1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Analysis/BlockFrequencyInfo.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ProfileSummaryInfo.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/KnownBits.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Transforms/Utils/BuildLibCalls.h" 39 #include "llvm/Transforms/Utils/SizeOpts.h" 40 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 static cl::opt<bool> 45 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 46 cl::init(false), 47 cl::desc("Enable unsafe double to float " 48 "shrinking for math lib calls")); 49 50 //===----------------------------------------------------------------------===// 51 // Helper Functions 52 //===----------------------------------------------------------------------===// 53 54 static bool ignoreCallingConv(LibFunc Func) { 55 return Func == LibFunc_abs || Func == LibFunc_labs || 56 Func == LibFunc_llabs || Func == LibFunc_strlen; 57 } 58 59 static bool isCallingConvCCompatible(CallInst *CI) { 60 switch(CI->getCallingConv()) { 61 default: 62 return false; 63 case llvm::CallingConv::C: 64 return true; 65 case llvm::CallingConv::ARM_APCS: 66 case llvm::CallingConv::ARM_AAPCS: 67 case llvm::CallingConv::ARM_AAPCS_VFP: { 68 69 // The iOS ABI diverges from the standard in some cases, so for now don't 70 // try to simplify those calls. 71 if (Triple(CI->getModule()->getTargetTriple()).isiOS()) 72 return false; 73 74 auto *FuncTy = CI->getFunctionType(); 75 76 if (!FuncTy->getReturnType()->isPointerTy() && 77 !FuncTy->getReturnType()->isIntegerTy() && 78 !FuncTy->getReturnType()->isVoidTy()) 79 return false; 80 81 for (auto Param : FuncTy->params()) { 82 if (!Param->isPointerTy() && !Param->isIntegerTy()) 83 return false; 84 } 85 return true; 86 } 87 } 88 return false; 89 } 90 91 /// Return true if it is only used in equality comparisons with With. 92 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 93 for (User *U : V->users()) { 94 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 95 if (IC->isEquality() && IC->getOperand(1) == With) 96 continue; 97 // Unknown instruction. 98 return false; 99 } 100 return true; 101 } 102 103 static bool callHasFloatingPointArgument(const CallInst *CI) { 104 return any_of(CI->operands(), [](const Use &OI) { 105 return OI->getType()->isFloatingPointTy(); 106 }); 107 } 108 109 static bool callHasFP128Argument(const CallInst *CI) { 110 return any_of(CI->operands(), [](const Use &OI) { 111 return OI->getType()->isFP128Ty(); 112 }); 113 } 114 115 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 116 if (Base < 2 || Base > 36) 117 // handle special zero base 118 if (Base != 0) 119 return nullptr; 120 121 char *End; 122 std::string nptr = Str.str(); 123 errno = 0; 124 long long int Result = strtoll(nptr.c_str(), &End, Base); 125 if (errno) 126 return nullptr; 127 128 // if we assume all possible target locales are ASCII supersets, 129 // then if strtoll successfully parses a number on the host, 130 // it will also successfully parse the same way on the target 131 if (*End != '\0') 132 return nullptr; 133 134 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 135 return nullptr; 136 137 return ConstantInt::get(CI->getType(), Result); 138 } 139 140 static bool isOnlyUsedInComparisonWithZero(Value *V) { 141 for (User *U : V->users()) { 142 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 143 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 144 if (C->isNullValue()) 145 continue; 146 // Unknown instruction. 147 return false; 148 } 149 return true; 150 } 151 152 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 153 const DataLayout &DL) { 154 if (!isOnlyUsedInComparisonWithZero(CI)) 155 return false; 156 157 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 158 return false; 159 160 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 161 return false; 162 163 return true; 164 } 165 166 static void annotateDereferenceableBytes(CallInst *CI, 167 ArrayRef<unsigned> ArgNos, 168 uint64_t DereferenceableBytes) { 169 const Function *F = CI->getCaller(); 170 if (!F) 171 return; 172 for (unsigned ArgNo : ArgNos) { 173 uint64_t DerefBytes = DereferenceableBytes; 174 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 175 if (!llvm::NullPointerIsDefined(F, AS) || 176 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 177 DerefBytes = std::max(CI->getDereferenceableOrNullBytes( 178 ArgNo + AttributeList::FirstArgIndex), 179 DereferenceableBytes); 180 181 if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) < 182 DerefBytes) { 183 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 184 if (!llvm::NullPointerIsDefined(F, AS) || 185 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 186 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 187 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 188 CI->getContext(), DerefBytes)); 189 } 190 } 191 } 192 193 static void annotateNonNullBasedOnAccess(CallInst *CI, 194 ArrayRef<unsigned> ArgNos) { 195 Function *F = CI->getCaller(); 196 if (!F) 197 return; 198 199 for (unsigned ArgNo : ArgNos) { 200 if (CI->paramHasAttr(ArgNo, Attribute::NonNull)) 201 continue; 202 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 203 if (llvm::NullPointerIsDefined(F, AS)) 204 continue; 205 206 CI->addParamAttr(ArgNo, Attribute::NonNull); 207 annotateDereferenceableBytes(CI, ArgNo, 1); 208 } 209 } 210 211 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 212 Value *Size, const DataLayout &DL) { 213 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 214 annotateNonNullBasedOnAccess(CI, ArgNos); 215 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 216 } else if (isKnownNonZero(Size, DL)) { 217 annotateNonNullBasedOnAccess(CI, ArgNos); 218 const APInt *X, *Y; 219 uint64_t DerefMin = 1; 220 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 221 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 222 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 223 } 224 } 225 } 226 227 //===----------------------------------------------------------------------===// 228 // String and Memory Library Call Optimizations 229 //===----------------------------------------------------------------------===// 230 231 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 232 // Extract some information from the instruction 233 Value *Dst = CI->getArgOperand(0); 234 Value *Src = CI->getArgOperand(1); 235 annotateNonNullBasedOnAccess(CI, {0, 1}); 236 237 // See if we can get the length of the input string. 238 uint64_t Len = GetStringLength(Src); 239 if (Len) 240 annotateDereferenceableBytes(CI, 1, Len); 241 else 242 return nullptr; 243 --Len; // Unbias length. 244 245 // Handle the simple, do-nothing case: strcat(x, "") -> x 246 if (Len == 0) 247 return Dst; 248 249 return emitStrLenMemCpy(Src, Dst, Len, B); 250 } 251 252 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 253 IRBuilderBase &B) { 254 // We need to find the end of the destination string. That's where the 255 // memory is to be moved to. We just generate a call to strlen. 256 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 257 if (!DstLen) 258 return nullptr; 259 260 // Now that we have the destination's length, we must index into the 261 // destination's pointer to get the actual memcpy destination (end of 262 // the string .. we're concatenating). 263 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 264 265 // We have enough information to now generate the memcpy call to do the 266 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 267 B.CreateMemCpy( 268 CpyDst, Align(1), Src, Align(1), 269 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 270 return Dst; 271 } 272 273 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 274 // Extract some information from the instruction. 275 Value *Dst = CI->getArgOperand(0); 276 Value *Src = CI->getArgOperand(1); 277 Value *Size = CI->getArgOperand(2); 278 uint64_t Len; 279 annotateNonNullBasedOnAccess(CI, 0); 280 if (isKnownNonZero(Size, DL)) 281 annotateNonNullBasedOnAccess(CI, 1); 282 283 // We don't do anything if length is not constant. 284 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 285 if (LengthArg) { 286 Len = LengthArg->getZExtValue(); 287 // strncat(x, c, 0) -> x 288 if (!Len) 289 return Dst; 290 } else { 291 return nullptr; 292 } 293 294 // See if we can get the length of the input string. 295 uint64_t SrcLen = GetStringLength(Src); 296 if (SrcLen) { 297 annotateDereferenceableBytes(CI, 1, SrcLen); 298 --SrcLen; // Unbias length. 299 } else { 300 return nullptr; 301 } 302 303 // strncat(x, "", c) -> x 304 if (SrcLen == 0) 305 return Dst; 306 307 // We don't optimize this case. 308 if (Len < SrcLen) 309 return nullptr; 310 311 // strncat(x, s, c) -> strcat(x, s) 312 // s is constant so the strcat can be optimized further. 313 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 314 } 315 316 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 317 Function *Callee = CI->getCalledFunction(); 318 FunctionType *FT = Callee->getFunctionType(); 319 Value *SrcStr = CI->getArgOperand(0); 320 annotateNonNullBasedOnAccess(CI, 0); 321 322 // If the second operand is non-constant, see if we can compute the length 323 // of the input string and turn this into memchr. 324 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 325 if (!CharC) { 326 uint64_t Len = GetStringLength(SrcStr); 327 if (Len) 328 annotateDereferenceableBytes(CI, 0, Len); 329 else 330 return nullptr; 331 if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 332 return nullptr; 333 334 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 335 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 336 B, DL, TLI); 337 } 338 339 // Otherwise, the character is a constant, see if the first argument is 340 // a string literal. If so, we can constant fold. 341 StringRef Str; 342 if (!getConstantStringInfo(SrcStr, Str)) { 343 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 344 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 345 return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 346 return nullptr; 347 } 348 349 // Compute the offset, make sure to handle the case when we're searching for 350 // zero (a weird way to spell strlen). 351 size_t I = (0xFF & CharC->getSExtValue()) == 0 352 ? Str.size() 353 : Str.find(CharC->getSExtValue()); 354 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 355 return Constant::getNullValue(CI->getType()); 356 357 // strchr(s+n,c) -> gep(s+n+i,c) 358 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 359 } 360 361 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 362 Value *SrcStr = CI->getArgOperand(0); 363 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 364 annotateNonNullBasedOnAccess(CI, 0); 365 366 // Cannot fold anything if we're not looking for a constant. 367 if (!CharC) 368 return nullptr; 369 370 StringRef Str; 371 if (!getConstantStringInfo(SrcStr, Str)) { 372 // strrchr(s, 0) -> strchr(s, 0) 373 if (CharC->isZero()) 374 return emitStrChr(SrcStr, '\0', B, TLI); 375 return nullptr; 376 } 377 378 // Compute the offset. 379 size_t I = (0xFF & CharC->getSExtValue()) == 0 380 ? Str.size() 381 : Str.rfind(CharC->getSExtValue()); 382 if (I == StringRef::npos) // Didn't find the char. Return null. 383 return Constant::getNullValue(CI->getType()); 384 385 // strrchr(s+n,c) -> gep(s+n+i,c) 386 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 387 } 388 389 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 390 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 391 if (Str1P == Str2P) // strcmp(x,x) -> 0 392 return ConstantInt::get(CI->getType(), 0); 393 394 StringRef Str1, Str2; 395 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 396 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 397 398 // strcmp(x, y) -> cnst (if both x and y are constant strings) 399 if (HasStr1 && HasStr2) 400 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 401 402 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 403 return B.CreateNeg(B.CreateZExt( 404 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 405 406 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 407 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 408 CI->getType()); 409 410 // strcmp(P, "x") -> memcmp(P, "x", 2) 411 uint64_t Len1 = GetStringLength(Str1P); 412 if (Len1) 413 annotateDereferenceableBytes(CI, 0, Len1); 414 uint64_t Len2 = GetStringLength(Str2P); 415 if (Len2) 416 annotateDereferenceableBytes(CI, 1, Len2); 417 418 if (Len1 && Len2) { 419 return emitMemCmp(Str1P, Str2P, 420 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 421 std::min(Len1, Len2)), 422 B, DL, TLI); 423 } 424 425 // strcmp to memcmp 426 if (!HasStr1 && HasStr2) { 427 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 428 return emitMemCmp( 429 Str1P, Str2P, 430 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 431 TLI); 432 } else if (HasStr1 && !HasStr2) { 433 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 434 return emitMemCmp( 435 Str1P, Str2P, 436 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 437 TLI); 438 } 439 440 annotateNonNullBasedOnAccess(CI, {0, 1}); 441 return nullptr; 442 } 443 444 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 445 Value *Str1P = CI->getArgOperand(0); 446 Value *Str2P = CI->getArgOperand(1); 447 Value *Size = CI->getArgOperand(2); 448 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 449 return ConstantInt::get(CI->getType(), 0); 450 451 if (isKnownNonZero(Size, DL)) 452 annotateNonNullBasedOnAccess(CI, {0, 1}); 453 // Get the length argument if it is constant. 454 uint64_t Length; 455 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 456 Length = LengthArg->getZExtValue(); 457 else 458 return nullptr; 459 460 if (Length == 0) // strncmp(x,y,0) -> 0 461 return ConstantInt::get(CI->getType(), 0); 462 463 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 464 return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI); 465 466 StringRef Str1, Str2; 467 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 468 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 469 470 // strncmp(x, y) -> cnst (if both x and y are constant strings) 471 if (HasStr1 && HasStr2) { 472 StringRef SubStr1 = Str1.substr(0, Length); 473 StringRef SubStr2 = Str2.substr(0, Length); 474 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 475 } 476 477 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 478 return B.CreateNeg(B.CreateZExt( 479 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 480 481 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 482 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 483 CI->getType()); 484 485 uint64_t Len1 = GetStringLength(Str1P); 486 if (Len1) 487 annotateDereferenceableBytes(CI, 0, Len1); 488 uint64_t Len2 = GetStringLength(Str2P); 489 if (Len2) 490 annotateDereferenceableBytes(CI, 1, Len2); 491 492 // strncmp to memcmp 493 if (!HasStr1 && HasStr2) { 494 Len2 = std::min(Len2, Length); 495 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 496 return emitMemCmp( 497 Str1P, Str2P, 498 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 499 TLI); 500 } else if (HasStr1 && !HasStr2) { 501 Len1 = std::min(Len1, Length); 502 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 503 return emitMemCmp( 504 Str1P, Str2P, 505 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 506 TLI); 507 } 508 509 return nullptr; 510 } 511 512 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 513 Value *Src = CI->getArgOperand(0); 514 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 515 uint64_t SrcLen = GetStringLength(Src); 516 if (SrcLen && Size) { 517 annotateDereferenceableBytes(CI, 0, SrcLen); 518 if (SrcLen <= Size->getZExtValue() + 1) 519 return emitStrDup(Src, B, TLI); 520 } 521 522 return nullptr; 523 } 524 525 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 526 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 527 if (Dst == Src) // strcpy(x,x) -> x 528 return Src; 529 530 annotateNonNullBasedOnAccess(CI, {0, 1}); 531 // See if we can get the length of the input string. 532 uint64_t Len = GetStringLength(Src); 533 if (Len) 534 annotateDereferenceableBytes(CI, 1, Len); 535 else 536 return nullptr; 537 538 // We have enough information to now generate the memcpy call to do the 539 // copy for us. Make a memcpy to copy the nul byte with align = 1. 540 CallInst *NewCI = 541 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 542 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 543 NewCI->setAttributes(CI->getAttributes()); 544 return Dst; 545 } 546 547 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 548 Function *Callee = CI->getCalledFunction(); 549 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 550 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 551 Value *StrLen = emitStrLen(Src, B, DL, TLI); 552 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 553 } 554 555 // See if we can get the length of the input string. 556 uint64_t Len = GetStringLength(Src); 557 if (Len) 558 annotateDereferenceableBytes(CI, 1, Len); 559 else 560 return nullptr; 561 562 Type *PT = Callee->getFunctionType()->getParamType(0); 563 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 564 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 565 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 566 567 // We have enough information to now generate the memcpy call to do the 568 // copy for us. Make a memcpy to copy the nul byte with align = 1. 569 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 570 NewCI->setAttributes(CI->getAttributes()); 571 return DstEnd; 572 } 573 574 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) { 575 Function *Callee = CI->getCalledFunction(); 576 Value *Dst = CI->getArgOperand(0); 577 Value *Src = CI->getArgOperand(1); 578 Value *Size = CI->getArgOperand(2); 579 annotateNonNullBasedOnAccess(CI, 0); 580 if (isKnownNonZero(Size, DL)) 581 annotateNonNullBasedOnAccess(CI, 1); 582 583 uint64_t Len; 584 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 585 Len = LengthArg->getZExtValue(); 586 else 587 return nullptr; 588 589 // strncpy(x, y, 0) -> x 590 if (Len == 0) 591 return Dst; 592 593 // See if we can get the length of the input string. 594 uint64_t SrcLen = GetStringLength(Src); 595 if (SrcLen) { 596 annotateDereferenceableBytes(CI, 1, SrcLen); 597 --SrcLen; // Unbias length. 598 } else { 599 return nullptr; 600 } 601 602 if (SrcLen == 0) { 603 // strncpy(x, "", y) -> memset(align 1 x, '\0', y) 604 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, Align(1)); 605 AttrBuilder ArgAttrs(CI->getAttributes().getParamAttributes(0)); 606 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 607 CI->getContext(), 0, ArgAttrs)); 608 return Dst; 609 } 610 611 // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4) 612 if (Len > SrcLen + 1) { 613 if (Len <= 128) { 614 StringRef Str; 615 if (!getConstantStringInfo(Src, Str)) 616 return nullptr; 617 std::string SrcStr = Str.str(); 618 SrcStr.resize(Len, '\0'); 619 Src = B.CreateGlobalString(SrcStr, "str"); 620 } else { 621 return nullptr; 622 } 623 } 624 625 Type *PT = Callee->getFunctionType()->getParamType(0); 626 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 627 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 628 ConstantInt::get(DL.getIntPtrType(PT), Len)); 629 NewCI->setAttributes(CI->getAttributes()); 630 return Dst; 631 } 632 633 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 634 unsigned CharSize) { 635 Value *Src = CI->getArgOperand(0); 636 637 // Constant folding: strlen("xyz") -> 3 638 if (uint64_t Len = GetStringLength(Src, CharSize)) 639 return ConstantInt::get(CI->getType(), Len - 1); 640 641 // If s is a constant pointer pointing to a string literal, we can fold 642 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 643 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 644 // We only try to simplify strlen when the pointer s points to an array 645 // of i8. Otherwise, we would need to scale the offset x before doing the 646 // subtraction. This will make the optimization more complex, and it's not 647 // very useful because calling strlen for a pointer of other types is 648 // very uncommon. 649 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 650 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 651 return nullptr; 652 653 ConstantDataArraySlice Slice; 654 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 655 uint64_t NullTermIdx; 656 if (Slice.Array == nullptr) { 657 NullTermIdx = 0; 658 } else { 659 NullTermIdx = ~((uint64_t)0); 660 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 661 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 662 NullTermIdx = I; 663 break; 664 } 665 } 666 // If the string does not have '\0', leave it to strlen to compute 667 // its length. 668 if (NullTermIdx == ~((uint64_t)0)) 669 return nullptr; 670 } 671 672 Value *Offset = GEP->getOperand(2); 673 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 674 Known.Zero.flipAllBits(); 675 uint64_t ArrSize = 676 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 677 678 // KnownZero's bits are flipped, so zeros in KnownZero now represent 679 // bits known to be zeros in Offset, and ones in KnowZero represent 680 // bits unknown in Offset. Therefore, Offset is known to be in range 681 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 682 // unsigned-less-than NullTermIdx. 683 // 684 // If Offset is not provably in the range [0, NullTermIdx], we can still 685 // optimize if we can prove that the program has undefined behavior when 686 // Offset is outside that range. That is the case when GEP->getOperand(0) 687 // is a pointer to an object whose memory extent is NullTermIdx+1. 688 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 689 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 690 NullTermIdx == ArrSize - 1)) { 691 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 692 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 693 Offset); 694 } 695 } 696 } 697 698 // strlen(x?"foo":"bars") --> x ? 3 : 4 699 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 700 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 701 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 702 if (LenTrue && LenFalse) { 703 ORE.emit([&]() { 704 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 705 << "folded strlen(select) to select of constants"; 706 }); 707 return B.CreateSelect(SI->getCondition(), 708 ConstantInt::get(CI->getType(), LenTrue - 1), 709 ConstantInt::get(CI->getType(), LenFalse - 1)); 710 } 711 } 712 713 // strlen(x) != 0 --> *x != 0 714 // strlen(x) == 0 --> *x == 0 715 if (isOnlyUsedInZeroEqualityComparison(CI)) 716 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), 717 CI->getType()); 718 719 return nullptr; 720 } 721 722 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 723 if (Value *V = optimizeStringLength(CI, B, 8)) 724 return V; 725 annotateNonNullBasedOnAccess(CI, 0); 726 return nullptr; 727 } 728 729 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 730 Module &M = *CI->getModule(); 731 unsigned WCharSize = TLI->getWCharSize(M) * 8; 732 // We cannot perform this optimization without wchar_size metadata. 733 if (WCharSize == 0) 734 return nullptr; 735 736 return optimizeStringLength(CI, B, WCharSize); 737 } 738 739 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 740 StringRef S1, S2; 741 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 742 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 743 744 // strpbrk(s, "") -> nullptr 745 // strpbrk("", s) -> nullptr 746 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 747 return Constant::getNullValue(CI->getType()); 748 749 // Constant folding. 750 if (HasS1 && HasS2) { 751 size_t I = S1.find_first_of(S2); 752 if (I == StringRef::npos) // No match. 753 return Constant::getNullValue(CI->getType()); 754 755 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 756 "strpbrk"); 757 } 758 759 // strpbrk(s, "a") -> strchr(s, 'a') 760 if (HasS2 && S2.size() == 1) 761 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 762 763 return nullptr; 764 } 765 766 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 767 Value *EndPtr = CI->getArgOperand(1); 768 if (isa<ConstantPointerNull>(EndPtr)) { 769 // With a null EndPtr, this function won't capture the main argument. 770 // It would be readonly too, except that it still may write to errno. 771 CI->addParamAttr(0, Attribute::NoCapture); 772 } 773 774 return nullptr; 775 } 776 777 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 778 StringRef S1, S2; 779 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 780 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 781 782 // strspn(s, "") -> 0 783 // strspn("", s) -> 0 784 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 785 return Constant::getNullValue(CI->getType()); 786 787 // Constant folding. 788 if (HasS1 && HasS2) { 789 size_t Pos = S1.find_first_not_of(S2); 790 if (Pos == StringRef::npos) 791 Pos = S1.size(); 792 return ConstantInt::get(CI->getType(), Pos); 793 } 794 795 return nullptr; 796 } 797 798 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 799 StringRef S1, S2; 800 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 801 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 802 803 // strcspn("", s) -> 0 804 if (HasS1 && S1.empty()) 805 return Constant::getNullValue(CI->getType()); 806 807 // Constant folding. 808 if (HasS1 && HasS2) { 809 size_t Pos = S1.find_first_of(S2); 810 if (Pos == StringRef::npos) 811 Pos = S1.size(); 812 return ConstantInt::get(CI->getType(), Pos); 813 } 814 815 // strcspn(s, "") -> strlen(s) 816 if (HasS2 && S2.empty()) 817 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 818 819 return nullptr; 820 } 821 822 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 823 // fold strstr(x, x) -> x. 824 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 825 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 826 827 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 828 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 829 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 830 if (!StrLen) 831 return nullptr; 832 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 833 StrLen, B, DL, TLI); 834 if (!StrNCmp) 835 return nullptr; 836 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 837 ICmpInst *Old = cast<ICmpInst>(*UI++); 838 Value *Cmp = 839 B.CreateICmp(Old->getPredicate(), StrNCmp, 840 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 841 replaceAllUsesWith(Old, Cmp); 842 } 843 return CI; 844 } 845 846 // See if either input string is a constant string. 847 StringRef SearchStr, ToFindStr; 848 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 849 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 850 851 // fold strstr(x, "") -> x. 852 if (HasStr2 && ToFindStr.empty()) 853 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 854 855 // If both strings are known, constant fold it. 856 if (HasStr1 && HasStr2) { 857 size_t Offset = SearchStr.find(ToFindStr); 858 859 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 860 return Constant::getNullValue(CI->getType()); 861 862 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 863 Value *Result = castToCStr(CI->getArgOperand(0), B); 864 Result = 865 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 866 return B.CreateBitCast(Result, CI->getType()); 867 } 868 869 // fold strstr(x, "y") -> strchr(x, 'y'). 870 if (HasStr2 && ToFindStr.size() == 1) { 871 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 872 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 873 } 874 875 annotateNonNullBasedOnAccess(CI, {0, 1}); 876 return nullptr; 877 } 878 879 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 880 if (isKnownNonZero(CI->getOperand(2), DL)) 881 annotateNonNullBasedOnAccess(CI, 0); 882 return nullptr; 883 } 884 885 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 886 Value *SrcStr = CI->getArgOperand(0); 887 Value *Size = CI->getArgOperand(2); 888 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 889 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 890 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 891 892 // memchr(x, y, 0) -> null 893 if (LenC) { 894 if (LenC->isZero()) 895 return Constant::getNullValue(CI->getType()); 896 } else { 897 // From now on we need at least constant length and string. 898 return nullptr; 899 } 900 901 StringRef Str; 902 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 903 return nullptr; 904 905 // Truncate the string to LenC. If Str is smaller than LenC we will still only 906 // scan the string, as reading past the end of it is undefined and we can just 907 // return null if we don't find the char. 908 Str = Str.substr(0, LenC->getZExtValue()); 909 910 // If the char is variable but the input str and length are not we can turn 911 // this memchr call into a simple bit field test. Of course this only works 912 // when the return value is only checked against null. 913 // 914 // It would be really nice to reuse switch lowering here but we can't change 915 // the CFG at this point. 916 // 917 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 918 // != 0 919 // after bounds check. 920 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 921 unsigned char Max = 922 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 923 reinterpret_cast<const unsigned char *>(Str.end())); 924 925 // Make sure the bit field we're about to create fits in a register on the 926 // target. 927 // FIXME: On a 64 bit architecture this prevents us from using the 928 // interesting range of alpha ascii chars. We could do better by emitting 929 // two bitfields or shifting the range by 64 if no lower chars are used. 930 if (!DL.fitsInLegalInteger(Max + 1)) 931 return nullptr; 932 933 // For the bit field use a power-of-2 type with at least 8 bits to avoid 934 // creating unnecessary illegal types. 935 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 936 937 // Now build the bit field. 938 APInt Bitfield(Width, 0); 939 for (char C : Str) 940 Bitfield.setBit((unsigned char)C); 941 Value *BitfieldC = B.getInt(Bitfield); 942 943 // Adjust width of "C" to the bitfield width, then mask off the high bits. 944 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 945 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 946 947 // First check that the bit field access is within bounds. 948 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 949 "memchr.bounds"); 950 951 // Create code that checks if the given bit is set in the field. 952 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 953 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 954 955 // Finally merge both checks and cast to pointer type. The inttoptr 956 // implicitly zexts the i1 to intptr type. 957 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 958 } 959 960 // Check if all arguments are constants. If so, we can constant fold. 961 if (!CharC) 962 return nullptr; 963 964 // Compute the offset. 965 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 966 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 967 return Constant::getNullValue(CI->getType()); 968 969 // memchr(s+n,c,l) -> gep(s+n+i,c) 970 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 971 } 972 973 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 974 uint64_t Len, IRBuilderBase &B, 975 const DataLayout &DL) { 976 if (Len == 0) // memcmp(s1,s2,0) -> 0 977 return Constant::getNullValue(CI->getType()); 978 979 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 980 if (Len == 1) { 981 Value *LHSV = 982 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 983 CI->getType(), "lhsv"); 984 Value *RHSV = 985 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 986 CI->getType(), "rhsv"); 987 return B.CreateSub(LHSV, RHSV, "chardiff"); 988 } 989 990 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 991 // TODO: The case where both inputs are constants does not need to be limited 992 // to legal integers or equality comparison. See block below this. 993 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 994 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 995 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 996 997 // First, see if we can fold either argument to a constant. 998 Value *LHSV = nullptr; 999 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 1000 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 1001 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 1002 } 1003 Value *RHSV = nullptr; 1004 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 1005 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 1006 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 1007 } 1008 1009 // Don't generate unaligned loads. If either source is constant data, 1010 // alignment doesn't matter for that source because there is no load. 1011 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 1012 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 1013 if (!LHSV) { 1014 Type *LHSPtrTy = 1015 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 1016 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 1017 } 1018 if (!RHSV) { 1019 Type *RHSPtrTy = 1020 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 1021 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 1022 } 1023 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1024 } 1025 } 1026 1027 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 1028 // TODO: This is limited to i8 arrays. 1029 StringRef LHSStr, RHSStr; 1030 if (getConstantStringInfo(LHS, LHSStr) && 1031 getConstantStringInfo(RHS, RHSStr)) { 1032 // Make sure we're not reading out-of-bounds memory. 1033 if (Len > LHSStr.size() || Len > RHSStr.size()) 1034 return nullptr; 1035 // Fold the memcmp and normalize the result. This way we get consistent 1036 // results across multiple platforms. 1037 uint64_t Ret = 0; 1038 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 1039 if (Cmp < 0) 1040 Ret = -1; 1041 else if (Cmp > 0) 1042 Ret = 1; 1043 return ConstantInt::get(CI->getType(), Ret); 1044 } 1045 1046 return nullptr; 1047 } 1048 1049 // Most simplifications for memcmp also apply to bcmp. 1050 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1051 IRBuilderBase &B) { 1052 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1053 Value *Size = CI->getArgOperand(2); 1054 1055 if (LHS == RHS) // memcmp(s,s,x) -> 0 1056 return Constant::getNullValue(CI->getType()); 1057 1058 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1059 // Handle constant lengths. 1060 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1061 if (!LenC) 1062 return nullptr; 1063 1064 // memcmp(d,s,0) -> 0 1065 if (LenC->getZExtValue() == 0) 1066 return Constant::getNullValue(CI->getType()); 1067 1068 if (Value *Res = 1069 optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL)) 1070 return Res; 1071 return nullptr; 1072 } 1073 1074 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1075 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1076 return V; 1077 1078 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1079 // bcmp can be more efficient than memcmp because it only has to know that 1080 // there is a difference, not how different one is to the other. 1081 if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) { 1082 Value *LHS = CI->getArgOperand(0); 1083 Value *RHS = CI->getArgOperand(1); 1084 Value *Size = CI->getArgOperand(2); 1085 return emitBCmp(LHS, RHS, Size, B, DL, TLI); 1086 } 1087 1088 return nullptr; 1089 } 1090 1091 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1092 return optimizeMemCmpBCmpCommon(CI, B); 1093 } 1094 1095 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1096 Value *Size = CI->getArgOperand(2); 1097 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1098 if (isa<IntrinsicInst>(CI)) 1099 return nullptr; 1100 1101 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1102 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1103 CI->getArgOperand(1), Align(1), Size); 1104 NewCI->setAttributes(CI->getAttributes()); 1105 return CI->getArgOperand(0); 1106 } 1107 1108 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1109 Value *Dst = CI->getArgOperand(0); 1110 Value *Src = CI->getArgOperand(1); 1111 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1112 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1113 StringRef SrcStr; 1114 if (CI->use_empty() && Dst == Src) 1115 return Dst; 1116 // memccpy(d, s, c, 0) -> nullptr 1117 if (N) { 1118 if (N->isNullValue()) 1119 return Constant::getNullValue(CI->getType()); 1120 if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0, 1121 /*TrimAtNul=*/false) || 1122 !StopChar) 1123 return nullptr; 1124 } else { 1125 return nullptr; 1126 } 1127 1128 // Wrap arg 'c' of type int to char 1129 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1130 if (Pos == StringRef::npos) { 1131 if (N->getZExtValue() <= SrcStr.size()) { 1132 B.CreateMemCpy(Dst, Align(1), Src, Align(1), CI->getArgOperand(3)); 1133 return Constant::getNullValue(CI->getType()); 1134 } 1135 return nullptr; 1136 } 1137 1138 Value *NewN = 1139 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1140 // memccpy -> llvm.memcpy 1141 B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN); 1142 return Pos + 1 <= N->getZExtValue() 1143 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1144 : Constant::getNullValue(CI->getType()); 1145 } 1146 1147 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1148 Value *Dst = CI->getArgOperand(0); 1149 Value *N = CI->getArgOperand(2); 1150 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1151 CallInst *NewCI = 1152 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1153 // Propagate attributes, but memcpy has no return value, so make sure that 1154 // any return attributes are compliant. 1155 // TODO: Attach return value attributes to the 1st operand to preserve them? 1156 NewCI->setAttributes(CI->getAttributes()); 1157 NewCI->removeAttributes(AttributeList::ReturnIndex, 1158 AttributeFuncs::typeIncompatible(NewCI->getType())); 1159 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1160 } 1161 1162 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1163 Value *Size = CI->getArgOperand(2); 1164 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1165 if (isa<IntrinsicInst>(CI)) 1166 return nullptr; 1167 1168 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1169 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1170 CI->getArgOperand(1), Align(1), Size); 1171 NewCI->setAttributes(CI->getAttributes()); 1172 return CI->getArgOperand(0); 1173 } 1174 1175 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 1176 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilderBase &B) { 1177 // This has to be a memset of zeros (bzero). 1178 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 1179 if (!FillValue || FillValue->getZExtValue() != 0) 1180 return nullptr; 1181 1182 // TODO: We should handle the case where the malloc has more than one use. 1183 // This is necessary to optimize common patterns such as when the result of 1184 // the malloc is checked against null or when a memset intrinsic is used in 1185 // place of a memset library call. 1186 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 1187 if (!Malloc || !Malloc->hasOneUse()) 1188 return nullptr; 1189 1190 // Is the inner call really malloc()? 1191 Function *InnerCallee = Malloc->getCalledFunction(); 1192 if (!InnerCallee) 1193 return nullptr; 1194 1195 LibFunc Func; 1196 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 1197 Func != LibFunc_malloc) 1198 return nullptr; 1199 1200 // The memset must cover the same number of bytes that are malloc'd. 1201 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 1202 return nullptr; 1203 1204 // Replace the malloc with a calloc. We need the data layout to know what the 1205 // actual size of a 'size_t' parameter is. 1206 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 1207 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 1208 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 1209 if (Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 1210 Malloc->getArgOperand(0), 1211 Malloc->getAttributes(), B, *TLI)) { 1212 substituteInParent(Malloc, Calloc); 1213 return Calloc; 1214 } 1215 1216 return nullptr; 1217 } 1218 1219 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1220 Value *Size = CI->getArgOperand(2); 1221 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1222 if (isa<IntrinsicInst>(CI)) 1223 return nullptr; 1224 1225 if (auto *Calloc = foldMallocMemset(CI, B)) 1226 return Calloc; 1227 1228 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1229 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1230 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1231 NewCI->setAttributes(CI->getAttributes()); 1232 return CI->getArgOperand(0); 1233 } 1234 1235 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1236 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1237 return emitMalloc(CI->getArgOperand(1), B, DL, TLI); 1238 1239 return nullptr; 1240 } 1241 1242 //===----------------------------------------------------------------------===// 1243 // Math Library Optimizations 1244 //===----------------------------------------------------------------------===// 1245 1246 // Replace a libcall \p CI with a call to intrinsic \p IID 1247 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1248 Intrinsic::ID IID) { 1249 // Propagate fast-math flags from the existing call to the new call. 1250 IRBuilderBase::FastMathFlagGuard Guard(B); 1251 B.setFastMathFlags(CI->getFastMathFlags()); 1252 1253 Module *M = CI->getModule(); 1254 Value *V = CI->getArgOperand(0); 1255 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1256 CallInst *NewCall = B.CreateCall(F, V); 1257 NewCall->takeName(CI); 1258 return NewCall; 1259 } 1260 1261 /// Return a variant of Val with float type. 1262 /// Currently this works in two cases: If Val is an FPExtension of a float 1263 /// value to something bigger, simply return the operand. 1264 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1265 /// loss of precision do so. 1266 static Value *valueHasFloatPrecision(Value *Val) { 1267 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1268 Value *Op = Cast->getOperand(0); 1269 if (Op->getType()->isFloatTy()) 1270 return Op; 1271 } 1272 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1273 APFloat F = Const->getValueAPF(); 1274 bool losesInfo; 1275 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1276 &losesInfo); 1277 if (!losesInfo) 1278 return ConstantFP::get(Const->getContext(), F); 1279 } 1280 return nullptr; 1281 } 1282 1283 /// Shrink double -> float functions. 1284 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1285 bool isBinary, bool isPrecise = false) { 1286 Function *CalleeFn = CI->getCalledFunction(); 1287 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1288 return nullptr; 1289 1290 // If not all the uses of the function are converted to float, then bail out. 1291 // This matters if the precision of the result is more important than the 1292 // precision of the arguments. 1293 if (isPrecise) 1294 for (User *U : CI->users()) { 1295 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1296 if (!Cast || !Cast->getType()->isFloatTy()) 1297 return nullptr; 1298 } 1299 1300 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1301 Value *V[2]; 1302 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1303 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1304 if (!V[0] || (isBinary && !V[1])) 1305 return nullptr; 1306 1307 // If call isn't an intrinsic, check that it isn't within a function with the 1308 // same name as the float version of this call, otherwise the result is an 1309 // infinite loop. For example, from MinGW-w64: 1310 // 1311 // float expf(float val) { return (float) exp((double) val); } 1312 StringRef CalleeName = CalleeFn->getName(); 1313 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1314 if (!IsIntrinsic) { 1315 StringRef CallerName = CI->getFunction()->getName(); 1316 if (!CallerName.empty() && CallerName.back() == 'f' && 1317 CallerName.size() == (CalleeName.size() + 1) && 1318 CallerName.startswith(CalleeName)) 1319 return nullptr; 1320 } 1321 1322 // Propagate the math semantics from the current function to the new function. 1323 IRBuilderBase::FastMathFlagGuard Guard(B); 1324 B.setFastMathFlags(CI->getFastMathFlags()); 1325 1326 // g((double) float) -> (double) gf(float) 1327 Value *R; 1328 if (IsIntrinsic) { 1329 Module *M = CI->getModule(); 1330 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1331 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1332 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1333 } else { 1334 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1335 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs) 1336 : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs); 1337 } 1338 return B.CreateFPExt(R, B.getDoubleTy()); 1339 } 1340 1341 /// Shrink double -> float for unary functions. 1342 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1343 bool isPrecise = false) { 1344 return optimizeDoubleFP(CI, B, false, isPrecise); 1345 } 1346 1347 /// Shrink double -> float for binary functions. 1348 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1349 bool isPrecise = false) { 1350 return optimizeDoubleFP(CI, B, true, isPrecise); 1351 } 1352 1353 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1354 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1355 if (!CI->isFast()) 1356 return nullptr; 1357 1358 // Propagate fast-math flags from the existing call to new instructions. 1359 IRBuilderBase::FastMathFlagGuard Guard(B); 1360 B.setFastMathFlags(CI->getFastMathFlags()); 1361 1362 Value *Real, *Imag; 1363 if (CI->getNumArgOperands() == 1) { 1364 Value *Op = CI->getArgOperand(0); 1365 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1366 Real = B.CreateExtractValue(Op, 0, "real"); 1367 Imag = B.CreateExtractValue(Op, 1, "imag"); 1368 } else { 1369 assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); 1370 Real = CI->getArgOperand(0); 1371 Imag = CI->getArgOperand(1); 1372 } 1373 1374 Value *RealReal = B.CreateFMul(Real, Real); 1375 Value *ImagImag = B.CreateFMul(Imag, Imag); 1376 1377 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1378 CI->getType()); 1379 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); 1380 } 1381 1382 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1383 IRBuilderBase &B) { 1384 if (!isa<FPMathOperator>(Call)) 1385 return nullptr; 1386 1387 IRBuilderBase::FastMathFlagGuard Guard(B); 1388 B.setFastMathFlags(Call->getFastMathFlags()); 1389 1390 // TODO: Can this be shared to also handle LLVM intrinsics? 1391 Value *X; 1392 switch (Func) { 1393 case LibFunc_sin: 1394 case LibFunc_sinf: 1395 case LibFunc_sinl: 1396 case LibFunc_tan: 1397 case LibFunc_tanf: 1398 case LibFunc_tanl: 1399 // sin(-X) --> -sin(X) 1400 // tan(-X) --> -tan(X) 1401 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1402 return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X)); 1403 break; 1404 case LibFunc_cos: 1405 case LibFunc_cosf: 1406 case LibFunc_cosl: 1407 // cos(-X) --> cos(X) 1408 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1409 return B.CreateCall(Call->getCalledFunction(), X, "cos"); 1410 break; 1411 default: 1412 break; 1413 } 1414 return nullptr; 1415 } 1416 1417 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) { 1418 // Multiplications calculated using Addition Chains. 1419 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1420 1421 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1422 1423 if (InnerChain[Exp]) 1424 return InnerChain[Exp]; 1425 1426 static const unsigned AddChain[33][2] = { 1427 {0, 0}, // Unused. 1428 {0, 0}, // Unused (base case = pow1). 1429 {1, 1}, // Unused (pre-computed). 1430 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1431 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1432 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1433 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1434 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1435 }; 1436 1437 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1438 getPow(InnerChain, AddChain[Exp][1], B)); 1439 return InnerChain[Exp]; 1440 } 1441 1442 // Return a properly extended 32-bit integer if the operation is an itofp. 1443 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B) { 1444 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1445 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1446 // Make sure that the exponent fits inside an int32_t, 1447 // thus avoiding any range issues that FP has not. 1448 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); 1449 if (BitWidth < 32 || 1450 (BitWidth == 32 && isa<SIToFPInst>(I2F))) 1451 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getInt32Ty()) 1452 : B.CreateZExt(Op, B.getInt32Ty()); 1453 } 1454 1455 return nullptr; 1456 } 1457 1458 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1459 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 1460 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 1461 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 1462 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1463 AttributeList Attrs; // Attributes are only meaningful on the original call 1464 Module *Mod = Pow->getModule(); 1465 Type *Ty = Pow->getType(); 1466 bool Ignored; 1467 1468 // Evaluate special cases related to a nested function as the base. 1469 1470 // pow(exp(x), y) -> exp(x * y) 1471 // pow(exp2(x), y) -> exp2(x * y) 1472 // If exp{,2}() is used only once, it is better to fold two transcendental 1473 // math functions into one. If used again, exp{,2}() would still have to be 1474 // called with the original argument, then keep both original transcendental 1475 // functions. However, this transformation is only safe with fully relaxed 1476 // math semantics, since, besides rounding differences, it changes overflow 1477 // and underflow behavior quite dramatically. For example: 1478 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1479 // Whereas: 1480 // exp(1000 * 0.001) = exp(1) 1481 // TODO: Loosen the requirement for fully relaxed math semantics. 1482 // TODO: Handle exp10() when more targets have it available. 1483 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1484 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1485 LibFunc LibFn; 1486 1487 Function *CalleeFn = BaseFn->getCalledFunction(); 1488 if (CalleeFn && 1489 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1490 StringRef ExpName; 1491 Intrinsic::ID ID; 1492 Value *ExpFn; 1493 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 1494 1495 switch (LibFn) { 1496 default: 1497 return nullptr; 1498 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1499 ExpName = TLI->getName(LibFunc_exp); 1500 ID = Intrinsic::exp; 1501 LibFnFloat = LibFunc_expf; 1502 LibFnDouble = LibFunc_exp; 1503 LibFnLongDouble = LibFunc_expl; 1504 break; 1505 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1506 ExpName = TLI->getName(LibFunc_exp2); 1507 ID = Intrinsic::exp2; 1508 LibFnFloat = LibFunc_exp2f; 1509 LibFnDouble = LibFunc_exp2; 1510 LibFnLongDouble = LibFunc_exp2l; 1511 break; 1512 } 1513 1514 // Create new exp{,2}() with the product as its argument. 1515 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1516 ExpFn = BaseFn->doesNotAccessMemory() 1517 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1518 FMul, ExpName) 1519 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1520 LibFnLongDouble, B, 1521 BaseFn->getAttributes()); 1522 1523 // Since the new exp{,2}() is different from the original one, dead code 1524 // elimination cannot be trusted to remove it, since it may have side 1525 // effects (e.g., errno). When the only consumer for the original 1526 // exp{,2}() is pow(), then it has to be explicitly erased. 1527 substituteInParent(BaseFn, ExpFn); 1528 return ExpFn; 1529 } 1530 } 1531 1532 // Evaluate special cases related to a constant base. 1533 1534 const APFloat *BaseF; 1535 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1536 return nullptr; 1537 1538 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 1539 if (match(Base, m_SpecificFP(2.0)) && 1540 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 1541 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1542 if (Value *ExpoI = getIntToFPVal(Expo, B)) 1543 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI, 1544 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1545 B, Attrs); 1546 } 1547 1548 // pow(2.0 ** n, x) -> exp2(n * x) 1549 if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1550 APFloat BaseR = APFloat(1.0); 1551 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1552 BaseR = BaseR / *BaseF; 1553 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1554 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1555 APSInt NI(64, false); 1556 if ((IsInteger || IsReciprocal) && 1557 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1558 APFloat::opOK && 1559 NI > 1 && NI.isPowerOf2()) { 1560 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1561 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1562 if (Pow->doesNotAccessMemory()) 1563 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1564 FMul, "exp2"); 1565 else 1566 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1567 LibFunc_exp2l, B, Attrs); 1568 } 1569 } 1570 1571 // pow(10.0, x) -> exp10(x) 1572 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1573 if (match(Base, m_SpecificFP(10.0)) && 1574 hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1575 return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f, 1576 LibFunc_exp10l, B, Attrs); 1577 1578 // pow(x, y) -> exp2(log2(x) * y) 1579 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 1580 !BaseF->isNegative()) { 1581 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 1582 // Luckily optimizePow has already handled the x == 1 case. 1583 assert(!match(Base, m_FPOne()) && 1584 "pow(1.0, y) should have been simplified earlier!"); 1585 1586 Value *Log = nullptr; 1587 if (Ty->isFloatTy()) 1588 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 1589 else if (Ty->isDoubleTy()) 1590 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 1591 1592 if (Log) { 1593 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 1594 if (Pow->doesNotAccessMemory()) 1595 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1596 FMul, "exp2"); 1597 else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) 1598 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1599 LibFunc_exp2l, B, Attrs); 1600 } 1601 } 1602 1603 return nullptr; 1604 } 1605 1606 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1607 Module *M, IRBuilderBase &B, 1608 const TargetLibraryInfo *TLI) { 1609 // If errno is never set, then use the intrinsic for sqrt(). 1610 if (NoErrno) { 1611 Function *SqrtFn = 1612 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1613 return B.CreateCall(SqrtFn, V, "sqrt"); 1614 } 1615 1616 // Otherwise, use the libcall for sqrt(). 1617 if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) 1618 // TODO: We also should check that the target can in fact lower the sqrt() 1619 // libcall. We currently have no way to ask this question, so we ask if 1620 // the target has a sqrt() libcall, which is not exactly the same. 1621 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1622 LibFunc_sqrtl, B, Attrs); 1623 1624 return nullptr; 1625 } 1626 1627 /// Use square root in place of pow(x, +/-0.5). 1628 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 1629 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1630 AttributeList Attrs; // Attributes are only meaningful on the original call 1631 Module *Mod = Pow->getModule(); 1632 Type *Ty = Pow->getType(); 1633 1634 const APFloat *ExpoF; 1635 if (!match(Expo, m_APFloat(ExpoF)) || 1636 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1637 return nullptr; 1638 1639 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 1640 // so that requires fast-math-flags (afn or reassoc). 1641 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 1642 return nullptr; 1643 1644 // If we have a pow() library call (accesses memory) and we can't guarantee 1645 // that the base is not an infinity, give up: 1646 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 1647 // errno), but sqrt(-Inf) is required by various standards to set errno. 1648 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 1649 !isKnownNeverInfinity(Base, TLI)) 1650 return nullptr; 1651 1652 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1653 if (!Sqrt) 1654 return nullptr; 1655 1656 // Handle signed zero base by expanding to fabs(sqrt(x)). 1657 if (!Pow->hasNoSignedZeros()) { 1658 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1659 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1660 } 1661 1662 // Handle non finite base by expanding to 1663 // (x == -infinity ? +infinity : sqrt(x)). 1664 if (!Pow->hasNoInfs()) { 1665 Value *PosInf = ConstantFP::getInfinity(Ty), 1666 *NegInf = ConstantFP::getInfinity(Ty, true); 1667 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1668 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1669 } 1670 1671 // If the exponent is negative, then get the reciprocal. 1672 if (ExpoF->isNegative()) 1673 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1674 1675 return Sqrt; 1676 } 1677 1678 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1679 IRBuilderBase &B) { 1680 Value *Args[] = {Base, Expo}; 1681 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType()); 1682 return B.CreateCall(F, Args); 1683 } 1684 1685 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 1686 Value *Base = Pow->getArgOperand(0); 1687 Value *Expo = Pow->getArgOperand(1); 1688 Function *Callee = Pow->getCalledFunction(); 1689 StringRef Name = Callee->getName(); 1690 Type *Ty = Pow->getType(); 1691 Module *M = Pow->getModule(); 1692 Value *Shrunk = nullptr; 1693 bool AllowApprox = Pow->hasApproxFunc(); 1694 bool Ignored; 1695 1696 // Propagate the math semantics from the call to any created instructions. 1697 IRBuilderBase::FastMathFlagGuard Guard(B); 1698 B.setFastMathFlags(Pow->getFastMathFlags()); 1699 1700 // Shrink pow() to powf() if the arguments are single precision, 1701 // unless the result is expected to be double precision. 1702 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 1703 hasFloatVersion(Name)) 1704 Shrunk = optimizeBinaryDoubleFP(Pow, B, true); 1705 1706 // Evaluate special cases related to the base. 1707 1708 // pow(1.0, x) -> 1.0 1709 if (match(Base, m_FPOne())) 1710 return Base; 1711 1712 if (Value *Exp = replacePowWithExp(Pow, B)) 1713 return Exp; 1714 1715 // Evaluate special cases related to the exponent. 1716 1717 // pow(x, -1.0) -> 1.0 / x 1718 if (match(Expo, m_SpecificFP(-1.0))) 1719 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1720 1721 // pow(x, +/-0.0) -> 1.0 1722 if (match(Expo, m_AnyZeroFP())) 1723 return ConstantFP::get(Ty, 1.0); 1724 1725 // pow(x, 1.0) -> x 1726 if (match(Expo, m_FPOne())) 1727 return Base; 1728 1729 // pow(x, 2.0) -> x * x 1730 if (match(Expo, m_SpecificFP(2.0))) 1731 return B.CreateFMul(Base, Base, "square"); 1732 1733 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1734 return Sqrt; 1735 1736 // pow(x, n) -> x * x * x * ... 1737 const APFloat *ExpoF; 1738 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 1739 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 1740 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1741 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1742 // additional fmul. 1743 // TODO: This whole transformation should be backend specific (e.g. some 1744 // backends might prefer libcalls or the limit for the exponent might 1745 // be different) and it should also consider optimizing for size. 1746 APFloat LimF(ExpoF->getSemantics(), 33), 1747 ExpoA(abs(*ExpoF)); 1748 if (ExpoA < LimF) { 1749 // This transformation applies to integer or integer+0.5 exponents only. 1750 // For integer+0.5, we create a sqrt(Base) call. 1751 Value *Sqrt = nullptr; 1752 if (!ExpoA.isInteger()) { 1753 APFloat Expo2 = ExpoA; 1754 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1755 // is no floating point exception and the result is an integer, then 1756 // ExpoA == integer + 0.5 1757 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1758 return nullptr; 1759 1760 if (!Expo2.isInteger()) 1761 return nullptr; 1762 1763 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1764 Pow->doesNotAccessMemory(), M, B, TLI); 1765 if (!Sqrt) 1766 return nullptr; 1767 } 1768 1769 // We will memoize intermediate products of the Addition Chain. 1770 Value *InnerChain[33] = {nullptr}; 1771 InnerChain[1] = Base; 1772 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1773 1774 // We cannot readily convert a non-double type (like float) to a double. 1775 // So we first convert it to something which could be converted to double. 1776 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1777 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1778 1779 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1780 if (Sqrt) 1781 FMul = B.CreateFMul(FMul, Sqrt); 1782 1783 // If the exponent is negative, then get the reciprocal. 1784 if (ExpoF->isNegative()) 1785 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1786 1787 return FMul; 1788 } 1789 1790 APSInt IntExpo(32, /*isUnsigned=*/false); 1791 // powf(x, n) -> powi(x, n) if n is a constant signed integer value 1792 if (ExpoF->isInteger() && 1793 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 1794 APFloat::opOK) { 1795 return createPowWithIntegerExponent( 1796 Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B); 1797 } 1798 } 1799 1800 // powf(x, itofp(y)) -> powi(x, y) 1801 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 1802 if (Value *ExpoI = getIntToFPVal(Expo, B)) 1803 return createPowWithIntegerExponent(Base, ExpoI, M, B); 1804 } 1805 1806 return Shrunk; 1807 } 1808 1809 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 1810 Function *Callee = CI->getCalledFunction(); 1811 AttributeList Attrs; // Attributes are only meaningful on the original call 1812 StringRef Name = Callee->getName(); 1813 Value *Ret = nullptr; 1814 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 1815 hasFloatVersion(Name)) 1816 Ret = optimizeUnaryDoubleFP(CI, B, true); 1817 1818 Type *Ty = CI->getType(); 1819 Value *Op = CI->getArgOperand(0); 1820 1821 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1822 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1823 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 1824 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1825 if (Value *Exp = getIntToFPVal(Op, B)) 1826 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 1827 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1828 B, Attrs); 1829 } 1830 1831 return Ret; 1832 } 1833 1834 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 1835 // If we can shrink the call to a float function rather than a double 1836 // function, do that first. 1837 Function *Callee = CI->getCalledFunction(); 1838 StringRef Name = Callee->getName(); 1839 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1840 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1841 return Ret; 1842 1843 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 1844 // the intrinsics for improved optimization (for example, vectorization). 1845 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 1846 // From the C standard draft WG14/N1256: 1847 // "Ideally, fmax would be sensitive to the sign of zero, for example 1848 // fmax(-0.0, +0.0) would return +0; however, implementation in software 1849 // might be impractical." 1850 IRBuilderBase::FastMathFlagGuard Guard(B); 1851 FastMathFlags FMF = CI->getFastMathFlags(); 1852 FMF.setNoSignedZeros(); 1853 B.setFastMathFlags(FMF); 1854 1855 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 1856 : Intrinsic::maxnum; 1857 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 1858 return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) }); 1859 } 1860 1861 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 1862 Function *LogFn = Log->getCalledFunction(); 1863 AttributeList Attrs; // Attributes are only meaningful on the original call 1864 StringRef LogNm = LogFn->getName(); 1865 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 1866 Module *Mod = Log->getModule(); 1867 Type *Ty = Log->getType(); 1868 Value *Ret = nullptr; 1869 1870 if (UnsafeFPShrink && hasFloatVersion(LogNm)) 1871 Ret = optimizeUnaryDoubleFP(Log, B, true); 1872 1873 // The earlier call must also be 'fast' in order to do these transforms. 1874 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 1875 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 1876 return Ret; 1877 1878 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 1879 1880 // This is only applicable to log(), log2(), log10(). 1881 if (TLI->getLibFunc(LogNm, LogLb)) 1882 switch (LogLb) { 1883 case LibFunc_logf: 1884 LogID = Intrinsic::log; 1885 ExpLb = LibFunc_expf; 1886 Exp2Lb = LibFunc_exp2f; 1887 Exp10Lb = LibFunc_exp10f; 1888 PowLb = LibFunc_powf; 1889 break; 1890 case LibFunc_log: 1891 LogID = Intrinsic::log; 1892 ExpLb = LibFunc_exp; 1893 Exp2Lb = LibFunc_exp2; 1894 Exp10Lb = LibFunc_exp10; 1895 PowLb = LibFunc_pow; 1896 break; 1897 case LibFunc_logl: 1898 LogID = Intrinsic::log; 1899 ExpLb = LibFunc_expl; 1900 Exp2Lb = LibFunc_exp2l; 1901 Exp10Lb = LibFunc_exp10l; 1902 PowLb = LibFunc_powl; 1903 break; 1904 case LibFunc_log2f: 1905 LogID = Intrinsic::log2; 1906 ExpLb = LibFunc_expf; 1907 Exp2Lb = LibFunc_exp2f; 1908 Exp10Lb = LibFunc_exp10f; 1909 PowLb = LibFunc_powf; 1910 break; 1911 case LibFunc_log2: 1912 LogID = Intrinsic::log2; 1913 ExpLb = LibFunc_exp; 1914 Exp2Lb = LibFunc_exp2; 1915 Exp10Lb = LibFunc_exp10; 1916 PowLb = LibFunc_pow; 1917 break; 1918 case LibFunc_log2l: 1919 LogID = Intrinsic::log2; 1920 ExpLb = LibFunc_expl; 1921 Exp2Lb = LibFunc_exp2l; 1922 Exp10Lb = LibFunc_exp10l; 1923 PowLb = LibFunc_powl; 1924 break; 1925 case LibFunc_log10f: 1926 LogID = Intrinsic::log10; 1927 ExpLb = LibFunc_expf; 1928 Exp2Lb = LibFunc_exp2f; 1929 Exp10Lb = LibFunc_exp10f; 1930 PowLb = LibFunc_powf; 1931 break; 1932 case LibFunc_log10: 1933 LogID = Intrinsic::log10; 1934 ExpLb = LibFunc_exp; 1935 Exp2Lb = LibFunc_exp2; 1936 Exp10Lb = LibFunc_exp10; 1937 PowLb = LibFunc_pow; 1938 break; 1939 case LibFunc_log10l: 1940 LogID = Intrinsic::log10; 1941 ExpLb = LibFunc_expl; 1942 Exp2Lb = LibFunc_exp2l; 1943 Exp10Lb = LibFunc_exp10l; 1944 PowLb = LibFunc_powl; 1945 break; 1946 default: 1947 return Ret; 1948 } 1949 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 1950 LogID == Intrinsic::log10) { 1951 if (Ty->getScalarType()->isFloatTy()) { 1952 ExpLb = LibFunc_expf; 1953 Exp2Lb = LibFunc_exp2f; 1954 Exp10Lb = LibFunc_exp10f; 1955 PowLb = LibFunc_powf; 1956 } else if (Ty->getScalarType()->isDoubleTy()) { 1957 ExpLb = LibFunc_exp; 1958 Exp2Lb = LibFunc_exp2; 1959 Exp10Lb = LibFunc_exp10; 1960 PowLb = LibFunc_pow; 1961 } else 1962 return Ret; 1963 } else 1964 return Ret; 1965 1966 IRBuilderBase::FastMathFlagGuard Guard(B); 1967 B.setFastMathFlags(FastMathFlags::getFast()); 1968 1969 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 1970 LibFunc ArgLb = NotLibFunc; 1971 TLI->getLibFunc(*Arg, ArgLb); 1972 1973 // log(pow(x,y)) -> y*log(x) 1974 if (ArgLb == PowLb || ArgID == Intrinsic::pow) { 1975 Value *LogX = 1976 Log->doesNotAccessMemory() 1977 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 1978 Arg->getOperand(0), "log") 1979 : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs); 1980 Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul"); 1981 // Since pow() may have side effects, e.g. errno, 1982 // dead code elimination may not be trusted to remove it. 1983 substituteInParent(Arg, MulY); 1984 return MulY; 1985 } 1986 1987 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 1988 // TODO: There is no exp10() intrinsic yet. 1989 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 1990 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 1991 Constant *Eul; 1992 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 1993 // FIXME: Add more precise value of e for long double. 1994 Eul = ConstantFP::get(Log->getType(), numbers::e); 1995 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 1996 Eul = ConstantFP::get(Log->getType(), 2.0); 1997 else 1998 Eul = ConstantFP::get(Log->getType(), 10.0); 1999 Value *LogE = Log->doesNotAccessMemory() 2000 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 2001 Eul, "log") 2002 : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs); 2003 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 2004 // Since exp() may have side effects, e.g. errno, 2005 // dead code elimination may not be trusted to remove it. 2006 substituteInParent(Arg, MulY); 2007 return MulY; 2008 } 2009 2010 return Ret; 2011 } 2012 2013 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 2014 Function *Callee = CI->getCalledFunction(); 2015 Value *Ret = nullptr; 2016 // TODO: Once we have a way (other than checking for the existince of the 2017 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 2018 // condition below. 2019 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 2020 Callee->getIntrinsicID() == Intrinsic::sqrt)) 2021 Ret = optimizeUnaryDoubleFP(CI, B, true); 2022 2023 if (!CI->isFast()) 2024 return Ret; 2025 2026 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 2027 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 2028 return Ret; 2029 2030 // We're looking for a repeated factor in a multiplication tree, 2031 // so we can do this fold: sqrt(x * x) -> fabs(x); 2032 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 2033 Value *Op0 = I->getOperand(0); 2034 Value *Op1 = I->getOperand(1); 2035 Value *RepeatOp = nullptr; 2036 Value *OtherOp = nullptr; 2037 if (Op0 == Op1) { 2038 // Simple match: the operands of the multiply are identical. 2039 RepeatOp = Op0; 2040 } else { 2041 // Look for a more complicated pattern: one of the operands is itself 2042 // a multiply, so search for a common factor in that multiply. 2043 // Note: We don't bother looking any deeper than this first level or for 2044 // variations of this pattern because instcombine's visitFMUL and/or the 2045 // reassociation pass should give us this form. 2046 Value *OtherMul0, *OtherMul1; 2047 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 2048 // Pattern: sqrt((x * y) * z) 2049 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 2050 // Matched: sqrt((x * x) * z) 2051 RepeatOp = OtherMul0; 2052 OtherOp = Op1; 2053 } 2054 } 2055 } 2056 if (!RepeatOp) 2057 return Ret; 2058 2059 // Fast math flags for any created instructions should match the sqrt 2060 // and multiply. 2061 IRBuilderBase::FastMathFlagGuard Guard(B); 2062 B.setFastMathFlags(I->getFastMathFlags()); 2063 2064 // If we found a repeated factor, hoist it out of the square root and 2065 // replace it with the fabs of that factor. 2066 Module *M = Callee->getParent(); 2067 Type *ArgType = I->getType(); 2068 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 2069 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 2070 if (OtherOp) { 2071 // If we found a non-repeated factor, we still need to get its square 2072 // root. We then multiply that by the value that was simplified out 2073 // of the square root calculation. 2074 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 2075 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 2076 return B.CreateFMul(FabsCall, SqrtCall); 2077 } 2078 return FabsCall; 2079 } 2080 2081 // TODO: Generalize to handle any trig function and its inverse. 2082 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) { 2083 Function *Callee = CI->getCalledFunction(); 2084 Value *Ret = nullptr; 2085 StringRef Name = Callee->getName(); 2086 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 2087 Ret = optimizeUnaryDoubleFP(CI, B, true); 2088 2089 Value *Op1 = CI->getArgOperand(0); 2090 auto *OpC = dyn_cast<CallInst>(Op1); 2091 if (!OpC) 2092 return Ret; 2093 2094 // Both calls must be 'fast' in order to remove them. 2095 if (!CI->isFast() || !OpC->isFast()) 2096 return Ret; 2097 2098 // tan(atan(x)) -> x 2099 // tanf(atanf(x)) -> x 2100 // tanl(atanl(x)) -> x 2101 LibFunc Func; 2102 Function *F = OpC->getCalledFunction(); 2103 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 2104 ((Func == LibFunc_atan && Callee->getName() == "tan") || 2105 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 2106 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 2107 Ret = OpC->getArgOperand(0); 2108 return Ret; 2109 } 2110 2111 static bool isTrigLibCall(CallInst *CI) { 2112 // We can only hope to do anything useful if we can ignore things like errno 2113 // and floating-point exceptions. 2114 // We already checked the prototype. 2115 return CI->hasFnAttr(Attribute::NoUnwind) && 2116 CI->hasFnAttr(Attribute::ReadNone); 2117 } 2118 2119 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2120 bool UseFloat, Value *&Sin, Value *&Cos, 2121 Value *&SinCos) { 2122 Type *ArgTy = Arg->getType(); 2123 Type *ResTy; 2124 StringRef Name; 2125 2126 Triple T(OrigCallee->getParent()->getTargetTriple()); 2127 if (UseFloat) { 2128 Name = "__sincospif_stret"; 2129 2130 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2131 // x86_64 can't use {float, float} since that would be returned in both 2132 // xmm0 and xmm1, which isn't what a real struct would do. 2133 ResTy = T.getArch() == Triple::x86_64 2134 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2135 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2136 } else { 2137 Name = "__sincospi_stret"; 2138 ResTy = StructType::get(ArgTy, ArgTy); 2139 } 2140 2141 Module *M = OrigCallee->getParent(); 2142 FunctionCallee Callee = 2143 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); 2144 2145 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2146 // If the argument is an instruction, it must dominate all uses so put our 2147 // sincos call there. 2148 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2149 } else { 2150 // Otherwise (e.g. for a constant) the beginning of the function is as 2151 // good a place as any. 2152 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2153 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2154 } 2155 2156 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2157 2158 if (SinCos->getType()->isStructTy()) { 2159 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2160 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2161 } else { 2162 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2163 "sinpi"); 2164 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2165 "cospi"); 2166 } 2167 } 2168 2169 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) { 2170 // Make sure the prototype is as expected, otherwise the rest of the 2171 // function is probably invalid and likely to abort. 2172 if (!isTrigLibCall(CI)) 2173 return nullptr; 2174 2175 Value *Arg = CI->getArgOperand(0); 2176 SmallVector<CallInst *, 1> SinCalls; 2177 SmallVector<CallInst *, 1> CosCalls; 2178 SmallVector<CallInst *, 1> SinCosCalls; 2179 2180 bool IsFloat = Arg->getType()->isFloatTy(); 2181 2182 // Look for all compatible sinpi, cospi and sincospi calls with the same 2183 // argument. If there are enough (in some sense) we can make the 2184 // substitution. 2185 Function *F = CI->getFunction(); 2186 for (User *U : Arg->users()) 2187 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2188 2189 // It's only worthwhile if both sinpi and cospi are actually used. 2190 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 2191 return nullptr; 2192 2193 Value *Sin, *Cos, *SinCos; 2194 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 2195 2196 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2197 Value *Res) { 2198 for (CallInst *C : Calls) 2199 replaceAllUsesWith(C, Res); 2200 }; 2201 2202 replaceTrigInsts(SinCalls, Sin); 2203 replaceTrigInsts(CosCalls, Cos); 2204 replaceTrigInsts(SinCosCalls, SinCos); 2205 2206 return nullptr; 2207 } 2208 2209 void LibCallSimplifier::classifyArgUse( 2210 Value *Val, Function *F, bool IsFloat, 2211 SmallVectorImpl<CallInst *> &SinCalls, 2212 SmallVectorImpl<CallInst *> &CosCalls, 2213 SmallVectorImpl<CallInst *> &SinCosCalls) { 2214 CallInst *CI = dyn_cast<CallInst>(Val); 2215 2216 if (!CI) 2217 return; 2218 2219 // Don't consider calls in other functions. 2220 if (CI->getFunction() != F) 2221 return; 2222 2223 Function *Callee = CI->getCalledFunction(); 2224 LibFunc Func; 2225 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 2226 !isTrigLibCall(CI)) 2227 return; 2228 2229 if (IsFloat) { 2230 if (Func == LibFunc_sinpif) 2231 SinCalls.push_back(CI); 2232 else if (Func == LibFunc_cospif) 2233 CosCalls.push_back(CI); 2234 else if (Func == LibFunc_sincospif_stret) 2235 SinCosCalls.push_back(CI); 2236 } else { 2237 if (Func == LibFunc_sinpi) 2238 SinCalls.push_back(CI); 2239 else if (Func == LibFunc_cospi) 2240 CosCalls.push_back(CI); 2241 else if (Func == LibFunc_sincospi_stret) 2242 SinCosCalls.push_back(CI); 2243 } 2244 } 2245 2246 //===----------------------------------------------------------------------===// 2247 // Integer Library Call Optimizations 2248 //===----------------------------------------------------------------------===// 2249 2250 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 2251 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 2252 Value *Op = CI->getArgOperand(0); 2253 Type *ArgType = Op->getType(); 2254 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2255 Intrinsic::cttz, ArgType); 2256 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 2257 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 2258 V = B.CreateIntCast(V, B.getInt32Ty(), false); 2259 2260 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 2261 return B.CreateSelect(Cond, V, B.getInt32(0)); 2262 } 2263 2264 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 2265 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 2266 Value *Op = CI->getArgOperand(0); 2267 Type *ArgType = Op->getType(); 2268 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2269 Intrinsic::ctlz, ArgType); 2270 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 2271 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 2272 V); 2273 return B.CreateIntCast(V, CI->getType(), false); 2274 } 2275 2276 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 2277 // abs(x) -> x <s 0 ? -x : x 2278 // The negation has 'nsw' because abs of INT_MIN is undefined. 2279 Value *X = CI->getArgOperand(0); 2280 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 2281 Value *NegX = B.CreateNSWNeg(X, "neg"); 2282 return B.CreateSelect(IsNeg, NegX, X); 2283 } 2284 2285 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 2286 // isdigit(c) -> (c-'0') <u 10 2287 Value *Op = CI->getArgOperand(0); 2288 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 2289 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 2290 return B.CreateZExt(Op, CI->getType()); 2291 } 2292 2293 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 2294 // isascii(c) -> c <u 128 2295 Value *Op = CI->getArgOperand(0); 2296 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 2297 return B.CreateZExt(Op, CI->getType()); 2298 } 2299 2300 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 2301 // toascii(c) -> c & 0x7f 2302 return B.CreateAnd(CI->getArgOperand(0), 2303 ConstantInt::get(CI->getType(), 0x7F)); 2304 } 2305 2306 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 2307 StringRef Str; 2308 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2309 return nullptr; 2310 2311 return convertStrToNumber(CI, Str, 10); 2312 } 2313 2314 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) { 2315 StringRef Str; 2316 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2317 return nullptr; 2318 2319 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 2320 return nullptr; 2321 2322 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2323 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 2324 } 2325 2326 return nullptr; 2327 } 2328 2329 //===----------------------------------------------------------------------===// 2330 // Formatting and IO Library Call Optimizations 2331 //===----------------------------------------------------------------------===// 2332 2333 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2334 2335 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 2336 int StreamArg) { 2337 Function *Callee = CI->getCalledFunction(); 2338 // Error reporting calls should be cold, mark them as such. 2339 // This applies even to non-builtin calls: it is only a hint and applies to 2340 // functions that the frontend might not understand as builtins. 2341 2342 // This heuristic was suggested in: 2343 // Improving Static Branch Prediction in a Compiler 2344 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2345 // Proceedings of PACT'98, Oct. 1998, IEEE 2346 if (!CI->hasFnAttr(Attribute::Cold) && 2347 isReportingError(Callee, CI, StreamArg)) { 2348 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 2349 } 2350 2351 return nullptr; 2352 } 2353 2354 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2355 if (!Callee || !Callee->isDeclaration()) 2356 return false; 2357 2358 if (StreamArg < 0) 2359 return true; 2360 2361 // These functions might be considered cold, but only if their stream 2362 // argument is stderr. 2363 2364 if (StreamArg >= (int)CI->getNumArgOperands()) 2365 return false; 2366 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2367 if (!LI) 2368 return false; 2369 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2370 if (!GV || !GV->isDeclaration()) 2371 return false; 2372 return GV->getName() == "stderr"; 2373 } 2374 2375 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 2376 // Check for a fixed format string. 2377 StringRef FormatStr; 2378 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2379 return nullptr; 2380 2381 // Empty format string -> noop. 2382 if (FormatStr.empty()) // Tolerate printf's declared void. 2383 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2384 2385 // Do not do any of the following transformations if the printf return value 2386 // is used, in general the printf return value is not compatible with either 2387 // putchar() or puts(). 2388 if (!CI->use_empty()) 2389 return nullptr; 2390 2391 // printf("x") -> putchar('x'), even for "%" and "%%". 2392 if (FormatStr.size() == 1 || FormatStr == "%%") 2393 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 2394 2395 // printf("%s", "a") --> putchar('a') 2396 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 2397 StringRef ChrStr; 2398 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 2399 return nullptr; 2400 if (ChrStr.size() != 1) 2401 return nullptr; 2402 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 2403 } 2404 2405 // printf("foo\n") --> puts("foo") 2406 if (FormatStr[FormatStr.size() - 1] == '\n' && 2407 FormatStr.find('%') == StringRef::npos) { // No format characters. 2408 // Create a string literal with no \n on it. We expect the constant merge 2409 // pass to be run after this pass, to merge duplicate strings. 2410 FormatStr = FormatStr.drop_back(); 2411 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2412 return emitPutS(GV, B, TLI); 2413 } 2414 2415 // Optimize specific format strings. 2416 // printf("%c", chr) --> putchar(chr) 2417 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 2418 CI->getArgOperand(1)->getType()->isIntegerTy()) 2419 return emitPutChar(CI->getArgOperand(1), B, TLI); 2420 2421 // printf("%s\n", str) --> puts(str) 2422 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 2423 CI->getArgOperand(1)->getType()->isPointerTy()) 2424 return emitPutS(CI->getArgOperand(1), B, TLI); 2425 return nullptr; 2426 } 2427 2428 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 2429 2430 Function *Callee = CI->getCalledFunction(); 2431 FunctionType *FT = Callee->getFunctionType(); 2432 if (Value *V = optimizePrintFString(CI, B)) { 2433 return V; 2434 } 2435 2436 // printf(format, ...) -> iprintf(format, ...) if no floating point 2437 // arguments. 2438 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2439 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2440 FunctionCallee IPrintFFn = 2441 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2442 CallInst *New = cast<CallInst>(CI->clone()); 2443 New->setCalledFunction(IPrintFFn); 2444 B.Insert(New); 2445 return New; 2446 } 2447 2448 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2449 // arguments. 2450 if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) { 2451 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2452 auto SmallPrintFFn = 2453 M->getOrInsertFunction(TLI->getName(LibFunc_small_printf), 2454 FT, Callee->getAttributes()); 2455 CallInst *New = cast<CallInst>(CI->clone()); 2456 New->setCalledFunction(SmallPrintFFn); 2457 B.Insert(New); 2458 return New; 2459 } 2460 2461 annotateNonNullBasedOnAccess(CI, 0); 2462 return nullptr; 2463 } 2464 2465 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 2466 IRBuilderBase &B) { 2467 // Check for a fixed format string. 2468 StringRef FormatStr; 2469 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2470 return nullptr; 2471 2472 // If we just have a format string (nothing else crazy) transform it. 2473 if (CI->getNumArgOperands() == 2) { 2474 // Make sure there's no % in the constant array. We could try to handle 2475 // %% -> % in the future if we cared. 2476 if (FormatStr.find('%') != StringRef::npos) 2477 return nullptr; // we found a format specifier, bail out. 2478 2479 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2480 B.CreateMemCpy( 2481 CI->getArgOperand(0), Align(1), CI->getArgOperand(1), Align(1), 2482 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2483 FormatStr.size() + 1)); // Copy the null byte. 2484 return ConstantInt::get(CI->getType(), FormatStr.size()); 2485 } 2486 2487 // The remaining optimizations require the format string to be "%s" or "%c" 2488 // and have an extra operand. 2489 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2490 CI->getNumArgOperands() < 3) 2491 return nullptr; 2492 2493 // Decode the second character of the format string. 2494 if (FormatStr[1] == 'c') { 2495 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2496 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2497 return nullptr; 2498 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2499 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2500 B.CreateStore(V, Ptr); 2501 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2502 B.CreateStore(B.getInt8(0), Ptr); 2503 2504 return ConstantInt::get(CI->getType(), 1); 2505 } 2506 2507 if (FormatStr[1] == 's') { 2508 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2509 // strlen(str)+1) 2510 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2511 return nullptr; 2512 2513 if (CI->use_empty()) 2514 // sprintf(dest, "%s", str) -> strcpy(dest, str) 2515 return emitStrCpy(CI->getArgOperand(0), CI->getArgOperand(2), B, TLI); 2516 2517 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 2518 if (SrcLen) { 2519 B.CreateMemCpy( 2520 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2521 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 2522 // Returns total number of characters written without null-character. 2523 return ConstantInt::get(CI->getType(), SrcLen - 1); 2524 } else if (Value *V = emitStpCpy(CI->getArgOperand(0), CI->getArgOperand(2), 2525 B, TLI)) { 2526 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 2527 Value *PtrDiff = B.CreatePtrDiff(V, CI->getArgOperand(0)); 2528 return B.CreateIntCast(PtrDiff, CI->getType(), false); 2529 } 2530 2531 bool OptForSize = CI->getFunction()->hasOptSize() || 2532 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2533 PGSOQueryType::IRPass); 2534 if (OptForSize) 2535 return nullptr; 2536 2537 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2538 if (!Len) 2539 return nullptr; 2540 Value *IncLen = 2541 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2542 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(2), 2543 Align(1), IncLen); 2544 2545 // The sprintf result is the unincremented number of bytes in the string. 2546 return B.CreateIntCast(Len, CI->getType(), false); 2547 } 2548 return nullptr; 2549 } 2550 2551 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 2552 Function *Callee = CI->getCalledFunction(); 2553 FunctionType *FT = Callee->getFunctionType(); 2554 if (Value *V = optimizeSPrintFString(CI, B)) { 2555 return V; 2556 } 2557 2558 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2559 // point arguments. 2560 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2561 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2562 FunctionCallee SIPrintFFn = 2563 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2564 CallInst *New = cast<CallInst>(CI->clone()); 2565 New->setCalledFunction(SIPrintFFn); 2566 B.Insert(New); 2567 return New; 2568 } 2569 2570 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2571 // floating point arguments. 2572 if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) { 2573 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2574 auto SmallSPrintFFn = 2575 M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf), 2576 FT, Callee->getAttributes()); 2577 CallInst *New = cast<CallInst>(CI->clone()); 2578 New->setCalledFunction(SmallSPrintFFn); 2579 B.Insert(New); 2580 return New; 2581 } 2582 2583 annotateNonNullBasedOnAccess(CI, {0, 1}); 2584 return nullptr; 2585 } 2586 2587 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 2588 IRBuilderBase &B) { 2589 // Check for size 2590 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2591 if (!Size) 2592 return nullptr; 2593 2594 uint64_t N = Size->getZExtValue(); 2595 // Check for a fixed format string. 2596 StringRef FormatStr; 2597 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2598 return nullptr; 2599 2600 // If we just have a format string (nothing else crazy) transform it. 2601 if (CI->getNumArgOperands() == 3) { 2602 // Make sure there's no % in the constant array. We could try to handle 2603 // %% -> % in the future if we cared. 2604 if (FormatStr.find('%') != StringRef::npos) 2605 return nullptr; // we found a format specifier, bail out. 2606 2607 if (N == 0) 2608 return ConstantInt::get(CI->getType(), FormatStr.size()); 2609 else if (N < FormatStr.size() + 1) 2610 return nullptr; 2611 2612 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2613 // strlen(fmt)+1) 2614 B.CreateMemCpy( 2615 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2616 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2617 FormatStr.size() + 1)); // Copy the null byte. 2618 return ConstantInt::get(CI->getType(), FormatStr.size()); 2619 } 2620 2621 // The remaining optimizations require the format string to be "%s" or "%c" 2622 // and have an extra operand. 2623 if (FormatStr.size() == 2 && FormatStr[0] == '%' && 2624 CI->getNumArgOperands() == 4) { 2625 2626 // Decode the second character of the format string. 2627 if (FormatStr[1] == 'c') { 2628 if (N == 0) 2629 return ConstantInt::get(CI->getType(), 1); 2630 else if (N == 1) 2631 return nullptr; 2632 2633 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2634 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2635 return nullptr; 2636 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2637 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2638 B.CreateStore(V, Ptr); 2639 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2640 B.CreateStore(B.getInt8(0), Ptr); 2641 2642 return ConstantInt::get(CI->getType(), 1); 2643 } 2644 2645 if (FormatStr[1] == 's') { 2646 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2647 StringRef Str; 2648 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2649 return nullptr; 2650 2651 if (N == 0) 2652 return ConstantInt::get(CI->getType(), Str.size()); 2653 else if (N < Str.size() + 1) 2654 return nullptr; 2655 2656 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(3), 2657 Align(1), ConstantInt::get(CI->getType(), Str.size() + 1)); 2658 2659 // The snprintf result is the unincremented number of bytes in the string. 2660 return ConstantInt::get(CI->getType(), Str.size()); 2661 } 2662 } 2663 return nullptr; 2664 } 2665 2666 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 2667 if (Value *V = optimizeSnPrintFString(CI, B)) { 2668 return V; 2669 } 2670 2671 if (isKnownNonZero(CI->getOperand(1), DL)) 2672 annotateNonNullBasedOnAccess(CI, 0); 2673 return nullptr; 2674 } 2675 2676 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 2677 IRBuilderBase &B) { 2678 optimizeErrorReporting(CI, B, 0); 2679 2680 // All the optimizations depend on the format string. 2681 StringRef FormatStr; 2682 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2683 return nullptr; 2684 2685 // Do not do any of the following transformations if the fprintf return 2686 // value is used, in general the fprintf return value is not compatible 2687 // with fwrite(), fputc() or fputs(). 2688 if (!CI->use_empty()) 2689 return nullptr; 2690 2691 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2692 if (CI->getNumArgOperands() == 2) { 2693 // Could handle %% -> % if we cared. 2694 if (FormatStr.find('%') != StringRef::npos) 2695 return nullptr; // We found a format specifier. 2696 2697 return emitFWrite( 2698 CI->getArgOperand(1), 2699 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 2700 CI->getArgOperand(0), B, DL, TLI); 2701 } 2702 2703 // The remaining optimizations require the format string to be "%s" or "%c" 2704 // and have an extra operand. 2705 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2706 CI->getNumArgOperands() < 3) 2707 return nullptr; 2708 2709 // Decode the second character of the format string. 2710 if (FormatStr[1] == 'c') { 2711 // fprintf(F, "%c", chr) --> fputc(chr, F) 2712 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2713 return nullptr; 2714 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2715 } 2716 2717 if (FormatStr[1] == 's') { 2718 // fprintf(F, "%s", str) --> fputs(str, F) 2719 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2720 return nullptr; 2721 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2722 } 2723 return nullptr; 2724 } 2725 2726 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 2727 Function *Callee = CI->getCalledFunction(); 2728 FunctionType *FT = Callee->getFunctionType(); 2729 if (Value *V = optimizeFPrintFString(CI, B)) { 2730 return V; 2731 } 2732 2733 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2734 // floating point arguments. 2735 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2736 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2737 FunctionCallee FIPrintFFn = 2738 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2739 CallInst *New = cast<CallInst>(CI->clone()); 2740 New->setCalledFunction(FIPrintFFn); 2741 B.Insert(New); 2742 return New; 2743 } 2744 2745 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2746 // 128-bit floating point arguments. 2747 if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) { 2748 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2749 auto SmallFPrintFFn = 2750 M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf), 2751 FT, Callee->getAttributes()); 2752 CallInst *New = cast<CallInst>(CI->clone()); 2753 New->setCalledFunction(SmallFPrintFFn); 2754 B.Insert(New); 2755 return New; 2756 } 2757 2758 return nullptr; 2759 } 2760 2761 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 2762 optimizeErrorReporting(CI, B, 3); 2763 2764 // Get the element size and count. 2765 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2766 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2767 if (SizeC && CountC) { 2768 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2769 2770 // If this is writing zero records, remove the call (it's a noop). 2771 if (Bytes == 0) 2772 return ConstantInt::get(CI->getType(), 0); 2773 2774 // If this is writing one byte, turn it into fputc. 2775 // This optimisation is only valid, if the return value is unused. 2776 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2777 Value *Char = B.CreateLoad(B.getInt8Ty(), 2778 castToCStr(CI->getArgOperand(0), B), "char"); 2779 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2780 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2781 } 2782 } 2783 2784 return nullptr; 2785 } 2786 2787 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 2788 optimizeErrorReporting(CI, B, 1); 2789 2790 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2791 // requires more arguments and thus extra MOVs are required. 2792 bool OptForSize = CI->getFunction()->hasOptSize() || 2793 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2794 PGSOQueryType::IRPass); 2795 if (OptForSize) 2796 return nullptr; 2797 2798 // We can't optimize if return value is used. 2799 if (!CI->use_empty()) 2800 return nullptr; 2801 2802 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2803 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2804 if (!Len) 2805 return nullptr; 2806 2807 // Known to have no uses (see above). 2808 return emitFWrite( 2809 CI->getArgOperand(0), 2810 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2811 CI->getArgOperand(1), B, DL, TLI); 2812 } 2813 2814 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 2815 annotateNonNullBasedOnAccess(CI, 0); 2816 if (!CI->use_empty()) 2817 return nullptr; 2818 2819 // Check for a constant string. 2820 // puts("") -> putchar('\n') 2821 StringRef Str; 2822 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 2823 return emitPutChar(B.getInt32('\n'), B, TLI); 2824 2825 return nullptr; 2826 } 2827 2828 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 2829 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 2830 return B.CreateMemMove(CI->getArgOperand(1), Align(1), CI->getArgOperand(0), 2831 Align(1), CI->getArgOperand(2)); 2832 } 2833 2834 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2835 LibFunc Func; 2836 SmallString<20> FloatFuncName = FuncName; 2837 FloatFuncName += 'f'; 2838 if (TLI->getLibFunc(FloatFuncName, Func)) 2839 return TLI->has(Func); 2840 return false; 2841 } 2842 2843 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2844 IRBuilderBase &Builder) { 2845 LibFunc Func; 2846 Function *Callee = CI->getCalledFunction(); 2847 // Check for string/memory library functions. 2848 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2849 // Make sure we never change the calling convention. 2850 assert((ignoreCallingConv(Func) || 2851 isCallingConvCCompatible(CI)) && 2852 "Optimizing string/memory libcall would change the calling convention"); 2853 switch (Func) { 2854 case LibFunc_strcat: 2855 return optimizeStrCat(CI, Builder); 2856 case LibFunc_strncat: 2857 return optimizeStrNCat(CI, Builder); 2858 case LibFunc_strchr: 2859 return optimizeStrChr(CI, Builder); 2860 case LibFunc_strrchr: 2861 return optimizeStrRChr(CI, Builder); 2862 case LibFunc_strcmp: 2863 return optimizeStrCmp(CI, Builder); 2864 case LibFunc_strncmp: 2865 return optimizeStrNCmp(CI, Builder); 2866 case LibFunc_strcpy: 2867 return optimizeStrCpy(CI, Builder); 2868 case LibFunc_stpcpy: 2869 return optimizeStpCpy(CI, Builder); 2870 case LibFunc_strncpy: 2871 return optimizeStrNCpy(CI, Builder); 2872 case LibFunc_strlen: 2873 return optimizeStrLen(CI, Builder); 2874 case LibFunc_strpbrk: 2875 return optimizeStrPBrk(CI, Builder); 2876 case LibFunc_strndup: 2877 return optimizeStrNDup(CI, Builder); 2878 case LibFunc_strtol: 2879 case LibFunc_strtod: 2880 case LibFunc_strtof: 2881 case LibFunc_strtoul: 2882 case LibFunc_strtoll: 2883 case LibFunc_strtold: 2884 case LibFunc_strtoull: 2885 return optimizeStrTo(CI, Builder); 2886 case LibFunc_strspn: 2887 return optimizeStrSpn(CI, Builder); 2888 case LibFunc_strcspn: 2889 return optimizeStrCSpn(CI, Builder); 2890 case LibFunc_strstr: 2891 return optimizeStrStr(CI, Builder); 2892 case LibFunc_memchr: 2893 return optimizeMemChr(CI, Builder); 2894 case LibFunc_memrchr: 2895 return optimizeMemRChr(CI, Builder); 2896 case LibFunc_bcmp: 2897 return optimizeBCmp(CI, Builder); 2898 case LibFunc_memcmp: 2899 return optimizeMemCmp(CI, Builder); 2900 case LibFunc_memcpy: 2901 return optimizeMemCpy(CI, Builder); 2902 case LibFunc_memccpy: 2903 return optimizeMemCCpy(CI, Builder); 2904 case LibFunc_mempcpy: 2905 return optimizeMemPCpy(CI, Builder); 2906 case LibFunc_memmove: 2907 return optimizeMemMove(CI, Builder); 2908 case LibFunc_memset: 2909 return optimizeMemSet(CI, Builder); 2910 case LibFunc_realloc: 2911 return optimizeRealloc(CI, Builder); 2912 case LibFunc_wcslen: 2913 return optimizeWcslen(CI, Builder); 2914 case LibFunc_bcopy: 2915 return optimizeBCopy(CI, Builder); 2916 default: 2917 break; 2918 } 2919 } 2920 return nullptr; 2921 } 2922 2923 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2924 LibFunc Func, 2925 IRBuilderBase &Builder) { 2926 // Don't optimize calls that require strict floating point semantics. 2927 if (CI->isStrictFP()) 2928 return nullptr; 2929 2930 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 2931 return V; 2932 2933 switch (Func) { 2934 case LibFunc_sinpif: 2935 case LibFunc_sinpi: 2936 case LibFunc_cospif: 2937 case LibFunc_cospi: 2938 return optimizeSinCosPi(CI, Builder); 2939 case LibFunc_powf: 2940 case LibFunc_pow: 2941 case LibFunc_powl: 2942 return optimizePow(CI, Builder); 2943 case LibFunc_exp2l: 2944 case LibFunc_exp2: 2945 case LibFunc_exp2f: 2946 return optimizeExp2(CI, Builder); 2947 case LibFunc_fabsf: 2948 case LibFunc_fabs: 2949 case LibFunc_fabsl: 2950 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2951 case LibFunc_sqrtf: 2952 case LibFunc_sqrt: 2953 case LibFunc_sqrtl: 2954 return optimizeSqrt(CI, Builder); 2955 case LibFunc_logf: 2956 case LibFunc_log: 2957 case LibFunc_logl: 2958 case LibFunc_log10f: 2959 case LibFunc_log10: 2960 case LibFunc_log10l: 2961 case LibFunc_log1pf: 2962 case LibFunc_log1p: 2963 case LibFunc_log1pl: 2964 case LibFunc_log2f: 2965 case LibFunc_log2: 2966 case LibFunc_log2l: 2967 case LibFunc_logbf: 2968 case LibFunc_logb: 2969 case LibFunc_logbl: 2970 return optimizeLog(CI, Builder); 2971 case LibFunc_tan: 2972 case LibFunc_tanf: 2973 case LibFunc_tanl: 2974 return optimizeTan(CI, Builder); 2975 case LibFunc_ceil: 2976 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2977 case LibFunc_floor: 2978 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2979 case LibFunc_round: 2980 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2981 case LibFunc_roundeven: 2982 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 2983 case LibFunc_nearbyint: 2984 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2985 case LibFunc_rint: 2986 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2987 case LibFunc_trunc: 2988 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2989 case LibFunc_acos: 2990 case LibFunc_acosh: 2991 case LibFunc_asin: 2992 case LibFunc_asinh: 2993 case LibFunc_atan: 2994 case LibFunc_atanh: 2995 case LibFunc_cbrt: 2996 case LibFunc_cosh: 2997 case LibFunc_exp: 2998 case LibFunc_exp10: 2999 case LibFunc_expm1: 3000 case LibFunc_cos: 3001 case LibFunc_sin: 3002 case LibFunc_sinh: 3003 case LibFunc_tanh: 3004 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 3005 return optimizeUnaryDoubleFP(CI, Builder, true); 3006 return nullptr; 3007 case LibFunc_copysign: 3008 if (hasFloatVersion(CI->getCalledFunction()->getName())) 3009 return optimizeBinaryDoubleFP(CI, Builder); 3010 return nullptr; 3011 case LibFunc_fminf: 3012 case LibFunc_fmin: 3013 case LibFunc_fminl: 3014 case LibFunc_fmaxf: 3015 case LibFunc_fmax: 3016 case LibFunc_fmaxl: 3017 return optimizeFMinFMax(CI, Builder); 3018 case LibFunc_cabs: 3019 case LibFunc_cabsf: 3020 case LibFunc_cabsl: 3021 return optimizeCAbs(CI, Builder); 3022 default: 3023 return nullptr; 3024 } 3025 } 3026 3027 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 3028 // TODO: Split out the code below that operates on FP calls so that 3029 // we can all non-FP calls with the StrictFP attribute to be 3030 // optimized. 3031 if (CI->isNoBuiltin()) 3032 return nullptr; 3033 3034 LibFunc Func; 3035 Function *Callee = CI->getCalledFunction(); 3036 bool isCallingConvC = isCallingConvCCompatible(CI); 3037 3038 SmallVector<OperandBundleDef, 2> OpBundles; 3039 CI->getOperandBundlesAsDefs(OpBundles); 3040 3041 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3042 Builder.setDefaultOperandBundles(OpBundles); 3043 3044 // Command-line parameter overrides instruction attribute. 3045 // This can't be moved to optimizeFloatingPointLibCall() because it may be 3046 // used by the intrinsic optimizations. 3047 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 3048 UnsafeFPShrink = EnableUnsafeFPShrink; 3049 else if (isa<FPMathOperator>(CI) && CI->isFast()) 3050 UnsafeFPShrink = true; 3051 3052 // First, check for intrinsics. 3053 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 3054 if (!isCallingConvC) 3055 return nullptr; 3056 // The FP intrinsics have corresponding constrained versions so we don't 3057 // need to check for the StrictFP attribute here. 3058 switch (II->getIntrinsicID()) { 3059 case Intrinsic::pow: 3060 return optimizePow(CI, Builder); 3061 case Intrinsic::exp2: 3062 return optimizeExp2(CI, Builder); 3063 case Intrinsic::log: 3064 case Intrinsic::log2: 3065 case Intrinsic::log10: 3066 return optimizeLog(CI, Builder); 3067 case Intrinsic::sqrt: 3068 return optimizeSqrt(CI, Builder); 3069 // TODO: Use foldMallocMemset() with memset intrinsic. 3070 case Intrinsic::memset: 3071 return optimizeMemSet(CI, Builder); 3072 case Intrinsic::memcpy: 3073 return optimizeMemCpy(CI, Builder); 3074 case Intrinsic::memmove: 3075 return optimizeMemMove(CI, Builder); 3076 default: 3077 return nullptr; 3078 } 3079 } 3080 3081 // Also try to simplify calls to fortified library functions. 3082 if (Value *SimplifiedFortifiedCI = 3083 FortifiedSimplifier.optimizeCall(CI, Builder)) { 3084 // Try to further simplify the result. 3085 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 3086 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 3087 // Ensure that SimplifiedCI's uses are complete, since some calls have 3088 // their uses analyzed. 3089 replaceAllUsesWith(CI, SimplifiedCI); 3090 3091 // Set insertion point to SimplifiedCI to guarantee we reach all uses 3092 // we might replace later on. 3093 IRBuilderBase::InsertPointGuard Guard(Builder); 3094 Builder.SetInsertPoint(SimplifiedCI); 3095 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) { 3096 // If we were able to further simplify, remove the now redundant call. 3097 substituteInParent(SimplifiedCI, V); 3098 return V; 3099 } 3100 } 3101 return SimplifiedFortifiedCI; 3102 } 3103 3104 // Then check for known library functions. 3105 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 3106 // We never change the calling convention. 3107 if (!ignoreCallingConv(Func) && !isCallingConvC) 3108 return nullptr; 3109 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 3110 return V; 3111 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 3112 return V; 3113 switch (Func) { 3114 case LibFunc_ffs: 3115 case LibFunc_ffsl: 3116 case LibFunc_ffsll: 3117 return optimizeFFS(CI, Builder); 3118 case LibFunc_fls: 3119 case LibFunc_flsl: 3120 case LibFunc_flsll: 3121 return optimizeFls(CI, Builder); 3122 case LibFunc_abs: 3123 case LibFunc_labs: 3124 case LibFunc_llabs: 3125 return optimizeAbs(CI, Builder); 3126 case LibFunc_isdigit: 3127 return optimizeIsDigit(CI, Builder); 3128 case LibFunc_isascii: 3129 return optimizeIsAscii(CI, Builder); 3130 case LibFunc_toascii: 3131 return optimizeToAscii(CI, Builder); 3132 case LibFunc_atoi: 3133 case LibFunc_atol: 3134 case LibFunc_atoll: 3135 return optimizeAtoi(CI, Builder); 3136 case LibFunc_strtol: 3137 case LibFunc_strtoll: 3138 return optimizeStrtol(CI, Builder); 3139 case LibFunc_printf: 3140 return optimizePrintF(CI, Builder); 3141 case LibFunc_sprintf: 3142 return optimizeSPrintF(CI, Builder); 3143 case LibFunc_snprintf: 3144 return optimizeSnPrintF(CI, Builder); 3145 case LibFunc_fprintf: 3146 return optimizeFPrintF(CI, Builder); 3147 case LibFunc_fwrite: 3148 return optimizeFWrite(CI, Builder); 3149 case LibFunc_fputs: 3150 return optimizeFPuts(CI, Builder); 3151 case LibFunc_puts: 3152 return optimizePuts(CI, Builder); 3153 case LibFunc_perror: 3154 return optimizeErrorReporting(CI, Builder); 3155 case LibFunc_vfprintf: 3156 case LibFunc_fiprintf: 3157 return optimizeErrorReporting(CI, Builder, 0); 3158 default: 3159 return nullptr; 3160 } 3161 } 3162 return nullptr; 3163 } 3164 3165 LibCallSimplifier::LibCallSimplifier( 3166 const DataLayout &DL, const TargetLibraryInfo *TLI, 3167 OptimizationRemarkEmitter &ORE, 3168 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 3169 function_ref<void(Instruction *, Value *)> Replacer, 3170 function_ref<void(Instruction *)> Eraser) 3171 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 3172 UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {} 3173 3174 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 3175 // Indirect through the replacer used in this instance. 3176 Replacer(I, With); 3177 } 3178 3179 void LibCallSimplifier::eraseFromParent(Instruction *I) { 3180 Eraser(I); 3181 } 3182 3183 // TODO: 3184 // Additional cases that we need to add to this file: 3185 // 3186 // cbrt: 3187 // * cbrt(expN(X)) -> expN(x/3) 3188 // * cbrt(sqrt(x)) -> pow(x,1/6) 3189 // * cbrt(cbrt(x)) -> pow(x,1/9) 3190 // 3191 // exp, expf, expl: 3192 // * exp(log(x)) -> x 3193 // 3194 // log, logf, logl: 3195 // * log(exp(x)) -> x 3196 // * log(exp(y)) -> y*log(e) 3197 // * log(exp10(y)) -> y*log(10) 3198 // * log(sqrt(x)) -> 0.5*log(x) 3199 // 3200 // pow, powf, powl: 3201 // * pow(sqrt(x),y) -> pow(x,y*0.5) 3202 // * pow(pow(x,y),z)-> pow(x,y*z) 3203 // 3204 // signbit: 3205 // * signbit(cnst) -> cnst' 3206 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 3207 // 3208 // sqrt, sqrtf, sqrtl: 3209 // * sqrt(expN(x)) -> expN(x*0.5) 3210 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 3211 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 3212 // 3213 3214 //===----------------------------------------------------------------------===// 3215 // Fortified Library Call Optimizations 3216 //===----------------------------------------------------------------------===// 3217 3218 bool 3219 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 3220 unsigned ObjSizeOp, 3221 Optional<unsigned> SizeOp, 3222 Optional<unsigned> StrOp, 3223 Optional<unsigned> FlagOp) { 3224 // If this function takes a flag argument, the implementation may use it to 3225 // perform extra checks. Don't fold into the non-checking variant. 3226 if (FlagOp) { 3227 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 3228 if (!Flag || !Flag->isZero()) 3229 return false; 3230 } 3231 3232 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 3233 return true; 3234 3235 if (ConstantInt *ObjSizeCI = 3236 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 3237 if (ObjSizeCI->isMinusOne()) 3238 return true; 3239 // If the object size wasn't -1 (unknown), bail out if we were asked to. 3240 if (OnlyLowerUnknownSize) 3241 return false; 3242 if (StrOp) { 3243 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 3244 // If the length is 0 we don't know how long it is and so we can't 3245 // remove the check. 3246 if (Len) 3247 annotateDereferenceableBytes(CI, *StrOp, Len); 3248 else 3249 return false; 3250 return ObjSizeCI->getZExtValue() >= Len; 3251 } 3252 3253 if (SizeOp) { 3254 if (ConstantInt *SizeCI = 3255 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 3256 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 3257 } 3258 } 3259 return false; 3260 } 3261 3262 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 3263 IRBuilderBase &B) { 3264 if (isFortifiedCallFoldable(CI, 3, 2)) { 3265 CallInst *NewCI = 3266 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3267 Align(1), CI->getArgOperand(2)); 3268 NewCI->setAttributes(CI->getAttributes()); 3269 return CI->getArgOperand(0); 3270 } 3271 return nullptr; 3272 } 3273 3274 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 3275 IRBuilderBase &B) { 3276 if (isFortifiedCallFoldable(CI, 3, 2)) { 3277 CallInst *NewCI = 3278 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3279 Align(1), CI->getArgOperand(2)); 3280 NewCI->setAttributes(CI->getAttributes()); 3281 return CI->getArgOperand(0); 3282 } 3283 return nullptr; 3284 } 3285 3286 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 3287 IRBuilderBase &B) { 3288 // TODO: Try foldMallocMemset() here. 3289 3290 if (isFortifiedCallFoldable(CI, 3, 2)) { 3291 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 3292 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 3293 CI->getArgOperand(2), Align(1)); 3294 NewCI->setAttributes(CI->getAttributes()); 3295 return CI->getArgOperand(0); 3296 } 3297 return nullptr; 3298 } 3299 3300 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 3301 IRBuilderBase &B) { 3302 const DataLayout &DL = CI->getModule()->getDataLayout(); 3303 if (isFortifiedCallFoldable(CI, 3, 2)) 3304 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3305 CI->getArgOperand(2), B, DL, TLI)) { 3306 CallInst *NewCI = cast<CallInst>(Call); 3307 NewCI->setAttributes(CI->getAttributes()); 3308 return NewCI; 3309 } 3310 return nullptr; 3311 } 3312 3313 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 3314 IRBuilderBase &B, 3315 LibFunc Func) { 3316 const DataLayout &DL = CI->getModule()->getDataLayout(); 3317 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 3318 *ObjSize = CI->getArgOperand(2); 3319 3320 // __stpcpy_chk(x,x,...) -> x+strlen(x) 3321 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 3322 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3323 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3324 } 3325 3326 // If a) we don't have any length information, or b) we know this will 3327 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3328 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3329 // TODO: It might be nice to get a maximum length out of the possible 3330 // string lengths for varying. 3331 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 3332 if (Func == LibFunc_strcpy_chk) 3333 return emitStrCpy(Dst, Src, B, TLI); 3334 else 3335 return emitStpCpy(Dst, Src, B, TLI); 3336 } 3337 3338 if (OnlyLowerUnknownSize) 3339 return nullptr; 3340 3341 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3342 uint64_t Len = GetStringLength(Src); 3343 if (Len) 3344 annotateDereferenceableBytes(CI, 1, Len); 3345 else 3346 return nullptr; 3347 3348 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 3349 Value *LenV = ConstantInt::get(SizeTTy, Len); 3350 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 3351 // If the function was an __stpcpy_chk, and we were able to fold it into 3352 // a __memcpy_chk, we still need to return the correct end pointer. 3353 if (Ret && Func == LibFunc_stpcpy_chk) 3354 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 3355 return Ret; 3356 } 3357 3358 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 3359 IRBuilderBase &B) { 3360 if (isFortifiedCallFoldable(CI, 1, None, 0)) 3361 return emitStrLen(CI->getArgOperand(0), B, CI->getModule()->getDataLayout(), 3362 TLI); 3363 return nullptr; 3364 } 3365 3366 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 3367 IRBuilderBase &B, 3368 LibFunc Func) { 3369 if (isFortifiedCallFoldable(CI, 3, 2)) { 3370 if (Func == LibFunc_strncpy_chk) 3371 return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3372 CI->getArgOperand(2), B, TLI); 3373 else 3374 return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3375 CI->getArgOperand(2), B, TLI); 3376 } 3377 3378 return nullptr; 3379 } 3380 3381 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 3382 IRBuilderBase &B) { 3383 if (isFortifiedCallFoldable(CI, 4, 3)) 3384 return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3385 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI); 3386 3387 return nullptr; 3388 } 3389 3390 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 3391 IRBuilderBase &B) { 3392 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 3393 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 3394 return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3395 CI->getArgOperand(4), VariadicArgs, B, TLI); 3396 } 3397 3398 return nullptr; 3399 } 3400 3401 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3402 IRBuilderBase &B) { 3403 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3404 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 3405 return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs, 3406 B, TLI); 3407 } 3408 3409 return nullptr; 3410 } 3411 3412 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3413 IRBuilderBase &B) { 3414 if (isFortifiedCallFoldable(CI, 2)) 3415 return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI); 3416 3417 return nullptr; 3418 } 3419 3420 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3421 IRBuilderBase &B) { 3422 if (isFortifiedCallFoldable(CI, 3)) 3423 return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3424 CI->getArgOperand(2), B, TLI); 3425 3426 return nullptr; 3427 } 3428 3429 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3430 IRBuilderBase &B) { 3431 if (isFortifiedCallFoldable(CI, 3)) 3432 return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3433 CI->getArgOperand(2), B, TLI); 3434 3435 return nullptr; 3436 } 3437 3438 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3439 IRBuilderBase &B) { 3440 if (isFortifiedCallFoldable(CI, 3)) 3441 return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3442 CI->getArgOperand(2), B, TLI); 3443 3444 return nullptr; 3445 } 3446 3447 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3448 IRBuilderBase &B) { 3449 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3450 return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3451 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI); 3452 3453 return nullptr; 3454 } 3455 3456 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3457 IRBuilderBase &B) { 3458 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3459 return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3460 CI->getArgOperand(4), B, TLI); 3461 3462 return nullptr; 3463 } 3464 3465 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 3466 IRBuilderBase &Builder) { 3467 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3468 // Some clang users checked for _chk libcall availability using: 3469 // __has_builtin(__builtin___memcpy_chk) 3470 // When compiling with -fno-builtin, this is always true. 3471 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3472 // end up with fortified libcalls, which isn't acceptable in a freestanding 3473 // environment which only provides their non-fortified counterparts. 3474 // 3475 // Until we change clang and/or teach external users to check for availability 3476 // differently, disregard the "nobuiltin" attribute and TLI::has. 3477 // 3478 // PR23093. 3479 3480 LibFunc Func; 3481 Function *Callee = CI->getCalledFunction(); 3482 bool isCallingConvC = isCallingConvCCompatible(CI); 3483 3484 SmallVector<OperandBundleDef, 2> OpBundles; 3485 CI->getOperandBundlesAsDefs(OpBundles); 3486 3487 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3488 Builder.setDefaultOperandBundles(OpBundles); 3489 3490 // First, check that this is a known library functions and that the prototype 3491 // is correct. 3492 if (!TLI->getLibFunc(*Callee, Func)) 3493 return nullptr; 3494 3495 // We never change the calling convention. 3496 if (!ignoreCallingConv(Func) && !isCallingConvC) 3497 return nullptr; 3498 3499 switch (Func) { 3500 case LibFunc_memcpy_chk: 3501 return optimizeMemCpyChk(CI, Builder); 3502 case LibFunc_mempcpy_chk: 3503 return optimizeMemPCpyChk(CI, Builder); 3504 case LibFunc_memmove_chk: 3505 return optimizeMemMoveChk(CI, Builder); 3506 case LibFunc_memset_chk: 3507 return optimizeMemSetChk(CI, Builder); 3508 case LibFunc_stpcpy_chk: 3509 case LibFunc_strcpy_chk: 3510 return optimizeStrpCpyChk(CI, Builder, Func); 3511 case LibFunc_strlen_chk: 3512 return optimizeStrLenChk(CI, Builder); 3513 case LibFunc_stpncpy_chk: 3514 case LibFunc_strncpy_chk: 3515 return optimizeStrpNCpyChk(CI, Builder, Func); 3516 case LibFunc_memccpy_chk: 3517 return optimizeMemCCpyChk(CI, Builder); 3518 case LibFunc_snprintf_chk: 3519 return optimizeSNPrintfChk(CI, Builder); 3520 case LibFunc_sprintf_chk: 3521 return optimizeSPrintfChk(CI, Builder); 3522 case LibFunc_strcat_chk: 3523 return optimizeStrCatChk(CI, Builder); 3524 case LibFunc_strlcat_chk: 3525 return optimizeStrLCat(CI, Builder); 3526 case LibFunc_strncat_chk: 3527 return optimizeStrNCatChk(CI, Builder); 3528 case LibFunc_strlcpy_chk: 3529 return optimizeStrLCpyChk(CI, Builder); 3530 case LibFunc_vsnprintf_chk: 3531 return optimizeVSNPrintfChk(CI, Builder); 3532 case LibFunc_vsprintf_chk: 3533 return optimizeVSPrintfChk(CI, Builder); 3534 default: 3535 break; 3536 } 3537 return nullptr; 3538 } 3539 3540 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3541 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3542 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 3543