1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Analysis/BlockFrequencyInfo.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ProfileSummaryInfo.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Transforms/Utils/Local.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/CaptureTracking.h" 27 #include "llvm/Analysis/Loads.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Transforms/Utils/BuildLibCalls.h" 39 #include "llvm/Transforms/Utils/SizeOpts.h" 40 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 static cl::opt<bool> 45 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 46 cl::init(false), 47 cl::desc("Enable unsafe double to float " 48 "shrinking for math lib calls")); 49 50 51 //===----------------------------------------------------------------------===// 52 // Helper Functions 53 //===----------------------------------------------------------------------===// 54 55 static bool ignoreCallingConv(LibFunc Func) { 56 return Func == LibFunc_abs || Func == LibFunc_labs || 57 Func == LibFunc_llabs || Func == LibFunc_strlen; 58 } 59 60 static bool isCallingConvCCompatible(CallInst *CI) { 61 switch(CI->getCallingConv()) { 62 default: 63 return false; 64 case llvm::CallingConv::C: 65 return true; 66 case llvm::CallingConv::ARM_APCS: 67 case llvm::CallingConv::ARM_AAPCS: 68 case llvm::CallingConv::ARM_AAPCS_VFP: { 69 70 // The iOS ABI diverges from the standard in some cases, so for now don't 71 // try to simplify those calls. 72 if (Triple(CI->getModule()->getTargetTriple()).isiOS()) 73 return false; 74 75 auto *FuncTy = CI->getFunctionType(); 76 77 if (!FuncTy->getReturnType()->isPointerTy() && 78 !FuncTy->getReturnType()->isIntegerTy() && 79 !FuncTy->getReturnType()->isVoidTy()) 80 return false; 81 82 for (auto Param : FuncTy->params()) { 83 if (!Param->isPointerTy() && !Param->isIntegerTy()) 84 return false; 85 } 86 return true; 87 } 88 } 89 return false; 90 } 91 92 /// Return true if it is only used in equality comparisons with With. 93 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 94 for (User *U : V->users()) { 95 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 96 if (IC->isEquality() && IC->getOperand(1) == With) 97 continue; 98 // Unknown instruction. 99 return false; 100 } 101 return true; 102 } 103 104 static bool callHasFloatingPointArgument(const CallInst *CI) { 105 return any_of(CI->operands(), [](const Use &OI) { 106 return OI->getType()->isFloatingPointTy(); 107 }); 108 } 109 110 static bool callHasFP128Argument(const CallInst *CI) { 111 return any_of(CI->operands(), [](const Use &OI) { 112 return OI->getType()->isFP128Ty(); 113 }); 114 } 115 116 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 117 if (Base < 2 || Base > 36) 118 // handle special zero base 119 if (Base != 0) 120 return nullptr; 121 122 char *End; 123 std::string nptr = Str.str(); 124 errno = 0; 125 long long int Result = strtoll(nptr.c_str(), &End, Base); 126 if (errno) 127 return nullptr; 128 129 // if we assume all possible target locales are ASCII supersets, 130 // then if strtoll successfully parses a number on the host, 131 // it will also successfully parse the same way on the target 132 if (*End != '\0') 133 return nullptr; 134 135 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 136 return nullptr; 137 138 return ConstantInt::get(CI->getType(), Result); 139 } 140 141 static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B, 142 const TargetLibraryInfo *TLI) { 143 CallInst *FOpen = dyn_cast<CallInst>(File); 144 if (!FOpen) 145 return false; 146 147 Function *InnerCallee = FOpen->getCalledFunction(); 148 if (!InnerCallee) 149 return false; 150 151 LibFunc Func; 152 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 153 Func != LibFunc_fopen) 154 return false; 155 156 inferLibFuncAttributes(*CI->getCalledFunction(), *TLI); 157 if (PointerMayBeCaptured(File, true, true)) 158 return false; 159 160 return true; 161 } 162 163 static bool isOnlyUsedInComparisonWithZero(Value *V) { 164 for (User *U : V->users()) { 165 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 166 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 167 if (C->isNullValue()) 168 continue; 169 // Unknown instruction. 170 return false; 171 } 172 return true; 173 } 174 175 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 176 const DataLayout &DL) { 177 if (!isOnlyUsedInComparisonWithZero(CI)) 178 return false; 179 180 if (!isDereferenceableAndAlignedPointer(Str, 1, APInt(64, Len), DL)) 181 return false; 182 183 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 184 return false; 185 186 return true; 187 } 188 189 //===----------------------------------------------------------------------===// 190 // String and Memory Library Call Optimizations 191 //===----------------------------------------------------------------------===// 192 193 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 194 // Extract some information from the instruction 195 Value *Dst = CI->getArgOperand(0); 196 Value *Src = CI->getArgOperand(1); 197 198 // See if we can get the length of the input string. 199 uint64_t Len = GetStringLength(Src); 200 if (Len == 0) 201 return nullptr; 202 --Len; // Unbias length. 203 204 // Handle the simple, do-nothing case: strcat(x, "") -> x 205 if (Len == 0) 206 return Dst; 207 208 return emitStrLenMemCpy(Src, Dst, Len, B); 209 } 210 211 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 212 IRBuilder<> &B) { 213 // We need to find the end of the destination string. That's where the 214 // memory is to be moved to. We just generate a call to strlen. 215 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 216 if (!DstLen) 217 return nullptr; 218 219 // Now that we have the destination's length, we must index into the 220 // destination's pointer to get the actual memcpy destination (end of 221 // the string .. we're concatenating). 222 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 223 224 // We have enough information to now generate the memcpy call to do the 225 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 226 B.CreateMemCpy(CpyDst, 1, Src, 1, 227 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 228 return Dst; 229 } 230 231 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 232 // Extract some information from the instruction. 233 Value *Dst = CI->getArgOperand(0); 234 Value *Src = CI->getArgOperand(1); 235 uint64_t Len; 236 237 // We don't do anything if length is not constant. 238 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 239 Len = LengthArg->getZExtValue(); 240 else 241 return nullptr; 242 243 // See if we can get the length of the input string. 244 uint64_t SrcLen = GetStringLength(Src); 245 if (SrcLen == 0) 246 return nullptr; 247 --SrcLen; // Unbias length. 248 249 // Handle the simple, do-nothing cases: 250 // strncat(x, "", c) -> x 251 // strncat(x, c, 0) -> x 252 if (SrcLen == 0 || Len == 0) 253 return Dst; 254 255 // We don't optimize this case. 256 if (Len < SrcLen) 257 return nullptr; 258 259 // strncat(x, s, c) -> strcat(x, s) 260 // s is constant so the strcat can be optimized further. 261 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 262 } 263 264 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 265 Function *Callee = CI->getCalledFunction(); 266 FunctionType *FT = Callee->getFunctionType(); 267 Value *SrcStr = CI->getArgOperand(0); 268 269 // If the second operand is non-constant, see if we can compute the length 270 // of the input string and turn this into memchr. 271 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 272 if (!CharC) { 273 uint64_t Len = GetStringLength(SrcStr); 274 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 275 return nullptr; 276 277 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 278 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 279 B, DL, TLI); 280 } 281 282 // Otherwise, the character is a constant, see if the first argument is 283 // a string literal. If so, we can constant fold. 284 StringRef Str; 285 if (!getConstantStringInfo(SrcStr, Str)) { 286 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 287 return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI), 288 "strchr"); 289 return nullptr; 290 } 291 292 // Compute the offset, make sure to handle the case when we're searching for 293 // zero (a weird way to spell strlen). 294 size_t I = (0xFF & CharC->getSExtValue()) == 0 295 ? Str.size() 296 : Str.find(CharC->getSExtValue()); 297 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 298 return Constant::getNullValue(CI->getType()); 299 300 // strchr(s+n,c) -> gep(s+n+i,c) 301 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 302 } 303 304 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 305 Value *SrcStr = CI->getArgOperand(0); 306 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 307 308 // Cannot fold anything if we're not looking for a constant. 309 if (!CharC) 310 return nullptr; 311 312 StringRef Str; 313 if (!getConstantStringInfo(SrcStr, Str)) { 314 // strrchr(s, 0) -> strchr(s, 0) 315 if (CharC->isZero()) 316 return emitStrChr(SrcStr, '\0', B, TLI); 317 return nullptr; 318 } 319 320 // Compute the offset. 321 size_t I = (0xFF & CharC->getSExtValue()) == 0 322 ? Str.size() 323 : Str.rfind(CharC->getSExtValue()); 324 if (I == StringRef::npos) // Didn't find the char. Return null. 325 return Constant::getNullValue(CI->getType()); 326 327 // strrchr(s+n,c) -> gep(s+n+i,c) 328 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 329 } 330 331 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 332 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 333 if (Str1P == Str2P) // strcmp(x,x) -> 0 334 return ConstantInt::get(CI->getType(), 0); 335 336 StringRef Str1, Str2; 337 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 338 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 339 340 // strcmp(x, y) -> cnst (if both x and y are constant strings) 341 if (HasStr1 && HasStr2) 342 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 343 344 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 345 return B.CreateNeg(B.CreateZExt( 346 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 347 348 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 349 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 350 CI->getType()); 351 352 // strcmp(P, "x") -> memcmp(P, "x", 2) 353 uint64_t Len1 = GetStringLength(Str1P); 354 uint64_t Len2 = GetStringLength(Str2P); 355 if (Len1 && Len2) { 356 return emitMemCmp(Str1P, Str2P, 357 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 358 std::min(Len1, Len2)), 359 B, DL, TLI); 360 } 361 362 // strcmp to memcmp 363 if (!HasStr1 && HasStr2) { 364 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 365 return emitMemCmp( 366 Str1P, Str2P, 367 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 368 TLI); 369 } else if (HasStr1 && !HasStr2) { 370 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 371 return emitMemCmp( 372 Str1P, Str2P, 373 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 374 TLI); 375 } 376 377 return nullptr; 378 } 379 380 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 381 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 382 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 383 return ConstantInt::get(CI->getType(), 0); 384 385 // Get the length argument if it is constant. 386 uint64_t Length; 387 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 388 Length = LengthArg->getZExtValue(); 389 else 390 return nullptr; 391 392 if (Length == 0) // strncmp(x,y,0) -> 0 393 return ConstantInt::get(CI->getType(), 0); 394 395 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 396 return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 397 398 StringRef Str1, Str2; 399 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 400 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 401 402 // strncmp(x, y) -> cnst (if both x and y are constant strings) 403 if (HasStr1 && HasStr2) { 404 StringRef SubStr1 = Str1.substr(0, Length); 405 StringRef SubStr2 = Str2.substr(0, Length); 406 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 407 } 408 409 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 410 return B.CreateNeg(B.CreateZExt( 411 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 412 413 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 414 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 415 CI->getType()); 416 417 uint64_t Len1 = GetStringLength(Str1P); 418 uint64_t Len2 = GetStringLength(Str2P); 419 420 // strncmp to memcmp 421 if (!HasStr1 && HasStr2) { 422 Len2 = std::min(Len2, Length); 423 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 424 return emitMemCmp( 425 Str1P, Str2P, 426 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 427 TLI); 428 } else if (HasStr1 && !HasStr2) { 429 Len1 = std::min(Len1, Length); 430 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 431 return emitMemCmp( 432 Str1P, Str2P, 433 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 434 TLI); 435 } 436 437 return nullptr; 438 } 439 440 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 441 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 442 if (Dst == Src) // strcpy(x,x) -> x 443 return Src; 444 445 // See if we can get the length of the input string. 446 uint64_t Len = GetStringLength(Src); 447 if (Len == 0) 448 return nullptr; 449 450 // We have enough information to now generate the memcpy call to do the 451 // copy for us. Make a memcpy to copy the nul byte with align = 1. 452 B.CreateMemCpy(Dst, 1, Src, 1, 453 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 454 return Dst; 455 } 456 457 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 458 Function *Callee = CI->getCalledFunction(); 459 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 460 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 461 Value *StrLen = emitStrLen(Src, B, DL, TLI); 462 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 463 } 464 465 // See if we can get the length of the input string. 466 uint64_t Len = GetStringLength(Src); 467 if (Len == 0) 468 return nullptr; 469 470 Type *PT = Callee->getFunctionType()->getParamType(0); 471 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 472 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 473 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 474 475 // We have enough information to now generate the memcpy call to do the 476 // copy for us. Make a memcpy to copy the nul byte with align = 1. 477 B.CreateMemCpy(Dst, 1, Src, 1, LenV); 478 return DstEnd; 479 } 480 481 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 482 Function *Callee = CI->getCalledFunction(); 483 Value *Dst = CI->getArgOperand(0); 484 Value *Src = CI->getArgOperand(1); 485 Value *LenOp = CI->getArgOperand(2); 486 487 // See if we can get the length of the input string. 488 uint64_t SrcLen = GetStringLength(Src); 489 if (SrcLen == 0) 490 return nullptr; 491 --SrcLen; 492 493 if (SrcLen == 0) { 494 // strncpy(x, "", y) -> memset(align 1 x, '\0', y) 495 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 496 return Dst; 497 } 498 499 uint64_t Len; 500 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 501 Len = LengthArg->getZExtValue(); 502 else 503 return nullptr; 504 505 if (Len == 0) 506 return Dst; // strncpy(x, y, 0) -> x 507 508 // Let strncpy handle the zero padding 509 if (Len > SrcLen + 1) 510 return nullptr; 511 512 Type *PT = Callee->getFunctionType()->getParamType(0); 513 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 514 B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len)); 515 516 return Dst; 517 } 518 519 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B, 520 unsigned CharSize) { 521 Value *Src = CI->getArgOperand(0); 522 523 // Constant folding: strlen("xyz") -> 3 524 if (uint64_t Len = GetStringLength(Src, CharSize)) 525 return ConstantInt::get(CI->getType(), Len - 1); 526 527 // If s is a constant pointer pointing to a string literal, we can fold 528 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 529 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 530 // We only try to simplify strlen when the pointer s points to an array 531 // of i8. Otherwise, we would need to scale the offset x before doing the 532 // subtraction. This will make the optimization more complex, and it's not 533 // very useful because calling strlen for a pointer of other types is 534 // very uncommon. 535 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 536 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 537 return nullptr; 538 539 ConstantDataArraySlice Slice; 540 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 541 uint64_t NullTermIdx; 542 if (Slice.Array == nullptr) { 543 NullTermIdx = 0; 544 } else { 545 NullTermIdx = ~((uint64_t)0); 546 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 547 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 548 NullTermIdx = I; 549 break; 550 } 551 } 552 // If the string does not have '\0', leave it to strlen to compute 553 // its length. 554 if (NullTermIdx == ~((uint64_t)0)) 555 return nullptr; 556 } 557 558 Value *Offset = GEP->getOperand(2); 559 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 560 Known.Zero.flipAllBits(); 561 uint64_t ArrSize = 562 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 563 564 // KnownZero's bits are flipped, so zeros in KnownZero now represent 565 // bits known to be zeros in Offset, and ones in KnowZero represent 566 // bits unknown in Offset. Therefore, Offset is known to be in range 567 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 568 // unsigned-less-than NullTermIdx. 569 // 570 // If Offset is not provably in the range [0, NullTermIdx], we can still 571 // optimize if we can prove that the program has undefined behavior when 572 // Offset is outside that range. That is the case when GEP->getOperand(0) 573 // is a pointer to an object whose memory extent is NullTermIdx+1. 574 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 575 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 576 NullTermIdx == ArrSize - 1)) { 577 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 578 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 579 Offset); 580 } 581 } 582 583 return nullptr; 584 } 585 586 // strlen(x?"foo":"bars") --> x ? 3 : 4 587 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 588 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 589 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 590 if (LenTrue && LenFalse) { 591 ORE.emit([&]() { 592 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 593 << "folded strlen(select) to select of constants"; 594 }); 595 return B.CreateSelect(SI->getCondition(), 596 ConstantInt::get(CI->getType(), LenTrue - 1), 597 ConstantInt::get(CI->getType(), LenFalse - 1)); 598 } 599 } 600 601 // strlen(x) != 0 --> *x != 0 602 // strlen(x) == 0 --> *x == 0 603 if (isOnlyUsedInZeroEqualityComparison(CI)) 604 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), 605 CI->getType()); 606 607 return nullptr; 608 } 609 610 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 611 return optimizeStringLength(CI, B, 8); 612 } 613 614 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) { 615 Module &M = *CI->getModule(); 616 unsigned WCharSize = TLI->getWCharSize(M) * 8; 617 // We cannot perform this optimization without wchar_size metadata. 618 if (WCharSize == 0) 619 return nullptr; 620 621 return optimizeStringLength(CI, B, WCharSize); 622 } 623 624 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 625 StringRef S1, S2; 626 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 627 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 628 629 // strpbrk(s, "") -> nullptr 630 // strpbrk("", s) -> nullptr 631 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 632 return Constant::getNullValue(CI->getType()); 633 634 // Constant folding. 635 if (HasS1 && HasS2) { 636 size_t I = S1.find_first_of(S2); 637 if (I == StringRef::npos) // No match. 638 return Constant::getNullValue(CI->getType()); 639 640 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 641 "strpbrk"); 642 } 643 644 // strpbrk(s, "a") -> strchr(s, 'a') 645 if (HasS2 && S2.size() == 1) 646 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 647 648 return nullptr; 649 } 650 651 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 652 Value *EndPtr = CI->getArgOperand(1); 653 if (isa<ConstantPointerNull>(EndPtr)) { 654 // With a null EndPtr, this function won't capture the main argument. 655 // It would be readonly too, except that it still may write to errno. 656 CI->addParamAttr(0, Attribute::NoCapture); 657 } 658 659 return nullptr; 660 } 661 662 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 663 StringRef S1, S2; 664 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 665 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 666 667 // strspn(s, "") -> 0 668 // strspn("", s) -> 0 669 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 670 return Constant::getNullValue(CI->getType()); 671 672 // Constant folding. 673 if (HasS1 && HasS2) { 674 size_t Pos = S1.find_first_not_of(S2); 675 if (Pos == StringRef::npos) 676 Pos = S1.size(); 677 return ConstantInt::get(CI->getType(), Pos); 678 } 679 680 return nullptr; 681 } 682 683 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 684 StringRef S1, S2; 685 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 686 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 687 688 // strcspn("", s) -> 0 689 if (HasS1 && S1.empty()) 690 return Constant::getNullValue(CI->getType()); 691 692 // Constant folding. 693 if (HasS1 && HasS2) { 694 size_t Pos = S1.find_first_of(S2); 695 if (Pos == StringRef::npos) 696 Pos = S1.size(); 697 return ConstantInt::get(CI->getType(), Pos); 698 } 699 700 // strcspn(s, "") -> strlen(s) 701 if (HasS2 && S2.empty()) 702 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 703 704 return nullptr; 705 } 706 707 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 708 // fold strstr(x, x) -> x. 709 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 710 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 711 712 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 713 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 714 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 715 if (!StrLen) 716 return nullptr; 717 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 718 StrLen, B, DL, TLI); 719 if (!StrNCmp) 720 return nullptr; 721 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 722 ICmpInst *Old = cast<ICmpInst>(*UI++); 723 Value *Cmp = 724 B.CreateICmp(Old->getPredicate(), StrNCmp, 725 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 726 replaceAllUsesWith(Old, Cmp); 727 } 728 return CI; 729 } 730 731 // See if either input string is a constant string. 732 StringRef SearchStr, ToFindStr; 733 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 734 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 735 736 // fold strstr(x, "") -> x. 737 if (HasStr2 && ToFindStr.empty()) 738 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 739 740 // If both strings are known, constant fold it. 741 if (HasStr1 && HasStr2) { 742 size_t Offset = SearchStr.find(ToFindStr); 743 744 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 745 return Constant::getNullValue(CI->getType()); 746 747 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 748 Value *Result = castToCStr(CI->getArgOperand(0), B); 749 Result = 750 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 751 return B.CreateBitCast(Result, CI->getType()); 752 } 753 754 // fold strstr(x, "y") -> strchr(x, 'y'). 755 if (HasStr2 && ToFindStr.size() == 1) { 756 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 757 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 758 } 759 return nullptr; 760 } 761 762 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { 763 Value *SrcStr = CI->getArgOperand(0); 764 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 765 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 766 767 // memchr(x, y, 0) -> null 768 if (LenC && LenC->isZero()) 769 return Constant::getNullValue(CI->getType()); 770 771 // From now on we need at least constant length and string. 772 StringRef Str; 773 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 774 return nullptr; 775 776 // Truncate the string to LenC. If Str is smaller than LenC we will still only 777 // scan the string, as reading past the end of it is undefined and we can just 778 // return null if we don't find the char. 779 Str = Str.substr(0, LenC->getZExtValue()); 780 781 // If the char is variable but the input str and length are not we can turn 782 // this memchr call into a simple bit field test. Of course this only works 783 // when the return value is only checked against null. 784 // 785 // It would be really nice to reuse switch lowering here but we can't change 786 // the CFG at this point. 787 // 788 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 789 // != 0 790 // after bounds check. 791 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 792 unsigned char Max = 793 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 794 reinterpret_cast<const unsigned char *>(Str.end())); 795 796 // Make sure the bit field we're about to create fits in a register on the 797 // target. 798 // FIXME: On a 64 bit architecture this prevents us from using the 799 // interesting range of alpha ascii chars. We could do better by emitting 800 // two bitfields or shifting the range by 64 if no lower chars are used. 801 if (!DL.fitsInLegalInteger(Max + 1)) 802 return nullptr; 803 804 // For the bit field use a power-of-2 type with at least 8 bits to avoid 805 // creating unnecessary illegal types. 806 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 807 808 // Now build the bit field. 809 APInt Bitfield(Width, 0); 810 for (char C : Str) 811 Bitfield.setBit((unsigned char)C); 812 Value *BitfieldC = B.getInt(Bitfield); 813 814 // Adjust width of "C" to the bitfield width, then mask off the high bits. 815 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 816 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 817 818 // First check that the bit field access is within bounds. 819 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 820 "memchr.bounds"); 821 822 // Create code that checks if the given bit is set in the field. 823 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 824 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 825 826 // Finally merge both checks and cast to pointer type. The inttoptr 827 // implicitly zexts the i1 to intptr type. 828 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 829 } 830 831 // Check if all arguments are constants. If so, we can constant fold. 832 if (!CharC) 833 return nullptr; 834 835 // Compute the offset. 836 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 837 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 838 return Constant::getNullValue(CI->getType()); 839 840 // memchr(s+n,c,l) -> gep(s+n+i,c) 841 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 842 } 843 844 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 845 uint64_t Len, IRBuilder<> &B, 846 const DataLayout &DL) { 847 if (Len == 0) // memcmp(s1,s2,0) -> 0 848 return Constant::getNullValue(CI->getType()); 849 850 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 851 if (Len == 1) { 852 Value *LHSV = 853 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 854 CI->getType(), "lhsv"); 855 Value *RHSV = 856 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 857 CI->getType(), "rhsv"); 858 return B.CreateSub(LHSV, RHSV, "chardiff"); 859 } 860 861 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 862 // TODO: The case where both inputs are constants does not need to be limited 863 // to legal integers or equality comparison. See block below this. 864 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 865 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 866 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 867 868 // First, see if we can fold either argument to a constant. 869 Value *LHSV = nullptr; 870 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 871 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 872 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 873 } 874 Value *RHSV = nullptr; 875 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 876 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 877 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 878 } 879 880 // Don't generate unaligned loads. If either source is constant data, 881 // alignment doesn't matter for that source because there is no load. 882 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 883 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 884 if (!LHSV) { 885 Type *LHSPtrTy = 886 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 887 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 888 } 889 if (!RHSV) { 890 Type *RHSPtrTy = 891 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 892 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 893 } 894 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 895 } 896 } 897 898 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 899 // TODO: This is limited to i8 arrays. 900 StringRef LHSStr, RHSStr; 901 if (getConstantStringInfo(LHS, LHSStr) && 902 getConstantStringInfo(RHS, RHSStr)) { 903 // Make sure we're not reading out-of-bounds memory. 904 if (Len > LHSStr.size() || Len > RHSStr.size()) 905 return nullptr; 906 // Fold the memcmp and normalize the result. This way we get consistent 907 // results across multiple platforms. 908 uint64_t Ret = 0; 909 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 910 if (Cmp < 0) 911 Ret = -1; 912 else if (Cmp > 0) 913 Ret = 1; 914 return ConstantInt::get(CI->getType(), Ret); 915 } 916 return nullptr; 917 } 918 919 // Most simplifications for memcmp also apply to bcmp. 920 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 921 IRBuilder<> &B) { 922 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 923 Value *Size = CI->getArgOperand(2); 924 925 if (LHS == RHS) // memcmp(s,s,x) -> 0 926 return Constant::getNullValue(CI->getType()); 927 928 // Handle constant lengths. 929 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) 930 if (Value *Res = optimizeMemCmpConstantSize(CI, LHS, RHS, 931 LenC->getZExtValue(), B, DL)) 932 return Res; 933 934 return nullptr; 935 } 936 937 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 938 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 939 return V; 940 941 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 942 // `bcmp` can be more efficient than memcmp because it only has to know that 943 // there is a difference, not where it is. 944 if (isOnlyUsedInZeroEqualityComparison(CI) && TLI->has(LibFunc_bcmp)) { 945 Value *LHS = CI->getArgOperand(0); 946 Value *RHS = CI->getArgOperand(1); 947 Value *Size = CI->getArgOperand(2); 948 return emitBCmp(LHS, RHS, Size, B, DL, TLI); 949 } 950 951 return nullptr; 952 } 953 954 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilder<> &B) { 955 return optimizeMemCmpBCmpCommon(CI, B); 956 } 957 958 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { 959 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 960 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 961 CI->getArgOperand(2)); 962 return CI->getArgOperand(0); 963 } 964 965 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { 966 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 967 B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 968 CI->getArgOperand(2)); 969 return CI->getArgOperand(0); 970 } 971 972 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 973 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilder<> &B) { 974 // This has to be a memset of zeros (bzero). 975 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 976 if (!FillValue || FillValue->getZExtValue() != 0) 977 return nullptr; 978 979 // TODO: We should handle the case where the malloc has more than one use. 980 // This is necessary to optimize common patterns such as when the result of 981 // the malloc is checked against null or when a memset intrinsic is used in 982 // place of a memset library call. 983 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 984 if (!Malloc || !Malloc->hasOneUse()) 985 return nullptr; 986 987 // Is the inner call really malloc()? 988 Function *InnerCallee = Malloc->getCalledFunction(); 989 if (!InnerCallee) 990 return nullptr; 991 992 LibFunc Func; 993 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 994 Func != LibFunc_malloc) 995 return nullptr; 996 997 // The memset must cover the same number of bytes that are malloc'd. 998 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 999 return nullptr; 1000 1001 // Replace the malloc with a calloc. We need the data layout to know what the 1002 // actual size of a 'size_t' parameter is. 1003 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 1004 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 1005 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 1006 Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 1007 Malloc->getArgOperand(0), Malloc->getAttributes(), 1008 B, *TLI); 1009 if (!Calloc) 1010 return nullptr; 1011 1012 Malloc->replaceAllUsesWith(Calloc); 1013 eraseFromParent(Malloc); 1014 1015 return Calloc; 1016 } 1017 1018 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { 1019 if (auto *Calloc = foldMallocMemset(CI, B)) 1020 return Calloc; 1021 1022 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1023 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1024 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 1025 return CI->getArgOperand(0); 1026 } 1027 1028 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) { 1029 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1030 return emitMalloc(CI->getArgOperand(1), B, DL, TLI); 1031 1032 return nullptr; 1033 } 1034 1035 //===----------------------------------------------------------------------===// 1036 // Math Library Optimizations 1037 //===----------------------------------------------------------------------===// 1038 1039 // Replace a libcall \p CI with a call to intrinsic \p IID 1040 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) { 1041 // Propagate fast-math flags from the existing call to the new call. 1042 IRBuilder<>::FastMathFlagGuard Guard(B); 1043 B.setFastMathFlags(CI->getFastMathFlags()); 1044 1045 Module *M = CI->getModule(); 1046 Value *V = CI->getArgOperand(0); 1047 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1048 CallInst *NewCall = B.CreateCall(F, V); 1049 NewCall->takeName(CI); 1050 return NewCall; 1051 } 1052 1053 /// Return a variant of Val with float type. 1054 /// Currently this works in two cases: If Val is an FPExtension of a float 1055 /// value to something bigger, simply return the operand. 1056 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1057 /// loss of precision do so. 1058 static Value *valueHasFloatPrecision(Value *Val) { 1059 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1060 Value *Op = Cast->getOperand(0); 1061 if (Op->getType()->isFloatTy()) 1062 return Op; 1063 } 1064 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1065 APFloat F = Const->getValueAPF(); 1066 bool losesInfo; 1067 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1068 &losesInfo); 1069 if (!losesInfo) 1070 return ConstantFP::get(Const->getContext(), F); 1071 } 1072 return nullptr; 1073 } 1074 1075 /// Shrink double -> float functions. 1076 static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B, 1077 bool isBinary, bool isPrecise = false) { 1078 Function *CalleeFn = CI->getCalledFunction(); 1079 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1080 return nullptr; 1081 1082 // If not all the uses of the function are converted to float, then bail out. 1083 // This matters if the precision of the result is more important than the 1084 // precision of the arguments. 1085 if (isPrecise) 1086 for (User *U : CI->users()) { 1087 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1088 if (!Cast || !Cast->getType()->isFloatTy()) 1089 return nullptr; 1090 } 1091 1092 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1093 Value *V[2]; 1094 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1095 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1096 if (!V[0] || (isBinary && !V[1])) 1097 return nullptr; 1098 1099 StringRef CalleeNm = CalleeFn->getName(); 1100 AttributeList CalleeAt = CalleeFn->getAttributes(); 1101 bool CalleeIn = CalleeFn->isIntrinsic(); 1102 1103 // If call isn't an intrinsic, check that it isn't within a function with the 1104 // same name as the float version of this call, otherwise the result is an 1105 // infinite loop. For example, from MinGW-w64: 1106 // 1107 // float expf(float val) { return (float) exp((double) val); } 1108 if (!CalleeIn) { 1109 const Function *Fn = CI->getFunction(); 1110 StringRef FnName = Fn->getName(); 1111 if (FnName.back() == 'f' && 1112 FnName.size() == (CalleeNm.size() + 1) && 1113 FnName.startswith(CalleeNm)) 1114 return nullptr; 1115 } 1116 1117 // Propagate the math semantics from the current function to the new function. 1118 IRBuilder<>::FastMathFlagGuard Guard(B); 1119 B.setFastMathFlags(CI->getFastMathFlags()); 1120 1121 // g((double) float) -> (double) gf(float) 1122 Value *R; 1123 if (CalleeIn) { 1124 Module *M = CI->getModule(); 1125 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1126 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1127 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1128 } 1129 else 1130 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeNm, B, CalleeAt) 1131 : emitUnaryFloatFnCall(V[0], CalleeNm, B, CalleeAt); 1132 1133 return B.CreateFPExt(R, B.getDoubleTy()); 1134 } 1135 1136 /// Shrink double -> float for unary functions. 1137 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1138 bool isPrecise = false) { 1139 return optimizeDoubleFP(CI, B, false, isPrecise); 1140 } 1141 1142 /// Shrink double -> float for binary functions. 1143 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1144 bool isPrecise = false) { 1145 return optimizeDoubleFP(CI, B, true, isPrecise); 1146 } 1147 1148 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1149 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) { 1150 if (!CI->isFast()) 1151 return nullptr; 1152 1153 // Propagate fast-math flags from the existing call to new instructions. 1154 IRBuilder<>::FastMathFlagGuard Guard(B); 1155 B.setFastMathFlags(CI->getFastMathFlags()); 1156 1157 Value *Real, *Imag; 1158 if (CI->getNumArgOperands() == 1) { 1159 Value *Op = CI->getArgOperand(0); 1160 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1161 Real = B.CreateExtractValue(Op, 0, "real"); 1162 Imag = B.CreateExtractValue(Op, 1, "imag"); 1163 } else { 1164 assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); 1165 Real = CI->getArgOperand(0); 1166 Imag = CI->getArgOperand(1); 1167 } 1168 1169 Value *RealReal = B.CreateFMul(Real, Real); 1170 Value *ImagImag = B.CreateFMul(Imag, Imag); 1171 1172 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1173 CI->getType()); 1174 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); 1175 } 1176 1177 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1178 IRBuilder<> &B) { 1179 if (!isa<FPMathOperator>(Call)) 1180 return nullptr; 1181 1182 IRBuilder<>::FastMathFlagGuard Guard(B); 1183 B.setFastMathFlags(Call->getFastMathFlags()); 1184 1185 // TODO: Can this be shared to also handle LLVM intrinsics? 1186 Value *X; 1187 switch (Func) { 1188 case LibFunc_sin: 1189 case LibFunc_sinf: 1190 case LibFunc_sinl: 1191 case LibFunc_tan: 1192 case LibFunc_tanf: 1193 case LibFunc_tanl: 1194 // sin(-X) --> -sin(X) 1195 // tan(-X) --> -tan(X) 1196 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1197 return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X)); 1198 break; 1199 case LibFunc_cos: 1200 case LibFunc_cosf: 1201 case LibFunc_cosl: 1202 // cos(-X) --> cos(X) 1203 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1204 return B.CreateCall(Call->getCalledFunction(), X, "cos"); 1205 break; 1206 default: 1207 break; 1208 } 1209 return nullptr; 1210 } 1211 1212 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) { 1213 // Multiplications calculated using Addition Chains. 1214 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1215 1216 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1217 1218 if (InnerChain[Exp]) 1219 return InnerChain[Exp]; 1220 1221 static const unsigned AddChain[33][2] = { 1222 {0, 0}, // Unused. 1223 {0, 0}, // Unused (base case = pow1). 1224 {1, 1}, // Unused (pre-computed). 1225 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1226 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1227 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1228 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1229 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1230 }; 1231 1232 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1233 getPow(InnerChain, AddChain[Exp][1], B)); 1234 return InnerChain[Exp]; 1235 } 1236 1237 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1238 /// exp2(n * x) for pow(2.0 ** n, x); exp10(x) for pow(10.0, x). 1239 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) { 1240 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1241 AttributeList Attrs = Pow->getCalledFunction()->getAttributes(); 1242 Module *Mod = Pow->getModule(); 1243 Type *Ty = Pow->getType(); 1244 bool Ignored; 1245 1246 // Evaluate special cases related to a nested function as the base. 1247 1248 // pow(exp(x), y) -> exp(x * y) 1249 // pow(exp2(x), y) -> exp2(x * y) 1250 // If exp{,2}() is used only once, it is better to fold two transcendental 1251 // math functions into one. If used again, exp{,2}() would still have to be 1252 // called with the original argument, then keep both original transcendental 1253 // functions. However, this transformation is only safe with fully relaxed 1254 // math semantics, since, besides rounding differences, it changes overflow 1255 // and underflow behavior quite dramatically. For example: 1256 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1257 // Whereas: 1258 // exp(1000 * 0.001) = exp(1) 1259 // TODO: Loosen the requirement for fully relaxed math semantics. 1260 // TODO: Handle exp10() when more targets have it available. 1261 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1262 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1263 LibFunc LibFn; 1264 1265 Function *CalleeFn = BaseFn->getCalledFunction(); 1266 if (CalleeFn && 1267 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1268 StringRef ExpName; 1269 Intrinsic::ID ID; 1270 Value *ExpFn; 1271 LibFunc LibFnFloat; 1272 LibFunc LibFnDouble; 1273 LibFunc LibFnLongDouble; 1274 1275 switch (LibFn) { 1276 default: 1277 return nullptr; 1278 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1279 ExpName = TLI->getName(LibFunc_exp); 1280 ID = Intrinsic::exp; 1281 LibFnFloat = LibFunc_expf; 1282 LibFnDouble = LibFunc_exp; 1283 LibFnLongDouble = LibFunc_expl; 1284 break; 1285 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1286 ExpName = TLI->getName(LibFunc_exp2); 1287 ID = Intrinsic::exp2; 1288 LibFnFloat = LibFunc_exp2f; 1289 LibFnDouble = LibFunc_exp2; 1290 LibFnLongDouble = LibFunc_exp2l; 1291 break; 1292 } 1293 1294 // Create new exp{,2}() with the product as its argument. 1295 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1296 ExpFn = BaseFn->doesNotAccessMemory() 1297 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1298 FMul, ExpName) 1299 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1300 LibFnLongDouble, B, 1301 BaseFn->getAttributes()); 1302 1303 // Since the new exp{,2}() is different from the original one, dead code 1304 // elimination cannot be trusted to remove it, since it may have side 1305 // effects (e.g., errno). When the only consumer for the original 1306 // exp{,2}() is pow(), then it has to be explicitly erased. 1307 BaseFn->replaceAllUsesWith(ExpFn); 1308 eraseFromParent(BaseFn); 1309 1310 return ExpFn; 1311 } 1312 } 1313 1314 // Evaluate special cases related to a constant base. 1315 1316 const APFloat *BaseF; 1317 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1318 return nullptr; 1319 1320 // pow(2.0 ** n, x) -> exp2(n * x) 1321 if (hasUnaryFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1322 APFloat BaseR = APFloat(1.0); 1323 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1324 BaseR = BaseR / *BaseF; 1325 bool IsInteger = BaseF->isInteger(), 1326 IsReciprocal = BaseR.isInteger(); 1327 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1328 APSInt NI(64, false); 1329 if ((IsInteger || IsReciprocal) && 1330 !NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) && 1331 NI > 1 && NI.isPowerOf2()) { 1332 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1333 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1334 if (Pow->doesNotAccessMemory()) 1335 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1336 FMul, "exp2"); 1337 else 1338 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1339 LibFunc_exp2l, B, Attrs); 1340 } 1341 } 1342 1343 // pow(10.0, x) -> exp10(x) 1344 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1345 if (match(Base, m_SpecificFP(10.0)) && 1346 hasUnaryFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1347 return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f, 1348 LibFunc_exp10l, B, Attrs); 1349 1350 return nullptr; 1351 } 1352 1353 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1354 Module *M, IRBuilder<> &B, 1355 const TargetLibraryInfo *TLI) { 1356 // If errno is never set, then use the intrinsic for sqrt(). 1357 if (NoErrno) { 1358 Function *SqrtFn = 1359 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1360 return B.CreateCall(SqrtFn, V, "sqrt"); 1361 } 1362 1363 // Otherwise, use the libcall for sqrt(). 1364 if (hasUnaryFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, 1365 LibFunc_sqrtl)) 1366 // TODO: We also should check that the target can in fact lower the sqrt() 1367 // libcall. We currently have no way to ask this question, so we ask if 1368 // the target has a sqrt() libcall, which is not exactly the same. 1369 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1370 LibFunc_sqrtl, B, Attrs); 1371 1372 return nullptr; 1373 } 1374 1375 /// Use square root in place of pow(x, +/-0.5). 1376 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) { 1377 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1378 AttributeList Attrs = Pow->getCalledFunction()->getAttributes(); 1379 Module *Mod = Pow->getModule(); 1380 Type *Ty = Pow->getType(); 1381 1382 const APFloat *ExpoF; 1383 if (!match(Expo, m_APFloat(ExpoF)) || 1384 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1385 return nullptr; 1386 1387 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1388 if (!Sqrt) 1389 return nullptr; 1390 1391 // Handle signed zero base by expanding to fabs(sqrt(x)). 1392 if (!Pow->hasNoSignedZeros()) { 1393 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1394 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1395 } 1396 1397 // Handle non finite base by expanding to 1398 // (x == -infinity ? +infinity : sqrt(x)). 1399 if (!Pow->hasNoInfs()) { 1400 Value *PosInf = ConstantFP::getInfinity(Ty), 1401 *NegInf = ConstantFP::getInfinity(Ty, true); 1402 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1403 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1404 } 1405 1406 // If the exponent is negative, then get the reciprocal. 1407 if (ExpoF->isNegative()) 1408 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1409 1410 return Sqrt; 1411 } 1412 1413 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) { 1414 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1415 Function *Callee = Pow->getCalledFunction(); 1416 StringRef Name = Callee->getName(); 1417 Type *Ty = Pow->getType(); 1418 Value *Shrunk = nullptr; 1419 bool Ignored; 1420 1421 // Bail out if simplifying libcalls to pow() is disabled. 1422 if (!hasUnaryFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl)) 1423 return nullptr; 1424 1425 // Propagate the math semantics from the call to any created instructions. 1426 IRBuilder<>::FastMathFlagGuard Guard(B); 1427 B.setFastMathFlags(Pow->getFastMathFlags()); 1428 1429 // Shrink pow() to powf() if the arguments are single precision, 1430 // unless the result is expected to be double precision. 1431 if (UnsafeFPShrink && 1432 Name == TLI->getName(LibFunc_pow) && hasFloatVersion(Name)) 1433 Shrunk = optimizeBinaryDoubleFP(Pow, B, true); 1434 1435 // Evaluate special cases related to the base. 1436 1437 // pow(1.0, x) -> 1.0 1438 if (match(Base, m_FPOne())) 1439 return Base; 1440 1441 if (Value *Exp = replacePowWithExp(Pow, B)) 1442 return Exp; 1443 1444 // Evaluate special cases related to the exponent. 1445 1446 // pow(x, -1.0) -> 1.0 / x 1447 if (match(Expo, m_SpecificFP(-1.0))) 1448 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1449 1450 // pow(x, 0.0) -> 1.0 1451 if (match(Expo, m_SpecificFP(0.0))) 1452 return ConstantFP::get(Ty, 1.0); 1453 1454 // pow(x, 1.0) -> x 1455 if (match(Expo, m_FPOne())) 1456 return Base; 1457 1458 // pow(x, 2.0) -> x * x 1459 if (match(Expo, m_SpecificFP(2.0))) 1460 return B.CreateFMul(Base, Base, "square"); 1461 1462 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1463 return Sqrt; 1464 1465 // pow(x, n) -> x * x * x * ... 1466 const APFloat *ExpoF; 1467 if (Pow->isFast() && match(Expo, m_APFloat(ExpoF))) { 1468 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1469 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1470 // additional fmul. 1471 // TODO: This whole transformation should be backend specific (e.g. some 1472 // backends might prefer libcalls or the limit for the exponent might 1473 // be different) and it should also consider optimizing for size. 1474 APFloat LimF(ExpoF->getSemantics(), 33.0), 1475 ExpoA(abs(*ExpoF)); 1476 if (ExpoA.compare(LimF) == APFloat::cmpLessThan) { 1477 // This transformation applies to integer or integer+0.5 exponents only. 1478 // For integer+0.5, we create a sqrt(Base) call. 1479 Value *Sqrt = nullptr; 1480 if (!ExpoA.isInteger()) { 1481 APFloat Expo2 = ExpoA; 1482 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1483 // is no floating point exception and the result is an integer, then 1484 // ExpoA == integer + 0.5 1485 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1486 return nullptr; 1487 1488 if (!Expo2.isInteger()) 1489 return nullptr; 1490 1491 Sqrt = 1492 getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1493 Pow->doesNotAccessMemory(), Pow->getModule(), B, TLI); 1494 } 1495 1496 // We will memoize intermediate products of the Addition Chain. 1497 Value *InnerChain[33] = {nullptr}; 1498 InnerChain[1] = Base; 1499 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1500 1501 // We cannot readily convert a non-double type (like float) to a double. 1502 // So we first convert it to something which could be converted to double. 1503 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1504 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1505 1506 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1507 if (Sqrt) 1508 FMul = B.CreateFMul(FMul, Sqrt); 1509 1510 // If the exponent is negative, then get the reciprocal. 1511 if (ExpoF->isNegative()) 1512 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1513 1514 return FMul; 1515 } 1516 } 1517 1518 return Shrunk; 1519 } 1520 1521 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1522 Function *Callee = CI->getCalledFunction(); 1523 Value *Ret = nullptr; 1524 StringRef Name = Callee->getName(); 1525 if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name)) 1526 Ret = optimizeUnaryDoubleFP(CI, B, true); 1527 1528 Value *Op = CI->getArgOperand(0); 1529 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1530 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1531 LibFunc LdExp = LibFunc_ldexpl; 1532 if (Op->getType()->isFloatTy()) 1533 LdExp = LibFunc_ldexpf; 1534 else if (Op->getType()->isDoubleTy()) 1535 LdExp = LibFunc_ldexp; 1536 1537 if (TLI->has(LdExp)) { 1538 Value *LdExpArg = nullptr; 1539 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 1540 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 1541 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 1542 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 1543 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 1544 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 1545 } 1546 1547 if (LdExpArg) { 1548 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); 1549 if (!Op->getType()->isFloatTy()) 1550 One = ConstantExpr::getFPExtend(One, Op->getType()); 1551 1552 Module *M = CI->getModule(); 1553 FunctionCallee NewCallee = M->getOrInsertFunction( 1554 TLI->getName(LdExp), Op->getType(), Op->getType(), B.getInt32Ty()); 1555 CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg}); 1556 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 1557 CI->setCallingConv(F->getCallingConv()); 1558 1559 return CI; 1560 } 1561 } 1562 return Ret; 1563 } 1564 1565 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { 1566 Function *Callee = CI->getCalledFunction(); 1567 // If we can shrink the call to a float function rather than a double 1568 // function, do that first. 1569 StringRef Name = Callee->getName(); 1570 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1571 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1572 return Ret; 1573 1574 IRBuilder<>::FastMathFlagGuard Guard(B); 1575 FastMathFlags FMF; 1576 if (CI->isFast()) { 1577 // If the call is 'fast', then anything we create here will also be 'fast'. 1578 FMF.setFast(); 1579 } else { 1580 // At a minimum, no-nans-fp-math must be true. 1581 if (!CI->hasNoNaNs()) 1582 return nullptr; 1583 // No-signed-zeros is implied by the definitions of fmax/fmin themselves: 1584 // "Ideally, fmax would be sensitive to the sign of zero, for example 1585 // fmax(-0. 0, +0. 0) would return +0; however, implementation in software 1586 // might be impractical." 1587 FMF.setNoSignedZeros(); 1588 FMF.setNoNaNs(); 1589 } 1590 B.setFastMathFlags(FMF); 1591 1592 // We have a relaxed floating-point environment. We can ignore NaN-handling 1593 // and transform to a compare and select. We do not have to consider errno or 1594 // exceptions, because fmin/fmax do not have those. 1595 Value *Op0 = CI->getArgOperand(0); 1596 Value *Op1 = CI->getArgOperand(1); 1597 Value *Cmp = Callee->getName().startswith("fmin") ? 1598 B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1); 1599 return B.CreateSelect(Cmp, Op0, Op1); 1600 } 1601 1602 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { 1603 Function *Callee = CI->getCalledFunction(); 1604 Value *Ret = nullptr; 1605 StringRef Name = Callee->getName(); 1606 if (UnsafeFPShrink && hasFloatVersion(Name)) 1607 Ret = optimizeUnaryDoubleFP(CI, B, true); 1608 1609 if (!CI->isFast()) 1610 return Ret; 1611 Value *Op1 = CI->getArgOperand(0); 1612 auto *OpC = dyn_cast<CallInst>(Op1); 1613 1614 // The earlier call must also be 'fast' in order to do these transforms. 1615 if (!OpC || !OpC->isFast()) 1616 return Ret; 1617 1618 // log(pow(x,y)) -> y*log(x) 1619 // This is only applicable to log, log2, log10. 1620 if (Name != "log" && Name != "log2" && Name != "log10") 1621 return Ret; 1622 1623 IRBuilder<>::FastMathFlagGuard Guard(B); 1624 FastMathFlags FMF; 1625 FMF.setFast(); 1626 B.setFastMathFlags(FMF); 1627 1628 LibFunc Func; 1629 Function *F = OpC->getCalledFunction(); 1630 if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1631 Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow)) 1632 return B.CreateFMul(OpC->getArgOperand(1), 1633 emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, 1634 Callee->getAttributes()), "mul"); 1635 1636 // log(exp2(y)) -> y*log(2) 1637 if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && 1638 TLI->has(Func) && Func == LibFunc_exp2) 1639 return B.CreateFMul( 1640 OpC->getArgOperand(0), 1641 emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), 1642 Callee->getName(), B, Callee->getAttributes()), 1643 "logmul"); 1644 return Ret; 1645 } 1646 1647 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1648 Function *Callee = CI->getCalledFunction(); 1649 Value *Ret = nullptr; 1650 // TODO: Once we have a way (other than checking for the existince of the 1651 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 1652 // condition below. 1653 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 1654 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1655 Ret = optimizeUnaryDoubleFP(CI, B, true); 1656 1657 if (!CI->isFast()) 1658 return Ret; 1659 1660 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1661 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 1662 return Ret; 1663 1664 // We're looking for a repeated factor in a multiplication tree, 1665 // so we can do this fold: sqrt(x * x) -> fabs(x); 1666 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 1667 Value *Op0 = I->getOperand(0); 1668 Value *Op1 = I->getOperand(1); 1669 Value *RepeatOp = nullptr; 1670 Value *OtherOp = nullptr; 1671 if (Op0 == Op1) { 1672 // Simple match: the operands of the multiply are identical. 1673 RepeatOp = Op0; 1674 } else { 1675 // Look for a more complicated pattern: one of the operands is itself 1676 // a multiply, so search for a common factor in that multiply. 1677 // Note: We don't bother looking any deeper than this first level or for 1678 // variations of this pattern because instcombine's visitFMUL and/or the 1679 // reassociation pass should give us this form. 1680 Value *OtherMul0, *OtherMul1; 1681 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1682 // Pattern: sqrt((x * y) * z) 1683 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 1684 // Matched: sqrt((x * x) * z) 1685 RepeatOp = OtherMul0; 1686 OtherOp = Op1; 1687 } 1688 } 1689 } 1690 if (!RepeatOp) 1691 return Ret; 1692 1693 // Fast math flags for any created instructions should match the sqrt 1694 // and multiply. 1695 IRBuilder<>::FastMathFlagGuard Guard(B); 1696 B.setFastMathFlags(I->getFastMathFlags()); 1697 1698 // If we found a repeated factor, hoist it out of the square root and 1699 // replace it with the fabs of that factor. 1700 Module *M = Callee->getParent(); 1701 Type *ArgType = I->getType(); 1702 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1703 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1704 if (OtherOp) { 1705 // If we found a non-repeated factor, we still need to get its square 1706 // root. We then multiply that by the value that was simplified out 1707 // of the square root calculation. 1708 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1709 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1710 return B.CreateFMul(FabsCall, SqrtCall); 1711 } 1712 return FabsCall; 1713 } 1714 1715 // TODO: Generalize to handle any trig function and its inverse. 1716 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { 1717 Function *Callee = CI->getCalledFunction(); 1718 Value *Ret = nullptr; 1719 StringRef Name = Callee->getName(); 1720 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 1721 Ret = optimizeUnaryDoubleFP(CI, B, true); 1722 1723 Value *Op1 = CI->getArgOperand(0); 1724 auto *OpC = dyn_cast<CallInst>(Op1); 1725 if (!OpC) 1726 return Ret; 1727 1728 // Both calls must be 'fast' in order to remove them. 1729 if (!CI->isFast() || !OpC->isFast()) 1730 return Ret; 1731 1732 // tan(atan(x)) -> x 1733 // tanf(atanf(x)) -> x 1734 // tanl(atanl(x)) -> x 1735 LibFunc Func; 1736 Function *F = OpC->getCalledFunction(); 1737 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1738 ((Func == LibFunc_atan && Callee->getName() == "tan") || 1739 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 1740 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 1741 Ret = OpC->getArgOperand(0); 1742 return Ret; 1743 } 1744 1745 static bool isTrigLibCall(CallInst *CI) { 1746 // We can only hope to do anything useful if we can ignore things like errno 1747 // and floating-point exceptions. 1748 // We already checked the prototype. 1749 return CI->hasFnAttr(Attribute::NoUnwind) && 1750 CI->hasFnAttr(Attribute::ReadNone); 1751 } 1752 1753 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1754 bool UseFloat, Value *&Sin, Value *&Cos, 1755 Value *&SinCos) { 1756 Type *ArgTy = Arg->getType(); 1757 Type *ResTy; 1758 StringRef Name; 1759 1760 Triple T(OrigCallee->getParent()->getTargetTriple()); 1761 if (UseFloat) { 1762 Name = "__sincospif_stret"; 1763 1764 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1765 // x86_64 can't use {float, float} since that would be returned in both 1766 // xmm0 and xmm1, which isn't what a real struct would do. 1767 ResTy = T.getArch() == Triple::x86_64 1768 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1769 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 1770 } else { 1771 Name = "__sincospi_stret"; 1772 ResTy = StructType::get(ArgTy, ArgTy); 1773 } 1774 1775 Module *M = OrigCallee->getParent(); 1776 FunctionCallee Callee = 1777 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); 1778 1779 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1780 // If the argument is an instruction, it must dominate all uses so put our 1781 // sincos call there. 1782 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1783 } else { 1784 // Otherwise (e.g. for a constant) the beginning of the function is as 1785 // good a place as any. 1786 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1787 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1788 } 1789 1790 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1791 1792 if (SinCos->getType()->isStructTy()) { 1793 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1794 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1795 } else { 1796 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1797 "sinpi"); 1798 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1799 "cospi"); 1800 } 1801 } 1802 1803 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1804 // Make sure the prototype is as expected, otherwise the rest of the 1805 // function is probably invalid and likely to abort. 1806 if (!isTrigLibCall(CI)) 1807 return nullptr; 1808 1809 Value *Arg = CI->getArgOperand(0); 1810 SmallVector<CallInst *, 1> SinCalls; 1811 SmallVector<CallInst *, 1> CosCalls; 1812 SmallVector<CallInst *, 1> SinCosCalls; 1813 1814 bool IsFloat = Arg->getType()->isFloatTy(); 1815 1816 // Look for all compatible sinpi, cospi and sincospi calls with the same 1817 // argument. If there are enough (in some sense) we can make the 1818 // substitution. 1819 Function *F = CI->getFunction(); 1820 for (User *U : Arg->users()) 1821 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 1822 1823 // It's only worthwhile if both sinpi and cospi are actually used. 1824 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1825 return nullptr; 1826 1827 Value *Sin, *Cos, *SinCos; 1828 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1829 1830 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 1831 Value *Res) { 1832 for (CallInst *C : Calls) 1833 replaceAllUsesWith(C, Res); 1834 }; 1835 1836 replaceTrigInsts(SinCalls, Sin); 1837 replaceTrigInsts(CosCalls, Cos); 1838 replaceTrigInsts(SinCosCalls, SinCos); 1839 1840 return nullptr; 1841 } 1842 1843 void LibCallSimplifier::classifyArgUse( 1844 Value *Val, Function *F, bool IsFloat, 1845 SmallVectorImpl<CallInst *> &SinCalls, 1846 SmallVectorImpl<CallInst *> &CosCalls, 1847 SmallVectorImpl<CallInst *> &SinCosCalls) { 1848 CallInst *CI = dyn_cast<CallInst>(Val); 1849 1850 if (!CI) 1851 return; 1852 1853 // Don't consider calls in other functions. 1854 if (CI->getFunction() != F) 1855 return; 1856 1857 Function *Callee = CI->getCalledFunction(); 1858 LibFunc Func; 1859 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 1860 !isTrigLibCall(CI)) 1861 return; 1862 1863 if (IsFloat) { 1864 if (Func == LibFunc_sinpif) 1865 SinCalls.push_back(CI); 1866 else if (Func == LibFunc_cospif) 1867 CosCalls.push_back(CI); 1868 else if (Func == LibFunc_sincospif_stret) 1869 SinCosCalls.push_back(CI); 1870 } else { 1871 if (Func == LibFunc_sinpi) 1872 SinCalls.push_back(CI); 1873 else if (Func == LibFunc_cospi) 1874 CosCalls.push_back(CI); 1875 else if (Func == LibFunc_sincospi_stret) 1876 SinCosCalls.push_back(CI); 1877 } 1878 } 1879 1880 //===----------------------------------------------------------------------===// 1881 // Integer Library Call Optimizations 1882 //===----------------------------------------------------------------------===// 1883 1884 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1885 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1886 Value *Op = CI->getArgOperand(0); 1887 Type *ArgType = Op->getType(); 1888 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1889 Intrinsic::cttz, ArgType); 1890 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 1891 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1892 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1893 1894 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1895 return B.CreateSelect(Cond, V, B.getInt32(0)); 1896 } 1897 1898 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) { 1899 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 1900 Value *Op = CI->getArgOperand(0); 1901 Type *ArgType = Op->getType(); 1902 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1903 Intrinsic::ctlz, ArgType); 1904 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 1905 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 1906 V); 1907 return B.CreateIntCast(V, CI->getType(), false); 1908 } 1909 1910 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1911 // abs(x) -> x <s 0 ? -x : x 1912 // The negation has 'nsw' because abs of INT_MIN is undefined. 1913 Value *X = CI->getArgOperand(0); 1914 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 1915 Value *NegX = B.CreateNSWNeg(X, "neg"); 1916 return B.CreateSelect(IsNeg, NegX, X); 1917 } 1918 1919 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 1920 // isdigit(c) -> (c-'0') <u 10 1921 Value *Op = CI->getArgOperand(0); 1922 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1923 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1924 return B.CreateZExt(Op, CI->getType()); 1925 } 1926 1927 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 1928 // isascii(c) -> c <u 128 1929 Value *Op = CI->getArgOperand(0); 1930 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1931 return B.CreateZExt(Op, CI->getType()); 1932 } 1933 1934 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 1935 // toascii(c) -> c & 0x7f 1936 return B.CreateAnd(CI->getArgOperand(0), 1937 ConstantInt::get(CI->getType(), 0x7F)); 1938 } 1939 1940 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) { 1941 StringRef Str; 1942 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1943 return nullptr; 1944 1945 return convertStrToNumber(CI, Str, 10); 1946 } 1947 1948 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) { 1949 StringRef Str; 1950 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1951 return nullptr; 1952 1953 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 1954 return nullptr; 1955 1956 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 1957 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 1958 } 1959 1960 return nullptr; 1961 } 1962 1963 //===----------------------------------------------------------------------===// 1964 // Formatting and IO Library Call Optimizations 1965 //===----------------------------------------------------------------------===// 1966 1967 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 1968 1969 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 1970 int StreamArg) { 1971 Function *Callee = CI->getCalledFunction(); 1972 // Error reporting calls should be cold, mark them as such. 1973 // This applies even to non-builtin calls: it is only a hint and applies to 1974 // functions that the frontend might not understand as builtins. 1975 1976 // This heuristic was suggested in: 1977 // Improving Static Branch Prediction in a Compiler 1978 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 1979 // Proceedings of PACT'98, Oct. 1998, IEEE 1980 if (!CI->hasFnAttr(Attribute::Cold) && 1981 isReportingError(Callee, CI, StreamArg)) { 1982 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 1983 } 1984 1985 return nullptr; 1986 } 1987 1988 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 1989 if (!Callee || !Callee->isDeclaration()) 1990 return false; 1991 1992 if (StreamArg < 0) 1993 return true; 1994 1995 // These functions might be considered cold, but only if their stream 1996 // argument is stderr. 1997 1998 if (StreamArg >= (int)CI->getNumArgOperands()) 1999 return false; 2000 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2001 if (!LI) 2002 return false; 2003 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2004 if (!GV || !GV->isDeclaration()) 2005 return false; 2006 return GV->getName() == "stderr"; 2007 } 2008 2009 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 2010 // Check for a fixed format string. 2011 StringRef FormatStr; 2012 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2013 return nullptr; 2014 2015 // Empty format string -> noop. 2016 if (FormatStr.empty()) // Tolerate printf's declared void. 2017 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2018 2019 // Do not do any of the following transformations if the printf return value 2020 // is used, in general the printf return value is not compatible with either 2021 // putchar() or puts(). 2022 if (!CI->use_empty()) 2023 return nullptr; 2024 2025 // printf("x") -> putchar('x'), even for "%" and "%%". 2026 if (FormatStr.size() == 1 || FormatStr == "%%") 2027 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 2028 2029 // printf("%s", "a") --> putchar('a') 2030 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 2031 StringRef ChrStr; 2032 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 2033 return nullptr; 2034 if (ChrStr.size() != 1) 2035 return nullptr; 2036 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 2037 } 2038 2039 // printf("foo\n") --> puts("foo") 2040 if (FormatStr[FormatStr.size() - 1] == '\n' && 2041 FormatStr.find('%') == StringRef::npos) { // No format characters. 2042 // Create a string literal with no \n on it. We expect the constant merge 2043 // pass to be run after this pass, to merge duplicate strings. 2044 FormatStr = FormatStr.drop_back(); 2045 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2046 return emitPutS(GV, B, TLI); 2047 } 2048 2049 // Optimize specific format strings. 2050 // printf("%c", chr) --> putchar(chr) 2051 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 2052 CI->getArgOperand(1)->getType()->isIntegerTy()) 2053 return emitPutChar(CI->getArgOperand(1), B, TLI); 2054 2055 // printf("%s\n", str) --> puts(str) 2056 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 2057 CI->getArgOperand(1)->getType()->isPointerTy()) 2058 return emitPutS(CI->getArgOperand(1), B, TLI); 2059 return nullptr; 2060 } 2061 2062 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 2063 2064 Function *Callee = CI->getCalledFunction(); 2065 FunctionType *FT = Callee->getFunctionType(); 2066 if (Value *V = optimizePrintFString(CI, B)) { 2067 return V; 2068 } 2069 2070 // printf(format, ...) -> iprintf(format, ...) if no floating point 2071 // arguments. 2072 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2073 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2074 FunctionCallee IPrintFFn = 2075 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2076 CallInst *New = cast<CallInst>(CI->clone()); 2077 New->setCalledFunction(IPrintFFn); 2078 B.Insert(New); 2079 return New; 2080 } 2081 2082 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2083 // arguments. 2084 if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) { 2085 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2086 auto SmallPrintFFn = 2087 M->getOrInsertFunction(TLI->getName(LibFunc_small_printf), 2088 FT, Callee->getAttributes()); 2089 CallInst *New = cast<CallInst>(CI->clone()); 2090 New->setCalledFunction(SmallPrintFFn); 2091 B.Insert(New); 2092 return New; 2093 } 2094 2095 return nullptr; 2096 } 2097 2098 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 2099 // Check for a fixed format string. 2100 StringRef FormatStr; 2101 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2102 return nullptr; 2103 2104 // If we just have a format string (nothing else crazy) transform it. 2105 if (CI->getNumArgOperands() == 2) { 2106 // Make sure there's no % in the constant array. We could try to handle 2107 // %% -> % in the future if we cared. 2108 if (FormatStr.find('%') != StringRef::npos) 2109 return nullptr; // we found a format specifier, bail out. 2110 2111 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2112 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2113 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2114 FormatStr.size() + 1)); // Copy the null byte. 2115 return ConstantInt::get(CI->getType(), FormatStr.size()); 2116 } 2117 2118 // The remaining optimizations require the format string to be "%s" or "%c" 2119 // and have an extra operand. 2120 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2121 CI->getNumArgOperands() < 3) 2122 return nullptr; 2123 2124 // Decode the second character of the format string. 2125 if (FormatStr[1] == 'c') { 2126 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2127 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2128 return nullptr; 2129 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2130 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2131 B.CreateStore(V, Ptr); 2132 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2133 B.CreateStore(B.getInt8(0), Ptr); 2134 2135 return ConstantInt::get(CI->getType(), 1); 2136 } 2137 2138 if (FormatStr[1] == 's') { 2139 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2140 // strlen(str)+1) 2141 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2142 return nullptr; 2143 2144 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2145 if (!Len) 2146 return nullptr; 2147 Value *IncLen = 2148 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2149 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen); 2150 2151 // The sprintf result is the unincremented number of bytes in the string. 2152 return B.CreateIntCast(Len, CI->getType(), false); 2153 } 2154 return nullptr; 2155 } 2156 2157 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 2158 Function *Callee = CI->getCalledFunction(); 2159 FunctionType *FT = Callee->getFunctionType(); 2160 if (Value *V = optimizeSPrintFString(CI, B)) { 2161 return V; 2162 } 2163 2164 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2165 // point arguments. 2166 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2167 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2168 FunctionCallee SIPrintFFn = 2169 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2170 CallInst *New = cast<CallInst>(CI->clone()); 2171 New->setCalledFunction(SIPrintFFn); 2172 B.Insert(New); 2173 return New; 2174 } 2175 2176 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2177 // floating point arguments. 2178 if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) { 2179 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2180 auto SmallSPrintFFn = 2181 M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf), 2182 FT, Callee->getAttributes()); 2183 CallInst *New = cast<CallInst>(CI->clone()); 2184 New->setCalledFunction(SmallSPrintFFn); 2185 B.Insert(New); 2186 return New; 2187 } 2188 2189 return nullptr; 2190 } 2191 2192 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) { 2193 // Check for a fixed format string. 2194 StringRef FormatStr; 2195 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2196 return nullptr; 2197 2198 // Check for size 2199 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2200 if (!Size) 2201 return nullptr; 2202 2203 uint64_t N = Size->getZExtValue(); 2204 2205 // If we just have a format string (nothing else crazy) transform it. 2206 if (CI->getNumArgOperands() == 3) { 2207 // Make sure there's no % in the constant array. We could try to handle 2208 // %% -> % in the future if we cared. 2209 if (FormatStr.find('%') != StringRef::npos) 2210 return nullptr; // we found a format specifier, bail out. 2211 2212 if (N == 0) 2213 return ConstantInt::get(CI->getType(), FormatStr.size()); 2214 else if (N < FormatStr.size() + 1) 2215 return nullptr; 2216 2217 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2218 // strlen(fmt)+1) 2219 B.CreateMemCpy( 2220 CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, 2221 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2222 FormatStr.size() + 1)); // Copy the null byte. 2223 return ConstantInt::get(CI->getType(), FormatStr.size()); 2224 } 2225 2226 // The remaining optimizations require the format string to be "%s" or "%c" 2227 // and have an extra operand. 2228 if (FormatStr.size() == 2 && FormatStr[0] == '%' && 2229 CI->getNumArgOperands() == 4) { 2230 2231 // Decode the second character of the format string. 2232 if (FormatStr[1] == 'c') { 2233 if (N == 0) 2234 return ConstantInt::get(CI->getType(), 1); 2235 else if (N == 1) 2236 return nullptr; 2237 2238 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2239 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2240 return nullptr; 2241 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2242 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2243 B.CreateStore(V, Ptr); 2244 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2245 B.CreateStore(B.getInt8(0), Ptr); 2246 2247 return ConstantInt::get(CI->getType(), 1); 2248 } 2249 2250 if (FormatStr[1] == 's') { 2251 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2252 StringRef Str; 2253 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2254 return nullptr; 2255 2256 if (N == 0) 2257 return ConstantInt::get(CI->getType(), Str.size()); 2258 else if (N < Str.size() + 1) 2259 return nullptr; 2260 2261 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(3), 1, 2262 ConstantInt::get(CI->getType(), Str.size() + 1)); 2263 2264 // The snprintf result is the unincremented number of bytes in the string. 2265 return ConstantInt::get(CI->getType(), Str.size()); 2266 } 2267 } 2268 return nullptr; 2269 } 2270 2271 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) { 2272 if (Value *V = optimizeSnPrintFString(CI, B)) { 2273 return V; 2274 } 2275 2276 return nullptr; 2277 } 2278 2279 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 2280 optimizeErrorReporting(CI, B, 0); 2281 2282 // All the optimizations depend on the format string. 2283 StringRef FormatStr; 2284 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2285 return nullptr; 2286 2287 // Do not do any of the following transformations if the fprintf return 2288 // value is used, in general the fprintf return value is not compatible 2289 // with fwrite(), fputc() or fputs(). 2290 if (!CI->use_empty()) 2291 return nullptr; 2292 2293 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2294 if (CI->getNumArgOperands() == 2) { 2295 // Could handle %% -> % if we cared. 2296 if (FormatStr.find('%') != StringRef::npos) 2297 return nullptr; // We found a format specifier. 2298 2299 return emitFWrite( 2300 CI->getArgOperand(1), 2301 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 2302 CI->getArgOperand(0), B, DL, TLI); 2303 } 2304 2305 // The remaining optimizations require the format string to be "%s" or "%c" 2306 // and have an extra operand. 2307 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2308 CI->getNumArgOperands() < 3) 2309 return nullptr; 2310 2311 // Decode the second character of the format string. 2312 if (FormatStr[1] == 'c') { 2313 // fprintf(F, "%c", chr) --> fputc(chr, F) 2314 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2315 return nullptr; 2316 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2317 } 2318 2319 if (FormatStr[1] == 's') { 2320 // fprintf(F, "%s", str) --> fputs(str, F) 2321 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2322 return nullptr; 2323 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2324 } 2325 return nullptr; 2326 } 2327 2328 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 2329 Function *Callee = CI->getCalledFunction(); 2330 FunctionType *FT = Callee->getFunctionType(); 2331 if (Value *V = optimizeFPrintFString(CI, B)) { 2332 return V; 2333 } 2334 2335 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2336 // floating point arguments. 2337 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2338 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2339 FunctionCallee FIPrintFFn = 2340 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2341 CallInst *New = cast<CallInst>(CI->clone()); 2342 New->setCalledFunction(FIPrintFFn); 2343 B.Insert(New); 2344 return New; 2345 } 2346 2347 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2348 // 128-bit floating point arguments. 2349 if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) { 2350 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2351 auto SmallFPrintFFn = 2352 M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf), 2353 FT, Callee->getAttributes()); 2354 CallInst *New = cast<CallInst>(CI->clone()); 2355 New->setCalledFunction(SmallFPrintFFn); 2356 B.Insert(New); 2357 return New; 2358 } 2359 2360 return nullptr; 2361 } 2362 2363 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 2364 optimizeErrorReporting(CI, B, 3); 2365 2366 // Get the element size and count. 2367 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2368 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2369 if (SizeC && CountC) { 2370 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2371 2372 // If this is writing zero records, remove the call (it's a noop). 2373 if (Bytes == 0) 2374 return ConstantInt::get(CI->getType(), 0); 2375 2376 // If this is writing one byte, turn it into fputc. 2377 // This optimisation is only valid, if the return value is unused. 2378 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2379 Value *Char = B.CreateLoad(B.getInt8Ty(), 2380 castToCStr(CI->getArgOperand(0), B), "char"); 2381 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2382 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2383 } 2384 } 2385 2386 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) 2387 return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2388 CI->getArgOperand(2), CI->getArgOperand(3), B, DL, 2389 TLI); 2390 2391 return nullptr; 2392 } 2393 2394 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 2395 optimizeErrorReporting(CI, B, 1); 2396 2397 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2398 // requires more arguments and thus extra MOVs are required. 2399 bool OptForSize = CI->getFunction()->hasOptSize() || 2400 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 2401 if (OptForSize) 2402 return nullptr; 2403 2404 // Check if has any use 2405 if (!CI->use_empty()) { 2406 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) 2407 return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, 2408 TLI); 2409 else 2410 // We can't optimize if return value is used. 2411 return nullptr; 2412 } 2413 2414 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2415 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2416 if (!Len) 2417 return nullptr; 2418 2419 // Known to have no uses (see above). 2420 return emitFWrite( 2421 CI->getArgOperand(0), 2422 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2423 CI->getArgOperand(1), B, DL, TLI); 2424 } 2425 2426 Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) { 2427 optimizeErrorReporting(CI, B, 1); 2428 2429 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) 2430 return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, 2431 TLI); 2432 2433 return nullptr; 2434 } 2435 2436 Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) { 2437 if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI)) 2438 return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI); 2439 2440 return nullptr; 2441 } 2442 2443 Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) { 2444 if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI)) 2445 return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2446 CI->getArgOperand(2), B, TLI); 2447 2448 return nullptr; 2449 } 2450 2451 Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) { 2452 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) 2453 return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2454 CI->getArgOperand(2), CI->getArgOperand(3), B, DL, 2455 TLI); 2456 2457 return nullptr; 2458 } 2459 2460 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 2461 if (!CI->use_empty()) 2462 return nullptr; 2463 2464 // Check for a constant string. 2465 // puts("") -> putchar('\n') 2466 StringRef Str; 2467 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 2468 return emitPutChar(B.getInt32('\n'), B, TLI); 2469 2470 return nullptr; 2471 } 2472 2473 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2474 LibFunc Func; 2475 SmallString<20> FloatFuncName = FuncName; 2476 FloatFuncName += 'f'; 2477 if (TLI->getLibFunc(FloatFuncName, Func)) 2478 return TLI->has(Func); 2479 return false; 2480 } 2481 2482 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2483 IRBuilder<> &Builder) { 2484 LibFunc Func; 2485 Function *Callee = CI->getCalledFunction(); 2486 // Check for string/memory library functions. 2487 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2488 // Make sure we never change the calling convention. 2489 assert((ignoreCallingConv(Func) || 2490 isCallingConvCCompatible(CI)) && 2491 "Optimizing string/memory libcall would change the calling convention"); 2492 switch (Func) { 2493 case LibFunc_strcat: 2494 return optimizeStrCat(CI, Builder); 2495 case LibFunc_strncat: 2496 return optimizeStrNCat(CI, Builder); 2497 case LibFunc_strchr: 2498 return optimizeStrChr(CI, Builder); 2499 case LibFunc_strrchr: 2500 return optimizeStrRChr(CI, Builder); 2501 case LibFunc_strcmp: 2502 return optimizeStrCmp(CI, Builder); 2503 case LibFunc_strncmp: 2504 return optimizeStrNCmp(CI, Builder); 2505 case LibFunc_strcpy: 2506 return optimizeStrCpy(CI, Builder); 2507 case LibFunc_stpcpy: 2508 return optimizeStpCpy(CI, Builder); 2509 case LibFunc_strncpy: 2510 return optimizeStrNCpy(CI, Builder); 2511 case LibFunc_strlen: 2512 return optimizeStrLen(CI, Builder); 2513 case LibFunc_strpbrk: 2514 return optimizeStrPBrk(CI, Builder); 2515 case LibFunc_strtol: 2516 case LibFunc_strtod: 2517 case LibFunc_strtof: 2518 case LibFunc_strtoul: 2519 case LibFunc_strtoll: 2520 case LibFunc_strtold: 2521 case LibFunc_strtoull: 2522 return optimizeStrTo(CI, Builder); 2523 case LibFunc_strspn: 2524 return optimizeStrSpn(CI, Builder); 2525 case LibFunc_strcspn: 2526 return optimizeStrCSpn(CI, Builder); 2527 case LibFunc_strstr: 2528 return optimizeStrStr(CI, Builder); 2529 case LibFunc_memchr: 2530 return optimizeMemChr(CI, Builder); 2531 case LibFunc_bcmp: 2532 return optimizeBCmp(CI, Builder); 2533 case LibFunc_memcmp: 2534 return optimizeMemCmp(CI, Builder); 2535 case LibFunc_memcpy: 2536 return optimizeMemCpy(CI, Builder); 2537 case LibFunc_memmove: 2538 return optimizeMemMove(CI, Builder); 2539 case LibFunc_memset: 2540 return optimizeMemSet(CI, Builder); 2541 case LibFunc_realloc: 2542 return optimizeRealloc(CI, Builder); 2543 case LibFunc_wcslen: 2544 return optimizeWcslen(CI, Builder); 2545 default: 2546 break; 2547 } 2548 } 2549 return nullptr; 2550 } 2551 2552 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2553 LibFunc Func, 2554 IRBuilder<> &Builder) { 2555 // Don't optimize calls that require strict floating point semantics. 2556 if (CI->isStrictFP()) 2557 return nullptr; 2558 2559 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 2560 return V; 2561 2562 switch (Func) { 2563 case LibFunc_sinpif: 2564 case LibFunc_sinpi: 2565 case LibFunc_cospif: 2566 case LibFunc_cospi: 2567 return optimizeSinCosPi(CI, Builder); 2568 case LibFunc_powf: 2569 case LibFunc_pow: 2570 case LibFunc_powl: 2571 return optimizePow(CI, Builder); 2572 case LibFunc_exp2l: 2573 case LibFunc_exp2: 2574 case LibFunc_exp2f: 2575 return optimizeExp2(CI, Builder); 2576 case LibFunc_fabsf: 2577 case LibFunc_fabs: 2578 case LibFunc_fabsl: 2579 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2580 case LibFunc_sqrtf: 2581 case LibFunc_sqrt: 2582 case LibFunc_sqrtl: 2583 return optimizeSqrt(CI, Builder); 2584 case LibFunc_log: 2585 case LibFunc_log10: 2586 case LibFunc_log1p: 2587 case LibFunc_log2: 2588 case LibFunc_logb: 2589 return optimizeLog(CI, Builder); 2590 case LibFunc_tan: 2591 case LibFunc_tanf: 2592 case LibFunc_tanl: 2593 return optimizeTan(CI, Builder); 2594 case LibFunc_ceil: 2595 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2596 case LibFunc_floor: 2597 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2598 case LibFunc_round: 2599 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2600 case LibFunc_nearbyint: 2601 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2602 case LibFunc_rint: 2603 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2604 case LibFunc_trunc: 2605 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2606 case LibFunc_acos: 2607 case LibFunc_acosh: 2608 case LibFunc_asin: 2609 case LibFunc_asinh: 2610 case LibFunc_atan: 2611 case LibFunc_atanh: 2612 case LibFunc_cbrt: 2613 case LibFunc_cosh: 2614 case LibFunc_exp: 2615 case LibFunc_exp10: 2616 case LibFunc_expm1: 2617 case LibFunc_cos: 2618 case LibFunc_sin: 2619 case LibFunc_sinh: 2620 case LibFunc_tanh: 2621 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 2622 return optimizeUnaryDoubleFP(CI, Builder, true); 2623 return nullptr; 2624 case LibFunc_copysign: 2625 if (hasFloatVersion(CI->getCalledFunction()->getName())) 2626 return optimizeBinaryDoubleFP(CI, Builder); 2627 return nullptr; 2628 case LibFunc_fminf: 2629 case LibFunc_fmin: 2630 case LibFunc_fminl: 2631 case LibFunc_fmaxf: 2632 case LibFunc_fmax: 2633 case LibFunc_fmaxl: 2634 return optimizeFMinFMax(CI, Builder); 2635 case LibFunc_cabs: 2636 case LibFunc_cabsf: 2637 case LibFunc_cabsl: 2638 return optimizeCAbs(CI, Builder); 2639 default: 2640 return nullptr; 2641 } 2642 } 2643 2644 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 2645 // TODO: Split out the code below that operates on FP calls so that 2646 // we can all non-FP calls with the StrictFP attribute to be 2647 // optimized. 2648 if (CI->isNoBuiltin()) 2649 return nullptr; 2650 2651 LibFunc Func; 2652 Function *Callee = CI->getCalledFunction(); 2653 2654 SmallVector<OperandBundleDef, 2> OpBundles; 2655 CI->getOperandBundlesAsDefs(OpBundles); 2656 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2657 bool isCallingConvC = isCallingConvCCompatible(CI); 2658 2659 // Command-line parameter overrides instruction attribute. 2660 // This can't be moved to optimizeFloatingPointLibCall() because it may be 2661 // used by the intrinsic optimizations. 2662 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2663 UnsafeFPShrink = EnableUnsafeFPShrink; 2664 else if (isa<FPMathOperator>(CI) && CI->isFast()) 2665 UnsafeFPShrink = true; 2666 2667 // First, check for intrinsics. 2668 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2669 if (!isCallingConvC) 2670 return nullptr; 2671 // The FP intrinsics have corresponding constrained versions so we don't 2672 // need to check for the StrictFP attribute here. 2673 switch (II->getIntrinsicID()) { 2674 case Intrinsic::pow: 2675 return optimizePow(CI, Builder); 2676 case Intrinsic::exp2: 2677 return optimizeExp2(CI, Builder); 2678 case Intrinsic::log: 2679 return optimizeLog(CI, Builder); 2680 case Intrinsic::sqrt: 2681 return optimizeSqrt(CI, Builder); 2682 // TODO: Use foldMallocMemset() with memset intrinsic. 2683 default: 2684 return nullptr; 2685 } 2686 } 2687 2688 // Also try to simplify calls to fortified library functions. 2689 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 2690 // Try to further simplify the result. 2691 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 2692 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 2693 // Use an IR Builder from SimplifiedCI if available instead of CI 2694 // to guarantee we reach all uses we might replace later on. 2695 IRBuilder<> TmpBuilder(SimplifiedCI); 2696 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { 2697 // If we were able to further simplify, remove the now redundant call. 2698 SimplifiedCI->replaceAllUsesWith(V); 2699 eraseFromParent(SimplifiedCI); 2700 return V; 2701 } 2702 } 2703 return SimplifiedFortifiedCI; 2704 } 2705 2706 // Then check for known library functions. 2707 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2708 // We never change the calling convention. 2709 if (!ignoreCallingConv(Func) && !isCallingConvC) 2710 return nullptr; 2711 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 2712 return V; 2713 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 2714 return V; 2715 switch (Func) { 2716 case LibFunc_ffs: 2717 case LibFunc_ffsl: 2718 case LibFunc_ffsll: 2719 return optimizeFFS(CI, Builder); 2720 case LibFunc_fls: 2721 case LibFunc_flsl: 2722 case LibFunc_flsll: 2723 return optimizeFls(CI, Builder); 2724 case LibFunc_abs: 2725 case LibFunc_labs: 2726 case LibFunc_llabs: 2727 return optimizeAbs(CI, Builder); 2728 case LibFunc_isdigit: 2729 return optimizeIsDigit(CI, Builder); 2730 case LibFunc_isascii: 2731 return optimizeIsAscii(CI, Builder); 2732 case LibFunc_toascii: 2733 return optimizeToAscii(CI, Builder); 2734 case LibFunc_atoi: 2735 case LibFunc_atol: 2736 case LibFunc_atoll: 2737 return optimizeAtoi(CI, Builder); 2738 case LibFunc_strtol: 2739 case LibFunc_strtoll: 2740 return optimizeStrtol(CI, Builder); 2741 case LibFunc_printf: 2742 return optimizePrintF(CI, Builder); 2743 case LibFunc_sprintf: 2744 return optimizeSPrintF(CI, Builder); 2745 case LibFunc_snprintf: 2746 return optimizeSnPrintF(CI, Builder); 2747 case LibFunc_fprintf: 2748 return optimizeFPrintF(CI, Builder); 2749 case LibFunc_fwrite: 2750 return optimizeFWrite(CI, Builder); 2751 case LibFunc_fread: 2752 return optimizeFRead(CI, Builder); 2753 case LibFunc_fputs: 2754 return optimizeFPuts(CI, Builder); 2755 case LibFunc_fgets: 2756 return optimizeFGets(CI, Builder); 2757 case LibFunc_fputc: 2758 return optimizeFPutc(CI, Builder); 2759 case LibFunc_fgetc: 2760 return optimizeFGetc(CI, Builder); 2761 case LibFunc_puts: 2762 return optimizePuts(CI, Builder); 2763 case LibFunc_perror: 2764 return optimizeErrorReporting(CI, Builder); 2765 case LibFunc_vfprintf: 2766 case LibFunc_fiprintf: 2767 return optimizeErrorReporting(CI, Builder, 0); 2768 default: 2769 return nullptr; 2770 } 2771 } 2772 return nullptr; 2773 } 2774 2775 LibCallSimplifier::LibCallSimplifier( 2776 const DataLayout &DL, const TargetLibraryInfo *TLI, 2777 OptimizationRemarkEmitter &ORE, 2778 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 2779 function_ref<void(Instruction *, Value *)> Replacer, 2780 function_ref<void(Instruction *)> Eraser) 2781 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 2782 UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {} 2783 2784 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 2785 // Indirect through the replacer used in this instance. 2786 Replacer(I, With); 2787 } 2788 2789 void LibCallSimplifier::eraseFromParent(Instruction *I) { 2790 Eraser(I); 2791 } 2792 2793 // TODO: 2794 // Additional cases that we need to add to this file: 2795 // 2796 // cbrt: 2797 // * cbrt(expN(X)) -> expN(x/3) 2798 // * cbrt(sqrt(x)) -> pow(x,1/6) 2799 // * cbrt(cbrt(x)) -> pow(x,1/9) 2800 // 2801 // exp, expf, expl: 2802 // * exp(log(x)) -> x 2803 // 2804 // log, logf, logl: 2805 // * log(exp(x)) -> x 2806 // * log(exp(y)) -> y*log(e) 2807 // * log(exp10(y)) -> y*log(10) 2808 // * log(sqrt(x)) -> 0.5*log(x) 2809 // 2810 // pow, powf, powl: 2811 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2812 // * pow(pow(x,y),z)-> pow(x,y*z) 2813 // 2814 // signbit: 2815 // * signbit(cnst) -> cnst' 2816 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2817 // 2818 // sqrt, sqrtf, sqrtl: 2819 // * sqrt(expN(x)) -> expN(x*0.5) 2820 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2821 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2822 // 2823 2824 //===----------------------------------------------------------------------===// 2825 // Fortified Library Call Optimizations 2826 //===----------------------------------------------------------------------===// 2827 2828 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2829 unsigned ObjSizeOp, 2830 unsigned SizeOp, 2831 bool isString) { 2832 if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp)) 2833 return true; 2834 if (ConstantInt *ObjSizeCI = 2835 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2836 if (ObjSizeCI->isMinusOne()) 2837 return true; 2838 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2839 if (OnlyLowerUnknownSize) 2840 return false; 2841 if (isString) { 2842 uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp)); 2843 // If the length is 0 we don't know how long it is and so we can't 2844 // remove the check. 2845 if (Len == 0) 2846 return false; 2847 return ObjSizeCI->getZExtValue() >= Len; 2848 } 2849 if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp))) 2850 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2851 } 2852 return false; 2853 } 2854 2855 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 2856 IRBuilder<> &B) { 2857 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2858 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2859 CI->getArgOperand(2)); 2860 return CI->getArgOperand(0); 2861 } 2862 return nullptr; 2863 } 2864 2865 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 2866 IRBuilder<> &B) { 2867 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2868 B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2869 CI->getArgOperand(2)); 2870 return CI->getArgOperand(0); 2871 } 2872 return nullptr; 2873 } 2874 2875 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 2876 IRBuilder<> &B) { 2877 // TODO: Try foldMallocMemset() here. 2878 2879 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2880 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2881 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2882 return CI->getArgOperand(0); 2883 } 2884 return nullptr; 2885 } 2886 2887 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 2888 IRBuilder<> &B, 2889 LibFunc Func) { 2890 Function *Callee = CI->getCalledFunction(); 2891 StringRef Name = Callee->getName(); 2892 const DataLayout &DL = CI->getModule()->getDataLayout(); 2893 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 2894 *ObjSize = CI->getArgOperand(2); 2895 2896 // __stpcpy_chk(x,x,...) -> x+strlen(x) 2897 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 2898 Value *StrLen = emitStrLen(Src, B, DL, TLI); 2899 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 2900 } 2901 2902 // If a) we don't have any length information, or b) we know this will 2903 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 2904 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 2905 // TODO: It might be nice to get a maximum length out of the possible 2906 // string lengths for varying. 2907 if (isFortifiedCallFoldable(CI, 2, 1, true)) 2908 return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6)); 2909 2910 if (OnlyLowerUnknownSize) 2911 return nullptr; 2912 2913 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 2914 uint64_t Len = GetStringLength(Src); 2915 if (Len == 0) 2916 return nullptr; 2917 2918 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 2919 Value *LenV = ConstantInt::get(SizeTTy, Len); 2920 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 2921 // If the function was an __stpcpy_chk, and we were able to fold it into 2922 // a __memcpy_chk, we still need to return the correct end pointer. 2923 if (Ret && Func == LibFunc_stpcpy_chk) 2924 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 2925 return Ret; 2926 } 2927 2928 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 2929 IRBuilder<> &B, 2930 LibFunc Func) { 2931 Function *Callee = CI->getCalledFunction(); 2932 StringRef Name = Callee->getName(); 2933 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2934 Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2935 CI->getArgOperand(2), B, TLI, Name.substr(2, 7)); 2936 return Ret; 2937 } 2938 return nullptr; 2939 } 2940 2941 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 2942 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 2943 // Some clang users checked for _chk libcall availability using: 2944 // __has_builtin(__builtin___memcpy_chk) 2945 // When compiling with -fno-builtin, this is always true. 2946 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 2947 // end up with fortified libcalls, which isn't acceptable in a freestanding 2948 // environment which only provides their non-fortified counterparts. 2949 // 2950 // Until we change clang and/or teach external users to check for availability 2951 // differently, disregard the "nobuiltin" attribute and TLI::has. 2952 // 2953 // PR23093. 2954 2955 LibFunc Func; 2956 Function *Callee = CI->getCalledFunction(); 2957 2958 SmallVector<OperandBundleDef, 2> OpBundles; 2959 CI->getOperandBundlesAsDefs(OpBundles); 2960 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2961 bool isCallingConvC = isCallingConvCCompatible(CI); 2962 2963 // First, check that this is a known library functions and that the prototype 2964 // is correct. 2965 if (!TLI->getLibFunc(*Callee, Func)) 2966 return nullptr; 2967 2968 // We never change the calling convention. 2969 if (!ignoreCallingConv(Func) && !isCallingConvC) 2970 return nullptr; 2971 2972 switch (Func) { 2973 case LibFunc_memcpy_chk: 2974 return optimizeMemCpyChk(CI, Builder); 2975 case LibFunc_memmove_chk: 2976 return optimizeMemMoveChk(CI, Builder); 2977 case LibFunc_memset_chk: 2978 return optimizeMemSetChk(CI, Builder); 2979 case LibFunc_stpcpy_chk: 2980 case LibFunc_strcpy_chk: 2981 return optimizeStrpCpyChk(CI, Builder, Func); 2982 case LibFunc_stpncpy_chk: 2983 case LibFunc_strncpy_chk: 2984 return optimizeStrpNCpyChk(CI, Builder, Func); 2985 default: 2986 break; 2987 } 2988 return nullptr; 2989 } 2990 2991 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 2992 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 2993 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 2994