1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Transforms/Utils/BuildLibCalls.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Transforms/Utils/SizeOpts.h" 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 static cl::opt<bool> 40 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 41 cl::init(false), 42 cl::desc("Enable unsafe double to float " 43 "shrinking for math lib calls")); 44 45 //===----------------------------------------------------------------------===// 46 // Helper Functions 47 //===----------------------------------------------------------------------===// 48 49 static bool ignoreCallingConv(LibFunc Func) { 50 return Func == LibFunc_abs || Func == LibFunc_labs || 51 Func == LibFunc_llabs || Func == LibFunc_strlen; 52 } 53 54 /// Return true if it is only used in equality comparisons with With. 55 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 56 for (User *U : V->users()) { 57 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 58 if (IC->isEquality() && IC->getOperand(1) == With) 59 continue; 60 // Unknown instruction. 61 return false; 62 } 63 return true; 64 } 65 66 static bool callHasFloatingPointArgument(const CallInst *CI) { 67 return any_of(CI->operands(), [](const Use &OI) { 68 return OI->getType()->isFloatingPointTy(); 69 }); 70 } 71 72 static bool callHasFP128Argument(const CallInst *CI) { 73 return any_of(CI->operands(), [](const Use &OI) { 74 return OI->getType()->isFP128Ty(); 75 }); 76 } 77 78 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 79 if (Base < 2 || Base > 36) 80 // handle special zero base 81 if (Base != 0) 82 return nullptr; 83 84 char *End; 85 std::string nptr = Str.str(); 86 errno = 0; 87 long long int Result = strtoll(nptr.c_str(), &End, Base); 88 if (errno) 89 return nullptr; 90 91 // if we assume all possible target locales are ASCII supersets, 92 // then if strtoll successfully parses a number on the host, 93 // it will also successfully parse the same way on the target 94 if (*End != '\0') 95 return nullptr; 96 97 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 98 return nullptr; 99 100 return ConstantInt::get(CI->getType(), Result); 101 } 102 103 static bool isOnlyUsedInComparisonWithZero(Value *V) { 104 for (User *U : V->users()) { 105 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 106 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 107 if (C->isNullValue()) 108 continue; 109 // Unknown instruction. 110 return false; 111 } 112 return true; 113 } 114 115 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 116 const DataLayout &DL) { 117 if (!isOnlyUsedInComparisonWithZero(CI)) 118 return false; 119 120 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 121 return false; 122 123 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 124 return false; 125 126 return true; 127 } 128 129 static void annotateDereferenceableBytes(CallInst *CI, 130 ArrayRef<unsigned> ArgNos, 131 uint64_t DereferenceableBytes) { 132 const Function *F = CI->getCaller(); 133 if (!F) 134 return; 135 for (unsigned ArgNo : ArgNos) { 136 uint64_t DerefBytes = DereferenceableBytes; 137 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 138 if (!llvm::NullPointerIsDefined(F, AS) || 139 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 140 DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo), 141 DereferenceableBytes); 142 143 if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) { 144 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 145 if (!llvm::NullPointerIsDefined(F, AS) || 146 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 147 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 148 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 149 CI->getContext(), DerefBytes)); 150 } 151 } 152 } 153 154 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, 155 ArrayRef<unsigned> ArgNos) { 156 Function *F = CI->getCaller(); 157 if (!F) 158 return; 159 160 for (unsigned ArgNo : ArgNos) { 161 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef)) 162 CI->addParamAttr(ArgNo, Attribute::NoUndef); 163 164 if (CI->paramHasAttr(ArgNo, Attribute::NonNull)) 165 continue; 166 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 167 if (llvm::NullPointerIsDefined(F, AS)) 168 continue; 169 170 CI->addParamAttr(ArgNo, Attribute::NonNull); 171 annotateDereferenceableBytes(CI, ArgNo, 1); 172 } 173 } 174 175 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 176 Value *Size, const DataLayout &DL) { 177 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 178 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 179 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 180 } else if (isKnownNonZero(Size, DL)) { 181 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 182 const APInt *X, *Y; 183 uint64_t DerefMin = 1; 184 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 185 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 186 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 187 } 188 } 189 } 190 191 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for 192 // easier chaining. Calls to emit* and B.createCall should probably be wrapped 193 // in this function when New is created to replace Old. Callers should take 194 // care to check Old.isMustTailCall() if they aren't replacing Old directly 195 // with New. 196 static Value *copyFlags(const CallInst &Old, Value *New) { 197 assert(!Old.isMustTailCall() && "do not copy musttail call flags"); 198 assert(!Old.isNoTailCall() && "do not copy notail call flags"); 199 if (auto *NewCI = dyn_cast_or_null<CallInst>(New)) 200 NewCI->setTailCallKind(Old.getTailCallKind()); 201 return New; 202 } 203 204 //===----------------------------------------------------------------------===// 205 // String and Memory Library Call Optimizations 206 //===----------------------------------------------------------------------===// 207 208 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 209 // Extract some information from the instruction 210 Value *Dst = CI->getArgOperand(0); 211 Value *Src = CI->getArgOperand(1); 212 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 213 214 // See if we can get the length of the input string. 215 uint64_t Len = GetStringLength(Src); 216 if (Len) 217 annotateDereferenceableBytes(CI, 1, Len); 218 else 219 return nullptr; 220 --Len; // Unbias length. 221 222 // Handle the simple, do-nothing case: strcat(x, "") -> x 223 if (Len == 0) 224 return Dst; 225 226 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B)); 227 } 228 229 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 230 IRBuilderBase &B) { 231 // We need to find the end of the destination string. That's where the 232 // memory is to be moved to. We just generate a call to strlen. 233 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 234 if (!DstLen) 235 return nullptr; 236 237 // Now that we have the destination's length, we must index into the 238 // destination's pointer to get the actual memcpy destination (end of 239 // the string .. we're concatenating). 240 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 241 242 // We have enough information to now generate the memcpy call to do the 243 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 244 B.CreateMemCpy( 245 CpyDst, Align(1), Src, Align(1), 246 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 247 return Dst; 248 } 249 250 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 251 // Extract some information from the instruction. 252 Value *Dst = CI->getArgOperand(0); 253 Value *Src = CI->getArgOperand(1); 254 Value *Size = CI->getArgOperand(2); 255 uint64_t Len; 256 annotateNonNullNoUndefBasedOnAccess(CI, 0); 257 if (isKnownNonZero(Size, DL)) 258 annotateNonNullNoUndefBasedOnAccess(CI, 1); 259 260 // We don't do anything if length is not constant. 261 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 262 if (LengthArg) { 263 Len = LengthArg->getZExtValue(); 264 // strncat(x, c, 0) -> x 265 if (!Len) 266 return Dst; 267 } else { 268 return nullptr; 269 } 270 271 // See if we can get the length of the input string. 272 uint64_t SrcLen = GetStringLength(Src); 273 if (SrcLen) { 274 annotateDereferenceableBytes(CI, 1, SrcLen); 275 --SrcLen; // Unbias length. 276 } else { 277 return nullptr; 278 } 279 280 // strncat(x, "", c) -> x 281 if (SrcLen == 0) 282 return Dst; 283 284 // We don't optimize this case. 285 if (Len < SrcLen) 286 return nullptr; 287 288 // strncat(x, s, c) -> strcat(x, s) 289 // s is constant so the strcat can be optimized further. 290 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B)); 291 } 292 293 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 294 Function *Callee = CI->getCalledFunction(); 295 FunctionType *FT = Callee->getFunctionType(); 296 Value *SrcStr = CI->getArgOperand(0); 297 annotateNonNullNoUndefBasedOnAccess(CI, 0); 298 299 // If the second operand is non-constant, see if we can compute the length 300 // of the input string and turn this into memchr. 301 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 302 if (!CharC) { 303 uint64_t Len = GetStringLength(SrcStr); 304 if (Len) 305 annotateDereferenceableBytes(CI, 0, Len); 306 else 307 return nullptr; 308 if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 309 return nullptr; 310 311 return copyFlags( 312 *CI, 313 emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 314 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), B, 315 DL, TLI)); 316 } 317 318 // Otherwise, the character is a constant, see if the first argument is 319 // a string literal. If so, we can constant fold. 320 StringRef Str; 321 if (!getConstantStringInfo(SrcStr, Str)) { 322 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 323 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 324 return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 325 return nullptr; 326 } 327 328 // Compute the offset, make sure to handle the case when we're searching for 329 // zero (a weird way to spell strlen). 330 size_t I = (0xFF & CharC->getSExtValue()) == 0 331 ? Str.size() 332 : Str.find(CharC->getSExtValue()); 333 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 334 return Constant::getNullValue(CI->getType()); 335 336 // strchr(s+n,c) -> gep(s+n+i,c) 337 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 338 } 339 340 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 341 Value *SrcStr = CI->getArgOperand(0); 342 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 343 annotateNonNullNoUndefBasedOnAccess(CI, 0); 344 345 // Cannot fold anything if we're not looking for a constant. 346 if (!CharC) 347 return nullptr; 348 349 StringRef Str; 350 if (!getConstantStringInfo(SrcStr, Str)) { 351 // strrchr(s, 0) -> strchr(s, 0) 352 if (CharC->isZero()) 353 return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI)); 354 return nullptr; 355 } 356 357 // Compute the offset. 358 size_t I = (0xFF & CharC->getSExtValue()) == 0 359 ? Str.size() 360 : Str.rfind(CharC->getSExtValue()); 361 if (I == StringRef::npos) // Didn't find the char. Return null. 362 return Constant::getNullValue(CI->getType()); 363 364 // strrchr(s+n,c) -> gep(s+n+i,c) 365 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 366 } 367 368 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 369 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 370 if (Str1P == Str2P) // strcmp(x,x) -> 0 371 return ConstantInt::get(CI->getType(), 0); 372 373 StringRef Str1, Str2; 374 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 375 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 376 377 // strcmp(x, y) -> cnst (if both x and y are constant strings) 378 if (HasStr1 && HasStr2) 379 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 380 381 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 382 return B.CreateNeg(B.CreateZExt( 383 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 384 385 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 386 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 387 CI->getType()); 388 389 // strcmp(P, "x") -> memcmp(P, "x", 2) 390 uint64_t Len1 = GetStringLength(Str1P); 391 if (Len1) 392 annotateDereferenceableBytes(CI, 0, Len1); 393 uint64_t Len2 = GetStringLength(Str2P); 394 if (Len2) 395 annotateDereferenceableBytes(CI, 1, Len2); 396 397 if (Len1 && Len2) { 398 return copyFlags( 399 *CI, emitMemCmp(Str1P, Str2P, 400 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 401 std::min(Len1, Len2)), 402 B, DL, TLI)); 403 } 404 405 // strcmp to memcmp 406 if (!HasStr1 && HasStr2) { 407 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 408 return copyFlags( 409 *CI, 410 emitMemCmp(Str1P, Str2P, 411 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 412 B, DL, TLI)); 413 } else if (HasStr1 && !HasStr2) { 414 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 415 return copyFlags( 416 *CI, 417 emitMemCmp(Str1P, Str2P, 418 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 419 B, DL, TLI)); 420 } 421 422 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 423 return nullptr; 424 } 425 426 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 427 Value *Str1P = CI->getArgOperand(0); 428 Value *Str2P = CI->getArgOperand(1); 429 Value *Size = CI->getArgOperand(2); 430 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 431 return ConstantInt::get(CI->getType(), 0); 432 433 if (isKnownNonZero(Size, DL)) 434 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 435 // Get the length argument if it is constant. 436 uint64_t Length; 437 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 438 Length = LengthArg->getZExtValue(); 439 else 440 return nullptr; 441 442 if (Length == 0) // strncmp(x,y,0) -> 0 443 return ConstantInt::get(CI->getType(), 0); 444 445 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 446 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI)); 447 448 StringRef Str1, Str2; 449 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 450 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 451 452 // strncmp(x, y) -> cnst (if both x and y are constant strings) 453 if (HasStr1 && HasStr2) { 454 StringRef SubStr1 = Str1.substr(0, Length); 455 StringRef SubStr2 = Str2.substr(0, Length); 456 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 457 } 458 459 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 460 return B.CreateNeg(B.CreateZExt( 461 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 462 463 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 464 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 465 CI->getType()); 466 467 uint64_t Len1 = GetStringLength(Str1P); 468 if (Len1) 469 annotateDereferenceableBytes(CI, 0, Len1); 470 uint64_t Len2 = GetStringLength(Str2P); 471 if (Len2) 472 annotateDereferenceableBytes(CI, 1, Len2); 473 474 // strncmp to memcmp 475 if (!HasStr1 && HasStr2) { 476 Len2 = std::min(Len2, Length); 477 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 478 return copyFlags( 479 *CI, 480 emitMemCmp(Str1P, Str2P, 481 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 482 B, DL, TLI)); 483 } else if (HasStr1 && !HasStr2) { 484 Len1 = std::min(Len1, Length); 485 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 486 return copyFlags( 487 *CI, 488 emitMemCmp(Str1P, Str2P, 489 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 490 B, DL, TLI)); 491 } 492 493 return nullptr; 494 } 495 496 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 497 Value *Src = CI->getArgOperand(0); 498 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 499 uint64_t SrcLen = GetStringLength(Src); 500 if (SrcLen && Size) { 501 annotateDereferenceableBytes(CI, 0, SrcLen); 502 if (SrcLen <= Size->getZExtValue() + 1) 503 return copyFlags(*CI, emitStrDup(Src, B, TLI)); 504 } 505 506 return nullptr; 507 } 508 509 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 510 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 511 if (Dst == Src) // strcpy(x,x) -> x 512 return Src; 513 514 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 515 // See if we can get the length of the input string. 516 uint64_t Len = GetStringLength(Src); 517 if (Len) 518 annotateDereferenceableBytes(CI, 1, Len); 519 else 520 return nullptr; 521 522 // We have enough information to now generate the memcpy call to do the 523 // copy for us. Make a memcpy to copy the nul byte with align = 1. 524 CallInst *NewCI = 525 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 526 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 527 NewCI->setAttributes(CI->getAttributes()); 528 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 529 copyFlags(*CI, NewCI); 530 return Dst; 531 } 532 533 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 534 Function *Callee = CI->getCalledFunction(); 535 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 536 537 // stpcpy(d,s) -> strcpy(d,s) if the result is not used. 538 if (CI->use_empty()) 539 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 540 541 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 542 Value *StrLen = emitStrLen(Src, B, DL, TLI); 543 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 544 } 545 546 // See if we can get the length of the input string. 547 uint64_t Len = GetStringLength(Src); 548 if (Len) 549 annotateDereferenceableBytes(CI, 1, Len); 550 else 551 return nullptr; 552 553 Type *PT = Callee->getFunctionType()->getParamType(0); 554 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 555 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 556 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 557 558 // We have enough information to now generate the memcpy call to do the 559 // copy for us. Make a memcpy to copy the nul byte with align = 1. 560 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 561 NewCI->setAttributes(CI->getAttributes()); 562 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 563 copyFlags(*CI, NewCI); 564 return DstEnd; 565 } 566 567 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) { 568 Function *Callee = CI->getCalledFunction(); 569 Value *Dst = CI->getArgOperand(0); 570 Value *Src = CI->getArgOperand(1); 571 Value *Size = CI->getArgOperand(2); 572 annotateNonNullNoUndefBasedOnAccess(CI, 0); 573 if (isKnownNonZero(Size, DL)) 574 annotateNonNullNoUndefBasedOnAccess(CI, 1); 575 576 uint64_t Len; 577 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 578 Len = LengthArg->getZExtValue(); 579 else 580 return nullptr; 581 582 // strncpy(x, y, 0) -> x 583 if (Len == 0) 584 return Dst; 585 586 // See if we can get the length of the input string. 587 uint64_t SrcLen = GetStringLength(Src); 588 if (SrcLen) { 589 annotateDereferenceableBytes(CI, 1, SrcLen); 590 --SrcLen; // Unbias length. 591 } else { 592 return nullptr; 593 } 594 595 if (SrcLen == 0) { 596 // strncpy(x, "", y) -> memset(x, '\0', y) 597 Align MemSetAlign = 598 CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne(); 599 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign); 600 AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0)); 601 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 602 CI->getContext(), 0, ArgAttrs)); 603 copyFlags(*CI, NewCI); 604 return Dst; 605 } 606 607 // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4) 608 if (Len > SrcLen + 1) { 609 if (Len <= 128) { 610 StringRef Str; 611 if (!getConstantStringInfo(Src, Str)) 612 return nullptr; 613 std::string SrcStr = Str.str(); 614 SrcStr.resize(Len, '\0'); 615 Src = B.CreateGlobalString(SrcStr, "str"); 616 } else { 617 return nullptr; 618 } 619 } 620 621 Type *PT = Callee->getFunctionType()->getParamType(0); 622 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 623 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 624 ConstantInt::get(DL.getIntPtrType(PT), Len)); 625 NewCI->setAttributes(CI->getAttributes()); 626 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 627 copyFlags(*CI, NewCI); 628 return Dst; 629 } 630 631 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 632 unsigned CharSize, 633 Value *Bound) { 634 Value *Src = CI->getArgOperand(0); 635 636 if (Bound) { 637 if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) { 638 if (BoundCst->isZero()) 639 // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise. 640 return ConstantInt::get(CI->getType(), 0); 641 642 if (BoundCst->isOne()) { 643 // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s. 644 Type *CharTy = B.getIntNTy(CharSize); 645 Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0"); 646 Value *ZeroChar = ConstantInt::get(CharTy, 0); 647 Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp"); 648 return B.CreateZExt(Cmp, CI->getType()); 649 } 650 } 651 // Otherwise punt for strnlen for now. 652 return nullptr; 653 } 654 655 // Constant folding: strlen("xyz") -> 3 656 if (uint64_t Len = GetStringLength(Src, CharSize)) 657 return ConstantInt::get(CI->getType(), Len - 1); 658 659 // If s is a constant pointer pointing to a string literal, we can fold 660 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 661 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 662 // We only try to simplify strlen when the pointer s points to an array 663 // of i8. Otherwise, we would need to scale the offset x before doing the 664 // subtraction. This will make the optimization more complex, and it's not 665 // very useful because calling strlen for a pointer of other types is 666 // very uncommon. 667 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 668 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 669 return nullptr; 670 671 ConstantDataArraySlice Slice; 672 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 673 uint64_t NullTermIdx; 674 if (Slice.Array == nullptr) { 675 NullTermIdx = 0; 676 } else { 677 NullTermIdx = ~((uint64_t)0); 678 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 679 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 680 NullTermIdx = I; 681 break; 682 } 683 } 684 // If the string does not have '\0', leave it to strlen to compute 685 // its length. 686 if (NullTermIdx == ~((uint64_t)0)) 687 return nullptr; 688 } 689 690 Value *Offset = GEP->getOperand(2); 691 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 692 uint64_t ArrSize = 693 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 694 695 // If Offset is not provably in the range [0, NullTermIdx], we can still 696 // optimize if we can prove that the program has undefined behavior when 697 // Offset is outside that range. That is the case when GEP->getOperand(0) 698 // is a pointer to an object whose memory extent is NullTermIdx+1. 699 if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) || 700 (isa<GlobalVariable>(GEP->getOperand(0)) && 701 NullTermIdx == ArrSize - 1)) { 702 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 703 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 704 Offset); 705 } 706 } 707 } 708 709 // strlen(x?"foo":"bars") --> x ? 3 : 4 710 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 711 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 712 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 713 if (LenTrue && LenFalse) { 714 ORE.emit([&]() { 715 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 716 << "folded strlen(select) to select of constants"; 717 }); 718 return B.CreateSelect(SI->getCondition(), 719 ConstantInt::get(CI->getType(), LenTrue - 1), 720 ConstantInt::get(CI->getType(), LenFalse - 1)); 721 } 722 } 723 724 // strlen(x) != 0 --> *x != 0 725 // strlen(x) == 0 --> *x == 0 726 if (isOnlyUsedInZeroEqualityComparison(CI)) 727 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), 728 CI->getType()); 729 730 return nullptr; 731 } 732 733 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 734 if (Value *V = optimizeStringLength(CI, B, 8)) 735 return V; 736 annotateNonNullNoUndefBasedOnAccess(CI, 0); 737 return nullptr; 738 } 739 740 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) { 741 Value *Bound = CI->getArgOperand(1); 742 if (Value *V = optimizeStringLength(CI, B, 8, Bound)) 743 return V; 744 745 if (isKnownNonZero(Bound, DL)) 746 annotateNonNullNoUndefBasedOnAccess(CI, 0); 747 return nullptr; 748 } 749 750 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 751 Module &M = *CI->getModule(); 752 unsigned WCharSize = TLI->getWCharSize(M) * 8; 753 // We cannot perform this optimization without wchar_size metadata. 754 if (WCharSize == 0) 755 return nullptr; 756 757 return optimizeStringLength(CI, B, WCharSize); 758 } 759 760 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 761 StringRef S1, S2; 762 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 763 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 764 765 // strpbrk(s, "") -> nullptr 766 // strpbrk("", s) -> nullptr 767 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 768 return Constant::getNullValue(CI->getType()); 769 770 // Constant folding. 771 if (HasS1 && HasS2) { 772 size_t I = S1.find_first_of(S2); 773 if (I == StringRef::npos) // No match. 774 return Constant::getNullValue(CI->getType()); 775 776 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 777 "strpbrk"); 778 } 779 780 // strpbrk(s, "a") -> strchr(s, 'a') 781 if (HasS2 && S2.size() == 1) 782 return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI)); 783 784 return nullptr; 785 } 786 787 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 788 Value *EndPtr = CI->getArgOperand(1); 789 if (isa<ConstantPointerNull>(EndPtr)) { 790 // With a null EndPtr, this function won't capture the main argument. 791 // It would be readonly too, except that it still may write to errno. 792 CI->addParamAttr(0, Attribute::NoCapture); 793 } 794 795 return nullptr; 796 } 797 798 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 799 StringRef S1, S2; 800 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 801 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 802 803 // strspn(s, "") -> 0 804 // strspn("", s) -> 0 805 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 806 return Constant::getNullValue(CI->getType()); 807 808 // Constant folding. 809 if (HasS1 && HasS2) { 810 size_t Pos = S1.find_first_not_of(S2); 811 if (Pos == StringRef::npos) 812 Pos = S1.size(); 813 return ConstantInt::get(CI->getType(), Pos); 814 } 815 816 return nullptr; 817 } 818 819 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 820 StringRef S1, S2; 821 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 822 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 823 824 // strcspn("", s) -> 0 825 if (HasS1 && S1.empty()) 826 return Constant::getNullValue(CI->getType()); 827 828 // Constant folding. 829 if (HasS1 && HasS2) { 830 size_t Pos = S1.find_first_of(S2); 831 if (Pos == StringRef::npos) 832 Pos = S1.size(); 833 return ConstantInt::get(CI->getType(), Pos); 834 } 835 836 // strcspn(s, "") -> strlen(s) 837 if (HasS2 && S2.empty()) 838 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI)); 839 840 return nullptr; 841 } 842 843 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 844 // fold strstr(x, x) -> x. 845 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 846 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 847 848 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 849 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 850 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 851 if (!StrLen) 852 return nullptr; 853 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 854 StrLen, B, DL, TLI); 855 if (!StrNCmp) 856 return nullptr; 857 for (User *U : llvm::make_early_inc_range(CI->users())) { 858 ICmpInst *Old = cast<ICmpInst>(U); 859 Value *Cmp = 860 B.CreateICmp(Old->getPredicate(), StrNCmp, 861 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 862 replaceAllUsesWith(Old, Cmp); 863 } 864 return CI; 865 } 866 867 // See if either input string is a constant string. 868 StringRef SearchStr, ToFindStr; 869 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 870 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 871 872 // fold strstr(x, "") -> x. 873 if (HasStr2 && ToFindStr.empty()) 874 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 875 876 // If both strings are known, constant fold it. 877 if (HasStr1 && HasStr2) { 878 size_t Offset = SearchStr.find(ToFindStr); 879 880 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 881 return Constant::getNullValue(CI->getType()); 882 883 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 884 Value *Result = castToCStr(CI->getArgOperand(0), B); 885 Result = 886 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 887 return B.CreateBitCast(Result, CI->getType()); 888 } 889 890 // fold strstr(x, "y") -> strchr(x, 'y'). 891 if (HasStr2 && ToFindStr.size() == 1) { 892 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 893 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 894 } 895 896 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 897 return nullptr; 898 } 899 900 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 901 Value *SrcStr = CI->getArgOperand(0); 902 Value *Size = CI->getArgOperand(2); 903 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 904 Value *CharVal = CI->getArgOperand(1); 905 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 906 Value *NullPtr = Constant::getNullValue(CI->getType()); 907 908 if (LenC) { 909 if (LenC->isZero()) 910 // Fold memrchr(x, y, 0) --> null. 911 return NullPtr; 912 913 if (LenC->isOne()) { 914 // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y, 915 // constant or otherwise. 916 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0"); 917 // Slice off the character's high end bits. 918 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 919 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp"); 920 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel"); 921 } 922 } 923 924 StringRef Str; 925 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 926 return nullptr; 927 928 uint64_t EndOff = UINT64_MAX; 929 if (LenC) { 930 EndOff = LenC->getZExtValue(); 931 if (Str.size() < EndOff) 932 // Punt out-of-bounds accesses to sanitizers and/or libc. 933 return nullptr; 934 } 935 936 if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) { 937 // Fold memrchr(S, C, N) for a constant C. 938 size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff); 939 if (Pos == StringRef::npos) 940 // When the character is not in the source array fold the result 941 // to null regardless of Size. 942 return NullPtr; 943 944 if (LenC) 945 // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos. 946 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos)); 947 948 if (Str.find(CharC->getZExtValue(), Pos) == StringRef::npos) { 949 // When there is just a single occurrence of C in S, fold 950 // memrchr(s, c, N) --> N <= Pos ? null : s + Pos 951 // for nonconstant N. 952 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), 953 Pos), 954 "memrchr.cmp"); 955 Value *SrcPlus = B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), 956 "memrchr.ptr_plus"); 957 return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel"); 958 } 959 } 960 961 return nullptr; 962 } 963 964 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 965 Value *SrcStr = CI->getArgOperand(0); 966 Value *Size = CI->getArgOperand(2); 967 if (isKnownNonZero(Size, DL)) 968 annotateNonNullNoUndefBasedOnAccess(CI, 0); 969 970 Value *CharVal = CI->getArgOperand(1); 971 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 972 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 973 974 // memchr(x, y, 0) -> null 975 if (LenC) { 976 if (LenC->isZero()) 977 return Constant::getNullValue(CI->getType()); 978 979 if (LenC->isOne()) { 980 // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y, 981 // constant or otherwise. 982 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0"); 983 // Slice off the character's high end bits. 984 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 985 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp"); 986 Value *NullPtr = Constant::getNullValue(CI->getType()); 987 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel"); 988 } 989 } 990 991 StringRef Str; 992 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 993 return nullptr; 994 995 if (CharC) { 996 size_t Pos = Str.find(CharC->getZExtValue()); 997 if (Pos == StringRef::npos) 998 // When the character is not in the source array fold the result 999 // to null regardless of Size. 1000 return Constant::getNullValue(CI->getType()); 1001 1002 // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos 1003 // When the constant Size is less than or equal to the character 1004 // position also fold the result to null. 1005 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos), 1006 "memchr.cmp"); 1007 Value *NullPtr = Constant::getNullValue(CI->getType()); 1008 Value *SrcPlus = 1009 B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), "memchr.ptr"); 1010 return B.CreateSelect(Cmp, NullPtr, SrcPlus); 1011 } 1012 1013 if (!LenC) 1014 // From now on we need a constant length and constant array. 1015 return nullptr; 1016 1017 // Truncate the string to LenC. 1018 Str = Str.substr(0, LenC->getZExtValue()); 1019 1020 // If the char is variable but the input str and length are not we can turn 1021 // this memchr call into a simple bit field test. Of course this only works 1022 // when the return value is only checked against null. 1023 // 1024 // It would be really nice to reuse switch lowering here but we can't change 1025 // the CFG at this point. 1026 // 1027 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 1028 // != 0 1029 // after bounds check. 1030 if (Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI)) 1031 return nullptr; 1032 1033 unsigned char Max = 1034 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 1035 reinterpret_cast<const unsigned char *>(Str.end())); 1036 1037 // Make sure the bit field we're about to create fits in a register on the 1038 // target. 1039 // FIXME: On a 64 bit architecture this prevents us from using the 1040 // interesting range of alpha ascii chars. We could do better by emitting 1041 // two bitfields or shifting the range by 64 if no lower chars are used. 1042 if (!DL.fitsInLegalInteger(Max + 1)) 1043 return nullptr; 1044 1045 // For the bit field use a power-of-2 type with at least 8 bits to avoid 1046 // creating unnecessary illegal types. 1047 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 1048 1049 // Now build the bit field. 1050 APInt Bitfield(Width, 0); 1051 for (char C : Str) 1052 Bitfield.setBit((unsigned char)C); 1053 Value *BitfieldC = B.getInt(Bitfield); 1054 1055 // Adjust width of "C" to the bitfield width, then mask off the high bits. 1056 Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType()); 1057 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 1058 1059 // First check that the bit field access is within bounds. 1060 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 1061 "memchr.bounds"); 1062 1063 // Create code that checks if the given bit is set in the field. 1064 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 1065 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 1066 1067 // Finally merge both checks and cast to pointer type. The inttoptr 1068 // implicitly zexts the i1 to intptr type. 1069 return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"), 1070 CI->getType()); 1071 } 1072 1073 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 1074 uint64_t Len, IRBuilderBase &B, 1075 const DataLayout &DL) { 1076 if (Len == 0) // memcmp(s1,s2,0) -> 0 1077 return Constant::getNullValue(CI->getType()); 1078 1079 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 1080 if (Len == 1) { 1081 Value *LHSV = 1082 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 1083 CI->getType(), "lhsv"); 1084 Value *RHSV = 1085 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 1086 CI->getType(), "rhsv"); 1087 return B.CreateSub(LHSV, RHSV, "chardiff"); 1088 } 1089 1090 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 1091 // TODO: The case where both inputs are constants does not need to be limited 1092 // to legal integers or equality comparison. See block below this. 1093 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 1094 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 1095 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 1096 1097 // First, see if we can fold either argument to a constant. 1098 Value *LHSV = nullptr; 1099 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 1100 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 1101 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 1102 } 1103 Value *RHSV = nullptr; 1104 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 1105 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 1106 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 1107 } 1108 1109 // Don't generate unaligned loads. If either source is constant data, 1110 // alignment doesn't matter for that source because there is no load. 1111 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 1112 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 1113 if (!LHSV) { 1114 Type *LHSPtrTy = 1115 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 1116 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 1117 } 1118 if (!RHSV) { 1119 Type *RHSPtrTy = 1120 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 1121 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 1122 } 1123 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1124 } 1125 } 1126 1127 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 1128 // TODO: This is limited to i8 arrays. 1129 StringRef LHSStr, RHSStr; 1130 if (getConstantStringInfo(LHS, LHSStr) && 1131 getConstantStringInfo(RHS, RHSStr)) { 1132 // Make sure we're not reading out-of-bounds memory. 1133 if (Len > LHSStr.size() || Len > RHSStr.size()) 1134 return nullptr; 1135 // Fold the memcmp and normalize the result. This way we get consistent 1136 // results across multiple platforms. 1137 uint64_t Ret = 0; 1138 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 1139 if (Cmp < 0) 1140 Ret = -1; 1141 else if (Cmp > 0) 1142 Ret = 1; 1143 return ConstantInt::get(CI->getType(), Ret); 1144 } 1145 1146 return nullptr; 1147 } 1148 1149 // Most simplifications for memcmp also apply to bcmp. 1150 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1151 IRBuilderBase &B) { 1152 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1153 Value *Size = CI->getArgOperand(2); 1154 1155 if (LHS == RHS) // memcmp(s,s,x) -> 0 1156 return Constant::getNullValue(CI->getType()); 1157 1158 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1159 // Handle constant lengths. 1160 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1161 if (!LenC) 1162 return nullptr; 1163 1164 // memcmp(d,s,0) -> 0 1165 if (LenC->getZExtValue() == 0) 1166 return Constant::getNullValue(CI->getType()); 1167 1168 if (Value *Res = 1169 optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL)) 1170 return Res; 1171 return nullptr; 1172 } 1173 1174 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1175 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1176 return V; 1177 1178 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1179 // bcmp can be more efficient than memcmp because it only has to know that 1180 // there is a difference, not how different one is to the other. 1181 if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) { 1182 Value *LHS = CI->getArgOperand(0); 1183 Value *RHS = CI->getArgOperand(1); 1184 Value *Size = CI->getArgOperand(2); 1185 return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI)); 1186 } 1187 1188 return nullptr; 1189 } 1190 1191 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1192 return optimizeMemCmpBCmpCommon(CI, B); 1193 } 1194 1195 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1196 Value *Size = CI->getArgOperand(2); 1197 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1198 if (isa<IntrinsicInst>(CI)) 1199 return nullptr; 1200 1201 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1202 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1203 CI->getArgOperand(1), Align(1), Size); 1204 NewCI->setAttributes(CI->getAttributes()); 1205 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1206 copyFlags(*CI, NewCI); 1207 return CI->getArgOperand(0); 1208 } 1209 1210 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1211 Value *Dst = CI->getArgOperand(0); 1212 Value *Src = CI->getArgOperand(1); 1213 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1214 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1215 StringRef SrcStr; 1216 if (CI->use_empty() && Dst == Src) 1217 return Dst; 1218 // memccpy(d, s, c, 0) -> nullptr 1219 if (N) { 1220 if (N->isNullValue()) 1221 return Constant::getNullValue(CI->getType()); 1222 if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0, 1223 /*TrimAtNul=*/false) || 1224 !StopChar) 1225 return nullptr; 1226 } else { 1227 return nullptr; 1228 } 1229 1230 // Wrap arg 'c' of type int to char 1231 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1232 if (Pos == StringRef::npos) { 1233 if (N->getZExtValue() <= SrcStr.size()) { 1234 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), 1235 CI->getArgOperand(3))); 1236 return Constant::getNullValue(CI->getType()); 1237 } 1238 return nullptr; 1239 } 1240 1241 Value *NewN = 1242 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1243 // memccpy -> llvm.memcpy 1244 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN)); 1245 return Pos + 1 <= N->getZExtValue() 1246 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1247 : Constant::getNullValue(CI->getType()); 1248 } 1249 1250 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1251 Value *Dst = CI->getArgOperand(0); 1252 Value *N = CI->getArgOperand(2); 1253 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1254 CallInst *NewCI = 1255 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1256 // Propagate attributes, but memcpy has no return value, so make sure that 1257 // any return attributes are compliant. 1258 // TODO: Attach return value attributes to the 1st operand to preserve them? 1259 NewCI->setAttributes(CI->getAttributes()); 1260 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1261 copyFlags(*CI, NewCI); 1262 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1263 } 1264 1265 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1266 Value *Size = CI->getArgOperand(2); 1267 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1268 if (isa<IntrinsicInst>(CI)) 1269 return nullptr; 1270 1271 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1272 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1273 CI->getArgOperand(1), Align(1), Size); 1274 NewCI->setAttributes(CI->getAttributes()); 1275 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1276 copyFlags(*CI, NewCI); 1277 return CI->getArgOperand(0); 1278 } 1279 1280 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1281 Value *Size = CI->getArgOperand(2); 1282 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1283 if (isa<IntrinsicInst>(CI)) 1284 return nullptr; 1285 1286 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1287 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1288 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1289 NewCI->setAttributes(CI->getAttributes()); 1290 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1291 copyFlags(*CI, NewCI); 1292 return CI->getArgOperand(0); 1293 } 1294 1295 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1296 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1297 return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI)); 1298 1299 return nullptr; 1300 } 1301 1302 //===----------------------------------------------------------------------===// 1303 // Math Library Optimizations 1304 //===----------------------------------------------------------------------===// 1305 1306 // Replace a libcall \p CI with a call to intrinsic \p IID 1307 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1308 Intrinsic::ID IID) { 1309 // Propagate fast-math flags from the existing call to the new call. 1310 IRBuilderBase::FastMathFlagGuard Guard(B); 1311 B.setFastMathFlags(CI->getFastMathFlags()); 1312 1313 Module *M = CI->getModule(); 1314 Value *V = CI->getArgOperand(0); 1315 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1316 CallInst *NewCall = B.CreateCall(F, V); 1317 NewCall->takeName(CI); 1318 return copyFlags(*CI, NewCall); 1319 } 1320 1321 /// Return a variant of Val with float type. 1322 /// Currently this works in two cases: If Val is an FPExtension of a float 1323 /// value to something bigger, simply return the operand. 1324 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1325 /// loss of precision do so. 1326 static Value *valueHasFloatPrecision(Value *Val) { 1327 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1328 Value *Op = Cast->getOperand(0); 1329 if (Op->getType()->isFloatTy()) 1330 return Op; 1331 } 1332 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1333 APFloat F = Const->getValueAPF(); 1334 bool losesInfo; 1335 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1336 &losesInfo); 1337 if (!losesInfo) 1338 return ConstantFP::get(Const->getContext(), F); 1339 } 1340 return nullptr; 1341 } 1342 1343 /// Shrink double -> float functions. 1344 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1345 bool isBinary, bool isPrecise = false) { 1346 Function *CalleeFn = CI->getCalledFunction(); 1347 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1348 return nullptr; 1349 1350 // If not all the uses of the function are converted to float, then bail out. 1351 // This matters if the precision of the result is more important than the 1352 // precision of the arguments. 1353 if (isPrecise) 1354 for (User *U : CI->users()) { 1355 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1356 if (!Cast || !Cast->getType()->isFloatTy()) 1357 return nullptr; 1358 } 1359 1360 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1361 Value *V[2]; 1362 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1363 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1364 if (!V[0] || (isBinary && !V[1])) 1365 return nullptr; 1366 1367 // If call isn't an intrinsic, check that it isn't within a function with the 1368 // same name as the float version of this call, otherwise the result is an 1369 // infinite loop. For example, from MinGW-w64: 1370 // 1371 // float expf(float val) { return (float) exp((double) val); } 1372 StringRef CalleeName = CalleeFn->getName(); 1373 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1374 if (!IsIntrinsic) { 1375 StringRef CallerName = CI->getFunction()->getName(); 1376 if (!CallerName.empty() && CallerName.back() == 'f' && 1377 CallerName.size() == (CalleeName.size() + 1) && 1378 CallerName.startswith(CalleeName)) 1379 return nullptr; 1380 } 1381 1382 // Propagate the math semantics from the current function to the new function. 1383 IRBuilderBase::FastMathFlagGuard Guard(B); 1384 B.setFastMathFlags(CI->getFastMathFlags()); 1385 1386 // g((double) float) -> (double) gf(float) 1387 Value *R; 1388 if (IsIntrinsic) { 1389 Module *M = CI->getModule(); 1390 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1391 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1392 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1393 } else { 1394 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1395 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs) 1396 : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs); 1397 } 1398 return B.CreateFPExt(R, B.getDoubleTy()); 1399 } 1400 1401 /// Shrink double -> float for unary functions. 1402 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1403 bool isPrecise = false) { 1404 return optimizeDoubleFP(CI, B, false, isPrecise); 1405 } 1406 1407 /// Shrink double -> float for binary functions. 1408 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1409 bool isPrecise = false) { 1410 return optimizeDoubleFP(CI, B, true, isPrecise); 1411 } 1412 1413 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1414 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1415 if (!CI->isFast()) 1416 return nullptr; 1417 1418 // Propagate fast-math flags from the existing call to new instructions. 1419 IRBuilderBase::FastMathFlagGuard Guard(B); 1420 B.setFastMathFlags(CI->getFastMathFlags()); 1421 1422 Value *Real, *Imag; 1423 if (CI->arg_size() == 1) { 1424 Value *Op = CI->getArgOperand(0); 1425 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1426 Real = B.CreateExtractValue(Op, 0, "real"); 1427 Imag = B.CreateExtractValue(Op, 1, "imag"); 1428 } else { 1429 assert(CI->arg_size() == 2 && "Unexpected signature for cabs!"); 1430 Real = CI->getArgOperand(0); 1431 Imag = CI->getArgOperand(1); 1432 } 1433 1434 Value *RealReal = B.CreateFMul(Real, Real); 1435 Value *ImagImag = B.CreateFMul(Imag, Imag); 1436 1437 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1438 CI->getType()); 1439 return copyFlags( 1440 *CI, B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs")); 1441 } 1442 1443 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1444 IRBuilderBase &B) { 1445 if (!isa<FPMathOperator>(Call)) 1446 return nullptr; 1447 1448 IRBuilderBase::FastMathFlagGuard Guard(B); 1449 B.setFastMathFlags(Call->getFastMathFlags()); 1450 1451 // TODO: Can this be shared to also handle LLVM intrinsics? 1452 Value *X; 1453 switch (Func) { 1454 case LibFunc_sin: 1455 case LibFunc_sinf: 1456 case LibFunc_sinl: 1457 case LibFunc_tan: 1458 case LibFunc_tanf: 1459 case LibFunc_tanl: 1460 // sin(-X) --> -sin(X) 1461 // tan(-X) --> -tan(X) 1462 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1463 return B.CreateFNeg( 1464 copyFlags(*Call, B.CreateCall(Call->getCalledFunction(), X))); 1465 break; 1466 case LibFunc_cos: 1467 case LibFunc_cosf: 1468 case LibFunc_cosl: 1469 // cos(-X) --> cos(X) 1470 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1471 return copyFlags(*Call, 1472 B.CreateCall(Call->getCalledFunction(), X, "cos")); 1473 break; 1474 default: 1475 break; 1476 } 1477 return nullptr; 1478 } 1479 1480 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) { 1481 // Multiplications calculated using Addition Chains. 1482 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1483 1484 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1485 1486 if (InnerChain[Exp]) 1487 return InnerChain[Exp]; 1488 1489 static const unsigned AddChain[33][2] = { 1490 {0, 0}, // Unused. 1491 {0, 0}, // Unused (base case = pow1). 1492 {1, 1}, // Unused (pre-computed). 1493 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1494 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1495 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1496 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1497 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1498 }; 1499 1500 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1501 getPow(InnerChain, AddChain[Exp][1], B)); 1502 return InnerChain[Exp]; 1503 } 1504 1505 // Return a properly extended integer (DstWidth bits wide) if the operation is 1506 // an itofp. 1507 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) { 1508 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1509 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1510 // Make sure that the exponent fits inside an "int" of size DstWidth, 1511 // thus avoiding any range issues that FP has not. 1512 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); 1513 if (BitWidth < DstWidth || 1514 (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) 1515 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth)) 1516 : B.CreateZExt(Op, B.getIntNTy(DstWidth)); 1517 } 1518 1519 return nullptr; 1520 } 1521 1522 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1523 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 1524 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 1525 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 1526 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1527 AttributeList Attrs; // Attributes are only meaningful on the original call 1528 Module *Mod = Pow->getModule(); 1529 Type *Ty = Pow->getType(); 1530 bool Ignored; 1531 1532 // Evaluate special cases related to a nested function as the base. 1533 1534 // pow(exp(x), y) -> exp(x * y) 1535 // pow(exp2(x), y) -> exp2(x * y) 1536 // If exp{,2}() is used only once, it is better to fold two transcendental 1537 // math functions into one. If used again, exp{,2}() would still have to be 1538 // called with the original argument, then keep both original transcendental 1539 // functions. However, this transformation is only safe with fully relaxed 1540 // math semantics, since, besides rounding differences, it changes overflow 1541 // and underflow behavior quite dramatically. For example: 1542 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1543 // Whereas: 1544 // exp(1000 * 0.001) = exp(1) 1545 // TODO: Loosen the requirement for fully relaxed math semantics. 1546 // TODO: Handle exp10() when more targets have it available. 1547 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1548 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1549 LibFunc LibFn; 1550 1551 Function *CalleeFn = BaseFn->getCalledFunction(); 1552 if (CalleeFn && 1553 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1554 StringRef ExpName; 1555 Intrinsic::ID ID; 1556 Value *ExpFn; 1557 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 1558 1559 switch (LibFn) { 1560 default: 1561 return nullptr; 1562 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1563 ExpName = TLI->getName(LibFunc_exp); 1564 ID = Intrinsic::exp; 1565 LibFnFloat = LibFunc_expf; 1566 LibFnDouble = LibFunc_exp; 1567 LibFnLongDouble = LibFunc_expl; 1568 break; 1569 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1570 ExpName = TLI->getName(LibFunc_exp2); 1571 ID = Intrinsic::exp2; 1572 LibFnFloat = LibFunc_exp2f; 1573 LibFnDouble = LibFunc_exp2; 1574 LibFnLongDouble = LibFunc_exp2l; 1575 break; 1576 } 1577 1578 // Create new exp{,2}() with the product as its argument. 1579 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1580 ExpFn = BaseFn->doesNotAccessMemory() 1581 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1582 FMul, ExpName) 1583 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1584 LibFnLongDouble, B, 1585 BaseFn->getAttributes()); 1586 1587 // Since the new exp{,2}() is different from the original one, dead code 1588 // elimination cannot be trusted to remove it, since it may have side 1589 // effects (e.g., errno). When the only consumer for the original 1590 // exp{,2}() is pow(), then it has to be explicitly erased. 1591 substituteInParent(BaseFn, ExpFn); 1592 return ExpFn; 1593 } 1594 } 1595 1596 // Evaluate special cases related to a constant base. 1597 1598 const APFloat *BaseF; 1599 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1600 return nullptr; 1601 1602 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 1603 if (match(Base, m_SpecificFP(2.0)) && 1604 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 1605 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1606 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1607 return copyFlags(*Pow, 1608 emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, 1609 TLI, LibFunc_ldexp, LibFunc_ldexpf, 1610 LibFunc_ldexpl, B, Attrs)); 1611 } 1612 1613 // pow(2.0 ** n, x) -> exp2(n * x) 1614 if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1615 APFloat BaseR = APFloat(1.0); 1616 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1617 BaseR = BaseR / *BaseF; 1618 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1619 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1620 APSInt NI(64, false); 1621 if ((IsInteger || IsReciprocal) && 1622 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1623 APFloat::opOK && 1624 NI > 1 && NI.isPowerOf2()) { 1625 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1626 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1627 if (Pow->doesNotAccessMemory()) 1628 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 1629 Mod, Intrinsic::exp2, Ty), 1630 FMul, "exp2")); 1631 else 1632 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 1633 LibFunc_exp2f, 1634 LibFunc_exp2l, B, Attrs)); 1635 } 1636 } 1637 1638 // pow(10.0, x) -> exp10(x) 1639 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1640 if (match(Base, m_SpecificFP(10.0)) && 1641 hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1642 return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, 1643 LibFunc_exp10f, LibFunc_exp10l, 1644 B, Attrs)); 1645 1646 // pow(x, y) -> exp2(log2(x) * y) 1647 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 1648 !BaseF->isNegative()) { 1649 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 1650 // Luckily optimizePow has already handled the x == 1 case. 1651 assert(!match(Base, m_FPOne()) && 1652 "pow(1.0, y) should have been simplified earlier!"); 1653 1654 Value *Log = nullptr; 1655 if (Ty->isFloatTy()) 1656 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 1657 else if (Ty->isDoubleTy()) 1658 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 1659 1660 if (Log) { 1661 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 1662 if (Pow->doesNotAccessMemory()) 1663 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 1664 Mod, Intrinsic::exp2, Ty), 1665 FMul, "exp2")); 1666 else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) 1667 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 1668 LibFunc_exp2f, 1669 LibFunc_exp2l, B, Attrs)); 1670 } 1671 } 1672 1673 return nullptr; 1674 } 1675 1676 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1677 Module *M, IRBuilderBase &B, 1678 const TargetLibraryInfo *TLI) { 1679 // If errno is never set, then use the intrinsic for sqrt(). 1680 if (NoErrno) { 1681 Function *SqrtFn = 1682 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1683 return B.CreateCall(SqrtFn, V, "sqrt"); 1684 } 1685 1686 // Otherwise, use the libcall for sqrt(). 1687 if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) 1688 // TODO: We also should check that the target can in fact lower the sqrt() 1689 // libcall. We currently have no way to ask this question, so we ask if 1690 // the target has a sqrt() libcall, which is not exactly the same. 1691 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1692 LibFunc_sqrtl, B, Attrs); 1693 1694 return nullptr; 1695 } 1696 1697 /// Use square root in place of pow(x, +/-0.5). 1698 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 1699 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1700 AttributeList Attrs; // Attributes are only meaningful on the original call 1701 Module *Mod = Pow->getModule(); 1702 Type *Ty = Pow->getType(); 1703 1704 const APFloat *ExpoF; 1705 if (!match(Expo, m_APFloat(ExpoF)) || 1706 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1707 return nullptr; 1708 1709 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 1710 // so that requires fast-math-flags (afn or reassoc). 1711 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 1712 return nullptr; 1713 1714 // If we have a pow() library call (accesses memory) and we can't guarantee 1715 // that the base is not an infinity, give up: 1716 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 1717 // errno), but sqrt(-Inf) is required by various standards to set errno. 1718 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 1719 !isKnownNeverInfinity(Base, TLI)) 1720 return nullptr; 1721 1722 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1723 if (!Sqrt) 1724 return nullptr; 1725 1726 // Handle signed zero base by expanding to fabs(sqrt(x)). 1727 if (!Pow->hasNoSignedZeros()) { 1728 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1729 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1730 } 1731 1732 Sqrt = copyFlags(*Pow, Sqrt); 1733 1734 // Handle non finite base by expanding to 1735 // (x == -infinity ? +infinity : sqrt(x)). 1736 if (!Pow->hasNoInfs()) { 1737 Value *PosInf = ConstantFP::getInfinity(Ty), 1738 *NegInf = ConstantFP::getInfinity(Ty, true); 1739 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1740 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1741 } 1742 1743 // If the exponent is negative, then get the reciprocal. 1744 if (ExpoF->isNegative()) 1745 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1746 1747 return Sqrt; 1748 } 1749 1750 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1751 IRBuilderBase &B) { 1752 Value *Args[] = {Base, Expo}; 1753 Type *Types[] = {Base->getType(), Expo->getType()}; 1754 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types); 1755 return B.CreateCall(F, Args); 1756 } 1757 1758 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 1759 Value *Base = Pow->getArgOperand(0); 1760 Value *Expo = Pow->getArgOperand(1); 1761 Function *Callee = Pow->getCalledFunction(); 1762 StringRef Name = Callee->getName(); 1763 Type *Ty = Pow->getType(); 1764 Module *M = Pow->getModule(); 1765 bool AllowApprox = Pow->hasApproxFunc(); 1766 bool Ignored; 1767 1768 // Propagate the math semantics from the call to any created instructions. 1769 IRBuilderBase::FastMathFlagGuard Guard(B); 1770 B.setFastMathFlags(Pow->getFastMathFlags()); 1771 // Evaluate special cases related to the base. 1772 1773 // pow(1.0, x) -> 1.0 1774 if (match(Base, m_FPOne())) 1775 return Base; 1776 1777 if (Value *Exp = replacePowWithExp(Pow, B)) 1778 return Exp; 1779 1780 // Evaluate special cases related to the exponent. 1781 1782 // pow(x, -1.0) -> 1.0 / x 1783 if (match(Expo, m_SpecificFP(-1.0))) 1784 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1785 1786 // pow(x, +/-0.0) -> 1.0 1787 if (match(Expo, m_AnyZeroFP())) 1788 return ConstantFP::get(Ty, 1.0); 1789 1790 // pow(x, 1.0) -> x 1791 if (match(Expo, m_FPOne())) 1792 return Base; 1793 1794 // pow(x, 2.0) -> x * x 1795 if (match(Expo, m_SpecificFP(2.0))) 1796 return B.CreateFMul(Base, Base, "square"); 1797 1798 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1799 return Sqrt; 1800 1801 // pow(x, n) -> x * x * x * ... 1802 const APFloat *ExpoF; 1803 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 1804 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 1805 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1806 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1807 // additional fmul. 1808 // TODO: This whole transformation should be backend specific (e.g. some 1809 // backends might prefer libcalls or the limit for the exponent might 1810 // be different) and it should also consider optimizing for size. 1811 APFloat LimF(ExpoF->getSemantics(), 33), 1812 ExpoA(abs(*ExpoF)); 1813 if (ExpoA < LimF) { 1814 // This transformation applies to integer or integer+0.5 exponents only. 1815 // For integer+0.5, we create a sqrt(Base) call. 1816 Value *Sqrt = nullptr; 1817 if (!ExpoA.isInteger()) { 1818 APFloat Expo2 = ExpoA; 1819 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1820 // is no floating point exception and the result is an integer, then 1821 // ExpoA == integer + 0.5 1822 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1823 return nullptr; 1824 1825 if (!Expo2.isInteger()) 1826 return nullptr; 1827 1828 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1829 Pow->doesNotAccessMemory(), M, B, TLI); 1830 if (!Sqrt) 1831 return nullptr; 1832 } 1833 1834 // We will memoize intermediate products of the Addition Chain. 1835 Value *InnerChain[33] = {nullptr}; 1836 InnerChain[1] = Base; 1837 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1838 1839 // We cannot readily convert a non-double type (like float) to a double. 1840 // So we first convert it to something which could be converted to double. 1841 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1842 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1843 1844 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1845 if (Sqrt) 1846 FMul = B.CreateFMul(FMul, Sqrt); 1847 1848 // If the exponent is negative, then get the reciprocal. 1849 if (ExpoF->isNegative()) 1850 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1851 1852 return FMul; 1853 } 1854 1855 APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false); 1856 // powf(x, n) -> powi(x, n) if n is a constant signed integer value 1857 if (ExpoF->isInteger() && 1858 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 1859 APFloat::opOK) { 1860 return copyFlags( 1861 *Pow, 1862 createPowWithIntegerExponent( 1863 Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo), 1864 M, B)); 1865 } 1866 } 1867 1868 // powf(x, itofp(y)) -> powi(x, y) 1869 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 1870 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1871 return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B)); 1872 } 1873 1874 // Shrink pow() to powf() if the arguments are single precision, 1875 // unless the result is expected to be double precision. 1876 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 1877 hasFloatVersion(Name)) { 1878 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, true)) 1879 return Shrunk; 1880 } 1881 1882 return nullptr; 1883 } 1884 1885 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 1886 Function *Callee = CI->getCalledFunction(); 1887 AttributeList Attrs; // Attributes are only meaningful on the original call 1888 StringRef Name = Callee->getName(); 1889 Value *Ret = nullptr; 1890 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 1891 hasFloatVersion(Name)) 1892 Ret = optimizeUnaryDoubleFP(CI, B, true); 1893 1894 Type *Ty = CI->getType(); 1895 Value *Op = CI->getArgOperand(0); 1896 1897 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize 1898 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize 1899 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 1900 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1901 if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) 1902 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 1903 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1904 B, Attrs); 1905 } 1906 1907 return Ret; 1908 } 1909 1910 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 1911 // If we can shrink the call to a float function rather than a double 1912 // function, do that first. 1913 Function *Callee = CI->getCalledFunction(); 1914 StringRef Name = Callee->getName(); 1915 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1916 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1917 return Ret; 1918 1919 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 1920 // the intrinsics for improved optimization (for example, vectorization). 1921 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 1922 // From the C standard draft WG14/N1256: 1923 // "Ideally, fmax would be sensitive to the sign of zero, for example 1924 // fmax(-0.0, +0.0) would return +0; however, implementation in software 1925 // might be impractical." 1926 IRBuilderBase::FastMathFlagGuard Guard(B); 1927 FastMathFlags FMF = CI->getFastMathFlags(); 1928 FMF.setNoSignedZeros(); 1929 B.setFastMathFlags(FMF); 1930 1931 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 1932 : Intrinsic::maxnum; 1933 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 1934 return copyFlags( 1935 *CI, B.CreateCall(F, {CI->getArgOperand(0), CI->getArgOperand(1)})); 1936 } 1937 1938 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 1939 Function *LogFn = Log->getCalledFunction(); 1940 AttributeList Attrs; // Attributes are only meaningful on the original call 1941 StringRef LogNm = LogFn->getName(); 1942 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 1943 Module *Mod = Log->getModule(); 1944 Type *Ty = Log->getType(); 1945 Value *Ret = nullptr; 1946 1947 if (UnsafeFPShrink && hasFloatVersion(LogNm)) 1948 Ret = optimizeUnaryDoubleFP(Log, B, true); 1949 1950 // The earlier call must also be 'fast' in order to do these transforms. 1951 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 1952 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 1953 return Ret; 1954 1955 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 1956 1957 // This is only applicable to log(), log2(), log10(). 1958 if (TLI->getLibFunc(LogNm, LogLb)) 1959 switch (LogLb) { 1960 case LibFunc_logf: 1961 LogID = Intrinsic::log; 1962 ExpLb = LibFunc_expf; 1963 Exp2Lb = LibFunc_exp2f; 1964 Exp10Lb = LibFunc_exp10f; 1965 PowLb = LibFunc_powf; 1966 break; 1967 case LibFunc_log: 1968 LogID = Intrinsic::log; 1969 ExpLb = LibFunc_exp; 1970 Exp2Lb = LibFunc_exp2; 1971 Exp10Lb = LibFunc_exp10; 1972 PowLb = LibFunc_pow; 1973 break; 1974 case LibFunc_logl: 1975 LogID = Intrinsic::log; 1976 ExpLb = LibFunc_expl; 1977 Exp2Lb = LibFunc_exp2l; 1978 Exp10Lb = LibFunc_exp10l; 1979 PowLb = LibFunc_powl; 1980 break; 1981 case LibFunc_log2f: 1982 LogID = Intrinsic::log2; 1983 ExpLb = LibFunc_expf; 1984 Exp2Lb = LibFunc_exp2f; 1985 Exp10Lb = LibFunc_exp10f; 1986 PowLb = LibFunc_powf; 1987 break; 1988 case LibFunc_log2: 1989 LogID = Intrinsic::log2; 1990 ExpLb = LibFunc_exp; 1991 Exp2Lb = LibFunc_exp2; 1992 Exp10Lb = LibFunc_exp10; 1993 PowLb = LibFunc_pow; 1994 break; 1995 case LibFunc_log2l: 1996 LogID = Intrinsic::log2; 1997 ExpLb = LibFunc_expl; 1998 Exp2Lb = LibFunc_exp2l; 1999 Exp10Lb = LibFunc_exp10l; 2000 PowLb = LibFunc_powl; 2001 break; 2002 case LibFunc_log10f: 2003 LogID = Intrinsic::log10; 2004 ExpLb = LibFunc_expf; 2005 Exp2Lb = LibFunc_exp2f; 2006 Exp10Lb = LibFunc_exp10f; 2007 PowLb = LibFunc_powf; 2008 break; 2009 case LibFunc_log10: 2010 LogID = Intrinsic::log10; 2011 ExpLb = LibFunc_exp; 2012 Exp2Lb = LibFunc_exp2; 2013 Exp10Lb = LibFunc_exp10; 2014 PowLb = LibFunc_pow; 2015 break; 2016 case LibFunc_log10l: 2017 LogID = Intrinsic::log10; 2018 ExpLb = LibFunc_expl; 2019 Exp2Lb = LibFunc_exp2l; 2020 Exp10Lb = LibFunc_exp10l; 2021 PowLb = LibFunc_powl; 2022 break; 2023 default: 2024 return Ret; 2025 } 2026 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 2027 LogID == Intrinsic::log10) { 2028 if (Ty->getScalarType()->isFloatTy()) { 2029 ExpLb = LibFunc_expf; 2030 Exp2Lb = LibFunc_exp2f; 2031 Exp10Lb = LibFunc_exp10f; 2032 PowLb = LibFunc_powf; 2033 } else if (Ty->getScalarType()->isDoubleTy()) { 2034 ExpLb = LibFunc_exp; 2035 Exp2Lb = LibFunc_exp2; 2036 Exp10Lb = LibFunc_exp10; 2037 PowLb = LibFunc_pow; 2038 } else 2039 return Ret; 2040 } else 2041 return Ret; 2042 2043 IRBuilderBase::FastMathFlagGuard Guard(B); 2044 B.setFastMathFlags(FastMathFlags::getFast()); 2045 2046 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 2047 LibFunc ArgLb = NotLibFunc; 2048 TLI->getLibFunc(*Arg, ArgLb); 2049 2050 // log(pow(x,y)) -> y*log(x) 2051 if (ArgLb == PowLb || ArgID == Intrinsic::pow) { 2052 Value *LogX = 2053 Log->doesNotAccessMemory() 2054 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 2055 Arg->getOperand(0), "log") 2056 : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs); 2057 Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul"); 2058 // Since pow() may have side effects, e.g. errno, 2059 // dead code elimination may not be trusted to remove it. 2060 substituteInParent(Arg, MulY); 2061 return MulY; 2062 } 2063 2064 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 2065 // TODO: There is no exp10() intrinsic yet. 2066 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 2067 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 2068 Constant *Eul; 2069 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 2070 // FIXME: Add more precise value of e for long double. 2071 Eul = ConstantFP::get(Log->getType(), numbers::e); 2072 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 2073 Eul = ConstantFP::get(Log->getType(), 2.0); 2074 else 2075 Eul = ConstantFP::get(Log->getType(), 10.0); 2076 Value *LogE = Log->doesNotAccessMemory() 2077 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 2078 Eul, "log") 2079 : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs); 2080 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 2081 // Since exp() may have side effects, e.g. errno, 2082 // dead code elimination may not be trusted to remove it. 2083 substituteInParent(Arg, MulY); 2084 return MulY; 2085 } 2086 2087 return Ret; 2088 } 2089 2090 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 2091 Function *Callee = CI->getCalledFunction(); 2092 Value *Ret = nullptr; 2093 // TODO: Once we have a way (other than checking for the existince of the 2094 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 2095 // condition below. 2096 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 2097 Callee->getIntrinsicID() == Intrinsic::sqrt)) 2098 Ret = optimizeUnaryDoubleFP(CI, B, true); 2099 2100 if (!CI->isFast()) 2101 return Ret; 2102 2103 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 2104 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 2105 return Ret; 2106 2107 // We're looking for a repeated factor in a multiplication tree, 2108 // so we can do this fold: sqrt(x * x) -> fabs(x); 2109 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 2110 Value *Op0 = I->getOperand(0); 2111 Value *Op1 = I->getOperand(1); 2112 Value *RepeatOp = nullptr; 2113 Value *OtherOp = nullptr; 2114 if (Op0 == Op1) { 2115 // Simple match: the operands of the multiply are identical. 2116 RepeatOp = Op0; 2117 } else { 2118 // Look for a more complicated pattern: one of the operands is itself 2119 // a multiply, so search for a common factor in that multiply. 2120 // Note: We don't bother looking any deeper than this first level or for 2121 // variations of this pattern because instcombine's visitFMUL and/or the 2122 // reassociation pass should give us this form. 2123 Value *OtherMul0, *OtherMul1; 2124 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 2125 // Pattern: sqrt((x * y) * z) 2126 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 2127 // Matched: sqrt((x * x) * z) 2128 RepeatOp = OtherMul0; 2129 OtherOp = Op1; 2130 } 2131 } 2132 } 2133 if (!RepeatOp) 2134 return Ret; 2135 2136 // Fast math flags for any created instructions should match the sqrt 2137 // and multiply. 2138 IRBuilderBase::FastMathFlagGuard Guard(B); 2139 B.setFastMathFlags(I->getFastMathFlags()); 2140 2141 // If we found a repeated factor, hoist it out of the square root and 2142 // replace it with the fabs of that factor. 2143 Module *M = Callee->getParent(); 2144 Type *ArgType = I->getType(); 2145 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 2146 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 2147 if (OtherOp) { 2148 // If we found a non-repeated factor, we still need to get its square 2149 // root. We then multiply that by the value that was simplified out 2150 // of the square root calculation. 2151 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 2152 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 2153 return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall)); 2154 } 2155 return copyFlags(*CI, FabsCall); 2156 } 2157 2158 // TODO: Generalize to handle any trig function and its inverse. 2159 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) { 2160 Function *Callee = CI->getCalledFunction(); 2161 Value *Ret = nullptr; 2162 StringRef Name = Callee->getName(); 2163 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 2164 Ret = optimizeUnaryDoubleFP(CI, B, true); 2165 2166 Value *Op1 = CI->getArgOperand(0); 2167 auto *OpC = dyn_cast<CallInst>(Op1); 2168 if (!OpC) 2169 return Ret; 2170 2171 // Both calls must be 'fast' in order to remove them. 2172 if (!CI->isFast() || !OpC->isFast()) 2173 return Ret; 2174 2175 // tan(atan(x)) -> x 2176 // tanf(atanf(x)) -> x 2177 // tanl(atanl(x)) -> x 2178 LibFunc Func; 2179 Function *F = OpC->getCalledFunction(); 2180 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 2181 ((Func == LibFunc_atan && Callee->getName() == "tan") || 2182 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 2183 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 2184 Ret = OpC->getArgOperand(0); 2185 return Ret; 2186 } 2187 2188 static bool isTrigLibCall(CallInst *CI) { 2189 // We can only hope to do anything useful if we can ignore things like errno 2190 // and floating-point exceptions. 2191 // We already checked the prototype. 2192 return CI->hasFnAttr(Attribute::NoUnwind) && 2193 CI->hasFnAttr(Attribute::ReadNone); 2194 } 2195 2196 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2197 bool UseFloat, Value *&Sin, Value *&Cos, 2198 Value *&SinCos) { 2199 Type *ArgTy = Arg->getType(); 2200 Type *ResTy; 2201 StringRef Name; 2202 2203 Triple T(OrigCallee->getParent()->getTargetTriple()); 2204 if (UseFloat) { 2205 Name = "__sincospif_stret"; 2206 2207 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2208 // x86_64 can't use {float, float} since that would be returned in both 2209 // xmm0 and xmm1, which isn't what a real struct would do. 2210 ResTy = T.getArch() == Triple::x86_64 2211 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2212 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2213 } else { 2214 Name = "__sincospi_stret"; 2215 ResTy = StructType::get(ArgTy, ArgTy); 2216 } 2217 2218 Module *M = OrigCallee->getParent(); 2219 FunctionCallee Callee = 2220 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); 2221 2222 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2223 // If the argument is an instruction, it must dominate all uses so put our 2224 // sincos call there. 2225 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2226 } else { 2227 // Otherwise (e.g. for a constant) the beginning of the function is as 2228 // good a place as any. 2229 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2230 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2231 } 2232 2233 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2234 2235 if (SinCos->getType()->isStructTy()) { 2236 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2237 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2238 } else { 2239 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2240 "sinpi"); 2241 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2242 "cospi"); 2243 } 2244 } 2245 2246 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) { 2247 // Make sure the prototype is as expected, otherwise the rest of the 2248 // function is probably invalid and likely to abort. 2249 if (!isTrigLibCall(CI)) 2250 return nullptr; 2251 2252 Value *Arg = CI->getArgOperand(0); 2253 SmallVector<CallInst *, 1> SinCalls; 2254 SmallVector<CallInst *, 1> CosCalls; 2255 SmallVector<CallInst *, 1> SinCosCalls; 2256 2257 bool IsFloat = Arg->getType()->isFloatTy(); 2258 2259 // Look for all compatible sinpi, cospi and sincospi calls with the same 2260 // argument. If there are enough (in some sense) we can make the 2261 // substitution. 2262 Function *F = CI->getFunction(); 2263 for (User *U : Arg->users()) 2264 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2265 2266 // It's only worthwhile if both sinpi and cospi are actually used. 2267 if (SinCalls.empty() || CosCalls.empty()) 2268 return nullptr; 2269 2270 Value *Sin, *Cos, *SinCos; 2271 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 2272 2273 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2274 Value *Res) { 2275 for (CallInst *C : Calls) 2276 replaceAllUsesWith(C, Res); 2277 }; 2278 2279 replaceTrigInsts(SinCalls, Sin); 2280 replaceTrigInsts(CosCalls, Cos); 2281 replaceTrigInsts(SinCosCalls, SinCos); 2282 2283 return nullptr; 2284 } 2285 2286 void LibCallSimplifier::classifyArgUse( 2287 Value *Val, Function *F, bool IsFloat, 2288 SmallVectorImpl<CallInst *> &SinCalls, 2289 SmallVectorImpl<CallInst *> &CosCalls, 2290 SmallVectorImpl<CallInst *> &SinCosCalls) { 2291 CallInst *CI = dyn_cast<CallInst>(Val); 2292 2293 if (!CI || CI->use_empty()) 2294 return; 2295 2296 // Don't consider calls in other functions. 2297 if (CI->getFunction() != F) 2298 return; 2299 2300 Function *Callee = CI->getCalledFunction(); 2301 LibFunc Func; 2302 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 2303 !isTrigLibCall(CI)) 2304 return; 2305 2306 if (IsFloat) { 2307 if (Func == LibFunc_sinpif) 2308 SinCalls.push_back(CI); 2309 else if (Func == LibFunc_cospif) 2310 CosCalls.push_back(CI); 2311 else if (Func == LibFunc_sincospif_stret) 2312 SinCosCalls.push_back(CI); 2313 } else { 2314 if (Func == LibFunc_sinpi) 2315 SinCalls.push_back(CI); 2316 else if (Func == LibFunc_cospi) 2317 CosCalls.push_back(CI); 2318 else if (Func == LibFunc_sincospi_stret) 2319 SinCosCalls.push_back(CI); 2320 } 2321 } 2322 2323 //===----------------------------------------------------------------------===// 2324 // Integer Library Call Optimizations 2325 //===----------------------------------------------------------------------===// 2326 2327 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 2328 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 2329 Value *Op = CI->getArgOperand(0); 2330 Type *ArgType = Op->getType(); 2331 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2332 Intrinsic::cttz, ArgType); 2333 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 2334 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 2335 V = B.CreateIntCast(V, B.getInt32Ty(), false); 2336 2337 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 2338 return B.CreateSelect(Cond, V, B.getInt32(0)); 2339 } 2340 2341 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 2342 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 2343 Value *Op = CI->getArgOperand(0); 2344 Type *ArgType = Op->getType(); 2345 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2346 Intrinsic::ctlz, ArgType); 2347 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 2348 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 2349 V); 2350 return B.CreateIntCast(V, CI->getType(), false); 2351 } 2352 2353 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 2354 // abs(x) -> x <s 0 ? -x : x 2355 // The negation has 'nsw' because abs of INT_MIN is undefined. 2356 Value *X = CI->getArgOperand(0); 2357 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 2358 Value *NegX = B.CreateNSWNeg(X, "neg"); 2359 return B.CreateSelect(IsNeg, NegX, X); 2360 } 2361 2362 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 2363 // isdigit(c) -> (c-'0') <u 10 2364 Value *Op = CI->getArgOperand(0); 2365 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 2366 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 2367 return B.CreateZExt(Op, CI->getType()); 2368 } 2369 2370 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 2371 // isascii(c) -> c <u 128 2372 Value *Op = CI->getArgOperand(0); 2373 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 2374 return B.CreateZExt(Op, CI->getType()); 2375 } 2376 2377 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 2378 // toascii(c) -> c & 0x7f 2379 return B.CreateAnd(CI->getArgOperand(0), 2380 ConstantInt::get(CI->getType(), 0x7F)); 2381 } 2382 2383 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 2384 StringRef Str; 2385 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2386 return nullptr; 2387 2388 return convertStrToNumber(CI, Str, 10); 2389 } 2390 2391 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) { 2392 StringRef Str; 2393 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2394 return nullptr; 2395 2396 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 2397 return nullptr; 2398 2399 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2400 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 2401 } 2402 2403 return nullptr; 2404 } 2405 2406 //===----------------------------------------------------------------------===// 2407 // Formatting and IO Library Call Optimizations 2408 //===----------------------------------------------------------------------===// 2409 2410 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2411 2412 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 2413 int StreamArg) { 2414 Function *Callee = CI->getCalledFunction(); 2415 // Error reporting calls should be cold, mark them as such. 2416 // This applies even to non-builtin calls: it is only a hint and applies to 2417 // functions that the frontend might not understand as builtins. 2418 2419 // This heuristic was suggested in: 2420 // Improving Static Branch Prediction in a Compiler 2421 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2422 // Proceedings of PACT'98, Oct. 1998, IEEE 2423 if (!CI->hasFnAttr(Attribute::Cold) && 2424 isReportingError(Callee, CI, StreamArg)) { 2425 CI->addFnAttr(Attribute::Cold); 2426 } 2427 2428 return nullptr; 2429 } 2430 2431 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2432 if (!Callee || !Callee->isDeclaration()) 2433 return false; 2434 2435 if (StreamArg < 0) 2436 return true; 2437 2438 // These functions might be considered cold, but only if their stream 2439 // argument is stderr. 2440 2441 if (StreamArg >= (int)CI->arg_size()) 2442 return false; 2443 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2444 if (!LI) 2445 return false; 2446 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2447 if (!GV || !GV->isDeclaration()) 2448 return false; 2449 return GV->getName() == "stderr"; 2450 } 2451 2452 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 2453 // Check for a fixed format string. 2454 StringRef FormatStr; 2455 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2456 return nullptr; 2457 2458 // Empty format string -> noop. 2459 if (FormatStr.empty()) // Tolerate printf's declared void. 2460 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2461 2462 // Do not do any of the following transformations if the printf return value 2463 // is used, in general the printf return value is not compatible with either 2464 // putchar() or puts(). 2465 if (!CI->use_empty()) 2466 return nullptr; 2467 2468 // printf("x") -> putchar('x'), even for "%" and "%%". 2469 if (FormatStr.size() == 1 || FormatStr == "%%") 2470 return copyFlags(*CI, emitPutChar(B.getInt32(FormatStr[0]), B, TLI)); 2471 2472 // Try to remove call or emit putchar/puts. 2473 if (FormatStr == "%s" && CI->arg_size() > 1) { 2474 StringRef OperandStr; 2475 if (!getConstantStringInfo(CI->getOperand(1), OperandStr)) 2476 return nullptr; 2477 // printf("%s", "") --> NOP 2478 if (OperandStr.empty()) 2479 return (Value *)CI; 2480 // printf("%s", "a") --> putchar('a') 2481 if (OperandStr.size() == 1) 2482 return copyFlags(*CI, emitPutChar(B.getInt32(OperandStr[0]), B, TLI)); 2483 // printf("%s", str"\n") --> puts(str) 2484 if (OperandStr.back() == '\n') { 2485 OperandStr = OperandStr.drop_back(); 2486 Value *GV = B.CreateGlobalString(OperandStr, "str"); 2487 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2488 } 2489 return nullptr; 2490 } 2491 2492 // printf("foo\n") --> puts("foo") 2493 if (FormatStr.back() == '\n' && 2494 !FormatStr.contains('%')) { // No format characters. 2495 // Create a string literal with no \n on it. We expect the constant merge 2496 // pass to be run after this pass, to merge duplicate strings. 2497 FormatStr = FormatStr.drop_back(); 2498 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2499 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2500 } 2501 2502 // Optimize specific format strings. 2503 // printf("%c", chr) --> putchar(chr) 2504 if (FormatStr == "%c" && CI->arg_size() > 1 && 2505 CI->getArgOperand(1)->getType()->isIntegerTy()) 2506 return copyFlags(*CI, emitPutChar(CI->getArgOperand(1), B, TLI)); 2507 2508 // printf("%s\n", str) --> puts(str) 2509 if (FormatStr == "%s\n" && CI->arg_size() > 1 && 2510 CI->getArgOperand(1)->getType()->isPointerTy()) 2511 return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI)); 2512 return nullptr; 2513 } 2514 2515 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 2516 2517 Function *Callee = CI->getCalledFunction(); 2518 FunctionType *FT = Callee->getFunctionType(); 2519 if (Value *V = optimizePrintFString(CI, B)) { 2520 return V; 2521 } 2522 2523 // printf(format, ...) -> iprintf(format, ...) if no floating point 2524 // arguments. 2525 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2526 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2527 FunctionCallee IPrintFFn = 2528 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2529 CallInst *New = cast<CallInst>(CI->clone()); 2530 New->setCalledFunction(IPrintFFn); 2531 B.Insert(New); 2532 return New; 2533 } 2534 2535 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2536 // arguments. 2537 if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) { 2538 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2539 auto SmallPrintFFn = 2540 M->getOrInsertFunction(TLI->getName(LibFunc_small_printf), 2541 FT, Callee->getAttributes()); 2542 CallInst *New = cast<CallInst>(CI->clone()); 2543 New->setCalledFunction(SmallPrintFFn); 2544 B.Insert(New); 2545 return New; 2546 } 2547 2548 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2549 return nullptr; 2550 } 2551 2552 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 2553 IRBuilderBase &B) { 2554 // Check for a fixed format string. 2555 StringRef FormatStr; 2556 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2557 return nullptr; 2558 2559 // If we just have a format string (nothing else crazy) transform it. 2560 Value *Dest = CI->getArgOperand(0); 2561 if (CI->arg_size() == 2) { 2562 // Make sure there's no % in the constant array. We could try to handle 2563 // %% -> % in the future if we cared. 2564 if (FormatStr.contains('%')) 2565 return nullptr; // we found a format specifier, bail out. 2566 2567 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2568 B.CreateMemCpy( 2569 Dest, Align(1), CI->getArgOperand(1), Align(1), 2570 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2571 FormatStr.size() + 1)); // Copy the null byte. 2572 return ConstantInt::get(CI->getType(), FormatStr.size()); 2573 } 2574 2575 // The remaining optimizations require the format string to be "%s" or "%c" 2576 // and have an extra operand. 2577 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 2578 return nullptr; 2579 2580 // Decode the second character of the format string. 2581 if (FormatStr[1] == 'c') { 2582 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2583 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2584 return nullptr; 2585 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2586 Value *Ptr = castToCStr(Dest, B); 2587 B.CreateStore(V, Ptr); 2588 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2589 B.CreateStore(B.getInt8(0), Ptr); 2590 2591 return ConstantInt::get(CI->getType(), 1); 2592 } 2593 2594 if (FormatStr[1] == 's') { 2595 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2596 // strlen(str)+1) 2597 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2598 return nullptr; 2599 2600 if (CI->use_empty()) 2601 // sprintf(dest, "%s", str) -> strcpy(dest, str) 2602 return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI)); 2603 2604 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 2605 if (SrcLen) { 2606 B.CreateMemCpy( 2607 Dest, Align(1), CI->getArgOperand(2), Align(1), 2608 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 2609 // Returns total number of characters written without null-character. 2610 return ConstantInt::get(CI->getType(), SrcLen - 1); 2611 } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) { 2612 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 2613 // Handle mismatched pointer types (goes away with typeless pointers?). 2614 V = B.CreatePointerCast(V, B.getInt8PtrTy()); 2615 Dest = B.CreatePointerCast(Dest, B.getInt8PtrTy()); 2616 Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest); 2617 return B.CreateIntCast(PtrDiff, CI->getType(), false); 2618 } 2619 2620 bool OptForSize = CI->getFunction()->hasOptSize() || 2621 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2622 PGSOQueryType::IRPass); 2623 if (OptForSize) 2624 return nullptr; 2625 2626 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2627 if (!Len) 2628 return nullptr; 2629 Value *IncLen = 2630 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2631 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen); 2632 2633 // The sprintf result is the unincremented number of bytes in the string. 2634 return B.CreateIntCast(Len, CI->getType(), false); 2635 } 2636 return nullptr; 2637 } 2638 2639 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 2640 Function *Callee = CI->getCalledFunction(); 2641 FunctionType *FT = Callee->getFunctionType(); 2642 if (Value *V = optimizeSPrintFString(CI, B)) { 2643 return V; 2644 } 2645 2646 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2647 // point arguments. 2648 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2649 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2650 FunctionCallee SIPrintFFn = 2651 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2652 CallInst *New = cast<CallInst>(CI->clone()); 2653 New->setCalledFunction(SIPrintFFn); 2654 B.Insert(New); 2655 return New; 2656 } 2657 2658 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2659 // floating point arguments. 2660 if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) { 2661 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2662 auto SmallSPrintFFn = 2663 M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf), 2664 FT, Callee->getAttributes()); 2665 CallInst *New = cast<CallInst>(CI->clone()); 2666 New->setCalledFunction(SmallSPrintFFn); 2667 B.Insert(New); 2668 return New; 2669 } 2670 2671 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 2672 return nullptr; 2673 } 2674 2675 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 2676 IRBuilderBase &B) { 2677 // Check for size 2678 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2679 if (!Size) 2680 return nullptr; 2681 2682 uint64_t N = Size->getZExtValue(); 2683 // Check for a fixed format string. 2684 StringRef FormatStr; 2685 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2686 return nullptr; 2687 2688 // If we just have a format string (nothing else crazy) transform it. 2689 if (CI->arg_size() == 3) { 2690 // Make sure there's no % in the constant array. We could try to handle 2691 // %% -> % in the future if we cared. 2692 if (FormatStr.contains('%')) 2693 return nullptr; // we found a format specifier, bail out. 2694 2695 if (N == 0) 2696 return ConstantInt::get(CI->getType(), FormatStr.size()); 2697 else if (N < FormatStr.size() + 1) 2698 return nullptr; 2699 2700 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2701 // strlen(fmt)+1) 2702 copyFlags( 2703 *CI, 2704 B.CreateMemCpy( 2705 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2706 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2707 FormatStr.size() + 1))); // Copy the null byte. 2708 return ConstantInt::get(CI->getType(), FormatStr.size()); 2709 } 2710 2711 // The remaining optimizations require the format string to be "%s" or "%c" 2712 // and have an extra operand. 2713 if (FormatStr.size() == 2 && FormatStr[0] == '%' && CI->arg_size() == 4) { 2714 2715 // Decode the second character of the format string. 2716 if (FormatStr[1] == 'c') { 2717 if (N == 0) 2718 return ConstantInt::get(CI->getType(), 1); 2719 else if (N == 1) 2720 return nullptr; 2721 2722 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2723 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2724 return nullptr; 2725 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2726 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2727 B.CreateStore(V, Ptr); 2728 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2729 B.CreateStore(B.getInt8(0), Ptr); 2730 2731 return ConstantInt::get(CI->getType(), 1); 2732 } 2733 2734 if (FormatStr[1] == 's') { 2735 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2736 StringRef Str; 2737 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2738 return nullptr; 2739 2740 if (N == 0) 2741 return ConstantInt::get(CI->getType(), Str.size()); 2742 else if (N < Str.size() + 1) 2743 return nullptr; 2744 2745 copyFlags( 2746 *CI, B.CreateMemCpy(CI->getArgOperand(0), Align(1), 2747 CI->getArgOperand(3), Align(1), 2748 ConstantInt::get(CI->getType(), Str.size() + 1))); 2749 2750 // The snprintf result is the unincremented number of bytes in the string. 2751 return ConstantInt::get(CI->getType(), Str.size()); 2752 } 2753 } 2754 return nullptr; 2755 } 2756 2757 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 2758 if (Value *V = optimizeSnPrintFString(CI, B)) { 2759 return V; 2760 } 2761 2762 if (isKnownNonZero(CI->getOperand(1), DL)) 2763 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2764 return nullptr; 2765 } 2766 2767 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 2768 IRBuilderBase &B) { 2769 optimizeErrorReporting(CI, B, 0); 2770 2771 // All the optimizations depend on the format string. 2772 StringRef FormatStr; 2773 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2774 return nullptr; 2775 2776 // Do not do any of the following transformations if the fprintf return 2777 // value is used, in general the fprintf return value is not compatible 2778 // with fwrite(), fputc() or fputs(). 2779 if (!CI->use_empty()) 2780 return nullptr; 2781 2782 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2783 if (CI->arg_size() == 2) { 2784 // Could handle %% -> % if we cared. 2785 if (FormatStr.contains('%')) 2786 return nullptr; // We found a format specifier. 2787 2788 return copyFlags( 2789 *CI, emitFWrite(CI->getArgOperand(1), 2790 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2791 FormatStr.size()), 2792 CI->getArgOperand(0), B, DL, TLI)); 2793 } 2794 2795 // The remaining optimizations require the format string to be "%s" or "%c" 2796 // and have an extra operand. 2797 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 2798 return nullptr; 2799 2800 // Decode the second character of the format string. 2801 if (FormatStr[1] == 'c') { 2802 // fprintf(F, "%c", chr) --> fputc(chr, F) 2803 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2804 return nullptr; 2805 return copyFlags( 2806 *CI, emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 2807 } 2808 2809 if (FormatStr[1] == 's') { 2810 // fprintf(F, "%s", str) --> fputs(str, F) 2811 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2812 return nullptr; 2813 return copyFlags( 2814 *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 2815 } 2816 return nullptr; 2817 } 2818 2819 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 2820 Function *Callee = CI->getCalledFunction(); 2821 FunctionType *FT = Callee->getFunctionType(); 2822 if (Value *V = optimizeFPrintFString(CI, B)) { 2823 return V; 2824 } 2825 2826 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2827 // floating point arguments. 2828 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2829 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2830 FunctionCallee FIPrintFFn = 2831 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2832 CallInst *New = cast<CallInst>(CI->clone()); 2833 New->setCalledFunction(FIPrintFFn); 2834 B.Insert(New); 2835 return New; 2836 } 2837 2838 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2839 // 128-bit floating point arguments. 2840 if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) { 2841 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2842 auto SmallFPrintFFn = 2843 M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf), 2844 FT, Callee->getAttributes()); 2845 CallInst *New = cast<CallInst>(CI->clone()); 2846 New->setCalledFunction(SmallFPrintFFn); 2847 B.Insert(New); 2848 return New; 2849 } 2850 2851 return nullptr; 2852 } 2853 2854 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 2855 optimizeErrorReporting(CI, B, 3); 2856 2857 // Get the element size and count. 2858 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2859 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2860 if (SizeC && CountC) { 2861 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2862 2863 // If this is writing zero records, remove the call (it's a noop). 2864 if (Bytes == 0) 2865 return ConstantInt::get(CI->getType(), 0); 2866 2867 // If this is writing one byte, turn it into fputc. 2868 // This optimisation is only valid, if the return value is unused. 2869 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2870 Value *Char = B.CreateLoad(B.getInt8Ty(), 2871 castToCStr(CI->getArgOperand(0), B), "char"); 2872 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2873 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2874 } 2875 } 2876 2877 return nullptr; 2878 } 2879 2880 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 2881 optimizeErrorReporting(CI, B, 1); 2882 2883 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2884 // requires more arguments and thus extra MOVs are required. 2885 bool OptForSize = CI->getFunction()->hasOptSize() || 2886 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2887 PGSOQueryType::IRPass); 2888 if (OptForSize) 2889 return nullptr; 2890 2891 // We can't optimize if return value is used. 2892 if (!CI->use_empty()) 2893 return nullptr; 2894 2895 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2896 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2897 if (!Len) 2898 return nullptr; 2899 2900 // Known to have no uses (see above). 2901 return copyFlags( 2902 *CI, 2903 emitFWrite(CI->getArgOperand(0), 2904 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2905 CI->getArgOperand(1), B, DL, TLI)); 2906 } 2907 2908 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 2909 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2910 if (!CI->use_empty()) 2911 return nullptr; 2912 2913 // Check for a constant string. 2914 // puts("") -> putchar('\n') 2915 StringRef Str; 2916 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 2917 return copyFlags(*CI, emitPutChar(B.getInt32('\n'), B, TLI)); 2918 2919 return nullptr; 2920 } 2921 2922 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 2923 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 2924 return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1), 2925 CI->getArgOperand(0), Align(1), 2926 CI->getArgOperand(2))); 2927 } 2928 2929 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2930 LibFunc Func; 2931 SmallString<20> FloatFuncName = FuncName; 2932 FloatFuncName += 'f'; 2933 if (TLI->getLibFunc(FloatFuncName, Func)) 2934 return TLI->has(Func); 2935 return false; 2936 } 2937 2938 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2939 IRBuilderBase &Builder) { 2940 LibFunc Func; 2941 Function *Callee = CI->getCalledFunction(); 2942 // Check for string/memory library functions. 2943 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2944 // Make sure we never change the calling convention. 2945 assert( 2946 (ignoreCallingConv(Func) || 2947 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) && 2948 "Optimizing string/memory libcall would change the calling convention"); 2949 switch (Func) { 2950 case LibFunc_strcat: 2951 return optimizeStrCat(CI, Builder); 2952 case LibFunc_strncat: 2953 return optimizeStrNCat(CI, Builder); 2954 case LibFunc_strchr: 2955 return optimizeStrChr(CI, Builder); 2956 case LibFunc_strrchr: 2957 return optimizeStrRChr(CI, Builder); 2958 case LibFunc_strcmp: 2959 return optimizeStrCmp(CI, Builder); 2960 case LibFunc_strncmp: 2961 return optimizeStrNCmp(CI, Builder); 2962 case LibFunc_strcpy: 2963 return optimizeStrCpy(CI, Builder); 2964 case LibFunc_stpcpy: 2965 return optimizeStpCpy(CI, Builder); 2966 case LibFunc_strncpy: 2967 return optimizeStrNCpy(CI, Builder); 2968 case LibFunc_strlen: 2969 return optimizeStrLen(CI, Builder); 2970 case LibFunc_strnlen: 2971 return optimizeStrNLen(CI, Builder); 2972 case LibFunc_strpbrk: 2973 return optimizeStrPBrk(CI, Builder); 2974 case LibFunc_strndup: 2975 return optimizeStrNDup(CI, Builder); 2976 case LibFunc_strtol: 2977 case LibFunc_strtod: 2978 case LibFunc_strtof: 2979 case LibFunc_strtoul: 2980 case LibFunc_strtoll: 2981 case LibFunc_strtold: 2982 case LibFunc_strtoull: 2983 return optimizeStrTo(CI, Builder); 2984 case LibFunc_strspn: 2985 return optimizeStrSpn(CI, Builder); 2986 case LibFunc_strcspn: 2987 return optimizeStrCSpn(CI, Builder); 2988 case LibFunc_strstr: 2989 return optimizeStrStr(CI, Builder); 2990 case LibFunc_memchr: 2991 return optimizeMemChr(CI, Builder); 2992 case LibFunc_memrchr: 2993 return optimizeMemRChr(CI, Builder); 2994 case LibFunc_bcmp: 2995 return optimizeBCmp(CI, Builder); 2996 case LibFunc_memcmp: 2997 return optimizeMemCmp(CI, Builder); 2998 case LibFunc_memcpy: 2999 return optimizeMemCpy(CI, Builder); 3000 case LibFunc_memccpy: 3001 return optimizeMemCCpy(CI, Builder); 3002 case LibFunc_mempcpy: 3003 return optimizeMemPCpy(CI, Builder); 3004 case LibFunc_memmove: 3005 return optimizeMemMove(CI, Builder); 3006 case LibFunc_memset: 3007 return optimizeMemSet(CI, Builder); 3008 case LibFunc_realloc: 3009 return optimizeRealloc(CI, Builder); 3010 case LibFunc_wcslen: 3011 return optimizeWcslen(CI, Builder); 3012 case LibFunc_bcopy: 3013 return optimizeBCopy(CI, Builder); 3014 default: 3015 break; 3016 } 3017 } 3018 return nullptr; 3019 } 3020 3021 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 3022 LibFunc Func, 3023 IRBuilderBase &Builder) { 3024 // Don't optimize calls that require strict floating point semantics. 3025 if (CI->isStrictFP()) 3026 return nullptr; 3027 3028 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 3029 return V; 3030 3031 switch (Func) { 3032 case LibFunc_sinpif: 3033 case LibFunc_sinpi: 3034 case LibFunc_cospif: 3035 case LibFunc_cospi: 3036 return optimizeSinCosPi(CI, Builder); 3037 case LibFunc_powf: 3038 case LibFunc_pow: 3039 case LibFunc_powl: 3040 return optimizePow(CI, Builder); 3041 case LibFunc_exp2l: 3042 case LibFunc_exp2: 3043 case LibFunc_exp2f: 3044 return optimizeExp2(CI, Builder); 3045 case LibFunc_fabsf: 3046 case LibFunc_fabs: 3047 case LibFunc_fabsl: 3048 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 3049 case LibFunc_sqrtf: 3050 case LibFunc_sqrt: 3051 case LibFunc_sqrtl: 3052 return optimizeSqrt(CI, Builder); 3053 case LibFunc_logf: 3054 case LibFunc_log: 3055 case LibFunc_logl: 3056 case LibFunc_log10f: 3057 case LibFunc_log10: 3058 case LibFunc_log10l: 3059 case LibFunc_log1pf: 3060 case LibFunc_log1p: 3061 case LibFunc_log1pl: 3062 case LibFunc_log2f: 3063 case LibFunc_log2: 3064 case LibFunc_log2l: 3065 case LibFunc_logbf: 3066 case LibFunc_logb: 3067 case LibFunc_logbl: 3068 return optimizeLog(CI, Builder); 3069 case LibFunc_tan: 3070 case LibFunc_tanf: 3071 case LibFunc_tanl: 3072 return optimizeTan(CI, Builder); 3073 case LibFunc_ceil: 3074 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 3075 case LibFunc_floor: 3076 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 3077 case LibFunc_round: 3078 return replaceUnaryCall(CI, Builder, Intrinsic::round); 3079 case LibFunc_roundeven: 3080 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 3081 case LibFunc_nearbyint: 3082 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 3083 case LibFunc_rint: 3084 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 3085 case LibFunc_trunc: 3086 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 3087 case LibFunc_acos: 3088 case LibFunc_acosh: 3089 case LibFunc_asin: 3090 case LibFunc_asinh: 3091 case LibFunc_atan: 3092 case LibFunc_atanh: 3093 case LibFunc_cbrt: 3094 case LibFunc_cosh: 3095 case LibFunc_exp: 3096 case LibFunc_exp10: 3097 case LibFunc_expm1: 3098 case LibFunc_cos: 3099 case LibFunc_sin: 3100 case LibFunc_sinh: 3101 case LibFunc_tanh: 3102 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 3103 return optimizeUnaryDoubleFP(CI, Builder, true); 3104 return nullptr; 3105 case LibFunc_copysign: 3106 if (hasFloatVersion(CI->getCalledFunction()->getName())) 3107 return optimizeBinaryDoubleFP(CI, Builder); 3108 return nullptr; 3109 case LibFunc_fminf: 3110 case LibFunc_fmin: 3111 case LibFunc_fminl: 3112 case LibFunc_fmaxf: 3113 case LibFunc_fmax: 3114 case LibFunc_fmaxl: 3115 return optimizeFMinFMax(CI, Builder); 3116 case LibFunc_cabs: 3117 case LibFunc_cabsf: 3118 case LibFunc_cabsl: 3119 return optimizeCAbs(CI, Builder); 3120 default: 3121 return nullptr; 3122 } 3123 } 3124 3125 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 3126 assert(!CI->isMustTailCall() && "These transforms aren't musttail safe."); 3127 3128 // TODO: Split out the code below that operates on FP calls so that 3129 // we can all non-FP calls with the StrictFP attribute to be 3130 // optimized. 3131 if (CI->isNoBuiltin()) 3132 return nullptr; 3133 3134 LibFunc Func; 3135 Function *Callee = CI->getCalledFunction(); 3136 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3137 3138 SmallVector<OperandBundleDef, 2> OpBundles; 3139 CI->getOperandBundlesAsDefs(OpBundles); 3140 3141 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3142 Builder.setDefaultOperandBundles(OpBundles); 3143 3144 // Command-line parameter overrides instruction attribute. 3145 // This can't be moved to optimizeFloatingPointLibCall() because it may be 3146 // used by the intrinsic optimizations. 3147 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 3148 UnsafeFPShrink = EnableUnsafeFPShrink; 3149 else if (isa<FPMathOperator>(CI) && CI->isFast()) 3150 UnsafeFPShrink = true; 3151 3152 // First, check for intrinsics. 3153 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 3154 if (!IsCallingConvC) 3155 return nullptr; 3156 // The FP intrinsics have corresponding constrained versions so we don't 3157 // need to check for the StrictFP attribute here. 3158 switch (II->getIntrinsicID()) { 3159 case Intrinsic::pow: 3160 return optimizePow(CI, Builder); 3161 case Intrinsic::exp2: 3162 return optimizeExp2(CI, Builder); 3163 case Intrinsic::log: 3164 case Intrinsic::log2: 3165 case Intrinsic::log10: 3166 return optimizeLog(CI, Builder); 3167 case Intrinsic::sqrt: 3168 return optimizeSqrt(CI, Builder); 3169 case Intrinsic::memset: 3170 return optimizeMemSet(CI, Builder); 3171 case Intrinsic::memcpy: 3172 return optimizeMemCpy(CI, Builder); 3173 case Intrinsic::memmove: 3174 return optimizeMemMove(CI, Builder); 3175 default: 3176 return nullptr; 3177 } 3178 } 3179 3180 // Also try to simplify calls to fortified library functions. 3181 if (Value *SimplifiedFortifiedCI = 3182 FortifiedSimplifier.optimizeCall(CI, Builder)) { 3183 // Try to further simplify the result. 3184 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 3185 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 3186 // Ensure that SimplifiedCI's uses are complete, since some calls have 3187 // their uses analyzed. 3188 replaceAllUsesWith(CI, SimplifiedCI); 3189 3190 // Set insertion point to SimplifiedCI to guarantee we reach all uses 3191 // we might replace later on. 3192 IRBuilderBase::InsertPointGuard Guard(Builder); 3193 Builder.SetInsertPoint(SimplifiedCI); 3194 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) { 3195 // If we were able to further simplify, remove the now redundant call. 3196 substituteInParent(SimplifiedCI, V); 3197 return V; 3198 } 3199 } 3200 return SimplifiedFortifiedCI; 3201 } 3202 3203 // Then check for known library functions. 3204 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 3205 // We never change the calling convention. 3206 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3207 return nullptr; 3208 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 3209 return V; 3210 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 3211 return V; 3212 switch (Func) { 3213 case LibFunc_ffs: 3214 case LibFunc_ffsl: 3215 case LibFunc_ffsll: 3216 return optimizeFFS(CI, Builder); 3217 case LibFunc_fls: 3218 case LibFunc_flsl: 3219 case LibFunc_flsll: 3220 return optimizeFls(CI, Builder); 3221 case LibFunc_abs: 3222 case LibFunc_labs: 3223 case LibFunc_llabs: 3224 return optimizeAbs(CI, Builder); 3225 case LibFunc_isdigit: 3226 return optimizeIsDigit(CI, Builder); 3227 case LibFunc_isascii: 3228 return optimizeIsAscii(CI, Builder); 3229 case LibFunc_toascii: 3230 return optimizeToAscii(CI, Builder); 3231 case LibFunc_atoi: 3232 case LibFunc_atol: 3233 case LibFunc_atoll: 3234 return optimizeAtoi(CI, Builder); 3235 case LibFunc_strtol: 3236 case LibFunc_strtoll: 3237 return optimizeStrtol(CI, Builder); 3238 case LibFunc_printf: 3239 return optimizePrintF(CI, Builder); 3240 case LibFunc_sprintf: 3241 return optimizeSPrintF(CI, Builder); 3242 case LibFunc_snprintf: 3243 return optimizeSnPrintF(CI, Builder); 3244 case LibFunc_fprintf: 3245 return optimizeFPrintF(CI, Builder); 3246 case LibFunc_fwrite: 3247 return optimizeFWrite(CI, Builder); 3248 case LibFunc_fputs: 3249 return optimizeFPuts(CI, Builder); 3250 case LibFunc_puts: 3251 return optimizePuts(CI, Builder); 3252 case LibFunc_perror: 3253 return optimizeErrorReporting(CI, Builder); 3254 case LibFunc_vfprintf: 3255 case LibFunc_fiprintf: 3256 return optimizeErrorReporting(CI, Builder, 0); 3257 default: 3258 return nullptr; 3259 } 3260 } 3261 return nullptr; 3262 } 3263 3264 LibCallSimplifier::LibCallSimplifier( 3265 const DataLayout &DL, const TargetLibraryInfo *TLI, 3266 OptimizationRemarkEmitter &ORE, 3267 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 3268 function_ref<void(Instruction *, Value *)> Replacer, 3269 function_ref<void(Instruction *)> Eraser) 3270 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 3271 Replacer(Replacer), Eraser(Eraser) {} 3272 3273 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 3274 // Indirect through the replacer used in this instance. 3275 Replacer(I, With); 3276 } 3277 3278 void LibCallSimplifier::eraseFromParent(Instruction *I) { 3279 Eraser(I); 3280 } 3281 3282 // TODO: 3283 // Additional cases that we need to add to this file: 3284 // 3285 // cbrt: 3286 // * cbrt(expN(X)) -> expN(x/3) 3287 // * cbrt(sqrt(x)) -> pow(x,1/6) 3288 // * cbrt(cbrt(x)) -> pow(x,1/9) 3289 // 3290 // exp, expf, expl: 3291 // * exp(log(x)) -> x 3292 // 3293 // log, logf, logl: 3294 // * log(exp(x)) -> x 3295 // * log(exp(y)) -> y*log(e) 3296 // * log(exp10(y)) -> y*log(10) 3297 // * log(sqrt(x)) -> 0.5*log(x) 3298 // 3299 // pow, powf, powl: 3300 // * pow(sqrt(x),y) -> pow(x,y*0.5) 3301 // * pow(pow(x,y),z)-> pow(x,y*z) 3302 // 3303 // signbit: 3304 // * signbit(cnst) -> cnst' 3305 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 3306 // 3307 // sqrt, sqrtf, sqrtl: 3308 // * sqrt(expN(x)) -> expN(x*0.5) 3309 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 3310 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 3311 // 3312 3313 //===----------------------------------------------------------------------===// 3314 // Fortified Library Call Optimizations 3315 //===----------------------------------------------------------------------===// 3316 3317 bool 3318 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 3319 unsigned ObjSizeOp, 3320 Optional<unsigned> SizeOp, 3321 Optional<unsigned> StrOp, 3322 Optional<unsigned> FlagOp) { 3323 // If this function takes a flag argument, the implementation may use it to 3324 // perform extra checks. Don't fold into the non-checking variant. 3325 if (FlagOp) { 3326 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 3327 if (!Flag || !Flag->isZero()) 3328 return false; 3329 } 3330 3331 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 3332 return true; 3333 3334 if (ConstantInt *ObjSizeCI = 3335 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 3336 if (ObjSizeCI->isMinusOne()) 3337 return true; 3338 // If the object size wasn't -1 (unknown), bail out if we were asked to. 3339 if (OnlyLowerUnknownSize) 3340 return false; 3341 if (StrOp) { 3342 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 3343 // If the length is 0 we don't know how long it is and so we can't 3344 // remove the check. 3345 if (Len) 3346 annotateDereferenceableBytes(CI, *StrOp, Len); 3347 else 3348 return false; 3349 return ObjSizeCI->getZExtValue() >= Len; 3350 } 3351 3352 if (SizeOp) { 3353 if (ConstantInt *SizeCI = 3354 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 3355 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 3356 } 3357 } 3358 return false; 3359 } 3360 3361 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 3362 IRBuilderBase &B) { 3363 if (isFortifiedCallFoldable(CI, 3, 2)) { 3364 CallInst *NewCI = 3365 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3366 Align(1), CI->getArgOperand(2)); 3367 NewCI->setAttributes(CI->getAttributes()); 3368 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3369 copyFlags(*CI, NewCI); 3370 return CI->getArgOperand(0); 3371 } 3372 return nullptr; 3373 } 3374 3375 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 3376 IRBuilderBase &B) { 3377 if (isFortifiedCallFoldable(CI, 3, 2)) { 3378 CallInst *NewCI = 3379 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3380 Align(1), CI->getArgOperand(2)); 3381 NewCI->setAttributes(CI->getAttributes()); 3382 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3383 copyFlags(*CI, NewCI); 3384 return CI->getArgOperand(0); 3385 } 3386 return nullptr; 3387 } 3388 3389 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 3390 IRBuilderBase &B) { 3391 if (isFortifiedCallFoldable(CI, 3, 2)) { 3392 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 3393 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 3394 CI->getArgOperand(2), Align(1)); 3395 NewCI->setAttributes(CI->getAttributes()); 3396 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3397 copyFlags(*CI, NewCI); 3398 return CI->getArgOperand(0); 3399 } 3400 return nullptr; 3401 } 3402 3403 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 3404 IRBuilderBase &B) { 3405 const DataLayout &DL = CI->getModule()->getDataLayout(); 3406 if (isFortifiedCallFoldable(CI, 3, 2)) 3407 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3408 CI->getArgOperand(2), B, DL, TLI)) { 3409 CallInst *NewCI = cast<CallInst>(Call); 3410 NewCI->setAttributes(CI->getAttributes()); 3411 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3412 return copyFlags(*CI, NewCI); 3413 } 3414 return nullptr; 3415 } 3416 3417 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 3418 IRBuilderBase &B, 3419 LibFunc Func) { 3420 const DataLayout &DL = CI->getModule()->getDataLayout(); 3421 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 3422 *ObjSize = CI->getArgOperand(2); 3423 3424 // __stpcpy_chk(x,x,...) -> x+strlen(x) 3425 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 3426 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3427 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3428 } 3429 3430 // If a) we don't have any length information, or b) we know this will 3431 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3432 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3433 // TODO: It might be nice to get a maximum length out of the possible 3434 // string lengths for varying. 3435 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 3436 if (Func == LibFunc_strcpy_chk) 3437 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 3438 else 3439 return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI)); 3440 } 3441 3442 if (OnlyLowerUnknownSize) 3443 return nullptr; 3444 3445 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3446 uint64_t Len = GetStringLength(Src); 3447 if (Len) 3448 annotateDereferenceableBytes(CI, 1, Len); 3449 else 3450 return nullptr; 3451 3452 // FIXME: There is really no guarantee that sizeof(size_t) is equal to 3453 // sizeof(int*) for every target. So the assumption used here to derive the 3454 // SizeTBits based on the size of an integer pointer in address space zero 3455 // isn't always valid. 3456 Type *SizeTTy = DL.getIntPtrType(CI->getContext(), /*AddressSpace=*/0); 3457 Value *LenV = ConstantInt::get(SizeTTy, Len); 3458 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 3459 // If the function was an __stpcpy_chk, and we were able to fold it into 3460 // a __memcpy_chk, we still need to return the correct end pointer. 3461 if (Ret && Func == LibFunc_stpcpy_chk) 3462 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 3463 return copyFlags(*CI, cast<CallInst>(Ret)); 3464 } 3465 3466 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 3467 IRBuilderBase &B) { 3468 if (isFortifiedCallFoldable(CI, 1, None, 0)) 3469 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, 3470 CI->getModule()->getDataLayout(), TLI)); 3471 return nullptr; 3472 } 3473 3474 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 3475 IRBuilderBase &B, 3476 LibFunc Func) { 3477 if (isFortifiedCallFoldable(CI, 3, 2)) { 3478 if (Func == LibFunc_strncpy_chk) 3479 return copyFlags(*CI, 3480 emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3481 CI->getArgOperand(2), B, TLI)); 3482 else 3483 return copyFlags(*CI, 3484 emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3485 CI->getArgOperand(2), B, TLI)); 3486 } 3487 3488 return nullptr; 3489 } 3490 3491 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 3492 IRBuilderBase &B) { 3493 if (isFortifiedCallFoldable(CI, 4, 3)) 3494 return copyFlags( 3495 *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3496 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI)); 3497 3498 return nullptr; 3499 } 3500 3501 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 3502 IRBuilderBase &B) { 3503 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 3504 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 3505 return copyFlags(*CI, 3506 emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3507 CI->getArgOperand(4), VariadicArgs, B, TLI)); 3508 } 3509 3510 return nullptr; 3511 } 3512 3513 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3514 IRBuilderBase &B) { 3515 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3516 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 3517 return copyFlags(*CI, 3518 emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3519 VariadicArgs, B, TLI)); 3520 } 3521 3522 return nullptr; 3523 } 3524 3525 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3526 IRBuilderBase &B) { 3527 if (isFortifiedCallFoldable(CI, 2)) 3528 return copyFlags( 3529 *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI)); 3530 3531 return nullptr; 3532 } 3533 3534 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3535 IRBuilderBase &B) { 3536 if (isFortifiedCallFoldable(CI, 3)) 3537 return copyFlags(*CI, 3538 emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3539 CI->getArgOperand(2), B, TLI)); 3540 3541 return nullptr; 3542 } 3543 3544 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3545 IRBuilderBase &B) { 3546 if (isFortifiedCallFoldable(CI, 3)) 3547 return copyFlags(*CI, 3548 emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3549 CI->getArgOperand(2), B, TLI)); 3550 3551 return nullptr; 3552 } 3553 3554 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3555 IRBuilderBase &B) { 3556 if (isFortifiedCallFoldable(CI, 3)) 3557 return copyFlags(*CI, 3558 emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3559 CI->getArgOperand(2), B, TLI)); 3560 3561 return nullptr; 3562 } 3563 3564 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3565 IRBuilderBase &B) { 3566 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3567 return copyFlags( 3568 *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3569 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI)); 3570 3571 return nullptr; 3572 } 3573 3574 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3575 IRBuilderBase &B) { 3576 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3577 return copyFlags(*CI, 3578 emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3579 CI->getArgOperand(4), B, TLI)); 3580 3581 return nullptr; 3582 } 3583 3584 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 3585 IRBuilderBase &Builder) { 3586 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3587 // Some clang users checked for _chk libcall availability using: 3588 // __has_builtin(__builtin___memcpy_chk) 3589 // When compiling with -fno-builtin, this is always true. 3590 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3591 // end up with fortified libcalls, which isn't acceptable in a freestanding 3592 // environment which only provides their non-fortified counterparts. 3593 // 3594 // Until we change clang and/or teach external users to check for availability 3595 // differently, disregard the "nobuiltin" attribute and TLI::has. 3596 // 3597 // PR23093. 3598 3599 LibFunc Func; 3600 Function *Callee = CI->getCalledFunction(); 3601 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3602 3603 SmallVector<OperandBundleDef, 2> OpBundles; 3604 CI->getOperandBundlesAsDefs(OpBundles); 3605 3606 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3607 Builder.setDefaultOperandBundles(OpBundles); 3608 3609 // First, check that this is a known library functions and that the prototype 3610 // is correct. 3611 if (!TLI->getLibFunc(*Callee, Func)) 3612 return nullptr; 3613 3614 // We never change the calling convention. 3615 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3616 return nullptr; 3617 3618 switch (Func) { 3619 case LibFunc_memcpy_chk: 3620 return optimizeMemCpyChk(CI, Builder); 3621 case LibFunc_mempcpy_chk: 3622 return optimizeMemPCpyChk(CI, Builder); 3623 case LibFunc_memmove_chk: 3624 return optimizeMemMoveChk(CI, Builder); 3625 case LibFunc_memset_chk: 3626 return optimizeMemSetChk(CI, Builder); 3627 case LibFunc_stpcpy_chk: 3628 case LibFunc_strcpy_chk: 3629 return optimizeStrpCpyChk(CI, Builder, Func); 3630 case LibFunc_strlen_chk: 3631 return optimizeStrLenChk(CI, Builder); 3632 case LibFunc_stpncpy_chk: 3633 case LibFunc_strncpy_chk: 3634 return optimizeStrpNCpyChk(CI, Builder, Func); 3635 case LibFunc_memccpy_chk: 3636 return optimizeMemCCpyChk(CI, Builder); 3637 case LibFunc_snprintf_chk: 3638 return optimizeSNPrintfChk(CI, Builder); 3639 case LibFunc_sprintf_chk: 3640 return optimizeSPrintfChk(CI, Builder); 3641 case LibFunc_strcat_chk: 3642 return optimizeStrCatChk(CI, Builder); 3643 case LibFunc_strlcat_chk: 3644 return optimizeStrLCat(CI, Builder); 3645 case LibFunc_strncat_chk: 3646 return optimizeStrNCatChk(CI, Builder); 3647 case LibFunc_strlcpy_chk: 3648 return optimizeStrLCpyChk(CI, Builder); 3649 case LibFunc_vsnprintf_chk: 3650 return optimizeVSNPrintfChk(CI, Builder); 3651 case LibFunc_vsprintf_chk: 3652 return optimizeVSPrintfChk(CI, Builder); 3653 default: 3654 break; 3655 } 3656 return nullptr; 3657 } 3658 3659 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3660 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3661 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 3662