1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Transforms/Utils/BuildLibCalls.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Transforms/Utils/SizeOpts.h" 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 static cl::opt<bool> 40 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 41 cl::init(false), 42 cl::desc("Enable unsafe double to float " 43 "shrinking for math lib calls")); 44 45 //===----------------------------------------------------------------------===// 46 // Helper Functions 47 //===----------------------------------------------------------------------===// 48 49 static bool ignoreCallingConv(LibFunc Func) { 50 return Func == LibFunc_abs || Func == LibFunc_labs || 51 Func == LibFunc_llabs || Func == LibFunc_strlen; 52 } 53 54 /// Return true if it is only used in equality comparisons with With. 55 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 56 for (User *U : V->users()) { 57 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 58 if (IC->isEquality() && IC->getOperand(1) == With) 59 continue; 60 // Unknown instruction. 61 return false; 62 } 63 return true; 64 } 65 66 static bool callHasFloatingPointArgument(const CallInst *CI) { 67 return any_of(CI->operands(), [](const Use &OI) { 68 return OI->getType()->isFloatingPointTy(); 69 }); 70 } 71 72 static bool callHasFP128Argument(const CallInst *CI) { 73 return any_of(CI->operands(), [](const Use &OI) { 74 return OI->getType()->isFP128Ty(); 75 }); 76 } 77 78 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 79 if (Base < 2 || Base > 36) 80 // handle special zero base 81 if (Base != 0) 82 return nullptr; 83 84 char *End; 85 std::string nptr = Str.str(); 86 errno = 0; 87 long long int Result = strtoll(nptr.c_str(), &End, Base); 88 if (errno) 89 return nullptr; 90 91 // if we assume all possible target locales are ASCII supersets, 92 // then if strtoll successfully parses a number on the host, 93 // it will also successfully parse the same way on the target 94 if (*End != '\0') 95 return nullptr; 96 97 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 98 return nullptr; 99 100 return ConstantInt::get(CI->getType(), Result); 101 } 102 103 static bool isOnlyUsedInComparisonWithZero(Value *V) { 104 for (User *U : V->users()) { 105 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 106 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 107 if (C->isNullValue()) 108 continue; 109 // Unknown instruction. 110 return false; 111 } 112 return true; 113 } 114 115 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 116 const DataLayout &DL) { 117 if (!isOnlyUsedInComparisonWithZero(CI)) 118 return false; 119 120 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 121 return false; 122 123 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 124 return false; 125 126 return true; 127 } 128 129 static void annotateDereferenceableBytes(CallInst *CI, 130 ArrayRef<unsigned> ArgNos, 131 uint64_t DereferenceableBytes) { 132 const Function *F = CI->getCaller(); 133 if (!F) 134 return; 135 for (unsigned ArgNo : ArgNos) { 136 uint64_t DerefBytes = DereferenceableBytes; 137 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 138 if (!llvm::NullPointerIsDefined(F, AS) || 139 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 140 DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo), 141 DereferenceableBytes); 142 143 if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) { 144 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 145 if (!llvm::NullPointerIsDefined(F, AS) || 146 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 147 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 148 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 149 CI->getContext(), DerefBytes)); 150 } 151 } 152 } 153 154 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, 155 ArrayRef<unsigned> ArgNos) { 156 Function *F = CI->getCaller(); 157 if (!F) 158 return; 159 160 for (unsigned ArgNo : ArgNos) { 161 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef)) 162 CI->addParamAttr(ArgNo, Attribute::NoUndef); 163 164 if (CI->paramHasAttr(ArgNo, Attribute::NonNull)) 165 continue; 166 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 167 if (llvm::NullPointerIsDefined(F, AS)) 168 continue; 169 170 CI->addParamAttr(ArgNo, Attribute::NonNull); 171 annotateDereferenceableBytes(CI, ArgNo, 1); 172 } 173 } 174 175 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 176 Value *Size, const DataLayout &DL) { 177 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 178 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 179 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 180 } else if (isKnownNonZero(Size, DL)) { 181 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 182 const APInt *X, *Y; 183 uint64_t DerefMin = 1; 184 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 185 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 186 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 187 } 188 } 189 } 190 191 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for 192 // easier chaining. Calls to emit* and B.createCall should probably be wrapped 193 // in this function when New is created to replace Old. Callers should take 194 // care to check Old.isMustTailCall() if they aren't replacing Old directly 195 // with New. 196 static Value *copyFlags(const CallInst &Old, Value *New) { 197 assert(!Old.isMustTailCall() && "do not copy musttail call flags"); 198 assert(!Old.isNoTailCall() && "do not copy notail call flags"); 199 if (auto *NewCI = dyn_cast_or_null<CallInst>(New)) 200 NewCI->setTailCallKind(Old.getTailCallKind()); 201 return New; 202 } 203 204 //===----------------------------------------------------------------------===// 205 // String and Memory Library Call Optimizations 206 //===----------------------------------------------------------------------===// 207 208 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 209 // Extract some information from the instruction 210 Value *Dst = CI->getArgOperand(0); 211 Value *Src = CI->getArgOperand(1); 212 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 213 214 // See if we can get the length of the input string. 215 uint64_t Len = GetStringLength(Src); 216 if (Len) 217 annotateDereferenceableBytes(CI, 1, Len); 218 else 219 return nullptr; 220 --Len; // Unbias length. 221 222 // Handle the simple, do-nothing case: strcat(x, "") -> x 223 if (Len == 0) 224 return Dst; 225 226 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B)); 227 } 228 229 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 230 IRBuilderBase &B) { 231 // We need to find the end of the destination string. That's where the 232 // memory is to be moved to. We just generate a call to strlen. 233 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 234 if (!DstLen) 235 return nullptr; 236 237 // Now that we have the destination's length, we must index into the 238 // destination's pointer to get the actual memcpy destination (end of 239 // the string .. we're concatenating). 240 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 241 242 // We have enough information to now generate the memcpy call to do the 243 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 244 B.CreateMemCpy( 245 CpyDst, Align(1), Src, Align(1), 246 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 247 return Dst; 248 } 249 250 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 251 // Extract some information from the instruction. 252 Value *Dst = CI->getArgOperand(0); 253 Value *Src = CI->getArgOperand(1); 254 Value *Size = CI->getArgOperand(2); 255 uint64_t Len; 256 annotateNonNullNoUndefBasedOnAccess(CI, 0); 257 if (isKnownNonZero(Size, DL)) 258 annotateNonNullNoUndefBasedOnAccess(CI, 1); 259 260 // We don't do anything if length is not constant. 261 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 262 if (LengthArg) { 263 Len = LengthArg->getZExtValue(); 264 // strncat(x, c, 0) -> x 265 if (!Len) 266 return Dst; 267 } else { 268 return nullptr; 269 } 270 271 // See if we can get the length of the input string. 272 uint64_t SrcLen = GetStringLength(Src); 273 if (SrcLen) { 274 annotateDereferenceableBytes(CI, 1, SrcLen); 275 --SrcLen; // Unbias length. 276 } else { 277 return nullptr; 278 } 279 280 // strncat(x, "", c) -> x 281 if (SrcLen == 0) 282 return Dst; 283 284 // We don't optimize this case. 285 if (Len < SrcLen) 286 return nullptr; 287 288 // strncat(x, s, c) -> strcat(x, s) 289 // s is constant so the strcat can be optimized further. 290 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B)); 291 } 292 293 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 294 Function *Callee = CI->getCalledFunction(); 295 FunctionType *FT = Callee->getFunctionType(); 296 Value *SrcStr = CI->getArgOperand(0); 297 annotateNonNullNoUndefBasedOnAccess(CI, 0); 298 299 // If the second operand is non-constant, see if we can compute the length 300 // of the input string and turn this into memchr. 301 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 302 if (!CharC) { 303 uint64_t Len = GetStringLength(SrcStr); 304 if (Len) 305 annotateDereferenceableBytes(CI, 0, Len); 306 else 307 return nullptr; 308 if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 309 return nullptr; 310 311 return copyFlags( 312 *CI, 313 emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 314 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), B, 315 DL, TLI)); 316 } 317 318 // Otherwise, the character is a constant, see if the first argument is 319 // a string literal. If so, we can constant fold. 320 StringRef Str; 321 if (!getConstantStringInfo(SrcStr, Str)) { 322 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 323 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 324 return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 325 return nullptr; 326 } 327 328 // Compute the offset, make sure to handle the case when we're searching for 329 // zero (a weird way to spell strlen). 330 size_t I = (0xFF & CharC->getSExtValue()) == 0 331 ? Str.size() 332 : Str.find(CharC->getSExtValue()); 333 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 334 return Constant::getNullValue(CI->getType()); 335 336 // strchr(s+n,c) -> gep(s+n+i,c) 337 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 338 } 339 340 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 341 Value *SrcStr = CI->getArgOperand(0); 342 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 343 annotateNonNullNoUndefBasedOnAccess(CI, 0); 344 345 // Cannot fold anything if we're not looking for a constant. 346 if (!CharC) 347 return nullptr; 348 349 StringRef Str; 350 if (!getConstantStringInfo(SrcStr, Str)) { 351 // strrchr(s, 0) -> strchr(s, 0) 352 if (CharC->isZero()) 353 return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI)); 354 return nullptr; 355 } 356 357 // Compute the offset. 358 size_t I = (0xFF & CharC->getSExtValue()) == 0 359 ? Str.size() 360 : Str.rfind(CharC->getSExtValue()); 361 if (I == StringRef::npos) // Didn't find the char. Return null. 362 return Constant::getNullValue(CI->getType()); 363 364 // strrchr(s+n,c) -> gep(s+n+i,c) 365 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 366 } 367 368 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 369 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 370 if (Str1P == Str2P) // strcmp(x,x) -> 0 371 return ConstantInt::get(CI->getType(), 0); 372 373 StringRef Str1, Str2; 374 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 375 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 376 377 // strcmp(x, y) -> cnst (if both x and y are constant strings) 378 if (HasStr1 && HasStr2) 379 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 380 381 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 382 return B.CreateNeg(B.CreateZExt( 383 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 384 385 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 386 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 387 CI->getType()); 388 389 // strcmp(P, "x") -> memcmp(P, "x", 2) 390 uint64_t Len1 = GetStringLength(Str1P); 391 if (Len1) 392 annotateDereferenceableBytes(CI, 0, Len1); 393 uint64_t Len2 = GetStringLength(Str2P); 394 if (Len2) 395 annotateDereferenceableBytes(CI, 1, Len2); 396 397 if (Len1 && Len2) { 398 return copyFlags( 399 *CI, emitMemCmp(Str1P, Str2P, 400 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 401 std::min(Len1, Len2)), 402 B, DL, TLI)); 403 } 404 405 // strcmp to memcmp 406 if (!HasStr1 && HasStr2) { 407 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 408 return copyFlags( 409 *CI, 410 emitMemCmp(Str1P, Str2P, 411 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 412 B, DL, TLI)); 413 } else if (HasStr1 && !HasStr2) { 414 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 415 return copyFlags( 416 *CI, 417 emitMemCmp(Str1P, Str2P, 418 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 419 B, DL, TLI)); 420 } 421 422 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 423 return nullptr; 424 } 425 426 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 427 Value *Str1P = CI->getArgOperand(0); 428 Value *Str2P = CI->getArgOperand(1); 429 Value *Size = CI->getArgOperand(2); 430 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 431 return ConstantInt::get(CI->getType(), 0); 432 433 if (isKnownNonZero(Size, DL)) 434 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 435 // Get the length argument if it is constant. 436 uint64_t Length; 437 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 438 Length = LengthArg->getZExtValue(); 439 else 440 return nullptr; 441 442 if (Length == 0) // strncmp(x,y,0) -> 0 443 return ConstantInt::get(CI->getType(), 0); 444 445 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 446 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI)); 447 448 StringRef Str1, Str2; 449 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 450 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 451 452 // strncmp(x, y) -> cnst (if both x and y are constant strings) 453 if (HasStr1 && HasStr2) { 454 StringRef SubStr1 = Str1.substr(0, Length); 455 StringRef SubStr2 = Str2.substr(0, Length); 456 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 457 } 458 459 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 460 return B.CreateNeg(B.CreateZExt( 461 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 462 463 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 464 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 465 CI->getType()); 466 467 uint64_t Len1 = GetStringLength(Str1P); 468 if (Len1) 469 annotateDereferenceableBytes(CI, 0, Len1); 470 uint64_t Len2 = GetStringLength(Str2P); 471 if (Len2) 472 annotateDereferenceableBytes(CI, 1, Len2); 473 474 // strncmp to memcmp 475 if (!HasStr1 && HasStr2) { 476 Len2 = std::min(Len2, Length); 477 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 478 return copyFlags( 479 *CI, 480 emitMemCmp(Str1P, Str2P, 481 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 482 B, DL, TLI)); 483 } else if (HasStr1 && !HasStr2) { 484 Len1 = std::min(Len1, Length); 485 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 486 return copyFlags( 487 *CI, 488 emitMemCmp(Str1P, Str2P, 489 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 490 B, DL, TLI)); 491 } 492 493 return nullptr; 494 } 495 496 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 497 Value *Src = CI->getArgOperand(0); 498 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 499 uint64_t SrcLen = GetStringLength(Src); 500 if (SrcLen && Size) { 501 annotateDereferenceableBytes(CI, 0, SrcLen); 502 if (SrcLen <= Size->getZExtValue() + 1) 503 return copyFlags(*CI, emitStrDup(Src, B, TLI)); 504 } 505 506 return nullptr; 507 } 508 509 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 510 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 511 if (Dst == Src) // strcpy(x,x) -> x 512 return Src; 513 514 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 515 // See if we can get the length of the input string. 516 uint64_t Len = GetStringLength(Src); 517 if (Len) 518 annotateDereferenceableBytes(CI, 1, Len); 519 else 520 return nullptr; 521 522 // We have enough information to now generate the memcpy call to do the 523 // copy for us. Make a memcpy to copy the nul byte with align = 1. 524 CallInst *NewCI = 525 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 526 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 527 NewCI->setAttributes(CI->getAttributes()); 528 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 529 copyFlags(*CI, NewCI); 530 return Dst; 531 } 532 533 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 534 Function *Callee = CI->getCalledFunction(); 535 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 536 537 // stpcpy(d,s) -> strcpy(d,s) if the result is not used. 538 if (CI->use_empty()) 539 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 540 541 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 542 Value *StrLen = emitStrLen(Src, B, DL, TLI); 543 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 544 } 545 546 // See if we can get the length of the input string. 547 uint64_t Len = GetStringLength(Src); 548 if (Len) 549 annotateDereferenceableBytes(CI, 1, Len); 550 else 551 return nullptr; 552 553 Type *PT = Callee->getFunctionType()->getParamType(0); 554 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 555 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 556 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 557 558 // We have enough information to now generate the memcpy call to do the 559 // copy for us. Make a memcpy to copy the nul byte with align = 1. 560 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 561 NewCI->setAttributes(CI->getAttributes()); 562 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 563 copyFlags(*CI, NewCI); 564 return DstEnd; 565 } 566 567 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) { 568 Function *Callee = CI->getCalledFunction(); 569 Value *Dst = CI->getArgOperand(0); 570 Value *Src = CI->getArgOperand(1); 571 Value *Size = CI->getArgOperand(2); 572 annotateNonNullNoUndefBasedOnAccess(CI, 0); 573 if (isKnownNonZero(Size, DL)) 574 annotateNonNullNoUndefBasedOnAccess(CI, 1); 575 576 uint64_t Len; 577 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 578 Len = LengthArg->getZExtValue(); 579 else 580 return nullptr; 581 582 // strncpy(x, y, 0) -> x 583 if (Len == 0) 584 return Dst; 585 586 // See if we can get the length of the input string. 587 uint64_t SrcLen = GetStringLength(Src); 588 if (SrcLen) { 589 annotateDereferenceableBytes(CI, 1, SrcLen); 590 --SrcLen; // Unbias length. 591 } else { 592 return nullptr; 593 } 594 595 if (SrcLen == 0) { 596 // strncpy(x, "", y) -> memset(x, '\0', y) 597 Align MemSetAlign = 598 CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne(); 599 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign); 600 AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0)); 601 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 602 CI->getContext(), 0, ArgAttrs)); 603 copyFlags(*CI, NewCI); 604 return Dst; 605 } 606 607 // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4) 608 if (Len > SrcLen + 1) { 609 if (Len <= 128) { 610 StringRef Str; 611 if (!getConstantStringInfo(Src, Str)) 612 return nullptr; 613 std::string SrcStr = Str.str(); 614 SrcStr.resize(Len, '\0'); 615 Src = B.CreateGlobalString(SrcStr, "str"); 616 } else { 617 return nullptr; 618 } 619 } 620 621 Type *PT = Callee->getFunctionType()->getParamType(0); 622 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 623 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 624 ConstantInt::get(DL.getIntPtrType(PT), Len)); 625 NewCI->setAttributes(CI->getAttributes()); 626 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 627 copyFlags(*CI, NewCI); 628 return Dst; 629 } 630 631 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 632 unsigned CharSize) { 633 Value *Src = CI->getArgOperand(0); 634 635 // Constant folding: strlen("xyz") -> 3 636 if (uint64_t Len = GetStringLength(Src, CharSize)) 637 return ConstantInt::get(CI->getType(), Len - 1); 638 639 // If s is a constant pointer pointing to a string literal, we can fold 640 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 641 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 642 // We only try to simplify strlen when the pointer s points to an array 643 // of i8. Otherwise, we would need to scale the offset x before doing the 644 // subtraction. This will make the optimization more complex, and it's not 645 // very useful because calling strlen for a pointer of other types is 646 // very uncommon. 647 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 648 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 649 return nullptr; 650 651 ConstantDataArraySlice Slice; 652 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 653 uint64_t NullTermIdx; 654 if (Slice.Array == nullptr) { 655 NullTermIdx = 0; 656 } else { 657 NullTermIdx = ~((uint64_t)0); 658 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 659 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 660 NullTermIdx = I; 661 break; 662 } 663 } 664 // If the string does not have '\0', leave it to strlen to compute 665 // its length. 666 if (NullTermIdx == ~((uint64_t)0)) 667 return nullptr; 668 } 669 670 Value *Offset = GEP->getOperand(2); 671 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 672 uint64_t ArrSize = 673 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 674 675 // If Offset is not provably in the range [0, NullTermIdx], we can still 676 // optimize if we can prove that the program has undefined behavior when 677 // Offset is outside that range. That is the case when GEP->getOperand(0) 678 // is a pointer to an object whose memory extent is NullTermIdx+1. 679 if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) || 680 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 681 NullTermIdx == ArrSize - 1)) { 682 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 683 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 684 Offset); 685 } 686 } 687 } 688 689 // strlen(x?"foo":"bars") --> x ? 3 : 4 690 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 691 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 692 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 693 if (LenTrue && LenFalse) { 694 ORE.emit([&]() { 695 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 696 << "folded strlen(select) to select of constants"; 697 }); 698 return B.CreateSelect(SI->getCondition(), 699 ConstantInt::get(CI->getType(), LenTrue - 1), 700 ConstantInt::get(CI->getType(), LenFalse - 1)); 701 } 702 } 703 704 // strlen(x) != 0 --> *x != 0 705 // strlen(x) == 0 --> *x == 0 706 if (isOnlyUsedInZeroEqualityComparison(CI)) 707 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), 708 CI->getType()); 709 710 return nullptr; 711 } 712 713 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 714 if (Value *V = optimizeStringLength(CI, B, 8)) 715 return V; 716 annotateNonNullNoUndefBasedOnAccess(CI, 0); 717 return nullptr; 718 } 719 720 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 721 Module &M = *CI->getModule(); 722 unsigned WCharSize = TLI->getWCharSize(M) * 8; 723 // We cannot perform this optimization without wchar_size metadata. 724 if (WCharSize == 0) 725 return nullptr; 726 727 return optimizeStringLength(CI, B, WCharSize); 728 } 729 730 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 731 StringRef S1, S2; 732 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 733 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 734 735 // strpbrk(s, "") -> nullptr 736 // strpbrk("", s) -> nullptr 737 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 738 return Constant::getNullValue(CI->getType()); 739 740 // Constant folding. 741 if (HasS1 && HasS2) { 742 size_t I = S1.find_first_of(S2); 743 if (I == StringRef::npos) // No match. 744 return Constant::getNullValue(CI->getType()); 745 746 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 747 "strpbrk"); 748 } 749 750 // strpbrk(s, "a") -> strchr(s, 'a') 751 if (HasS2 && S2.size() == 1) 752 return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI)); 753 754 return nullptr; 755 } 756 757 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 758 Value *EndPtr = CI->getArgOperand(1); 759 if (isa<ConstantPointerNull>(EndPtr)) { 760 // With a null EndPtr, this function won't capture the main argument. 761 // It would be readonly too, except that it still may write to errno. 762 CI->addParamAttr(0, Attribute::NoCapture); 763 } 764 765 return nullptr; 766 } 767 768 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 769 StringRef S1, S2; 770 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 771 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 772 773 // strspn(s, "") -> 0 774 // strspn("", s) -> 0 775 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 776 return Constant::getNullValue(CI->getType()); 777 778 // Constant folding. 779 if (HasS1 && HasS2) { 780 size_t Pos = S1.find_first_not_of(S2); 781 if (Pos == StringRef::npos) 782 Pos = S1.size(); 783 return ConstantInt::get(CI->getType(), Pos); 784 } 785 786 return nullptr; 787 } 788 789 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 790 StringRef S1, S2; 791 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 792 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 793 794 // strcspn("", s) -> 0 795 if (HasS1 && S1.empty()) 796 return Constant::getNullValue(CI->getType()); 797 798 // Constant folding. 799 if (HasS1 && HasS2) { 800 size_t Pos = S1.find_first_of(S2); 801 if (Pos == StringRef::npos) 802 Pos = S1.size(); 803 return ConstantInt::get(CI->getType(), Pos); 804 } 805 806 // strcspn(s, "") -> strlen(s) 807 if (HasS2 && S2.empty()) 808 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI)); 809 810 return nullptr; 811 } 812 813 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 814 // fold strstr(x, x) -> x. 815 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 816 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 817 818 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 819 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 820 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 821 if (!StrLen) 822 return nullptr; 823 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 824 StrLen, B, DL, TLI); 825 if (!StrNCmp) 826 return nullptr; 827 for (User *U : llvm::make_early_inc_range(CI->users())) { 828 ICmpInst *Old = cast<ICmpInst>(U); 829 Value *Cmp = 830 B.CreateICmp(Old->getPredicate(), StrNCmp, 831 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 832 replaceAllUsesWith(Old, Cmp); 833 } 834 return CI; 835 } 836 837 // See if either input string is a constant string. 838 StringRef SearchStr, ToFindStr; 839 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 840 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 841 842 // fold strstr(x, "") -> x. 843 if (HasStr2 && ToFindStr.empty()) 844 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 845 846 // If both strings are known, constant fold it. 847 if (HasStr1 && HasStr2) { 848 size_t Offset = SearchStr.find(ToFindStr); 849 850 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 851 return Constant::getNullValue(CI->getType()); 852 853 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 854 Value *Result = castToCStr(CI->getArgOperand(0), B); 855 Result = 856 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 857 return B.CreateBitCast(Result, CI->getType()); 858 } 859 860 // fold strstr(x, "y") -> strchr(x, 'y'). 861 if (HasStr2 && ToFindStr.size() == 1) { 862 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 863 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 864 } 865 866 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 867 return nullptr; 868 } 869 870 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 871 if (isKnownNonZero(CI->getOperand(2), DL)) 872 annotateNonNullNoUndefBasedOnAccess(CI, 0); 873 return nullptr; 874 } 875 876 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 877 Value *SrcStr = CI->getArgOperand(0); 878 Value *Size = CI->getArgOperand(2); 879 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 880 Value *CharVal = CI->getArgOperand(1); 881 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 882 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 883 884 // memchr(x, y, 0) -> null 885 if (LenC) { 886 if (LenC->isZero()) 887 return Constant::getNullValue(CI->getType()); 888 889 if (LenC->isOne()) { 890 // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y, 891 // constant or otherwise. 892 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0"); 893 // Slice off the character's high end bits. 894 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 895 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp"); 896 Value *NullPtr = Constant::getNullValue(CI->getType()); 897 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel"); 898 } 899 } 900 901 StringRef Str; 902 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 903 return nullptr; 904 905 if (CharC) { 906 size_t Pos = Str.find(CharC->getZExtValue()); 907 if (Pos == StringRef::npos) 908 // When the character is not in the source array fold the result 909 // to null regardless of Size. 910 return Constant::getNullValue(CI->getType()); 911 912 // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos 913 // When the constant Size is less than or equal to the character 914 // position also fold the result to null. 915 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos), 916 "memchr.cmp"); 917 Value *NullPtr = Constant::getNullValue(CI->getType()); 918 Value *SrcPlus = 919 B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), "memchr.ptr"); 920 return B.CreateSelect(Cmp, NullPtr, SrcPlus); 921 } 922 923 if (!LenC) 924 // From now on we need a constant length and constant array. 925 return nullptr; 926 927 // Truncate the string to LenC. 928 Str = Str.substr(0, LenC->getZExtValue()); 929 930 // If the char is variable but the input str and length are not we can turn 931 // this memchr call into a simple bit field test. Of course this only works 932 // when the return value is only checked against null. 933 // 934 // It would be really nice to reuse switch lowering here but we can't change 935 // the CFG at this point. 936 // 937 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 938 // != 0 939 // after bounds check. 940 if (Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI)) 941 return nullptr; 942 943 unsigned char Max = 944 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 945 reinterpret_cast<const unsigned char *>(Str.end())); 946 947 // Make sure the bit field we're about to create fits in a register on the 948 // target. 949 // FIXME: On a 64 bit architecture this prevents us from using the 950 // interesting range of alpha ascii chars. We could do better by emitting 951 // two bitfields or shifting the range by 64 if no lower chars are used. 952 if (!DL.fitsInLegalInteger(Max + 1)) 953 return nullptr; 954 955 // For the bit field use a power-of-2 type with at least 8 bits to avoid 956 // creating unnecessary illegal types. 957 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 958 959 // Now build the bit field. 960 APInt Bitfield(Width, 0); 961 for (char C : Str) 962 Bitfield.setBit((unsigned char)C); 963 Value *BitfieldC = B.getInt(Bitfield); 964 965 // Adjust width of "C" to the bitfield width, then mask off the high bits. 966 Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType()); 967 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 968 969 // First check that the bit field access is within bounds. 970 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 971 "memchr.bounds"); 972 973 // Create code that checks if the given bit is set in the field. 974 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 975 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 976 977 // Finally merge both checks and cast to pointer type. The inttoptr 978 // implicitly zexts the i1 to intptr type. 979 return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"), 980 CI->getType()); 981 } 982 983 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 984 uint64_t Len, IRBuilderBase &B, 985 const DataLayout &DL) { 986 if (Len == 0) // memcmp(s1,s2,0) -> 0 987 return Constant::getNullValue(CI->getType()); 988 989 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 990 if (Len == 1) { 991 Value *LHSV = 992 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 993 CI->getType(), "lhsv"); 994 Value *RHSV = 995 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 996 CI->getType(), "rhsv"); 997 return B.CreateSub(LHSV, RHSV, "chardiff"); 998 } 999 1000 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 1001 // TODO: The case where both inputs are constants does not need to be limited 1002 // to legal integers or equality comparison. See block below this. 1003 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 1004 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 1005 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 1006 1007 // First, see if we can fold either argument to a constant. 1008 Value *LHSV = nullptr; 1009 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 1010 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 1011 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 1012 } 1013 Value *RHSV = nullptr; 1014 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 1015 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 1016 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 1017 } 1018 1019 // Don't generate unaligned loads. If either source is constant data, 1020 // alignment doesn't matter for that source because there is no load. 1021 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 1022 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 1023 if (!LHSV) { 1024 Type *LHSPtrTy = 1025 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 1026 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 1027 } 1028 if (!RHSV) { 1029 Type *RHSPtrTy = 1030 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 1031 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 1032 } 1033 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1034 } 1035 } 1036 1037 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 1038 // TODO: This is limited to i8 arrays. 1039 StringRef LHSStr, RHSStr; 1040 if (getConstantStringInfo(LHS, LHSStr) && 1041 getConstantStringInfo(RHS, RHSStr)) { 1042 // Make sure we're not reading out-of-bounds memory. 1043 if (Len > LHSStr.size() || Len > RHSStr.size()) 1044 return nullptr; 1045 // Fold the memcmp and normalize the result. This way we get consistent 1046 // results across multiple platforms. 1047 uint64_t Ret = 0; 1048 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 1049 if (Cmp < 0) 1050 Ret = -1; 1051 else if (Cmp > 0) 1052 Ret = 1; 1053 return ConstantInt::get(CI->getType(), Ret); 1054 } 1055 1056 return nullptr; 1057 } 1058 1059 // Most simplifications for memcmp also apply to bcmp. 1060 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1061 IRBuilderBase &B) { 1062 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1063 Value *Size = CI->getArgOperand(2); 1064 1065 if (LHS == RHS) // memcmp(s,s,x) -> 0 1066 return Constant::getNullValue(CI->getType()); 1067 1068 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1069 // Handle constant lengths. 1070 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1071 if (!LenC) 1072 return nullptr; 1073 1074 // memcmp(d,s,0) -> 0 1075 if (LenC->getZExtValue() == 0) 1076 return Constant::getNullValue(CI->getType()); 1077 1078 if (Value *Res = 1079 optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL)) 1080 return Res; 1081 return nullptr; 1082 } 1083 1084 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1085 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1086 return V; 1087 1088 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1089 // bcmp can be more efficient than memcmp because it only has to know that 1090 // there is a difference, not how different one is to the other. 1091 if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) { 1092 Value *LHS = CI->getArgOperand(0); 1093 Value *RHS = CI->getArgOperand(1); 1094 Value *Size = CI->getArgOperand(2); 1095 return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI)); 1096 } 1097 1098 return nullptr; 1099 } 1100 1101 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1102 return optimizeMemCmpBCmpCommon(CI, B); 1103 } 1104 1105 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1106 Value *Size = CI->getArgOperand(2); 1107 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1108 if (isa<IntrinsicInst>(CI)) 1109 return nullptr; 1110 1111 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1112 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1113 CI->getArgOperand(1), Align(1), Size); 1114 NewCI->setAttributes(CI->getAttributes()); 1115 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1116 copyFlags(*CI, NewCI); 1117 return CI->getArgOperand(0); 1118 } 1119 1120 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1121 Value *Dst = CI->getArgOperand(0); 1122 Value *Src = CI->getArgOperand(1); 1123 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1124 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1125 StringRef SrcStr; 1126 if (CI->use_empty() && Dst == Src) 1127 return Dst; 1128 // memccpy(d, s, c, 0) -> nullptr 1129 if (N) { 1130 if (N->isNullValue()) 1131 return Constant::getNullValue(CI->getType()); 1132 if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0, 1133 /*TrimAtNul=*/false) || 1134 !StopChar) 1135 return nullptr; 1136 } else { 1137 return nullptr; 1138 } 1139 1140 // Wrap arg 'c' of type int to char 1141 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1142 if (Pos == StringRef::npos) { 1143 if (N->getZExtValue() <= SrcStr.size()) { 1144 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), 1145 CI->getArgOperand(3))); 1146 return Constant::getNullValue(CI->getType()); 1147 } 1148 return nullptr; 1149 } 1150 1151 Value *NewN = 1152 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1153 // memccpy -> llvm.memcpy 1154 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN)); 1155 return Pos + 1 <= N->getZExtValue() 1156 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1157 : Constant::getNullValue(CI->getType()); 1158 } 1159 1160 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1161 Value *Dst = CI->getArgOperand(0); 1162 Value *N = CI->getArgOperand(2); 1163 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1164 CallInst *NewCI = 1165 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1166 // Propagate attributes, but memcpy has no return value, so make sure that 1167 // any return attributes are compliant. 1168 // TODO: Attach return value attributes to the 1st operand to preserve them? 1169 NewCI->setAttributes(CI->getAttributes()); 1170 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1171 copyFlags(*CI, NewCI); 1172 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1173 } 1174 1175 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1176 Value *Size = CI->getArgOperand(2); 1177 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1178 if (isa<IntrinsicInst>(CI)) 1179 return nullptr; 1180 1181 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1182 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1183 CI->getArgOperand(1), Align(1), Size); 1184 NewCI->setAttributes(CI->getAttributes()); 1185 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1186 copyFlags(*CI, NewCI); 1187 return CI->getArgOperand(0); 1188 } 1189 1190 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1191 Value *Size = CI->getArgOperand(2); 1192 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1193 if (isa<IntrinsicInst>(CI)) 1194 return nullptr; 1195 1196 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1197 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1198 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1199 NewCI->setAttributes(CI->getAttributes()); 1200 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1201 copyFlags(*CI, NewCI); 1202 return CI->getArgOperand(0); 1203 } 1204 1205 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1206 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1207 return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI)); 1208 1209 return nullptr; 1210 } 1211 1212 //===----------------------------------------------------------------------===// 1213 // Math Library Optimizations 1214 //===----------------------------------------------------------------------===// 1215 1216 // Replace a libcall \p CI with a call to intrinsic \p IID 1217 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1218 Intrinsic::ID IID) { 1219 // Propagate fast-math flags from the existing call to the new call. 1220 IRBuilderBase::FastMathFlagGuard Guard(B); 1221 B.setFastMathFlags(CI->getFastMathFlags()); 1222 1223 Module *M = CI->getModule(); 1224 Value *V = CI->getArgOperand(0); 1225 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1226 CallInst *NewCall = B.CreateCall(F, V); 1227 NewCall->takeName(CI); 1228 return copyFlags(*CI, NewCall); 1229 } 1230 1231 /// Return a variant of Val with float type. 1232 /// Currently this works in two cases: If Val is an FPExtension of a float 1233 /// value to something bigger, simply return the operand. 1234 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1235 /// loss of precision do so. 1236 static Value *valueHasFloatPrecision(Value *Val) { 1237 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1238 Value *Op = Cast->getOperand(0); 1239 if (Op->getType()->isFloatTy()) 1240 return Op; 1241 } 1242 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1243 APFloat F = Const->getValueAPF(); 1244 bool losesInfo; 1245 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1246 &losesInfo); 1247 if (!losesInfo) 1248 return ConstantFP::get(Const->getContext(), F); 1249 } 1250 return nullptr; 1251 } 1252 1253 /// Shrink double -> float functions. 1254 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1255 bool isBinary, bool isPrecise = false) { 1256 Function *CalleeFn = CI->getCalledFunction(); 1257 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1258 return nullptr; 1259 1260 // If not all the uses of the function are converted to float, then bail out. 1261 // This matters if the precision of the result is more important than the 1262 // precision of the arguments. 1263 if (isPrecise) 1264 for (User *U : CI->users()) { 1265 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1266 if (!Cast || !Cast->getType()->isFloatTy()) 1267 return nullptr; 1268 } 1269 1270 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1271 Value *V[2]; 1272 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1273 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1274 if (!V[0] || (isBinary && !V[1])) 1275 return nullptr; 1276 1277 // If call isn't an intrinsic, check that it isn't within a function with the 1278 // same name as the float version of this call, otherwise the result is an 1279 // infinite loop. For example, from MinGW-w64: 1280 // 1281 // float expf(float val) { return (float) exp((double) val); } 1282 StringRef CalleeName = CalleeFn->getName(); 1283 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1284 if (!IsIntrinsic) { 1285 StringRef CallerName = CI->getFunction()->getName(); 1286 if (!CallerName.empty() && CallerName.back() == 'f' && 1287 CallerName.size() == (CalleeName.size() + 1) && 1288 CallerName.startswith(CalleeName)) 1289 return nullptr; 1290 } 1291 1292 // Propagate the math semantics from the current function to the new function. 1293 IRBuilderBase::FastMathFlagGuard Guard(B); 1294 B.setFastMathFlags(CI->getFastMathFlags()); 1295 1296 // g((double) float) -> (double) gf(float) 1297 Value *R; 1298 if (IsIntrinsic) { 1299 Module *M = CI->getModule(); 1300 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1301 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1302 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1303 } else { 1304 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1305 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs) 1306 : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs); 1307 } 1308 return B.CreateFPExt(R, B.getDoubleTy()); 1309 } 1310 1311 /// Shrink double -> float for unary functions. 1312 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1313 bool isPrecise = false) { 1314 return optimizeDoubleFP(CI, B, false, isPrecise); 1315 } 1316 1317 /// Shrink double -> float for binary functions. 1318 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1319 bool isPrecise = false) { 1320 return optimizeDoubleFP(CI, B, true, isPrecise); 1321 } 1322 1323 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1324 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1325 if (!CI->isFast()) 1326 return nullptr; 1327 1328 // Propagate fast-math flags from the existing call to new instructions. 1329 IRBuilderBase::FastMathFlagGuard Guard(B); 1330 B.setFastMathFlags(CI->getFastMathFlags()); 1331 1332 Value *Real, *Imag; 1333 if (CI->arg_size() == 1) { 1334 Value *Op = CI->getArgOperand(0); 1335 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1336 Real = B.CreateExtractValue(Op, 0, "real"); 1337 Imag = B.CreateExtractValue(Op, 1, "imag"); 1338 } else { 1339 assert(CI->arg_size() == 2 && "Unexpected signature for cabs!"); 1340 Real = CI->getArgOperand(0); 1341 Imag = CI->getArgOperand(1); 1342 } 1343 1344 Value *RealReal = B.CreateFMul(Real, Real); 1345 Value *ImagImag = B.CreateFMul(Imag, Imag); 1346 1347 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1348 CI->getType()); 1349 return copyFlags( 1350 *CI, B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs")); 1351 } 1352 1353 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1354 IRBuilderBase &B) { 1355 if (!isa<FPMathOperator>(Call)) 1356 return nullptr; 1357 1358 IRBuilderBase::FastMathFlagGuard Guard(B); 1359 B.setFastMathFlags(Call->getFastMathFlags()); 1360 1361 // TODO: Can this be shared to also handle LLVM intrinsics? 1362 Value *X; 1363 switch (Func) { 1364 case LibFunc_sin: 1365 case LibFunc_sinf: 1366 case LibFunc_sinl: 1367 case LibFunc_tan: 1368 case LibFunc_tanf: 1369 case LibFunc_tanl: 1370 // sin(-X) --> -sin(X) 1371 // tan(-X) --> -tan(X) 1372 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1373 return B.CreateFNeg( 1374 copyFlags(*Call, B.CreateCall(Call->getCalledFunction(), X))); 1375 break; 1376 case LibFunc_cos: 1377 case LibFunc_cosf: 1378 case LibFunc_cosl: 1379 // cos(-X) --> cos(X) 1380 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1381 return copyFlags(*Call, 1382 B.CreateCall(Call->getCalledFunction(), X, "cos")); 1383 break; 1384 default: 1385 break; 1386 } 1387 return nullptr; 1388 } 1389 1390 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) { 1391 // Multiplications calculated using Addition Chains. 1392 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1393 1394 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1395 1396 if (InnerChain[Exp]) 1397 return InnerChain[Exp]; 1398 1399 static const unsigned AddChain[33][2] = { 1400 {0, 0}, // Unused. 1401 {0, 0}, // Unused (base case = pow1). 1402 {1, 1}, // Unused (pre-computed). 1403 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1404 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1405 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1406 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1407 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1408 }; 1409 1410 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1411 getPow(InnerChain, AddChain[Exp][1], B)); 1412 return InnerChain[Exp]; 1413 } 1414 1415 // Return a properly extended integer (DstWidth bits wide) if the operation is 1416 // an itofp. 1417 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) { 1418 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1419 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1420 // Make sure that the exponent fits inside an "int" of size DstWidth, 1421 // thus avoiding any range issues that FP has not. 1422 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); 1423 if (BitWidth < DstWidth || 1424 (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) 1425 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth)) 1426 : B.CreateZExt(Op, B.getIntNTy(DstWidth)); 1427 } 1428 1429 return nullptr; 1430 } 1431 1432 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1433 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 1434 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 1435 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 1436 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1437 AttributeList Attrs; // Attributes are only meaningful on the original call 1438 Module *Mod = Pow->getModule(); 1439 Type *Ty = Pow->getType(); 1440 bool Ignored; 1441 1442 // Evaluate special cases related to a nested function as the base. 1443 1444 // pow(exp(x), y) -> exp(x * y) 1445 // pow(exp2(x), y) -> exp2(x * y) 1446 // If exp{,2}() is used only once, it is better to fold two transcendental 1447 // math functions into one. If used again, exp{,2}() would still have to be 1448 // called with the original argument, then keep both original transcendental 1449 // functions. However, this transformation is only safe with fully relaxed 1450 // math semantics, since, besides rounding differences, it changes overflow 1451 // and underflow behavior quite dramatically. For example: 1452 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1453 // Whereas: 1454 // exp(1000 * 0.001) = exp(1) 1455 // TODO: Loosen the requirement for fully relaxed math semantics. 1456 // TODO: Handle exp10() when more targets have it available. 1457 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1458 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1459 LibFunc LibFn; 1460 1461 Function *CalleeFn = BaseFn->getCalledFunction(); 1462 if (CalleeFn && 1463 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1464 StringRef ExpName; 1465 Intrinsic::ID ID; 1466 Value *ExpFn; 1467 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 1468 1469 switch (LibFn) { 1470 default: 1471 return nullptr; 1472 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1473 ExpName = TLI->getName(LibFunc_exp); 1474 ID = Intrinsic::exp; 1475 LibFnFloat = LibFunc_expf; 1476 LibFnDouble = LibFunc_exp; 1477 LibFnLongDouble = LibFunc_expl; 1478 break; 1479 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1480 ExpName = TLI->getName(LibFunc_exp2); 1481 ID = Intrinsic::exp2; 1482 LibFnFloat = LibFunc_exp2f; 1483 LibFnDouble = LibFunc_exp2; 1484 LibFnLongDouble = LibFunc_exp2l; 1485 break; 1486 } 1487 1488 // Create new exp{,2}() with the product as its argument. 1489 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1490 ExpFn = BaseFn->doesNotAccessMemory() 1491 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1492 FMul, ExpName) 1493 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1494 LibFnLongDouble, B, 1495 BaseFn->getAttributes()); 1496 1497 // Since the new exp{,2}() is different from the original one, dead code 1498 // elimination cannot be trusted to remove it, since it may have side 1499 // effects (e.g., errno). When the only consumer for the original 1500 // exp{,2}() is pow(), then it has to be explicitly erased. 1501 substituteInParent(BaseFn, ExpFn); 1502 return ExpFn; 1503 } 1504 } 1505 1506 // Evaluate special cases related to a constant base. 1507 1508 const APFloat *BaseF; 1509 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1510 return nullptr; 1511 1512 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 1513 if (match(Base, m_SpecificFP(2.0)) && 1514 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 1515 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1516 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1517 return copyFlags(*Pow, 1518 emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, 1519 TLI, LibFunc_ldexp, LibFunc_ldexpf, 1520 LibFunc_ldexpl, B, Attrs)); 1521 } 1522 1523 // pow(2.0 ** n, x) -> exp2(n * x) 1524 if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1525 APFloat BaseR = APFloat(1.0); 1526 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1527 BaseR = BaseR / *BaseF; 1528 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1529 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1530 APSInt NI(64, false); 1531 if ((IsInteger || IsReciprocal) && 1532 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1533 APFloat::opOK && 1534 NI > 1 && NI.isPowerOf2()) { 1535 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1536 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1537 if (Pow->doesNotAccessMemory()) 1538 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 1539 Mod, Intrinsic::exp2, Ty), 1540 FMul, "exp2")); 1541 else 1542 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 1543 LibFunc_exp2f, 1544 LibFunc_exp2l, B, Attrs)); 1545 } 1546 } 1547 1548 // pow(10.0, x) -> exp10(x) 1549 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1550 if (match(Base, m_SpecificFP(10.0)) && 1551 hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1552 return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, 1553 LibFunc_exp10f, LibFunc_exp10l, 1554 B, Attrs)); 1555 1556 // pow(x, y) -> exp2(log2(x) * y) 1557 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 1558 !BaseF->isNegative()) { 1559 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 1560 // Luckily optimizePow has already handled the x == 1 case. 1561 assert(!match(Base, m_FPOne()) && 1562 "pow(1.0, y) should have been simplified earlier!"); 1563 1564 Value *Log = nullptr; 1565 if (Ty->isFloatTy()) 1566 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 1567 else if (Ty->isDoubleTy()) 1568 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 1569 1570 if (Log) { 1571 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 1572 if (Pow->doesNotAccessMemory()) 1573 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 1574 Mod, Intrinsic::exp2, Ty), 1575 FMul, "exp2")); 1576 else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) 1577 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 1578 LibFunc_exp2f, 1579 LibFunc_exp2l, B, Attrs)); 1580 } 1581 } 1582 1583 return nullptr; 1584 } 1585 1586 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1587 Module *M, IRBuilderBase &B, 1588 const TargetLibraryInfo *TLI) { 1589 // If errno is never set, then use the intrinsic for sqrt(). 1590 if (NoErrno) { 1591 Function *SqrtFn = 1592 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1593 return B.CreateCall(SqrtFn, V, "sqrt"); 1594 } 1595 1596 // Otherwise, use the libcall for sqrt(). 1597 if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) 1598 // TODO: We also should check that the target can in fact lower the sqrt() 1599 // libcall. We currently have no way to ask this question, so we ask if 1600 // the target has a sqrt() libcall, which is not exactly the same. 1601 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1602 LibFunc_sqrtl, B, Attrs); 1603 1604 return nullptr; 1605 } 1606 1607 /// Use square root in place of pow(x, +/-0.5). 1608 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 1609 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1610 AttributeList Attrs; // Attributes are only meaningful on the original call 1611 Module *Mod = Pow->getModule(); 1612 Type *Ty = Pow->getType(); 1613 1614 const APFloat *ExpoF; 1615 if (!match(Expo, m_APFloat(ExpoF)) || 1616 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1617 return nullptr; 1618 1619 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 1620 // so that requires fast-math-flags (afn or reassoc). 1621 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 1622 return nullptr; 1623 1624 // If we have a pow() library call (accesses memory) and we can't guarantee 1625 // that the base is not an infinity, give up: 1626 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 1627 // errno), but sqrt(-Inf) is required by various standards to set errno. 1628 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 1629 !isKnownNeverInfinity(Base, TLI)) 1630 return nullptr; 1631 1632 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1633 if (!Sqrt) 1634 return nullptr; 1635 1636 // Handle signed zero base by expanding to fabs(sqrt(x)). 1637 if (!Pow->hasNoSignedZeros()) { 1638 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1639 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1640 } 1641 1642 Sqrt = copyFlags(*Pow, Sqrt); 1643 1644 // Handle non finite base by expanding to 1645 // (x == -infinity ? +infinity : sqrt(x)). 1646 if (!Pow->hasNoInfs()) { 1647 Value *PosInf = ConstantFP::getInfinity(Ty), 1648 *NegInf = ConstantFP::getInfinity(Ty, true); 1649 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1650 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1651 } 1652 1653 // If the exponent is negative, then get the reciprocal. 1654 if (ExpoF->isNegative()) 1655 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1656 1657 return Sqrt; 1658 } 1659 1660 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1661 IRBuilderBase &B) { 1662 Value *Args[] = {Base, Expo}; 1663 Type *Types[] = {Base->getType(), Expo->getType()}; 1664 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types); 1665 return B.CreateCall(F, Args); 1666 } 1667 1668 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 1669 Value *Base = Pow->getArgOperand(0); 1670 Value *Expo = Pow->getArgOperand(1); 1671 Function *Callee = Pow->getCalledFunction(); 1672 StringRef Name = Callee->getName(); 1673 Type *Ty = Pow->getType(); 1674 Module *M = Pow->getModule(); 1675 bool AllowApprox = Pow->hasApproxFunc(); 1676 bool Ignored; 1677 1678 // Propagate the math semantics from the call to any created instructions. 1679 IRBuilderBase::FastMathFlagGuard Guard(B); 1680 B.setFastMathFlags(Pow->getFastMathFlags()); 1681 // Evaluate special cases related to the base. 1682 1683 // pow(1.0, x) -> 1.0 1684 if (match(Base, m_FPOne())) 1685 return Base; 1686 1687 if (Value *Exp = replacePowWithExp(Pow, B)) 1688 return Exp; 1689 1690 // Evaluate special cases related to the exponent. 1691 1692 // pow(x, -1.0) -> 1.0 / x 1693 if (match(Expo, m_SpecificFP(-1.0))) 1694 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1695 1696 // pow(x, +/-0.0) -> 1.0 1697 if (match(Expo, m_AnyZeroFP())) 1698 return ConstantFP::get(Ty, 1.0); 1699 1700 // pow(x, 1.0) -> x 1701 if (match(Expo, m_FPOne())) 1702 return Base; 1703 1704 // pow(x, 2.0) -> x * x 1705 if (match(Expo, m_SpecificFP(2.0))) 1706 return B.CreateFMul(Base, Base, "square"); 1707 1708 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1709 return Sqrt; 1710 1711 // pow(x, n) -> x * x * x * ... 1712 const APFloat *ExpoF; 1713 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 1714 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 1715 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1716 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1717 // additional fmul. 1718 // TODO: This whole transformation should be backend specific (e.g. some 1719 // backends might prefer libcalls or the limit for the exponent might 1720 // be different) and it should also consider optimizing for size. 1721 APFloat LimF(ExpoF->getSemantics(), 33), 1722 ExpoA(abs(*ExpoF)); 1723 if (ExpoA < LimF) { 1724 // This transformation applies to integer or integer+0.5 exponents only. 1725 // For integer+0.5, we create a sqrt(Base) call. 1726 Value *Sqrt = nullptr; 1727 if (!ExpoA.isInteger()) { 1728 APFloat Expo2 = ExpoA; 1729 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1730 // is no floating point exception and the result is an integer, then 1731 // ExpoA == integer + 0.5 1732 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1733 return nullptr; 1734 1735 if (!Expo2.isInteger()) 1736 return nullptr; 1737 1738 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1739 Pow->doesNotAccessMemory(), M, B, TLI); 1740 if (!Sqrt) 1741 return nullptr; 1742 } 1743 1744 // We will memoize intermediate products of the Addition Chain. 1745 Value *InnerChain[33] = {nullptr}; 1746 InnerChain[1] = Base; 1747 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1748 1749 // We cannot readily convert a non-double type (like float) to a double. 1750 // So we first convert it to something which could be converted to double. 1751 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1752 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1753 1754 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1755 if (Sqrt) 1756 FMul = B.CreateFMul(FMul, Sqrt); 1757 1758 // If the exponent is negative, then get the reciprocal. 1759 if (ExpoF->isNegative()) 1760 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1761 1762 return FMul; 1763 } 1764 1765 APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false); 1766 // powf(x, n) -> powi(x, n) if n is a constant signed integer value 1767 if (ExpoF->isInteger() && 1768 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 1769 APFloat::opOK) { 1770 return copyFlags( 1771 *Pow, 1772 createPowWithIntegerExponent( 1773 Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo), 1774 M, B)); 1775 } 1776 } 1777 1778 // powf(x, itofp(y)) -> powi(x, y) 1779 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 1780 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1781 return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B)); 1782 } 1783 1784 // Shrink pow() to powf() if the arguments are single precision, 1785 // unless the result is expected to be double precision. 1786 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 1787 hasFloatVersion(Name)) { 1788 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, true)) 1789 return Shrunk; 1790 } 1791 1792 return nullptr; 1793 } 1794 1795 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 1796 Function *Callee = CI->getCalledFunction(); 1797 AttributeList Attrs; // Attributes are only meaningful on the original call 1798 StringRef Name = Callee->getName(); 1799 Value *Ret = nullptr; 1800 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 1801 hasFloatVersion(Name)) 1802 Ret = optimizeUnaryDoubleFP(CI, B, true); 1803 1804 Type *Ty = CI->getType(); 1805 Value *Op = CI->getArgOperand(0); 1806 1807 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize 1808 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize 1809 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 1810 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1811 if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) 1812 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 1813 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1814 B, Attrs); 1815 } 1816 1817 return Ret; 1818 } 1819 1820 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 1821 // If we can shrink the call to a float function rather than a double 1822 // function, do that first. 1823 Function *Callee = CI->getCalledFunction(); 1824 StringRef Name = Callee->getName(); 1825 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1826 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1827 return Ret; 1828 1829 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 1830 // the intrinsics for improved optimization (for example, vectorization). 1831 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 1832 // From the C standard draft WG14/N1256: 1833 // "Ideally, fmax would be sensitive to the sign of zero, for example 1834 // fmax(-0.0, +0.0) would return +0; however, implementation in software 1835 // might be impractical." 1836 IRBuilderBase::FastMathFlagGuard Guard(B); 1837 FastMathFlags FMF = CI->getFastMathFlags(); 1838 FMF.setNoSignedZeros(); 1839 B.setFastMathFlags(FMF); 1840 1841 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 1842 : Intrinsic::maxnum; 1843 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 1844 return copyFlags( 1845 *CI, B.CreateCall(F, {CI->getArgOperand(0), CI->getArgOperand(1)})); 1846 } 1847 1848 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 1849 Function *LogFn = Log->getCalledFunction(); 1850 AttributeList Attrs; // Attributes are only meaningful on the original call 1851 StringRef LogNm = LogFn->getName(); 1852 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 1853 Module *Mod = Log->getModule(); 1854 Type *Ty = Log->getType(); 1855 Value *Ret = nullptr; 1856 1857 if (UnsafeFPShrink && hasFloatVersion(LogNm)) 1858 Ret = optimizeUnaryDoubleFP(Log, B, true); 1859 1860 // The earlier call must also be 'fast' in order to do these transforms. 1861 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 1862 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 1863 return Ret; 1864 1865 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 1866 1867 // This is only applicable to log(), log2(), log10(). 1868 if (TLI->getLibFunc(LogNm, LogLb)) 1869 switch (LogLb) { 1870 case LibFunc_logf: 1871 LogID = Intrinsic::log; 1872 ExpLb = LibFunc_expf; 1873 Exp2Lb = LibFunc_exp2f; 1874 Exp10Lb = LibFunc_exp10f; 1875 PowLb = LibFunc_powf; 1876 break; 1877 case LibFunc_log: 1878 LogID = Intrinsic::log; 1879 ExpLb = LibFunc_exp; 1880 Exp2Lb = LibFunc_exp2; 1881 Exp10Lb = LibFunc_exp10; 1882 PowLb = LibFunc_pow; 1883 break; 1884 case LibFunc_logl: 1885 LogID = Intrinsic::log; 1886 ExpLb = LibFunc_expl; 1887 Exp2Lb = LibFunc_exp2l; 1888 Exp10Lb = LibFunc_exp10l; 1889 PowLb = LibFunc_powl; 1890 break; 1891 case LibFunc_log2f: 1892 LogID = Intrinsic::log2; 1893 ExpLb = LibFunc_expf; 1894 Exp2Lb = LibFunc_exp2f; 1895 Exp10Lb = LibFunc_exp10f; 1896 PowLb = LibFunc_powf; 1897 break; 1898 case LibFunc_log2: 1899 LogID = Intrinsic::log2; 1900 ExpLb = LibFunc_exp; 1901 Exp2Lb = LibFunc_exp2; 1902 Exp10Lb = LibFunc_exp10; 1903 PowLb = LibFunc_pow; 1904 break; 1905 case LibFunc_log2l: 1906 LogID = Intrinsic::log2; 1907 ExpLb = LibFunc_expl; 1908 Exp2Lb = LibFunc_exp2l; 1909 Exp10Lb = LibFunc_exp10l; 1910 PowLb = LibFunc_powl; 1911 break; 1912 case LibFunc_log10f: 1913 LogID = Intrinsic::log10; 1914 ExpLb = LibFunc_expf; 1915 Exp2Lb = LibFunc_exp2f; 1916 Exp10Lb = LibFunc_exp10f; 1917 PowLb = LibFunc_powf; 1918 break; 1919 case LibFunc_log10: 1920 LogID = Intrinsic::log10; 1921 ExpLb = LibFunc_exp; 1922 Exp2Lb = LibFunc_exp2; 1923 Exp10Lb = LibFunc_exp10; 1924 PowLb = LibFunc_pow; 1925 break; 1926 case LibFunc_log10l: 1927 LogID = Intrinsic::log10; 1928 ExpLb = LibFunc_expl; 1929 Exp2Lb = LibFunc_exp2l; 1930 Exp10Lb = LibFunc_exp10l; 1931 PowLb = LibFunc_powl; 1932 break; 1933 default: 1934 return Ret; 1935 } 1936 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 1937 LogID == Intrinsic::log10) { 1938 if (Ty->getScalarType()->isFloatTy()) { 1939 ExpLb = LibFunc_expf; 1940 Exp2Lb = LibFunc_exp2f; 1941 Exp10Lb = LibFunc_exp10f; 1942 PowLb = LibFunc_powf; 1943 } else if (Ty->getScalarType()->isDoubleTy()) { 1944 ExpLb = LibFunc_exp; 1945 Exp2Lb = LibFunc_exp2; 1946 Exp10Lb = LibFunc_exp10; 1947 PowLb = LibFunc_pow; 1948 } else 1949 return Ret; 1950 } else 1951 return Ret; 1952 1953 IRBuilderBase::FastMathFlagGuard Guard(B); 1954 B.setFastMathFlags(FastMathFlags::getFast()); 1955 1956 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 1957 LibFunc ArgLb = NotLibFunc; 1958 TLI->getLibFunc(*Arg, ArgLb); 1959 1960 // log(pow(x,y)) -> y*log(x) 1961 if (ArgLb == PowLb || ArgID == Intrinsic::pow) { 1962 Value *LogX = 1963 Log->doesNotAccessMemory() 1964 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 1965 Arg->getOperand(0), "log") 1966 : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs); 1967 Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul"); 1968 // Since pow() may have side effects, e.g. errno, 1969 // dead code elimination may not be trusted to remove it. 1970 substituteInParent(Arg, MulY); 1971 return MulY; 1972 } 1973 1974 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 1975 // TODO: There is no exp10() intrinsic yet. 1976 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 1977 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 1978 Constant *Eul; 1979 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 1980 // FIXME: Add more precise value of e for long double. 1981 Eul = ConstantFP::get(Log->getType(), numbers::e); 1982 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 1983 Eul = ConstantFP::get(Log->getType(), 2.0); 1984 else 1985 Eul = ConstantFP::get(Log->getType(), 10.0); 1986 Value *LogE = Log->doesNotAccessMemory() 1987 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 1988 Eul, "log") 1989 : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs); 1990 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 1991 // Since exp() may have side effects, e.g. errno, 1992 // dead code elimination may not be trusted to remove it. 1993 substituteInParent(Arg, MulY); 1994 return MulY; 1995 } 1996 1997 return Ret; 1998 } 1999 2000 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 2001 Function *Callee = CI->getCalledFunction(); 2002 Value *Ret = nullptr; 2003 // TODO: Once we have a way (other than checking for the existince of the 2004 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 2005 // condition below. 2006 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 2007 Callee->getIntrinsicID() == Intrinsic::sqrt)) 2008 Ret = optimizeUnaryDoubleFP(CI, B, true); 2009 2010 if (!CI->isFast()) 2011 return Ret; 2012 2013 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 2014 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 2015 return Ret; 2016 2017 // We're looking for a repeated factor in a multiplication tree, 2018 // so we can do this fold: sqrt(x * x) -> fabs(x); 2019 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 2020 Value *Op0 = I->getOperand(0); 2021 Value *Op1 = I->getOperand(1); 2022 Value *RepeatOp = nullptr; 2023 Value *OtherOp = nullptr; 2024 if (Op0 == Op1) { 2025 // Simple match: the operands of the multiply are identical. 2026 RepeatOp = Op0; 2027 } else { 2028 // Look for a more complicated pattern: one of the operands is itself 2029 // a multiply, so search for a common factor in that multiply. 2030 // Note: We don't bother looking any deeper than this first level or for 2031 // variations of this pattern because instcombine's visitFMUL and/or the 2032 // reassociation pass should give us this form. 2033 Value *OtherMul0, *OtherMul1; 2034 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 2035 // Pattern: sqrt((x * y) * z) 2036 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 2037 // Matched: sqrt((x * x) * z) 2038 RepeatOp = OtherMul0; 2039 OtherOp = Op1; 2040 } 2041 } 2042 } 2043 if (!RepeatOp) 2044 return Ret; 2045 2046 // Fast math flags for any created instructions should match the sqrt 2047 // and multiply. 2048 IRBuilderBase::FastMathFlagGuard Guard(B); 2049 B.setFastMathFlags(I->getFastMathFlags()); 2050 2051 // If we found a repeated factor, hoist it out of the square root and 2052 // replace it with the fabs of that factor. 2053 Module *M = Callee->getParent(); 2054 Type *ArgType = I->getType(); 2055 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 2056 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 2057 if (OtherOp) { 2058 // If we found a non-repeated factor, we still need to get its square 2059 // root. We then multiply that by the value that was simplified out 2060 // of the square root calculation. 2061 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 2062 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 2063 return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall)); 2064 } 2065 return copyFlags(*CI, FabsCall); 2066 } 2067 2068 // TODO: Generalize to handle any trig function and its inverse. 2069 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) { 2070 Function *Callee = CI->getCalledFunction(); 2071 Value *Ret = nullptr; 2072 StringRef Name = Callee->getName(); 2073 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 2074 Ret = optimizeUnaryDoubleFP(CI, B, true); 2075 2076 Value *Op1 = CI->getArgOperand(0); 2077 auto *OpC = dyn_cast<CallInst>(Op1); 2078 if (!OpC) 2079 return Ret; 2080 2081 // Both calls must be 'fast' in order to remove them. 2082 if (!CI->isFast() || !OpC->isFast()) 2083 return Ret; 2084 2085 // tan(atan(x)) -> x 2086 // tanf(atanf(x)) -> x 2087 // tanl(atanl(x)) -> x 2088 LibFunc Func; 2089 Function *F = OpC->getCalledFunction(); 2090 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 2091 ((Func == LibFunc_atan && Callee->getName() == "tan") || 2092 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 2093 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 2094 Ret = OpC->getArgOperand(0); 2095 return Ret; 2096 } 2097 2098 static bool isTrigLibCall(CallInst *CI) { 2099 // We can only hope to do anything useful if we can ignore things like errno 2100 // and floating-point exceptions. 2101 // We already checked the prototype. 2102 return CI->hasFnAttr(Attribute::NoUnwind) && 2103 CI->hasFnAttr(Attribute::ReadNone); 2104 } 2105 2106 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2107 bool UseFloat, Value *&Sin, Value *&Cos, 2108 Value *&SinCos) { 2109 Type *ArgTy = Arg->getType(); 2110 Type *ResTy; 2111 StringRef Name; 2112 2113 Triple T(OrigCallee->getParent()->getTargetTriple()); 2114 if (UseFloat) { 2115 Name = "__sincospif_stret"; 2116 2117 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2118 // x86_64 can't use {float, float} since that would be returned in both 2119 // xmm0 and xmm1, which isn't what a real struct would do. 2120 ResTy = T.getArch() == Triple::x86_64 2121 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2122 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2123 } else { 2124 Name = "__sincospi_stret"; 2125 ResTy = StructType::get(ArgTy, ArgTy); 2126 } 2127 2128 Module *M = OrigCallee->getParent(); 2129 FunctionCallee Callee = 2130 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); 2131 2132 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2133 // If the argument is an instruction, it must dominate all uses so put our 2134 // sincos call there. 2135 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2136 } else { 2137 // Otherwise (e.g. for a constant) the beginning of the function is as 2138 // good a place as any. 2139 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2140 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2141 } 2142 2143 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2144 2145 if (SinCos->getType()->isStructTy()) { 2146 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2147 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2148 } else { 2149 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2150 "sinpi"); 2151 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2152 "cospi"); 2153 } 2154 } 2155 2156 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) { 2157 // Make sure the prototype is as expected, otherwise the rest of the 2158 // function is probably invalid and likely to abort. 2159 if (!isTrigLibCall(CI)) 2160 return nullptr; 2161 2162 Value *Arg = CI->getArgOperand(0); 2163 SmallVector<CallInst *, 1> SinCalls; 2164 SmallVector<CallInst *, 1> CosCalls; 2165 SmallVector<CallInst *, 1> SinCosCalls; 2166 2167 bool IsFloat = Arg->getType()->isFloatTy(); 2168 2169 // Look for all compatible sinpi, cospi and sincospi calls with the same 2170 // argument. If there are enough (in some sense) we can make the 2171 // substitution. 2172 Function *F = CI->getFunction(); 2173 for (User *U : Arg->users()) 2174 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2175 2176 // It's only worthwhile if both sinpi and cospi are actually used. 2177 if (SinCalls.empty() || CosCalls.empty()) 2178 return nullptr; 2179 2180 Value *Sin, *Cos, *SinCos; 2181 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 2182 2183 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2184 Value *Res) { 2185 for (CallInst *C : Calls) 2186 replaceAllUsesWith(C, Res); 2187 }; 2188 2189 replaceTrigInsts(SinCalls, Sin); 2190 replaceTrigInsts(CosCalls, Cos); 2191 replaceTrigInsts(SinCosCalls, SinCos); 2192 2193 return nullptr; 2194 } 2195 2196 void LibCallSimplifier::classifyArgUse( 2197 Value *Val, Function *F, bool IsFloat, 2198 SmallVectorImpl<CallInst *> &SinCalls, 2199 SmallVectorImpl<CallInst *> &CosCalls, 2200 SmallVectorImpl<CallInst *> &SinCosCalls) { 2201 CallInst *CI = dyn_cast<CallInst>(Val); 2202 2203 if (!CI || CI->use_empty()) 2204 return; 2205 2206 // Don't consider calls in other functions. 2207 if (CI->getFunction() != F) 2208 return; 2209 2210 Function *Callee = CI->getCalledFunction(); 2211 LibFunc Func; 2212 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 2213 !isTrigLibCall(CI)) 2214 return; 2215 2216 if (IsFloat) { 2217 if (Func == LibFunc_sinpif) 2218 SinCalls.push_back(CI); 2219 else if (Func == LibFunc_cospif) 2220 CosCalls.push_back(CI); 2221 else if (Func == LibFunc_sincospif_stret) 2222 SinCosCalls.push_back(CI); 2223 } else { 2224 if (Func == LibFunc_sinpi) 2225 SinCalls.push_back(CI); 2226 else if (Func == LibFunc_cospi) 2227 CosCalls.push_back(CI); 2228 else if (Func == LibFunc_sincospi_stret) 2229 SinCosCalls.push_back(CI); 2230 } 2231 } 2232 2233 //===----------------------------------------------------------------------===// 2234 // Integer Library Call Optimizations 2235 //===----------------------------------------------------------------------===// 2236 2237 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 2238 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 2239 Value *Op = CI->getArgOperand(0); 2240 Type *ArgType = Op->getType(); 2241 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2242 Intrinsic::cttz, ArgType); 2243 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 2244 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 2245 V = B.CreateIntCast(V, B.getInt32Ty(), false); 2246 2247 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 2248 return B.CreateSelect(Cond, V, B.getInt32(0)); 2249 } 2250 2251 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 2252 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 2253 Value *Op = CI->getArgOperand(0); 2254 Type *ArgType = Op->getType(); 2255 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2256 Intrinsic::ctlz, ArgType); 2257 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 2258 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 2259 V); 2260 return B.CreateIntCast(V, CI->getType(), false); 2261 } 2262 2263 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 2264 // abs(x) -> x <s 0 ? -x : x 2265 // The negation has 'nsw' because abs of INT_MIN is undefined. 2266 Value *X = CI->getArgOperand(0); 2267 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 2268 Value *NegX = B.CreateNSWNeg(X, "neg"); 2269 return B.CreateSelect(IsNeg, NegX, X); 2270 } 2271 2272 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 2273 // isdigit(c) -> (c-'0') <u 10 2274 Value *Op = CI->getArgOperand(0); 2275 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 2276 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 2277 return B.CreateZExt(Op, CI->getType()); 2278 } 2279 2280 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 2281 // isascii(c) -> c <u 128 2282 Value *Op = CI->getArgOperand(0); 2283 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 2284 return B.CreateZExt(Op, CI->getType()); 2285 } 2286 2287 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 2288 // toascii(c) -> c & 0x7f 2289 return B.CreateAnd(CI->getArgOperand(0), 2290 ConstantInt::get(CI->getType(), 0x7F)); 2291 } 2292 2293 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 2294 StringRef Str; 2295 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2296 return nullptr; 2297 2298 return convertStrToNumber(CI, Str, 10); 2299 } 2300 2301 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) { 2302 StringRef Str; 2303 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2304 return nullptr; 2305 2306 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 2307 return nullptr; 2308 2309 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2310 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 2311 } 2312 2313 return nullptr; 2314 } 2315 2316 //===----------------------------------------------------------------------===// 2317 // Formatting and IO Library Call Optimizations 2318 //===----------------------------------------------------------------------===// 2319 2320 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2321 2322 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 2323 int StreamArg) { 2324 Function *Callee = CI->getCalledFunction(); 2325 // Error reporting calls should be cold, mark them as such. 2326 // This applies even to non-builtin calls: it is only a hint and applies to 2327 // functions that the frontend might not understand as builtins. 2328 2329 // This heuristic was suggested in: 2330 // Improving Static Branch Prediction in a Compiler 2331 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2332 // Proceedings of PACT'98, Oct. 1998, IEEE 2333 if (!CI->hasFnAttr(Attribute::Cold) && 2334 isReportingError(Callee, CI, StreamArg)) { 2335 CI->addFnAttr(Attribute::Cold); 2336 } 2337 2338 return nullptr; 2339 } 2340 2341 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2342 if (!Callee || !Callee->isDeclaration()) 2343 return false; 2344 2345 if (StreamArg < 0) 2346 return true; 2347 2348 // These functions might be considered cold, but only if their stream 2349 // argument is stderr. 2350 2351 if (StreamArg >= (int)CI->arg_size()) 2352 return false; 2353 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2354 if (!LI) 2355 return false; 2356 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2357 if (!GV || !GV->isDeclaration()) 2358 return false; 2359 return GV->getName() == "stderr"; 2360 } 2361 2362 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 2363 // Check for a fixed format string. 2364 StringRef FormatStr; 2365 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2366 return nullptr; 2367 2368 // Empty format string -> noop. 2369 if (FormatStr.empty()) // Tolerate printf's declared void. 2370 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2371 2372 // Do not do any of the following transformations if the printf return value 2373 // is used, in general the printf return value is not compatible with either 2374 // putchar() or puts(). 2375 if (!CI->use_empty()) 2376 return nullptr; 2377 2378 // printf("x") -> putchar('x'), even for "%" and "%%". 2379 if (FormatStr.size() == 1 || FormatStr == "%%") 2380 return copyFlags(*CI, emitPutChar(B.getInt32(FormatStr[0]), B, TLI)); 2381 2382 // Try to remove call or emit putchar/puts. 2383 if (FormatStr == "%s" && CI->arg_size() > 1) { 2384 StringRef OperandStr; 2385 if (!getConstantStringInfo(CI->getOperand(1), OperandStr)) 2386 return nullptr; 2387 // printf("%s", "") --> NOP 2388 if (OperandStr.empty()) 2389 return (Value *)CI; 2390 // printf("%s", "a") --> putchar('a') 2391 if (OperandStr.size() == 1) 2392 return copyFlags(*CI, emitPutChar(B.getInt32(OperandStr[0]), B, TLI)); 2393 // printf("%s", str"\n") --> puts(str) 2394 if (OperandStr.back() == '\n') { 2395 OperandStr = OperandStr.drop_back(); 2396 Value *GV = B.CreateGlobalString(OperandStr, "str"); 2397 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2398 } 2399 return nullptr; 2400 } 2401 2402 // printf("foo\n") --> puts("foo") 2403 if (FormatStr.back() == '\n' && 2404 !FormatStr.contains('%')) { // No format characters. 2405 // Create a string literal with no \n on it. We expect the constant merge 2406 // pass to be run after this pass, to merge duplicate strings. 2407 FormatStr = FormatStr.drop_back(); 2408 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2409 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2410 } 2411 2412 // Optimize specific format strings. 2413 // printf("%c", chr) --> putchar(chr) 2414 if (FormatStr == "%c" && CI->arg_size() > 1 && 2415 CI->getArgOperand(1)->getType()->isIntegerTy()) 2416 return copyFlags(*CI, emitPutChar(CI->getArgOperand(1), B, TLI)); 2417 2418 // printf("%s\n", str) --> puts(str) 2419 if (FormatStr == "%s\n" && CI->arg_size() > 1 && 2420 CI->getArgOperand(1)->getType()->isPointerTy()) 2421 return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI)); 2422 return nullptr; 2423 } 2424 2425 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 2426 2427 Function *Callee = CI->getCalledFunction(); 2428 FunctionType *FT = Callee->getFunctionType(); 2429 if (Value *V = optimizePrintFString(CI, B)) { 2430 return V; 2431 } 2432 2433 // printf(format, ...) -> iprintf(format, ...) if no floating point 2434 // arguments. 2435 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2436 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2437 FunctionCallee IPrintFFn = 2438 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2439 CallInst *New = cast<CallInst>(CI->clone()); 2440 New->setCalledFunction(IPrintFFn); 2441 B.Insert(New); 2442 return New; 2443 } 2444 2445 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2446 // arguments. 2447 if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) { 2448 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2449 auto SmallPrintFFn = 2450 M->getOrInsertFunction(TLI->getName(LibFunc_small_printf), 2451 FT, Callee->getAttributes()); 2452 CallInst *New = cast<CallInst>(CI->clone()); 2453 New->setCalledFunction(SmallPrintFFn); 2454 B.Insert(New); 2455 return New; 2456 } 2457 2458 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2459 return nullptr; 2460 } 2461 2462 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 2463 IRBuilderBase &B) { 2464 // Check for a fixed format string. 2465 StringRef FormatStr; 2466 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2467 return nullptr; 2468 2469 // If we just have a format string (nothing else crazy) transform it. 2470 Value *Dest = CI->getArgOperand(0); 2471 if (CI->arg_size() == 2) { 2472 // Make sure there's no % in the constant array. We could try to handle 2473 // %% -> % in the future if we cared. 2474 if (FormatStr.contains('%')) 2475 return nullptr; // we found a format specifier, bail out. 2476 2477 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2478 B.CreateMemCpy( 2479 Dest, Align(1), CI->getArgOperand(1), Align(1), 2480 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2481 FormatStr.size() + 1)); // Copy the null byte. 2482 return ConstantInt::get(CI->getType(), FormatStr.size()); 2483 } 2484 2485 // The remaining optimizations require the format string to be "%s" or "%c" 2486 // and have an extra operand. 2487 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 2488 return nullptr; 2489 2490 // Decode the second character of the format string. 2491 if (FormatStr[1] == 'c') { 2492 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2493 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2494 return nullptr; 2495 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2496 Value *Ptr = castToCStr(Dest, B); 2497 B.CreateStore(V, Ptr); 2498 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2499 B.CreateStore(B.getInt8(0), Ptr); 2500 2501 return ConstantInt::get(CI->getType(), 1); 2502 } 2503 2504 if (FormatStr[1] == 's') { 2505 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2506 // strlen(str)+1) 2507 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2508 return nullptr; 2509 2510 if (CI->use_empty()) 2511 // sprintf(dest, "%s", str) -> strcpy(dest, str) 2512 return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI)); 2513 2514 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 2515 if (SrcLen) { 2516 B.CreateMemCpy( 2517 Dest, Align(1), CI->getArgOperand(2), Align(1), 2518 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 2519 // Returns total number of characters written without null-character. 2520 return ConstantInt::get(CI->getType(), SrcLen - 1); 2521 } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) { 2522 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 2523 // Handle mismatched pointer types (goes away with typeless pointers?). 2524 V = B.CreatePointerCast(V, B.getInt8PtrTy()); 2525 Dest = B.CreatePointerCast(Dest, B.getInt8PtrTy()); 2526 Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest); 2527 return B.CreateIntCast(PtrDiff, CI->getType(), false); 2528 } 2529 2530 bool OptForSize = CI->getFunction()->hasOptSize() || 2531 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2532 PGSOQueryType::IRPass); 2533 if (OptForSize) 2534 return nullptr; 2535 2536 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2537 if (!Len) 2538 return nullptr; 2539 Value *IncLen = 2540 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2541 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen); 2542 2543 // The sprintf result is the unincremented number of bytes in the string. 2544 return B.CreateIntCast(Len, CI->getType(), false); 2545 } 2546 return nullptr; 2547 } 2548 2549 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 2550 Function *Callee = CI->getCalledFunction(); 2551 FunctionType *FT = Callee->getFunctionType(); 2552 if (Value *V = optimizeSPrintFString(CI, B)) { 2553 return V; 2554 } 2555 2556 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2557 // point arguments. 2558 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2559 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2560 FunctionCallee SIPrintFFn = 2561 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2562 CallInst *New = cast<CallInst>(CI->clone()); 2563 New->setCalledFunction(SIPrintFFn); 2564 B.Insert(New); 2565 return New; 2566 } 2567 2568 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2569 // floating point arguments. 2570 if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) { 2571 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2572 auto SmallSPrintFFn = 2573 M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf), 2574 FT, Callee->getAttributes()); 2575 CallInst *New = cast<CallInst>(CI->clone()); 2576 New->setCalledFunction(SmallSPrintFFn); 2577 B.Insert(New); 2578 return New; 2579 } 2580 2581 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 2582 return nullptr; 2583 } 2584 2585 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 2586 IRBuilderBase &B) { 2587 // Check for size 2588 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2589 if (!Size) 2590 return nullptr; 2591 2592 uint64_t N = Size->getZExtValue(); 2593 // Check for a fixed format string. 2594 StringRef FormatStr; 2595 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2596 return nullptr; 2597 2598 // If we just have a format string (nothing else crazy) transform it. 2599 if (CI->arg_size() == 3) { 2600 // Make sure there's no % in the constant array. We could try to handle 2601 // %% -> % in the future if we cared. 2602 if (FormatStr.contains('%')) 2603 return nullptr; // we found a format specifier, bail out. 2604 2605 if (N == 0) 2606 return ConstantInt::get(CI->getType(), FormatStr.size()); 2607 else if (N < FormatStr.size() + 1) 2608 return nullptr; 2609 2610 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2611 // strlen(fmt)+1) 2612 copyFlags( 2613 *CI, 2614 B.CreateMemCpy( 2615 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2616 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2617 FormatStr.size() + 1))); // Copy the null byte. 2618 return ConstantInt::get(CI->getType(), FormatStr.size()); 2619 } 2620 2621 // The remaining optimizations require the format string to be "%s" or "%c" 2622 // and have an extra operand. 2623 if (FormatStr.size() == 2 && FormatStr[0] == '%' && CI->arg_size() == 4) { 2624 2625 // Decode the second character of the format string. 2626 if (FormatStr[1] == 'c') { 2627 if (N == 0) 2628 return ConstantInt::get(CI->getType(), 1); 2629 else if (N == 1) 2630 return nullptr; 2631 2632 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2633 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2634 return nullptr; 2635 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2636 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2637 B.CreateStore(V, Ptr); 2638 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2639 B.CreateStore(B.getInt8(0), Ptr); 2640 2641 return ConstantInt::get(CI->getType(), 1); 2642 } 2643 2644 if (FormatStr[1] == 's') { 2645 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2646 StringRef Str; 2647 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2648 return nullptr; 2649 2650 if (N == 0) 2651 return ConstantInt::get(CI->getType(), Str.size()); 2652 else if (N < Str.size() + 1) 2653 return nullptr; 2654 2655 copyFlags( 2656 *CI, B.CreateMemCpy(CI->getArgOperand(0), Align(1), 2657 CI->getArgOperand(3), Align(1), 2658 ConstantInt::get(CI->getType(), Str.size() + 1))); 2659 2660 // The snprintf result is the unincremented number of bytes in the string. 2661 return ConstantInt::get(CI->getType(), Str.size()); 2662 } 2663 } 2664 return nullptr; 2665 } 2666 2667 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 2668 if (Value *V = optimizeSnPrintFString(CI, B)) { 2669 return V; 2670 } 2671 2672 if (isKnownNonZero(CI->getOperand(1), DL)) 2673 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2674 return nullptr; 2675 } 2676 2677 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 2678 IRBuilderBase &B) { 2679 optimizeErrorReporting(CI, B, 0); 2680 2681 // All the optimizations depend on the format string. 2682 StringRef FormatStr; 2683 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2684 return nullptr; 2685 2686 // Do not do any of the following transformations if the fprintf return 2687 // value is used, in general the fprintf return value is not compatible 2688 // with fwrite(), fputc() or fputs(). 2689 if (!CI->use_empty()) 2690 return nullptr; 2691 2692 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2693 if (CI->arg_size() == 2) { 2694 // Could handle %% -> % if we cared. 2695 if (FormatStr.contains('%')) 2696 return nullptr; // We found a format specifier. 2697 2698 return copyFlags( 2699 *CI, emitFWrite(CI->getArgOperand(1), 2700 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2701 FormatStr.size()), 2702 CI->getArgOperand(0), B, DL, TLI)); 2703 } 2704 2705 // The remaining optimizations require the format string to be "%s" or "%c" 2706 // and have an extra operand. 2707 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 2708 return nullptr; 2709 2710 // Decode the second character of the format string. 2711 if (FormatStr[1] == 'c') { 2712 // fprintf(F, "%c", chr) --> fputc(chr, F) 2713 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2714 return nullptr; 2715 return copyFlags( 2716 *CI, emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 2717 } 2718 2719 if (FormatStr[1] == 's') { 2720 // fprintf(F, "%s", str) --> fputs(str, F) 2721 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2722 return nullptr; 2723 return copyFlags( 2724 *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 2725 } 2726 return nullptr; 2727 } 2728 2729 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 2730 Function *Callee = CI->getCalledFunction(); 2731 FunctionType *FT = Callee->getFunctionType(); 2732 if (Value *V = optimizeFPrintFString(CI, B)) { 2733 return V; 2734 } 2735 2736 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2737 // floating point arguments. 2738 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2739 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2740 FunctionCallee FIPrintFFn = 2741 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2742 CallInst *New = cast<CallInst>(CI->clone()); 2743 New->setCalledFunction(FIPrintFFn); 2744 B.Insert(New); 2745 return New; 2746 } 2747 2748 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2749 // 128-bit floating point arguments. 2750 if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) { 2751 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2752 auto SmallFPrintFFn = 2753 M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf), 2754 FT, Callee->getAttributes()); 2755 CallInst *New = cast<CallInst>(CI->clone()); 2756 New->setCalledFunction(SmallFPrintFFn); 2757 B.Insert(New); 2758 return New; 2759 } 2760 2761 return nullptr; 2762 } 2763 2764 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 2765 optimizeErrorReporting(CI, B, 3); 2766 2767 // Get the element size and count. 2768 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2769 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2770 if (SizeC && CountC) { 2771 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2772 2773 // If this is writing zero records, remove the call (it's a noop). 2774 if (Bytes == 0) 2775 return ConstantInt::get(CI->getType(), 0); 2776 2777 // If this is writing one byte, turn it into fputc. 2778 // This optimisation is only valid, if the return value is unused. 2779 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2780 Value *Char = B.CreateLoad(B.getInt8Ty(), 2781 castToCStr(CI->getArgOperand(0), B), "char"); 2782 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2783 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2784 } 2785 } 2786 2787 return nullptr; 2788 } 2789 2790 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 2791 optimizeErrorReporting(CI, B, 1); 2792 2793 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2794 // requires more arguments and thus extra MOVs are required. 2795 bool OptForSize = CI->getFunction()->hasOptSize() || 2796 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2797 PGSOQueryType::IRPass); 2798 if (OptForSize) 2799 return nullptr; 2800 2801 // We can't optimize if return value is used. 2802 if (!CI->use_empty()) 2803 return nullptr; 2804 2805 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2806 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2807 if (!Len) 2808 return nullptr; 2809 2810 // Known to have no uses (see above). 2811 return copyFlags( 2812 *CI, 2813 emitFWrite(CI->getArgOperand(0), 2814 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2815 CI->getArgOperand(1), B, DL, TLI)); 2816 } 2817 2818 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 2819 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2820 if (!CI->use_empty()) 2821 return nullptr; 2822 2823 // Check for a constant string. 2824 // puts("") -> putchar('\n') 2825 StringRef Str; 2826 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 2827 return copyFlags(*CI, emitPutChar(B.getInt32('\n'), B, TLI)); 2828 2829 return nullptr; 2830 } 2831 2832 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 2833 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 2834 return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1), 2835 CI->getArgOperand(0), Align(1), 2836 CI->getArgOperand(2))); 2837 } 2838 2839 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2840 LibFunc Func; 2841 SmallString<20> FloatFuncName = FuncName; 2842 FloatFuncName += 'f'; 2843 if (TLI->getLibFunc(FloatFuncName, Func)) 2844 return TLI->has(Func); 2845 return false; 2846 } 2847 2848 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2849 IRBuilderBase &Builder) { 2850 LibFunc Func; 2851 Function *Callee = CI->getCalledFunction(); 2852 // Check for string/memory library functions. 2853 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2854 // Make sure we never change the calling convention. 2855 assert( 2856 (ignoreCallingConv(Func) || 2857 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) && 2858 "Optimizing string/memory libcall would change the calling convention"); 2859 switch (Func) { 2860 case LibFunc_strcat: 2861 return optimizeStrCat(CI, Builder); 2862 case LibFunc_strncat: 2863 return optimizeStrNCat(CI, Builder); 2864 case LibFunc_strchr: 2865 return optimizeStrChr(CI, Builder); 2866 case LibFunc_strrchr: 2867 return optimizeStrRChr(CI, Builder); 2868 case LibFunc_strcmp: 2869 return optimizeStrCmp(CI, Builder); 2870 case LibFunc_strncmp: 2871 return optimizeStrNCmp(CI, Builder); 2872 case LibFunc_strcpy: 2873 return optimizeStrCpy(CI, Builder); 2874 case LibFunc_stpcpy: 2875 return optimizeStpCpy(CI, Builder); 2876 case LibFunc_strncpy: 2877 return optimizeStrNCpy(CI, Builder); 2878 case LibFunc_strlen: 2879 return optimizeStrLen(CI, Builder); 2880 case LibFunc_strpbrk: 2881 return optimizeStrPBrk(CI, Builder); 2882 case LibFunc_strndup: 2883 return optimizeStrNDup(CI, Builder); 2884 case LibFunc_strtol: 2885 case LibFunc_strtod: 2886 case LibFunc_strtof: 2887 case LibFunc_strtoul: 2888 case LibFunc_strtoll: 2889 case LibFunc_strtold: 2890 case LibFunc_strtoull: 2891 return optimizeStrTo(CI, Builder); 2892 case LibFunc_strspn: 2893 return optimizeStrSpn(CI, Builder); 2894 case LibFunc_strcspn: 2895 return optimizeStrCSpn(CI, Builder); 2896 case LibFunc_strstr: 2897 return optimizeStrStr(CI, Builder); 2898 case LibFunc_memchr: 2899 return optimizeMemChr(CI, Builder); 2900 case LibFunc_memrchr: 2901 return optimizeMemRChr(CI, Builder); 2902 case LibFunc_bcmp: 2903 return optimizeBCmp(CI, Builder); 2904 case LibFunc_memcmp: 2905 return optimizeMemCmp(CI, Builder); 2906 case LibFunc_memcpy: 2907 return optimizeMemCpy(CI, Builder); 2908 case LibFunc_memccpy: 2909 return optimizeMemCCpy(CI, Builder); 2910 case LibFunc_mempcpy: 2911 return optimizeMemPCpy(CI, Builder); 2912 case LibFunc_memmove: 2913 return optimizeMemMove(CI, Builder); 2914 case LibFunc_memset: 2915 return optimizeMemSet(CI, Builder); 2916 case LibFunc_realloc: 2917 return optimizeRealloc(CI, Builder); 2918 case LibFunc_wcslen: 2919 return optimizeWcslen(CI, Builder); 2920 case LibFunc_bcopy: 2921 return optimizeBCopy(CI, Builder); 2922 default: 2923 break; 2924 } 2925 } 2926 return nullptr; 2927 } 2928 2929 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2930 LibFunc Func, 2931 IRBuilderBase &Builder) { 2932 // Don't optimize calls that require strict floating point semantics. 2933 if (CI->isStrictFP()) 2934 return nullptr; 2935 2936 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 2937 return V; 2938 2939 switch (Func) { 2940 case LibFunc_sinpif: 2941 case LibFunc_sinpi: 2942 case LibFunc_cospif: 2943 case LibFunc_cospi: 2944 return optimizeSinCosPi(CI, Builder); 2945 case LibFunc_powf: 2946 case LibFunc_pow: 2947 case LibFunc_powl: 2948 return optimizePow(CI, Builder); 2949 case LibFunc_exp2l: 2950 case LibFunc_exp2: 2951 case LibFunc_exp2f: 2952 return optimizeExp2(CI, Builder); 2953 case LibFunc_fabsf: 2954 case LibFunc_fabs: 2955 case LibFunc_fabsl: 2956 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2957 case LibFunc_sqrtf: 2958 case LibFunc_sqrt: 2959 case LibFunc_sqrtl: 2960 return optimizeSqrt(CI, Builder); 2961 case LibFunc_logf: 2962 case LibFunc_log: 2963 case LibFunc_logl: 2964 case LibFunc_log10f: 2965 case LibFunc_log10: 2966 case LibFunc_log10l: 2967 case LibFunc_log1pf: 2968 case LibFunc_log1p: 2969 case LibFunc_log1pl: 2970 case LibFunc_log2f: 2971 case LibFunc_log2: 2972 case LibFunc_log2l: 2973 case LibFunc_logbf: 2974 case LibFunc_logb: 2975 case LibFunc_logbl: 2976 return optimizeLog(CI, Builder); 2977 case LibFunc_tan: 2978 case LibFunc_tanf: 2979 case LibFunc_tanl: 2980 return optimizeTan(CI, Builder); 2981 case LibFunc_ceil: 2982 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2983 case LibFunc_floor: 2984 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2985 case LibFunc_round: 2986 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2987 case LibFunc_roundeven: 2988 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 2989 case LibFunc_nearbyint: 2990 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2991 case LibFunc_rint: 2992 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2993 case LibFunc_trunc: 2994 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2995 case LibFunc_acos: 2996 case LibFunc_acosh: 2997 case LibFunc_asin: 2998 case LibFunc_asinh: 2999 case LibFunc_atan: 3000 case LibFunc_atanh: 3001 case LibFunc_cbrt: 3002 case LibFunc_cosh: 3003 case LibFunc_exp: 3004 case LibFunc_exp10: 3005 case LibFunc_expm1: 3006 case LibFunc_cos: 3007 case LibFunc_sin: 3008 case LibFunc_sinh: 3009 case LibFunc_tanh: 3010 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 3011 return optimizeUnaryDoubleFP(CI, Builder, true); 3012 return nullptr; 3013 case LibFunc_copysign: 3014 if (hasFloatVersion(CI->getCalledFunction()->getName())) 3015 return optimizeBinaryDoubleFP(CI, Builder); 3016 return nullptr; 3017 case LibFunc_fminf: 3018 case LibFunc_fmin: 3019 case LibFunc_fminl: 3020 case LibFunc_fmaxf: 3021 case LibFunc_fmax: 3022 case LibFunc_fmaxl: 3023 return optimizeFMinFMax(CI, Builder); 3024 case LibFunc_cabs: 3025 case LibFunc_cabsf: 3026 case LibFunc_cabsl: 3027 return optimizeCAbs(CI, Builder); 3028 default: 3029 return nullptr; 3030 } 3031 } 3032 3033 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 3034 assert(!CI->isMustTailCall() && "These transforms aren't musttail safe."); 3035 3036 // TODO: Split out the code below that operates on FP calls so that 3037 // we can all non-FP calls with the StrictFP attribute to be 3038 // optimized. 3039 if (CI->isNoBuiltin()) 3040 return nullptr; 3041 3042 LibFunc Func; 3043 Function *Callee = CI->getCalledFunction(); 3044 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3045 3046 SmallVector<OperandBundleDef, 2> OpBundles; 3047 CI->getOperandBundlesAsDefs(OpBundles); 3048 3049 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3050 Builder.setDefaultOperandBundles(OpBundles); 3051 3052 // Command-line parameter overrides instruction attribute. 3053 // This can't be moved to optimizeFloatingPointLibCall() because it may be 3054 // used by the intrinsic optimizations. 3055 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 3056 UnsafeFPShrink = EnableUnsafeFPShrink; 3057 else if (isa<FPMathOperator>(CI) && CI->isFast()) 3058 UnsafeFPShrink = true; 3059 3060 // First, check for intrinsics. 3061 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 3062 if (!IsCallingConvC) 3063 return nullptr; 3064 // The FP intrinsics have corresponding constrained versions so we don't 3065 // need to check for the StrictFP attribute here. 3066 switch (II->getIntrinsicID()) { 3067 case Intrinsic::pow: 3068 return optimizePow(CI, Builder); 3069 case Intrinsic::exp2: 3070 return optimizeExp2(CI, Builder); 3071 case Intrinsic::log: 3072 case Intrinsic::log2: 3073 case Intrinsic::log10: 3074 return optimizeLog(CI, Builder); 3075 case Intrinsic::sqrt: 3076 return optimizeSqrt(CI, Builder); 3077 case Intrinsic::memset: 3078 return optimizeMemSet(CI, Builder); 3079 case Intrinsic::memcpy: 3080 return optimizeMemCpy(CI, Builder); 3081 case Intrinsic::memmove: 3082 return optimizeMemMove(CI, Builder); 3083 default: 3084 return nullptr; 3085 } 3086 } 3087 3088 // Also try to simplify calls to fortified library functions. 3089 if (Value *SimplifiedFortifiedCI = 3090 FortifiedSimplifier.optimizeCall(CI, Builder)) { 3091 // Try to further simplify the result. 3092 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 3093 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 3094 // Ensure that SimplifiedCI's uses are complete, since some calls have 3095 // their uses analyzed. 3096 replaceAllUsesWith(CI, SimplifiedCI); 3097 3098 // Set insertion point to SimplifiedCI to guarantee we reach all uses 3099 // we might replace later on. 3100 IRBuilderBase::InsertPointGuard Guard(Builder); 3101 Builder.SetInsertPoint(SimplifiedCI); 3102 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) { 3103 // If we were able to further simplify, remove the now redundant call. 3104 substituteInParent(SimplifiedCI, V); 3105 return V; 3106 } 3107 } 3108 return SimplifiedFortifiedCI; 3109 } 3110 3111 // Then check for known library functions. 3112 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 3113 // We never change the calling convention. 3114 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3115 return nullptr; 3116 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 3117 return V; 3118 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 3119 return V; 3120 switch (Func) { 3121 case LibFunc_ffs: 3122 case LibFunc_ffsl: 3123 case LibFunc_ffsll: 3124 return optimizeFFS(CI, Builder); 3125 case LibFunc_fls: 3126 case LibFunc_flsl: 3127 case LibFunc_flsll: 3128 return optimizeFls(CI, Builder); 3129 case LibFunc_abs: 3130 case LibFunc_labs: 3131 case LibFunc_llabs: 3132 return optimizeAbs(CI, Builder); 3133 case LibFunc_isdigit: 3134 return optimizeIsDigit(CI, Builder); 3135 case LibFunc_isascii: 3136 return optimizeIsAscii(CI, Builder); 3137 case LibFunc_toascii: 3138 return optimizeToAscii(CI, Builder); 3139 case LibFunc_atoi: 3140 case LibFunc_atol: 3141 case LibFunc_atoll: 3142 return optimizeAtoi(CI, Builder); 3143 case LibFunc_strtol: 3144 case LibFunc_strtoll: 3145 return optimizeStrtol(CI, Builder); 3146 case LibFunc_printf: 3147 return optimizePrintF(CI, Builder); 3148 case LibFunc_sprintf: 3149 return optimizeSPrintF(CI, Builder); 3150 case LibFunc_snprintf: 3151 return optimizeSnPrintF(CI, Builder); 3152 case LibFunc_fprintf: 3153 return optimizeFPrintF(CI, Builder); 3154 case LibFunc_fwrite: 3155 return optimizeFWrite(CI, Builder); 3156 case LibFunc_fputs: 3157 return optimizeFPuts(CI, Builder); 3158 case LibFunc_puts: 3159 return optimizePuts(CI, Builder); 3160 case LibFunc_perror: 3161 return optimizeErrorReporting(CI, Builder); 3162 case LibFunc_vfprintf: 3163 case LibFunc_fiprintf: 3164 return optimizeErrorReporting(CI, Builder, 0); 3165 default: 3166 return nullptr; 3167 } 3168 } 3169 return nullptr; 3170 } 3171 3172 LibCallSimplifier::LibCallSimplifier( 3173 const DataLayout &DL, const TargetLibraryInfo *TLI, 3174 OptimizationRemarkEmitter &ORE, 3175 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 3176 function_ref<void(Instruction *, Value *)> Replacer, 3177 function_ref<void(Instruction *)> Eraser) 3178 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 3179 Replacer(Replacer), Eraser(Eraser) {} 3180 3181 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 3182 // Indirect through the replacer used in this instance. 3183 Replacer(I, With); 3184 } 3185 3186 void LibCallSimplifier::eraseFromParent(Instruction *I) { 3187 Eraser(I); 3188 } 3189 3190 // TODO: 3191 // Additional cases that we need to add to this file: 3192 // 3193 // cbrt: 3194 // * cbrt(expN(X)) -> expN(x/3) 3195 // * cbrt(sqrt(x)) -> pow(x,1/6) 3196 // * cbrt(cbrt(x)) -> pow(x,1/9) 3197 // 3198 // exp, expf, expl: 3199 // * exp(log(x)) -> x 3200 // 3201 // log, logf, logl: 3202 // * log(exp(x)) -> x 3203 // * log(exp(y)) -> y*log(e) 3204 // * log(exp10(y)) -> y*log(10) 3205 // * log(sqrt(x)) -> 0.5*log(x) 3206 // 3207 // pow, powf, powl: 3208 // * pow(sqrt(x),y) -> pow(x,y*0.5) 3209 // * pow(pow(x,y),z)-> pow(x,y*z) 3210 // 3211 // signbit: 3212 // * signbit(cnst) -> cnst' 3213 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 3214 // 3215 // sqrt, sqrtf, sqrtl: 3216 // * sqrt(expN(x)) -> expN(x*0.5) 3217 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 3218 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 3219 // 3220 3221 //===----------------------------------------------------------------------===// 3222 // Fortified Library Call Optimizations 3223 //===----------------------------------------------------------------------===// 3224 3225 bool 3226 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 3227 unsigned ObjSizeOp, 3228 Optional<unsigned> SizeOp, 3229 Optional<unsigned> StrOp, 3230 Optional<unsigned> FlagOp) { 3231 // If this function takes a flag argument, the implementation may use it to 3232 // perform extra checks. Don't fold into the non-checking variant. 3233 if (FlagOp) { 3234 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 3235 if (!Flag || !Flag->isZero()) 3236 return false; 3237 } 3238 3239 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 3240 return true; 3241 3242 if (ConstantInt *ObjSizeCI = 3243 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 3244 if (ObjSizeCI->isMinusOne()) 3245 return true; 3246 // If the object size wasn't -1 (unknown), bail out if we were asked to. 3247 if (OnlyLowerUnknownSize) 3248 return false; 3249 if (StrOp) { 3250 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 3251 // If the length is 0 we don't know how long it is and so we can't 3252 // remove the check. 3253 if (Len) 3254 annotateDereferenceableBytes(CI, *StrOp, Len); 3255 else 3256 return false; 3257 return ObjSizeCI->getZExtValue() >= Len; 3258 } 3259 3260 if (SizeOp) { 3261 if (ConstantInt *SizeCI = 3262 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 3263 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 3264 } 3265 } 3266 return false; 3267 } 3268 3269 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 3270 IRBuilderBase &B) { 3271 if (isFortifiedCallFoldable(CI, 3, 2)) { 3272 CallInst *NewCI = 3273 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3274 Align(1), CI->getArgOperand(2)); 3275 NewCI->setAttributes(CI->getAttributes()); 3276 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3277 copyFlags(*CI, NewCI); 3278 return CI->getArgOperand(0); 3279 } 3280 return nullptr; 3281 } 3282 3283 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 3284 IRBuilderBase &B) { 3285 if (isFortifiedCallFoldable(CI, 3, 2)) { 3286 CallInst *NewCI = 3287 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3288 Align(1), CI->getArgOperand(2)); 3289 NewCI->setAttributes(CI->getAttributes()); 3290 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3291 copyFlags(*CI, NewCI); 3292 return CI->getArgOperand(0); 3293 } 3294 return nullptr; 3295 } 3296 3297 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 3298 IRBuilderBase &B) { 3299 if (isFortifiedCallFoldable(CI, 3, 2)) { 3300 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 3301 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 3302 CI->getArgOperand(2), Align(1)); 3303 NewCI->setAttributes(CI->getAttributes()); 3304 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3305 copyFlags(*CI, NewCI); 3306 return CI->getArgOperand(0); 3307 } 3308 return nullptr; 3309 } 3310 3311 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 3312 IRBuilderBase &B) { 3313 const DataLayout &DL = CI->getModule()->getDataLayout(); 3314 if (isFortifiedCallFoldable(CI, 3, 2)) 3315 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3316 CI->getArgOperand(2), B, DL, TLI)) { 3317 CallInst *NewCI = cast<CallInst>(Call); 3318 NewCI->setAttributes(CI->getAttributes()); 3319 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3320 return copyFlags(*CI, NewCI); 3321 } 3322 return nullptr; 3323 } 3324 3325 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 3326 IRBuilderBase &B, 3327 LibFunc Func) { 3328 const DataLayout &DL = CI->getModule()->getDataLayout(); 3329 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 3330 *ObjSize = CI->getArgOperand(2); 3331 3332 // __stpcpy_chk(x,x,...) -> x+strlen(x) 3333 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 3334 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3335 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3336 } 3337 3338 // If a) we don't have any length information, or b) we know this will 3339 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3340 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3341 // TODO: It might be nice to get a maximum length out of the possible 3342 // string lengths for varying. 3343 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 3344 if (Func == LibFunc_strcpy_chk) 3345 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 3346 else 3347 return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI)); 3348 } 3349 3350 if (OnlyLowerUnknownSize) 3351 return nullptr; 3352 3353 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3354 uint64_t Len = GetStringLength(Src); 3355 if (Len) 3356 annotateDereferenceableBytes(CI, 1, Len); 3357 else 3358 return nullptr; 3359 3360 // FIXME: There is really no guarantee that sizeof(size_t) is equal to 3361 // sizeof(int*) for every target. So the assumption used here to derive the 3362 // SizeTBits based on the size of an integer pointer in address space zero 3363 // isn't always valid. 3364 Type *SizeTTy = DL.getIntPtrType(CI->getContext(), /*AddressSpace=*/0); 3365 Value *LenV = ConstantInt::get(SizeTTy, Len); 3366 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 3367 // If the function was an __stpcpy_chk, and we were able to fold it into 3368 // a __memcpy_chk, we still need to return the correct end pointer. 3369 if (Ret && Func == LibFunc_stpcpy_chk) 3370 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 3371 return copyFlags(*CI, cast<CallInst>(Ret)); 3372 } 3373 3374 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 3375 IRBuilderBase &B) { 3376 if (isFortifiedCallFoldable(CI, 1, None, 0)) 3377 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, 3378 CI->getModule()->getDataLayout(), TLI)); 3379 return nullptr; 3380 } 3381 3382 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 3383 IRBuilderBase &B, 3384 LibFunc Func) { 3385 if (isFortifiedCallFoldable(CI, 3, 2)) { 3386 if (Func == LibFunc_strncpy_chk) 3387 return copyFlags(*CI, 3388 emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3389 CI->getArgOperand(2), B, TLI)); 3390 else 3391 return copyFlags(*CI, 3392 emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3393 CI->getArgOperand(2), B, TLI)); 3394 } 3395 3396 return nullptr; 3397 } 3398 3399 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 3400 IRBuilderBase &B) { 3401 if (isFortifiedCallFoldable(CI, 4, 3)) 3402 return copyFlags( 3403 *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3404 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI)); 3405 3406 return nullptr; 3407 } 3408 3409 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 3410 IRBuilderBase &B) { 3411 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 3412 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 3413 return copyFlags(*CI, 3414 emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3415 CI->getArgOperand(4), VariadicArgs, B, TLI)); 3416 } 3417 3418 return nullptr; 3419 } 3420 3421 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3422 IRBuilderBase &B) { 3423 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3424 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 3425 return copyFlags(*CI, 3426 emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3427 VariadicArgs, B, TLI)); 3428 } 3429 3430 return nullptr; 3431 } 3432 3433 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3434 IRBuilderBase &B) { 3435 if (isFortifiedCallFoldable(CI, 2)) 3436 return copyFlags( 3437 *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI)); 3438 3439 return nullptr; 3440 } 3441 3442 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3443 IRBuilderBase &B) { 3444 if (isFortifiedCallFoldable(CI, 3)) 3445 return copyFlags(*CI, 3446 emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3447 CI->getArgOperand(2), B, TLI)); 3448 3449 return nullptr; 3450 } 3451 3452 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3453 IRBuilderBase &B) { 3454 if (isFortifiedCallFoldable(CI, 3)) 3455 return copyFlags(*CI, 3456 emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3457 CI->getArgOperand(2), B, TLI)); 3458 3459 return nullptr; 3460 } 3461 3462 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3463 IRBuilderBase &B) { 3464 if (isFortifiedCallFoldable(CI, 3)) 3465 return copyFlags(*CI, 3466 emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3467 CI->getArgOperand(2), B, TLI)); 3468 3469 return nullptr; 3470 } 3471 3472 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3473 IRBuilderBase &B) { 3474 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3475 return copyFlags( 3476 *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3477 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI)); 3478 3479 return nullptr; 3480 } 3481 3482 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3483 IRBuilderBase &B) { 3484 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3485 return copyFlags(*CI, 3486 emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3487 CI->getArgOperand(4), B, TLI)); 3488 3489 return nullptr; 3490 } 3491 3492 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 3493 IRBuilderBase &Builder) { 3494 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3495 // Some clang users checked for _chk libcall availability using: 3496 // __has_builtin(__builtin___memcpy_chk) 3497 // When compiling with -fno-builtin, this is always true. 3498 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3499 // end up with fortified libcalls, which isn't acceptable in a freestanding 3500 // environment which only provides their non-fortified counterparts. 3501 // 3502 // Until we change clang and/or teach external users to check for availability 3503 // differently, disregard the "nobuiltin" attribute and TLI::has. 3504 // 3505 // PR23093. 3506 3507 LibFunc Func; 3508 Function *Callee = CI->getCalledFunction(); 3509 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3510 3511 SmallVector<OperandBundleDef, 2> OpBundles; 3512 CI->getOperandBundlesAsDefs(OpBundles); 3513 3514 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3515 Builder.setDefaultOperandBundles(OpBundles); 3516 3517 // First, check that this is a known library functions and that the prototype 3518 // is correct. 3519 if (!TLI->getLibFunc(*Callee, Func)) 3520 return nullptr; 3521 3522 // We never change the calling convention. 3523 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3524 return nullptr; 3525 3526 switch (Func) { 3527 case LibFunc_memcpy_chk: 3528 return optimizeMemCpyChk(CI, Builder); 3529 case LibFunc_mempcpy_chk: 3530 return optimizeMemPCpyChk(CI, Builder); 3531 case LibFunc_memmove_chk: 3532 return optimizeMemMoveChk(CI, Builder); 3533 case LibFunc_memset_chk: 3534 return optimizeMemSetChk(CI, Builder); 3535 case LibFunc_stpcpy_chk: 3536 case LibFunc_strcpy_chk: 3537 return optimizeStrpCpyChk(CI, Builder, Func); 3538 case LibFunc_strlen_chk: 3539 return optimizeStrLenChk(CI, Builder); 3540 case LibFunc_stpncpy_chk: 3541 case LibFunc_strncpy_chk: 3542 return optimizeStrpNCpyChk(CI, Builder, Func); 3543 case LibFunc_memccpy_chk: 3544 return optimizeMemCCpyChk(CI, Builder); 3545 case LibFunc_snprintf_chk: 3546 return optimizeSNPrintfChk(CI, Builder); 3547 case LibFunc_sprintf_chk: 3548 return optimizeSPrintfChk(CI, Builder); 3549 case LibFunc_strcat_chk: 3550 return optimizeStrCatChk(CI, Builder); 3551 case LibFunc_strlcat_chk: 3552 return optimizeStrLCat(CI, Builder); 3553 case LibFunc_strncat_chk: 3554 return optimizeStrNCatChk(CI, Builder); 3555 case LibFunc_strlcpy_chk: 3556 return optimizeStrLCpyChk(CI, Builder); 3557 case LibFunc_vsnprintf_chk: 3558 return optimizeVSNPrintfChk(CI, Builder); 3559 case LibFunc_vsprintf_chk: 3560 return optimizeVSPrintfChk(CI, Builder); 3561 default: 3562 break; 3563 } 3564 return nullptr; 3565 } 3566 3567 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3568 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3569 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 3570