1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Analysis/BlockFrequencyInfo.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ProfileSummaryInfo.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/KnownBits.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Transforms/Utils/BuildLibCalls.h" 39 #include "llvm/Transforms/Utils/SizeOpts.h" 40 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 static cl::opt<bool> 45 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 46 cl::init(false), 47 cl::desc("Enable unsafe double to float " 48 "shrinking for math lib calls")); 49 50 //===----------------------------------------------------------------------===// 51 // Helper Functions 52 //===----------------------------------------------------------------------===// 53 54 static bool ignoreCallingConv(LibFunc Func) { 55 return Func == LibFunc_abs || Func == LibFunc_labs || 56 Func == LibFunc_llabs || Func == LibFunc_strlen; 57 } 58 59 /// Return true if it is only used in equality comparisons with With. 60 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 61 for (User *U : V->users()) { 62 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 63 if (IC->isEquality() && IC->getOperand(1) == With) 64 continue; 65 // Unknown instruction. 66 return false; 67 } 68 return true; 69 } 70 71 static bool callHasFloatingPointArgument(const CallInst *CI) { 72 return any_of(CI->operands(), [](const Use &OI) { 73 return OI->getType()->isFloatingPointTy(); 74 }); 75 } 76 77 static bool callHasFP128Argument(const CallInst *CI) { 78 return any_of(CI->operands(), [](const Use &OI) { 79 return OI->getType()->isFP128Ty(); 80 }); 81 } 82 83 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 84 if (Base < 2 || Base > 36) 85 // handle special zero base 86 if (Base != 0) 87 return nullptr; 88 89 char *End; 90 std::string nptr = Str.str(); 91 errno = 0; 92 long long int Result = strtoll(nptr.c_str(), &End, Base); 93 if (errno) 94 return nullptr; 95 96 // if we assume all possible target locales are ASCII supersets, 97 // then if strtoll successfully parses a number on the host, 98 // it will also successfully parse the same way on the target 99 if (*End != '\0') 100 return nullptr; 101 102 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 103 return nullptr; 104 105 return ConstantInt::get(CI->getType(), Result); 106 } 107 108 static bool isOnlyUsedInComparisonWithZero(Value *V) { 109 for (User *U : V->users()) { 110 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 111 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 112 if (C->isNullValue()) 113 continue; 114 // Unknown instruction. 115 return false; 116 } 117 return true; 118 } 119 120 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 121 const DataLayout &DL) { 122 if (!isOnlyUsedInComparisonWithZero(CI)) 123 return false; 124 125 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 126 return false; 127 128 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 129 return false; 130 131 return true; 132 } 133 134 static void annotateDereferenceableBytes(CallInst *CI, 135 ArrayRef<unsigned> ArgNos, 136 uint64_t DereferenceableBytes) { 137 const Function *F = CI->getCaller(); 138 if (!F) 139 return; 140 for (unsigned ArgNo : ArgNos) { 141 uint64_t DerefBytes = DereferenceableBytes; 142 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 143 if (!llvm::NullPointerIsDefined(F, AS) || 144 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 145 DerefBytes = std::max(CI->getDereferenceableOrNullBytes( 146 ArgNo + AttributeList::FirstArgIndex), 147 DereferenceableBytes); 148 149 if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) < 150 DerefBytes) { 151 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 152 if (!llvm::NullPointerIsDefined(F, AS) || 153 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 154 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 155 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 156 CI->getContext(), DerefBytes)); 157 } 158 } 159 } 160 161 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, 162 ArrayRef<unsigned> ArgNos) { 163 Function *F = CI->getCaller(); 164 if (!F) 165 return; 166 167 for (unsigned ArgNo : ArgNos) { 168 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef)) 169 CI->addParamAttr(ArgNo, Attribute::NoUndef); 170 171 if (CI->paramHasAttr(ArgNo, Attribute::NonNull)) 172 continue; 173 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 174 if (llvm::NullPointerIsDefined(F, AS)) 175 continue; 176 177 CI->addParamAttr(ArgNo, Attribute::NonNull); 178 annotateDereferenceableBytes(CI, ArgNo, 1); 179 } 180 } 181 182 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 183 Value *Size, const DataLayout &DL) { 184 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 185 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 186 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 187 } else if (isKnownNonZero(Size, DL)) { 188 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 189 const APInt *X, *Y; 190 uint64_t DerefMin = 1; 191 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 192 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 193 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 194 } 195 } 196 } 197 198 //===----------------------------------------------------------------------===// 199 // String and Memory Library Call Optimizations 200 //===----------------------------------------------------------------------===// 201 202 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 203 // Extract some information from the instruction 204 Value *Dst = CI->getArgOperand(0); 205 Value *Src = CI->getArgOperand(1); 206 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 207 208 // See if we can get the length of the input string. 209 uint64_t Len = GetStringLength(Src); 210 if (Len) 211 annotateDereferenceableBytes(CI, 1, Len); 212 else 213 return nullptr; 214 --Len; // Unbias length. 215 216 // Handle the simple, do-nothing case: strcat(x, "") -> x 217 if (Len == 0) 218 return Dst; 219 220 return emitStrLenMemCpy(Src, Dst, Len, B); 221 } 222 223 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 224 IRBuilderBase &B) { 225 // We need to find the end of the destination string. That's where the 226 // memory is to be moved to. We just generate a call to strlen. 227 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 228 if (!DstLen) 229 return nullptr; 230 231 // Now that we have the destination's length, we must index into the 232 // destination's pointer to get the actual memcpy destination (end of 233 // the string .. we're concatenating). 234 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 235 236 // We have enough information to now generate the memcpy call to do the 237 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 238 B.CreateMemCpy( 239 CpyDst, Align(1), Src, Align(1), 240 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 241 return Dst; 242 } 243 244 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 245 // Extract some information from the instruction. 246 Value *Dst = CI->getArgOperand(0); 247 Value *Src = CI->getArgOperand(1); 248 Value *Size = CI->getArgOperand(2); 249 uint64_t Len; 250 annotateNonNullNoUndefBasedOnAccess(CI, 0); 251 if (isKnownNonZero(Size, DL)) 252 annotateNonNullNoUndefBasedOnAccess(CI, 1); 253 254 // We don't do anything if length is not constant. 255 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 256 if (LengthArg) { 257 Len = LengthArg->getZExtValue(); 258 // strncat(x, c, 0) -> x 259 if (!Len) 260 return Dst; 261 } else { 262 return nullptr; 263 } 264 265 // See if we can get the length of the input string. 266 uint64_t SrcLen = GetStringLength(Src); 267 if (SrcLen) { 268 annotateDereferenceableBytes(CI, 1, SrcLen); 269 --SrcLen; // Unbias length. 270 } else { 271 return nullptr; 272 } 273 274 // strncat(x, "", c) -> x 275 if (SrcLen == 0) 276 return Dst; 277 278 // We don't optimize this case. 279 if (Len < SrcLen) 280 return nullptr; 281 282 // strncat(x, s, c) -> strcat(x, s) 283 // s is constant so the strcat can be optimized further. 284 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 285 } 286 287 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 288 Function *Callee = CI->getCalledFunction(); 289 FunctionType *FT = Callee->getFunctionType(); 290 Value *SrcStr = CI->getArgOperand(0); 291 annotateNonNullNoUndefBasedOnAccess(CI, 0); 292 293 // If the second operand is non-constant, see if we can compute the length 294 // of the input string and turn this into memchr. 295 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 296 if (!CharC) { 297 uint64_t Len = GetStringLength(SrcStr); 298 if (Len) 299 annotateDereferenceableBytes(CI, 0, Len); 300 else 301 return nullptr; 302 if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 303 return nullptr; 304 305 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 306 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 307 B, DL, TLI); 308 } 309 310 // Otherwise, the character is a constant, see if the first argument is 311 // a string literal. If so, we can constant fold. 312 StringRef Str; 313 if (!getConstantStringInfo(SrcStr, Str)) { 314 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 315 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 316 return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 317 return nullptr; 318 } 319 320 // Compute the offset, make sure to handle the case when we're searching for 321 // zero (a weird way to spell strlen). 322 size_t I = (0xFF & CharC->getSExtValue()) == 0 323 ? Str.size() 324 : Str.find(CharC->getSExtValue()); 325 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 326 return Constant::getNullValue(CI->getType()); 327 328 // strchr(s+n,c) -> gep(s+n+i,c) 329 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 330 } 331 332 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 333 Value *SrcStr = CI->getArgOperand(0); 334 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 335 annotateNonNullNoUndefBasedOnAccess(CI, 0); 336 337 // Cannot fold anything if we're not looking for a constant. 338 if (!CharC) 339 return nullptr; 340 341 StringRef Str; 342 if (!getConstantStringInfo(SrcStr, Str)) { 343 // strrchr(s, 0) -> strchr(s, 0) 344 if (CharC->isZero()) 345 return emitStrChr(SrcStr, '\0', B, TLI); 346 return nullptr; 347 } 348 349 // Compute the offset. 350 size_t I = (0xFF & CharC->getSExtValue()) == 0 351 ? Str.size() 352 : Str.rfind(CharC->getSExtValue()); 353 if (I == StringRef::npos) // Didn't find the char. Return null. 354 return Constant::getNullValue(CI->getType()); 355 356 // strrchr(s+n,c) -> gep(s+n+i,c) 357 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 358 } 359 360 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 361 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 362 if (Str1P == Str2P) // strcmp(x,x) -> 0 363 return ConstantInt::get(CI->getType(), 0); 364 365 StringRef Str1, Str2; 366 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 367 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 368 369 // strcmp(x, y) -> cnst (if both x and y are constant strings) 370 if (HasStr1 && HasStr2) 371 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 372 373 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 374 return B.CreateNeg(B.CreateZExt( 375 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 376 377 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 378 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 379 CI->getType()); 380 381 // strcmp(P, "x") -> memcmp(P, "x", 2) 382 uint64_t Len1 = GetStringLength(Str1P); 383 if (Len1) 384 annotateDereferenceableBytes(CI, 0, Len1); 385 uint64_t Len2 = GetStringLength(Str2P); 386 if (Len2) 387 annotateDereferenceableBytes(CI, 1, Len2); 388 389 if (Len1 && Len2) { 390 return emitMemCmp(Str1P, Str2P, 391 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 392 std::min(Len1, Len2)), 393 B, DL, TLI); 394 } 395 396 // strcmp to memcmp 397 if (!HasStr1 && HasStr2) { 398 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 399 return emitMemCmp( 400 Str1P, Str2P, 401 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 402 TLI); 403 } else if (HasStr1 && !HasStr2) { 404 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 405 return emitMemCmp( 406 Str1P, Str2P, 407 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 408 TLI); 409 } 410 411 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 412 return nullptr; 413 } 414 415 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 416 Value *Str1P = CI->getArgOperand(0); 417 Value *Str2P = CI->getArgOperand(1); 418 Value *Size = CI->getArgOperand(2); 419 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 420 return ConstantInt::get(CI->getType(), 0); 421 422 if (isKnownNonZero(Size, DL)) 423 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 424 // Get the length argument if it is constant. 425 uint64_t Length; 426 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 427 Length = LengthArg->getZExtValue(); 428 else 429 return nullptr; 430 431 if (Length == 0) // strncmp(x,y,0) -> 0 432 return ConstantInt::get(CI->getType(), 0); 433 434 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 435 return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI); 436 437 StringRef Str1, Str2; 438 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 439 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 440 441 // strncmp(x, y) -> cnst (if both x and y are constant strings) 442 if (HasStr1 && HasStr2) { 443 StringRef SubStr1 = Str1.substr(0, Length); 444 StringRef SubStr2 = Str2.substr(0, Length); 445 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 446 } 447 448 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 449 return B.CreateNeg(B.CreateZExt( 450 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 451 452 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 453 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 454 CI->getType()); 455 456 uint64_t Len1 = GetStringLength(Str1P); 457 if (Len1) 458 annotateDereferenceableBytes(CI, 0, Len1); 459 uint64_t Len2 = GetStringLength(Str2P); 460 if (Len2) 461 annotateDereferenceableBytes(CI, 1, Len2); 462 463 // strncmp to memcmp 464 if (!HasStr1 && HasStr2) { 465 Len2 = std::min(Len2, Length); 466 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 467 return emitMemCmp( 468 Str1P, Str2P, 469 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 470 TLI); 471 } else if (HasStr1 && !HasStr2) { 472 Len1 = std::min(Len1, Length); 473 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 474 return emitMemCmp( 475 Str1P, Str2P, 476 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 477 TLI); 478 } 479 480 return nullptr; 481 } 482 483 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 484 Value *Src = CI->getArgOperand(0); 485 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 486 uint64_t SrcLen = GetStringLength(Src); 487 if (SrcLen && Size) { 488 annotateDereferenceableBytes(CI, 0, SrcLen); 489 if (SrcLen <= Size->getZExtValue() + 1) 490 return emitStrDup(Src, B, TLI); 491 } 492 493 return nullptr; 494 } 495 496 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 497 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 498 if (Dst == Src) // strcpy(x,x) -> x 499 return Src; 500 501 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 502 // See if we can get the length of the input string. 503 uint64_t Len = GetStringLength(Src); 504 if (Len) 505 annotateDereferenceableBytes(CI, 1, Len); 506 else 507 return nullptr; 508 509 // We have enough information to now generate the memcpy call to do the 510 // copy for us. Make a memcpy to copy the nul byte with align = 1. 511 CallInst *NewCI = 512 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 513 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 514 NewCI->setAttributes(CI->getAttributes()); 515 NewCI->removeAttributes(AttributeList::ReturnIndex, 516 AttributeFuncs::typeIncompatible(NewCI->getType())); 517 return Dst; 518 } 519 520 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 521 Function *Callee = CI->getCalledFunction(); 522 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 523 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 524 Value *StrLen = emitStrLen(Src, B, DL, TLI); 525 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 526 } 527 528 // See if we can get the length of the input string. 529 uint64_t Len = GetStringLength(Src); 530 if (Len) 531 annotateDereferenceableBytes(CI, 1, Len); 532 else 533 return nullptr; 534 535 Type *PT = Callee->getFunctionType()->getParamType(0); 536 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 537 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 538 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 539 540 // We have enough information to now generate the memcpy call to do the 541 // copy for us. Make a memcpy to copy the nul byte with align = 1. 542 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 543 NewCI->setAttributes(CI->getAttributes()); 544 NewCI->removeAttributes(AttributeList::ReturnIndex, 545 AttributeFuncs::typeIncompatible(NewCI->getType())); 546 return DstEnd; 547 } 548 549 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) { 550 Function *Callee = CI->getCalledFunction(); 551 Value *Dst = CI->getArgOperand(0); 552 Value *Src = CI->getArgOperand(1); 553 Value *Size = CI->getArgOperand(2); 554 annotateNonNullNoUndefBasedOnAccess(CI, 0); 555 if (isKnownNonZero(Size, DL)) 556 annotateNonNullNoUndefBasedOnAccess(CI, 1); 557 558 uint64_t Len; 559 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 560 Len = LengthArg->getZExtValue(); 561 else 562 return nullptr; 563 564 // strncpy(x, y, 0) -> x 565 if (Len == 0) 566 return Dst; 567 568 // See if we can get the length of the input string. 569 uint64_t SrcLen = GetStringLength(Src); 570 if (SrcLen) { 571 annotateDereferenceableBytes(CI, 1, SrcLen); 572 --SrcLen; // Unbias length. 573 } else { 574 return nullptr; 575 } 576 577 if (SrcLen == 0) { 578 // strncpy(x, "", y) -> memset(x, '\0', y) 579 Align MemSetAlign = 580 CI->getAttributes().getParamAttributes(0).getAlignment().valueOrOne(); 581 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign); 582 AttrBuilder ArgAttrs(CI->getAttributes().getParamAttributes(0)); 583 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 584 CI->getContext(), 0, ArgAttrs)); 585 return Dst; 586 } 587 588 // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4) 589 if (Len > SrcLen + 1) { 590 if (Len <= 128) { 591 StringRef Str; 592 if (!getConstantStringInfo(Src, Str)) 593 return nullptr; 594 std::string SrcStr = Str.str(); 595 SrcStr.resize(Len, '\0'); 596 Src = B.CreateGlobalString(SrcStr, "str"); 597 } else { 598 return nullptr; 599 } 600 } 601 602 Type *PT = Callee->getFunctionType()->getParamType(0); 603 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 604 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 605 ConstantInt::get(DL.getIntPtrType(PT), Len)); 606 NewCI->setAttributes(CI->getAttributes()); 607 NewCI->removeAttributes(AttributeList::ReturnIndex, 608 AttributeFuncs::typeIncompatible(NewCI->getType())); 609 return Dst; 610 } 611 612 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 613 unsigned CharSize) { 614 Value *Src = CI->getArgOperand(0); 615 616 // Constant folding: strlen("xyz") -> 3 617 if (uint64_t Len = GetStringLength(Src, CharSize)) 618 return ConstantInt::get(CI->getType(), Len - 1); 619 620 // If s is a constant pointer pointing to a string literal, we can fold 621 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 622 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 623 // We only try to simplify strlen when the pointer s points to an array 624 // of i8. Otherwise, we would need to scale the offset x before doing the 625 // subtraction. This will make the optimization more complex, and it's not 626 // very useful because calling strlen for a pointer of other types is 627 // very uncommon. 628 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 629 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 630 return nullptr; 631 632 ConstantDataArraySlice Slice; 633 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 634 uint64_t NullTermIdx; 635 if (Slice.Array == nullptr) { 636 NullTermIdx = 0; 637 } else { 638 NullTermIdx = ~((uint64_t)0); 639 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 640 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 641 NullTermIdx = I; 642 break; 643 } 644 } 645 // If the string does not have '\0', leave it to strlen to compute 646 // its length. 647 if (NullTermIdx == ~((uint64_t)0)) 648 return nullptr; 649 } 650 651 Value *Offset = GEP->getOperand(2); 652 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 653 Known.Zero.flipAllBits(); 654 uint64_t ArrSize = 655 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 656 657 // KnownZero's bits are flipped, so zeros in KnownZero now represent 658 // bits known to be zeros in Offset, and ones in KnowZero represent 659 // bits unknown in Offset. Therefore, Offset is known to be in range 660 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 661 // unsigned-less-than NullTermIdx. 662 // 663 // If Offset is not provably in the range [0, NullTermIdx], we can still 664 // optimize if we can prove that the program has undefined behavior when 665 // Offset is outside that range. That is the case when GEP->getOperand(0) 666 // is a pointer to an object whose memory extent is NullTermIdx+1. 667 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 668 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 669 NullTermIdx == ArrSize - 1)) { 670 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 671 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 672 Offset); 673 } 674 } 675 } 676 677 // strlen(x?"foo":"bars") --> x ? 3 : 4 678 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 679 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 680 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 681 if (LenTrue && LenFalse) { 682 ORE.emit([&]() { 683 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 684 << "folded strlen(select) to select of constants"; 685 }); 686 return B.CreateSelect(SI->getCondition(), 687 ConstantInt::get(CI->getType(), LenTrue - 1), 688 ConstantInt::get(CI->getType(), LenFalse - 1)); 689 } 690 } 691 692 // strlen(x) != 0 --> *x != 0 693 // strlen(x) == 0 --> *x == 0 694 if (isOnlyUsedInZeroEqualityComparison(CI)) 695 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), 696 CI->getType()); 697 698 return nullptr; 699 } 700 701 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 702 if (Value *V = optimizeStringLength(CI, B, 8)) 703 return V; 704 annotateNonNullNoUndefBasedOnAccess(CI, 0); 705 return nullptr; 706 } 707 708 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 709 Module &M = *CI->getModule(); 710 unsigned WCharSize = TLI->getWCharSize(M) * 8; 711 // We cannot perform this optimization without wchar_size metadata. 712 if (WCharSize == 0) 713 return nullptr; 714 715 return optimizeStringLength(CI, B, WCharSize); 716 } 717 718 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 719 StringRef S1, S2; 720 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 721 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 722 723 // strpbrk(s, "") -> nullptr 724 // strpbrk("", s) -> nullptr 725 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 726 return Constant::getNullValue(CI->getType()); 727 728 // Constant folding. 729 if (HasS1 && HasS2) { 730 size_t I = S1.find_first_of(S2); 731 if (I == StringRef::npos) // No match. 732 return Constant::getNullValue(CI->getType()); 733 734 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 735 "strpbrk"); 736 } 737 738 // strpbrk(s, "a") -> strchr(s, 'a') 739 if (HasS2 && S2.size() == 1) 740 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 741 742 return nullptr; 743 } 744 745 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 746 Value *EndPtr = CI->getArgOperand(1); 747 if (isa<ConstantPointerNull>(EndPtr)) { 748 // With a null EndPtr, this function won't capture the main argument. 749 // It would be readonly too, except that it still may write to errno. 750 CI->addParamAttr(0, Attribute::NoCapture); 751 } 752 753 return nullptr; 754 } 755 756 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 757 StringRef S1, S2; 758 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 759 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 760 761 // strspn(s, "") -> 0 762 // strspn("", s) -> 0 763 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 764 return Constant::getNullValue(CI->getType()); 765 766 // Constant folding. 767 if (HasS1 && HasS2) { 768 size_t Pos = S1.find_first_not_of(S2); 769 if (Pos == StringRef::npos) 770 Pos = S1.size(); 771 return ConstantInt::get(CI->getType(), Pos); 772 } 773 774 return nullptr; 775 } 776 777 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 778 StringRef S1, S2; 779 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 780 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 781 782 // strcspn("", s) -> 0 783 if (HasS1 && S1.empty()) 784 return Constant::getNullValue(CI->getType()); 785 786 // Constant folding. 787 if (HasS1 && HasS2) { 788 size_t Pos = S1.find_first_of(S2); 789 if (Pos == StringRef::npos) 790 Pos = S1.size(); 791 return ConstantInt::get(CI->getType(), Pos); 792 } 793 794 // strcspn(s, "") -> strlen(s) 795 if (HasS2 && S2.empty()) 796 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 797 798 return nullptr; 799 } 800 801 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 802 // fold strstr(x, x) -> x. 803 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 804 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 805 806 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 807 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 808 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 809 if (!StrLen) 810 return nullptr; 811 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 812 StrLen, B, DL, TLI); 813 if (!StrNCmp) 814 return nullptr; 815 for (User *U : llvm::make_early_inc_range(CI->users())) { 816 ICmpInst *Old = cast<ICmpInst>(U); 817 Value *Cmp = 818 B.CreateICmp(Old->getPredicate(), StrNCmp, 819 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 820 replaceAllUsesWith(Old, Cmp); 821 } 822 return CI; 823 } 824 825 // See if either input string is a constant string. 826 StringRef SearchStr, ToFindStr; 827 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 828 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 829 830 // fold strstr(x, "") -> x. 831 if (HasStr2 && ToFindStr.empty()) 832 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 833 834 // If both strings are known, constant fold it. 835 if (HasStr1 && HasStr2) { 836 size_t Offset = SearchStr.find(ToFindStr); 837 838 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 839 return Constant::getNullValue(CI->getType()); 840 841 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 842 Value *Result = castToCStr(CI->getArgOperand(0), B); 843 Result = 844 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 845 return B.CreateBitCast(Result, CI->getType()); 846 } 847 848 // fold strstr(x, "y") -> strchr(x, 'y'). 849 if (HasStr2 && ToFindStr.size() == 1) { 850 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 851 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 852 } 853 854 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 855 return nullptr; 856 } 857 858 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 859 if (isKnownNonZero(CI->getOperand(2), DL)) 860 annotateNonNullNoUndefBasedOnAccess(CI, 0); 861 return nullptr; 862 } 863 864 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 865 Value *SrcStr = CI->getArgOperand(0); 866 Value *Size = CI->getArgOperand(2); 867 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 868 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 869 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 870 871 // memchr(x, y, 0) -> null 872 if (LenC) { 873 if (LenC->isZero()) 874 return Constant::getNullValue(CI->getType()); 875 } else { 876 // From now on we need at least constant length and string. 877 return nullptr; 878 } 879 880 StringRef Str; 881 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 882 return nullptr; 883 884 // Truncate the string to LenC. If Str is smaller than LenC we will still only 885 // scan the string, as reading past the end of it is undefined and we can just 886 // return null if we don't find the char. 887 Str = Str.substr(0, LenC->getZExtValue()); 888 889 // If the char is variable but the input str and length are not we can turn 890 // this memchr call into a simple bit field test. Of course this only works 891 // when the return value is only checked against null. 892 // 893 // It would be really nice to reuse switch lowering here but we can't change 894 // the CFG at this point. 895 // 896 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 897 // != 0 898 // after bounds check. 899 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 900 unsigned char Max = 901 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 902 reinterpret_cast<const unsigned char *>(Str.end())); 903 904 // Make sure the bit field we're about to create fits in a register on the 905 // target. 906 // FIXME: On a 64 bit architecture this prevents us from using the 907 // interesting range of alpha ascii chars. We could do better by emitting 908 // two bitfields or shifting the range by 64 if no lower chars are used. 909 if (!DL.fitsInLegalInteger(Max + 1)) 910 return nullptr; 911 912 // For the bit field use a power-of-2 type with at least 8 bits to avoid 913 // creating unnecessary illegal types. 914 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 915 916 // Now build the bit field. 917 APInt Bitfield(Width, 0); 918 for (char C : Str) 919 Bitfield.setBit((unsigned char)C); 920 Value *BitfieldC = B.getInt(Bitfield); 921 922 // Adjust width of "C" to the bitfield width, then mask off the high bits. 923 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 924 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 925 926 // First check that the bit field access is within bounds. 927 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 928 "memchr.bounds"); 929 930 // Create code that checks if the given bit is set in the field. 931 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 932 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 933 934 // Finally merge both checks and cast to pointer type. The inttoptr 935 // implicitly zexts the i1 to intptr type. 936 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 937 } 938 939 // Check if all arguments are constants. If so, we can constant fold. 940 if (!CharC) 941 return nullptr; 942 943 // Compute the offset. 944 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 945 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 946 return Constant::getNullValue(CI->getType()); 947 948 // memchr(s+n,c,l) -> gep(s+n+i,c) 949 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 950 } 951 952 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 953 uint64_t Len, IRBuilderBase &B, 954 const DataLayout &DL) { 955 if (Len == 0) // memcmp(s1,s2,0) -> 0 956 return Constant::getNullValue(CI->getType()); 957 958 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 959 if (Len == 1) { 960 Value *LHSV = 961 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 962 CI->getType(), "lhsv"); 963 Value *RHSV = 964 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 965 CI->getType(), "rhsv"); 966 return B.CreateSub(LHSV, RHSV, "chardiff"); 967 } 968 969 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 970 // TODO: The case where both inputs are constants does not need to be limited 971 // to legal integers or equality comparison. See block below this. 972 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 973 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 974 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 975 976 // First, see if we can fold either argument to a constant. 977 Value *LHSV = nullptr; 978 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 979 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 980 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 981 } 982 Value *RHSV = nullptr; 983 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 984 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 985 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 986 } 987 988 // Don't generate unaligned loads. If either source is constant data, 989 // alignment doesn't matter for that source because there is no load. 990 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 991 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 992 if (!LHSV) { 993 Type *LHSPtrTy = 994 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 995 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 996 } 997 if (!RHSV) { 998 Type *RHSPtrTy = 999 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 1000 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 1001 } 1002 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1003 } 1004 } 1005 1006 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 1007 // TODO: This is limited to i8 arrays. 1008 StringRef LHSStr, RHSStr; 1009 if (getConstantStringInfo(LHS, LHSStr) && 1010 getConstantStringInfo(RHS, RHSStr)) { 1011 // Make sure we're not reading out-of-bounds memory. 1012 if (Len > LHSStr.size() || Len > RHSStr.size()) 1013 return nullptr; 1014 // Fold the memcmp and normalize the result. This way we get consistent 1015 // results across multiple platforms. 1016 uint64_t Ret = 0; 1017 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 1018 if (Cmp < 0) 1019 Ret = -1; 1020 else if (Cmp > 0) 1021 Ret = 1; 1022 return ConstantInt::get(CI->getType(), Ret); 1023 } 1024 1025 return nullptr; 1026 } 1027 1028 // Most simplifications for memcmp also apply to bcmp. 1029 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1030 IRBuilderBase &B) { 1031 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1032 Value *Size = CI->getArgOperand(2); 1033 1034 if (LHS == RHS) // memcmp(s,s,x) -> 0 1035 return Constant::getNullValue(CI->getType()); 1036 1037 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1038 // Handle constant lengths. 1039 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1040 if (!LenC) 1041 return nullptr; 1042 1043 // memcmp(d,s,0) -> 0 1044 if (LenC->getZExtValue() == 0) 1045 return Constant::getNullValue(CI->getType()); 1046 1047 if (Value *Res = 1048 optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL)) 1049 return Res; 1050 return nullptr; 1051 } 1052 1053 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1054 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1055 return V; 1056 1057 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1058 // bcmp can be more efficient than memcmp because it only has to know that 1059 // there is a difference, not how different one is to the other. 1060 if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) { 1061 Value *LHS = CI->getArgOperand(0); 1062 Value *RHS = CI->getArgOperand(1); 1063 Value *Size = CI->getArgOperand(2); 1064 return emitBCmp(LHS, RHS, Size, B, DL, TLI); 1065 } 1066 1067 return nullptr; 1068 } 1069 1070 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1071 return optimizeMemCmpBCmpCommon(CI, B); 1072 } 1073 1074 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1075 Value *Size = CI->getArgOperand(2); 1076 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1077 if (isa<IntrinsicInst>(CI)) 1078 return nullptr; 1079 1080 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1081 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1082 CI->getArgOperand(1), Align(1), Size); 1083 NewCI->setAttributes(CI->getAttributes()); 1084 NewCI->removeAttributes(AttributeList::ReturnIndex, 1085 AttributeFuncs::typeIncompatible(NewCI->getType())); 1086 return CI->getArgOperand(0); 1087 } 1088 1089 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1090 Value *Dst = CI->getArgOperand(0); 1091 Value *Src = CI->getArgOperand(1); 1092 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1093 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1094 StringRef SrcStr; 1095 if (CI->use_empty() && Dst == Src) 1096 return Dst; 1097 // memccpy(d, s, c, 0) -> nullptr 1098 if (N) { 1099 if (N->isNullValue()) 1100 return Constant::getNullValue(CI->getType()); 1101 if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0, 1102 /*TrimAtNul=*/false) || 1103 !StopChar) 1104 return nullptr; 1105 } else { 1106 return nullptr; 1107 } 1108 1109 // Wrap arg 'c' of type int to char 1110 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1111 if (Pos == StringRef::npos) { 1112 if (N->getZExtValue() <= SrcStr.size()) { 1113 B.CreateMemCpy(Dst, Align(1), Src, Align(1), CI->getArgOperand(3)); 1114 return Constant::getNullValue(CI->getType()); 1115 } 1116 return nullptr; 1117 } 1118 1119 Value *NewN = 1120 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1121 // memccpy -> llvm.memcpy 1122 B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN); 1123 return Pos + 1 <= N->getZExtValue() 1124 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1125 : Constant::getNullValue(CI->getType()); 1126 } 1127 1128 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1129 Value *Dst = CI->getArgOperand(0); 1130 Value *N = CI->getArgOperand(2); 1131 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1132 CallInst *NewCI = 1133 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1134 // Propagate attributes, but memcpy has no return value, so make sure that 1135 // any return attributes are compliant. 1136 // TODO: Attach return value attributes to the 1st operand to preserve them? 1137 NewCI->setAttributes(CI->getAttributes()); 1138 NewCI->removeAttributes(AttributeList::ReturnIndex, 1139 AttributeFuncs::typeIncompatible(NewCI->getType())); 1140 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1141 } 1142 1143 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1144 Value *Size = CI->getArgOperand(2); 1145 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1146 if (isa<IntrinsicInst>(CI)) 1147 return nullptr; 1148 1149 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1150 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1151 CI->getArgOperand(1), Align(1), Size); 1152 NewCI->setAttributes(CI->getAttributes()); 1153 NewCI->removeAttributes(AttributeList::ReturnIndex, 1154 AttributeFuncs::typeIncompatible(NewCI->getType())); 1155 return CI->getArgOperand(0); 1156 } 1157 1158 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 1159 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilderBase &B) { 1160 // This has to be a memset of zeros (bzero). 1161 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 1162 if (!FillValue || FillValue->getZExtValue() != 0) 1163 return nullptr; 1164 1165 // TODO: We should handle the case where the malloc has more than one use. 1166 // This is necessary to optimize common patterns such as when the result of 1167 // the malloc is checked against null or when a memset intrinsic is used in 1168 // place of a memset library call. 1169 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 1170 if (!Malloc || !Malloc->hasOneUse()) 1171 return nullptr; 1172 1173 // Is the inner call really malloc()? 1174 Function *InnerCallee = Malloc->getCalledFunction(); 1175 if (!InnerCallee) 1176 return nullptr; 1177 1178 LibFunc Func; 1179 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 1180 Func != LibFunc_malloc) 1181 return nullptr; 1182 1183 // The memset must cover the same number of bytes that are malloc'd. 1184 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 1185 return nullptr; 1186 1187 // Replace the malloc with a calloc. We need the data layout to know what the 1188 // actual size of a 'size_t' parameter is. 1189 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 1190 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 1191 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 1192 if (Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 1193 Malloc->getArgOperand(0), 1194 Malloc->getAttributes(), B, *TLI)) { 1195 substituteInParent(Malloc, Calloc); 1196 return Calloc; 1197 } 1198 1199 return nullptr; 1200 } 1201 1202 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1203 Value *Size = CI->getArgOperand(2); 1204 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1205 if (isa<IntrinsicInst>(CI)) 1206 return nullptr; 1207 1208 if (auto *Calloc = foldMallocMemset(CI, B)) 1209 return Calloc; 1210 1211 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1212 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1213 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1214 NewCI->setAttributes(CI->getAttributes()); 1215 NewCI->removeAttributes(AttributeList::ReturnIndex, 1216 AttributeFuncs::typeIncompatible(NewCI->getType())); 1217 return CI->getArgOperand(0); 1218 } 1219 1220 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1221 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1222 return emitMalloc(CI->getArgOperand(1), B, DL, TLI); 1223 1224 return nullptr; 1225 } 1226 1227 //===----------------------------------------------------------------------===// 1228 // Math Library Optimizations 1229 //===----------------------------------------------------------------------===// 1230 1231 // Replace a libcall \p CI with a call to intrinsic \p IID 1232 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1233 Intrinsic::ID IID) { 1234 // Propagate fast-math flags from the existing call to the new call. 1235 IRBuilderBase::FastMathFlagGuard Guard(B); 1236 B.setFastMathFlags(CI->getFastMathFlags()); 1237 1238 Module *M = CI->getModule(); 1239 Value *V = CI->getArgOperand(0); 1240 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1241 CallInst *NewCall = B.CreateCall(F, V); 1242 NewCall->takeName(CI); 1243 return NewCall; 1244 } 1245 1246 /// Return a variant of Val with float type. 1247 /// Currently this works in two cases: If Val is an FPExtension of a float 1248 /// value to something bigger, simply return the operand. 1249 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1250 /// loss of precision do so. 1251 static Value *valueHasFloatPrecision(Value *Val) { 1252 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1253 Value *Op = Cast->getOperand(0); 1254 if (Op->getType()->isFloatTy()) 1255 return Op; 1256 } 1257 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1258 APFloat F = Const->getValueAPF(); 1259 bool losesInfo; 1260 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1261 &losesInfo); 1262 if (!losesInfo) 1263 return ConstantFP::get(Const->getContext(), F); 1264 } 1265 return nullptr; 1266 } 1267 1268 /// Shrink double -> float functions. 1269 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1270 bool isBinary, bool isPrecise = false) { 1271 Function *CalleeFn = CI->getCalledFunction(); 1272 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1273 return nullptr; 1274 1275 // If not all the uses of the function are converted to float, then bail out. 1276 // This matters if the precision of the result is more important than the 1277 // precision of the arguments. 1278 if (isPrecise) 1279 for (User *U : CI->users()) { 1280 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1281 if (!Cast || !Cast->getType()->isFloatTy()) 1282 return nullptr; 1283 } 1284 1285 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1286 Value *V[2]; 1287 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1288 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1289 if (!V[0] || (isBinary && !V[1])) 1290 return nullptr; 1291 1292 // If call isn't an intrinsic, check that it isn't within a function with the 1293 // same name as the float version of this call, otherwise the result is an 1294 // infinite loop. For example, from MinGW-w64: 1295 // 1296 // float expf(float val) { return (float) exp((double) val); } 1297 StringRef CalleeName = CalleeFn->getName(); 1298 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1299 if (!IsIntrinsic) { 1300 StringRef CallerName = CI->getFunction()->getName(); 1301 if (!CallerName.empty() && CallerName.back() == 'f' && 1302 CallerName.size() == (CalleeName.size() + 1) && 1303 CallerName.startswith(CalleeName)) 1304 return nullptr; 1305 } 1306 1307 // Propagate the math semantics from the current function to the new function. 1308 IRBuilderBase::FastMathFlagGuard Guard(B); 1309 B.setFastMathFlags(CI->getFastMathFlags()); 1310 1311 // g((double) float) -> (double) gf(float) 1312 Value *R; 1313 if (IsIntrinsic) { 1314 Module *M = CI->getModule(); 1315 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1316 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1317 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1318 } else { 1319 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1320 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs) 1321 : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs); 1322 } 1323 return B.CreateFPExt(R, B.getDoubleTy()); 1324 } 1325 1326 /// Shrink double -> float for unary functions. 1327 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1328 bool isPrecise = false) { 1329 return optimizeDoubleFP(CI, B, false, isPrecise); 1330 } 1331 1332 /// Shrink double -> float for binary functions. 1333 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1334 bool isPrecise = false) { 1335 return optimizeDoubleFP(CI, B, true, isPrecise); 1336 } 1337 1338 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1339 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1340 if (!CI->isFast()) 1341 return nullptr; 1342 1343 // Propagate fast-math flags from the existing call to new instructions. 1344 IRBuilderBase::FastMathFlagGuard Guard(B); 1345 B.setFastMathFlags(CI->getFastMathFlags()); 1346 1347 Value *Real, *Imag; 1348 if (CI->getNumArgOperands() == 1) { 1349 Value *Op = CI->getArgOperand(0); 1350 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1351 Real = B.CreateExtractValue(Op, 0, "real"); 1352 Imag = B.CreateExtractValue(Op, 1, "imag"); 1353 } else { 1354 assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); 1355 Real = CI->getArgOperand(0); 1356 Imag = CI->getArgOperand(1); 1357 } 1358 1359 Value *RealReal = B.CreateFMul(Real, Real); 1360 Value *ImagImag = B.CreateFMul(Imag, Imag); 1361 1362 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1363 CI->getType()); 1364 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); 1365 } 1366 1367 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1368 IRBuilderBase &B) { 1369 if (!isa<FPMathOperator>(Call)) 1370 return nullptr; 1371 1372 IRBuilderBase::FastMathFlagGuard Guard(B); 1373 B.setFastMathFlags(Call->getFastMathFlags()); 1374 1375 // TODO: Can this be shared to also handle LLVM intrinsics? 1376 Value *X; 1377 switch (Func) { 1378 case LibFunc_sin: 1379 case LibFunc_sinf: 1380 case LibFunc_sinl: 1381 case LibFunc_tan: 1382 case LibFunc_tanf: 1383 case LibFunc_tanl: 1384 // sin(-X) --> -sin(X) 1385 // tan(-X) --> -tan(X) 1386 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1387 return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X)); 1388 break; 1389 case LibFunc_cos: 1390 case LibFunc_cosf: 1391 case LibFunc_cosl: 1392 // cos(-X) --> cos(X) 1393 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1394 return B.CreateCall(Call->getCalledFunction(), X, "cos"); 1395 break; 1396 default: 1397 break; 1398 } 1399 return nullptr; 1400 } 1401 1402 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) { 1403 // Multiplications calculated using Addition Chains. 1404 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1405 1406 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1407 1408 if (InnerChain[Exp]) 1409 return InnerChain[Exp]; 1410 1411 static const unsigned AddChain[33][2] = { 1412 {0, 0}, // Unused. 1413 {0, 0}, // Unused (base case = pow1). 1414 {1, 1}, // Unused (pre-computed). 1415 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1416 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1417 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1418 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1419 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1420 }; 1421 1422 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1423 getPow(InnerChain, AddChain[Exp][1], B)); 1424 return InnerChain[Exp]; 1425 } 1426 1427 // Return a properly extended integer (DstWidth bits wide) if the operation is 1428 // an itofp. 1429 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) { 1430 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1431 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1432 // Make sure that the exponent fits inside an "int" of size DstWidth, 1433 // thus avoiding any range issues that FP has not. 1434 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); 1435 if (BitWidth < DstWidth || 1436 (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) 1437 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth)) 1438 : B.CreateZExt(Op, B.getIntNTy(DstWidth)); 1439 } 1440 1441 return nullptr; 1442 } 1443 1444 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1445 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 1446 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 1447 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 1448 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1449 AttributeList Attrs; // Attributes are only meaningful on the original call 1450 Module *Mod = Pow->getModule(); 1451 Type *Ty = Pow->getType(); 1452 bool Ignored; 1453 1454 // Evaluate special cases related to a nested function as the base. 1455 1456 // pow(exp(x), y) -> exp(x * y) 1457 // pow(exp2(x), y) -> exp2(x * y) 1458 // If exp{,2}() is used only once, it is better to fold two transcendental 1459 // math functions into one. If used again, exp{,2}() would still have to be 1460 // called with the original argument, then keep both original transcendental 1461 // functions. However, this transformation is only safe with fully relaxed 1462 // math semantics, since, besides rounding differences, it changes overflow 1463 // and underflow behavior quite dramatically. For example: 1464 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1465 // Whereas: 1466 // exp(1000 * 0.001) = exp(1) 1467 // TODO: Loosen the requirement for fully relaxed math semantics. 1468 // TODO: Handle exp10() when more targets have it available. 1469 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1470 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1471 LibFunc LibFn; 1472 1473 Function *CalleeFn = BaseFn->getCalledFunction(); 1474 if (CalleeFn && 1475 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1476 StringRef ExpName; 1477 Intrinsic::ID ID; 1478 Value *ExpFn; 1479 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 1480 1481 switch (LibFn) { 1482 default: 1483 return nullptr; 1484 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1485 ExpName = TLI->getName(LibFunc_exp); 1486 ID = Intrinsic::exp; 1487 LibFnFloat = LibFunc_expf; 1488 LibFnDouble = LibFunc_exp; 1489 LibFnLongDouble = LibFunc_expl; 1490 break; 1491 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1492 ExpName = TLI->getName(LibFunc_exp2); 1493 ID = Intrinsic::exp2; 1494 LibFnFloat = LibFunc_exp2f; 1495 LibFnDouble = LibFunc_exp2; 1496 LibFnLongDouble = LibFunc_exp2l; 1497 break; 1498 } 1499 1500 // Create new exp{,2}() with the product as its argument. 1501 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1502 ExpFn = BaseFn->doesNotAccessMemory() 1503 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1504 FMul, ExpName) 1505 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1506 LibFnLongDouble, B, 1507 BaseFn->getAttributes()); 1508 1509 // Since the new exp{,2}() is different from the original one, dead code 1510 // elimination cannot be trusted to remove it, since it may have side 1511 // effects (e.g., errno). When the only consumer for the original 1512 // exp{,2}() is pow(), then it has to be explicitly erased. 1513 substituteInParent(BaseFn, ExpFn); 1514 return ExpFn; 1515 } 1516 } 1517 1518 // Evaluate special cases related to a constant base. 1519 1520 const APFloat *BaseF; 1521 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1522 return nullptr; 1523 1524 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 1525 if (match(Base, m_SpecificFP(2.0)) && 1526 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 1527 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1528 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1529 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI, 1530 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1531 B, Attrs); 1532 } 1533 1534 // pow(2.0 ** n, x) -> exp2(n * x) 1535 if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1536 APFloat BaseR = APFloat(1.0); 1537 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1538 BaseR = BaseR / *BaseF; 1539 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1540 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1541 APSInt NI(64, false); 1542 if ((IsInteger || IsReciprocal) && 1543 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1544 APFloat::opOK && 1545 NI > 1 && NI.isPowerOf2()) { 1546 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1547 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1548 if (Pow->doesNotAccessMemory()) 1549 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1550 FMul, "exp2"); 1551 else 1552 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1553 LibFunc_exp2l, B, Attrs); 1554 } 1555 } 1556 1557 // pow(10.0, x) -> exp10(x) 1558 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1559 if (match(Base, m_SpecificFP(10.0)) && 1560 hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1561 return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f, 1562 LibFunc_exp10l, B, Attrs); 1563 1564 // pow(x, y) -> exp2(log2(x) * y) 1565 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 1566 !BaseF->isNegative()) { 1567 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 1568 // Luckily optimizePow has already handled the x == 1 case. 1569 assert(!match(Base, m_FPOne()) && 1570 "pow(1.0, y) should have been simplified earlier!"); 1571 1572 Value *Log = nullptr; 1573 if (Ty->isFloatTy()) 1574 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 1575 else if (Ty->isDoubleTy()) 1576 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 1577 1578 if (Log) { 1579 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 1580 if (Pow->doesNotAccessMemory()) 1581 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1582 FMul, "exp2"); 1583 else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) 1584 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1585 LibFunc_exp2l, B, Attrs); 1586 } 1587 } 1588 1589 return nullptr; 1590 } 1591 1592 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1593 Module *M, IRBuilderBase &B, 1594 const TargetLibraryInfo *TLI) { 1595 // If errno is never set, then use the intrinsic for sqrt(). 1596 if (NoErrno) { 1597 Function *SqrtFn = 1598 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1599 return B.CreateCall(SqrtFn, V, "sqrt"); 1600 } 1601 1602 // Otherwise, use the libcall for sqrt(). 1603 if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) 1604 // TODO: We also should check that the target can in fact lower the sqrt() 1605 // libcall. We currently have no way to ask this question, so we ask if 1606 // the target has a sqrt() libcall, which is not exactly the same. 1607 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1608 LibFunc_sqrtl, B, Attrs); 1609 1610 return nullptr; 1611 } 1612 1613 /// Use square root in place of pow(x, +/-0.5). 1614 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 1615 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1616 AttributeList Attrs; // Attributes are only meaningful on the original call 1617 Module *Mod = Pow->getModule(); 1618 Type *Ty = Pow->getType(); 1619 1620 const APFloat *ExpoF; 1621 if (!match(Expo, m_APFloat(ExpoF)) || 1622 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1623 return nullptr; 1624 1625 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 1626 // so that requires fast-math-flags (afn or reassoc). 1627 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 1628 return nullptr; 1629 1630 // If we have a pow() library call (accesses memory) and we can't guarantee 1631 // that the base is not an infinity, give up: 1632 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 1633 // errno), but sqrt(-Inf) is required by various standards to set errno. 1634 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 1635 !isKnownNeverInfinity(Base, TLI)) 1636 return nullptr; 1637 1638 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1639 if (!Sqrt) 1640 return nullptr; 1641 1642 // Handle signed zero base by expanding to fabs(sqrt(x)). 1643 if (!Pow->hasNoSignedZeros()) { 1644 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1645 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1646 } 1647 1648 // Handle non finite base by expanding to 1649 // (x == -infinity ? +infinity : sqrt(x)). 1650 if (!Pow->hasNoInfs()) { 1651 Value *PosInf = ConstantFP::getInfinity(Ty), 1652 *NegInf = ConstantFP::getInfinity(Ty, true); 1653 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1654 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1655 } 1656 1657 // If the exponent is negative, then get the reciprocal. 1658 if (ExpoF->isNegative()) 1659 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1660 1661 return Sqrt; 1662 } 1663 1664 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1665 IRBuilderBase &B) { 1666 Value *Args[] = {Base, Expo}; 1667 Type *Types[] = {Base->getType(), Expo->getType()}; 1668 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types); 1669 return B.CreateCall(F, Args); 1670 } 1671 1672 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 1673 Value *Base = Pow->getArgOperand(0); 1674 Value *Expo = Pow->getArgOperand(1); 1675 Function *Callee = Pow->getCalledFunction(); 1676 StringRef Name = Callee->getName(); 1677 Type *Ty = Pow->getType(); 1678 Module *M = Pow->getModule(); 1679 bool AllowApprox = Pow->hasApproxFunc(); 1680 bool Ignored; 1681 1682 // Propagate the math semantics from the call to any created instructions. 1683 IRBuilderBase::FastMathFlagGuard Guard(B); 1684 B.setFastMathFlags(Pow->getFastMathFlags()); 1685 // Evaluate special cases related to the base. 1686 1687 // pow(1.0, x) -> 1.0 1688 if (match(Base, m_FPOne())) 1689 return Base; 1690 1691 if (Value *Exp = replacePowWithExp(Pow, B)) 1692 return Exp; 1693 1694 // Evaluate special cases related to the exponent. 1695 1696 // pow(x, -1.0) -> 1.0 / x 1697 if (match(Expo, m_SpecificFP(-1.0))) 1698 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1699 1700 // pow(x, +/-0.0) -> 1.0 1701 if (match(Expo, m_AnyZeroFP())) 1702 return ConstantFP::get(Ty, 1.0); 1703 1704 // pow(x, 1.0) -> x 1705 if (match(Expo, m_FPOne())) 1706 return Base; 1707 1708 // pow(x, 2.0) -> x * x 1709 if (match(Expo, m_SpecificFP(2.0))) 1710 return B.CreateFMul(Base, Base, "square"); 1711 1712 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1713 return Sqrt; 1714 1715 // pow(x, n) -> x * x * x * ... 1716 const APFloat *ExpoF; 1717 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 1718 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 1719 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1720 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1721 // additional fmul. 1722 // TODO: This whole transformation should be backend specific (e.g. some 1723 // backends might prefer libcalls or the limit for the exponent might 1724 // be different) and it should also consider optimizing for size. 1725 APFloat LimF(ExpoF->getSemantics(), 33), 1726 ExpoA(abs(*ExpoF)); 1727 if (ExpoA < LimF) { 1728 // This transformation applies to integer or integer+0.5 exponents only. 1729 // For integer+0.5, we create a sqrt(Base) call. 1730 Value *Sqrt = nullptr; 1731 if (!ExpoA.isInteger()) { 1732 APFloat Expo2 = ExpoA; 1733 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1734 // is no floating point exception and the result is an integer, then 1735 // ExpoA == integer + 0.5 1736 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1737 return nullptr; 1738 1739 if (!Expo2.isInteger()) 1740 return nullptr; 1741 1742 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1743 Pow->doesNotAccessMemory(), M, B, TLI); 1744 if (!Sqrt) 1745 return nullptr; 1746 } 1747 1748 // We will memoize intermediate products of the Addition Chain. 1749 Value *InnerChain[33] = {nullptr}; 1750 InnerChain[1] = Base; 1751 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1752 1753 // We cannot readily convert a non-double type (like float) to a double. 1754 // So we first convert it to something which could be converted to double. 1755 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1756 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1757 1758 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1759 if (Sqrt) 1760 FMul = B.CreateFMul(FMul, Sqrt); 1761 1762 // If the exponent is negative, then get the reciprocal. 1763 if (ExpoF->isNegative()) 1764 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1765 1766 return FMul; 1767 } 1768 1769 APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false); 1770 // powf(x, n) -> powi(x, n) if n is a constant signed integer value 1771 if (ExpoF->isInteger() && 1772 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 1773 APFloat::opOK) { 1774 return createPowWithIntegerExponent( 1775 Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo), M, B); 1776 } 1777 } 1778 1779 // powf(x, itofp(y)) -> powi(x, y) 1780 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 1781 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1782 return createPowWithIntegerExponent(Base, ExpoI, M, B); 1783 } 1784 1785 // Shrink pow() to powf() if the arguments are single precision, 1786 // unless the result is expected to be double precision. 1787 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 1788 hasFloatVersion(Name)) { 1789 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, true)) 1790 return Shrunk; 1791 } 1792 1793 return nullptr; 1794 } 1795 1796 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 1797 Function *Callee = CI->getCalledFunction(); 1798 AttributeList Attrs; // Attributes are only meaningful on the original call 1799 StringRef Name = Callee->getName(); 1800 Value *Ret = nullptr; 1801 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 1802 hasFloatVersion(Name)) 1803 Ret = optimizeUnaryDoubleFP(CI, B, true); 1804 1805 Type *Ty = CI->getType(); 1806 Value *Op = CI->getArgOperand(0); 1807 1808 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize 1809 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize 1810 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 1811 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1812 if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) 1813 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 1814 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1815 B, Attrs); 1816 } 1817 1818 return Ret; 1819 } 1820 1821 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 1822 // If we can shrink the call to a float function rather than a double 1823 // function, do that first. 1824 Function *Callee = CI->getCalledFunction(); 1825 StringRef Name = Callee->getName(); 1826 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1827 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1828 return Ret; 1829 1830 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 1831 // the intrinsics for improved optimization (for example, vectorization). 1832 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 1833 // From the C standard draft WG14/N1256: 1834 // "Ideally, fmax would be sensitive to the sign of zero, for example 1835 // fmax(-0.0, +0.0) would return +0; however, implementation in software 1836 // might be impractical." 1837 IRBuilderBase::FastMathFlagGuard Guard(B); 1838 FastMathFlags FMF = CI->getFastMathFlags(); 1839 FMF.setNoSignedZeros(); 1840 B.setFastMathFlags(FMF); 1841 1842 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 1843 : Intrinsic::maxnum; 1844 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 1845 return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) }); 1846 } 1847 1848 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 1849 Function *LogFn = Log->getCalledFunction(); 1850 AttributeList Attrs; // Attributes are only meaningful on the original call 1851 StringRef LogNm = LogFn->getName(); 1852 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 1853 Module *Mod = Log->getModule(); 1854 Type *Ty = Log->getType(); 1855 Value *Ret = nullptr; 1856 1857 if (UnsafeFPShrink && hasFloatVersion(LogNm)) 1858 Ret = optimizeUnaryDoubleFP(Log, B, true); 1859 1860 // The earlier call must also be 'fast' in order to do these transforms. 1861 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 1862 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 1863 return Ret; 1864 1865 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 1866 1867 // This is only applicable to log(), log2(), log10(). 1868 if (TLI->getLibFunc(LogNm, LogLb)) 1869 switch (LogLb) { 1870 case LibFunc_logf: 1871 LogID = Intrinsic::log; 1872 ExpLb = LibFunc_expf; 1873 Exp2Lb = LibFunc_exp2f; 1874 Exp10Lb = LibFunc_exp10f; 1875 PowLb = LibFunc_powf; 1876 break; 1877 case LibFunc_log: 1878 LogID = Intrinsic::log; 1879 ExpLb = LibFunc_exp; 1880 Exp2Lb = LibFunc_exp2; 1881 Exp10Lb = LibFunc_exp10; 1882 PowLb = LibFunc_pow; 1883 break; 1884 case LibFunc_logl: 1885 LogID = Intrinsic::log; 1886 ExpLb = LibFunc_expl; 1887 Exp2Lb = LibFunc_exp2l; 1888 Exp10Lb = LibFunc_exp10l; 1889 PowLb = LibFunc_powl; 1890 break; 1891 case LibFunc_log2f: 1892 LogID = Intrinsic::log2; 1893 ExpLb = LibFunc_expf; 1894 Exp2Lb = LibFunc_exp2f; 1895 Exp10Lb = LibFunc_exp10f; 1896 PowLb = LibFunc_powf; 1897 break; 1898 case LibFunc_log2: 1899 LogID = Intrinsic::log2; 1900 ExpLb = LibFunc_exp; 1901 Exp2Lb = LibFunc_exp2; 1902 Exp10Lb = LibFunc_exp10; 1903 PowLb = LibFunc_pow; 1904 break; 1905 case LibFunc_log2l: 1906 LogID = Intrinsic::log2; 1907 ExpLb = LibFunc_expl; 1908 Exp2Lb = LibFunc_exp2l; 1909 Exp10Lb = LibFunc_exp10l; 1910 PowLb = LibFunc_powl; 1911 break; 1912 case LibFunc_log10f: 1913 LogID = Intrinsic::log10; 1914 ExpLb = LibFunc_expf; 1915 Exp2Lb = LibFunc_exp2f; 1916 Exp10Lb = LibFunc_exp10f; 1917 PowLb = LibFunc_powf; 1918 break; 1919 case LibFunc_log10: 1920 LogID = Intrinsic::log10; 1921 ExpLb = LibFunc_exp; 1922 Exp2Lb = LibFunc_exp2; 1923 Exp10Lb = LibFunc_exp10; 1924 PowLb = LibFunc_pow; 1925 break; 1926 case LibFunc_log10l: 1927 LogID = Intrinsic::log10; 1928 ExpLb = LibFunc_expl; 1929 Exp2Lb = LibFunc_exp2l; 1930 Exp10Lb = LibFunc_exp10l; 1931 PowLb = LibFunc_powl; 1932 break; 1933 default: 1934 return Ret; 1935 } 1936 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 1937 LogID == Intrinsic::log10) { 1938 if (Ty->getScalarType()->isFloatTy()) { 1939 ExpLb = LibFunc_expf; 1940 Exp2Lb = LibFunc_exp2f; 1941 Exp10Lb = LibFunc_exp10f; 1942 PowLb = LibFunc_powf; 1943 } else if (Ty->getScalarType()->isDoubleTy()) { 1944 ExpLb = LibFunc_exp; 1945 Exp2Lb = LibFunc_exp2; 1946 Exp10Lb = LibFunc_exp10; 1947 PowLb = LibFunc_pow; 1948 } else 1949 return Ret; 1950 } else 1951 return Ret; 1952 1953 IRBuilderBase::FastMathFlagGuard Guard(B); 1954 B.setFastMathFlags(FastMathFlags::getFast()); 1955 1956 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 1957 LibFunc ArgLb = NotLibFunc; 1958 TLI->getLibFunc(*Arg, ArgLb); 1959 1960 // log(pow(x,y)) -> y*log(x) 1961 if (ArgLb == PowLb || ArgID == Intrinsic::pow) { 1962 Value *LogX = 1963 Log->doesNotAccessMemory() 1964 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 1965 Arg->getOperand(0), "log") 1966 : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs); 1967 Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul"); 1968 // Since pow() may have side effects, e.g. errno, 1969 // dead code elimination may not be trusted to remove it. 1970 substituteInParent(Arg, MulY); 1971 return MulY; 1972 } 1973 1974 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 1975 // TODO: There is no exp10() intrinsic yet. 1976 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 1977 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 1978 Constant *Eul; 1979 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 1980 // FIXME: Add more precise value of e for long double. 1981 Eul = ConstantFP::get(Log->getType(), numbers::e); 1982 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 1983 Eul = ConstantFP::get(Log->getType(), 2.0); 1984 else 1985 Eul = ConstantFP::get(Log->getType(), 10.0); 1986 Value *LogE = Log->doesNotAccessMemory() 1987 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 1988 Eul, "log") 1989 : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs); 1990 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 1991 // Since exp() may have side effects, e.g. errno, 1992 // dead code elimination may not be trusted to remove it. 1993 substituteInParent(Arg, MulY); 1994 return MulY; 1995 } 1996 1997 return Ret; 1998 } 1999 2000 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 2001 Function *Callee = CI->getCalledFunction(); 2002 Value *Ret = nullptr; 2003 // TODO: Once we have a way (other than checking for the existince of the 2004 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 2005 // condition below. 2006 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 2007 Callee->getIntrinsicID() == Intrinsic::sqrt)) 2008 Ret = optimizeUnaryDoubleFP(CI, B, true); 2009 2010 if (!CI->isFast()) 2011 return Ret; 2012 2013 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 2014 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 2015 return Ret; 2016 2017 // We're looking for a repeated factor in a multiplication tree, 2018 // so we can do this fold: sqrt(x * x) -> fabs(x); 2019 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 2020 Value *Op0 = I->getOperand(0); 2021 Value *Op1 = I->getOperand(1); 2022 Value *RepeatOp = nullptr; 2023 Value *OtherOp = nullptr; 2024 if (Op0 == Op1) { 2025 // Simple match: the operands of the multiply are identical. 2026 RepeatOp = Op0; 2027 } else { 2028 // Look for a more complicated pattern: one of the operands is itself 2029 // a multiply, so search for a common factor in that multiply. 2030 // Note: We don't bother looking any deeper than this first level or for 2031 // variations of this pattern because instcombine's visitFMUL and/or the 2032 // reassociation pass should give us this form. 2033 Value *OtherMul0, *OtherMul1; 2034 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 2035 // Pattern: sqrt((x * y) * z) 2036 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 2037 // Matched: sqrt((x * x) * z) 2038 RepeatOp = OtherMul0; 2039 OtherOp = Op1; 2040 } 2041 } 2042 } 2043 if (!RepeatOp) 2044 return Ret; 2045 2046 // Fast math flags for any created instructions should match the sqrt 2047 // and multiply. 2048 IRBuilderBase::FastMathFlagGuard Guard(B); 2049 B.setFastMathFlags(I->getFastMathFlags()); 2050 2051 // If we found a repeated factor, hoist it out of the square root and 2052 // replace it with the fabs of that factor. 2053 Module *M = Callee->getParent(); 2054 Type *ArgType = I->getType(); 2055 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 2056 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 2057 if (OtherOp) { 2058 // If we found a non-repeated factor, we still need to get its square 2059 // root. We then multiply that by the value that was simplified out 2060 // of the square root calculation. 2061 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 2062 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 2063 return B.CreateFMul(FabsCall, SqrtCall); 2064 } 2065 return FabsCall; 2066 } 2067 2068 // TODO: Generalize to handle any trig function and its inverse. 2069 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) { 2070 Function *Callee = CI->getCalledFunction(); 2071 Value *Ret = nullptr; 2072 StringRef Name = Callee->getName(); 2073 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 2074 Ret = optimizeUnaryDoubleFP(CI, B, true); 2075 2076 Value *Op1 = CI->getArgOperand(0); 2077 auto *OpC = dyn_cast<CallInst>(Op1); 2078 if (!OpC) 2079 return Ret; 2080 2081 // Both calls must be 'fast' in order to remove them. 2082 if (!CI->isFast() || !OpC->isFast()) 2083 return Ret; 2084 2085 // tan(atan(x)) -> x 2086 // tanf(atanf(x)) -> x 2087 // tanl(atanl(x)) -> x 2088 LibFunc Func; 2089 Function *F = OpC->getCalledFunction(); 2090 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 2091 ((Func == LibFunc_atan && Callee->getName() == "tan") || 2092 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 2093 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 2094 Ret = OpC->getArgOperand(0); 2095 return Ret; 2096 } 2097 2098 static bool isTrigLibCall(CallInst *CI) { 2099 // We can only hope to do anything useful if we can ignore things like errno 2100 // and floating-point exceptions. 2101 // We already checked the prototype. 2102 return CI->hasFnAttr(Attribute::NoUnwind) && 2103 CI->hasFnAttr(Attribute::ReadNone); 2104 } 2105 2106 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2107 bool UseFloat, Value *&Sin, Value *&Cos, 2108 Value *&SinCos) { 2109 Type *ArgTy = Arg->getType(); 2110 Type *ResTy; 2111 StringRef Name; 2112 2113 Triple T(OrigCallee->getParent()->getTargetTriple()); 2114 if (UseFloat) { 2115 Name = "__sincospif_stret"; 2116 2117 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2118 // x86_64 can't use {float, float} since that would be returned in both 2119 // xmm0 and xmm1, which isn't what a real struct would do. 2120 ResTy = T.getArch() == Triple::x86_64 2121 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2122 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2123 } else { 2124 Name = "__sincospi_stret"; 2125 ResTy = StructType::get(ArgTy, ArgTy); 2126 } 2127 2128 Module *M = OrigCallee->getParent(); 2129 FunctionCallee Callee = 2130 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); 2131 2132 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2133 // If the argument is an instruction, it must dominate all uses so put our 2134 // sincos call there. 2135 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2136 } else { 2137 // Otherwise (e.g. for a constant) the beginning of the function is as 2138 // good a place as any. 2139 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2140 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2141 } 2142 2143 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2144 2145 if (SinCos->getType()->isStructTy()) { 2146 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2147 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2148 } else { 2149 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2150 "sinpi"); 2151 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2152 "cospi"); 2153 } 2154 } 2155 2156 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) { 2157 // Make sure the prototype is as expected, otherwise the rest of the 2158 // function is probably invalid and likely to abort. 2159 if (!isTrigLibCall(CI)) 2160 return nullptr; 2161 2162 Value *Arg = CI->getArgOperand(0); 2163 SmallVector<CallInst *, 1> SinCalls; 2164 SmallVector<CallInst *, 1> CosCalls; 2165 SmallVector<CallInst *, 1> SinCosCalls; 2166 2167 bool IsFloat = Arg->getType()->isFloatTy(); 2168 2169 // Look for all compatible sinpi, cospi and sincospi calls with the same 2170 // argument. If there are enough (in some sense) we can make the 2171 // substitution. 2172 Function *F = CI->getFunction(); 2173 for (User *U : Arg->users()) 2174 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2175 2176 // It's only worthwhile if both sinpi and cospi are actually used. 2177 if (SinCalls.empty() || CosCalls.empty()) 2178 return nullptr; 2179 2180 Value *Sin, *Cos, *SinCos; 2181 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 2182 2183 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2184 Value *Res) { 2185 for (CallInst *C : Calls) 2186 replaceAllUsesWith(C, Res); 2187 }; 2188 2189 replaceTrigInsts(SinCalls, Sin); 2190 replaceTrigInsts(CosCalls, Cos); 2191 replaceTrigInsts(SinCosCalls, SinCos); 2192 2193 return nullptr; 2194 } 2195 2196 void LibCallSimplifier::classifyArgUse( 2197 Value *Val, Function *F, bool IsFloat, 2198 SmallVectorImpl<CallInst *> &SinCalls, 2199 SmallVectorImpl<CallInst *> &CosCalls, 2200 SmallVectorImpl<CallInst *> &SinCosCalls) { 2201 CallInst *CI = dyn_cast<CallInst>(Val); 2202 2203 if (!CI || CI->use_empty()) 2204 return; 2205 2206 // Don't consider calls in other functions. 2207 if (CI->getFunction() != F) 2208 return; 2209 2210 Function *Callee = CI->getCalledFunction(); 2211 LibFunc Func; 2212 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 2213 !isTrigLibCall(CI)) 2214 return; 2215 2216 if (IsFloat) { 2217 if (Func == LibFunc_sinpif) 2218 SinCalls.push_back(CI); 2219 else if (Func == LibFunc_cospif) 2220 CosCalls.push_back(CI); 2221 else if (Func == LibFunc_sincospif_stret) 2222 SinCosCalls.push_back(CI); 2223 } else { 2224 if (Func == LibFunc_sinpi) 2225 SinCalls.push_back(CI); 2226 else if (Func == LibFunc_cospi) 2227 CosCalls.push_back(CI); 2228 else if (Func == LibFunc_sincospi_stret) 2229 SinCosCalls.push_back(CI); 2230 } 2231 } 2232 2233 //===----------------------------------------------------------------------===// 2234 // Integer Library Call Optimizations 2235 //===----------------------------------------------------------------------===// 2236 2237 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 2238 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 2239 Value *Op = CI->getArgOperand(0); 2240 Type *ArgType = Op->getType(); 2241 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2242 Intrinsic::cttz, ArgType); 2243 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 2244 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 2245 V = B.CreateIntCast(V, B.getInt32Ty(), false); 2246 2247 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 2248 return B.CreateSelect(Cond, V, B.getInt32(0)); 2249 } 2250 2251 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 2252 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 2253 Value *Op = CI->getArgOperand(0); 2254 Type *ArgType = Op->getType(); 2255 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2256 Intrinsic::ctlz, ArgType); 2257 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 2258 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 2259 V); 2260 return B.CreateIntCast(V, CI->getType(), false); 2261 } 2262 2263 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 2264 // abs(x) -> x <s 0 ? -x : x 2265 // The negation has 'nsw' because abs of INT_MIN is undefined. 2266 Value *X = CI->getArgOperand(0); 2267 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 2268 Value *NegX = B.CreateNSWNeg(X, "neg"); 2269 return B.CreateSelect(IsNeg, NegX, X); 2270 } 2271 2272 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 2273 // isdigit(c) -> (c-'0') <u 10 2274 Value *Op = CI->getArgOperand(0); 2275 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 2276 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 2277 return B.CreateZExt(Op, CI->getType()); 2278 } 2279 2280 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 2281 // isascii(c) -> c <u 128 2282 Value *Op = CI->getArgOperand(0); 2283 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 2284 return B.CreateZExt(Op, CI->getType()); 2285 } 2286 2287 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 2288 // toascii(c) -> c & 0x7f 2289 return B.CreateAnd(CI->getArgOperand(0), 2290 ConstantInt::get(CI->getType(), 0x7F)); 2291 } 2292 2293 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 2294 StringRef Str; 2295 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2296 return nullptr; 2297 2298 return convertStrToNumber(CI, Str, 10); 2299 } 2300 2301 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) { 2302 StringRef Str; 2303 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2304 return nullptr; 2305 2306 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 2307 return nullptr; 2308 2309 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2310 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 2311 } 2312 2313 return nullptr; 2314 } 2315 2316 //===----------------------------------------------------------------------===// 2317 // Formatting and IO Library Call Optimizations 2318 //===----------------------------------------------------------------------===// 2319 2320 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2321 2322 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 2323 int StreamArg) { 2324 Function *Callee = CI->getCalledFunction(); 2325 // Error reporting calls should be cold, mark them as such. 2326 // This applies even to non-builtin calls: it is only a hint and applies to 2327 // functions that the frontend might not understand as builtins. 2328 2329 // This heuristic was suggested in: 2330 // Improving Static Branch Prediction in a Compiler 2331 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2332 // Proceedings of PACT'98, Oct. 1998, IEEE 2333 if (!CI->hasFnAttr(Attribute::Cold) && 2334 isReportingError(Callee, CI, StreamArg)) { 2335 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 2336 } 2337 2338 return nullptr; 2339 } 2340 2341 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2342 if (!Callee || !Callee->isDeclaration()) 2343 return false; 2344 2345 if (StreamArg < 0) 2346 return true; 2347 2348 // These functions might be considered cold, but only if their stream 2349 // argument is stderr. 2350 2351 if (StreamArg >= (int)CI->getNumArgOperands()) 2352 return false; 2353 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2354 if (!LI) 2355 return false; 2356 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2357 if (!GV || !GV->isDeclaration()) 2358 return false; 2359 return GV->getName() == "stderr"; 2360 } 2361 2362 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 2363 // Check for a fixed format string. 2364 StringRef FormatStr; 2365 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2366 return nullptr; 2367 2368 // Empty format string -> noop. 2369 if (FormatStr.empty()) // Tolerate printf's declared void. 2370 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2371 2372 // Do not do any of the following transformations if the printf return value 2373 // is used, in general the printf return value is not compatible with either 2374 // putchar() or puts(). 2375 if (!CI->use_empty()) 2376 return nullptr; 2377 2378 // printf("x") -> putchar('x'), even for "%" and "%%". 2379 if (FormatStr.size() == 1 || FormatStr == "%%") 2380 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 2381 2382 // Try to remove call or emit putchar/puts. 2383 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 2384 StringRef OperandStr; 2385 if (!getConstantStringInfo(CI->getOperand(1), OperandStr)) 2386 return nullptr; 2387 // printf("%s", "") --> NOP 2388 if (OperandStr.empty()) 2389 return (Value *)CI; 2390 // printf("%s", "a") --> putchar('a') 2391 if (OperandStr.size() == 1) 2392 return emitPutChar(B.getInt32(OperandStr[0]), B, TLI); 2393 // printf("%s", str"\n") --> puts(str) 2394 if (OperandStr.back() == '\n') { 2395 OperandStr = OperandStr.drop_back(); 2396 Value *GV = B.CreateGlobalString(OperandStr, "str"); 2397 return emitPutS(GV, B, TLI); 2398 } 2399 return nullptr; 2400 } 2401 2402 // printf("foo\n") --> puts("foo") 2403 if (FormatStr.back() == '\n' && 2404 FormatStr.find('%') == StringRef::npos) { // No format characters. 2405 // Create a string literal with no \n on it. We expect the constant merge 2406 // pass to be run after this pass, to merge duplicate strings. 2407 FormatStr = FormatStr.drop_back(); 2408 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2409 return emitPutS(GV, B, TLI); 2410 } 2411 2412 // Optimize specific format strings. 2413 // printf("%c", chr) --> putchar(chr) 2414 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 2415 CI->getArgOperand(1)->getType()->isIntegerTy()) 2416 return emitPutChar(CI->getArgOperand(1), B, TLI); 2417 2418 // printf("%s\n", str) --> puts(str) 2419 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 2420 CI->getArgOperand(1)->getType()->isPointerTy()) 2421 return emitPutS(CI->getArgOperand(1), B, TLI); 2422 return nullptr; 2423 } 2424 2425 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 2426 2427 Function *Callee = CI->getCalledFunction(); 2428 FunctionType *FT = Callee->getFunctionType(); 2429 if (Value *V = optimizePrintFString(CI, B)) { 2430 return V; 2431 } 2432 2433 // printf(format, ...) -> iprintf(format, ...) if no floating point 2434 // arguments. 2435 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2436 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2437 FunctionCallee IPrintFFn = 2438 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2439 CallInst *New = cast<CallInst>(CI->clone()); 2440 New->setCalledFunction(IPrintFFn); 2441 B.Insert(New); 2442 return New; 2443 } 2444 2445 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2446 // arguments. 2447 if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) { 2448 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2449 auto SmallPrintFFn = 2450 M->getOrInsertFunction(TLI->getName(LibFunc_small_printf), 2451 FT, Callee->getAttributes()); 2452 CallInst *New = cast<CallInst>(CI->clone()); 2453 New->setCalledFunction(SmallPrintFFn); 2454 B.Insert(New); 2455 return New; 2456 } 2457 2458 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2459 return nullptr; 2460 } 2461 2462 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 2463 IRBuilderBase &B) { 2464 // Check for a fixed format string. 2465 StringRef FormatStr; 2466 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2467 return nullptr; 2468 2469 // If we just have a format string (nothing else crazy) transform it. 2470 if (CI->getNumArgOperands() == 2) { 2471 // Make sure there's no % in the constant array. We could try to handle 2472 // %% -> % in the future if we cared. 2473 if (FormatStr.find('%') != StringRef::npos) 2474 return nullptr; // we found a format specifier, bail out. 2475 2476 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2477 B.CreateMemCpy( 2478 CI->getArgOperand(0), Align(1), CI->getArgOperand(1), Align(1), 2479 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2480 FormatStr.size() + 1)); // Copy the null byte. 2481 return ConstantInt::get(CI->getType(), FormatStr.size()); 2482 } 2483 2484 // The remaining optimizations require the format string to be "%s" or "%c" 2485 // and have an extra operand. 2486 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2487 CI->getNumArgOperands() < 3) 2488 return nullptr; 2489 2490 // Decode the second character of the format string. 2491 if (FormatStr[1] == 'c') { 2492 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2493 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2494 return nullptr; 2495 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2496 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2497 B.CreateStore(V, Ptr); 2498 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2499 B.CreateStore(B.getInt8(0), Ptr); 2500 2501 return ConstantInt::get(CI->getType(), 1); 2502 } 2503 2504 if (FormatStr[1] == 's') { 2505 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2506 // strlen(str)+1) 2507 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2508 return nullptr; 2509 2510 if (CI->use_empty()) 2511 // sprintf(dest, "%s", str) -> strcpy(dest, str) 2512 return emitStrCpy(CI->getArgOperand(0), CI->getArgOperand(2), B, TLI); 2513 2514 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 2515 if (SrcLen) { 2516 B.CreateMemCpy( 2517 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2518 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 2519 // Returns total number of characters written without null-character. 2520 return ConstantInt::get(CI->getType(), SrcLen - 1); 2521 } else if (Value *V = emitStpCpy(CI->getArgOperand(0), CI->getArgOperand(2), 2522 B, TLI)) { 2523 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 2524 Value *PtrDiff = B.CreatePtrDiff(V, CI->getArgOperand(0)); 2525 return B.CreateIntCast(PtrDiff, CI->getType(), false); 2526 } 2527 2528 bool OptForSize = CI->getFunction()->hasOptSize() || 2529 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2530 PGSOQueryType::IRPass); 2531 if (OptForSize) 2532 return nullptr; 2533 2534 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2535 if (!Len) 2536 return nullptr; 2537 Value *IncLen = 2538 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2539 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(2), 2540 Align(1), IncLen); 2541 2542 // The sprintf result is the unincremented number of bytes in the string. 2543 return B.CreateIntCast(Len, CI->getType(), false); 2544 } 2545 return nullptr; 2546 } 2547 2548 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 2549 Function *Callee = CI->getCalledFunction(); 2550 FunctionType *FT = Callee->getFunctionType(); 2551 if (Value *V = optimizeSPrintFString(CI, B)) { 2552 return V; 2553 } 2554 2555 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2556 // point arguments. 2557 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2558 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2559 FunctionCallee SIPrintFFn = 2560 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2561 CallInst *New = cast<CallInst>(CI->clone()); 2562 New->setCalledFunction(SIPrintFFn); 2563 B.Insert(New); 2564 return New; 2565 } 2566 2567 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2568 // floating point arguments. 2569 if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) { 2570 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2571 auto SmallSPrintFFn = 2572 M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf), 2573 FT, Callee->getAttributes()); 2574 CallInst *New = cast<CallInst>(CI->clone()); 2575 New->setCalledFunction(SmallSPrintFFn); 2576 B.Insert(New); 2577 return New; 2578 } 2579 2580 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 2581 return nullptr; 2582 } 2583 2584 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 2585 IRBuilderBase &B) { 2586 // Check for size 2587 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2588 if (!Size) 2589 return nullptr; 2590 2591 uint64_t N = Size->getZExtValue(); 2592 // Check for a fixed format string. 2593 StringRef FormatStr; 2594 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2595 return nullptr; 2596 2597 // If we just have a format string (nothing else crazy) transform it. 2598 if (CI->getNumArgOperands() == 3) { 2599 // Make sure there's no % in the constant array. We could try to handle 2600 // %% -> % in the future if we cared. 2601 if (FormatStr.find('%') != StringRef::npos) 2602 return nullptr; // we found a format specifier, bail out. 2603 2604 if (N == 0) 2605 return ConstantInt::get(CI->getType(), FormatStr.size()); 2606 else if (N < FormatStr.size() + 1) 2607 return nullptr; 2608 2609 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2610 // strlen(fmt)+1) 2611 B.CreateMemCpy( 2612 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2613 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2614 FormatStr.size() + 1)); // Copy the null byte. 2615 return ConstantInt::get(CI->getType(), FormatStr.size()); 2616 } 2617 2618 // The remaining optimizations require the format string to be "%s" or "%c" 2619 // and have an extra operand. 2620 if (FormatStr.size() == 2 && FormatStr[0] == '%' && 2621 CI->getNumArgOperands() == 4) { 2622 2623 // Decode the second character of the format string. 2624 if (FormatStr[1] == 'c') { 2625 if (N == 0) 2626 return ConstantInt::get(CI->getType(), 1); 2627 else if (N == 1) 2628 return nullptr; 2629 2630 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2631 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2632 return nullptr; 2633 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2634 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2635 B.CreateStore(V, Ptr); 2636 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2637 B.CreateStore(B.getInt8(0), Ptr); 2638 2639 return ConstantInt::get(CI->getType(), 1); 2640 } 2641 2642 if (FormatStr[1] == 's') { 2643 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2644 StringRef Str; 2645 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2646 return nullptr; 2647 2648 if (N == 0) 2649 return ConstantInt::get(CI->getType(), Str.size()); 2650 else if (N < Str.size() + 1) 2651 return nullptr; 2652 2653 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(3), 2654 Align(1), ConstantInt::get(CI->getType(), Str.size() + 1)); 2655 2656 // The snprintf result is the unincremented number of bytes in the string. 2657 return ConstantInt::get(CI->getType(), Str.size()); 2658 } 2659 } 2660 return nullptr; 2661 } 2662 2663 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 2664 if (Value *V = optimizeSnPrintFString(CI, B)) { 2665 return V; 2666 } 2667 2668 if (isKnownNonZero(CI->getOperand(1), DL)) 2669 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2670 return nullptr; 2671 } 2672 2673 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 2674 IRBuilderBase &B) { 2675 optimizeErrorReporting(CI, B, 0); 2676 2677 // All the optimizations depend on the format string. 2678 StringRef FormatStr; 2679 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2680 return nullptr; 2681 2682 // Do not do any of the following transformations if the fprintf return 2683 // value is used, in general the fprintf return value is not compatible 2684 // with fwrite(), fputc() or fputs(). 2685 if (!CI->use_empty()) 2686 return nullptr; 2687 2688 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2689 if (CI->getNumArgOperands() == 2) { 2690 // Could handle %% -> % if we cared. 2691 if (FormatStr.find('%') != StringRef::npos) 2692 return nullptr; // We found a format specifier. 2693 2694 return emitFWrite( 2695 CI->getArgOperand(1), 2696 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 2697 CI->getArgOperand(0), B, DL, TLI); 2698 } 2699 2700 // The remaining optimizations require the format string to be "%s" or "%c" 2701 // and have an extra operand. 2702 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2703 CI->getNumArgOperands() < 3) 2704 return nullptr; 2705 2706 // Decode the second character of the format string. 2707 if (FormatStr[1] == 'c') { 2708 // fprintf(F, "%c", chr) --> fputc(chr, F) 2709 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2710 return nullptr; 2711 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2712 } 2713 2714 if (FormatStr[1] == 's') { 2715 // fprintf(F, "%s", str) --> fputs(str, F) 2716 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2717 return nullptr; 2718 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2719 } 2720 return nullptr; 2721 } 2722 2723 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 2724 Function *Callee = CI->getCalledFunction(); 2725 FunctionType *FT = Callee->getFunctionType(); 2726 if (Value *V = optimizeFPrintFString(CI, B)) { 2727 return V; 2728 } 2729 2730 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2731 // floating point arguments. 2732 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2733 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2734 FunctionCallee FIPrintFFn = 2735 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2736 CallInst *New = cast<CallInst>(CI->clone()); 2737 New->setCalledFunction(FIPrintFFn); 2738 B.Insert(New); 2739 return New; 2740 } 2741 2742 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2743 // 128-bit floating point arguments. 2744 if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) { 2745 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2746 auto SmallFPrintFFn = 2747 M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf), 2748 FT, Callee->getAttributes()); 2749 CallInst *New = cast<CallInst>(CI->clone()); 2750 New->setCalledFunction(SmallFPrintFFn); 2751 B.Insert(New); 2752 return New; 2753 } 2754 2755 return nullptr; 2756 } 2757 2758 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 2759 optimizeErrorReporting(CI, B, 3); 2760 2761 // Get the element size and count. 2762 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2763 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2764 if (SizeC && CountC) { 2765 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2766 2767 // If this is writing zero records, remove the call (it's a noop). 2768 if (Bytes == 0) 2769 return ConstantInt::get(CI->getType(), 0); 2770 2771 // If this is writing one byte, turn it into fputc. 2772 // This optimisation is only valid, if the return value is unused. 2773 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2774 Value *Char = B.CreateLoad(B.getInt8Ty(), 2775 castToCStr(CI->getArgOperand(0), B), "char"); 2776 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2777 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2778 } 2779 } 2780 2781 return nullptr; 2782 } 2783 2784 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 2785 optimizeErrorReporting(CI, B, 1); 2786 2787 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2788 // requires more arguments and thus extra MOVs are required. 2789 bool OptForSize = CI->getFunction()->hasOptSize() || 2790 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2791 PGSOQueryType::IRPass); 2792 if (OptForSize) 2793 return nullptr; 2794 2795 // We can't optimize if return value is used. 2796 if (!CI->use_empty()) 2797 return nullptr; 2798 2799 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2800 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2801 if (!Len) 2802 return nullptr; 2803 2804 // Known to have no uses (see above). 2805 return emitFWrite( 2806 CI->getArgOperand(0), 2807 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2808 CI->getArgOperand(1), B, DL, TLI); 2809 } 2810 2811 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 2812 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2813 if (!CI->use_empty()) 2814 return nullptr; 2815 2816 // Check for a constant string. 2817 // puts("") -> putchar('\n') 2818 StringRef Str; 2819 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 2820 return emitPutChar(B.getInt32('\n'), B, TLI); 2821 2822 return nullptr; 2823 } 2824 2825 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 2826 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 2827 return B.CreateMemMove(CI->getArgOperand(1), Align(1), CI->getArgOperand(0), 2828 Align(1), CI->getArgOperand(2)); 2829 } 2830 2831 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2832 LibFunc Func; 2833 SmallString<20> FloatFuncName = FuncName; 2834 FloatFuncName += 'f'; 2835 if (TLI->getLibFunc(FloatFuncName, Func)) 2836 return TLI->has(Func); 2837 return false; 2838 } 2839 2840 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2841 IRBuilderBase &Builder) { 2842 LibFunc Func; 2843 Function *Callee = CI->getCalledFunction(); 2844 // Check for string/memory library functions. 2845 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2846 // Make sure we never change the calling convention. 2847 assert( 2848 (ignoreCallingConv(Func) || 2849 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) && 2850 "Optimizing string/memory libcall would change the calling convention"); 2851 switch (Func) { 2852 case LibFunc_strcat: 2853 return optimizeStrCat(CI, Builder); 2854 case LibFunc_strncat: 2855 return optimizeStrNCat(CI, Builder); 2856 case LibFunc_strchr: 2857 return optimizeStrChr(CI, Builder); 2858 case LibFunc_strrchr: 2859 return optimizeStrRChr(CI, Builder); 2860 case LibFunc_strcmp: 2861 return optimizeStrCmp(CI, Builder); 2862 case LibFunc_strncmp: 2863 return optimizeStrNCmp(CI, Builder); 2864 case LibFunc_strcpy: 2865 return optimizeStrCpy(CI, Builder); 2866 case LibFunc_stpcpy: 2867 return optimizeStpCpy(CI, Builder); 2868 case LibFunc_strncpy: 2869 return optimizeStrNCpy(CI, Builder); 2870 case LibFunc_strlen: 2871 return optimizeStrLen(CI, Builder); 2872 case LibFunc_strpbrk: 2873 return optimizeStrPBrk(CI, Builder); 2874 case LibFunc_strndup: 2875 return optimizeStrNDup(CI, Builder); 2876 case LibFunc_strtol: 2877 case LibFunc_strtod: 2878 case LibFunc_strtof: 2879 case LibFunc_strtoul: 2880 case LibFunc_strtoll: 2881 case LibFunc_strtold: 2882 case LibFunc_strtoull: 2883 return optimizeStrTo(CI, Builder); 2884 case LibFunc_strspn: 2885 return optimizeStrSpn(CI, Builder); 2886 case LibFunc_strcspn: 2887 return optimizeStrCSpn(CI, Builder); 2888 case LibFunc_strstr: 2889 return optimizeStrStr(CI, Builder); 2890 case LibFunc_memchr: 2891 return optimizeMemChr(CI, Builder); 2892 case LibFunc_memrchr: 2893 return optimizeMemRChr(CI, Builder); 2894 case LibFunc_bcmp: 2895 return optimizeBCmp(CI, Builder); 2896 case LibFunc_memcmp: 2897 return optimizeMemCmp(CI, Builder); 2898 case LibFunc_memcpy: 2899 return optimizeMemCpy(CI, Builder); 2900 case LibFunc_memccpy: 2901 return optimizeMemCCpy(CI, Builder); 2902 case LibFunc_mempcpy: 2903 return optimizeMemPCpy(CI, Builder); 2904 case LibFunc_memmove: 2905 return optimizeMemMove(CI, Builder); 2906 case LibFunc_memset: 2907 return optimizeMemSet(CI, Builder); 2908 case LibFunc_realloc: 2909 return optimizeRealloc(CI, Builder); 2910 case LibFunc_wcslen: 2911 return optimizeWcslen(CI, Builder); 2912 case LibFunc_bcopy: 2913 return optimizeBCopy(CI, Builder); 2914 default: 2915 break; 2916 } 2917 } 2918 return nullptr; 2919 } 2920 2921 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2922 LibFunc Func, 2923 IRBuilderBase &Builder) { 2924 // Don't optimize calls that require strict floating point semantics. 2925 if (CI->isStrictFP()) 2926 return nullptr; 2927 2928 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 2929 return V; 2930 2931 switch (Func) { 2932 case LibFunc_sinpif: 2933 case LibFunc_sinpi: 2934 case LibFunc_cospif: 2935 case LibFunc_cospi: 2936 return optimizeSinCosPi(CI, Builder); 2937 case LibFunc_powf: 2938 case LibFunc_pow: 2939 case LibFunc_powl: 2940 return optimizePow(CI, Builder); 2941 case LibFunc_exp2l: 2942 case LibFunc_exp2: 2943 case LibFunc_exp2f: 2944 return optimizeExp2(CI, Builder); 2945 case LibFunc_fabsf: 2946 case LibFunc_fabs: 2947 case LibFunc_fabsl: 2948 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2949 case LibFunc_sqrtf: 2950 case LibFunc_sqrt: 2951 case LibFunc_sqrtl: 2952 return optimizeSqrt(CI, Builder); 2953 case LibFunc_logf: 2954 case LibFunc_log: 2955 case LibFunc_logl: 2956 case LibFunc_log10f: 2957 case LibFunc_log10: 2958 case LibFunc_log10l: 2959 case LibFunc_log1pf: 2960 case LibFunc_log1p: 2961 case LibFunc_log1pl: 2962 case LibFunc_log2f: 2963 case LibFunc_log2: 2964 case LibFunc_log2l: 2965 case LibFunc_logbf: 2966 case LibFunc_logb: 2967 case LibFunc_logbl: 2968 return optimizeLog(CI, Builder); 2969 case LibFunc_tan: 2970 case LibFunc_tanf: 2971 case LibFunc_tanl: 2972 return optimizeTan(CI, Builder); 2973 case LibFunc_ceil: 2974 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2975 case LibFunc_floor: 2976 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2977 case LibFunc_round: 2978 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2979 case LibFunc_roundeven: 2980 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 2981 case LibFunc_nearbyint: 2982 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2983 case LibFunc_rint: 2984 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2985 case LibFunc_trunc: 2986 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2987 case LibFunc_acos: 2988 case LibFunc_acosh: 2989 case LibFunc_asin: 2990 case LibFunc_asinh: 2991 case LibFunc_atan: 2992 case LibFunc_atanh: 2993 case LibFunc_cbrt: 2994 case LibFunc_cosh: 2995 case LibFunc_exp: 2996 case LibFunc_exp10: 2997 case LibFunc_expm1: 2998 case LibFunc_cos: 2999 case LibFunc_sin: 3000 case LibFunc_sinh: 3001 case LibFunc_tanh: 3002 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 3003 return optimizeUnaryDoubleFP(CI, Builder, true); 3004 return nullptr; 3005 case LibFunc_copysign: 3006 if (hasFloatVersion(CI->getCalledFunction()->getName())) 3007 return optimizeBinaryDoubleFP(CI, Builder); 3008 return nullptr; 3009 case LibFunc_fminf: 3010 case LibFunc_fmin: 3011 case LibFunc_fminl: 3012 case LibFunc_fmaxf: 3013 case LibFunc_fmax: 3014 case LibFunc_fmaxl: 3015 return optimizeFMinFMax(CI, Builder); 3016 case LibFunc_cabs: 3017 case LibFunc_cabsf: 3018 case LibFunc_cabsl: 3019 return optimizeCAbs(CI, Builder); 3020 default: 3021 return nullptr; 3022 } 3023 } 3024 3025 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 3026 // TODO: Split out the code below that operates on FP calls so that 3027 // we can all non-FP calls with the StrictFP attribute to be 3028 // optimized. 3029 if (CI->isNoBuiltin()) 3030 return nullptr; 3031 3032 LibFunc Func; 3033 Function *Callee = CI->getCalledFunction(); 3034 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3035 3036 SmallVector<OperandBundleDef, 2> OpBundles; 3037 CI->getOperandBundlesAsDefs(OpBundles); 3038 3039 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3040 Builder.setDefaultOperandBundles(OpBundles); 3041 3042 // Command-line parameter overrides instruction attribute. 3043 // This can't be moved to optimizeFloatingPointLibCall() because it may be 3044 // used by the intrinsic optimizations. 3045 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 3046 UnsafeFPShrink = EnableUnsafeFPShrink; 3047 else if (isa<FPMathOperator>(CI) && CI->isFast()) 3048 UnsafeFPShrink = true; 3049 3050 // First, check for intrinsics. 3051 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 3052 if (!IsCallingConvC) 3053 return nullptr; 3054 // The FP intrinsics have corresponding constrained versions so we don't 3055 // need to check for the StrictFP attribute here. 3056 switch (II->getIntrinsicID()) { 3057 case Intrinsic::pow: 3058 return optimizePow(CI, Builder); 3059 case Intrinsic::exp2: 3060 return optimizeExp2(CI, Builder); 3061 case Intrinsic::log: 3062 case Intrinsic::log2: 3063 case Intrinsic::log10: 3064 return optimizeLog(CI, Builder); 3065 case Intrinsic::sqrt: 3066 return optimizeSqrt(CI, Builder); 3067 // TODO: Use foldMallocMemset() with memset intrinsic. 3068 case Intrinsic::memset: 3069 return optimizeMemSet(CI, Builder); 3070 case Intrinsic::memcpy: 3071 return optimizeMemCpy(CI, Builder); 3072 case Intrinsic::memmove: 3073 return optimizeMemMove(CI, Builder); 3074 default: 3075 return nullptr; 3076 } 3077 } 3078 3079 // Also try to simplify calls to fortified library functions. 3080 if (Value *SimplifiedFortifiedCI = 3081 FortifiedSimplifier.optimizeCall(CI, Builder)) { 3082 // Try to further simplify the result. 3083 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 3084 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 3085 // Ensure that SimplifiedCI's uses are complete, since some calls have 3086 // their uses analyzed. 3087 replaceAllUsesWith(CI, SimplifiedCI); 3088 3089 // Set insertion point to SimplifiedCI to guarantee we reach all uses 3090 // we might replace later on. 3091 IRBuilderBase::InsertPointGuard Guard(Builder); 3092 Builder.SetInsertPoint(SimplifiedCI); 3093 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) { 3094 // If we were able to further simplify, remove the now redundant call. 3095 substituteInParent(SimplifiedCI, V); 3096 return V; 3097 } 3098 } 3099 return SimplifiedFortifiedCI; 3100 } 3101 3102 // Then check for known library functions. 3103 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 3104 // We never change the calling convention. 3105 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3106 return nullptr; 3107 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 3108 return V; 3109 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 3110 return V; 3111 switch (Func) { 3112 case LibFunc_ffs: 3113 case LibFunc_ffsl: 3114 case LibFunc_ffsll: 3115 return optimizeFFS(CI, Builder); 3116 case LibFunc_fls: 3117 case LibFunc_flsl: 3118 case LibFunc_flsll: 3119 return optimizeFls(CI, Builder); 3120 case LibFunc_abs: 3121 case LibFunc_labs: 3122 case LibFunc_llabs: 3123 return optimizeAbs(CI, Builder); 3124 case LibFunc_isdigit: 3125 return optimizeIsDigit(CI, Builder); 3126 case LibFunc_isascii: 3127 return optimizeIsAscii(CI, Builder); 3128 case LibFunc_toascii: 3129 return optimizeToAscii(CI, Builder); 3130 case LibFunc_atoi: 3131 case LibFunc_atol: 3132 case LibFunc_atoll: 3133 return optimizeAtoi(CI, Builder); 3134 case LibFunc_strtol: 3135 case LibFunc_strtoll: 3136 return optimizeStrtol(CI, Builder); 3137 case LibFunc_printf: 3138 return optimizePrintF(CI, Builder); 3139 case LibFunc_sprintf: 3140 return optimizeSPrintF(CI, Builder); 3141 case LibFunc_snprintf: 3142 return optimizeSnPrintF(CI, Builder); 3143 case LibFunc_fprintf: 3144 return optimizeFPrintF(CI, Builder); 3145 case LibFunc_fwrite: 3146 return optimizeFWrite(CI, Builder); 3147 case LibFunc_fputs: 3148 return optimizeFPuts(CI, Builder); 3149 case LibFunc_puts: 3150 return optimizePuts(CI, Builder); 3151 case LibFunc_perror: 3152 return optimizeErrorReporting(CI, Builder); 3153 case LibFunc_vfprintf: 3154 case LibFunc_fiprintf: 3155 return optimizeErrorReporting(CI, Builder, 0); 3156 default: 3157 return nullptr; 3158 } 3159 } 3160 return nullptr; 3161 } 3162 3163 LibCallSimplifier::LibCallSimplifier( 3164 const DataLayout &DL, const TargetLibraryInfo *TLI, 3165 OptimizationRemarkEmitter &ORE, 3166 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 3167 function_ref<void(Instruction *, Value *)> Replacer, 3168 function_ref<void(Instruction *)> Eraser) 3169 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 3170 UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {} 3171 3172 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 3173 // Indirect through the replacer used in this instance. 3174 Replacer(I, With); 3175 } 3176 3177 void LibCallSimplifier::eraseFromParent(Instruction *I) { 3178 Eraser(I); 3179 } 3180 3181 // TODO: 3182 // Additional cases that we need to add to this file: 3183 // 3184 // cbrt: 3185 // * cbrt(expN(X)) -> expN(x/3) 3186 // * cbrt(sqrt(x)) -> pow(x,1/6) 3187 // * cbrt(cbrt(x)) -> pow(x,1/9) 3188 // 3189 // exp, expf, expl: 3190 // * exp(log(x)) -> x 3191 // 3192 // log, logf, logl: 3193 // * log(exp(x)) -> x 3194 // * log(exp(y)) -> y*log(e) 3195 // * log(exp10(y)) -> y*log(10) 3196 // * log(sqrt(x)) -> 0.5*log(x) 3197 // 3198 // pow, powf, powl: 3199 // * pow(sqrt(x),y) -> pow(x,y*0.5) 3200 // * pow(pow(x,y),z)-> pow(x,y*z) 3201 // 3202 // signbit: 3203 // * signbit(cnst) -> cnst' 3204 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 3205 // 3206 // sqrt, sqrtf, sqrtl: 3207 // * sqrt(expN(x)) -> expN(x*0.5) 3208 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 3209 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 3210 // 3211 3212 //===----------------------------------------------------------------------===// 3213 // Fortified Library Call Optimizations 3214 //===----------------------------------------------------------------------===// 3215 3216 bool 3217 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 3218 unsigned ObjSizeOp, 3219 Optional<unsigned> SizeOp, 3220 Optional<unsigned> StrOp, 3221 Optional<unsigned> FlagOp) { 3222 // If this function takes a flag argument, the implementation may use it to 3223 // perform extra checks. Don't fold into the non-checking variant. 3224 if (FlagOp) { 3225 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 3226 if (!Flag || !Flag->isZero()) 3227 return false; 3228 } 3229 3230 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 3231 return true; 3232 3233 if (ConstantInt *ObjSizeCI = 3234 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 3235 if (ObjSizeCI->isMinusOne()) 3236 return true; 3237 // If the object size wasn't -1 (unknown), bail out if we were asked to. 3238 if (OnlyLowerUnknownSize) 3239 return false; 3240 if (StrOp) { 3241 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 3242 // If the length is 0 we don't know how long it is and so we can't 3243 // remove the check. 3244 if (Len) 3245 annotateDereferenceableBytes(CI, *StrOp, Len); 3246 else 3247 return false; 3248 return ObjSizeCI->getZExtValue() >= Len; 3249 } 3250 3251 if (SizeOp) { 3252 if (ConstantInt *SizeCI = 3253 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 3254 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 3255 } 3256 } 3257 return false; 3258 } 3259 3260 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 3261 IRBuilderBase &B) { 3262 if (isFortifiedCallFoldable(CI, 3, 2)) { 3263 CallInst *NewCI = 3264 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3265 Align(1), CI->getArgOperand(2)); 3266 NewCI->setAttributes(CI->getAttributes()); 3267 NewCI->removeAttributes(AttributeList::ReturnIndex, 3268 AttributeFuncs::typeIncompatible(NewCI->getType())); 3269 return CI->getArgOperand(0); 3270 } 3271 return nullptr; 3272 } 3273 3274 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 3275 IRBuilderBase &B) { 3276 if (isFortifiedCallFoldable(CI, 3, 2)) { 3277 CallInst *NewCI = 3278 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3279 Align(1), CI->getArgOperand(2)); 3280 NewCI->setAttributes(CI->getAttributes()); 3281 NewCI->removeAttributes(AttributeList::ReturnIndex, 3282 AttributeFuncs::typeIncompatible(NewCI->getType())); 3283 return CI->getArgOperand(0); 3284 } 3285 return nullptr; 3286 } 3287 3288 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 3289 IRBuilderBase &B) { 3290 // TODO: Try foldMallocMemset() here. 3291 3292 if (isFortifiedCallFoldable(CI, 3, 2)) { 3293 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 3294 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 3295 CI->getArgOperand(2), Align(1)); 3296 NewCI->setAttributes(CI->getAttributes()); 3297 NewCI->removeAttributes(AttributeList::ReturnIndex, 3298 AttributeFuncs::typeIncompatible(NewCI->getType())); 3299 return CI->getArgOperand(0); 3300 } 3301 return nullptr; 3302 } 3303 3304 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 3305 IRBuilderBase &B) { 3306 const DataLayout &DL = CI->getModule()->getDataLayout(); 3307 if (isFortifiedCallFoldable(CI, 3, 2)) 3308 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3309 CI->getArgOperand(2), B, DL, TLI)) { 3310 CallInst *NewCI = cast<CallInst>(Call); 3311 NewCI->setAttributes(CI->getAttributes()); 3312 NewCI->removeAttributes( 3313 AttributeList::ReturnIndex, 3314 AttributeFuncs::typeIncompatible(NewCI->getType())); 3315 return NewCI; 3316 } 3317 return nullptr; 3318 } 3319 3320 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 3321 IRBuilderBase &B, 3322 LibFunc Func) { 3323 const DataLayout &DL = CI->getModule()->getDataLayout(); 3324 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 3325 *ObjSize = CI->getArgOperand(2); 3326 3327 // __stpcpy_chk(x,x,...) -> x+strlen(x) 3328 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 3329 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3330 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3331 } 3332 3333 // If a) we don't have any length information, or b) we know this will 3334 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3335 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3336 // TODO: It might be nice to get a maximum length out of the possible 3337 // string lengths for varying. 3338 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 3339 if (Func == LibFunc_strcpy_chk) 3340 return emitStrCpy(Dst, Src, B, TLI); 3341 else 3342 return emitStpCpy(Dst, Src, B, TLI); 3343 } 3344 3345 if (OnlyLowerUnknownSize) 3346 return nullptr; 3347 3348 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3349 uint64_t Len = GetStringLength(Src); 3350 if (Len) 3351 annotateDereferenceableBytes(CI, 1, Len); 3352 else 3353 return nullptr; 3354 3355 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 3356 Value *LenV = ConstantInt::get(SizeTTy, Len); 3357 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 3358 // If the function was an __stpcpy_chk, and we were able to fold it into 3359 // a __memcpy_chk, we still need to return the correct end pointer. 3360 if (Ret && Func == LibFunc_stpcpy_chk) 3361 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 3362 return Ret; 3363 } 3364 3365 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 3366 IRBuilderBase &B) { 3367 if (isFortifiedCallFoldable(CI, 1, None, 0)) 3368 return emitStrLen(CI->getArgOperand(0), B, CI->getModule()->getDataLayout(), 3369 TLI); 3370 return nullptr; 3371 } 3372 3373 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 3374 IRBuilderBase &B, 3375 LibFunc Func) { 3376 if (isFortifiedCallFoldable(CI, 3, 2)) { 3377 if (Func == LibFunc_strncpy_chk) 3378 return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3379 CI->getArgOperand(2), B, TLI); 3380 else 3381 return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3382 CI->getArgOperand(2), B, TLI); 3383 } 3384 3385 return nullptr; 3386 } 3387 3388 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 3389 IRBuilderBase &B) { 3390 if (isFortifiedCallFoldable(CI, 4, 3)) 3391 return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3392 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI); 3393 3394 return nullptr; 3395 } 3396 3397 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 3398 IRBuilderBase &B) { 3399 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 3400 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 3401 return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3402 CI->getArgOperand(4), VariadicArgs, B, TLI); 3403 } 3404 3405 return nullptr; 3406 } 3407 3408 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3409 IRBuilderBase &B) { 3410 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3411 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 3412 return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs, 3413 B, TLI); 3414 } 3415 3416 return nullptr; 3417 } 3418 3419 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3420 IRBuilderBase &B) { 3421 if (isFortifiedCallFoldable(CI, 2)) 3422 return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI); 3423 3424 return nullptr; 3425 } 3426 3427 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3428 IRBuilderBase &B) { 3429 if (isFortifiedCallFoldable(CI, 3)) 3430 return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3431 CI->getArgOperand(2), B, TLI); 3432 3433 return nullptr; 3434 } 3435 3436 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3437 IRBuilderBase &B) { 3438 if (isFortifiedCallFoldable(CI, 3)) 3439 return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3440 CI->getArgOperand(2), B, TLI); 3441 3442 return nullptr; 3443 } 3444 3445 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3446 IRBuilderBase &B) { 3447 if (isFortifiedCallFoldable(CI, 3)) 3448 return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3449 CI->getArgOperand(2), B, TLI); 3450 3451 return nullptr; 3452 } 3453 3454 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3455 IRBuilderBase &B) { 3456 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3457 return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3458 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI); 3459 3460 return nullptr; 3461 } 3462 3463 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3464 IRBuilderBase &B) { 3465 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3466 return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3467 CI->getArgOperand(4), B, TLI); 3468 3469 return nullptr; 3470 } 3471 3472 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 3473 IRBuilderBase &Builder) { 3474 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3475 // Some clang users checked for _chk libcall availability using: 3476 // __has_builtin(__builtin___memcpy_chk) 3477 // When compiling with -fno-builtin, this is always true. 3478 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3479 // end up with fortified libcalls, which isn't acceptable in a freestanding 3480 // environment which only provides their non-fortified counterparts. 3481 // 3482 // Until we change clang and/or teach external users to check for availability 3483 // differently, disregard the "nobuiltin" attribute and TLI::has. 3484 // 3485 // PR23093. 3486 3487 LibFunc Func; 3488 Function *Callee = CI->getCalledFunction(); 3489 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3490 3491 SmallVector<OperandBundleDef, 2> OpBundles; 3492 CI->getOperandBundlesAsDefs(OpBundles); 3493 3494 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3495 Builder.setDefaultOperandBundles(OpBundles); 3496 3497 // First, check that this is a known library functions and that the prototype 3498 // is correct. 3499 if (!TLI->getLibFunc(*Callee, Func)) 3500 return nullptr; 3501 3502 // We never change the calling convention. 3503 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3504 return nullptr; 3505 3506 switch (Func) { 3507 case LibFunc_memcpy_chk: 3508 return optimizeMemCpyChk(CI, Builder); 3509 case LibFunc_mempcpy_chk: 3510 return optimizeMemPCpyChk(CI, Builder); 3511 case LibFunc_memmove_chk: 3512 return optimizeMemMoveChk(CI, Builder); 3513 case LibFunc_memset_chk: 3514 return optimizeMemSetChk(CI, Builder); 3515 case LibFunc_stpcpy_chk: 3516 case LibFunc_strcpy_chk: 3517 return optimizeStrpCpyChk(CI, Builder, Func); 3518 case LibFunc_strlen_chk: 3519 return optimizeStrLenChk(CI, Builder); 3520 case LibFunc_stpncpy_chk: 3521 case LibFunc_strncpy_chk: 3522 return optimizeStrpNCpyChk(CI, Builder, Func); 3523 case LibFunc_memccpy_chk: 3524 return optimizeMemCCpyChk(CI, Builder); 3525 case LibFunc_snprintf_chk: 3526 return optimizeSNPrintfChk(CI, Builder); 3527 case LibFunc_sprintf_chk: 3528 return optimizeSPrintfChk(CI, Builder); 3529 case LibFunc_strcat_chk: 3530 return optimizeStrCatChk(CI, Builder); 3531 case LibFunc_strlcat_chk: 3532 return optimizeStrLCat(CI, Builder); 3533 case LibFunc_strncat_chk: 3534 return optimizeStrNCatChk(CI, Builder); 3535 case LibFunc_strlcpy_chk: 3536 return optimizeStrLCpyChk(CI, Builder); 3537 case LibFunc_vsnprintf_chk: 3538 return optimizeVSNPrintfChk(CI, Builder); 3539 case LibFunc_vsprintf_chk: 3540 return optimizeVSPrintfChk(CI, Builder); 3541 default: 3542 break; 3543 } 3544 return nullptr; 3545 } 3546 3547 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3548 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3549 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 3550