 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1711 return Sqrt; 1712 1713 // pow(x, n) -> x * x * x * ... 1714 const APFloat *ExpoF; 1715 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 1716 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 1717 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1718 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1719 // additional fmul. 1720 // TODO: This whole transformation should be backend specific (e.g. some 1721 // backends might prefer libcalls or the limit for the exponent might 1722 // be different) and it should also consider optimizing for size. 1723 APFloat LimF(ExpoF->getSemantics(), 33), 1724 ExpoA(abs(*ExpoF)); 1725 if (ExpoA < LimF) { 1726 // This transformation applies to integer or integer+0.5 exponents only. 1727 // For integer+0.5, we create a sqrt(Base) call. 1728 Value *Sqrt = nullptr; 1729 if (!ExpoA.isInteger()) { 1730 APFloat Expo2 = ExpoA; 1731 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1732 // is no floating point exception and the result is an integer, then 1733 // ExpoA == integer + 0.5 1734 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1735 return nullptr; 1736 1737 if (!Expo2.isInteger()) 1738 return nullptr; 1739 1740 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1741 Pow->doesNotAccessMemory(), M, B, TLI); 1742 if (!Sqrt) 1743 return nullptr; 1744 } 1745 1746 // We will memoize intermediate products of the Addition Chain. 1747 Value *InnerChain[33] = {nullptr}; 1748 InnerChain[1] = Base; 1749 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1750 1751 // We cannot readily convert a non-double type (like float) to a double. 1752 // So we first convert it to something which could be converted to double. 1753 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1754 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1755 1756 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1757 if (Sqrt) 1758 FMul = B.CreateFMul(FMul, Sqrt); 1759 1760 // If the exponent is negative, then get the reciprocal. 1761 if (ExpoF->isNegative()) 1762 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1763 1764 return FMul; 1765 } 1766 1767 APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false); 1768 // powf(x, n) -> powi(x, n) if n is a constant signed integer value 1769 if (ExpoF->isInteger() && 1770 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 1771 APFloat::opOK) { 1772 return copyFlags( 1773 *Pow, 1774 createPowWithIntegerExponent( 1775 Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo), 1776 M, B)); 1777 } 1778 } 1779 1780 // powf(x, itofp(y)) -> powi(x, y) 1781 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 1782 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1783 return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B)); 1784 } 1785 1786 // Shrink pow() to powf() if the arguments are single precision, 1787 // unless the result is expected to be double precision. 1788 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 1789 hasFloatVersion(Name)) { 1790 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, true)) 1791 return Shrunk; 1792 } 1793 1794 return nullptr; 1795 } 1796 1797 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 1798 Function *Callee = CI->getCalledFunction(); 1799 AttributeList Attrs; // Attributes are only meaningful on the original call 1800 StringRef Name = Callee->getName(); 1801 Value *Ret = nullptr; 1802 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 1803 hasFloatVersion(Name)) 1804 Ret = optimizeUnaryDoubleFP(CI, B, true); 1805 1806 Type *Ty = CI->getType(); 1807 Value *Op = CI->getArgOperand(0); 1808 1809 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize 1810 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize 1811 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 1812 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1813 if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) 1814 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 1815 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1816 B, Attrs); 1817 } 1818 1819 return Ret; 1820 } 1821 1822 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 1823 // If we can shrink the call to a float function rather than a double 1824 // function, do that first. 1825 Function *Callee = CI->getCalledFunction(); 1826 StringRef Name = Callee->getName(); 1827 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1828 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1829 return Ret; 1830 1831 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 1832 // the intrinsics for improved optimization (for example, vectorization). 1833 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 1834 // From the C standard draft WG14/N1256: 1835 // "Ideally, fmax would be sensitive to the sign of zero, for example 1836 // fmax(-0.0, +0.0) would return +0; however, implementation in software 1837 // might be impractical." 1838 IRBuilderBase::FastMathFlagGuard Guard(B); 1839 FastMathFlags FMF = CI->getFastMathFlags(); 1840 FMF.setNoSignedZeros(); 1841 B.setFastMathFlags(FMF); 1842 1843 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 1844 : Intrinsic::maxnum; 1845 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 1846 return copyFlags( 1847 *CI, B.CreateCall(F, {CI->getArgOperand(0), CI->getArgOperand(1)})); 1848 } 1849 1850 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 1851 Function *LogFn = Log->getCalledFunction(); 1852 AttributeList Attrs; // Attributes are only meaningful on the original call 1853 StringRef LogNm = LogFn->getName(); 1854 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 1855 Module *Mod = Log->getModule(); 1856 Type *Ty = Log->getType(); 1857 Value *Ret = nullptr; 1858 1859 if (UnsafeFPShrink && hasFloatVersion(LogNm)) 1860 Ret = optimizeUnaryDoubleFP(Log, B, true); 1861 1862 // The earlier call must also be 'fast' in order to do these transforms. 1863 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 1864 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 1865 return Ret; 1866 1867 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 1868 1869 // This is only applicable to log(), log2(), log10(). 1870 if (TLI->getLibFunc(LogNm, LogLb)) 1871 switch (LogLb) { 1872 case LibFunc_logf: 1873 LogID = Intrinsic::log; 1874 ExpLb = LibFunc_expf; 1875 Exp2Lb = LibFunc_exp2f; 1876 Exp10Lb = LibFunc_exp10f; 1877 PowLb = LibFunc_powf; 1878 break; 1879 case LibFunc_log: 1880 LogID = Intrinsic::log; 1881 ExpLb = LibFunc_exp; 1882 Exp2Lb = LibFunc_exp2; 1883 Exp10Lb = LibFunc_exp10; 1884 PowLb = LibFunc_pow; 1885 break; 1886 case LibFunc_logl: 1887 LogID = Intrinsic::log; 1888 ExpLb = LibFunc_expl; 1889 Exp2Lb = LibFunc_exp2l; 1890 Exp10Lb = LibFunc_exp10l; 1891 PowLb = LibFunc_powl; 1892 break; 1893 case LibFunc_log2f: 1894 LogID = Intrinsic::log2; 1895 ExpLb = LibFunc_expf; 1896 Exp2Lb = LibFunc_exp2f; 1897 Exp10Lb = LibFunc_exp10f; 1898 PowLb = LibFunc_powf; 1899 break; 1900 case LibFunc_log2: 1901 LogID = Intrinsic::log2; 1902 ExpLb = LibFunc_exp; 1903 Exp2Lb = LibFunc_exp2; 1904 Exp10Lb = LibFunc_exp10; 1905 PowLb = LibFunc_pow; 1906 break; 1907 case LibFunc_log2l: 1908 LogID = Intrinsic::log2; 1909 ExpLb = LibFunc_expl; 1910 Exp2Lb = LibFunc_exp2l; 1911 Exp10Lb = LibFunc_exp10l; 1912 PowLb = LibFunc_powl; 1913 break; 1914 case LibFunc_log10f: 1915 LogID = Intrinsic::log10; 1916 ExpLb = LibFunc_expf; 1917 Exp2Lb = LibFunc_exp2f; 1918 Exp10Lb = LibFunc_exp10f; 1919 PowLb = LibFunc_powf; 1920 break; 1921 case LibFunc_log10: 1922 LogID = Intrinsic::log10; 1923 ExpLb = LibFunc_exp; 1924 Exp2Lb = LibFunc_exp2; 1925 Exp10Lb = LibFunc_exp10; 1926 PowLb = LibFunc_pow; 1927 break; 1928 case LibFunc_log10l: 1929 LogID = Intrinsic::log10; 1930 ExpLb = LibFunc_expl; 1931 Exp2Lb = LibFunc_exp2l; 1932 Exp10Lb = LibFunc_exp10l; 1933 PowLb = LibFunc_powl; 1934 break; 1935 default: 1936 return Ret; 1937 } 1938 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 1939 LogID == Intrinsic::log10) { 1940 if (Ty->getScalarType()->isFloatTy()) { 1941 ExpLb = LibFunc_expf; 1942 Exp2Lb = LibFunc_exp2f; 1943 Exp10Lb = LibFunc_exp10f; 1944 PowLb = LibFunc_powf; 1945 } else if (Ty->getScalarType()->isDoubleTy()) { 1946 ExpLb = LibFunc_exp; 1947 Exp2Lb = LibFunc_exp2; 1948 Exp10Lb = LibFunc_exp10; 1949 PowLb = LibFunc_pow; 1950 } else 1951 return Ret; 1952 } else 1953 return Ret; 1954 1955 IRBuilderBase::FastMathFlagGuard Guard(B); 1956 B.setFastMathFlags(FastMathFlags::getFast()); 1957 1958 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 1959 LibFunc ArgLb = NotLibFunc; 1960 TLI->getLibFunc(*Arg, ArgLb); 1961 1962 // log(pow(x,y)) -> y*log(x) 1963 if (ArgLb == PowLb || ArgID == Intrinsic::pow) { 1964 Value *LogX = 1965 Log->doesNotAccessMemory() 1966 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 1967 Arg->getOperand(0), "log") 1968 : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs); 1969 Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul"); 1970 // Since pow() may have side effects, e.g. errno, 1971 // dead code elimination may not be trusted to remove it. 1972 substituteInParent(Arg, MulY); 1973 return MulY; 1974 } 1975 1976 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 1977 // TODO: There is no exp10() intrinsic yet. 1978 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 1979 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 1980 Constant *Eul; 1981 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 1982 // FIXME: Add more precise value of e for long double. 1983 Eul = ConstantFP::get(Log->getType(), numbers::e); 1984 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 1985 Eul = ConstantFP::get(Log->getType(), 2.0); 1986 else 1987 Eul = ConstantFP::get(Log->getType(), 10.0); 1988 Value *LogE = Log->doesNotAccessMemory() 1989 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 1990 Eul, "log") 1991 : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs); 1992 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 1993 // Since exp() may have side effects, e.g. errno, 1994 // dead code elimination may not be trusted to remove it. 1995 substituteInParent(Arg, MulY); 1996 return MulY; 1997 } 1998 1999 return Ret; 2000 } 2001 2002 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 2003 Function *Callee = CI->getCalledFunction(); 2004 Value *Ret = nullptr; 2005 // TODO: Once we have a way (other than checking for the existince of the 2006 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 2007 // condition below. 2008 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 2009 Callee->getIntrinsicID() == Intrinsic::sqrt)) 2010 Ret = optimizeUnaryDoubleFP(CI, B, true); 2011 2012 if (!CI->isFast()) 2013 return Ret; 2014 2015 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 2016 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 2017 return Ret; 2018 2019 // We're looking for a repeated factor in a multiplication tree, 2020 // so we can do this fold: sqrt(x * x) -> fabs(x); 2021 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 2022 Value *Op0 = I->getOperand(0); 2023 Value *Op1 = I->getOperand(1); 2024 Value *RepeatOp = nullptr; 2025 Value *OtherOp = nullptr; 2026 if (Op0 == Op1) { 2027 // Simple match: the operands of the multiply are identical. 2028 RepeatOp = Op0; 2029 } else { 2030 // Look for a more complicated pattern: one of the operands is itself 2031 // a multiply, so search for a common factor in that multiply. 2032 // Note: We don't bother looking any deeper than this first level or for 2033 // variations of this pattern because instcombine's visitFMUL and/or the 2034 // reassociation pass should give us this form. 2035 Value *OtherMul0, *OtherMul1; 2036 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 2037 // Pattern: sqrt((x * y) * z) 2038 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 2039 // Matched: sqrt((x * x) * z) 2040 RepeatOp = OtherMul0; 2041 OtherOp = Op1; 2042 } 2043 } 2044 } 2045 if (!RepeatOp) 2046 return Ret; 2047 2048 // Fast math flags for any created instructions should match the sqrt 2049 // and multiply. 2050 IRBuilderBase::FastMathFlagGuard Guard(B); 2051 B.setFastMathFlags(I->getFastMathFlags()); 2052 2053 // If we found a repeated factor, hoist it out of the square root and 2054 // replace it with the fabs of that factor. 2055 Module *M = Callee->getParent(); 2056 Type *ArgType = I->getType(); 2057 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 2058 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 2059 if (OtherOp) { 2060 // If we found a non-repeated factor, we still need to get its square 2061 // root. We then multiply that by the value that was simplified out 2062 // of the square root calculation. 2063 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 2064 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 2065 return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall)); 2066 } 2067 return copyFlags(*CI, FabsCall); 2068 } 2069 2070 // TODO: Generalize to handle any trig function and its inverse. 2071 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) { 2072 Function *Callee = CI->getCalledFunction(); 2073 Value *Ret = nullptr; 2074 StringRef Name = Callee->getName(); 2075 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 2076 Ret = optimizeUnaryDoubleFP(CI, B, true); 2077 2078 Value *Op1 = CI->getArgOperand(0); 2079 auto *OpC = dyn_cast<CallInst>(Op1); 2080 if (!OpC) 2081 return Ret; 2082 2083 // Both calls must be 'fast' in order to remove them. 2084 if (!CI->isFast() || !OpC->isFast()) 2085 return Ret; 2086 2087 // tan(atan(x)) -> x 2088 // tanf(atanf(x)) -> x 2089 // tanl(atanl(x)) -> x 2090 LibFunc Func; 2091 Function *F = OpC->getCalledFunction(); 2092 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 2093 ((Func == LibFunc_atan && Callee->getName() == "tan") || 2094 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 2095 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 2096 Ret = OpC->getArgOperand(0); 2097 return Ret; 2098 } 2099 2100 static bool isTrigLibCall(CallInst *CI) { 2101 // We can only hope to do anything useful if we can ignore things like errno 2102 // and floating-point exceptions. 2103 // We already checked the prototype. 2104 return CI->hasFnAttr(Attribute::NoUnwind) && 2105 CI->hasFnAttr(Attribute::ReadNone); 2106 } 2107 2108 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2109 bool UseFloat, Value *&Sin, Value *&Cos, 2110 Value *&SinCos) { 2111 Type *ArgTy = Arg->getType(); 2112 Type *ResTy; 2113 StringRef Name; 2114 2115 Triple T(OrigCallee->getParent()->getTargetTriple()); 2116 if (UseFloat) { 2117 Name = "__sincospif_stret"; 2118 2119 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2120 // x86_64 can't use {float, float} since that would be returned in both 2121 // xmm0 and xmm1, which isn't what a real struct would do. 2122 ResTy = T.getArch() == Triple::x86_64 2123 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2124 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2125 } else { 2126 Name = "__sincospi_stret"; 2127 ResTy = StructType::get(ArgTy, ArgTy); 2128 } 2129 2130 Module *M = OrigCallee->getParent(); 2131 FunctionCallee Callee = 2132 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); 2133 2134 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2135 // If the argument is an instruction, it must dominate all uses so put our 2136 // sincos call there. 2137 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2138 } else { 2139 // Otherwise (e.g. for a constant) the beginning of the function is as 2140 // good a place as any. 2141 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2142 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2143 } 2144 2145 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2146 2147 if (SinCos->getType()->isStructTy()) { 2148 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2149 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2150 } else { 2151 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2152 "sinpi"); 2153 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2154 "cospi"); 2155 } 2156 } 2157 2158 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) { 2159 // Make sure the prototype is as expected, otherwise the rest of the 2160 // function is probably invalid and likely to abort. 2161 if (!isTrigLibCall(CI)) 2162 return nullptr; 2163 2164 Value *Arg = CI->getArgOperand(0); 2165 SmallVector<CallInst *, 1> SinCalls; 2166 SmallVector<CallInst *, 1> CosCalls; 2167 SmallVector<CallInst *, 1> SinCosCalls; 2168 2169 bool IsFloat = Arg->getType()->isFloatTy(); 2170 2171 // Look for all compatible sinpi, cospi and sincospi calls with the same 2172 // argument. If there are enough (in some sense) we can make the 2173 // substitution. 2174 Function *F = CI->getFunction(); 2175 for (User *U : Arg->users()) 2176 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2177 2178 // It's only worthwhile if both sinpi and cospi are actually used. 2179 if (SinCalls.empty() || CosCalls.empty()) 2180 return nullptr; 2181 2182 Value *Sin, *Cos, *SinCos; 2183 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 2184 2185 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2186 Value *Res) { 2187 for (CallInst *C : Calls) 2188 replaceAllUsesWith(C, Res); 2189 }; 2190 2191 replaceTrigInsts(SinCalls, Sin); 2192 replaceTrigInsts(CosCalls, Cos); 2193 replaceTrigInsts(SinCosCalls, SinCos); 2194 2195 return nullptr; 2196 } 2197 2198 void LibCallSimplifier::classifyArgUse( 2199 Value *Val, Function *F, bool IsFloat, 2200 SmallVectorImpl<CallInst *> &SinCalls, 2201 SmallVectorImpl<CallInst *> &CosCalls, 2202 SmallVectorImpl<CallInst *> &SinCosCalls) { 2203 CallInst *CI = dyn_cast<CallInst>(Val); 2204 2205 if (!CI || CI->use_empty()) 2206 return; 2207 2208 // Don't consider calls in other functions. 2209 if (CI->getFunction() != F) 2210 return; 2211 2212 Function *Callee = CI->getCalledFunction(); 2213 LibFunc Func; 2214 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 2215 !isTrigLibCall(CI)) 2216 return; 2217 2218 if (IsFloat) { 2219 if (Func == LibFunc_sinpif) 2220 SinCalls.push_back(CI); 2221 else if (Func == LibFunc_cospif) 2222 CosCalls.push_back(CI); 2223 else if (Func == LibFunc_sincospif_stret) 2224 SinCosCalls.push_back(CI); 2225 } else { 2226 if (Func == LibFunc_sinpi) 2227 SinCalls.push_back(CI); 2228 else if (Func == LibFunc_cospi) 2229 CosCalls.push_back(CI); 2230 else if (Func == LibFunc_sincospi_stret) 2231 SinCosCalls.push_back(CI); 2232 } 2233 } 2234 2235 //===----------------------------------------------------------------------===// 2236 // Integer Library Call Optimizations 2237 //===----------------------------------------------------------------------===// 2238 2239 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 2240 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 2241 Value *Op = CI->getArgOperand(0); 2242 Type *ArgType = Op->getType(); 2243 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2244 Intrinsic::cttz, ArgType); 2245 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 2246 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 2247 V = B.CreateIntCast(V, B.getInt32Ty(), false); 2248 2249 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 2250 return B.CreateSelect(Cond, V, B.getInt32(0)); 2251 } 2252 2253 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 2254 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 2255 Value *Op = CI->getArgOperand(0); 2256 Type *ArgType = Op->getType(); 2257 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2258 Intrinsic::ctlz, ArgType); 2259 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 2260 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 2261 V); 2262 return B.CreateIntCast(V, CI->getType(), false); 2263 } 2264 2265 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 2266 // abs(x) -> x <s 0 ? -x : x 2267 // The negation has 'nsw' because abs of INT_MIN is undefined. 2268 Value *X = CI->getArgOperand(0); 2269 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 2270 Value *NegX = B.CreateNSWNeg(X, "neg"); 2271 return B.CreateSelect(IsNeg, NegX, X); 2272 } 2273 2274 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 2275 // isdigit(c) -> (c-'0') <u 10 2276 Value *Op = CI->getArgOperand(0); 2277 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 2278 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 2279 return B.CreateZExt(Op, CI->getType()); 2280 } 2281 2282 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 2283 // isascii(c) -> c <u 128 2284 Value *Op = CI->getArgOperand(0); 2285 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 2286 return B.CreateZExt(Op, CI->getType()); 2287 } 2288 2289 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 2290 // toascii(c) -> c & 0x7f 2291 return B.CreateAnd(CI->getArgOperand(0), 2292 ConstantInt::get(CI->getType(), 0x7F)); 2293 } 2294 2295 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 2296 StringRef Str; 2297 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2298 return nullptr; 2299 2300 return convertStrToNumber(CI, Str, 10); 2301 } 2302 2303 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) { 2304 StringRef Str; 2305 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2306 return nullptr; 2307 2308 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 2309 return nullptr; 2310 2311 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2312 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 2313 } 2314 2315 return nullptr; 2316 } 2317 2318 //===----------------------------------------------------------------------===// 2319 // Formatting and IO Library Call Optimizations 2320 //===----------------------------------------------------------------------===// 2321 2322 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2323 2324 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 2325 int StreamArg) { 2326 Function *Callee = CI->getCalledFunction(); 2327 // Error reporting calls should be cold, mark them as such. 2328 // This applies even to non-builtin calls: it is only a hint and applies to 2329 // functions that the frontend might not understand as builtins. 2330 2331 // This heuristic was suggested in: 2332 // Improving Static Branch Prediction in a Compiler 2333 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2334 // Proceedings of PACT'98, Oct. 1998, IEEE 2335 if (!CI->hasFnAttr(Attribute::Cold) && 2336 isReportingError(Callee, CI, StreamArg)) { 2337 CI->addFnAttr(Attribute::Cold); 2338 } 2339 2340 return nullptr; 2341 } 2342 2343 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2344 if (!Callee || !Callee->isDeclaration()) 2345 return false; 2346 2347 if (StreamArg < 0) 2348 return true; 2349 2350 // These functions might be considered cold, but only if their stream 2351 // argument is stderr. 2352 2353 if (StreamArg >= (int)CI->arg_size()) 2354 return false; 2355 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2356 if (!LI) 2357 return false; 2358 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2359 if (!GV || !GV->isDeclaration()) 2360 return false; 2361 return GV->getName() == "stderr"; 2362 } 2363 2364 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 2365 // Check for a fixed format string. 2366 StringRef FormatStr; 2367 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2368 return nullptr; 2369 2370 // Empty format string -> noop. 2371 if (FormatStr.empty()) // Tolerate printf's declared void. 2372 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2373 2374 // Do not do any of the following transformations if the printf return value 2375 // is used, in general the printf return value is not compatible with either 2376 // putchar() or puts(). 2377 if (!CI->use_empty()) 2378 return nullptr; 2379 2380 // printf("x") -> putchar('x'), even for "%" and "%%". 2381 if (FormatStr.size() == 1 || FormatStr == "%%") 2382 return copyFlags(*CI, emitPutChar(B.getInt32(FormatStr[0]), B, TLI)); 2383 2384 // Try to remove call or emit putchar/puts. 2385 if (FormatStr == "%s" && CI->arg_size() > 1) { 2386 StringRef OperandStr; 2387 if (!getConstantStringInfo(CI->getOperand(1), OperandStr)) 2388 return nullptr; 2389 // printf("%s", "") --> NOP 2390 if (OperandStr.empty()) 2391 return (Value *)CI; 2392 // printf("%s", "a") --> putchar('a') 2393 if (OperandStr.size() == 1) 2394 return copyFlags(*CI, emitPutChar(B.getInt32(OperandStr[0]), B, TLI)); 2395 // printf("%s", str"\n") --> puts(str) 2396 if (OperandStr.back() == '\n') { 2397 OperandStr = OperandStr.drop_back(); 2398 Value *GV = B.CreateGlobalString(OperandStr, "str"); 2399 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2400 } 2401 return nullptr; 2402 } 2403 2404 // printf("foo\n") --> puts("foo") 2405 if (FormatStr.back() == '\n' && 2406 !FormatStr.contains('%')) { // No format characters. 2407 // Create a string literal with no \n on it. We expect the constant merge 2408 // pass to be run after this pass, to merge duplicate strings. 2409 FormatStr = FormatStr.drop_back(); 2410 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2411 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2412 } 2413 2414 // Optimize specific format strings. 2415 // printf("%c", chr) --> putchar(chr) 2416 if (FormatStr == "%c" && CI->arg_size() > 1 && 2417 CI->getArgOperand(1)->getType()->isIntegerTy()) 2418 return copyFlags(*CI, emitPutChar(CI->getArgOperand(1), B, TLI)); 2419 2420 // printf("%s\n", str) --> puts(str) 2421 if (FormatStr == "%s\n" && CI->arg_size() > 1 && 2422 CI->getArgOperand(1)->getType()->isPointerTy()) 2423 return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI)); 2424 return nullptr; 2425 } 2426 2427 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 2428 2429 Function *Callee = CI->getCalledFunction(); 2430 FunctionType *FT = Callee->getFunctionType(); 2431 if (Value *V = optimizePrintFString(CI, B)) { 2432 return V; 2433 } 2434 2435 // printf(format, ...) -> iprintf(format, ...) if no floating point 2436 // arguments. 2437 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2438 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2439 FunctionCallee IPrintFFn = 2440 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2441 CallInst *New = cast<CallInst>(CI->clone()); 2442 New->setCalledFunction(IPrintFFn); 2443 B.Insert(New); 2444 return New; 2445 } 2446 2447 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2448 // arguments. 2449 if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) { 2450 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2451 auto SmallPrintFFn = 2452 M->getOrInsertFunction(TLI->getName(LibFunc_small_printf), 2453 FT, Callee->getAttributes()); 2454 CallInst *New = cast<CallInst>(CI->clone()); 2455 New->setCalledFunction(SmallPrintFFn); 2456 B.Insert(New); 2457 return New; 2458 } 2459 2460 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2461 return nullptr; 2462 } 2463 2464 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 2465 IRBuilderBase &B) { 2466 // Check for a fixed format string. 2467 StringRef FormatStr; 2468 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2469 return nullptr; 2470 2471 // If we just have a format string (nothing else crazy) transform it. 2472 Value *Dest = CI->getArgOperand(0); 2473 if (CI->arg_size() == 2) { 2474 // Make sure there's no % in the constant array. We could try to handle 2475 // %% -> % in the future if we cared. 2476 if (FormatStr.contains('%')) 2477 return nullptr; // we found a format specifier, bail out. 2478 2479 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2480 B.CreateMemCpy( 2481 Dest, Align(1), CI->getArgOperand(1), Align(1), 2482 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2483 FormatStr.size() + 1)); // Copy the null byte. 2484 return ConstantInt::get(CI->getType(), FormatStr.size()); 2485 } 2486 2487 // The remaining optimizations require the format string to be "%s" or "%c" 2488 // and have an extra operand. 2489 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 2490 return nullptr; 2491 2492 // Decode the second character of the format string. 2493 if (FormatStr[1] == 'c') { 2494 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2495 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2496 return nullptr; 2497 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2498 Value *Ptr = castToCStr(Dest, B); 2499 B.CreateStore(V, Ptr); 2500 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2501 B.CreateStore(B.getInt8(0), Ptr); 2502 2503 return ConstantInt::get(CI->getType(), 1); 2504 } 2505 2506 if (FormatStr[1] == 's') { 2507 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2508 // strlen(str)+1) 2509 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2510 return nullptr; 2511 2512 if (CI->use_empty()) 2513 // sprintf(dest, "%s", str) -> strcpy(dest, str) 2514 return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI)); 2515 2516 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 2517 if (SrcLen) { 2518 B.CreateMemCpy( 2519 Dest, Align(1), CI->getArgOperand(2), Align(1), 2520 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 2521 // Returns total number of characters written without null-character. 2522 return ConstantInt::get(CI->getType(), SrcLen - 1); 2523 } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) { 2524 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 2525 // Handle mismatched pointer types (goes away with typeless pointers?). 2526 V = B.CreatePointerCast(V, B.getInt8PtrTy()); 2527 Dest = B.CreatePointerCast(Dest, B.getInt8PtrTy()); 2528 Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest); 2529 return B.CreateIntCast(PtrDiff, CI->getType(), false); 2530 } 2531 2532 bool OptForSize = CI->getFunction()->hasOptSize() || 2533 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2534 PGSOQueryType::IRPass); 2535 if (OptForSize) 2536 return nullptr; 2537 2538 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2539 if (!Len) 2540 return nullptr; 2541 Value *IncLen = 2542 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2543 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen); 2544 2545 // The sprintf result is the unincremented number of bytes in the string. 2546 return B.CreateIntCast(Len, CI->getType(), false); 2547 } 2548 return nullptr; 2549 } 2550 2551 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 2552 Function *Callee = CI->getCalledFunction(); 2553 FunctionType *FT = Callee->getFunctionType(); 2554 if (Value *V = optimizeSPrintFString(CI, B)) { 2555 return V; 2556 } 2557 2558 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2559 // point arguments. 2560 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2561 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2562 FunctionCallee SIPrintFFn = 2563 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2564 CallInst *New = cast<CallInst>(CI->clone()); 2565 New->setCalledFunction(SIPrintFFn); 2566 B.Insert(New); 2567 return New; 2568 } 2569 2570 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2571 // floating point arguments. 2572 if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) { 2573 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2574 auto SmallSPrintFFn = 2575 M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf), 2576 FT, Callee->getAttributes()); 2577 CallInst *New = cast<CallInst>(CI->clone()); 2578 New->setCalledFunction(SmallSPrintFFn); 2579 B.Insert(New); 2580 return New; 2581 } 2582 2583 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 2584 return nullptr; 2585 } 2586 2587 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 2588 IRBuilderBase &B) { 2589 // Check for size 2590 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2591 if (!Size) 2592 return nullptr; 2593 2594 uint64_t N = Size->getZExtValue(); 2595 // Check for a fixed format string. 2596 StringRef FormatStr; 2597 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2598 return nullptr; 2599 2600 // If we just have a format string (nothing else crazy) transform it. 2601 if (CI->arg_size() == 3) { 2602 // Make sure there's no % in the constant array. We could try to handle 2603 // %% -> % in the future if we cared. 2604 if (FormatStr.contains('%')) 2605 return nullptr; // we found a format specifier, bail out. 2606 2607 if (N == 0) 2608 return ConstantInt::get(CI->getType(), FormatStr.size()); 2609 else if (N < FormatStr.size() + 1) 2610 return nullptr; 2611 2612 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2613 // strlen(fmt)+1) 2614 copyFlags( 2615 *CI, 2616 B.CreateMemCpy( 2617 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2618 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2619 FormatStr.size() + 1))); // Copy the null byte. 2620 return ConstantInt::get(CI->getType(), FormatStr.size()); 2621 } 2622 2623 // The remaining optimizations require the format string to be "%s" or "%c" 2624 // and have an extra operand. 2625 if (FormatStr.size() == 2 && FormatStr[0] == '%' && CI->arg_size() == 4) { 2626 2627 // Decode the second character of the format string. 2628 if (FormatStr[1] == 'c') { 2629 if (N == 0) 2630 return ConstantInt::get(CI->getType(), 1); 2631 else if (N == 1) 2632 return nullptr; 2633 2634 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2635 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2636 return nullptr; 2637 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2638 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2639 B.CreateStore(V, Ptr); 2640 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2641 B.CreateStore(B.getInt8(0), Ptr); 2642 2643 return ConstantInt::get(CI->getType(), 1); 2644 } 2645 2646 if (FormatStr[1] == 's') { 2647 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2648 StringRef Str; 2649 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2650 return nullptr; 2651 2652 if (N == 0) 2653 return ConstantInt::get(CI->getType(), Str.size()); 2654 else if (N < Str.size() + 1) 2655 return nullptr; 2656 2657 copyFlags( 2658 *CI, B.CreateMemCpy(CI->getArgOperand(0), Align(1), 2659 CI->getArgOperand(3), Align(1), 2660 ConstantInt::get(CI->getType(), Str.size() + 1))); 2661 2662 // The snprintf result is the unincremented number of bytes in the string. 2663 return ConstantInt::get(CI->getType(), Str.size()); 2664 } 2665 } 2666 return nullptr; 2667 } 2668 2669 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 2670 if (Value *V = optimizeSnPrintFString(CI, B)) { 2671 return V; 2672 } 2673 2674 if (isKnownNonZero(CI->getOperand(1), DL)) 2675 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2676 return nullptr; 2677 } 2678 2679 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 2680 IRBuilderBase &B) { 2681 optimizeErrorReporting(CI, B, 0); 2682 2683 // All the optimizations depend on the format string. 2684 StringRef FormatStr; 2685 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2686 return nullptr; 2687 2688 // Do not do any of the following transformations if the fprintf return 2689 // value is used, in general the fprintf return value is not compatible 2690 // with fwrite(), fputc() or fputs(). 2691 if (!CI->use_empty()) 2692 return nullptr; 2693 2694 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2695 if (CI->arg_size() == 2) { 2696 // Could handle %% -> % if we cared. 2697 if (FormatStr.contains('%')) 2698 return nullptr; // We found a format specifier. 2699 2700 return copyFlags( 2701 *CI, emitFWrite(CI->getArgOperand(1), 2702 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2703 FormatStr.size()), 2704 CI->getArgOperand(0), B, DL, TLI)); 2705 } 2706 2707 // The remaining optimizations require the format string to be "%s" or "%c" 2708 // and have an extra operand. 2709 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 2710 return nullptr; 2711 2712 // Decode the second character of the format string. 2713 if (FormatStr[1] == 'c') { 2714 // fprintf(F, "%c", chr) --> fputc(chr, F) 2715 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2716 return nullptr; 2717 return copyFlags( 2718 *CI, emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 2719 } 2720 2721 if (FormatStr[1] == 's') { 2722 // fprintf(F, "%s", str) --> fputs(str, F) 2723 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2724 return nullptr; 2725 return copyFlags( 2726 *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 2727 } 2728 return nullptr; 2729 } 2730 2731 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 2732 Function *Callee = CI->getCalledFunction(); 2733 FunctionType *FT = Callee->getFunctionType(); 2734 if (Value *V = optimizeFPrintFString(CI, B)) { 2735 return V; 2736 } 2737 2738 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2739 // floating point arguments. 2740 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2741 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2742 FunctionCallee FIPrintFFn = 2743 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2744 CallInst *New = cast<CallInst>(CI->clone()); 2745 New->setCalledFunction(FIPrintFFn); 2746 B.Insert(New); 2747 return New; 2748 } 2749 2750 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2751 // 128-bit floating point arguments. 2752 if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) { 2753 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2754 auto SmallFPrintFFn = 2755 M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf), 2756 FT, Callee->getAttributes()); 2757 CallInst *New = cast<CallInst>(CI->clone()); 2758 New->setCalledFunction(SmallFPrintFFn); 2759 B.Insert(New); 2760 return New; 2761 } 2762 2763 return nullptr; 2764 } 2765 2766 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 2767 optimizeErrorReporting(CI, B, 3); 2768 2769 // Get the element size and count. 2770 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2771 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2772 if (SizeC && CountC) { 2773 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2774 2775 // If this is writing zero records, remove the call (it's a noop). 2776 if (Bytes == 0) 2777 return ConstantInt::get(CI->getType(), 0); 2778 2779 // If this is writing one byte, turn it into fputc. 2780 // This optimisation is only valid, if the return value is unused. 2781 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2782 Value *Char = B.CreateLoad(B.getInt8Ty(), 2783 castToCStr(CI->getArgOperand(0), B), "char"); 2784 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2785 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2786 } 2787 } 2788 2789 return nullptr; 2790 } 2791 2792 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 2793 optimizeErrorReporting(CI, B, 1); 2794 2795 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2796 // requires more arguments and thus extra MOVs are required. 2797 bool OptForSize = CI->getFunction()->hasOptSize() || 2798 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2799 PGSOQueryType::IRPass); 2800 if (OptForSize) 2801 return nullptr; 2802 2803 // We can't optimize if return value is used. 2804 if (!CI->use_empty()) 2805 return nullptr; 2806 2807 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2808 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2809 if (!Len) 2810 return nullptr; 2811 2812 // Known to have no uses (see above). 2813 return copyFlags( 2814 *CI, 2815 emitFWrite(CI->getArgOperand(0), 2816 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2817 CI->getArgOperand(1), B, DL, TLI)); 2818 } 2819 2820 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 2821 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2822 if (!CI->use_empty()) 2823 return nullptr; 2824 2825 // Check for a constant string. 2826 // puts("") -> putchar('\n') 2827 StringRef Str; 2828 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 2829 return copyFlags(*CI, emitPutChar(B.getInt32('\n'), B, TLI)); 2830 2831 return nullptr; 2832 } 2833 2834 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 2835 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 2836 return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1), 2837 CI->getArgOperand(0), Align(1), 2838 CI->getArgOperand(2))); 2839 } 2840 2841 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2842 LibFunc Func; 2843 SmallString<20> FloatFuncName = FuncName; 2844 FloatFuncName += 'f'; 2845 if (TLI->getLibFunc(FloatFuncName, Func)) 2846 return TLI->has(Func); 2847 return false; 2848 } 2849 2850 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2851 IRBuilderBase &Builder) { 2852 LibFunc Func; 2853 Function *Callee = CI->getCalledFunction(); 2854 // Check for string/memory library functions. 2855 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2856 // Make sure we never change the calling convention. 2857 assert( 2858 (ignoreCallingConv(Func) || 2859 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) && 2860 "Optimizing string/memory libcall would change the calling convention"); 2861 switch (Func) { 2862 case LibFunc_strcat: 2863 return optimizeStrCat(CI, Builder); 2864 case LibFunc_strncat: 2865 return optimizeStrNCat(CI, Builder); 2866 case LibFunc_strchr: 2867 return optimizeStrChr(CI, Builder); 2868 case LibFunc_strrchr: 2869 return optimizeStrRChr(CI, Builder); 2870 case LibFunc_strcmp: 2871 return optimizeStrCmp(CI, Builder); 2872 case LibFunc_strncmp: 2873 return optimizeStrNCmp(CI, Builder); 2874 case LibFunc_strcpy: 2875 return optimizeStrCpy(CI, Builder); 2876 case LibFunc_stpcpy: 2877 return optimizeStpCpy(CI, Builder); 2878 case LibFunc_strncpy: 2879 return optimizeStrNCpy(CI, Builder); 2880 case LibFunc_strlen: 2881 return optimizeStrLen(CI, Builder); 2882 case LibFunc_strpbrk: 2883 return optimizeStrPBrk(CI, Builder); 2884 case LibFunc_strndup: 2885 return optimizeStrNDup(CI, Builder); 2886 case LibFunc_strtol: 2887 case LibFunc_strtod: 2888 case LibFunc_strtof: 2889 case LibFunc_strtoul: 2890 case LibFunc_strtoll: 2891 case LibFunc_strtold: 2892 case LibFunc_strtoull: 2893 return optimizeStrTo(CI, Builder); 2894 case LibFunc_strspn: 2895 return optimizeStrSpn(CI, Builder); 2896 case LibFunc_strcspn: 2897 return optimizeStrCSpn(CI, Builder); 2898 case LibFunc_strstr: 2899 return optimizeStrStr(CI, Builder); 2900 case LibFunc_memchr: 2901 return optimizeMemChr(CI, Builder); 2902 case LibFunc_memrchr: 2903 return optimizeMemRChr(CI, Builder); 2904 case LibFunc_bcmp: 2905 return optimizeBCmp(CI, Builder); 2906 case LibFunc_memcmp: 2907 return optimizeMemCmp(CI, Builder); 2908 case LibFunc_memcpy: 2909 return optimizeMemCpy(CI, Builder); 2910 case LibFunc_memccpy: 2911 return optimizeMemCCpy(CI, Builder); 2912 case LibFunc_mempcpy: 2913 return optimizeMemPCpy(CI, Builder); 2914 case LibFunc_memmove: 2915 return optimizeMemMove(CI, Builder); 2916 case LibFunc_memset: 2917 return optimizeMemSet(CI, Builder); 2918 case LibFunc_realloc: 2919 return optimizeRealloc(CI, Builder); 2920 case LibFunc_wcslen: 2921 return optimizeWcslen(CI, Builder); 2922 case LibFunc_bcopy: 2923 return optimizeBCopy(CI, Builder); 2924 default: 2925 break; 2926 } 2927 } 2928 return nullptr; 2929 } 2930 2931 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2932 LibFunc Func, 2933 IRBuilderBase &Builder) { 2934 // Don't optimize calls that require strict floating point semantics. 2935 if (CI->isStrictFP()) 2936 return nullptr; 2937 2938 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 2939 return V; 2940 2941 switch (Func) { 2942 case LibFunc_sinpif: 2943 case LibFunc_sinpi: 2944 case LibFunc_cospif: 2945 case LibFunc_cospi: 2946 return optimizeSinCosPi(CI, Builder); 2947 case LibFunc_powf: 2948 case LibFunc_pow: 2949 case LibFunc_powl: 2950 return optimizePow(CI, Builder); 2951 case LibFunc_exp2l: 2952 case LibFunc_exp2: 2953 case LibFunc_exp2f: 2954 return optimizeExp2(CI, Builder); 2955 case LibFunc_fabsf: 2956 case LibFunc_fabs: 2957 case LibFunc_fabsl: 2958 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2959 case LibFunc_sqrtf: 2960 case LibFunc_sqrt: 2961 case LibFunc_sqrtl: 2962 return optimizeSqrt(CI, Builder); 2963 case LibFunc_logf: 2964 case LibFunc_log: 2965 case LibFunc_logl: 2966 case LibFunc_log10f: 2967 case LibFunc_log10: 2968 case LibFunc_log10l: 2969 case LibFunc_log1pf: 2970 case LibFunc_log1p: 2971 case LibFunc_log1pl: 2972 case LibFunc_log2f: 2973 case LibFunc_log2: 2974 case LibFunc_log2l: 2975 case LibFunc_logbf: 2976 case LibFunc_logb: 2977 case LibFunc_logbl: 2978 return optimizeLog(CI, Builder); 2979 case LibFunc_tan: 2980 case LibFunc_tanf: 2981 case LibFunc_tanl: 2982 return optimizeTan(CI, Builder); 2983 case LibFunc_ceil: 2984 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2985 case LibFunc_floor: 2986 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2987 case LibFunc_round: 2988 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2989 case LibFunc_roundeven: 2990 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 2991 case LibFunc_nearbyint: 2992 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2993 case LibFunc_rint: 2994 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2995 case LibFunc_trunc: 2996 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2997 case LibFunc_acos: 2998 case LibFunc_acosh: 2999 case LibFunc_asin: 3000 case LibFunc_asinh: 3001 case LibFunc_atan: 3002 case LibFunc_atanh: 3003 case LibFunc_cbrt: 3004 case LibFunc_cosh: 3005 case LibFunc_exp: 3006 case LibFunc_exp10: 3007 case LibFunc_expm1: 3008 case LibFunc_cos: 3009 case LibFunc_sin: 3010 case LibFunc_sinh: 3011 case LibFunc_tanh: 3012 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 3013 return optimizeUnaryDoubleFP(CI, Builder, true); 3014 return nullptr; 3015 case LibFunc_copysign: 3016 if (hasFloatVersion(CI->getCalledFunction()->getName())) 3017 return optimizeBinaryDoubleFP(CI, Builder); 3018 return nullptr; 3019 case LibFunc_fminf: 3020 case LibFunc_fmin: 3021 case LibFunc_fminl: 3022 case LibFunc_fmaxf: 3023 case LibFunc_fmax: 3024 case LibFunc_fmaxl: 3025 return optimizeFMinFMax(CI, Builder); 3026 case LibFunc_cabs: 3027 case LibFunc_cabsf: 3028 case LibFunc_cabsl: 3029 return optimizeCAbs(CI, Builder); 3030 default: 3031 return nullptr; 3032 } 3033 } 3034 3035 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 3036 assert(!CI->isMustTailCall() && "These transforms aren't musttail safe."); 3037 3038 // TODO: Split out the code below that operates on FP calls so that 3039 // we can all non-FP calls with the StrictFP attribute to be 3040 // optimized. 3041 if (CI->isNoBuiltin()) 3042 return nullptr; 3043 3044 LibFunc Func; 3045 Function *Callee = CI->getCalledFunction(); 3046 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3047 3048 SmallVector<OperandBundleDef, 2> OpBundles; 3049 CI->getOperandBundlesAsDefs(OpBundles); 3050 3051 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3052 Builder.setDefaultOperandBundles(OpBundles); 3053 3054 // Command-line parameter overrides instruction attribute. 3055 // This can't be moved to optimizeFloatingPointLibCall() because it may be 3056 // used by the intrinsic optimizations. 3057 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 3058 UnsafeFPShrink = EnableUnsafeFPShrink; 3059 else if (isa<FPMathOperator>(CI) && CI->isFast()) 3060 UnsafeFPShrink = true; 3061 3062 // First, check for intrinsics. 3063 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 3064 if (!IsCallingConvC) 3065 return nullptr; 3066 // The FP intrinsics have corresponding constrained versions so we don't 3067 // need to check for the StrictFP attribute here. 3068 switch (II->getIntrinsicID()) { 3069 case Intrinsic::pow: 3070 return optimizePow(CI, Builder); 3071 case Intrinsic::exp2: 3072 return optimizeExp2(CI, Builder); 3073 case Intrinsic::log: 3074 case Intrinsic::log2: 3075 case Intrinsic::log10: 3076 return optimizeLog(CI, Builder); 3077 case Intrinsic::sqrt: 3078 return optimizeSqrt(CI, Builder); 3079 case Intrinsic::memset: 3080 return optimizeMemSet(CI, Builder); 3081 case Intrinsic::memcpy: 3082 return optimizeMemCpy(CI, Builder); 3083 case Intrinsic::memmove: 3084 return optimizeMemMove(CI, Builder); 3085 default: 3086 return nullptr; 3087 } 3088 } 3089 3090 // Also try to simplify calls to fortified library functions. 3091 if (Value *SimplifiedFortifiedCI = 3092 FortifiedSimplifier.optimizeCall(CI, Builder)) { 3093 // Try to further simplify the result. 3094 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 3095 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 3096 // Ensure that SimplifiedCI's uses are complete, since some calls have 3097 // their uses analyzed. 3098 replaceAllUsesWith(CI, SimplifiedCI); 3099 3100 // Set insertion point to SimplifiedCI to guarantee we reach all uses 3101 // we might replace later on. 3102 IRBuilderBase::InsertPointGuard Guard(Builder); 3103 Builder.SetInsertPoint(SimplifiedCI); 3104 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) { 3105 // If we were able to further simplify, remove the now redundant call. 3106 substituteInParent(SimplifiedCI, V); 3107 return V; 3108 } 3109 } 3110 return SimplifiedFortifiedCI; 3111 } 3112 3113 // Then check for known library functions. 3114 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 3115 // We never change the calling convention. 3116 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3117 return nullptr; 3118 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 3119 return V; 3120 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 3121 return V; 3122 switch (Func) { 3123 case LibFunc_ffs: 3124 case LibFunc_ffsl: 3125 case LibFunc_ffsll: 3126 return optimizeFFS(CI, Builder); 3127 case LibFunc_fls: 3128 case LibFunc_flsl: 3129 case LibFunc_flsll: 3130 return optimizeFls(CI, Builder); 3131 case LibFunc_abs: 3132 case LibFunc_labs: 3133 case LibFunc_llabs: 3134 return optimizeAbs(CI, Builder); 3135 case LibFunc_isdigit: 3136 return optimizeIsDigit(CI, Builder); 3137 case LibFunc_isascii: 3138 return optimizeIsAscii(CI, Builder); 3139 case LibFunc_toascii: 3140 return optimizeToAscii(CI, Builder); 3141 case LibFunc_atoi: 3142 case LibFunc_atol: 3143 case LibFunc_atoll: 3144 return optimizeAtoi(CI, Builder); 3145 case LibFunc_strtol: 3146 case LibFunc_strtoll: 3147 return optimizeStrtol(CI, Builder); 3148 case LibFunc_printf: 3149 return optimizePrintF(CI, Builder); 3150 case LibFunc_sprintf: 3151 return optimizeSPrintF(CI, Builder); 3152 case LibFunc_snprintf: 3153 return optimizeSnPrintF(CI, Builder); 3154 case LibFunc_fprintf: 3155 return optimizeFPrintF(CI, Builder); 3156 case LibFunc_fwrite: 3157 return optimizeFWrite(CI, Builder); 3158 case LibFunc_fputs: 3159 return optimizeFPuts(CI, Builder); 3160 case LibFunc_puts: 3161 return optimizePuts(CI, Builder); 3162 case LibFunc_perror: 3163 return optimizeErrorReporting(CI, Builder); 3164 case LibFunc_vfprintf: 3165 case LibFunc_fiprintf: 3166 return optimizeErrorReporting(CI, Builder, 0); 3167 default: 3168 return nullptr; 3169 } 3170 } 3171 return nullptr; 3172 } 3173 3174 LibCallSimplifier::LibCallSimplifier( 3175 const DataLayout &DL, const TargetLibraryInfo *TLI, 3176 OptimizationRemarkEmitter &ORE, 3177 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 3178 function_ref<void(Instruction *, Value *)> Replacer, 3179 function_ref<void(Instruction *)> Eraser) 3180 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 3181 Replacer(Replacer), Eraser(Eraser) {} 3182 3183 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 3184 // Indirect through the replacer used in this instance. 3185 Replacer(I, With); 3186 } 3187 3188 void LibCallSimplifier::eraseFromParent(Instruction *I) { 3189 Eraser(I); 3190 } 3191 3192 // TODO: 3193 // Additional cases that we need to add to this file: 3194 // 3195 // cbrt: 3196 // * cbrt(expN(X)) -> expN(x/3) 3197 // * cbrt(sqrt(x)) -> pow(x,1/6) 3198 // * cbrt(cbrt(x)) -> pow(x,1/9) 3199 // 3200 // exp, expf, expl: 3201 // * exp(log(x)) -> x 3202 // 3203 // log, logf, logl: 3204 // * log(exp(x)) -> x 3205 // * log(exp(y)) -> y*log(e) 3206 // * log(exp10(y)) -> y*log(10) 3207 // * log(sqrt(x)) -> 0.5*log(x) 3208 // 3209 // pow, powf, powl: 3210 // * pow(sqrt(x),y) -> pow(x,y*0.5) 3211 // * pow(pow(x,y),z)-> pow(x,y*z) 3212 // 3213 // signbit: 3214 // * signbit(cnst) -> cnst' 3215 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 3216 // 3217 // sqrt, sqrtf, sqrtl: 3218 // * sqrt(expN(x)) -> expN(x*0.5) 3219 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 3220 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 3221 // 3222 3223 //===----------------------------------------------------------------------===// 3224 // Fortified Library Call Optimizations 3225 //===----------------------------------------------------------------------===// 3226 3227 bool 3228 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 3229 unsigned ObjSizeOp, 3230 Optional<unsigned> SizeOp, 3231 Optional<unsigned> StrOp, 3232 Optional<unsigned> FlagOp) { 3233 // If this function takes a flag argument, the implementation may use it to 3234 // perform extra checks. Don't fold into the non-checking variant. 3235 if (FlagOp) { 3236 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 3237 if (!Flag || !Flag->isZero()) 3238 return false; 3239 } 3240 3241 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 3242 return true; 3243 3244 if (ConstantInt *ObjSizeCI = 3245 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 3246 if (ObjSizeCI->isMinusOne()) 3247 return true; 3248 // If the object size wasn't -1 (unknown), bail out if we were asked to. 3249 if (OnlyLowerUnknownSize) 3250 return false; 3251 if (StrOp) { 3252 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 3253 // If the length is 0 we don't know how long it is and so we can't 3254 // remove the check. 3255 if (Len) 3256 annotateDereferenceableBytes(CI, *StrOp, Len); 3257 else 3258 return false; 3259 return ObjSizeCI->getZExtValue() >= Len; 3260 } 3261 3262 if (SizeOp) { 3263 if (ConstantInt *SizeCI = 3264 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 3265 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 3266 } 3267 } 3268 return false; 3269 } 3270 3271 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 3272 IRBuilderBase &B) { 3273 if (isFortifiedCallFoldable(CI, 3, 2)) { 3274 CallInst *NewCI = 3275 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3276 Align(1), CI->getArgOperand(2)); 3277 NewCI->setAttributes(CI->getAttributes()); 3278 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3279 copyFlags(*CI, NewCI); 3280 return CI->getArgOperand(0); 3281 } 3282 return nullptr; 3283 } 3284 3285 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 3286 IRBuilderBase &B) { 3287 if (isFortifiedCallFoldable(CI, 3, 2)) { 3288 CallInst *NewCI = 3289 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3290 Align(1), CI->getArgOperand(2)); 3291 NewCI->setAttributes(CI->getAttributes()); 3292 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3293 copyFlags(*CI, NewCI); 3294 return CI->getArgOperand(0); 3295 } 3296 return nullptr; 3297 } 3298 3299 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 3300 IRBuilderBase &B) { 3301 if (isFortifiedCallFoldable(CI, 3, 2)) { 3302 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 3303 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 3304 CI->getArgOperand(2), Align(1)); 3305 NewCI->setAttributes(CI->getAttributes()); 3306 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3307 copyFlags(*CI, NewCI); 3308 return CI->getArgOperand(0); 3309 } 3310 return nullptr; 3311 } 3312 3313 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 3314 IRBuilderBase &B) { 3315 const DataLayout &DL = CI->getModule()->getDataLayout(); 3316 if (isFortifiedCallFoldable(CI, 3, 2)) 3317 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3318 CI->getArgOperand(2), B, DL, TLI)) { 3319 CallInst *NewCI = cast<CallInst>(Call); 3320 NewCI->setAttributes(CI->getAttributes()); 3321 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3322 return copyFlags(*CI, NewCI); 3323 } 3324 return nullptr; 3325 } 3326 3327 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 3328 IRBuilderBase &B, 3329 LibFunc Func) { 3330 const DataLayout &DL = CI->getModule()->getDataLayout(); 3331 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 3332 *ObjSize = CI->getArgOperand(2); 3333 3334 // __stpcpy_chk(x,x,...) -> x+strlen(x) 3335 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 3336 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3337 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3338 } 3339 3340 // If a) we don't have any length information, or b) we know this will 3341 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3342 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3343 // TODO: It might be nice to get a maximum length out of the possible 3344 // string lengths for varying. 3345 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 3346 if (Func == LibFunc_strcpy_chk) 3347 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 3348 else 3349 return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI)); 3350 } 3351 3352 if (OnlyLowerUnknownSize) 3353 return nullptr; 3354 3355 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3356 uint64_t Len = GetStringLength(Src); 3357 if (Len) 3358 annotateDereferenceableBytes(CI, 1, Len); 3359 else 3360 return nullptr; 3361 3362 // FIXME: There is really no guarantee that sizeof(size_t) is equal to 3363 // sizeof(int*) for every target. So the assumption used here to derive the 3364 // SizeTBits based on the size of an integer pointer in address space zero 3365 // isn't always valid. 3366 Type *SizeTTy = DL.getIntPtrType(CI->getContext(), /*AddressSpace=*/0); 3367 Value *LenV = ConstantInt::get(SizeTTy, Len); 3368 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 3369 // If the function was an __stpcpy_chk, and we were able to fold it into 3370 // a __memcpy_chk, we still need to return the correct end pointer. 3371 if (Ret && Func == LibFunc_stpcpy_chk) 3372 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 3373 return copyFlags(*CI, cast<CallInst>(Ret)); 3374 } 3375 3376 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 3377 IRBuilderBase &B) { 3378 if (isFortifiedCallFoldable(CI, 1, None, 0)) 3379 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, 3380 CI->getModule()->getDataLayout(), TLI)); 3381 return nullptr; 3382 } 3383 3384 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 3385 IRBuilderBase &B, 3386 LibFunc Func) { 3387 if (isFortifiedCallFoldable(CI, 3, 2)) { 3388 if (Func == LibFunc_strncpy_chk) 3389 return copyFlags(*CI, 3390 emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3391 CI->getArgOperand(2), B, TLI)); 3392 else 3393 return copyFlags(*CI, 3394 emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3395 CI->getArgOperand(2), B, TLI)); 3396 } 3397 3398 return nullptr; 3399 } 3400 3401 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 3402 IRBuilderBase &B) { 3403 if (isFortifiedCallFoldable(CI, 4, 3)) 3404 return copyFlags( 3405 *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3406 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI)); 3407 3408 return nullptr; 3409 } 3410 3411 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 3412 IRBuilderBase &B) { 3413 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 3414 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 3415 return copyFlags(*CI, 3416 emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3417 CI->getArgOperand(4), VariadicArgs, B, TLI)); 3418 } 3419 3420 return nullptr; 3421 } 3422 3423 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3424 IRBuilderBase &B) { 3425 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3426 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 3427 return copyFlags(*CI, 3428 emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3429 VariadicArgs, B, TLI)); 3430 } 3431 3432 return nullptr; 3433 } 3434 3435 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3436 IRBuilderBase &B) { 3437 if (isFortifiedCallFoldable(CI, 2)) 3438 return copyFlags( 3439 *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI)); 3440 3441 return nullptr; 3442 } 3443 3444 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3445 IRBuilderBase &B) { 3446 if (isFortifiedCallFoldable(CI, 3)) 3447 return copyFlags(*CI, 3448 emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3449 CI->getArgOperand(2), B, TLI)); 3450 3451 return nullptr; 3452 } 3453 3454 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3455 IRBuilderBase &B) { 3456 if (isFortifiedCallFoldable(CI, 3)) 3457 return copyFlags(*CI, 3458 emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3459 CI->getArgOperand(2), B, TLI)); 3460 3461 return nullptr; 3462 } 3463 3464 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3465 IRBuilderBase &B) { 3466 if (isFortifiedCallFoldable(CI, 3)) 3467 return copyFlags(*CI, 3468 emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3469 CI->getArgOperand(2), B, TLI)); 3470 3471 return nullptr; 3472 } 3473 3474 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3475 IRBuilderBase &B) { 3476 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3477 return copyFlags( 3478 *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3479 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI)); 3480 3481 return nullptr; 3482 } 3483 3484 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3485 IRBuilderBase &B) { 3486 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3487 return copyFlags(*CI, 3488 emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3489 CI->getArgOperand(4), B, TLI)); 3490 3491 return nullptr; 3492 } 3493 3494 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 3495 IRBuilderBase &Builder) { 3496 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3497 // Some clang users checked for _chk libcall availability using: 3498 // __has_builtin(__builtin___memcpy_chk) 3499 // When compiling with -fno-builtin, this is always true. 3500 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3501 // end up with fortified libcalls, which isn't acceptable in a freestanding 3502 // environment which only provides their non-fortified counterparts. 3503 // 3504 // Until we change clang and/or teach external users to check for availability 3505 // differently, disregard the "nobuiltin" attribute and TLI::has. 3506 // 3507 // PR23093. 3508 3509 LibFunc Func; 3510 Function *Callee = CI->getCalledFunction(); 3511 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3512 3513 SmallVector<OperandBundleDef, 2> OpBundles; 3514 CI->getOperandBundlesAsDefs(OpBundles); 3515 3516 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3517 Builder.setDefaultOperandBundles(OpBundles); 3518 3519 // First, check that this is a known library functions and that the prototype 3520 // is correct. 3521 if (!TLI->getLibFunc(*Callee, Func)) 3522 return nullptr; 3523 3524 // We never change the calling convention. 3525 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3526 return nullptr; 3527 3528 switch (Func) { 3529 case LibFunc_memcpy_chk: 3530 return optimizeMemCpyChk(CI, Builder); 3531 case LibFunc_mempcpy_chk: 3532 return optimizeMemPCpyChk(CI, Builder); 3533 case LibFunc_memmove_chk: 3534 return optimizeMemMoveChk(CI, Builder); 3535 case LibFunc_memset_chk: 3536 return optimizeMemSetChk(CI, Builder); 3537 case LibFunc_stpcpy_chk: 3538 case LibFunc_strcpy_chk: 3539 return optimizeStrpCpyChk(CI, Builder, Func); 3540 case LibFunc_strlen_chk: 3541 return optimizeStrLenChk(CI, Builder); 3542 case LibFunc_stpncpy_chk: 3543 case LibFunc_strncpy_chk: 3544 return optimizeStrpNCpyChk(CI, Builder, Func); 3545 case LibFunc_memccpy_chk: 3546 return optimizeMemCCpyChk(CI, Builder); 3547 case LibFunc_snprintf_chk: 3548 return optimizeSNPrintfChk(CI, Builder); 3549 case LibFunc_sprintf_chk: 3550 return optimizeSPrintfChk(CI, Builder); 3551 case LibFunc_strcat_chk: 3552 return optimizeStrCatChk(CI, Builder); 3553 case LibFunc_strlcat_chk: 3554 return optimizeStrLCat(CI, Builder); 3555 case LibFunc_strncat_chk: 3556 return optimizeStrNCatChk(CI, Builder); 3557 case LibFunc_strlcpy_chk: 3558 return optimizeStrLCpyChk(CI, Builder); 3559 case LibFunc_vsnprintf_chk: 3560 return optimizeVSNPrintfChk(CI, Builder); 3561 case LibFunc_vsprintf_chk: 3562 return optimizeVSPrintfChk(CI, Builder); 3563 default: 3564 break; 3565 } 3566 return nullptr; 3567 } 3568 3569 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3570 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3571 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 3572