1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Transforms/Utils/BuildLibCalls.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Transforms/Utils/SizeOpts.h" 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 static cl::opt<bool> 40 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 41 cl::init(false), 42 cl::desc("Enable unsafe double to float " 43 "shrinking for math lib calls")); 44 45 //===----------------------------------------------------------------------===// 46 // Helper Functions 47 //===----------------------------------------------------------------------===// 48 49 static bool ignoreCallingConv(LibFunc Func) { 50 return Func == LibFunc_abs || Func == LibFunc_labs || 51 Func == LibFunc_llabs || Func == LibFunc_strlen; 52 } 53 54 /// Return true if it is only used in equality comparisons with With. 55 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 56 for (User *U : V->users()) { 57 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 58 if (IC->isEquality() && IC->getOperand(1) == With) 59 continue; 60 // Unknown instruction. 61 return false; 62 } 63 return true; 64 } 65 66 static bool callHasFloatingPointArgument(const CallInst *CI) { 67 return any_of(CI->operands(), [](const Use &OI) { 68 return OI->getType()->isFloatingPointTy(); 69 }); 70 } 71 72 static bool callHasFP128Argument(const CallInst *CI) { 73 return any_of(CI->operands(), [](const Use &OI) { 74 return OI->getType()->isFP128Ty(); 75 }); 76 } 77 78 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 79 if (Base < 2 || Base > 36) 80 // handle special zero base 81 if (Base != 0) 82 return nullptr; 83 84 char *End; 85 std::string nptr = Str.str(); 86 errno = 0; 87 long long int Result = strtoll(nptr.c_str(), &End, Base); 88 if (errno) 89 return nullptr; 90 91 // if we assume all possible target locales are ASCII supersets, 92 // then if strtoll successfully parses a number on the host, 93 // it will also successfully parse the same way on the target 94 if (*End != '\0') 95 return nullptr; 96 97 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 98 return nullptr; 99 100 return ConstantInt::get(CI->getType(), Result); 101 } 102 103 static bool isOnlyUsedInComparisonWithZero(Value *V) { 104 for (User *U : V->users()) { 105 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 106 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 107 if (C->isNullValue()) 108 continue; 109 // Unknown instruction. 110 return false; 111 } 112 return true; 113 } 114 115 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 116 const DataLayout &DL) { 117 if (!isOnlyUsedInComparisonWithZero(CI)) 118 return false; 119 120 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 121 return false; 122 123 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 124 return false; 125 126 return true; 127 } 128 129 static void annotateDereferenceableBytes(CallInst *CI, 130 ArrayRef<unsigned> ArgNos, 131 uint64_t DereferenceableBytes) { 132 const Function *F = CI->getCaller(); 133 if (!F) 134 return; 135 for (unsigned ArgNo : ArgNos) { 136 uint64_t DerefBytes = DereferenceableBytes; 137 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 138 if (!llvm::NullPointerIsDefined(F, AS) || 139 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 140 DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo), 141 DereferenceableBytes); 142 143 if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) { 144 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 145 if (!llvm::NullPointerIsDefined(F, AS) || 146 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 147 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 148 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 149 CI->getContext(), DerefBytes)); 150 } 151 } 152 } 153 154 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, 155 ArrayRef<unsigned> ArgNos) { 156 Function *F = CI->getCaller(); 157 if (!F) 158 return; 159 160 for (unsigned ArgNo : ArgNos) { 161 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef)) 162 CI->addParamAttr(ArgNo, Attribute::NoUndef); 163 164 if (CI->paramHasAttr(ArgNo, Attribute::NonNull)) 165 continue; 166 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 167 if (llvm::NullPointerIsDefined(F, AS)) 168 continue; 169 170 CI->addParamAttr(ArgNo, Attribute::NonNull); 171 annotateDereferenceableBytes(CI, ArgNo, 1); 172 } 173 } 174 175 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 176 Value *Size, const DataLayout &DL) { 177 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 178 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 179 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 180 } else if (isKnownNonZero(Size, DL)) { 181 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 182 const APInt *X, *Y; 183 uint64_t DerefMin = 1; 184 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 185 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 186 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 187 } 188 } 189 } 190 191 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for 192 // easier chaining. Calls to emit* and B.createCall should probably be wrapped 193 // in this function when New is created to replace Old. Callers should take 194 // care to check Old.isMustTailCall() if they aren't replacing Old directly 195 // with New. 196 static Value *copyFlags(const CallInst &Old, Value *New) { 197 assert(!Old.isMustTailCall() && "do not copy musttail call flags"); 198 assert(!Old.isNoTailCall() && "do not copy notail call flags"); 199 if (auto *NewCI = dyn_cast_or_null<CallInst>(New)) 200 NewCI->setTailCallKind(Old.getTailCallKind()); 201 return New; 202 } 203 204 //===----------------------------------------------------------------------===// 205 // String and Memory Library Call Optimizations 206 //===----------------------------------------------------------------------===// 207 208 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 209 // Extract some information from the instruction 210 Value *Dst = CI->getArgOperand(0); 211 Value *Src = CI->getArgOperand(1); 212 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 213 214 // See if we can get the length of the input string. 215 uint64_t Len = GetStringLength(Src); 216 if (Len) 217 annotateDereferenceableBytes(CI, 1, Len); 218 else 219 return nullptr; 220 --Len; // Unbias length. 221 222 // Handle the simple, do-nothing case: strcat(x, "") -> x 223 if (Len == 0) 224 return Dst; 225 226 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B)); 227 } 228 229 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 230 IRBuilderBase &B) { 231 // We need to find the end of the destination string. That's where the 232 // memory is to be moved to. We just generate a call to strlen. 233 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 234 if (!DstLen) 235 return nullptr; 236 237 // Now that we have the destination's length, we must index into the 238 // destination's pointer to get the actual memcpy destination (end of 239 // the string .. we're concatenating). 240 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 241 242 // We have enough information to now generate the memcpy call to do the 243 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 244 B.CreateMemCpy( 245 CpyDst, Align(1), Src, Align(1), 246 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 247 return Dst; 248 } 249 250 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 251 // Extract some information from the instruction. 252 Value *Dst = CI->getArgOperand(0); 253 Value *Src = CI->getArgOperand(1); 254 Value *Size = CI->getArgOperand(2); 255 uint64_t Len; 256 annotateNonNullNoUndefBasedOnAccess(CI, 0); 257 if (isKnownNonZero(Size, DL)) 258 annotateNonNullNoUndefBasedOnAccess(CI, 1); 259 260 // We don't do anything if length is not constant. 261 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 262 if (LengthArg) { 263 Len = LengthArg->getZExtValue(); 264 // strncat(x, c, 0) -> x 265 if (!Len) 266 return Dst; 267 } else { 268 return nullptr; 269 } 270 271 // See if we can get the length of the input string. 272 uint64_t SrcLen = GetStringLength(Src); 273 if (SrcLen) { 274 annotateDereferenceableBytes(CI, 1, SrcLen); 275 --SrcLen; // Unbias length. 276 } else { 277 return nullptr; 278 } 279 280 // strncat(x, "", c) -> x 281 if (SrcLen == 0) 282 return Dst; 283 284 // We don't optimize this case. 285 if (Len < SrcLen) 286 return nullptr; 287 288 // strncat(x, s, c) -> strcat(x, s) 289 // s is constant so the strcat can be optimized further. 290 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B)); 291 } 292 293 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 294 Function *Callee = CI->getCalledFunction(); 295 FunctionType *FT = Callee->getFunctionType(); 296 Value *SrcStr = CI->getArgOperand(0); 297 annotateNonNullNoUndefBasedOnAccess(CI, 0); 298 299 // If the second operand is non-constant, see if we can compute the length 300 // of the input string and turn this into memchr. 301 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 302 if (!CharC) { 303 uint64_t Len = GetStringLength(SrcStr); 304 if (Len) 305 annotateDereferenceableBytes(CI, 0, Len); 306 else 307 return nullptr; 308 if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 309 return nullptr; 310 311 return copyFlags( 312 *CI, 313 emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 314 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), B, 315 DL, TLI)); 316 } 317 318 // Otherwise, the character is a constant, see if the first argument is 319 // a string literal. If so, we can constant fold. 320 StringRef Str; 321 if (!getConstantStringInfo(SrcStr, Str)) { 322 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 323 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 324 return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 325 return nullptr; 326 } 327 328 // Compute the offset, make sure to handle the case when we're searching for 329 // zero (a weird way to spell strlen). 330 size_t I = (0xFF & CharC->getSExtValue()) == 0 331 ? Str.size() 332 : Str.find(CharC->getSExtValue()); 333 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 334 return Constant::getNullValue(CI->getType()); 335 336 // strchr(s+n,c) -> gep(s+n+i,c) 337 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 338 } 339 340 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 341 Value *SrcStr = CI->getArgOperand(0); 342 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 343 annotateNonNullNoUndefBasedOnAccess(CI, 0); 344 345 // Cannot fold anything if we're not looking for a constant. 346 if (!CharC) 347 return nullptr; 348 349 StringRef Str; 350 if (!getConstantStringInfo(SrcStr, Str)) { 351 // strrchr(s, 0) -> strchr(s, 0) 352 if (CharC->isZero()) 353 return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI)); 354 return nullptr; 355 } 356 357 // Compute the offset. 358 size_t I = (0xFF & CharC->getSExtValue()) == 0 359 ? Str.size() 360 : Str.rfind(CharC->getSExtValue()); 361 if (I == StringRef::npos) // Didn't find the char. Return null. 362 return Constant::getNullValue(CI->getType()); 363 364 // strrchr(s+n,c) -> gep(s+n+i,c) 365 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 366 } 367 368 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 369 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 370 if (Str1P == Str2P) // strcmp(x,x) -> 0 371 return ConstantInt::get(CI->getType(), 0); 372 373 StringRef Str1, Str2; 374 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 375 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 376 377 // strcmp(x, y) -> cnst (if both x and y are constant strings) 378 if (HasStr1 && HasStr2) 379 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 380 381 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 382 return B.CreateNeg(B.CreateZExt( 383 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 384 385 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 386 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 387 CI->getType()); 388 389 // strcmp(P, "x") -> memcmp(P, "x", 2) 390 uint64_t Len1 = GetStringLength(Str1P); 391 if (Len1) 392 annotateDereferenceableBytes(CI, 0, Len1); 393 uint64_t Len2 = GetStringLength(Str2P); 394 if (Len2) 395 annotateDereferenceableBytes(CI, 1, Len2); 396 397 if (Len1 && Len2) { 398 return copyFlags( 399 *CI, emitMemCmp(Str1P, Str2P, 400 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 401 std::min(Len1, Len2)), 402 B, DL, TLI)); 403 } 404 405 // strcmp to memcmp 406 if (!HasStr1 && HasStr2) { 407 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 408 return copyFlags( 409 *CI, 410 emitMemCmp(Str1P, Str2P, 411 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 412 B, DL, TLI)); 413 } else if (HasStr1 && !HasStr2) { 414 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 415 return copyFlags( 416 *CI, 417 emitMemCmp(Str1P, Str2P, 418 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 419 B, DL, TLI)); 420 } 421 422 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 423 return nullptr; 424 } 425 426 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 427 Value *Str1P = CI->getArgOperand(0); 428 Value *Str2P = CI->getArgOperand(1); 429 Value *Size = CI->getArgOperand(2); 430 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 431 return ConstantInt::get(CI->getType(), 0); 432 433 if (isKnownNonZero(Size, DL)) 434 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 435 // Get the length argument if it is constant. 436 uint64_t Length; 437 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 438 Length = LengthArg->getZExtValue(); 439 else 440 return nullptr; 441 442 if (Length == 0) // strncmp(x,y,0) -> 0 443 return ConstantInt::get(CI->getType(), 0); 444 445 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 446 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI)); 447 448 StringRef Str1, Str2; 449 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 450 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 451 452 // strncmp(x, y) -> cnst (if both x and y are constant strings) 453 if (HasStr1 && HasStr2) { 454 StringRef SubStr1 = Str1.substr(0, Length); 455 StringRef SubStr2 = Str2.substr(0, Length); 456 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 457 } 458 459 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 460 return B.CreateNeg(B.CreateZExt( 461 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 462 463 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 464 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 465 CI->getType()); 466 467 uint64_t Len1 = GetStringLength(Str1P); 468 if (Len1) 469 annotateDereferenceableBytes(CI, 0, Len1); 470 uint64_t Len2 = GetStringLength(Str2P); 471 if (Len2) 472 annotateDereferenceableBytes(CI, 1, Len2); 473 474 // strncmp to memcmp 475 if (!HasStr1 && HasStr2) { 476 Len2 = std::min(Len2, Length); 477 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 478 return copyFlags( 479 *CI, 480 emitMemCmp(Str1P, Str2P, 481 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 482 B, DL, TLI)); 483 } else if (HasStr1 && !HasStr2) { 484 Len1 = std::min(Len1, Length); 485 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 486 return copyFlags( 487 *CI, 488 emitMemCmp(Str1P, Str2P, 489 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 490 B, DL, TLI)); 491 } 492 493 return nullptr; 494 } 495 496 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 497 Value *Src = CI->getArgOperand(0); 498 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 499 uint64_t SrcLen = GetStringLength(Src); 500 if (SrcLen && Size) { 501 annotateDereferenceableBytes(CI, 0, SrcLen); 502 if (SrcLen <= Size->getZExtValue() + 1) 503 return copyFlags(*CI, emitStrDup(Src, B, TLI)); 504 } 505 506 return nullptr; 507 } 508 509 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 510 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 511 if (Dst == Src) // strcpy(x,x) -> x 512 return Src; 513 514 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 515 // See if we can get the length of the input string. 516 uint64_t Len = GetStringLength(Src); 517 if (Len) 518 annotateDereferenceableBytes(CI, 1, Len); 519 else 520 return nullptr; 521 522 // We have enough information to now generate the memcpy call to do the 523 // copy for us. Make a memcpy to copy the nul byte with align = 1. 524 CallInst *NewCI = 525 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 526 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 527 NewCI->setAttributes(CI->getAttributes()); 528 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 529 copyFlags(*CI, NewCI); 530 return Dst; 531 } 532 533 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 534 Function *Callee = CI->getCalledFunction(); 535 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 536 537 // stpcpy(d,s) -> strcpy(d,s) if the result is not used. 538 if (CI->use_empty()) 539 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 540 541 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 542 Value *StrLen = emitStrLen(Src, B, DL, TLI); 543 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 544 } 545 546 // See if we can get the length of the input string. 547 uint64_t Len = GetStringLength(Src); 548 if (Len) 549 annotateDereferenceableBytes(CI, 1, Len); 550 else 551 return nullptr; 552 553 Type *PT = Callee->getFunctionType()->getParamType(0); 554 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 555 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 556 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 557 558 // We have enough information to now generate the memcpy call to do the 559 // copy for us. Make a memcpy to copy the nul byte with align = 1. 560 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 561 NewCI->setAttributes(CI->getAttributes()); 562 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 563 copyFlags(*CI, NewCI); 564 return DstEnd; 565 } 566 567 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) { 568 Function *Callee = CI->getCalledFunction(); 569 Value *Dst = CI->getArgOperand(0); 570 Value *Src = CI->getArgOperand(1); 571 Value *Size = CI->getArgOperand(2); 572 annotateNonNullNoUndefBasedOnAccess(CI, 0); 573 if (isKnownNonZero(Size, DL)) 574 annotateNonNullNoUndefBasedOnAccess(CI, 1); 575 576 uint64_t Len; 577 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 578 Len = LengthArg->getZExtValue(); 579 else 580 return nullptr; 581 582 // strncpy(x, y, 0) -> x 583 if (Len == 0) 584 return Dst; 585 586 // See if we can get the length of the input string. 587 uint64_t SrcLen = GetStringLength(Src); 588 if (SrcLen) { 589 annotateDereferenceableBytes(CI, 1, SrcLen); 590 --SrcLen; // Unbias length. 591 } else { 592 return nullptr; 593 } 594 595 if (SrcLen == 0) { 596 // strncpy(x, "", y) -> memset(x, '\0', y) 597 Align MemSetAlign = 598 CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne(); 599 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign); 600 AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0)); 601 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 602 CI->getContext(), 0, ArgAttrs)); 603 copyFlags(*CI, NewCI); 604 return Dst; 605 } 606 607 // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4) 608 if (Len > SrcLen + 1) { 609 if (Len <= 128) { 610 StringRef Str; 611 if (!getConstantStringInfo(Src, Str)) 612 return nullptr; 613 std::string SrcStr = Str.str(); 614 SrcStr.resize(Len, '\0'); 615 Src = B.CreateGlobalString(SrcStr, "str"); 616 } else { 617 return nullptr; 618 } 619 } 620 621 Type *PT = Callee->getFunctionType()->getParamType(0); 622 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 623 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 624 ConstantInt::get(DL.getIntPtrType(PT), Len)); 625 NewCI->setAttributes(CI->getAttributes()); 626 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 627 copyFlags(*CI, NewCI); 628 return Dst; 629 } 630 631 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 632 unsigned CharSize) { 633 Value *Src = CI->getArgOperand(0); 634 635 // Constant folding: strlen("xyz") -> 3 636 if (uint64_t Len = GetStringLength(Src, CharSize)) 637 return ConstantInt::get(CI->getType(), Len - 1); 638 639 // If s is a constant pointer pointing to a string literal, we can fold 640 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 641 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 642 // We only try to simplify strlen when the pointer s points to an array 643 // of i8. Otherwise, we would need to scale the offset x before doing the 644 // subtraction. This will make the optimization more complex, and it's not 645 // very useful because calling strlen for a pointer of other types is 646 // very uncommon. 647 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 648 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 649 return nullptr; 650 651 ConstantDataArraySlice Slice; 652 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 653 uint64_t NullTermIdx; 654 if (Slice.Array == nullptr) { 655 NullTermIdx = 0; 656 } else { 657 NullTermIdx = ~((uint64_t)0); 658 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 659 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 660 NullTermIdx = I; 661 break; 662 } 663 } 664 // If the string does not have '\0', leave it to strlen to compute 665 // its length. 666 if (NullTermIdx == ~((uint64_t)0)) 667 return nullptr; 668 } 669 670 Value *Offset = GEP->getOperand(2); 671 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 672 Known.Zero.flipAllBits(); 673 uint64_t ArrSize = 674 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 675 676 // KnownZero's bits are flipped, so zeros in KnownZero now represent 677 // bits known to be zeros in Offset, and ones in KnowZero represent 678 // bits unknown in Offset. Therefore, Offset is known to be in range 679 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 680 // unsigned-less-than NullTermIdx. 681 // 682 // If Offset is not provably in the range [0, NullTermIdx], we can still 683 // optimize if we can prove that the program has undefined behavior when 684 // Offset is outside that range. That is the case when GEP->getOperand(0) 685 // is a pointer to an object whose memory extent is NullTermIdx+1. 686 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 687 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 688 NullTermIdx == ArrSize - 1)) { 689 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 690 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 691 Offset); 692 } 693 } 694 } 695 696 // strlen(x?"foo":"bars") --> x ? 3 : 4 697 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 698 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 699 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 700 if (LenTrue && LenFalse) { 701 ORE.emit([&]() { 702 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 703 << "folded strlen(select) to select of constants"; 704 }); 705 return B.CreateSelect(SI->getCondition(), 706 ConstantInt::get(CI->getType(), LenTrue - 1), 707 ConstantInt::get(CI->getType(), LenFalse - 1)); 708 } 709 } 710 711 // strlen(x) != 0 --> *x != 0 712 // strlen(x) == 0 --> *x == 0 713 if (isOnlyUsedInZeroEqualityComparison(CI)) 714 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), 715 CI->getType()); 716 717 return nullptr; 718 } 719 720 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 721 if (Value *V = optimizeStringLength(CI, B, 8)) 722 return V; 723 annotateNonNullNoUndefBasedOnAccess(CI, 0); 724 return nullptr; 725 } 726 727 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 728 Module &M = *CI->getModule(); 729 unsigned WCharSize = TLI->getWCharSize(M) * 8; 730 // We cannot perform this optimization without wchar_size metadata. 731 if (WCharSize == 0) 732 return nullptr; 733 734 return optimizeStringLength(CI, B, WCharSize); 735 } 736 737 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 738 StringRef S1, S2; 739 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 740 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 741 742 // strpbrk(s, "") -> nullptr 743 // strpbrk("", s) -> nullptr 744 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 745 return Constant::getNullValue(CI->getType()); 746 747 // Constant folding. 748 if (HasS1 && HasS2) { 749 size_t I = S1.find_first_of(S2); 750 if (I == StringRef::npos) // No match. 751 return Constant::getNullValue(CI->getType()); 752 753 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 754 "strpbrk"); 755 } 756 757 // strpbrk(s, "a") -> strchr(s, 'a') 758 if (HasS2 && S2.size() == 1) 759 return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI)); 760 761 return nullptr; 762 } 763 764 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 765 Value *EndPtr = CI->getArgOperand(1); 766 if (isa<ConstantPointerNull>(EndPtr)) { 767 // With a null EndPtr, this function won't capture the main argument. 768 // It would be readonly too, except that it still may write to errno. 769 CI->addParamAttr(0, Attribute::NoCapture); 770 } 771 772 return nullptr; 773 } 774 775 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 776 StringRef S1, S2; 777 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 778 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 779 780 // strspn(s, "") -> 0 781 // strspn("", s) -> 0 782 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 783 return Constant::getNullValue(CI->getType()); 784 785 // Constant folding. 786 if (HasS1 && HasS2) { 787 size_t Pos = S1.find_first_not_of(S2); 788 if (Pos == StringRef::npos) 789 Pos = S1.size(); 790 return ConstantInt::get(CI->getType(), Pos); 791 } 792 793 return nullptr; 794 } 795 796 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 797 StringRef S1, S2; 798 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 799 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 800 801 // strcspn("", s) -> 0 802 if (HasS1 && S1.empty()) 803 return Constant::getNullValue(CI->getType()); 804 805 // Constant folding. 806 if (HasS1 && HasS2) { 807 size_t Pos = S1.find_first_of(S2); 808 if (Pos == StringRef::npos) 809 Pos = S1.size(); 810 return ConstantInt::get(CI->getType(), Pos); 811 } 812 813 // strcspn(s, "") -> strlen(s) 814 if (HasS2 && S2.empty()) 815 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI)); 816 817 return nullptr; 818 } 819 820 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 821 // fold strstr(x, x) -> x. 822 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 823 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 824 825 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 826 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 827 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 828 if (!StrLen) 829 return nullptr; 830 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 831 StrLen, B, DL, TLI); 832 if (!StrNCmp) 833 return nullptr; 834 for (User *U : llvm::make_early_inc_range(CI->users())) { 835 ICmpInst *Old = cast<ICmpInst>(U); 836 Value *Cmp = 837 B.CreateICmp(Old->getPredicate(), StrNCmp, 838 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 839 replaceAllUsesWith(Old, Cmp); 840 } 841 return CI; 842 } 843 844 // See if either input string is a constant string. 845 StringRef SearchStr, ToFindStr; 846 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 847 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 848 849 // fold strstr(x, "") -> x. 850 if (HasStr2 && ToFindStr.empty()) 851 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 852 853 // If both strings are known, constant fold it. 854 if (HasStr1 && HasStr2) { 855 size_t Offset = SearchStr.find(ToFindStr); 856 857 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 858 return Constant::getNullValue(CI->getType()); 859 860 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 861 Value *Result = castToCStr(CI->getArgOperand(0), B); 862 Result = 863 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 864 return B.CreateBitCast(Result, CI->getType()); 865 } 866 867 // fold strstr(x, "y") -> strchr(x, 'y'). 868 if (HasStr2 && ToFindStr.size() == 1) { 869 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 870 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 871 } 872 873 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 874 return nullptr; 875 } 876 877 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 878 if (isKnownNonZero(CI->getOperand(2), DL)) 879 annotateNonNullNoUndefBasedOnAccess(CI, 0); 880 return nullptr; 881 } 882 883 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 884 Value *SrcStr = CI->getArgOperand(0); 885 Value *Size = CI->getArgOperand(2); 886 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 887 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 888 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 889 890 // memchr(x, y, 0) -> null 891 if (LenC) { 892 if (LenC->isZero()) 893 return Constant::getNullValue(CI->getType()); 894 } else { 895 // From now on we need at least constant length and string. 896 return nullptr; 897 } 898 899 StringRef Str; 900 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 901 return nullptr; 902 903 // Truncate the string to LenC. If Str is smaller than LenC we will still only 904 // scan the string, as reading past the end of it is undefined and we can just 905 // return null if we don't find the char. 906 Str = Str.substr(0, LenC->getZExtValue()); 907 908 // If the char is variable but the input str and length are not we can turn 909 // this memchr call into a simple bit field test. Of course this only works 910 // when the return value is only checked against null. 911 // 912 // It would be really nice to reuse switch lowering here but we can't change 913 // the CFG at this point. 914 // 915 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 916 // != 0 917 // after bounds check. 918 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 919 unsigned char Max = 920 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 921 reinterpret_cast<const unsigned char *>(Str.end())); 922 923 // Make sure the bit field we're about to create fits in a register on the 924 // target. 925 // FIXME: On a 64 bit architecture this prevents us from using the 926 // interesting range of alpha ascii chars. We could do better by emitting 927 // two bitfields or shifting the range by 64 if no lower chars are used. 928 if (!DL.fitsInLegalInteger(Max + 1)) 929 return nullptr; 930 931 // For the bit field use a power-of-2 type with at least 8 bits to avoid 932 // creating unnecessary illegal types. 933 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 934 935 // Now build the bit field. 936 APInt Bitfield(Width, 0); 937 for (char C : Str) 938 Bitfield.setBit((unsigned char)C); 939 Value *BitfieldC = B.getInt(Bitfield); 940 941 // Adjust width of "C" to the bitfield width, then mask off the high bits. 942 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 943 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 944 945 // First check that the bit field access is within bounds. 946 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 947 "memchr.bounds"); 948 949 // Create code that checks if the given bit is set in the field. 950 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 951 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 952 953 // Finally merge both checks and cast to pointer type. The inttoptr 954 // implicitly zexts the i1 to intptr type. 955 return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"), 956 CI->getType()); 957 } 958 959 // Check if all arguments are constants. If so, we can constant fold. 960 if (!CharC) 961 return nullptr; 962 963 // Compute the offset. 964 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 965 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 966 return Constant::getNullValue(CI->getType()); 967 968 // memchr(s+n,c,l) -> gep(s+n+i,c) 969 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 970 } 971 972 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 973 uint64_t Len, IRBuilderBase &B, 974 const DataLayout &DL) { 975 if (Len == 0) // memcmp(s1,s2,0) -> 0 976 return Constant::getNullValue(CI->getType()); 977 978 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 979 if (Len == 1) { 980 Value *LHSV = 981 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 982 CI->getType(), "lhsv"); 983 Value *RHSV = 984 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 985 CI->getType(), "rhsv"); 986 return B.CreateSub(LHSV, RHSV, "chardiff"); 987 } 988 989 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 990 // TODO: The case where both inputs are constants does not need to be limited 991 // to legal integers or equality comparison. See block below this. 992 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 993 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 994 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 995 996 // First, see if we can fold either argument to a constant. 997 Value *LHSV = nullptr; 998 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 999 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 1000 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 1001 } 1002 Value *RHSV = nullptr; 1003 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 1004 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 1005 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 1006 } 1007 1008 // Don't generate unaligned loads. If either source is constant data, 1009 // alignment doesn't matter for that source because there is no load. 1010 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 1011 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 1012 if (!LHSV) { 1013 Type *LHSPtrTy = 1014 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 1015 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 1016 } 1017 if (!RHSV) { 1018 Type *RHSPtrTy = 1019 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 1020 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 1021 } 1022 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1023 } 1024 } 1025 1026 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 1027 // TODO: This is limited to i8 arrays. 1028 StringRef LHSStr, RHSStr; 1029 if (getConstantStringInfo(LHS, LHSStr) && 1030 getConstantStringInfo(RHS, RHSStr)) { 1031 // Make sure we're not reading out-of-bounds memory. 1032 if (Len > LHSStr.size() || Len > RHSStr.size()) 1033 return nullptr; 1034 // Fold the memcmp and normalize the result. This way we get consistent 1035 // results across multiple platforms. 1036 uint64_t Ret = 0; 1037 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 1038 if (Cmp < 0) 1039 Ret = -1; 1040 else if (Cmp > 0) 1041 Ret = 1; 1042 return ConstantInt::get(CI->getType(), Ret); 1043 } 1044 1045 return nullptr; 1046 } 1047 1048 // Most simplifications for memcmp also apply to bcmp. 1049 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1050 IRBuilderBase &B) { 1051 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1052 Value *Size = CI->getArgOperand(2); 1053 1054 if (LHS == RHS) // memcmp(s,s,x) -> 0 1055 return Constant::getNullValue(CI->getType()); 1056 1057 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1058 // Handle constant lengths. 1059 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1060 if (!LenC) 1061 return nullptr; 1062 1063 // memcmp(d,s,0) -> 0 1064 if (LenC->getZExtValue() == 0) 1065 return Constant::getNullValue(CI->getType()); 1066 1067 if (Value *Res = 1068 optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL)) 1069 return Res; 1070 return nullptr; 1071 } 1072 1073 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1074 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1075 return V; 1076 1077 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1078 // bcmp can be more efficient than memcmp because it only has to know that 1079 // there is a difference, not how different one is to the other. 1080 if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) { 1081 Value *LHS = CI->getArgOperand(0); 1082 Value *RHS = CI->getArgOperand(1); 1083 Value *Size = CI->getArgOperand(2); 1084 return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI)); 1085 } 1086 1087 return nullptr; 1088 } 1089 1090 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1091 return optimizeMemCmpBCmpCommon(CI, B); 1092 } 1093 1094 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1095 Value *Size = CI->getArgOperand(2); 1096 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1097 if (isa<IntrinsicInst>(CI)) 1098 return nullptr; 1099 1100 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1101 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1102 CI->getArgOperand(1), Align(1), Size); 1103 NewCI->setAttributes(CI->getAttributes()); 1104 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1105 copyFlags(*CI, NewCI); 1106 return CI->getArgOperand(0); 1107 } 1108 1109 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1110 Value *Dst = CI->getArgOperand(0); 1111 Value *Src = CI->getArgOperand(1); 1112 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1113 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1114 StringRef SrcStr; 1115 if (CI->use_empty() && Dst == Src) 1116 return Dst; 1117 // memccpy(d, s, c, 0) -> nullptr 1118 if (N) { 1119 if (N->isNullValue()) 1120 return Constant::getNullValue(CI->getType()); 1121 if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0, 1122 /*TrimAtNul=*/false) || 1123 !StopChar) 1124 return nullptr; 1125 } else { 1126 return nullptr; 1127 } 1128 1129 // Wrap arg 'c' of type int to char 1130 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1131 if (Pos == StringRef::npos) { 1132 if (N->getZExtValue() <= SrcStr.size()) { 1133 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), 1134 CI->getArgOperand(3))); 1135 return Constant::getNullValue(CI->getType()); 1136 } 1137 return nullptr; 1138 } 1139 1140 Value *NewN = 1141 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1142 // memccpy -> llvm.memcpy 1143 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN)); 1144 return Pos + 1 <= N->getZExtValue() 1145 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1146 : Constant::getNullValue(CI->getType()); 1147 } 1148 1149 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1150 Value *Dst = CI->getArgOperand(0); 1151 Value *N = CI->getArgOperand(2); 1152 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1153 CallInst *NewCI = 1154 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1155 // Propagate attributes, but memcpy has no return value, so make sure that 1156 // any return attributes are compliant. 1157 // TODO: Attach return value attributes to the 1st operand to preserve them? 1158 NewCI->setAttributes(CI->getAttributes()); 1159 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1160 copyFlags(*CI, NewCI); 1161 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1162 } 1163 1164 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1165 Value *Size = CI->getArgOperand(2); 1166 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1167 if (isa<IntrinsicInst>(CI)) 1168 return nullptr; 1169 1170 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1171 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1172 CI->getArgOperand(1), Align(1), Size); 1173 NewCI->setAttributes(CI->getAttributes()); 1174 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1175 copyFlags(*CI, NewCI); 1176 return CI->getArgOperand(0); 1177 } 1178 1179 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1180 Value *Size = CI->getArgOperand(2); 1181 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1182 if (isa<IntrinsicInst>(CI)) 1183 return nullptr; 1184 1185 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1186 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1187 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1188 NewCI->setAttributes(CI->getAttributes()); 1189 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1190 copyFlags(*CI, NewCI); 1191 return CI->getArgOperand(0); 1192 } 1193 1194 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1195 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1196 return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI)); 1197 1198 return nullptr; 1199 } 1200 1201 //===----------------------------------------------------------------------===// 1202 // Math Library Optimizations 1203 //===----------------------------------------------------------------------===// 1204 1205 // Replace a libcall \p CI with a call to intrinsic \p IID 1206 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1207 Intrinsic::ID IID) { 1208 // Propagate fast-math flags from the existing call to the new call. 1209 IRBuilderBase::FastMathFlagGuard Guard(B); 1210 B.setFastMathFlags(CI->getFastMathFlags()); 1211 1212 Module *M = CI->getModule(); 1213 Value *V = CI->getArgOperand(0); 1214 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1215 CallInst *NewCall = B.CreateCall(F, V); 1216 NewCall->takeName(CI); 1217 return copyFlags(*CI, NewCall); 1218 } 1219 1220 /// Return a variant of Val with float type. 1221 /// Currently this works in two cases: If Val is an FPExtension of a float 1222 /// value to something bigger, simply return the operand. 1223 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1224 /// loss of precision do so. 1225 static Value *valueHasFloatPrecision(Value *Val) { 1226 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1227 Value *Op = Cast->getOperand(0); 1228 if (Op->getType()->isFloatTy()) 1229 return Op; 1230 } 1231 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1232 APFloat F = Const->getValueAPF(); 1233 bool losesInfo; 1234 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1235 &losesInfo); 1236 if (!losesInfo) 1237 return ConstantFP::get(Const->getContext(), F); 1238 } 1239 return nullptr; 1240 } 1241 1242 /// Shrink double -> float functions. 1243 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1244 bool isBinary, bool isPrecise = false) { 1245 Function *CalleeFn = CI->getCalledFunction(); 1246 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1247 return nullptr; 1248 1249 // If not all the uses of the function are converted to float, then bail out. 1250 // This matters if the precision of the result is more important than the 1251 // precision of the arguments. 1252 if (isPrecise) 1253 for (User *U : CI->users()) { 1254 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1255 if (!Cast || !Cast->getType()->isFloatTy()) 1256 return nullptr; 1257 } 1258 1259 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1260 Value *V[2]; 1261 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1262 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1263 if (!V[0] || (isBinary && !V[1])) 1264 return nullptr; 1265 1266 // If call isn't an intrinsic, check that it isn't within a function with the 1267 // same name as the float version of this call, otherwise the result is an 1268 // infinite loop. For example, from MinGW-w64: 1269 // 1270 // float expf(float val) { return (float) exp((double) val); } 1271 StringRef CalleeName = CalleeFn->getName(); 1272 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1273 if (!IsIntrinsic) { 1274 StringRef CallerName = CI->getFunction()->getName(); 1275 if (!CallerName.empty() && CallerName.back() == 'f' && 1276 CallerName.size() == (CalleeName.size() + 1) && 1277 CallerName.startswith(CalleeName)) 1278 return nullptr; 1279 } 1280 1281 // Propagate the math semantics from the current function to the new function. 1282 IRBuilderBase::FastMathFlagGuard Guard(B); 1283 B.setFastMathFlags(CI->getFastMathFlags()); 1284 1285 // g((double) float) -> (double) gf(float) 1286 Value *R; 1287 if (IsIntrinsic) { 1288 Module *M = CI->getModule(); 1289 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1290 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1291 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1292 } else { 1293 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1294 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs) 1295 : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs); 1296 } 1297 return B.CreateFPExt(R, B.getDoubleTy()); 1298 } 1299 1300 /// Shrink double -> float for unary functions. 1301 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1302 bool isPrecise = false) { 1303 return optimizeDoubleFP(CI, B, false, isPrecise); 1304 } 1305 1306 /// Shrink double -> float for binary functions. 1307 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1308 bool isPrecise = false) { 1309 return optimizeDoubleFP(CI, B, true, isPrecise); 1310 } 1311 1312 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1313 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1314 if (!CI->isFast()) 1315 return nullptr; 1316 1317 // Propagate fast-math flags from the existing call to new instructions. 1318 IRBuilderBase::FastMathFlagGuard Guard(B); 1319 B.setFastMathFlags(CI->getFastMathFlags()); 1320 1321 Value *Real, *Imag; 1322 if (CI->arg_size() == 1) { 1323 Value *Op = CI->getArgOperand(0); 1324 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1325 Real = B.CreateExtractValue(Op, 0, "real"); 1326 Imag = B.CreateExtractValue(Op, 1, "imag"); 1327 } else { 1328 assert(CI->arg_size() == 2 && "Unexpected signature for cabs!"); 1329 Real = CI->getArgOperand(0); 1330 Imag = CI->getArgOperand(1); 1331 } 1332 1333 Value *RealReal = B.CreateFMul(Real, Real); 1334 Value *ImagImag = B.CreateFMul(Imag, Imag); 1335 1336 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1337 CI->getType()); 1338 return copyFlags( 1339 *CI, B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs")); 1340 } 1341 1342 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1343 IRBuilderBase &B) { 1344 if (!isa<FPMathOperator>(Call)) 1345 return nullptr; 1346 1347 IRBuilderBase::FastMathFlagGuard Guard(B); 1348 B.setFastMathFlags(Call->getFastMathFlags()); 1349 1350 // TODO: Can this be shared to also handle LLVM intrinsics? 1351 Value *X; 1352 switch (Func) { 1353 case LibFunc_sin: 1354 case LibFunc_sinf: 1355 case LibFunc_sinl: 1356 case LibFunc_tan: 1357 case LibFunc_tanf: 1358 case LibFunc_tanl: 1359 // sin(-X) --> -sin(X) 1360 // tan(-X) --> -tan(X) 1361 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1362 return B.CreateFNeg( 1363 copyFlags(*Call, B.CreateCall(Call->getCalledFunction(), X))); 1364 break; 1365 case LibFunc_cos: 1366 case LibFunc_cosf: 1367 case LibFunc_cosl: 1368 // cos(-X) --> cos(X) 1369 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1370 return copyFlags(*Call, 1371 B.CreateCall(Call->getCalledFunction(), X, "cos")); 1372 break; 1373 default: 1374 break; 1375 } 1376 return nullptr; 1377 } 1378 1379 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) { 1380 // Multiplications calculated using Addition Chains. 1381 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1382 1383 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1384 1385 if (InnerChain[Exp]) 1386 return InnerChain[Exp]; 1387 1388 static const unsigned AddChain[33][2] = { 1389 {0, 0}, // Unused. 1390 {0, 0}, // Unused (base case = pow1). 1391 {1, 1}, // Unused (pre-computed). 1392 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1393 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1394 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1395 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1396 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1397 }; 1398 1399 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1400 getPow(InnerChain, AddChain[Exp][1], B)); 1401 return InnerChain[Exp]; 1402 } 1403 1404 // Return a properly extended integer (DstWidth bits wide) if the operation is 1405 // an itofp. 1406 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) { 1407 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1408 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1409 // Make sure that the exponent fits inside an "int" of size DstWidth, 1410 // thus avoiding any range issues that FP has not. 1411 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); 1412 if (BitWidth < DstWidth || 1413 (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) 1414 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth)) 1415 : B.CreateZExt(Op, B.getIntNTy(DstWidth)); 1416 } 1417 1418 return nullptr; 1419 } 1420 1421 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1422 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 1423 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 1424 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 1425 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1426 AttributeList Attrs; // Attributes are only meaningful on the original call 1427 Module *Mod = Pow->getModule(); 1428 Type *Ty = Pow->getType(); 1429 bool Ignored; 1430 1431 // Evaluate special cases related to a nested function as the base. 1432 1433 // pow(exp(x), y) -> exp(x * y) 1434 // pow(exp2(x), y) -> exp2(x * y) 1435 // If exp{,2}() is used only once, it is better to fold two transcendental 1436 // math functions into one. If used again, exp{,2}() would still have to be 1437 // called with the original argument, then keep both original transcendental 1438 // functions. However, this transformation is only safe with fully relaxed 1439 // math semantics, since, besides rounding differences, it changes overflow 1440 // and underflow behavior quite dramatically. For example: 1441 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1442 // Whereas: 1443 // exp(1000 * 0.001) = exp(1) 1444 // TODO: Loosen the requirement for fully relaxed math semantics. 1445 // TODO: Handle exp10() when more targets have it available. 1446 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1447 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1448 LibFunc LibFn; 1449 1450 Function *CalleeFn = BaseFn->getCalledFunction(); 1451 if (CalleeFn && 1452 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1453 StringRef ExpName; 1454 Intrinsic::ID ID; 1455 Value *ExpFn; 1456 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 1457 1458 switch (LibFn) { 1459 default: 1460 return nullptr; 1461 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1462 ExpName = TLI->getName(LibFunc_exp); 1463 ID = Intrinsic::exp; 1464 LibFnFloat = LibFunc_expf; 1465 LibFnDouble = LibFunc_exp; 1466 LibFnLongDouble = LibFunc_expl; 1467 break; 1468 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1469 ExpName = TLI->getName(LibFunc_exp2); 1470 ID = Intrinsic::exp2; 1471 LibFnFloat = LibFunc_exp2f; 1472 LibFnDouble = LibFunc_exp2; 1473 LibFnLongDouble = LibFunc_exp2l; 1474 break; 1475 } 1476 1477 // Create new exp{,2}() with the product as its argument. 1478 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1479 ExpFn = BaseFn->doesNotAccessMemory() 1480 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1481 FMul, ExpName) 1482 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1483 LibFnLongDouble, B, 1484 BaseFn->getAttributes()); 1485 1486 // Since the new exp{,2}() is different from the original one, dead code 1487 // elimination cannot be trusted to remove it, since it may have side 1488 // effects (e.g., errno). When the only consumer for the original 1489 // exp{,2}() is pow(), then it has to be explicitly erased. 1490 substituteInParent(BaseFn, ExpFn); 1491 return ExpFn; 1492 } 1493 } 1494 1495 // Evaluate special cases related to a constant base. 1496 1497 const APFloat *BaseF; 1498 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1499 return nullptr; 1500 1501 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 1502 if (match(Base, m_SpecificFP(2.0)) && 1503 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 1504 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1505 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1506 return copyFlags(*Pow, 1507 emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, 1508 TLI, LibFunc_ldexp, LibFunc_ldexpf, 1509 LibFunc_ldexpl, B, Attrs)); 1510 } 1511 1512 // pow(2.0 ** n, x) -> exp2(n * x) 1513 if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1514 APFloat BaseR = APFloat(1.0); 1515 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1516 BaseR = BaseR / *BaseF; 1517 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1518 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1519 APSInt NI(64, false); 1520 if ((IsInteger || IsReciprocal) && 1521 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1522 APFloat::opOK && 1523 NI > 1 && NI.isPowerOf2()) { 1524 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1525 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1526 if (Pow->doesNotAccessMemory()) 1527 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 1528 Mod, Intrinsic::exp2, Ty), 1529 FMul, "exp2")); 1530 else 1531 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 1532 LibFunc_exp2f, 1533 LibFunc_exp2l, B, Attrs)); 1534 } 1535 } 1536 1537 // pow(10.0, x) -> exp10(x) 1538 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1539 if (match(Base, m_SpecificFP(10.0)) && 1540 hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1541 return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, 1542 LibFunc_exp10f, LibFunc_exp10l, 1543 B, Attrs)); 1544 1545 // pow(x, y) -> exp2(log2(x) * y) 1546 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 1547 !BaseF->isNegative()) { 1548 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 1549 // Luckily optimizePow has already handled the x == 1 case. 1550 assert(!match(Base, m_FPOne()) && 1551 "pow(1.0, y) should have been simplified earlier!"); 1552 1553 Value *Log = nullptr; 1554 if (Ty->isFloatTy()) 1555 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 1556 else if (Ty->isDoubleTy()) 1557 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 1558 1559 if (Log) { 1560 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 1561 if (Pow->doesNotAccessMemory()) 1562 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 1563 Mod, Intrinsic::exp2, Ty), 1564 FMul, "exp2")); 1565 else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) 1566 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 1567 LibFunc_exp2f, 1568 LibFunc_exp2l, B, Attrs)); 1569 } 1570 } 1571 1572 return nullptr; 1573 } 1574 1575 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1576 Module *M, IRBuilderBase &B, 1577 const TargetLibraryInfo *TLI) { 1578 // If errno is never set, then use the intrinsic for sqrt(). 1579 if (NoErrno) { 1580 Function *SqrtFn = 1581 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1582 return B.CreateCall(SqrtFn, V, "sqrt"); 1583 } 1584 1585 // Otherwise, use the libcall for sqrt(). 1586 if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) 1587 // TODO: We also should check that the target can in fact lower the sqrt() 1588 // libcall. We currently have no way to ask this question, so we ask if 1589 // the target has a sqrt() libcall, which is not exactly the same. 1590 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1591 LibFunc_sqrtl, B, Attrs); 1592 1593 return nullptr; 1594 } 1595 1596 /// Use square root in place of pow(x, +/-0.5). 1597 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 1598 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1599 AttributeList Attrs; // Attributes are only meaningful on the original call 1600 Module *Mod = Pow->getModule(); 1601 Type *Ty = Pow->getType(); 1602 1603 const APFloat *ExpoF; 1604 if (!match(Expo, m_APFloat(ExpoF)) || 1605 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1606 return nullptr; 1607 1608 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 1609 // so that requires fast-math-flags (afn or reassoc). 1610 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 1611 return nullptr; 1612 1613 // If we have a pow() library call (accesses memory) and we can't guarantee 1614 // that the base is not an infinity, give up: 1615 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 1616 // errno), but sqrt(-Inf) is required by various standards to set errno. 1617 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 1618 !isKnownNeverInfinity(Base, TLI)) 1619 return nullptr; 1620 1621 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1622 if (!Sqrt) 1623 return nullptr; 1624 1625 // Handle signed zero base by expanding to fabs(sqrt(x)). 1626 if (!Pow->hasNoSignedZeros()) { 1627 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1628 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1629 } 1630 1631 Sqrt = copyFlags(*Pow, Sqrt); 1632 1633 // Handle non finite base by expanding to 1634 // (x == -infinity ? +infinity : sqrt(x)). 1635 if (!Pow->hasNoInfs()) { 1636 Value *PosInf = ConstantFP::getInfinity(Ty), 1637 *NegInf = ConstantFP::getInfinity(Ty, true); 1638 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1639 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1640 } 1641 1642 // If the exponent is negative, then get the reciprocal. 1643 if (ExpoF->isNegative()) 1644 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1645 1646 return Sqrt; 1647 } 1648 1649 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1650 IRBuilderBase &B) { 1651 Value *Args[] = {Base, Expo}; 1652 Type *Types[] = {Base->getType(), Expo->getType()}; 1653 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types); 1654 return B.CreateCall(F, Args); 1655 } 1656 1657 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 1658 Value *Base = Pow->getArgOperand(0); 1659 Value *Expo = Pow->getArgOperand(1); 1660 Function *Callee = Pow->getCalledFunction(); 1661 StringRef Name = Callee->getName(); 1662 Type *Ty = Pow->getType(); 1663 Module *M = Pow->getModule(); 1664 bool AllowApprox = Pow->hasApproxFunc(); 1665 bool Ignored; 1666 1667 // Propagate the math semantics from the call to any created instructions. 1668 IRBuilderBase::FastMathFlagGuard Guard(B); 1669 B.setFastMathFlags(Pow->getFastMathFlags()); 1670 // Evaluate special cases related to the base. 1671 1672 // pow(1.0, x) -> 1.0 1673 if (match(Base, m_FPOne())) 1674 return Base; 1675 1676 if (Value *Exp = replacePowWithExp(Pow, B)) 1677 return Exp; 1678 1679 // Evaluate special cases related to the exponent. 1680 1681 // pow(x, -1.0) -> 1.0 / x 1682 if (match(Expo, m_SpecificFP(-1.0))) 1683 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1684 1685 // pow(x, +/-0.0) -> 1.0 1686 if (match(Expo, m_AnyZeroFP())) 1687 return ConstantFP::get(Ty, 1.0); 1688 1689 // pow(x, 1.0) -> x 1690 if (match(Expo, m_FPOne())) 1691 return Base; 1692 1693 // pow(x, 2.0) -> x * x 1694 if (match(Expo, m_SpecificFP(2.0))) 1695 return B.CreateFMul(Base, Base, "square"); 1696 1697 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1698 return Sqrt; 1699 1700 // pow(x, n) -> x * x * x * ... 1701 const APFloat *ExpoF; 1702 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 1703 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 1704 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1705 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1706 // additional fmul. 1707 // TODO: This whole transformation should be backend specific (e.g. some 1708 // backends might prefer libcalls or the limit for the exponent might 1709 // be different) and it should also consider optimizing for size. 1710 APFloat LimF(ExpoF->getSemantics(), 33), 1711 ExpoA(abs(*ExpoF)); 1712 if (ExpoA < LimF) { 1713 // This transformation applies to integer or integer+0.5 exponents only. 1714 // For integer+0.5, we create a sqrt(Base) call. 1715 Value *Sqrt = nullptr; 1716 if (!ExpoA.isInteger()) { 1717 APFloat Expo2 = ExpoA; 1718 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1719 // is no floating point exception and the result is an integer, then 1720 // ExpoA == integer + 0.5 1721 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1722 return nullptr; 1723 1724 if (!Expo2.isInteger()) 1725 return nullptr; 1726 1727 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1728 Pow->doesNotAccessMemory(), M, B, TLI); 1729 if (!Sqrt) 1730 return nullptr; 1731 } 1732 1733 // We will memoize intermediate products of the Addition Chain. 1734 Value *InnerChain[33] = {nullptr}; 1735 InnerChain[1] = Base; 1736 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1737 1738 // We cannot readily convert a non-double type (like float) to a double. 1739 // So we first convert it to something which could be converted to double. 1740 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1741 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1742 1743 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1744 if (Sqrt) 1745 FMul = B.CreateFMul(FMul, Sqrt); 1746 1747 // If the exponent is negative, then get the reciprocal. 1748 if (ExpoF->isNegative()) 1749 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1750 1751 return FMul; 1752 } 1753 1754 APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false); 1755 // powf(x, n) -> powi(x, n) if n is a constant signed integer value 1756 if (ExpoF->isInteger() && 1757 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 1758 APFloat::opOK) { 1759 return copyFlags( 1760 *Pow, 1761 createPowWithIntegerExponent( 1762 Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo), 1763 M, B)); 1764 } 1765 } 1766 1767 // powf(x, itofp(y)) -> powi(x, y) 1768 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 1769 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1770 return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B)); 1771 } 1772 1773 // Shrink pow() to powf() if the arguments are single precision, 1774 // unless the result is expected to be double precision. 1775 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 1776 hasFloatVersion(Name)) { 1777 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, true)) 1778 return Shrunk; 1779 } 1780 1781 return nullptr; 1782 } 1783 1784 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 1785 Function *Callee = CI->getCalledFunction(); 1786 AttributeList Attrs; // Attributes are only meaningful on the original call 1787 StringRef Name = Callee->getName(); 1788 Value *Ret = nullptr; 1789 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 1790 hasFloatVersion(Name)) 1791 Ret = optimizeUnaryDoubleFP(CI, B, true); 1792 1793 Type *Ty = CI->getType(); 1794 Value *Op = CI->getArgOperand(0); 1795 1796 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize 1797 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize 1798 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 1799 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1800 if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) 1801 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 1802 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1803 B, Attrs); 1804 } 1805 1806 return Ret; 1807 } 1808 1809 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 1810 // If we can shrink the call to a float function rather than a double 1811 // function, do that first. 1812 Function *Callee = CI->getCalledFunction(); 1813 StringRef Name = Callee->getName(); 1814 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1815 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1816 return Ret; 1817 1818 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 1819 // the intrinsics for improved optimization (for example, vectorization). 1820 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 1821 // From the C standard draft WG14/N1256: 1822 // "Ideally, fmax would be sensitive to the sign of zero, for example 1823 // fmax(-0.0, +0.0) would return +0; however, implementation in software 1824 // might be impractical." 1825 IRBuilderBase::FastMathFlagGuard Guard(B); 1826 FastMathFlags FMF = CI->getFastMathFlags(); 1827 FMF.setNoSignedZeros(); 1828 B.setFastMathFlags(FMF); 1829 1830 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 1831 : Intrinsic::maxnum; 1832 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 1833 return copyFlags( 1834 *CI, B.CreateCall(F, {CI->getArgOperand(0), CI->getArgOperand(1)})); 1835 } 1836 1837 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 1838 Function *LogFn = Log->getCalledFunction(); 1839 AttributeList Attrs; // Attributes are only meaningful on the original call 1840 StringRef LogNm = LogFn->getName(); 1841 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 1842 Module *Mod = Log->getModule(); 1843 Type *Ty = Log->getType(); 1844 Value *Ret = nullptr; 1845 1846 if (UnsafeFPShrink && hasFloatVersion(LogNm)) 1847 Ret = optimizeUnaryDoubleFP(Log, B, true); 1848 1849 // The earlier call must also be 'fast' in order to do these transforms. 1850 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 1851 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 1852 return Ret; 1853 1854 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 1855 1856 // This is only applicable to log(), log2(), log10(). 1857 if (TLI->getLibFunc(LogNm, LogLb)) 1858 switch (LogLb) { 1859 case LibFunc_logf: 1860 LogID = Intrinsic::log; 1861 ExpLb = LibFunc_expf; 1862 Exp2Lb = LibFunc_exp2f; 1863 Exp10Lb = LibFunc_exp10f; 1864 PowLb = LibFunc_powf; 1865 break; 1866 case LibFunc_log: 1867 LogID = Intrinsic::log; 1868 ExpLb = LibFunc_exp; 1869 Exp2Lb = LibFunc_exp2; 1870 Exp10Lb = LibFunc_exp10; 1871 PowLb = LibFunc_pow; 1872 break; 1873 case LibFunc_logl: 1874 LogID = Intrinsic::log; 1875 ExpLb = LibFunc_expl; 1876 Exp2Lb = LibFunc_exp2l; 1877 Exp10Lb = LibFunc_exp10l; 1878 PowLb = LibFunc_powl; 1879 break; 1880 case LibFunc_log2f: 1881 LogID = Intrinsic::log2; 1882 ExpLb = LibFunc_expf; 1883 Exp2Lb = LibFunc_exp2f; 1884 Exp10Lb = LibFunc_exp10f; 1885 PowLb = LibFunc_powf; 1886 break; 1887 case LibFunc_log2: 1888 LogID = Intrinsic::log2; 1889 ExpLb = LibFunc_exp; 1890 Exp2Lb = LibFunc_exp2; 1891 Exp10Lb = LibFunc_exp10; 1892 PowLb = LibFunc_pow; 1893 break; 1894 case LibFunc_log2l: 1895 LogID = Intrinsic::log2; 1896 ExpLb = LibFunc_expl; 1897 Exp2Lb = LibFunc_exp2l; 1898 Exp10Lb = LibFunc_exp10l; 1899 PowLb = LibFunc_powl; 1900 break; 1901 case LibFunc_log10f: 1902 LogID = Intrinsic::log10; 1903 ExpLb = LibFunc_expf; 1904 Exp2Lb = LibFunc_exp2f; 1905 Exp10Lb = LibFunc_exp10f; 1906 PowLb = LibFunc_powf; 1907 break; 1908 case LibFunc_log10: 1909 LogID = Intrinsic::log10; 1910 ExpLb = LibFunc_exp; 1911 Exp2Lb = LibFunc_exp2; 1912 Exp10Lb = LibFunc_exp10; 1913 PowLb = LibFunc_pow; 1914 break; 1915 case LibFunc_log10l: 1916 LogID = Intrinsic::log10; 1917 ExpLb = LibFunc_expl; 1918 Exp2Lb = LibFunc_exp2l; 1919 Exp10Lb = LibFunc_exp10l; 1920 PowLb = LibFunc_powl; 1921 break; 1922 default: 1923 return Ret; 1924 } 1925 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 1926 LogID == Intrinsic::log10) { 1927 if (Ty->getScalarType()->isFloatTy()) { 1928 ExpLb = LibFunc_expf; 1929 Exp2Lb = LibFunc_exp2f; 1930 Exp10Lb = LibFunc_exp10f; 1931 PowLb = LibFunc_powf; 1932 } else if (Ty->getScalarType()->isDoubleTy()) { 1933 ExpLb = LibFunc_exp; 1934 Exp2Lb = LibFunc_exp2; 1935 Exp10Lb = LibFunc_exp10; 1936 PowLb = LibFunc_pow; 1937 } else 1938 return Ret; 1939 } else 1940 return Ret; 1941 1942 IRBuilderBase::FastMathFlagGuard Guard(B); 1943 B.setFastMathFlags(FastMathFlags::getFast()); 1944 1945 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 1946 LibFunc ArgLb = NotLibFunc; 1947 TLI->getLibFunc(*Arg, ArgLb); 1948 1949 // log(pow(x,y)) -> y*log(x) 1950 if (ArgLb == PowLb || ArgID == Intrinsic::pow) { 1951 Value *LogX = 1952 Log->doesNotAccessMemory() 1953 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 1954 Arg->getOperand(0), "log") 1955 : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs); 1956 Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul"); 1957 // Since pow() may have side effects, e.g. errno, 1958 // dead code elimination may not be trusted to remove it. 1959 substituteInParent(Arg, MulY); 1960 return MulY; 1961 } 1962 1963 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 1964 // TODO: There is no exp10() intrinsic yet. 1965 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 1966 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 1967 Constant *Eul; 1968 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 1969 // FIXME: Add more precise value of e for long double. 1970 Eul = ConstantFP::get(Log->getType(), numbers::e); 1971 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 1972 Eul = ConstantFP::get(Log->getType(), 2.0); 1973 else 1974 Eul = ConstantFP::get(Log->getType(), 10.0); 1975 Value *LogE = Log->doesNotAccessMemory() 1976 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 1977 Eul, "log") 1978 : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs); 1979 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 1980 // Since exp() may have side effects, e.g. errno, 1981 // dead code elimination may not be trusted to remove it. 1982 substituteInParent(Arg, MulY); 1983 return MulY; 1984 } 1985 1986 return Ret; 1987 } 1988 1989 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 1990 Function *Callee = CI->getCalledFunction(); 1991 Value *Ret = nullptr; 1992 // TODO: Once we have a way (other than checking for the existince of the 1993 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 1994 // condition below. 1995 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 1996 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1997 Ret = optimizeUnaryDoubleFP(CI, B, true); 1998 1999 if (!CI->isFast()) 2000 return Ret; 2001 2002 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 2003 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 2004 return Ret; 2005 2006 // We're looking for a repeated factor in a multiplication tree, 2007 // so we can do this fold: sqrt(x * x) -> fabs(x); 2008 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 2009 Value *Op0 = I->getOperand(0); 2010 Value *Op1 = I->getOperand(1); 2011 Value *RepeatOp = nullptr; 2012 Value *OtherOp = nullptr; 2013 if (Op0 == Op1) { 2014 // Simple match: the operands of the multiply are identical. 2015 RepeatOp = Op0; 2016 } else { 2017 // Look for a more complicated pattern: one of the operands is itself 2018 // a multiply, so search for a common factor in that multiply. 2019 // Note: We don't bother looking any deeper than this first level or for 2020 // variations of this pattern because instcombine's visitFMUL and/or the 2021 // reassociation pass should give us this form. 2022 Value *OtherMul0, *OtherMul1; 2023 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 2024 // Pattern: sqrt((x * y) * z) 2025 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 2026 // Matched: sqrt((x * x) * z) 2027 RepeatOp = OtherMul0; 2028 OtherOp = Op1; 2029 } 2030 } 2031 } 2032 if (!RepeatOp) 2033 return Ret; 2034 2035 // Fast math flags for any created instructions should match the sqrt 2036 // and multiply. 2037 IRBuilderBase::FastMathFlagGuard Guard(B); 2038 B.setFastMathFlags(I->getFastMathFlags()); 2039 2040 // If we found a repeated factor, hoist it out of the square root and 2041 // replace it with the fabs of that factor. 2042 Module *M = Callee->getParent(); 2043 Type *ArgType = I->getType(); 2044 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 2045 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 2046 if (OtherOp) { 2047 // If we found a non-repeated factor, we still need to get its square 2048 // root. We then multiply that by the value that was simplified out 2049 // of the square root calculation. 2050 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 2051 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 2052 return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall)); 2053 } 2054 return copyFlags(*CI, FabsCall); 2055 } 2056 2057 // TODO: Generalize to handle any trig function and its inverse. 2058 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) { 2059 Function *Callee = CI->getCalledFunction(); 2060 Value *Ret = nullptr; 2061 StringRef Name = Callee->getName(); 2062 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 2063 Ret = optimizeUnaryDoubleFP(CI, B, true); 2064 2065 Value *Op1 = CI->getArgOperand(0); 2066 auto *OpC = dyn_cast<CallInst>(Op1); 2067 if (!OpC) 2068 return Ret; 2069 2070 // Both calls must be 'fast' in order to remove them. 2071 if (!CI->isFast() || !OpC->isFast()) 2072 return Ret; 2073 2074 // tan(atan(x)) -> x 2075 // tanf(atanf(x)) -> x 2076 // tanl(atanl(x)) -> x 2077 LibFunc Func; 2078 Function *F = OpC->getCalledFunction(); 2079 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 2080 ((Func == LibFunc_atan && Callee->getName() == "tan") || 2081 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 2082 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 2083 Ret = OpC->getArgOperand(0); 2084 return Ret; 2085 } 2086 2087 static bool isTrigLibCall(CallInst *CI) { 2088 // We can only hope to do anything useful if we can ignore things like errno 2089 // and floating-point exceptions. 2090 // We already checked the prototype. 2091 return CI->hasFnAttr(Attribute::NoUnwind) && 2092 CI->hasFnAttr(Attribute::ReadNone); 2093 } 2094 2095 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2096 bool UseFloat, Value *&Sin, Value *&Cos, 2097 Value *&SinCos) { 2098 Type *ArgTy = Arg->getType(); 2099 Type *ResTy; 2100 StringRef Name; 2101 2102 Triple T(OrigCallee->getParent()->getTargetTriple()); 2103 if (UseFloat) { 2104 Name = "__sincospif_stret"; 2105 2106 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2107 // x86_64 can't use {float, float} since that would be returned in both 2108 // xmm0 and xmm1, which isn't what a real struct would do. 2109 ResTy = T.getArch() == Triple::x86_64 2110 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2111 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2112 } else { 2113 Name = "__sincospi_stret"; 2114 ResTy = StructType::get(ArgTy, ArgTy); 2115 } 2116 2117 Module *M = OrigCallee->getParent(); 2118 FunctionCallee Callee = 2119 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); 2120 2121 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2122 // If the argument is an instruction, it must dominate all uses so put our 2123 // sincos call there. 2124 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2125 } else { 2126 // Otherwise (e.g. for a constant) the beginning of the function is as 2127 // good a place as any. 2128 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2129 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2130 } 2131 2132 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2133 2134 if (SinCos->getType()->isStructTy()) { 2135 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2136 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2137 } else { 2138 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2139 "sinpi"); 2140 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2141 "cospi"); 2142 } 2143 } 2144 2145 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) { 2146 // Make sure the prototype is as expected, otherwise the rest of the 2147 // function is probably invalid and likely to abort. 2148 if (!isTrigLibCall(CI)) 2149 return nullptr; 2150 2151 Value *Arg = CI->getArgOperand(0); 2152 SmallVector<CallInst *, 1> SinCalls; 2153 SmallVector<CallInst *, 1> CosCalls; 2154 SmallVector<CallInst *, 1> SinCosCalls; 2155 2156 bool IsFloat = Arg->getType()->isFloatTy(); 2157 2158 // Look for all compatible sinpi, cospi and sincospi calls with the same 2159 // argument. If there are enough (in some sense) we can make the 2160 // substitution. 2161 Function *F = CI->getFunction(); 2162 for (User *U : Arg->users()) 2163 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2164 2165 // It's only worthwhile if both sinpi and cospi are actually used. 2166 if (SinCalls.empty() || CosCalls.empty()) 2167 return nullptr; 2168 2169 Value *Sin, *Cos, *SinCos; 2170 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 2171 2172 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2173 Value *Res) { 2174 for (CallInst *C : Calls) 2175 replaceAllUsesWith(C, Res); 2176 }; 2177 2178 replaceTrigInsts(SinCalls, Sin); 2179 replaceTrigInsts(CosCalls, Cos); 2180 replaceTrigInsts(SinCosCalls, SinCos); 2181 2182 return nullptr; 2183 } 2184 2185 void LibCallSimplifier::classifyArgUse( 2186 Value *Val, Function *F, bool IsFloat, 2187 SmallVectorImpl<CallInst *> &SinCalls, 2188 SmallVectorImpl<CallInst *> &CosCalls, 2189 SmallVectorImpl<CallInst *> &SinCosCalls) { 2190 CallInst *CI = dyn_cast<CallInst>(Val); 2191 2192 if (!CI || CI->use_empty()) 2193 return; 2194 2195 // Don't consider calls in other functions. 2196 if (CI->getFunction() != F) 2197 return; 2198 2199 Function *Callee = CI->getCalledFunction(); 2200 LibFunc Func; 2201 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 2202 !isTrigLibCall(CI)) 2203 return; 2204 2205 if (IsFloat) { 2206 if (Func == LibFunc_sinpif) 2207 SinCalls.push_back(CI); 2208 else if (Func == LibFunc_cospif) 2209 CosCalls.push_back(CI); 2210 else if (Func == LibFunc_sincospif_stret) 2211 SinCosCalls.push_back(CI); 2212 } else { 2213 if (Func == LibFunc_sinpi) 2214 SinCalls.push_back(CI); 2215 else if (Func == LibFunc_cospi) 2216 CosCalls.push_back(CI); 2217 else if (Func == LibFunc_sincospi_stret) 2218 SinCosCalls.push_back(CI); 2219 } 2220 } 2221 2222 //===----------------------------------------------------------------------===// 2223 // Integer Library Call Optimizations 2224 //===----------------------------------------------------------------------===// 2225 2226 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 2227 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 2228 Value *Op = CI->getArgOperand(0); 2229 Type *ArgType = Op->getType(); 2230 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2231 Intrinsic::cttz, ArgType); 2232 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 2233 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 2234 V = B.CreateIntCast(V, B.getInt32Ty(), false); 2235 2236 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 2237 return B.CreateSelect(Cond, V, B.getInt32(0)); 2238 } 2239 2240 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 2241 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 2242 Value *Op = CI->getArgOperand(0); 2243 Type *ArgType = Op->getType(); 2244 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2245 Intrinsic::ctlz, ArgType); 2246 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 2247 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 2248 V); 2249 return B.CreateIntCast(V, CI->getType(), false); 2250 } 2251 2252 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 2253 // abs(x) -> x <s 0 ? -x : x 2254 // The negation has 'nsw' because abs of INT_MIN is undefined. 2255 Value *X = CI->getArgOperand(0); 2256 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 2257 Value *NegX = B.CreateNSWNeg(X, "neg"); 2258 return B.CreateSelect(IsNeg, NegX, X); 2259 } 2260 2261 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 2262 // isdigit(c) -> (c-'0') <u 10 2263 Value *Op = CI->getArgOperand(0); 2264 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 2265 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 2266 return B.CreateZExt(Op, CI->getType()); 2267 } 2268 2269 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 2270 // isascii(c) -> c <u 128 2271 Value *Op = CI->getArgOperand(0); 2272 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 2273 return B.CreateZExt(Op, CI->getType()); 2274 } 2275 2276 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 2277 // toascii(c) -> c & 0x7f 2278 return B.CreateAnd(CI->getArgOperand(0), 2279 ConstantInt::get(CI->getType(), 0x7F)); 2280 } 2281 2282 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 2283 StringRef Str; 2284 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2285 return nullptr; 2286 2287 return convertStrToNumber(CI, Str, 10); 2288 } 2289 2290 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) { 2291 StringRef Str; 2292 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2293 return nullptr; 2294 2295 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 2296 return nullptr; 2297 2298 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2299 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 2300 } 2301 2302 return nullptr; 2303 } 2304 2305 //===----------------------------------------------------------------------===// 2306 // Formatting and IO Library Call Optimizations 2307 //===----------------------------------------------------------------------===// 2308 2309 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2310 2311 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 2312 int StreamArg) { 2313 Function *Callee = CI->getCalledFunction(); 2314 // Error reporting calls should be cold, mark them as such. 2315 // This applies even to non-builtin calls: it is only a hint and applies to 2316 // functions that the frontend might not understand as builtins. 2317 2318 // This heuristic was suggested in: 2319 // Improving Static Branch Prediction in a Compiler 2320 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2321 // Proceedings of PACT'98, Oct. 1998, IEEE 2322 if (!CI->hasFnAttr(Attribute::Cold) && 2323 isReportingError(Callee, CI, StreamArg)) { 2324 CI->addFnAttr(Attribute::Cold); 2325 } 2326 2327 return nullptr; 2328 } 2329 2330 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2331 if (!Callee || !Callee->isDeclaration()) 2332 return false; 2333 2334 if (StreamArg < 0) 2335 return true; 2336 2337 // These functions might be considered cold, but only if their stream 2338 // argument is stderr. 2339 2340 if (StreamArg >= (int)CI->arg_size()) 2341 return false; 2342 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2343 if (!LI) 2344 return false; 2345 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2346 if (!GV || !GV->isDeclaration()) 2347 return false; 2348 return GV->getName() == "stderr"; 2349 } 2350 2351 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 2352 // Check for a fixed format string. 2353 StringRef FormatStr; 2354 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2355 return nullptr; 2356 2357 // Empty format string -> noop. 2358 if (FormatStr.empty()) // Tolerate printf's declared void. 2359 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2360 2361 // Do not do any of the following transformations if the printf return value 2362 // is used, in general the printf return value is not compatible with either 2363 // putchar() or puts(). 2364 if (!CI->use_empty()) 2365 return nullptr; 2366 2367 // printf("x") -> putchar('x'), even for "%" and "%%". 2368 if (FormatStr.size() == 1 || FormatStr == "%%") 2369 return copyFlags(*CI, emitPutChar(B.getInt32(FormatStr[0]), B, TLI)); 2370 2371 // Try to remove call or emit putchar/puts. 2372 if (FormatStr == "%s" && CI->arg_size() > 1) { 2373 StringRef OperandStr; 2374 if (!getConstantStringInfo(CI->getOperand(1), OperandStr)) 2375 return nullptr; 2376 // printf("%s", "") --> NOP 2377 if (OperandStr.empty()) 2378 return (Value *)CI; 2379 // printf("%s", "a") --> putchar('a') 2380 if (OperandStr.size() == 1) 2381 return copyFlags(*CI, emitPutChar(B.getInt32(OperandStr[0]), B, TLI)); 2382 // printf("%s", str"\n") --> puts(str) 2383 if (OperandStr.back() == '\n') { 2384 OperandStr = OperandStr.drop_back(); 2385 Value *GV = B.CreateGlobalString(OperandStr, "str"); 2386 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2387 } 2388 return nullptr; 2389 } 2390 2391 // printf("foo\n") --> puts("foo") 2392 if (FormatStr.back() == '\n' && 2393 !FormatStr.contains('%')) { // No format characters. 2394 // Create a string literal with no \n on it. We expect the constant merge 2395 // pass to be run after this pass, to merge duplicate strings. 2396 FormatStr = FormatStr.drop_back(); 2397 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2398 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2399 } 2400 2401 // Optimize specific format strings. 2402 // printf("%c", chr) --> putchar(chr) 2403 if (FormatStr == "%c" && CI->arg_size() > 1 && 2404 CI->getArgOperand(1)->getType()->isIntegerTy()) 2405 return copyFlags(*CI, emitPutChar(CI->getArgOperand(1), B, TLI)); 2406 2407 // printf("%s\n", str) --> puts(str) 2408 if (FormatStr == "%s\n" && CI->arg_size() > 1 && 2409 CI->getArgOperand(1)->getType()->isPointerTy()) 2410 return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI)); 2411 return nullptr; 2412 } 2413 2414 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 2415 2416 Function *Callee = CI->getCalledFunction(); 2417 FunctionType *FT = Callee->getFunctionType(); 2418 if (Value *V = optimizePrintFString(CI, B)) { 2419 return V; 2420 } 2421 2422 // printf(format, ...) -> iprintf(format, ...) if no floating point 2423 // arguments. 2424 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2425 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2426 FunctionCallee IPrintFFn = 2427 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2428 CallInst *New = cast<CallInst>(CI->clone()); 2429 New->setCalledFunction(IPrintFFn); 2430 B.Insert(New); 2431 return New; 2432 } 2433 2434 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2435 // arguments. 2436 if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) { 2437 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2438 auto SmallPrintFFn = 2439 M->getOrInsertFunction(TLI->getName(LibFunc_small_printf), 2440 FT, Callee->getAttributes()); 2441 CallInst *New = cast<CallInst>(CI->clone()); 2442 New->setCalledFunction(SmallPrintFFn); 2443 B.Insert(New); 2444 return New; 2445 } 2446 2447 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2448 return nullptr; 2449 } 2450 2451 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 2452 IRBuilderBase &B) { 2453 // Check for a fixed format string. 2454 StringRef FormatStr; 2455 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2456 return nullptr; 2457 2458 // If we just have a format string (nothing else crazy) transform it. 2459 Value *Dest = CI->getArgOperand(0); 2460 if (CI->arg_size() == 2) { 2461 // Make sure there's no % in the constant array. We could try to handle 2462 // %% -> % in the future if we cared. 2463 if (FormatStr.contains('%')) 2464 return nullptr; // we found a format specifier, bail out. 2465 2466 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2467 B.CreateMemCpy( 2468 Dest, Align(1), CI->getArgOperand(1), Align(1), 2469 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2470 FormatStr.size() + 1)); // Copy the null byte. 2471 return ConstantInt::get(CI->getType(), FormatStr.size()); 2472 } 2473 2474 // The remaining optimizations require the format string to be "%s" or "%c" 2475 // and have an extra operand. 2476 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 2477 return nullptr; 2478 2479 // Decode the second character of the format string. 2480 if (FormatStr[1] == 'c') { 2481 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2482 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2483 return nullptr; 2484 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2485 Value *Ptr = castToCStr(Dest, B); 2486 B.CreateStore(V, Ptr); 2487 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2488 B.CreateStore(B.getInt8(0), Ptr); 2489 2490 return ConstantInt::get(CI->getType(), 1); 2491 } 2492 2493 if (FormatStr[1] == 's') { 2494 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2495 // strlen(str)+1) 2496 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2497 return nullptr; 2498 2499 if (CI->use_empty()) 2500 // sprintf(dest, "%s", str) -> strcpy(dest, str) 2501 return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI)); 2502 2503 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 2504 if (SrcLen) { 2505 B.CreateMemCpy( 2506 Dest, Align(1), CI->getArgOperand(2), Align(1), 2507 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 2508 // Returns total number of characters written without null-character. 2509 return ConstantInt::get(CI->getType(), SrcLen - 1); 2510 } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) { 2511 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 2512 // Handle mismatched pointer types (goes away with typeless pointers?). 2513 V = B.CreatePointerCast(V, B.getInt8PtrTy()); 2514 Dest = B.CreatePointerCast(Dest, B.getInt8PtrTy()); 2515 Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest); 2516 return B.CreateIntCast(PtrDiff, CI->getType(), false); 2517 } 2518 2519 bool OptForSize = CI->getFunction()->hasOptSize() || 2520 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2521 PGSOQueryType::IRPass); 2522 if (OptForSize) 2523 return nullptr; 2524 2525 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2526 if (!Len) 2527 return nullptr; 2528 Value *IncLen = 2529 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2530 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen); 2531 2532 // The sprintf result is the unincremented number of bytes in the string. 2533 return B.CreateIntCast(Len, CI->getType(), false); 2534 } 2535 return nullptr; 2536 } 2537 2538 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 2539 Function *Callee = CI->getCalledFunction(); 2540 FunctionType *FT = Callee->getFunctionType(); 2541 if (Value *V = optimizeSPrintFString(CI, B)) { 2542 return V; 2543 } 2544 2545 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2546 // point arguments. 2547 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2548 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2549 FunctionCallee SIPrintFFn = 2550 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2551 CallInst *New = cast<CallInst>(CI->clone()); 2552 New->setCalledFunction(SIPrintFFn); 2553 B.Insert(New); 2554 return New; 2555 } 2556 2557 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2558 // floating point arguments. 2559 if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) { 2560 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2561 auto SmallSPrintFFn = 2562 M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf), 2563 FT, Callee->getAttributes()); 2564 CallInst *New = cast<CallInst>(CI->clone()); 2565 New->setCalledFunction(SmallSPrintFFn); 2566 B.Insert(New); 2567 return New; 2568 } 2569 2570 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 2571 return nullptr; 2572 } 2573 2574 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 2575 IRBuilderBase &B) { 2576 // Check for size 2577 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2578 if (!Size) 2579 return nullptr; 2580 2581 uint64_t N = Size->getZExtValue(); 2582 // Check for a fixed format string. 2583 StringRef FormatStr; 2584 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2585 return nullptr; 2586 2587 // If we just have a format string (nothing else crazy) transform it. 2588 if (CI->arg_size() == 3) { 2589 // Make sure there's no % in the constant array. We could try to handle 2590 // %% -> % in the future if we cared. 2591 if (FormatStr.contains('%')) 2592 return nullptr; // we found a format specifier, bail out. 2593 2594 if (N == 0) 2595 return ConstantInt::get(CI->getType(), FormatStr.size()); 2596 else if (N < FormatStr.size() + 1) 2597 return nullptr; 2598 2599 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2600 // strlen(fmt)+1) 2601 copyFlags( 2602 *CI, 2603 B.CreateMemCpy( 2604 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2605 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2606 FormatStr.size() + 1))); // Copy the null byte. 2607 return ConstantInt::get(CI->getType(), FormatStr.size()); 2608 } 2609 2610 // The remaining optimizations require the format string to be "%s" or "%c" 2611 // and have an extra operand. 2612 if (FormatStr.size() == 2 && FormatStr[0] == '%' && CI->arg_size() == 4) { 2613 2614 // Decode the second character of the format string. 2615 if (FormatStr[1] == 'c') { 2616 if (N == 0) 2617 return ConstantInt::get(CI->getType(), 1); 2618 else if (N == 1) 2619 return nullptr; 2620 2621 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2622 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2623 return nullptr; 2624 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2625 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2626 B.CreateStore(V, Ptr); 2627 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2628 B.CreateStore(B.getInt8(0), Ptr); 2629 2630 return ConstantInt::get(CI->getType(), 1); 2631 } 2632 2633 if (FormatStr[1] == 's') { 2634 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2635 StringRef Str; 2636 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2637 return nullptr; 2638 2639 if (N == 0) 2640 return ConstantInt::get(CI->getType(), Str.size()); 2641 else if (N < Str.size() + 1) 2642 return nullptr; 2643 2644 copyFlags( 2645 *CI, B.CreateMemCpy(CI->getArgOperand(0), Align(1), 2646 CI->getArgOperand(3), Align(1), 2647 ConstantInt::get(CI->getType(), Str.size() + 1))); 2648 2649 // The snprintf result is the unincremented number of bytes in the string. 2650 return ConstantInt::get(CI->getType(), Str.size()); 2651 } 2652 } 2653 return nullptr; 2654 } 2655 2656 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 2657 if (Value *V = optimizeSnPrintFString(CI, B)) { 2658 return V; 2659 } 2660 2661 if (isKnownNonZero(CI->getOperand(1), DL)) 2662 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2663 return nullptr; 2664 } 2665 2666 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 2667 IRBuilderBase &B) { 2668 optimizeErrorReporting(CI, B, 0); 2669 2670 // All the optimizations depend on the format string. 2671 StringRef FormatStr; 2672 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2673 return nullptr; 2674 2675 // Do not do any of the following transformations if the fprintf return 2676 // value is used, in general the fprintf return value is not compatible 2677 // with fwrite(), fputc() or fputs(). 2678 if (!CI->use_empty()) 2679 return nullptr; 2680 2681 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2682 if (CI->arg_size() == 2) { 2683 // Could handle %% -> % if we cared. 2684 if (FormatStr.contains('%')) 2685 return nullptr; // We found a format specifier. 2686 2687 return copyFlags( 2688 *CI, emitFWrite(CI->getArgOperand(1), 2689 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2690 FormatStr.size()), 2691 CI->getArgOperand(0), B, DL, TLI)); 2692 } 2693 2694 // The remaining optimizations require the format string to be "%s" or "%c" 2695 // and have an extra operand. 2696 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 2697 return nullptr; 2698 2699 // Decode the second character of the format string. 2700 if (FormatStr[1] == 'c') { 2701 // fprintf(F, "%c", chr) --> fputc(chr, F) 2702 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2703 return nullptr; 2704 return copyFlags( 2705 *CI, emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 2706 } 2707 2708 if (FormatStr[1] == 's') { 2709 // fprintf(F, "%s", str) --> fputs(str, F) 2710 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2711 return nullptr; 2712 return copyFlags( 2713 *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 2714 } 2715 return nullptr; 2716 } 2717 2718 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 2719 Function *Callee = CI->getCalledFunction(); 2720 FunctionType *FT = Callee->getFunctionType(); 2721 if (Value *V = optimizeFPrintFString(CI, B)) { 2722 return V; 2723 } 2724 2725 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2726 // floating point arguments. 2727 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2728 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2729 FunctionCallee FIPrintFFn = 2730 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2731 CallInst *New = cast<CallInst>(CI->clone()); 2732 New->setCalledFunction(FIPrintFFn); 2733 B.Insert(New); 2734 return New; 2735 } 2736 2737 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2738 // 128-bit floating point arguments. 2739 if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) { 2740 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2741 auto SmallFPrintFFn = 2742 M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf), 2743 FT, Callee->getAttributes()); 2744 CallInst *New = cast<CallInst>(CI->clone()); 2745 New->setCalledFunction(SmallFPrintFFn); 2746 B.Insert(New); 2747 return New; 2748 } 2749 2750 return nullptr; 2751 } 2752 2753 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 2754 optimizeErrorReporting(CI, B, 3); 2755 2756 // Get the element size and count. 2757 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2758 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2759 if (SizeC && CountC) { 2760 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2761 2762 // If this is writing zero records, remove the call (it's a noop). 2763 if (Bytes == 0) 2764 return ConstantInt::get(CI->getType(), 0); 2765 2766 // If this is writing one byte, turn it into fputc. 2767 // This optimisation is only valid, if the return value is unused. 2768 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2769 Value *Char = B.CreateLoad(B.getInt8Ty(), 2770 castToCStr(CI->getArgOperand(0), B), "char"); 2771 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2772 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2773 } 2774 } 2775 2776 return nullptr; 2777 } 2778 2779 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 2780 optimizeErrorReporting(CI, B, 1); 2781 2782 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2783 // requires more arguments and thus extra MOVs are required. 2784 bool OptForSize = CI->getFunction()->hasOptSize() || 2785 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2786 PGSOQueryType::IRPass); 2787 if (OptForSize) 2788 return nullptr; 2789 2790 // We can't optimize if return value is used. 2791 if (!CI->use_empty()) 2792 return nullptr; 2793 2794 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2795 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2796 if (!Len) 2797 return nullptr; 2798 2799 // Known to have no uses (see above). 2800 return copyFlags( 2801 *CI, 2802 emitFWrite(CI->getArgOperand(0), 2803 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2804 CI->getArgOperand(1), B, DL, TLI)); 2805 } 2806 2807 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 2808 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2809 if (!CI->use_empty()) 2810 return nullptr; 2811 2812 // Check for a constant string. 2813 // puts("") -> putchar('\n') 2814 StringRef Str; 2815 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 2816 return copyFlags(*CI, emitPutChar(B.getInt32('\n'), B, TLI)); 2817 2818 return nullptr; 2819 } 2820 2821 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 2822 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 2823 return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1), 2824 CI->getArgOperand(0), Align(1), 2825 CI->getArgOperand(2))); 2826 } 2827 2828 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2829 LibFunc Func; 2830 SmallString<20> FloatFuncName = FuncName; 2831 FloatFuncName += 'f'; 2832 if (TLI->getLibFunc(FloatFuncName, Func)) 2833 return TLI->has(Func); 2834 return false; 2835 } 2836 2837 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2838 IRBuilderBase &Builder) { 2839 LibFunc Func; 2840 Function *Callee = CI->getCalledFunction(); 2841 // Check for string/memory library functions. 2842 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2843 // Make sure we never change the calling convention. 2844 assert( 2845 (ignoreCallingConv(Func) || 2846 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) && 2847 "Optimizing string/memory libcall would change the calling convention"); 2848 switch (Func) { 2849 case LibFunc_strcat: 2850 return optimizeStrCat(CI, Builder); 2851 case LibFunc_strncat: 2852 return optimizeStrNCat(CI, Builder); 2853 case LibFunc_strchr: 2854 return optimizeStrChr(CI, Builder); 2855 case LibFunc_strrchr: 2856 return optimizeStrRChr(CI, Builder); 2857 case LibFunc_strcmp: 2858 return optimizeStrCmp(CI, Builder); 2859 case LibFunc_strncmp: 2860 return optimizeStrNCmp(CI, Builder); 2861 case LibFunc_strcpy: 2862 return optimizeStrCpy(CI, Builder); 2863 case LibFunc_stpcpy: 2864 return optimizeStpCpy(CI, Builder); 2865 case LibFunc_strncpy: 2866 return optimizeStrNCpy(CI, Builder); 2867 case LibFunc_strlen: 2868 return optimizeStrLen(CI, Builder); 2869 case LibFunc_strpbrk: 2870 return optimizeStrPBrk(CI, Builder); 2871 case LibFunc_strndup: 2872 return optimizeStrNDup(CI, Builder); 2873 case LibFunc_strtol: 2874 case LibFunc_strtod: 2875 case LibFunc_strtof: 2876 case LibFunc_strtoul: 2877 case LibFunc_strtoll: 2878 case LibFunc_strtold: 2879 case LibFunc_strtoull: 2880 return optimizeStrTo(CI, Builder); 2881 case LibFunc_strspn: 2882 return optimizeStrSpn(CI, Builder); 2883 case LibFunc_strcspn: 2884 return optimizeStrCSpn(CI, Builder); 2885 case LibFunc_strstr: 2886 return optimizeStrStr(CI, Builder); 2887 case LibFunc_memchr: 2888 return optimizeMemChr(CI, Builder); 2889 case LibFunc_memrchr: 2890 return optimizeMemRChr(CI, Builder); 2891 case LibFunc_bcmp: 2892 return optimizeBCmp(CI, Builder); 2893 case LibFunc_memcmp: 2894 return optimizeMemCmp(CI, Builder); 2895 case LibFunc_memcpy: 2896 return optimizeMemCpy(CI, Builder); 2897 case LibFunc_memccpy: 2898 return optimizeMemCCpy(CI, Builder); 2899 case LibFunc_mempcpy: 2900 return optimizeMemPCpy(CI, Builder); 2901 case LibFunc_memmove: 2902 return optimizeMemMove(CI, Builder); 2903 case LibFunc_memset: 2904 return optimizeMemSet(CI, Builder); 2905 case LibFunc_realloc: 2906 return optimizeRealloc(CI, Builder); 2907 case LibFunc_wcslen: 2908 return optimizeWcslen(CI, Builder); 2909 case LibFunc_bcopy: 2910 return optimizeBCopy(CI, Builder); 2911 default: 2912 break; 2913 } 2914 } 2915 return nullptr; 2916 } 2917 2918 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2919 LibFunc Func, 2920 IRBuilderBase &Builder) { 2921 // Don't optimize calls that require strict floating point semantics. 2922 if (CI->isStrictFP()) 2923 return nullptr; 2924 2925 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 2926 return V; 2927 2928 switch (Func) { 2929 case LibFunc_sinpif: 2930 case LibFunc_sinpi: 2931 case LibFunc_cospif: 2932 case LibFunc_cospi: 2933 return optimizeSinCosPi(CI, Builder); 2934 case LibFunc_powf: 2935 case LibFunc_pow: 2936 case LibFunc_powl: 2937 return optimizePow(CI, Builder); 2938 case LibFunc_exp2l: 2939 case LibFunc_exp2: 2940 case LibFunc_exp2f: 2941 return optimizeExp2(CI, Builder); 2942 case LibFunc_fabsf: 2943 case LibFunc_fabs: 2944 case LibFunc_fabsl: 2945 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2946 case LibFunc_sqrtf: 2947 case LibFunc_sqrt: 2948 case LibFunc_sqrtl: 2949 return optimizeSqrt(CI, Builder); 2950 case LibFunc_logf: 2951 case LibFunc_log: 2952 case LibFunc_logl: 2953 case LibFunc_log10f: 2954 case LibFunc_log10: 2955 case LibFunc_log10l: 2956 case LibFunc_log1pf: 2957 case LibFunc_log1p: 2958 case LibFunc_log1pl: 2959 case LibFunc_log2f: 2960 case LibFunc_log2: 2961 case LibFunc_log2l: 2962 case LibFunc_logbf: 2963 case LibFunc_logb: 2964 case LibFunc_logbl: 2965 return optimizeLog(CI, Builder); 2966 case LibFunc_tan: 2967 case LibFunc_tanf: 2968 case LibFunc_tanl: 2969 return optimizeTan(CI, Builder); 2970 case LibFunc_ceil: 2971 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2972 case LibFunc_floor: 2973 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2974 case LibFunc_round: 2975 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2976 case LibFunc_roundeven: 2977 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 2978 case LibFunc_nearbyint: 2979 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2980 case LibFunc_rint: 2981 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2982 case LibFunc_trunc: 2983 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2984 case LibFunc_acos: 2985 case LibFunc_acosh: 2986 case LibFunc_asin: 2987 case LibFunc_asinh: 2988 case LibFunc_atan: 2989 case LibFunc_atanh: 2990 case LibFunc_cbrt: 2991 case LibFunc_cosh: 2992 case LibFunc_exp: 2993 case LibFunc_exp10: 2994 case LibFunc_expm1: 2995 case LibFunc_cos: 2996 case LibFunc_sin: 2997 case LibFunc_sinh: 2998 case LibFunc_tanh: 2999 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 3000 return optimizeUnaryDoubleFP(CI, Builder, true); 3001 return nullptr; 3002 case LibFunc_copysign: 3003 if (hasFloatVersion(CI->getCalledFunction()->getName())) 3004 return optimizeBinaryDoubleFP(CI, Builder); 3005 return nullptr; 3006 case LibFunc_fminf: 3007 case LibFunc_fmin: 3008 case LibFunc_fminl: 3009 case LibFunc_fmaxf: 3010 case LibFunc_fmax: 3011 case LibFunc_fmaxl: 3012 return optimizeFMinFMax(CI, Builder); 3013 case LibFunc_cabs: 3014 case LibFunc_cabsf: 3015 case LibFunc_cabsl: 3016 return optimizeCAbs(CI, Builder); 3017 default: 3018 return nullptr; 3019 } 3020 } 3021 3022 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 3023 assert(!CI->isMustTailCall() && "These transforms aren't musttail safe."); 3024 3025 // TODO: Split out the code below that operates on FP calls so that 3026 // we can all non-FP calls with the StrictFP attribute to be 3027 // optimized. 3028 if (CI->isNoBuiltin()) 3029 return nullptr; 3030 3031 LibFunc Func; 3032 Function *Callee = CI->getCalledFunction(); 3033 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3034 3035 SmallVector<OperandBundleDef, 2> OpBundles; 3036 CI->getOperandBundlesAsDefs(OpBundles); 3037 3038 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3039 Builder.setDefaultOperandBundles(OpBundles); 3040 3041 // Command-line parameter overrides instruction attribute. 3042 // This can't be moved to optimizeFloatingPointLibCall() because it may be 3043 // used by the intrinsic optimizations. 3044 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 3045 UnsafeFPShrink = EnableUnsafeFPShrink; 3046 else if (isa<FPMathOperator>(CI) && CI->isFast()) 3047 UnsafeFPShrink = true; 3048 3049 // First, check for intrinsics. 3050 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 3051 if (!IsCallingConvC) 3052 return nullptr; 3053 // The FP intrinsics have corresponding constrained versions so we don't 3054 // need to check for the StrictFP attribute here. 3055 switch (II->getIntrinsicID()) { 3056 case Intrinsic::pow: 3057 return optimizePow(CI, Builder); 3058 case Intrinsic::exp2: 3059 return optimizeExp2(CI, Builder); 3060 case Intrinsic::log: 3061 case Intrinsic::log2: 3062 case Intrinsic::log10: 3063 return optimizeLog(CI, Builder); 3064 case Intrinsic::sqrt: 3065 return optimizeSqrt(CI, Builder); 3066 case Intrinsic::memset: 3067 return optimizeMemSet(CI, Builder); 3068 case Intrinsic::memcpy: 3069 return optimizeMemCpy(CI, Builder); 3070 case Intrinsic::memmove: 3071 return optimizeMemMove(CI, Builder); 3072 default: 3073 return nullptr; 3074 } 3075 } 3076 3077 // Also try to simplify calls to fortified library functions. 3078 if (Value *SimplifiedFortifiedCI = 3079 FortifiedSimplifier.optimizeCall(CI, Builder)) { 3080 // Try to further simplify the result. 3081 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 3082 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 3083 // Ensure that SimplifiedCI's uses are complete, since some calls have 3084 // their uses analyzed. 3085 replaceAllUsesWith(CI, SimplifiedCI); 3086 3087 // Set insertion point to SimplifiedCI to guarantee we reach all uses 3088 // we might replace later on. 3089 IRBuilderBase::InsertPointGuard Guard(Builder); 3090 Builder.SetInsertPoint(SimplifiedCI); 3091 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) { 3092 // If we were able to further simplify, remove the now redundant call. 3093 substituteInParent(SimplifiedCI, V); 3094 return V; 3095 } 3096 } 3097 return SimplifiedFortifiedCI; 3098 } 3099 3100 // Then check for known library functions. 3101 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 3102 // We never change the calling convention. 3103 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3104 return nullptr; 3105 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 3106 return V; 3107 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 3108 return V; 3109 switch (Func) { 3110 case LibFunc_ffs: 3111 case LibFunc_ffsl: 3112 case LibFunc_ffsll: 3113 return optimizeFFS(CI, Builder); 3114 case LibFunc_fls: 3115 case LibFunc_flsl: 3116 case LibFunc_flsll: 3117 return optimizeFls(CI, Builder); 3118 case LibFunc_abs: 3119 case LibFunc_labs: 3120 case LibFunc_llabs: 3121 return optimizeAbs(CI, Builder); 3122 case LibFunc_isdigit: 3123 return optimizeIsDigit(CI, Builder); 3124 case LibFunc_isascii: 3125 return optimizeIsAscii(CI, Builder); 3126 case LibFunc_toascii: 3127 return optimizeToAscii(CI, Builder); 3128 case LibFunc_atoi: 3129 case LibFunc_atol: 3130 case LibFunc_atoll: 3131 return optimizeAtoi(CI, Builder); 3132 case LibFunc_strtol: 3133 case LibFunc_strtoll: 3134 return optimizeStrtol(CI, Builder); 3135 case LibFunc_printf: 3136 return optimizePrintF(CI, Builder); 3137 case LibFunc_sprintf: 3138 return optimizeSPrintF(CI, Builder); 3139 case LibFunc_snprintf: 3140 return optimizeSnPrintF(CI, Builder); 3141 case LibFunc_fprintf: 3142 return optimizeFPrintF(CI, Builder); 3143 case LibFunc_fwrite: 3144 return optimizeFWrite(CI, Builder); 3145 case LibFunc_fputs: 3146 return optimizeFPuts(CI, Builder); 3147 case LibFunc_puts: 3148 return optimizePuts(CI, Builder); 3149 case LibFunc_perror: 3150 return optimizeErrorReporting(CI, Builder); 3151 case LibFunc_vfprintf: 3152 case LibFunc_fiprintf: 3153 return optimizeErrorReporting(CI, Builder, 0); 3154 default: 3155 return nullptr; 3156 } 3157 } 3158 return nullptr; 3159 } 3160 3161 LibCallSimplifier::LibCallSimplifier( 3162 const DataLayout &DL, const TargetLibraryInfo *TLI, 3163 OptimizationRemarkEmitter &ORE, 3164 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 3165 function_ref<void(Instruction *, Value *)> Replacer, 3166 function_ref<void(Instruction *)> Eraser) 3167 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 3168 Replacer(Replacer), Eraser(Eraser) {} 3169 3170 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 3171 // Indirect through the replacer used in this instance. 3172 Replacer(I, With); 3173 } 3174 3175 void LibCallSimplifier::eraseFromParent(Instruction *I) { 3176 Eraser(I); 3177 } 3178 3179 // TODO: 3180 // Additional cases that we need to add to this file: 3181 // 3182 // cbrt: 3183 // * cbrt(expN(X)) -> expN(x/3) 3184 // * cbrt(sqrt(x)) -> pow(x,1/6) 3185 // * cbrt(cbrt(x)) -> pow(x,1/9) 3186 // 3187 // exp, expf, expl: 3188 // * exp(log(x)) -> x 3189 // 3190 // log, logf, logl: 3191 // * log(exp(x)) -> x 3192 // * log(exp(y)) -> y*log(e) 3193 // * log(exp10(y)) -> y*log(10) 3194 // * log(sqrt(x)) -> 0.5*log(x) 3195 // 3196 // pow, powf, powl: 3197 // * pow(sqrt(x),y) -> pow(x,y*0.5) 3198 // * pow(pow(x,y),z)-> pow(x,y*z) 3199 // 3200 // signbit: 3201 // * signbit(cnst) -> cnst' 3202 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 3203 // 3204 // sqrt, sqrtf, sqrtl: 3205 // * sqrt(expN(x)) -> expN(x*0.5) 3206 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 3207 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 3208 // 3209 3210 //===----------------------------------------------------------------------===// 3211 // Fortified Library Call Optimizations 3212 //===----------------------------------------------------------------------===// 3213 3214 bool 3215 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 3216 unsigned ObjSizeOp, 3217 Optional<unsigned> SizeOp, 3218 Optional<unsigned> StrOp, 3219 Optional<unsigned> FlagOp) { 3220 // If this function takes a flag argument, the implementation may use it to 3221 // perform extra checks. Don't fold into the non-checking variant. 3222 if (FlagOp) { 3223 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 3224 if (!Flag || !Flag->isZero()) 3225 return false; 3226 } 3227 3228 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 3229 return true; 3230 3231 if (ConstantInt *ObjSizeCI = 3232 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 3233 if (ObjSizeCI->isMinusOne()) 3234 return true; 3235 // If the object size wasn't -1 (unknown), bail out if we were asked to. 3236 if (OnlyLowerUnknownSize) 3237 return false; 3238 if (StrOp) { 3239 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 3240 // If the length is 0 we don't know how long it is and so we can't 3241 // remove the check. 3242 if (Len) 3243 annotateDereferenceableBytes(CI, *StrOp, Len); 3244 else 3245 return false; 3246 return ObjSizeCI->getZExtValue() >= Len; 3247 } 3248 3249 if (SizeOp) { 3250 if (ConstantInt *SizeCI = 3251 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 3252 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 3253 } 3254 } 3255 return false; 3256 } 3257 3258 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 3259 IRBuilderBase &B) { 3260 if (isFortifiedCallFoldable(CI, 3, 2)) { 3261 CallInst *NewCI = 3262 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3263 Align(1), CI->getArgOperand(2)); 3264 NewCI->setAttributes(CI->getAttributes()); 3265 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3266 copyFlags(*CI, NewCI); 3267 return CI->getArgOperand(0); 3268 } 3269 return nullptr; 3270 } 3271 3272 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 3273 IRBuilderBase &B) { 3274 if (isFortifiedCallFoldable(CI, 3, 2)) { 3275 CallInst *NewCI = 3276 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3277 Align(1), CI->getArgOperand(2)); 3278 NewCI->setAttributes(CI->getAttributes()); 3279 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3280 copyFlags(*CI, NewCI); 3281 return CI->getArgOperand(0); 3282 } 3283 return nullptr; 3284 } 3285 3286 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 3287 IRBuilderBase &B) { 3288 if (isFortifiedCallFoldable(CI, 3, 2)) { 3289 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 3290 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 3291 CI->getArgOperand(2), Align(1)); 3292 NewCI->setAttributes(CI->getAttributes()); 3293 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3294 copyFlags(*CI, NewCI); 3295 return CI->getArgOperand(0); 3296 } 3297 return nullptr; 3298 } 3299 3300 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 3301 IRBuilderBase &B) { 3302 const DataLayout &DL = CI->getModule()->getDataLayout(); 3303 if (isFortifiedCallFoldable(CI, 3, 2)) 3304 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3305 CI->getArgOperand(2), B, DL, TLI)) { 3306 CallInst *NewCI = cast<CallInst>(Call); 3307 NewCI->setAttributes(CI->getAttributes()); 3308 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3309 return copyFlags(*CI, NewCI); 3310 } 3311 return nullptr; 3312 } 3313 3314 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 3315 IRBuilderBase &B, 3316 LibFunc Func) { 3317 const DataLayout &DL = CI->getModule()->getDataLayout(); 3318 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 3319 *ObjSize = CI->getArgOperand(2); 3320 3321 // __stpcpy_chk(x,x,...) -> x+strlen(x) 3322 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 3323 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3324 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3325 } 3326 3327 // If a) we don't have any length information, or b) we know this will 3328 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3329 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3330 // TODO: It might be nice to get a maximum length out of the possible 3331 // string lengths for varying. 3332 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 3333 if (Func == LibFunc_strcpy_chk) 3334 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 3335 else 3336 return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI)); 3337 } 3338 3339 if (OnlyLowerUnknownSize) 3340 return nullptr; 3341 3342 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3343 uint64_t Len = GetStringLength(Src); 3344 if (Len) 3345 annotateDereferenceableBytes(CI, 1, Len); 3346 else 3347 return nullptr; 3348 3349 // FIXME: There is really no guarantee that sizeof(size_t) is equal to 3350 // sizeof(int*) for every target. So the assumption used here to derive the 3351 // SizeTBits based on the size of an integer pointer in address space zero 3352 // isn't always valid. 3353 Type *SizeTTy = DL.getIntPtrType(CI->getContext(), /*AddressSpace=*/0); 3354 Value *LenV = ConstantInt::get(SizeTTy, Len); 3355 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 3356 // If the function was an __stpcpy_chk, and we were able to fold it into 3357 // a __memcpy_chk, we still need to return the correct end pointer. 3358 if (Ret && Func == LibFunc_stpcpy_chk) 3359 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 3360 return copyFlags(*CI, cast<CallInst>(Ret)); 3361 } 3362 3363 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 3364 IRBuilderBase &B) { 3365 if (isFortifiedCallFoldable(CI, 1, None, 0)) 3366 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, 3367 CI->getModule()->getDataLayout(), TLI)); 3368 return nullptr; 3369 } 3370 3371 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 3372 IRBuilderBase &B, 3373 LibFunc Func) { 3374 if (isFortifiedCallFoldable(CI, 3, 2)) { 3375 if (Func == LibFunc_strncpy_chk) 3376 return copyFlags(*CI, 3377 emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3378 CI->getArgOperand(2), B, TLI)); 3379 else 3380 return copyFlags(*CI, 3381 emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3382 CI->getArgOperand(2), B, TLI)); 3383 } 3384 3385 return nullptr; 3386 } 3387 3388 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 3389 IRBuilderBase &B) { 3390 if (isFortifiedCallFoldable(CI, 4, 3)) 3391 return copyFlags( 3392 *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3393 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI)); 3394 3395 return nullptr; 3396 } 3397 3398 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 3399 IRBuilderBase &B) { 3400 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 3401 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 3402 return copyFlags(*CI, 3403 emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3404 CI->getArgOperand(4), VariadicArgs, B, TLI)); 3405 } 3406 3407 return nullptr; 3408 } 3409 3410 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3411 IRBuilderBase &B) { 3412 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3413 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 3414 return copyFlags(*CI, 3415 emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3416 VariadicArgs, B, TLI)); 3417 } 3418 3419 return nullptr; 3420 } 3421 3422 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3423 IRBuilderBase &B) { 3424 if (isFortifiedCallFoldable(CI, 2)) 3425 return copyFlags( 3426 *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI)); 3427 3428 return nullptr; 3429 } 3430 3431 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3432 IRBuilderBase &B) { 3433 if (isFortifiedCallFoldable(CI, 3)) 3434 return copyFlags(*CI, 3435 emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3436 CI->getArgOperand(2), B, TLI)); 3437 3438 return nullptr; 3439 } 3440 3441 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3442 IRBuilderBase &B) { 3443 if (isFortifiedCallFoldable(CI, 3)) 3444 return copyFlags(*CI, 3445 emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3446 CI->getArgOperand(2), B, TLI)); 3447 3448 return nullptr; 3449 } 3450 3451 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3452 IRBuilderBase &B) { 3453 if (isFortifiedCallFoldable(CI, 3)) 3454 return copyFlags(*CI, 3455 emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3456 CI->getArgOperand(2), B, TLI)); 3457 3458 return nullptr; 3459 } 3460 3461 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3462 IRBuilderBase &B) { 3463 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3464 return copyFlags( 3465 *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3466 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI)); 3467 3468 return nullptr; 3469 } 3470 3471 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3472 IRBuilderBase &B) { 3473 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3474 return copyFlags(*CI, 3475 emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3476 CI->getArgOperand(4), B, TLI)); 3477 3478 return nullptr; 3479 } 3480 3481 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 3482 IRBuilderBase &Builder) { 3483 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3484 // Some clang users checked for _chk libcall availability using: 3485 // __has_builtin(__builtin___memcpy_chk) 3486 // When compiling with -fno-builtin, this is always true. 3487 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3488 // end up with fortified libcalls, which isn't acceptable in a freestanding 3489 // environment which only provides their non-fortified counterparts. 3490 // 3491 // Until we change clang and/or teach external users to check for availability 3492 // differently, disregard the "nobuiltin" attribute and TLI::has. 3493 // 3494 // PR23093. 3495 3496 LibFunc Func; 3497 Function *Callee = CI->getCalledFunction(); 3498 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3499 3500 SmallVector<OperandBundleDef, 2> OpBundles; 3501 CI->getOperandBundlesAsDefs(OpBundles); 3502 3503 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3504 Builder.setDefaultOperandBundles(OpBundles); 3505 3506 // First, check that this is a known library functions and that the prototype 3507 // is correct. 3508 if (!TLI->getLibFunc(*Callee, Func)) 3509 return nullptr; 3510 3511 // We never change the calling convention. 3512 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3513 return nullptr; 3514 3515 switch (Func) { 3516 case LibFunc_memcpy_chk: 3517 return optimizeMemCpyChk(CI, Builder); 3518 case LibFunc_mempcpy_chk: 3519 return optimizeMemPCpyChk(CI, Builder); 3520 case LibFunc_memmove_chk: 3521 return optimizeMemMoveChk(CI, Builder); 3522 case LibFunc_memset_chk: 3523 return optimizeMemSetChk(CI, Builder); 3524 case LibFunc_stpcpy_chk: 3525 case LibFunc_strcpy_chk: 3526 return optimizeStrpCpyChk(CI, Builder, Func); 3527 case LibFunc_strlen_chk: 3528 return optimizeStrLenChk(CI, Builder); 3529 case LibFunc_stpncpy_chk: 3530 case LibFunc_strncpy_chk: 3531 return optimizeStrpNCpyChk(CI, Builder, Func); 3532 case LibFunc_memccpy_chk: 3533 return optimizeMemCCpyChk(CI, Builder); 3534 case LibFunc_snprintf_chk: 3535 return optimizeSNPrintfChk(CI, Builder); 3536 case LibFunc_sprintf_chk: 3537 return optimizeSPrintfChk(CI, Builder); 3538 case LibFunc_strcat_chk: 3539 return optimizeStrCatChk(CI, Builder); 3540 case LibFunc_strlcat_chk: 3541 return optimizeStrLCat(CI, Builder); 3542 case LibFunc_strncat_chk: 3543 return optimizeStrNCatChk(CI, Builder); 3544 case LibFunc_strlcpy_chk: 3545 return optimizeStrLCpyChk(CI, Builder); 3546 case LibFunc_vsnprintf_chk: 3547 return optimizeVSNPrintfChk(CI, Builder); 3548 case LibFunc_vsprintf_chk: 3549 return optimizeVSPrintfChk(CI, Builder); 3550 default: 3551 break; 3552 } 3553 return nullptr; 3554 } 3555 3556 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3557 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3558 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 3559