1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is a utility pass used for testing the InstructionSimplify analysis. 11 // The analysis is applied to every instruction, and if it simplifies then the 12 // instruction is replaced by the simplification. If you are looking for a pass 13 // that performs serious instruction folding, use the instcombine pass instead. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/KnownBits.h" 35 #include "llvm/Transforms/Utils/BuildLibCalls.h" 36 #include "llvm/Transforms/Utils/Local.h" 37 38 using namespace llvm; 39 using namespace PatternMatch; 40 41 static cl::opt<bool> 42 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 43 cl::init(false), 44 cl::desc("Enable unsafe double to float " 45 "shrinking for math lib calls")); 46 47 48 //===----------------------------------------------------------------------===// 49 // Helper Functions 50 //===----------------------------------------------------------------------===// 51 52 static bool ignoreCallingConv(LibFunc Func) { 53 return Func == LibFunc_abs || Func == LibFunc_labs || 54 Func == LibFunc_llabs || Func == LibFunc_strlen; 55 } 56 57 static bool isCallingConvCCompatible(CallInst *CI) { 58 switch(CI->getCallingConv()) { 59 default: 60 return false; 61 case llvm::CallingConv::C: 62 return true; 63 case llvm::CallingConv::ARM_APCS: 64 case llvm::CallingConv::ARM_AAPCS: 65 case llvm::CallingConv::ARM_AAPCS_VFP: { 66 67 // The iOS ABI diverges from the standard in some cases, so for now don't 68 // try to simplify those calls. 69 if (Triple(CI->getModule()->getTargetTriple()).isiOS()) 70 return false; 71 72 auto *FuncTy = CI->getFunctionType(); 73 74 if (!FuncTy->getReturnType()->isPointerTy() && 75 !FuncTy->getReturnType()->isIntegerTy() && 76 !FuncTy->getReturnType()->isVoidTy()) 77 return false; 78 79 for (auto Param : FuncTy->params()) { 80 if (!Param->isPointerTy() && !Param->isIntegerTy()) 81 return false; 82 } 83 return true; 84 } 85 } 86 return false; 87 } 88 89 /// Return true if it is only used in equality comparisons with With. 90 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 91 for (User *U : V->users()) { 92 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 93 if (IC->isEquality() && IC->getOperand(1) == With) 94 continue; 95 // Unknown instruction. 96 return false; 97 } 98 return true; 99 } 100 101 static bool callHasFloatingPointArgument(const CallInst *CI) { 102 return any_of(CI->operands(), [](const Use &OI) { 103 return OI->getType()->isFloatingPointTy(); 104 }); 105 } 106 107 /// \brief Check whether the overloaded unary floating point function 108 /// corresponding to \a Ty is available. 109 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty, 110 LibFunc DoubleFn, LibFunc FloatFn, 111 LibFunc LongDoubleFn) { 112 switch (Ty->getTypeID()) { 113 case Type::FloatTyID: 114 return TLI->has(FloatFn); 115 case Type::DoubleTyID: 116 return TLI->has(DoubleFn); 117 default: 118 return TLI->has(LongDoubleFn); 119 } 120 } 121 122 //===----------------------------------------------------------------------===// 123 // String and Memory Library Call Optimizations 124 //===----------------------------------------------------------------------===// 125 126 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 127 // Extract some information from the instruction 128 Value *Dst = CI->getArgOperand(0); 129 Value *Src = CI->getArgOperand(1); 130 131 // See if we can get the length of the input string. 132 uint64_t Len = GetStringLength(Src); 133 if (Len == 0) 134 return nullptr; 135 --Len; // Unbias length. 136 137 // Handle the simple, do-nothing case: strcat(x, "") -> x 138 if (Len == 0) 139 return Dst; 140 141 return emitStrLenMemCpy(Src, Dst, Len, B); 142 } 143 144 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 145 IRBuilder<> &B) { 146 // We need to find the end of the destination string. That's where the 147 // memory is to be moved to. We just generate a call to strlen. 148 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 149 if (!DstLen) 150 return nullptr; 151 152 // Now that we have the destination's length, we must index into the 153 // destination's pointer to get the actual memcpy destination (end of 154 // the string .. we're concatenating). 155 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 156 157 // We have enough information to now generate the memcpy call to do the 158 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 159 B.CreateMemCpy(CpyDst, Src, 160 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1), 161 1); 162 return Dst; 163 } 164 165 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 166 // Extract some information from the instruction. 167 Value *Dst = CI->getArgOperand(0); 168 Value *Src = CI->getArgOperand(1); 169 uint64_t Len; 170 171 // We don't do anything if length is not constant. 172 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 173 Len = LengthArg->getZExtValue(); 174 else 175 return nullptr; 176 177 // See if we can get the length of the input string. 178 uint64_t SrcLen = GetStringLength(Src); 179 if (SrcLen == 0) 180 return nullptr; 181 --SrcLen; // Unbias length. 182 183 // Handle the simple, do-nothing cases: 184 // strncat(x, "", c) -> x 185 // strncat(x, c, 0) -> x 186 if (SrcLen == 0 || Len == 0) 187 return Dst; 188 189 // We don't optimize this case. 190 if (Len < SrcLen) 191 return nullptr; 192 193 // strncat(x, s, c) -> strcat(x, s) 194 // s is constant so the strcat can be optimized further. 195 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 196 } 197 198 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 199 Function *Callee = CI->getCalledFunction(); 200 FunctionType *FT = Callee->getFunctionType(); 201 Value *SrcStr = CI->getArgOperand(0); 202 203 // If the second operand is non-constant, see if we can compute the length 204 // of the input string and turn this into memchr. 205 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 206 if (!CharC) { 207 uint64_t Len = GetStringLength(SrcStr); 208 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 209 return nullptr; 210 211 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 212 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 213 B, DL, TLI); 214 } 215 216 // Otherwise, the character is a constant, see if the first argument is 217 // a string literal. If so, we can constant fold. 218 StringRef Str; 219 if (!getConstantStringInfo(SrcStr, Str)) { 220 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 221 return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI), 222 "strchr"); 223 return nullptr; 224 } 225 226 // Compute the offset, make sure to handle the case when we're searching for 227 // zero (a weird way to spell strlen). 228 size_t I = (0xFF & CharC->getSExtValue()) == 0 229 ? Str.size() 230 : Str.find(CharC->getSExtValue()); 231 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 232 return Constant::getNullValue(CI->getType()); 233 234 // strchr(s+n,c) -> gep(s+n+i,c) 235 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 236 } 237 238 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 239 Value *SrcStr = CI->getArgOperand(0); 240 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 241 242 // Cannot fold anything if we're not looking for a constant. 243 if (!CharC) 244 return nullptr; 245 246 StringRef Str; 247 if (!getConstantStringInfo(SrcStr, Str)) { 248 // strrchr(s, 0) -> strchr(s, 0) 249 if (CharC->isZero()) 250 return emitStrChr(SrcStr, '\0', B, TLI); 251 return nullptr; 252 } 253 254 // Compute the offset. 255 size_t I = (0xFF & CharC->getSExtValue()) == 0 256 ? Str.size() 257 : Str.rfind(CharC->getSExtValue()); 258 if (I == StringRef::npos) // Didn't find the char. Return null. 259 return Constant::getNullValue(CI->getType()); 260 261 // strrchr(s+n,c) -> gep(s+n+i,c) 262 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 263 } 264 265 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 266 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 267 if (Str1P == Str2P) // strcmp(x,x) -> 0 268 return ConstantInt::get(CI->getType(), 0); 269 270 StringRef Str1, Str2; 271 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 272 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 273 274 // strcmp(x, y) -> cnst (if both x and y are constant strings) 275 if (HasStr1 && HasStr2) 276 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 277 278 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 279 return B.CreateNeg( 280 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 281 282 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 283 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 284 285 // strcmp(P, "x") -> memcmp(P, "x", 2) 286 uint64_t Len1 = GetStringLength(Str1P); 287 uint64_t Len2 = GetStringLength(Str2P); 288 if (Len1 && Len2) { 289 return emitMemCmp(Str1P, Str2P, 290 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 291 std::min(Len1, Len2)), 292 B, DL, TLI); 293 } 294 295 return nullptr; 296 } 297 298 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 299 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 300 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 301 return ConstantInt::get(CI->getType(), 0); 302 303 // Get the length argument if it is constant. 304 uint64_t Length; 305 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 306 Length = LengthArg->getZExtValue(); 307 else 308 return nullptr; 309 310 if (Length == 0) // strncmp(x,y,0) -> 0 311 return ConstantInt::get(CI->getType(), 0); 312 313 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 314 return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 315 316 StringRef Str1, Str2; 317 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 318 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 319 320 // strncmp(x, y) -> cnst (if both x and y are constant strings) 321 if (HasStr1 && HasStr2) { 322 StringRef SubStr1 = Str1.substr(0, Length); 323 StringRef SubStr2 = Str2.substr(0, Length); 324 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 325 } 326 327 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 328 return B.CreateNeg( 329 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 330 331 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 332 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 333 334 return nullptr; 335 } 336 337 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 338 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 339 if (Dst == Src) // strcpy(x,x) -> x 340 return Src; 341 342 // See if we can get the length of the input string. 343 uint64_t Len = GetStringLength(Src); 344 if (Len == 0) 345 return nullptr; 346 347 // We have enough information to now generate the memcpy call to do the 348 // copy for us. Make a memcpy to copy the nul byte with align = 1. 349 B.CreateMemCpy(Dst, Src, 350 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1); 351 return Dst; 352 } 353 354 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 355 Function *Callee = CI->getCalledFunction(); 356 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 357 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 358 Value *StrLen = emitStrLen(Src, B, DL, TLI); 359 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 360 } 361 362 // See if we can get the length of the input string. 363 uint64_t Len = GetStringLength(Src); 364 if (Len == 0) 365 return nullptr; 366 367 Type *PT = Callee->getFunctionType()->getParamType(0); 368 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 369 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 370 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 371 372 // We have enough information to now generate the memcpy call to do the 373 // copy for us. Make a memcpy to copy the nul byte with align = 1. 374 B.CreateMemCpy(Dst, Src, LenV, 1); 375 return DstEnd; 376 } 377 378 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 379 Function *Callee = CI->getCalledFunction(); 380 Value *Dst = CI->getArgOperand(0); 381 Value *Src = CI->getArgOperand(1); 382 Value *LenOp = CI->getArgOperand(2); 383 384 // See if we can get the length of the input string. 385 uint64_t SrcLen = GetStringLength(Src); 386 if (SrcLen == 0) 387 return nullptr; 388 --SrcLen; 389 390 if (SrcLen == 0) { 391 // strncpy(x, "", y) -> memset(x, '\0', y, 1) 392 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 393 return Dst; 394 } 395 396 uint64_t Len; 397 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 398 Len = LengthArg->getZExtValue(); 399 else 400 return nullptr; 401 402 if (Len == 0) 403 return Dst; // strncpy(x, y, 0) -> x 404 405 // Let strncpy handle the zero padding 406 if (Len > SrcLen + 1) 407 return nullptr; 408 409 Type *PT = Callee->getFunctionType()->getParamType(0); 410 // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] 411 B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1); 412 413 return Dst; 414 } 415 416 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B, 417 unsigned CharSize) { 418 Value *Src = CI->getArgOperand(0); 419 420 // Constant folding: strlen("xyz") -> 3 421 if (uint64_t Len = GetStringLength(Src, CharSize)) 422 return ConstantInt::get(CI->getType(), Len - 1); 423 424 // If s is a constant pointer pointing to a string literal, we can fold 425 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 426 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 427 // We only try to simplify strlen when the pointer s points to an array 428 // of i8. Otherwise, we would need to scale the offset x before doing the 429 // subtraction. This will make the optimization more complex, and it's not 430 // very useful because calling strlen for a pointer of other types is 431 // very uncommon. 432 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 433 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 434 return nullptr; 435 436 ConstantDataArraySlice Slice; 437 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 438 uint64_t NullTermIdx; 439 if (Slice.Array == nullptr) { 440 NullTermIdx = 0; 441 } else { 442 NullTermIdx = ~((uint64_t)0); 443 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 444 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 445 NullTermIdx = I; 446 break; 447 } 448 } 449 // If the string does not have '\0', leave it to strlen to compute 450 // its length. 451 if (NullTermIdx == ~((uint64_t)0)) 452 return nullptr; 453 } 454 455 Value *Offset = GEP->getOperand(2); 456 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 457 Known.Zero.flipAllBits(); 458 uint64_t ArrSize = 459 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 460 461 // KnownZero's bits are flipped, so zeros in KnownZero now represent 462 // bits known to be zeros in Offset, and ones in KnowZero represent 463 // bits unknown in Offset. Therefore, Offset is known to be in range 464 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 465 // unsigned-less-than NullTermIdx. 466 // 467 // If Offset is not provably in the range [0, NullTermIdx], we can still 468 // optimize if we can prove that the program has undefined behavior when 469 // Offset is outside that range. That is the case when GEP->getOperand(0) 470 // is a pointer to an object whose memory extent is NullTermIdx+1. 471 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 472 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 473 NullTermIdx == ArrSize - 1)) { 474 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 475 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 476 Offset); 477 } 478 } 479 480 return nullptr; 481 } 482 483 // strlen(x?"foo":"bars") --> x ? 3 : 4 484 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 485 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 486 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 487 if (LenTrue && LenFalse) { 488 ORE.emit(OptimizationRemark("instcombine", "simplify-libcalls", CI) 489 << "folded strlen(select) to select of constants"); 490 return B.CreateSelect(SI->getCondition(), 491 ConstantInt::get(CI->getType(), LenTrue - 1), 492 ConstantInt::get(CI->getType(), LenFalse - 1)); 493 } 494 } 495 496 // strlen(x) != 0 --> *x != 0 497 // strlen(x) == 0 --> *x == 0 498 if (isOnlyUsedInZeroEqualityComparison(CI)) 499 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); 500 501 return nullptr; 502 } 503 504 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 505 return optimizeStringLength(CI, B, 8); 506 } 507 508 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) { 509 Module &M = *CI->getParent()->getParent()->getParent(); 510 unsigned WCharSize = TLI->getWCharSize(M) * 8; 511 // We cannot perform this optimization without wchar_size metadata. 512 if (WCharSize == 0) 513 return nullptr; 514 515 return optimizeStringLength(CI, B, WCharSize); 516 } 517 518 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 519 StringRef S1, S2; 520 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 521 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 522 523 // strpbrk(s, "") -> nullptr 524 // strpbrk("", s) -> nullptr 525 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 526 return Constant::getNullValue(CI->getType()); 527 528 // Constant folding. 529 if (HasS1 && HasS2) { 530 size_t I = S1.find_first_of(S2); 531 if (I == StringRef::npos) // No match. 532 return Constant::getNullValue(CI->getType()); 533 534 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 535 "strpbrk"); 536 } 537 538 // strpbrk(s, "a") -> strchr(s, 'a') 539 if (HasS2 && S2.size() == 1) 540 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 541 542 return nullptr; 543 } 544 545 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 546 Value *EndPtr = CI->getArgOperand(1); 547 if (isa<ConstantPointerNull>(EndPtr)) { 548 // With a null EndPtr, this function won't capture the main argument. 549 // It would be readonly too, except that it still may write to errno. 550 CI->addParamAttr(0, Attribute::NoCapture); 551 } 552 553 return nullptr; 554 } 555 556 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 557 StringRef S1, S2; 558 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 559 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 560 561 // strspn(s, "") -> 0 562 // strspn("", s) -> 0 563 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 564 return Constant::getNullValue(CI->getType()); 565 566 // Constant folding. 567 if (HasS1 && HasS2) { 568 size_t Pos = S1.find_first_not_of(S2); 569 if (Pos == StringRef::npos) 570 Pos = S1.size(); 571 return ConstantInt::get(CI->getType(), Pos); 572 } 573 574 return nullptr; 575 } 576 577 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 578 StringRef S1, S2; 579 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 580 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 581 582 // strcspn("", s) -> 0 583 if (HasS1 && S1.empty()) 584 return Constant::getNullValue(CI->getType()); 585 586 // Constant folding. 587 if (HasS1 && HasS2) { 588 size_t Pos = S1.find_first_of(S2); 589 if (Pos == StringRef::npos) 590 Pos = S1.size(); 591 return ConstantInt::get(CI->getType(), Pos); 592 } 593 594 // strcspn(s, "") -> strlen(s) 595 if (HasS2 && S2.empty()) 596 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 597 598 return nullptr; 599 } 600 601 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 602 // fold strstr(x, x) -> x. 603 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 604 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 605 606 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 607 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 608 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 609 if (!StrLen) 610 return nullptr; 611 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 612 StrLen, B, DL, TLI); 613 if (!StrNCmp) 614 return nullptr; 615 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 616 ICmpInst *Old = cast<ICmpInst>(*UI++); 617 Value *Cmp = 618 B.CreateICmp(Old->getPredicate(), StrNCmp, 619 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 620 replaceAllUsesWith(Old, Cmp); 621 } 622 return CI; 623 } 624 625 // See if either input string is a constant string. 626 StringRef SearchStr, ToFindStr; 627 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 628 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 629 630 // fold strstr(x, "") -> x. 631 if (HasStr2 && ToFindStr.empty()) 632 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 633 634 // If both strings are known, constant fold it. 635 if (HasStr1 && HasStr2) { 636 size_t Offset = SearchStr.find(ToFindStr); 637 638 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 639 return Constant::getNullValue(CI->getType()); 640 641 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 642 Value *Result = castToCStr(CI->getArgOperand(0), B); 643 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); 644 return B.CreateBitCast(Result, CI->getType()); 645 } 646 647 // fold strstr(x, "y") -> strchr(x, 'y'). 648 if (HasStr2 && ToFindStr.size() == 1) { 649 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 650 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 651 } 652 return nullptr; 653 } 654 655 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { 656 Value *SrcStr = CI->getArgOperand(0); 657 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 658 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 659 660 // memchr(x, y, 0) -> null 661 if (LenC && LenC->isZero()) 662 return Constant::getNullValue(CI->getType()); 663 664 // From now on we need at least constant length and string. 665 StringRef Str; 666 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 667 return nullptr; 668 669 // Truncate the string to LenC. If Str is smaller than LenC we will still only 670 // scan the string, as reading past the end of it is undefined and we can just 671 // return null if we don't find the char. 672 Str = Str.substr(0, LenC->getZExtValue()); 673 674 // If the char is variable but the input str and length are not we can turn 675 // this memchr call into a simple bit field test. Of course this only works 676 // when the return value is only checked against null. 677 // 678 // It would be really nice to reuse switch lowering here but we can't change 679 // the CFG at this point. 680 // 681 // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0 682 // after bounds check. 683 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 684 unsigned char Max = 685 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 686 reinterpret_cast<const unsigned char *>(Str.end())); 687 688 // Make sure the bit field we're about to create fits in a register on the 689 // target. 690 // FIXME: On a 64 bit architecture this prevents us from using the 691 // interesting range of alpha ascii chars. We could do better by emitting 692 // two bitfields or shifting the range by 64 if no lower chars are used. 693 if (!DL.fitsInLegalInteger(Max + 1)) 694 return nullptr; 695 696 // For the bit field use a power-of-2 type with at least 8 bits to avoid 697 // creating unnecessary illegal types. 698 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 699 700 // Now build the bit field. 701 APInt Bitfield(Width, 0); 702 for (char C : Str) 703 Bitfield.setBit((unsigned char)C); 704 Value *BitfieldC = B.getInt(Bitfield); 705 706 // First check that the bit field access is within bounds. 707 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 708 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 709 "memchr.bounds"); 710 711 // Create code that checks if the given bit is set in the field. 712 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 713 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 714 715 // Finally merge both checks and cast to pointer type. The inttoptr 716 // implicitly zexts the i1 to intptr type. 717 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 718 } 719 720 // Check if all arguments are constants. If so, we can constant fold. 721 if (!CharC) 722 return nullptr; 723 724 // Compute the offset. 725 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 726 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 727 return Constant::getNullValue(CI->getType()); 728 729 // memchr(s+n,c,l) -> gep(s+n+i,c) 730 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 731 } 732 733 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 734 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 735 736 if (LHS == RHS) // memcmp(s,s,x) -> 0 737 return Constant::getNullValue(CI->getType()); 738 739 // Make sure we have a constant length. 740 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 741 if (!LenC) 742 return nullptr; 743 744 uint64_t Len = LenC->getZExtValue(); 745 if (Len == 0) // memcmp(s1,s2,0) -> 0 746 return Constant::getNullValue(CI->getType()); 747 748 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 749 if (Len == 1) { 750 Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"), 751 CI->getType(), "lhsv"); 752 Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"), 753 CI->getType(), "rhsv"); 754 return B.CreateSub(LHSV, RHSV, "chardiff"); 755 } 756 757 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 758 // TODO: The case where both inputs are constants does not need to be limited 759 // to legal integers or equality comparison. See block below this. 760 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 761 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 762 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 763 764 // First, see if we can fold either argument to a constant. 765 Value *LHSV = nullptr; 766 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 767 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 768 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 769 } 770 Value *RHSV = nullptr; 771 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 772 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 773 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 774 } 775 776 // Don't generate unaligned loads. If either source is constant data, 777 // alignment doesn't matter for that source because there is no load. 778 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 779 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 780 if (!LHSV) { 781 Type *LHSPtrTy = 782 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 783 LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 784 } 785 if (!RHSV) { 786 Type *RHSPtrTy = 787 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 788 RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 789 } 790 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 791 } 792 } 793 794 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 795 // TODO: This is limited to i8 arrays. 796 StringRef LHSStr, RHSStr; 797 if (getConstantStringInfo(LHS, LHSStr) && 798 getConstantStringInfo(RHS, RHSStr)) { 799 // Make sure we're not reading out-of-bounds memory. 800 if (Len > LHSStr.size() || Len > RHSStr.size()) 801 return nullptr; 802 // Fold the memcmp and normalize the result. This way we get consistent 803 // results across multiple platforms. 804 uint64_t Ret = 0; 805 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 806 if (Cmp < 0) 807 Ret = -1; 808 else if (Cmp > 0) 809 Ret = 1; 810 return ConstantInt::get(CI->getType(), Ret); 811 } 812 813 return nullptr; 814 } 815 816 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { 817 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) 818 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 819 CI->getArgOperand(2), 1); 820 return CI->getArgOperand(0); 821 } 822 823 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { 824 // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) 825 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 826 CI->getArgOperand(2), 1); 827 return CI->getArgOperand(0); 828 } 829 830 // TODO: Does this belong in BuildLibCalls or should all of those similar 831 // functions be moved here? 832 static Value *emitCalloc(Value *Num, Value *Size, const AttributeList &Attrs, 833 IRBuilder<> &B, const TargetLibraryInfo &TLI) { 834 LibFunc Func; 835 if (!TLI.getLibFunc("calloc", Func) || !TLI.has(Func)) 836 return nullptr; 837 838 Module *M = B.GetInsertBlock()->getModule(); 839 const DataLayout &DL = M->getDataLayout(); 840 IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext())); 841 Value *Calloc = M->getOrInsertFunction("calloc", Attrs, B.getInt8PtrTy(), 842 PtrType, PtrType); 843 CallInst *CI = B.CreateCall(Calloc, { Num, Size }, "calloc"); 844 845 if (const auto *F = dyn_cast<Function>(Calloc->stripPointerCasts())) 846 CI->setCallingConv(F->getCallingConv()); 847 848 return CI; 849 } 850 851 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 852 static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B, 853 const TargetLibraryInfo &TLI) { 854 // This has to be a memset of zeros (bzero). 855 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 856 if (!FillValue || FillValue->getZExtValue() != 0) 857 return nullptr; 858 859 // TODO: We should handle the case where the malloc has more than one use. 860 // This is necessary to optimize common patterns such as when the result of 861 // the malloc is checked against null or when a memset intrinsic is used in 862 // place of a memset library call. 863 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 864 if (!Malloc || !Malloc->hasOneUse()) 865 return nullptr; 866 867 // Is the inner call really malloc()? 868 Function *InnerCallee = Malloc->getCalledFunction(); 869 if (!InnerCallee) 870 return nullptr; 871 872 LibFunc Func; 873 if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) || 874 Func != LibFunc_malloc) 875 return nullptr; 876 877 // The memset must cover the same number of bytes that are malloc'd. 878 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 879 return nullptr; 880 881 // Replace the malloc with a calloc. We need the data layout to know what the 882 // actual size of a 'size_t' parameter is. 883 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 884 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 885 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 886 Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 887 Malloc->getArgOperand(0), Malloc->getAttributes(), 888 B, TLI); 889 if (!Calloc) 890 return nullptr; 891 892 Malloc->replaceAllUsesWith(Calloc); 893 Malloc->eraseFromParent(); 894 895 return Calloc; 896 } 897 898 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { 899 if (auto *Calloc = foldMallocMemset(CI, B, *TLI)) 900 return Calloc; 901 902 // memset(p, v, n) -> llvm.memset(p, v, n, 1) 903 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 904 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 905 return CI->getArgOperand(0); 906 } 907 908 //===----------------------------------------------------------------------===// 909 // Math Library Optimizations 910 //===----------------------------------------------------------------------===// 911 912 /// Return a variant of Val with float type. 913 /// Currently this works in two cases: If Val is an FPExtension of a float 914 /// value to something bigger, simply return the operand. 915 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 916 /// loss of precision do so. 917 static Value *valueHasFloatPrecision(Value *Val) { 918 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 919 Value *Op = Cast->getOperand(0); 920 if (Op->getType()->isFloatTy()) 921 return Op; 922 } 923 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 924 APFloat F = Const->getValueAPF(); 925 bool losesInfo; 926 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 927 &losesInfo); 928 if (!losesInfo) 929 return ConstantFP::get(Const->getContext(), F); 930 } 931 return nullptr; 932 } 933 934 /// Shrink double -> float for unary functions like 'floor'. 935 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 936 bool CheckRetType) { 937 Function *Callee = CI->getCalledFunction(); 938 // We know this libcall has a valid prototype, but we don't know which. 939 if (!CI->getType()->isDoubleTy()) 940 return nullptr; 941 942 if (CheckRetType) { 943 // Check if all the uses for function like 'sin' are converted to float. 944 for (User *U : CI->users()) { 945 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 946 if (!Cast || !Cast->getType()->isFloatTy()) 947 return nullptr; 948 } 949 } 950 951 // If this is something like 'floor((double)floatval)', convert to floorf. 952 Value *V = valueHasFloatPrecision(CI->getArgOperand(0)); 953 if (V == nullptr) 954 return nullptr; 955 956 // If call isn't an intrinsic, check that it isn't within a function with the 957 // same name as the float version of this call. 958 // 959 // e.g. inline float expf(float val) { return (float) exp((double) val); } 960 // 961 // A similar such definition exists in the MinGW-w64 math.h header file which 962 // when compiled with -O2 -ffast-math causes the generation of infinite loops 963 // where expf is called. 964 if (!Callee->isIntrinsic()) { 965 const Function *F = CI->getFunction(); 966 StringRef FName = F->getName(); 967 StringRef CalleeName = Callee->getName(); 968 if ((FName.size() == (CalleeName.size() + 1)) && 969 (FName.back() == 'f') && 970 FName.startswith(CalleeName)) 971 return nullptr; 972 } 973 974 // Propagate fast-math flags from the existing call to the new call. 975 IRBuilder<>::FastMathFlagGuard Guard(B); 976 B.setFastMathFlags(CI->getFastMathFlags()); 977 978 // floor((double)floatval) -> (double)floorf(floatval) 979 if (Callee->isIntrinsic()) { 980 Module *M = CI->getModule(); 981 Intrinsic::ID IID = Callee->getIntrinsicID(); 982 Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 983 V = B.CreateCall(F, V); 984 } else { 985 // The call is a library call rather than an intrinsic. 986 V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes()); 987 } 988 989 return B.CreateFPExt(V, B.getDoubleTy()); 990 } 991 992 // Replace a libcall \p CI with a call to intrinsic \p IID 993 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) { 994 // Propagate fast-math flags from the existing call to the new call. 995 IRBuilder<>::FastMathFlagGuard Guard(B); 996 B.setFastMathFlags(CI->getFastMathFlags()); 997 998 Module *M = CI->getModule(); 999 Value *V = CI->getArgOperand(0); 1000 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1001 CallInst *NewCall = B.CreateCall(F, V); 1002 NewCall->takeName(CI); 1003 return NewCall; 1004 } 1005 1006 /// Shrink double -> float for binary functions like 'fmin/fmax'. 1007 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) { 1008 Function *Callee = CI->getCalledFunction(); 1009 // We know this libcall has a valid prototype, but we don't know which. 1010 if (!CI->getType()->isDoubleTy()) 1011 return nullptr; 1012 1013 // If this is something like 'fmin((double)floatval1, (double)floatval2)', 1014 // or fmin(1.0, (double)floatval), then we convert it to fminf. 1015 Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0)); 1016 if (V1 == nullptr) 1017 return nullptr; 1018 Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1)); 1019 if (V2 == nullptr) 1020 return nullptr; 1021 1022 // Propagate fast-math flags from the existing call to the new call. 1023 IRBuilder<>::FastMathFlagGuard Guard(B); 1024 B.setFastMathFlags(CI->getFastMathFlags()); 1025 1026 // fmin((double)floatval1, (double)floatval2) 1027 // -> (double)fminf(floatval1, floatval2) 1028 // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP(). 1029 Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B, 1030 Callee->getAttributes()); 1031 return B.CreateFPExt(V, B.getDoubleTy()); 1032 } 1033 1034 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) { 1035 Function *Callee = CI->getCalledFunction(); 1036 Value *Ret = nullptr; 1037 StringRef Name = Callee->getName(); 1038 if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name)) 1039 Ret = optimizeUnaryDoubleFP(CI, B, true); 1040 1041 // cos(-x) -> cos(x) 1042 Value *Op1 = CI->getArgOperand(0); 1043 if (BinaryOperator::isFNeg(Op1)) { 1044 BinaryOperator *BinExpr = cast<BinaryOperator>(Op1); 1045 return B.CreateCall(Callee, BinExpr->getOperand(1), "cos"); 1046 } 1047 return Ret; 1048 } 1049 1050 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) { 1051 // Multiplications calculated using Addition Chains. 1052 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1053 1054 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1055 1056 if (InnerChain[Exp]) 1057 return InnerChain[Exp]; 1058 1059 static const unsigned AddChain[33][2] = { 1060 {0, 0}, // Unused. 1061 {0, 0}, // Unused (base case = pow1). 1062 {1, 1}, // Unused (pre-computed). 1063 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1064 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1065 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1066 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1067 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1068 }; 1069 1070 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1071 getPow(InnerChain, AddChain[Exp][1], B)); 1072 return InnerChain[Exp]; 1073 } 1074 1075 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) { 1076 Function *Callee = CI->getCalledFunction(); 1077 Value *Ret = nullptr; 1078 StringRef Name = Callee->getName(); 1079 if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name)) 1080 Ret = optimizeUnaryDoubleFP(CI, B, true); 1081 1082 Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1); 1083 1084 // pow(1.0, x) -> 1.0 1085 if (match(Op1, m_SpecificFP(1.0))) 1086 return Op1; 1087 // pow(2.0, x) -> llvm.exp2(x) 1088 if (match(Op1, m_SpecificFP(2.0))) { 1089 Value *Exp2 = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::exp2, 1090 CI->getType()); 1091 return B.CreateCall(Exp2, Op2, "exp2"); 1092 } 1093 1094 // There's no llvm.exp10 intrinsic yet, but, maybe, some day there will 1095 // be one. 1096 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { 1097 // pow(10.0, x) -> exp10(x) 1098 if (Op1C->isExactlyValue(10.0) && 1099 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc_exp10, LibFunc_exp10f, 1100 LibFunc_exp10l)) 1101 return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc_exp10), B, 1102 Callee->getAttributes()); 1103 } 1104 1105 // pow(exp(x), y) -> exp(x * y) 1106 // pow(exp2(x), y) -> exp2(x * y) 1107 // We enable these only with fast-math. Besides rounding differences, the 1108 // transformation changes overflow and underflow behavior quite dramatically. 1109 // Example: x = 1000, y = 0.001. 1110 // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1). 1111 auto *OpC = dyn_cast<CallInst>(Op1); 1112 if (OpC && OpC->hasUnsafeAlgebra() && CI->hasUnsafeAlgebra()) { 1113 LibFunc Func; 1114 Function *OpCCallee = OpC->getCalledFunction(); 1115 if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) && 1116 TLI->has(Func) && (Func == LibFunc_exp || Func == LibFunc_exp2)) { 1117 IRBuilder<>::FastMathFlagGuard Guard(B); 1118 B.setFastMathFlags(CI->getFastMathFlags()); 1119 Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul"); 1120 return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B, 1121 OpCCallee->getAttributes()); 1122 } 1123 } 1124 1125 ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2); 1126 if (!Op2C) 1127 return Ret; 1128 1129 if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 1130 return ConstantFP::get(CI->getType(), 1.0); 1131 1132 if (Op2C->isExactlyValue(-0.5) && 1133 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf, 1134 LibFunc_sqrtl)) { 1135 // If -ffast-math: 1136 // pow(x, -0.5) -> 1.0 / sqrt(x) 1137 if (CI->hasUnsafeAlgebra()) { 1138 IRBuilder<>::FastMathFlagGuard Guard(B); 1139 B.setFastMathFlags(CI->getFastMathFlags()); 1140 1141 // TODO: If the pow call is an intrinsic, we should lower to the sqrt 1142 // intrinsic, so we match errno semantics. We also should check that the 1143 // target can in fact lower the sqrt intrinsic -- we currently have no way 1144 // to ask this question other than asking whether the target has a sqrt 1145 // libcall, which is a sufficient but not necessary condition. 1146 Value *Sqrt = emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc_sqrt), B, 1147 Callee->getAttributes()); 1148 1149 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Sqrt, "sqrtrecip"); 1150 } 1151 } 1152 1153 if (Op2C->isExactlyValue(0.5) && 1154 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf, 1155 LibFunc_sqrtl)) { 1156 1157 // In -ffast-math, pow(x, 0.5) -> sqrt(x). 1158 if (CI->hasUnsafeAlgebra()) { 1159 IRBuilder<>::FastMathFlagGuard Guard(B); 1160 B.setFastMathFlags(CI->getFastMathFlags()); 1161 1162 // TODO: As above, we should lower to the sqrt intrinsic if the pow is an 1163 // intrinsic, to match errno semantics. 1164 return emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc_sqrt), B, 1165 Callee->getAttributes()); 1166 } 1167 1168 // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). 1169 // This is faster than calling pow, and still handles negative zero 1170 // and negative infinity correctly. 1171 // TODO: In finite-only mode, this could be just fabs(sqrt(x)). 1172 Value *Inf = ConstantFP::getInfinity(CI->getType()); 1173 Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); 1174 1175 // TODO: As above, we should lower to the sqrt intrinsic if the pow is an 1176 // intrinsic, to match errno semantics. 1177 Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes()); 1178 1179 Module *M = Callee->getParent(); 1180 Function *FabsF = Intrinsic::getDeclaration(M, Intrinsic::fabs, 1181 CI->getType()); 1182 Value *FAbs = B.CreateCall(FabsF, Sqrt); 1183 1184 Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf); 1185 Value *Sel = B.CreateSelect(FCmp, Inf, FAbs); 1186 return Sel; 1187 } 1188 1189 if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x 1190 return Op1; 1191 if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x 1192 return B.CreateFMul(Op1, Op1, "pow2"); 1193 if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x 1194 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip"); 1195 1196 // In -ffast-math, generate repeated fmul instead of generating pow(x, n). 1197 if (CI->hasUnsafeAlgebra()) { 1198 APFloat V = abs(Op2C->getValueAPF()); 1199 // We limit to a max of 7 fmul(s). Thus max exponent is 32. 1200 // This transformation applies to integer exponents only. 1201 if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan || 1202 !V.isInteger()) 1203 return nullptr; 1204 1205 // Propagate fast math flags. 1206 IRBuilder<>::FastMathFlagGuard Guard(B); 1207 B.setFastMathFlags(CI->getFastMathFlags()); 1208 1209 // We will memoize intermediate products of the Addition Chain. 1210 Value *InnerChain[33] = {nullptr}; 1211 InnerChain[1] = Op1; 1212 InnerChain[2] = B.CreateFMul(Op1, Op1); 1213 1214 // We cannot readily convert a non-double type (like float) to a double. 1215 // So we first convert V to something which could be converted to double. 1216 bool ignored; 1217 V.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &ignored); 1218 1219 Value *FMul = getPow(InnerChain, V.convertToDouble(), B); 1220 // For negative exponents simply compute the reciprocal. 1221 if (Op2C->isNegative()) 1222 FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul); 1223 return FMul; 1224 } 1225 1226 return nullptr; 1227 } 1228 1229 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1230 Function *Callee = CI->getCalledFunction(); 1231 Value *Ret = nullptr; 1232 StringRef Name = Callee->getName(); 1233 if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name)) 1234 Ret = optimizeUnaryDoubleFP(CI, B, true); 1235 1236 Value *Op = CI->getArgOperand(0); 1237 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1238 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1239 LibFunc LdExp = LibFunc_ldexpl; 1240 if (Op->getType()->isFloatTy()) 1241 LdExp = LibFunc_ldexpf; 1242 else if (Op->getType()->isDoubleTy()) 1243 LdExp = LibFunc_ldexp; 1244 1245 if (TLI->has(LdExp)) { 1246 Value *LdExpArg = nullptr; 1247 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 1248 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 1249 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 1250 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 1251 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 1252 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 1253 } 1254 1255 if (LdExpArg) { 1256 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); 1257 if (!Op->getType()->isFloatTy()) 1258 One = ConstantExpr::getFPExtend(One, Op->getType()); 1259 1260 Module *M = CI->getModule(); 1261 Value *NewCallee = 1262 M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), 1263 Op->getType(), B.getInt32Ty()); 1264 CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg}); 1265 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 1266 CI->setCallingConv(F->getCallingConv()); 1267 1268 return CI; 1269 } 1270 } 1271 return Ret; 1272 } 1273 1274 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { 1275 Function *Callee = CI->getCalledFunction(); 1276 // If we can shrink the call to a float function rather than a double 1277 // function, do that first. 1278 StringRef Name = Callee->getName(); 1279 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1280 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1281 return Ret; 1282 1283 IRBuilder<>::FastMathFlagGuard Guard(B); 1284 FastMathFlags FMF; 1285 if (CI->hasUnsafeAlgebra()) { 1286 // Unsafe algebra sets all fast-math-flags to true. 1287 FMF.setUnsafeAlgebra(); 1288 } else { 1289 // At a minimum, no-nans-fp-math must be true. 1290 if (!CI->hasNoNaNs()) 1291 return nullptr; 1292 // No-signed-zeros is implied by the definitions of fmax/fmin themselves: 1293 // "Ideally, fmax would be sensitive to the sign of zero, for example 1294 // fmax(-0. 0, +0. 0) would return +0; however, implementation in software 1295 // might be impractical." 1296 FMF.setNoSignedZeros(); 1297 FMF.setNoNaNs(); 1298 } 1299 B.setFastMathFlags(FMF); 1300 1301 // We have a relaxed floating-point environment. We can ignore NaN-handling 1302 // and transform to a compare and select. We do not have to consider errno or 1303 // exceptions, because fmin/fmax do not have those. 1304 Value *Op0 = CI->getArgOperand(0); 1305 Value *Op1 = CI->getArgOperand(1); 1306 Value *Cmp = Callee->getName().startswith("fmin") ? 1307 B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1); 1308 return B.CreateSelect(Cmp, Op0, Op1); 1309 } 1310 1311 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { 1312 Function *Callee = CI->getCalledFunction(); 1313 Value *Ret = nullptr; 1314 StringRef Name = Callee->getName(); 1315 if (UnsafeFPShrink && hasFloatVersion(Name)) 1316 Ret = optimizeUnaryDoubleFP(CI, B, true); 1317 1318 if (!CI->hasUnsafeAlgebra()) 1319 return Ret; 1320 Value *Op1 = CI->getArgOperand(0); 1321 auto *OpC = dyn_cast<CallInst>(Op1); 1322 1323 // The earlier call must also be unsafe in order to do these transforms. 1324 if (!OpC || !OpC->hasUnsafeAlgebra()) 1325 return Ret; 1326 1327 // log(pow(x,y)) -> y*log(x) 1328 // This is only applicable to log, log2, log10. 1329 if (Name != "log" && Name != "log2" && Name != "log10") 1330 return Ret; 1331 1332 IRBuilder<>::FastMathFlagGuard Guard(B); 1333 FastMathFlags FMF; 1334 FMF.setUnsafeAlgebra(); 1335 B.setFastMathFlags(FMF); 1336 1337 LibFunc Func; 1338 Function *F = OpC->getCalledFunction(); 1339 if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1340 Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow)) 1341 return B.CreateFMul(OpC->getArgOperand(1), 1342 emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, 1343 Callee->getAttributes()), "mul"); 1344 1345 // log(exp2(y)) -> y*log(2) 1346 if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && 1347 TLI->has(Func) && Func == LibFunc_exp2) 1348 return B.CreateFMul( 1349 OpC->getArgOperand(0), 1350 emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), 1351 Callee->getName(), B, Callee->getAttributes()), 1352 "logmul"); 1353 return Ret; 1354 } 1355 1356 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1357 Function *Callee = CI->getCalledFunction(); 1358 Value *Ret = nullptr; 1359 // TODO: Once we have a way (other than checking for the existince of the 1360 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 1361 // condition below. 1362 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 1363 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1364 Ret = optimizeUnaryDoubleFP(CI, B, true); 1365 1366 if (!CI->hasUnsafeAlgebra()) 1367 return Ret; 1368 1369 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1370 if (!I || I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra()) 1371 return Ret; 1372 1373 // We're looking for a repeated factor in a multiplication tree, 1374 // so we can do this fold: sqrt(x * x) -> fabs(x); 1375 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 1376 Value *Op0 = I->getOperand(0); 1377 Value *Op1 = I->getOperand(1); 1378 Value *RepeatOp = nullptr; 1379 Value *OtherOp = nullptr; 1380 if (Op0 == Op1) { 1381 // Simple match: the operands of the multiply are identical. 1382 RepeatOp = Op0; 1383 } else { 1384 // Look for a more complicated pattern: one of the operands is itself 1385 // a multiply, so search for a common factor in that multiply. 1386 // Note: We don't bother looking any deeper than this first level or for 1387 // variations of this pattern because instcombine's visitFMUL and/or the 1388 // reassociation pass should give us this form. 1389 Value *OtherMul0, *OtherMul1; 1390 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1391 // Pattern: sqrt((x * y) * z) 1392 if (OtherMul0 == OtherMul1 && 1393 cast<Instruction>(Op0)->hasUnsafeAlgebra()) { 1394 // Matched: sqrt((x * x) * z) 1395 RepeatOp = OtherMul0; 1396 OtherOp = Op1; 1397 } 1398 } 1399 } 1400 if (!RepeatOp) 1401 return Ret; 1402 1403 // Fast math flags for any created instructions should match the sqrt 1404 // and multiply. 1405 IRBuilder<>::FastMathFlagGuard Guard(B); 1406 B.setFastMathFlags(I->getFastMathFlags()); 1407 1408 // If we found a repeated factor, hoist it out of the square root and 1409 // replace it with the fabs of that factor. 1410 Module *M = Callee->getParent(); 1411 Type *ArgType = I->getType(); 1412 Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1413 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1414 if (OtherOp) { 1415 // If we found a non-repeated factor, we still need to get its square 1416 // root. We then multiply that by the value that was simplified out 1417 // of the square root calculation. 1418 Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1419 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1420 return B.CreateFMul(FabsCall, SqrtCall); 1421 } 1422 return FabsCall; 1423 } 1424 1425 // TODO: Generalize to handle any trig function and its inverse. 1426 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { 1427 Function *Callee = CI->getCalledFunction(); 1428 Value *Ret = nullptr; 1429 StringRef Name = Callee->getName(); 1430 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 1431 Ret = optimizeUnaryDoubleFP(CI, B, true); 1432 1433 Value *Op1 = CI->getArgOperand(0); 1434 auto *OpC = dyn_cast<CallInst>(Op1); 1435 if (!OpC) 1436 return Ret; 1437 1438 // Both calls must allow unsafe optimizations in order to remove them. 1439 if (!CI->hasUnsafeAlgebra() || !OpC->hasUnsafeAlgebra()) 1440 return Ret; 1441 1442 // tan(atan(x)) -> x 1443 // tanf(atanf(x)) -> x 1444 // tanl(atanl(x)) -> x 1445 LibFunc Func; 1446 Function *F = OpC->getCalledFunction(); 1447 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1448 ((Func == LibFunc_atan && Callee->getName() == "tan") || 1449 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 1450 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 1451 Ret = OpC->getArgOperand(0); 1452 return Ret; 1453 } 1454 1455 static bool isTrigLibCall(CallInst *CI) { 1456 // We can only hope to do anything useful if we can ignore things like errno 1457 // and floating-point exceptions. 1458 // We already checked the prototype. 1459 return CI->hasFnAttr(Attribute::NoUnwind) && 1460 CI->hasFnAttr(Attribute::ReadNone); 1461 } 1462 1463 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1464 bool UseFloat, Value *&Sin, Value *&Cos, 1465 Value *&SinCos) { 1466 Type *ArgTy = Arg->getType(); 1467 Type *ResTy; 1468 StringRef Name; 1469 1470 Triple T(OrigCallee->getParent()->getTargetTriple()); 1471 if (UseFloat) { 1472 Name = "__sincospif_stret"; 1473 1474 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1475 // x86_64 can't use {float, float} since that would be returned in both 1476 // xmm0 and xmm1, which isn't what a real struct would do. 1477 ResTy = T.getArch() == Triple::x86_64 1478 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1479 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 1480 } else { 1481 Name = "__sincospi_stret"; 1482 ResTy = StructType::get(ArgTy, ArgTy); 1483 } 1484 1485 Module *M = OrigCallee->getParent(); 1486 Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), 1487 ResTy, ArgTy); 1488 1489 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1490 // If the argument is an instruction, it must dominate all uses so put our 1491 // sincos call there. 1492 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1493 } else { 1494 // Otherwise (e.g. for a constant) the beginning of the function is as 1495 // good a place as any. 1496 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1497 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1498 } 1499 1500 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1501 1502 if (SinCos->getType()->isStructTy()) { 1503 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1504 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1505 } else { 1506 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1507 "sinpi"); 1508 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1509 "cospi"); 1510 } 1511 } 1512 1513 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1514 // Make sure the prototype is as expected, otherwise the rest of the 1515 // function is probably invalid and likely to abort. 1516 if (!isTrigLibCall(CI)) 1517 return nullptr; 1518 1519 Value *Arg = CI->getArgOperand(0); 1520 SmallVector<CallInst *, 1> SinCalls; 1521 SmallVector<CallInst *, 1> CosCalls; 1522 SmallVector<CallInst *, 1> SinCosCalls; 1523 1524 bool IsFloat = Arg->getType()->isFloatTy(); 1525 1526 // Look for all compatible sinpi, cospi and sincospi calls with the same 1527 // argument. If there are enough (in some sense) we can make the 1528 // substitution. 1529 Function *F = CI->getFunction(); 1530 for (User *U : Arg->users()) 1531 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 1532 1533 // It's only worthwhile if both sinpi and cospi are actually used. 1534 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1535 return nullptr; 1536 1537 Value *Sin, *Cos, *SinCos; 1538 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1539 1540 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 1541 Value *Res) { 1542 for (CallInst *C : Calls) 1543 replaceAllUsesWith(C, Res); 1544 }; 1545 1546 replaceTrigInsts(SinCalls, Sin); 1547 replaceTrigInsts(CosCalls, Cos); 1548 replaceTrigInsts(SinCosCalls, SinCos); 1549 1550 return nullptr; 1551 } 1552 1553 void LibCallSimplifier::classifyArgUse( 1554 Value *Val, Function *F, bool IsFloat, 1555 SmallVectorImpl<CallInst *> &SinCalls, 1556 SmallVectorImpl<CallInst *> &CosCalls, 1557 SmallVectorImpl<CallInst *> &SinCosCalls) { 1558 CallInst *CI = dyn_cast<CallInst>(Val); 1559 1560 if (!CI) 1561 return; 1562 1563 // Don't consider calls in other functions. 1564 if (CI->getFunction() != F) 1565 return; 1566 1567 Function *Callee = CI->getCalledFunction(); 1568 LibFunc Func; 1569 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 1570 !isTrigLibCall(CI)) 1571 return; 1572 1573 if (IsFloat) { 1574 if (Func == LibFunc_sinpif) 1575 SinCalls.push_back(CI); 1576 else if (Func == LibFunc_cospif) 1577 CosCalls.push_back(CI); 1578 else if (Func == LibFunc_sincospif_stret) 1579 SinCosCalls.push_back(CI); 1580 } else { 1581 if (Func == LibFunc_sinpi) 1582 SinCalls.push_back(CI); 1583 else if (Func == LibFunc_cospi) 1584 CosCalls.push_back(CI); 1585 else if (Func == LibFunc_sincospi_stret) 1586 SinCosCalls.push_back(CI); 1587 } 1588 } 1589 1590 //===----------------------------------------------------------------------===// 1591 // Integer Library Call Optimizations 1592 //===----------------------------------------------------------------------===// 1593 1594 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1595 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1596 Value *Op = CI->getArgOperand(0); 1597 Type *ArgType = Op->getType(); 1598 Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1599 Intrinsic::cttz, ArgType); 1600 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 1601 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1602 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1603 1604 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1605 return B.CreateSelect(Cond, V, B.getInt32(0)); 1606 } 1607 1608 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) { 1609 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 1610 Value *Op = CI->getArgOperand(0); 1611 Type *ArgType = Op->getType(); 1612 Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1613 Intrinsic::ctlz, ArgType); 1614 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 1615 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 1616 V); 1617 return B.CreateIntCast(V, CI->getType(), false); 1618 } 1619 1620 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1621 // abs(x) -> x >s -1 ? x : -x 1622 Value *Op = CI->getArgOperand(0); 1623 Value *Pos = 1624 B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos"); 1625 Value *Neg = B.CreateNeg(Op, "neg"); 1626 return B.CreateSelect(Pos, Op, Neg); 1627 } 1628 1629 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 1630 // isdigit(c) -> (c-'0') <u 10 1631 Value *Op = CI->getArgOperand(0); 1632 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1633 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1634 return B.CreateZExt(Op, CI->getType()); 1635 } 1636 1637 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 1638 // isascii(c) -> c <u 128 1639 Value *Op = CI->getArgOperand(0); 1640 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1641 return B.CreateZExt(Op, CI->getType()); 1642 } 1643 1644 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 1645 // toascii(c) -> c & 0x7f 1646 return B.CreateAnd(CI->getArgOperand(0), 1647 ConstantInt::get(CI->getType(), 0x7F)); 1648 } 1649 1650 //===----------------------------------------------------------------------===// 1651 // Formatting and IO Library Call Optimizations 1652 //===----------------------------------------------------------------------===// 1653 1654 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 1655 1656 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 1657 int StreamArg) { 1658 Function *Callee = CI->getCalledFunction(); 1659 // Error reporting calls should be cold, mark them as such. 1660 // This applies even to non-builtin calls: it is only a hint and applies to 1661 // functions that the frontend might not understand as builtins. 1662 1663 // This heuristic was suggested in: 1664 // Improving Static Branch Prediction in a Compiler 1665 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 1666 // Proceedings of PACT'98, Oct. 1998, IEEE 1667 if (!CI->hasFnAttr(Attribute::Cold) && 1668 isReportingError(Callee, CI, StreamArg)) { 1669 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 1670 } 1671 1672 return nullptr; 1673 } 1674 1675 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 1676 if (!Callee || !Callee->isDeclaration()) 1677 return false; 1678 1679 if (StreamArg < 0) 1680 return true; 1681 1682 // These functions might be considered cold, but only if their stream 1683 // argument is stderr. 1684 1685 if (StreamArg >= (int)CI->getNumArgOperands()) 1686 return false; 1687 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 1688 if (!LI) 1689 return false; 1690 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 1691 if (!GV || !GV->isDeclaration()) 1692 return false; 1693 return GV->getName() == "stderr"; 1694 } 1695 1696 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 1697 // Check for a fixed format string. 1698 StringRef FormatStr; 1699 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 1700 return nullptr; 1701 1702 // Empty format string -> noop. 1703 if (FormatStr.empty()) // Tolerate printf's declared void. 1704 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 1705 1706 // Do not do any of the following transformations if the printf return value 1707 // is used, in general the printf return value is not compatible with either 1708 // putchar() or puts(). 1709 if (!CI->use_empty()) 1710 return nullptr; 1711 1712 // printf("x") -> putchar('x'), even for "%" and "%%". 1713 if (FormatStr.size() == 1 || FormatStr == "%%") 1714 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 1715 1716 // printf("%s", "a") --> putchar('a') 1717 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 1718 StringRef ChrStr; 1719 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 1720 return nullptr; 1721 if (ChrStr.size() != 1) 1722 return nullptr; 1723 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 1724 } 1725 1726 // printf("foo\n") --> puts("foo") 1727 if (FormatStr[FormatStr.size() - 1] == '\n' && 1728 FormatStr.find('%') == StringRef::npos) { // No format characters. 1729 // Create a string literal with no \n on it. We expect the constant merge 1730 // pass to be run after this pass, to merge duplicate strings. 1731 FormatStr = FormatStr.drop_back(); 1732 Value *GV = B.CreateGlobalString(FormatStr, "str"); 1733 return emitPutS(GV, B, TLI); 1734 } 1735 1736 // Optimize specific format strings. 1737 // printf("%c", chr) --> putchar(chr) 1738 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 1739 CI->getArgOperand(1)->getType()->isIntegerTy()) 1740 return emitPutChar(CI->getArgOperand(1), B, TLI); 1741 1742 // printf("%s\n", str) --> puts(str) 1743 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 1744 CI->getArgOperand(1)->getType()->isPointerTy()) 1745 return emitPutS(CI->getArgOperand(1), B, TLI); 1746 return nullptr; 1747 } 1748 1749 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 1750 1751 Function *Callee = CI->getCalledFunction(); 1752 FunctionType *FT = Callee->getFunctionType(); 1753 if (Value *V = optimizePrintFString(CI, B)) { 1754 return V; 1755 } 1756 1757 // printf(format, ...) -> iprintf(format, ...) if no floating point 1758 // arguments. 1759 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 1760 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1761 Constant *IPrintFFn = 1762 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 1763 CallInst *New = cast<CallInst>(CI->clone()); 1764 New->setCalledFunction(IPrintFFn); 1765 B.Insert(New); 1766 return New; 1767 } 1768 return nullptr; 1769 } 1770 1771 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 1772 // Check for a fixed format string. 1773 StringRef FormatStr; 1774 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1775 return nullptr; 1776 1777 // If we just have a format string (nothing else crazy) transform it. 1778 if (CI->getNumArgOperands() == 2) { 1779 // Make sure there's no % in the constant array. We could try to handle 1780 // %% -> % in the future if we cared. 1781 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1782 if (FormatStr[i] == '%') 1783 return nullptr; // we found a format specifier, bail out. 1784 1785 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) 1786 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 1787 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 1788 FormatStr.size() + 1), 1789 1); // Copy the null byte. 1790 return ConstantInt::get(CI->getType(), FormatStr.size()); 1791 } 1792 1793 // The remaining optimizations require the format string to be "%s" or "%c" 1794 // and have an extra operand. 1795 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1796 CI->getNumArgOperands() < 3) 1797 return nullptr; 1798 1799 // Decode the second character of the format string. 1800 if (FormatStr[1] == 'c') { 1801 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 1802 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1803 return nullptr; 1804 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 1805 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 1806 B.CreateStore(V, Ptr); 1807 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 1808 B.CreateStore(B.getInt8(0), Ptr); 1809 1810 return ConstantInt::get(CI->getType(), 1); 1811 } 1812 1813 if (FormatStr[1] == 's') { 1814 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) 1815 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1816 return nullptr; 1817 1818 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 1819 if (!Len) 1820 return nullptr; 1821 Value *IncLen = 1822 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 1823 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1); 1824 1825 // The sprintf result is the unincremented number of bytes in the string. 1826 return B.CreateIntCast(Len, CI->getType(), false); 1827 } 1828 return nullptr; 1829 } 1830 1831 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 1832 Function *Callee = CI->getCalledFunction(); 1833 FunctionType *FT = Callee->getFunctionType(); 1834 if (Value *V = optimizeSPrintFString(CI, B)) { 1835 return V; 1836 } 1837 1838 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 1839 // point arguments. 1840 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 1841 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1842 Constant *SIPrintFFn = 1843 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 1844 CallInst *New = cast<CallInst>(CI->clone()); 1845 New->setCalledFunction(SIPrintFFn); 1846 B.Insert(New); 1847 return New; 1848 } 1849 return nullptr; 1850 } 1851 1852 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 1853 optimizeErrorReporting(CI, B, 0); 1854 1855 // All the optimizations depend on the format string. 1856 StringRef FormatStr; 1857 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1858 return nullptr; 1859 1860 // Do not do any of the following transformations if the fprintf return 1861 // value is used, in general the fprintf return value is not compatible 1862 // with fwrite(), fputc() or fputs(). 1863 if (!CI->use_empty()) 1864 return nullptr; 1865 1866 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 1867 if (CI->getNumArgOperands() == 2) { 1868 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1869 if (FormatStr[i] == '%') // Could handle %% -> % if we cared. 1870 return nullptr; // We found a format specifier. 1871 1872 return emitFWrite( 1873 CI->getArgOperand(1), 1874 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 1875 CI->getArgOperand(0), B, DL, TLI); 1876 } 1877 1878 // The remaining optimizations require the format string to be "%s" or "%c" 1879 // and have an extra operand. 1880 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1881 CI->getNumArgOperands() < 3) 1882 return nullptr; 1883 1884 // Decode the second character of the format string. 1885 if (FormatStr[1] == 'c') { 1886 // fprintf(F, "%c", chr) --> fputc(chr, F) 1887 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1888 return nullptr; 1889 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 1890 } 1891 1892 if (FormatStr[1] == 's') { 1893 // fprintf(F, "%s", str) --> fputs(str, F) 1894 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1895 return nullptr; 1896 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 1897 } 1898 return nullptr; 1899 } 1900 1901 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 1902 Function *Callee = CI->getCalledFunction(); 1903 FunctionType *FT = Callee->getFunctionType(); 1904 if (Value *V = optimizeFPrintFString(CI, B)) { 1905 return V; 1906 } 1907 1908 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 1909 // floating point arguments. 1910 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 1911 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1912 Constant *FIPrintFFn = 1913 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 1914 CallInst *New = cast<CallInst>(CI->clone()); 1915 New->setCalledFunction(FIPrintFFn); 1916 B.Insert(New); 1917 return New; 1918 } 1919 return nullptr; 1920 } 1921 1922 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 1923 optimizeErrorReporting(CI, B, 3); 1924 1925 // Get the element size and count. 1926 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 1927 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1928 if (!SizeC || !CountC) 1929 return nullptr; 1930 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 1931 1932 // If this is writing zero records, remove the call (it's a noop). 1933 if (Bytes == 0) 1934 return ConstantInt::get(CI->getType(), 0); 1935 1936 // If this is writing one byte, turn it into fputc. 1937 // This optimisation is only valid, if the return value is unused. 1938 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 1939 Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char"); 1940 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 1941 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 1942 } 1943 1944 return nullptr; 1945 } 1946 1947 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 1948 optimizeErrorReporting(CI, B, 1); 1949 1950 // Don't rewrite fputs to fwrite when optimising for size because fwrite 1951 // requires more arguments and thus extra MOVs are required. 1952 if (CI->getParent()->getParent()->optForSize()) 1953 return nullptr; 1954 1955 // We can't optimize if return value is used. 1956 if (!CI->use_empty()) 1957 return nullptr; 1958 1959 // fputs(s,F) --> fwrite(s,1,strlen(s),F) 1960 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 1961 if (!Len) 1962 return nullptr; 1963 1964 // Known to have no uses (see above). 1965 return emitFWrite( 1966 CI->getArgOperand(0), 1967 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 1968 CI->getArgOperand(1), B, DL, TLI); 1969 } 1970 1971 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 1972 // Check for a constant string. 1973 StringRef Str; 1974 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1975 return nullptr; 1976 1977 if (Str.empty() && CI->use_empty()) { 1978 // puts("") -> putchar('\n') 1979 Value *Res = emitPutChar(B.getInt32('\n'), B, TLI); 1980 if (CI->use_empty() || !Res) 1981 return Res; 1982 return B.CreateIntCast(Res, CI->getType(), true); 1983 } 1984 1985 return nullptr; 1986 } 1987 1988 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 1989 LibFunc Func; 1990 SmallString<20> FloatFuncName = FuncName; 1991 FloatFuncName += 'f'; 1992 if (TLI->getLibFunc(FloatFuncName, Func)) 1993 return TLI->has(Func); 1994 return false; 1995 } 1996 1997 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 1998 IRBuilder<> &Builder) { 1999 LibFunc Func; 2000 Function *Callee = CI->getCalledFunction(); 2001 // Check for string/memory library functions. 2002 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2003 // Make sure we never change the calling convention. 2004 assert((ignoreCallingConv(Func) || 2005 isCallingConvCCompatible(CI)) && 2006 "Optimizing string/memory libcall would change the calling convention"); 2007 switch (Func) { 2008 case LibFunc_strcat: 2009 return optimizeStrCat(CI, Builder); 2010 case LibFunc_strncat: 2011 return optimizeStrNCat(CI, Builder); 2012 case LibFunc_strchr: 2013 return optimizeStrChr(CI, Builder); 2014 case LibFunc_strrchr: 2015 return optimizeStrRChr(CI, Builder); 2016 case LibFunc_strcmp: 2017 return optimizeStrCmp(CI, Builder); 2018 case LibFunc_strncmp: 2019 return optimizeStrNCmp(CI, Builder); 2020 case LibFunc_strcpy: 2021 return optimizeStrCpy(CI, Builder); 2022 case LibFunc_stpcpy: 2023 return optimizeStpCpy(CI, Builder); 2024 case LibFunc_strncpy: 2025 return optimizeStrNCpy(CI, Builder); 2026 case LibFunc_strlen: 2027 return optimizeStrLen(CI, Builder); 2028 case LibFunc_strpbrk: 2029 return optimizeStrPBrk(CI, Builder); 2030 case LibFunc_strtol: 2031 case LibFunc_strtod: 2032 case LibFunc_strtof: 2033 case LibFunc_strtoul: 2034 case LibFunc_strtoll: 2035 case LibFunc_strtold: 2036 case LibFunc_strtoull: 2037 return optimizeStrTo(CI, Builder); 2038 case LibFunc_strspn: 2039 return optimizeStrSpn(CI, Builder); 2040 case LibFunc_strcspn: 2041 return optimizeStrCSpn(CI, Builder); 2042 case LibFunc_strstr: 2043 return optimizeStrStr(CI, Builder); 2044 case LibFunc_memchr: 2045 return optimizeMemChr(CI, Builder); 2046 case LibFunc_memcmp: 2047 return optimizeMemCmp(CI, Builder); 2048 case LibFunc_memcpy: 2049 return optimizeMemCpy(CI, Builder); 2050 case LibFunc_memmove: 2051 return optimizeMemMove(CI, Builder); 2052 case LibFunc_memset: 2053 return optimizeMemSet(CI, Builder); 2054 case LibFunc_wcslen: 2055 return optimizeWcslen(CI, Builder); 2056 default: 2057 break; 2058 } 2059 } 2060 return nullptr; 2061 } 2062 2063 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2064 LibFunc Func, 2065 IRBuilder<> &Builder) { 2066 // Don't optimize calls that require strict floating point semantics. 2067 if (CI->isStrictFP()) 2068 return nullptr; 2069 2070 switch (Func) { 2071 case LibFunc_cosf: 2072 case LibFunc_cos: 2073 case LibFunc_cosl: 2074 return optimizeCos(CI, Builder); 2075 case LibFunc_sinpif: 2076 case LibFunc_sinpi: 2077 case LibFunc_cospif: 2078 case LibFunc_cospi: 2079 return optimizeSinCosPi(CI, Builder); 2080 case LibFunc_powf: 2081 case LibFunc_pow: 2082 case LibFunc_powl: 2083 return optimizePow(CI, Builder); 2084 case LibFunc_exp2l: 2085 case LibFunc_exp2: 2086 case LibFunc_exp2f: 2087 return optimizeExp2(CI, Builder); 2088 case LibFunc_fabsf: 2089 case LibFunc_fabs: 2090 case LibFunc_fabsl: 2091 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2092 case LibFunc_sqrtf: 2093 case LibFunc_sqrt: 2094 case LibFunc_sqrtl: 2095 return optimizeSqrt(CI, Builder); 2096 case LibFunc_log: 2097 case LibFunc_log10: 2098 case LibFunc_log1p: 2099 case LibFunc_log2: 2100 case LibFunc_logb: 2101 return optimizeLog(CI, Builder); 2102 case LibFunc_tan: 2103 case LibFunc_tanf: 2104 case LibFunc_tanl: 2105 return optimizeTan(CI, Builder); 2106 case LibFunc_ceil: 2107 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2108 case LibFunc_floor: 2109 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2110 case LibFunc_round: 2111 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2112 case LibFunc_nearbyint: 2113 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2114 case LibFunc_rint: 2115 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2116 case LibFunc_trunc: 2117 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2118 case LibFunc_acos: 2119 case LibFunc_acosh: 2120 case LibFunc_asin: 2121 case LibFunc_asinh: 2122 case LibFunc_atan: 2123 case LibFunc_atanh: 2124 case LibFunc_cbrt: 2125 case LibFunc_cosh: 2126 case LibFunc_exp: 2127 case LibFunc_exp10: 2128 case LibFunc_expm1: 2129 case LibFunc_sin: 2130 case LibFunc_sinh: 2131 case LibFunc_tanh: 2132 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 2133 return optimizeUnaryDoubleFP(CI, Builder, true); 2134 return nullptr; 2135 case LibFunc_copysign: 2136 if (hasFloatVersion(CI->getCalledFunction()->getName())) 2137 return optimizeBinaryDoubleFP(CI, Builder); 2138 return nullptr; 2139 case LibFunc_fminf: 2140 case LibFunc_fmin: 2141 case LibFunc_fminl: 2142 case LibFunc_fmaxf: 2143 case LibFunc_fmax: 2144 case LibFunc_fmaxl: 2145 return optimizeFMinFMax(CI, Builder); 2146 default: 2147 return nullptr; 2148 } 2149 } 2150 2151 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 2152 // TODO: Split out the code below that operates on FP calls so that 2153 // we can all non-FP calls with the StrictFP attribute to be 2154 // optimized. 2155 if (CI->isNoBuiltin()) 2156 return nullptr; 2157 2158 LibFunc Func; 2159 Function *Callee = CI->getCalledFunction(); 2160 2161 SmallVector<OperandBundleDef, 2> OpBundles; 2162 CI->getOperandBundlesAsDefs(OpBundles); 2163 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2164 bool isCallingConvC = isCallingConvCCompatible(CI); 2165 2166 // Command-line parameter overrides instruction attribute. 2167 // This can't be moved to optimizeFloatingPointLibCall() because it may be 2168 // used by the intrinsic optimizations. 2169 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2170 UnsafeFPShrink = EnableUnsafeFPShrink; 2171 else if (isa<FPMathOperator>(CI) && CI->hasUnsafeAlgebra()) 2172 UnsafeFPShrink = true; 2173 2174 // First, check for intrinsics. 2175 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2176 if (!isCallingConvC) 2177 return nullptr; 2178 // The FP intrinsics have corresponding constrained versions so we don't 2179 // need to check for the StrictFP attribute here. 2180 switch (II->getIntrinsicID()) { 2181 case Intrinsic::pow: 2182 return optimizePow(CI, Builder); 2183 case Intrinsic::exp2: 2184 return optimizeExp2(CI, Builder); 2185 case Intrinsic::log: 2186 return optimizeLog(CI, Builder); 2187 case Intrinsic::sqrt: 2188 return optimizeSqrt(CI, Builder); 2189 // TODO: Use foldMallocMemset() with memset intrinsic. 2190 default: 2191 return nullptr; 2192 } 2193 } 2194 2195 // Also try to simplify calls to fortified library functions. 2196 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 2197 // Try to further simplify the result. 2198 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 2199 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 2200 // Use an IR Builder from SimplifiedCI if available instead of CI 2201 // to guarantee we reach all uses we might replace later on. 2202 IRBuilder<> TmpBuilder(SimplifiedCI); 2203 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { 2204 // If we were able to further simplify, remove the now redundant call. 2205 SimplifiedCI->replaceAllUsesWith(V); 2206 SimplifiedCI->eraseFromParent(); 2207 return V; 2208 } 2209 } 2210 return SimplifiedFortifiedCI; 2211 } 2212 2213 // Then check for known library functions. 2214 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2215 // We never change the calling convention. 2216 if (!ignoreCallingConv(Func) && !isCallingConvC) 2217 return nullptr; 2218 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 2219 return V; 2220 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 2221 return V; 2222 switch (Func) { 2223 case LibFunc_ffs: 2224 case LibFunc_ffsl: 2225 case LibFunc_ffsll: 2226 return optimizeFFS(CI, Builder); 2227 case LibFunc_fls: 2228 case LibFunc_flsl: 2229 case LibFunc_flsll: 2230 return optimizeFls(CI, Builder); 2231 case LibFunc_abs: 2232 case LibFunc_labs: 2233 case LibFunc_llabs: 2234 return optimizeAbs(CI, Builder); 2235 case LibFunc_isdigit: 2236 return optimizeIsDigit(CI, Builder); 2237 case LibFunc_isascii: 2238 return optimizeIsAscii(CI, Builder); 2239 case LibFunc_toascii: 2240 return optimizeToAscii(CI, Builder); 2241 case LibFunc_printf: 2242 return optimizePrintF(CI, Builder); 2243 case LibFunc_sprintf: 2244 return optimizeSPrintF(CI, Builder); 2245 case LibFunc_fprintf: 2246 return optimizeFPrintF(CI, Builder); 2247 case LibFunc_fwrite: 2248 return optimizeFWrite(CI, Builder); 2249 case LibFunc_fputs: 2250 return optimizeFPuts(CI, Builder); 2251 case LibFunc_puts: 2252 return optimizePuts(CI, Builder); 2253 case LibFunc_perror: 2254 return optimizeErrorReporting(CI, Builder); 2255 case LibFunc_vfprintf: 2256 case LibFunc_fiprintf: 2257 return optimizeErrorReporting(CI, Builder, 0); 2258 case LibFunc_fputc: 2259 return optimizeErrorReporting(CI, Builder, 1); 2260 default: 2261 return nullptr; 2262 } 2263 } 2264 return nullptr; 2265 } 2266 2267 LibCallSimplifier::LibCallSimplifier( 2268 const DataLayout &DL, const TargetLibraryInfo *TLI, 2269 OptimizationRemarkEmitter &ORE, 2270 function_ref<void(Instruction *, Value *)> Replacer) 2271 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), 2272 UnsafeFPShrink(false), Replacer(Replacer) {} 2273 2274 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 2275 // Indirect through the replacer used in this instance. 2276 Replacer(I, With); 2277 } 2278 2279 // TODO: 2280 // Additional cases that we need to add to this file: 2281 // 2282 // cbrt: 2283 // * cbrt(expN(X)) -> expN(x/3) 2284 // * cbrt(sqrt(x)) -> pow(x,1/6) 2285 // * cbrt(cbrt(x)) -> pow(x,1/9) 2286 // 2287 // exp, expf, expl: 2288 // * exp(log(x)) -> x 2289 // 2290 // log, logf, logl: 2291 // * log(exp(x)) -> x 2292 // * log(exp(y)) -> y*log(e) 2293 // * log(exp10(y)) -> y*log(10) 2294 // * log(sqrt(x)) -> 0.5*log(x) 2295 // 2296 // pow, powf, powl: 2297 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2298 // * pow(pow(x,y),z)-> pow(x,y*z) 2299 // 2300 // signbit: 2301 // * signbit(cnst) -> cnst' 2302 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2303 // 2304 // sqrt, sqrtf, sqrtl: 2305 // * sqrt(expN(x)) -> expN(x*0.5) 2306 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2307 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2308 // 2309 2310 //===----------------------------------------------------------------------===// 2311 // Fortified Library Call Optimizations 2312 //===----------------------------------------------------------------------===// 2313 2314 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2315 unsigned ObjSizeOp, 2316 unsigned SizeOp, 2317 bool isString) { 2318 if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp)) 2319 return true; 2320 if (ConstantInt *ObjSizeCI = 2321 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2322 if (ObjSizeCI->isMinusOne()) 2323 return true; 2324 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2325 if (OnlyLowerUnknownSize) 2326 return false; 2327 if (isString) { 2328 uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp)); 2329 // If the length is 0 we don't know how long it is and so we can't 2330 // remove the check. 2331 if (Len == 0) 2332 return false; 2333 return ObjSizeCI->getZExtValue() >= Len; 2334 } 2335 if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp))) 2336 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2337 } 2338 return false; 2339 } 2340 2341 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 2342 IRBuilder<> &B) { 2343 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2344 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2345 CI->getArgOperand(2), 1); 2346 return CI->getArgOperand(0); 2347 } 2348 return nullptr; 2349 } 2350 2351 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 2352 IRBuilder<> &B) { 2353 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2354 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 2355 CI->getArgOperand(2), 1); 2356 return CI->getArgOperand(0); 2357 } 2358 return nullptr; 2359 } 2360 2361 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 2362 IRBuilder<> &B) { 2363 // TODO: Try foldMallocMemset() here. 2364 2365 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2366 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2367 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2368 return CI->getArgOperand(0); 2369 } 2370 return nullptr; 2371 } 2372 2373 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 2374 IRBuilder<> &B, 2375 LibFunc Func) { 2376 Function *Callee = CI->getCalledFunction(); 2377 StringRef Name = Callee->getName(); 2378 const DataLayout &DL = CI->getModule()->getDataLayout(); 2379 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 2380 *ObjSize = CI->getArgOperand(2); 2381 2382 // __stpcpy_chk(x,x,...) -> x+strlen(x) 2383 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 2384 Value *StrLen = emitStrLen(Src, B, DL, TLI); 2385 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 2386 } 2387 2388 // If a) we don't have any length information, or b) we know this will 2389 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 2390 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 2391 // TODO: It might be nice to get a maximum length out of the possible 2392 // string lengths for varying. 2393 if (isFortifiedCallFoldable(CI, 2, 1, true)) 2394 return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6)); 2395 2396 if (OnlyLowerUnknownSize) 2397 return nullptr; 2398 2399 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 2400 uint64_t Len = GetStringLength(Src); 2401 if (Len == 0) 2402 return nullptr; 2403 2404 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 2405 Value *LenV = ConstantInt::get(SizeTTy, Len); 2406 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 2407 // If the function was an __stpcpy_chk, and we were able to fold it into 2408 // a __memcpy_chk, we still need to return the correct end pointer. 2409 if (Ret && Func == LibFunc_stpcpy_chk) 2410 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 2411 return Ret; 2412 } 2413 2414 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 2415 IRBuilder<> &B, 2416 LibFunc Func) { 2417 Function *Callee = CI->getCalledFunction(); 2418 StringRef Name = Callee->getName(); 2419 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2420 Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2421 CI->getArgOperand(2), B, TLI, Name.substr(2, 7)); 2422 return Ret; 2423 } 2424 return nullptr; 2425 } 2426 2427 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 2428 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 2429 // Some clang users checked for _chk libcall availability using: 2430 // __has_builtin(__builtin___memcpy_chk) 2431 // When compiling with -fno-builtin, this is always true. 2432 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 2433 // end up with fortified libcalls, which isn't acceptable in a freestanding 2434 // environment which only provides their non-fortified counterparts. 2435 // 2436 // Until we change clang and/or teach external users to check for availability 2437 // differently, disregard the "nobuiltin" attribute and TLI::has. 2438 // 2439 // PR23093. 2440 2441 LibFunc Func; 2442 Function *Callee = CI->getCalledFunction(); 2443 2444 SmallVector<OperandBundleDef, 2> OpBundles; 2445 CI->getOperandBundlesAsDefs(OpBundles); 2446 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2447 bool isCallingConvC = isCallingConvCCompatible(CI); 2448 2449 // First, check that this is a known library functions and that the prototype 2450 // is correct. 2451 if (!TLI->getLibFunc(*Callee, Func)) 2452 return nullptr; 2453 2454 // We never change the calling convention. 2455 if (!ignoreCallingConv(Func) && !isCallingConvC) 2456 return nullptr; 2457 2458 switch (Func) { 2459 case LibFunc_memcpy_chk: 2460 return optimizeMemCpyChk(CI, Builder); 2461 case LibFunc_memmove_chk: 2462 return optimizeMemMoveChk(CI, Builder); 2463 case LibFunc_memset_chk: 2464 return optimizeMemSetChk(CI, Builder); 2465 case LibFunc_stpcpy_chk: 2466 case LibFunc_strcpy_chk: 2467 return optimizeStrpCpyChk(CI, Builder, Func); 2468 case LibFunc_stpncpy_chk: 2469 case LibFunc_strncpy_chk: 2470 return optimizeStrpNCpyChk(CI, Builder, Func); 2471 default: 2472 break; 2473 } 2474 return nullptr; 2475 } 2476 2477 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 2478 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 2479 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 2480