1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Transforms/Utils/Local.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/CaptureTracking.h"
27 #include "llvm/Analysis/Loads.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Transforms/Utils/BuildLibCalls.h"
40 #include "llvm/Transforms/Utils/SizeOpts.h"
41 
42 using namespace llvm;
43 using namespace PatternMatch;
44 
45 static cl::opt<bool>
46     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
47                          cl::init(false),
48                          cl::desc("Enable unsafe double to float "
49                                   "shrinking for math lib calls"));
50 
51 //===----------------------------------------------------------------------===//
52 // Helper Functions
53 //===----------------------------------------------------------------------===//
54 
55 static bool ignoreCallingConv(LibFunc Func) {
56   return Func == LibFunc_abs || Func == LibFunc_labs ||
57          Func == LibFunc_llabs || Func == LibFunc_strlen;
58 }
59 
60 static bool isCallingConvCCompatible(CallInst *CI) {
61   switch(CI->getCallingConv()) {
62   default:
63     return false;
64   case llvm::CallingConv::C:
65     return true;
66   case llvm::CallingConv::ARM_APCS:
67   case llvm::CallingConv::ARM_AAPCS:
68   case llvm::CallingConv::ARM_AAPCS_VFP: {
69 
70     // The iOS ABI diverges from the standard in some cases, so for now don't
71     // try to simplify those calls.
72     if (Triple(CI->getModule()->getTargetTriple()).isiOS())
73       return false;
74 
75     auto *FuncTy = CI->getFunctionType();
76 
77     if (!FuncTy->getReturnType()->isPointerTy() &&
78         !FuncTy->getReturnType()->isIntegerTy() &&
79         !FuncTy->getReturnType()->isVoidTy())
80       return false;
81 
82     for (auto Param : FuncTy->params()) {
83       if (!Param->isPointerTy() && !Param->isIntegerTy())
84         return false;
85     }
86     return true;
87   }
88   }
89   return false;
90 }
91 
92 /// Return true if it is only used in equality comparisons with With.
93 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
94   for (User *U : V->users()) {
95     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
96       if (IC->isEquality() && IC->getOperand(1) == With)
97         continue;
98     // Unknown instruction.
99     return false;
100   }
101   return true;
102 }
103 
104 static bool callHasFloatingPointArgument(const CallInst *CI) {
105   return any_of(CI->operands(), [](const Use &OI) {
106     return OI->getType()->isFloatingPointTy();
107   });
108 }
109 
110 static bool callHasFP128Argument(const CallInst *CI) {
111   return any_of(CI->operands(), [](const Use &OI) {
112     return OI->getType()->isFP128Ty();
113   });
114 }
115 
116 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
117   if (Base < 2 || Base > 36)
118     // handle special zero base
119     if (Base != 0)
120       return nullptr;
121 
122   char *End;
123   std::string nptr = Str.str();
124   errno = 0;
125   long long int Result = strtoll(nptr.c_str(), &End, Base);
126   if (errno)
127     return nullptr;
128 
129   // if we assume all possible target locales are ASCII supersets,
130   // then if strtoll successfully parses a number on the host,
131   // it will also successfully parse the same way on the target
132   if (*End != '\0')
133     return nullptr;
134 
135   if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
136     return nullptr;
137 
138   return ConstantInt::get(CI->getType(), Result);
139 }
140 
141 static bool isLocallyOpenedFile(Value *File, CallInst *CI,
142                                 const TargetLibraryInfo *TLI) {
143   CallInst *FOpen = dyn_cast<CallInst>(File);
144   if (!FOpen)
145     return false;
146 
147   Function *InnerCallee = FOpen->getCalledFunction();
148   if (!InnerCallee)
149     return false;
150 
151   LibFunc Func;
152   if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
153       Func != LibFunc_fopen)
154     return false;
155 
156   inferLibFuncAttributes(*CI->getCalledFunction(), *TLI);
157   if (PointerMayBeCaptured(File, true, true))
158     return false;
159 
160   return true;
161 }
162 
163 static bool isOnlyUsedInComparisonWithZero(Value *V) {
164   for (User *U : V->users()) {
165     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
166       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
167         if (C->isNullValue())
168           continue;
169     // Unknown instruction.
170     return false;
171   }
172   return true;
173 }
174 
175 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
176                                  const DataLayout &DL) {
177   if (!isOnlyUsedInComparisonWithZero(CI))
178     return false;
179 
180   if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL))
181     return false;
182 
183   if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
184     return false;
185 
186   return true;
187 }
188 
189 static void annotateDereferenceableBytes(CallInst *CI,
190                                          ArrayRef<unsigned> ArgNos,
191                                          uint64_t DereferenceableBytes) {
192   const Function *F = CI->getCaller();
193   if (!F)
194     return;
195   for (unsigned ArgNo : ArgNos) {
196     uint64_t DerefBytes = DereferenceableBytes;
197     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
198     if (!llvm::NullPointerIsDefined(F, AS) ||
199         CI->paramHasAttr(ArgNo, Attribute::NonNull))
200       DerefBytes = std::max(CI->getDereferenceableOrNullBytes(
201                                 ArgNo + AttributeList::FirstArgIndex),
202                             DereferenceableBytes);
203 
204     if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) <
205         DerefBytes) {
206       CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
207       if (!llvm::NullPointerIsDefined(F, AS) ||
208           CI->paramHasAttr(ArgNo, Attribute::NonNull))
209         CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
210       CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
211                                   CI->getContext(), DerefBytes));
212     }
213   }
214 }
215 
216 static void annotateNonNullBasedOnAccess(CallInst *CI,
217                                          ArrayRef<unsigned> ArgNos) {
218   Function *F = CI->getCaller();
219   if (!F)
220     return;
221 
222   for (unsigned ArgNo : ArgNos) {
223     if (CI->paramHasAttr(ArgNo, Attribute::NonNull))
224       continue;
225     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
226     if (llvm::NullPointerIsDefined(F, AS))
227       continue;
228 
229     CI->addParamAttr(ArgNo, Attribute::NonNull);
230     annotateDereferenceableBytes(CI, ArgNo, 1);
231   }
232 }
233 
234 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
235                                Value *Size, const DataLayout &DL) {
236   if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
237     annotateNonNullBasedOnAccess(CI, ArgNos);
238     annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
239   } else if (isKnownNonZero(Size, DL)) {
240     annotateNonNullBasedOnAccess(CI, ArgNos);
241     const APInt *X, *Y;
242     uint64_t DerefMin = 1;
243     if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
244       DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
245       annotateDereferenceableBytes(CI, ArgNos, DerefMin);
246     }
247   }
248 }
249 
250 //===----------------------------------------------------------------------===//
251 // String and Memory Library Call Optimizations
252 //===----------------------------------------------------------------------===//
253 
254 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
255   // Extract some information from the instruction
256   Value *Dst = CI->getArgOperand(0);
257   Value *Src = CI->getArgOperand(1);
258   annotateNonNullBasedOnAccess(CI, {0, 1});
259 
260   // See if we can get the length of the input string.
261   uint64_t Len = GetStringLength(Src);
262   if (Len)
263     annotateDereferenceableBytes(CI, 1, Len);
264   else
265     return nullptr;
266   --Len; // Unbias length.
267 
268   // Handle the simple, do-nothing case: strcat(x, "") -> x
269   if (Len == 0)
270     return Dst;
271 
272   return emitStrLenMemCpy(Src, Dst, Len, B);
273 }
274 
275 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
276                                            IRBuilder<> &B) {
277   // We need to find the end of the destination string.  That's where the
278   // memory is to be moved to. We just generate a call to strlen.
279   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
280   if (!DstLen)
281     return nullptr;
282 
283   // Now that we have the destination's length, we must index into the
284   // destination's pointer to get the actual memcpy destination (end of
285   // the string .. we're concatenating).
286   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
287 
288   // We have enough information to now generate the memcpy call to do the
289   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
290   B.CreateMemCpy(
291       CpyDst, Align(1), Src, Align(1),
292       ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
293   return Dst;
294 }
295 
296 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
297   // Extract some information from the instruction.
298   Value *Dst = CI->getArgOperand(0);
299   Value *Src = CI->getArgOperand(1);
300   Value *Size = CI->getArgOperand(2);
301   uint64_t Len;
302   annotateNonNullBasedOnAccess(CI, 0);
303   if (isKnownNonZero(Size, DL))
304     annotateNonNullBasedOnAccess(CI, 1);
305 
306   // We don't do anything if length is not constant.
307   ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
308   if (LengthArg) {
309     Len = LengthArg->getZExtValue();
310     // strncat(x, c, 0) -> x
311     if (!Len)
312       return Dst;
313   } else {
314     return nullptr;
315   }
316 
317   // See if we can get the length of the input string.
318   uint64_t SrcLen = GetStringLength(Src);
319   if (SrcLen) {
320     annotateDereferenceableBytes(CI, 1, SrcLen);
321     --SrcLen; // Unbias length.
322   } else {
323     return nullptr;
324   }
325 
326   // strncat(x, "", c) -> x
327   if (SrcLen == 0)
328     return Dst;
329 
330   // We don't optimize this case.
331   if (Len < SrcLen)
332     return nullptr;
333 
334   // strncat(x, s, c) -> strcat(x, s)
335   // s is constant so the strcat can be optimized further.
336   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
337 }
338 
339 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
340   Function *Callee = CI->getCalledFunction();
341   FunctionType *FT = Callee->getFunctionType();
342   Value *SrcStr = CI->getArgOperand(0);
343   annotateNonNullBasedOnAccess(CI, 0);
344 
345   // If the second operand is non-constant, see if we can compute the length
346   // of the input string and turn this into memchr.
347   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
348   if (!CharC) {
349     uint64_t Len = GetStringLength(SrcStr);
350     if (Len)
351       annotateDereferenceableBytes(CI, 0, Len);
352     else
353       return nullptr;
354     if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
355       return nullptr;
356 
357     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
358                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
359                       B, DL, TLI);
360   }
361 
362   // Otherwise, the character is a constant, see if the first argument is
363   // a string literal.  If so, we can constant fold.
364   StringRef Str;
365   if (!getConstantStringInfo(SrcStr, Str)) {
366     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
367       if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
368         return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
369     return nullptr;
370   }
371 
372   // Compute the offset, make sure to handle the case when we're searching for
373   // zero (a weird way to spell strlen).
374   size_t I = (0xFF & CharC->getSExtValue()) == 0
375                  ? Str.size()
376                  : Str.find(CharC->getSExtValue());
377   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
378     return Constant::getNullValue(CI->getType());
379 
380   // strchr(s+n,c)  -> gep(s+n+i,c)
381   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
382 }
383 
384 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
385   Value *SrcStr = CI->getArgOperand(0);
386   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
387   annotateNonNullBasedOnAccess(CI, 0);
388 
389   // Cannot fold anything if we're not looking for a constant.
390   if (!CharC)
391     return nullptr;
392 
393   StringRef Str;
394   if (!getConstantStringInfo(SrcStr, Str)) {
395     // strrchr(s, 0) -> strchr(s, 0)
396     if (CharC->isZero())
397       return emitStrChr(SrcStr, '\0', B, TLI);
398     return nullptr;
399   }
400 
401   // Compute the offset.
402   size_t I = (0xFF & CharC->getSExtValue()) == 0
403                  ? Str.size()
404                  : Str.rfind(CharC->getSExtValue());
405   if (I == StringRef::npos) // Didn't find the char. Return null.
406     return Constant::getNullValue(CI->getType());
407 
408   // strrchr(s+n,c) -> gep(s+n+i,c)
409   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
410 }
411 
412 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
413   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
414   if (Str1P == Str2P) // strcmp(x,x)  -> 0
415     return ConstantInt::get(CI->getType(), 0);
416 
417   StringRef Str1, Str2;
418   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
419   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
420 
421   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
422   if (HasStr1 && HasStr2)
423     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
424 
425   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
426     return B.CreateNeg(B.CreateZExt(
427         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
428 
429   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
430     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
431                         CI->getType());
432 
433   // strcmp(P, "x") -> memcmp(P, "x", 2)
434   uint64_t Len1 = GetStringLength(Str1P);
435   if (Len1)
436     annotateDereferenceableBytes(CI, 0, Len1);
437   uint64_t Len2 = GetStringLength(Str2P);
438   if (Len2)
439     annotateDereferenceableBytes(CI, 1, Len2);
440 
441   if (Len1 && Len2) {
442     return emitMemCmp(Str1P, Str2P,
443                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
444                                        std::min(Len1, Len2)),
445                       B, DL, TLI);
446   }
447 
448   // strcmp to memcmp
449   if (!HasStr1 && HasStr2) {
450     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
451       return emitMemCmp(
452           Str1P, Str2P,
453           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
454           TLI);
455   } else if (HasStr1 && !HasStr2) {
456     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
457       return emitMemCmp(
458           Str1P, Str2P,
459           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
460           TLI);
461   }
462 
463   annotateNonNullBasedOnAccess(CI, {0, 1});
464   return nullptr;
465 }
466 
467 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
468   Value *Str1P = CI->getArgOperand(0);
469   Value *Str2P = CI->getArgOperand(1);
470   Value *Size = CI->getArgOperand(2);
471   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
472     return ConstantInt::get(CI->getType(), 0);
473 
474   if (isKnownNonZero(Size, DL))
475     annotateNonNullBasedOnAccess(CI, {0, 1});
476   // Get the length argument if it is constant.
477   uint64_t Length;
478   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
479     Length = LengthArg->getZExtValue();
480   else
481     return nullptr;
482 
483   if (Length == 0) // strncmp(x,y,0)   -> 0
484     return ConstantInt::get(CI->getType(), 0);
485 
486   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
487     return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI);
488 
489   StringRef Str1, Str2;
490   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
491   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
492 
493   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
494   if (HasStr1 && HasStr2) {
495     StringRef SubStr1 = Str1.substr(0, Length);
496     StringRef SubStr2 = Str2.substr(0, Length);
497     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
498   }
499 
500   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
501     return B.CreateNeg(B.CreateZExt(
502         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
503 
504   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
505     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
506                         CI->getType());
507 
508   uint64_t Len1 = GetStringLength(Str1P);
509   if (Len1)
510     annotateDereferenceableBytes(CI, 0, Len1);
511   uint64_t Len2 = GetStringLength(Str2P);
512   if (Len2)
513     annotateDereferenceableBytes(CI, 1, Len2);
514 
515   // strncmp to memcmp
516   if (!HasStr1 && HasStr2) {
517     Len2 = std::min(Len2, Length);
518     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
519       return emitMemCmp(
520           Str1P, Str2P,
521           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
522           TLI);
523   } else if (HasStr1 && !HasStr2) {
524     Len1 = std::min(Len1, Length);
525     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
526       return emitMemCmp(
527           Str1P, Str2P,
528           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
529           TLI);
530   }
531 
532   return nullptr;
533 }
534 
535 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilder<> &B) {
536   Value *Src = CI->getArgOperand(0);
537   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
538   uint64_t SrcLen = GetStringLength(Src);
539   if (SrcLen && Size) {
540     annotateDereferenceableBytes(CI, 0, SrcLen);
541     if (SrcLen <= Size->getZExtValue() + 1)
542       return emitStrDup(Src, B, TLI);
543   }
544 
545   return nullptr;
546 }
547 
548 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
549   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
550   if (Dst == Src) // strcpy(x,x)  -> x
551     return Src;
552 
553   annotateNonNullBasedOnAccess(CI, {0, 1});
554   // See if we can get the length of the input string.
555   uint64_t Len = GetStringLength(Src);
556   if (Len)
557     annotateDereferenceableBytes(CI, 1, Len);
558   else
559     return nullptr;
560 
561   // We have enough information to now generate the memcpy call to do the
562   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
563   CallInst *NewCI =
564       B.CreateMemCpy(Dst, Align(1), Src, Align(1),
565                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
566   NewCI->setAttributes(CI->getAttributes());
567   return Dst;
568 }
569 
570 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
571   Function *Callee = CI->getCalledFunction();
572   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
573   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
574     Value *StrLen = emitStrLen(Src, B, DL, TLI);
575     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
576   }
577 
578   // See if we can get the length of the input string.
579   uint64_t Len = GetStringLength(Src);
580   if (Len)
581     annotateDereferenceableBytes(CI, 1, Len);
582   else
583     return nullptr;
584 
585   Type *PT = Callee->getFunctionType()->getParamType(0);
586   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
587   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
588                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
589 
590   // We have enough information to now generate the memcpy call to do the
591   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
592   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV);
593   NewCI->setAttributes(CI->getAttributes());
594   return DstEnd;
595 }
596 
597 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
598   Function *Callee = CI->getCalledFunction();
599   Value *Dst = CI->getArgOperand(0);
600   Value *Src = CI->getArgOperand(1);
601   Value *Size = CI->getArgOperand(2);
602   annotateNonNullBasedOnAccess(CI, 0);
603   if (isKnownNonZero(Size, DL))
604     annotateNonNullBasedOnAccess(CI, 1);
605 
606   uint64_t Len;
607   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
608     Len = LengthArg->getZExtValue();
609   else
610     return nullptr;
611 
612   // strncpy(x, y, 0) -> x
613   if (Len == 0)
614     return Dst;
615 
616   // See if we can get the length of the input string.
617   uint64_t SrcLen = GetStringLength(Src);
618   if (SrcLen) {
619     annotateDereferenceableBytes(CI, 1, SrcLen);
620     --SrcLen; // Unbias length.
621   } else {
622     return nullptr;
623   }
624 
625   if (SrcLen == 0) {
626     // strncpy(x, "", y) -> memset(align 1 x, '\0', y)
627     CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, Align(1));
628     AttrBuilder ArgAttrs(CI->getAttributes().getParamAttributes(0));
629     NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
630         CI->getContext(), 0, ArgAttrs));
631     return Dst;
632   }
633 
634   // Let strncpy handle the zero padding
635   if (Len > SrcLen + 1)
636     return nullptr;
637 
638   Type *PT = Callee->getFunctionType()->getParamType(0);
639   // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
640   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
641                                    ConstantInt::get(DL.getIntPtrType(PT), Len));
642   NewCI->setAttributes(CI->getAttributes());
643   return Dst;
644 }
645 
646 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B,
647                                                unsigned CharSize) {
648   Value *Src = CI->getArgOperand(0);
649 
650   // Constant folding: strlen("xyz") -> 3
651   if (uint64_t Len = GetStringLength(Src, CharSize))
652     return ConstantInt::get(CI->getType(), Len - 1);
653 
654   // If s is a constant pointer pointing to a string literal, we can fold
655   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
656   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
657   // We only try to simplify strlen when the pointer s points to an array
658   // of i8. Otherwise, we would need to scale the offset x before doing the
659   // subtraction. This will make the optimization more complex, and it's not
660   // very useful because calling strlen for a pointer of other types is
661   // very uncommon.
662   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
663     if (!isGEPBasedOnPointerToString(GEP, CharSize))
664       return nullptr;
665 
666     ConstantDataArraySlice Slice;
667     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
668       uint64_t NullTermIdx;
669       if (Slice.Array == nullptr) {
670         NullTermIdx = 0;
671       } else {
672         NullTermIdx = ~((uint64_t)0);
673         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
674           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
675             NullTermIdx = I;
676             break;
677           }
678         }
679         // If the string does not have '\0', leave it to strlen to compute
680         // its length.
681         if (NullTermIdx == ~((uint64_t)0))
682           return nullptr;
683       }
684 
685       Value *Offset = GEP->getOperand(2);
686       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
687       Known.Zero.flipAllBits();
688       uint64_t ArrSize =
689              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
690 
691       // KnownZero's bits are flipped, so zeros in KnownZero now represent
692       // bits known to be zeros in Offset, and ones in KnowZero represent
693       // bits unknown in Offset. Therefore, Offset is known to be in range
694       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
695       // unsigned-less-than NullTermIdx.
696       //
697       // If Offset is not provably in the range [0, NullTermIdx], we can still
698       // optimize if we can prove that the program has undefined behavior when
699       // Offset is outside that range. That is the case when GEP->getOperand(0)
700       // is a pointer to an object whose memory extent is NullTermIdx+1.
701       if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
702           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
703            NullTermIdx == ArrSize - 1)) {
704         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
705         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
706                            Offset);
707       }
708     }
709 
710     return nullptr;
711   }
712 
713   // strlen(x?"foo":"bars") --> x ? 3 : 4
714   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
715     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
716     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
717     if (LenTrue && LenFalse) {
718       ORE.emit([&]() {
719         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
720                << "folded strlen(select) to select of constants";
721       });
722       return B.CreateSelect(SI->getCondition(),
723                             ConstantInt::get(CI->getType(), LenTrue - 1),
724                             ConstantInt::get(CI->getType(), LenFalse - 1));
725     }
726   }
727 
728   // strlen(x) != 0 --> *x != 0
729   // strlen(x) == 0 --> *x == 0
730   if (isOnlyUsedInZeroEqualityComparison(CI))
731     return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"),
732                         CI->getType());
733 
734   return nullptr;
735 }
736 
737 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
738   if (Value *V = optimizeStringLength(CI, B, 8))
739     return V;
740   annotateNonNullBasedOnAccess(CI, 0);
741   return nullptr;
742 }
743 
744 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) {
745   Module &M = *CI->getModule();
746   unsigned WCharSize = TLI->getWCharSize(M) * 8;
747   // We cannot perform this optimization without wchar_size metadata.
748   if (WCharSize == 0)
749     return nullptr;
750 
751   return optimizeStringLength(CI, B, WCharSize);
752 }
753 
754 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
755   StringRef S1, S2;
756   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
757   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
758 
759   // strpbrk(s, "") -> nullptr
760   // strpbrk("", s) -> nullptr
761   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
762     return Constant::getNullValue(CI->getType());
763 
764   // Constant folding.
765   if (HasS1 && HasS2) {
766     size_t I = S1.find_first_of(S2);
767     if (I == StringRef::npos) // No match.
768       return Constant::getNullValue(CI->getType());
769 
770     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
771                        "strpbrk");
772   }
773 
774   // strpbrk(s, "a") -> strchr(s, 'a')
775   if (HasS2 && S2.size() == 1)
776     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
777 
778   return nullptr;
779 }
780 
781 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
782   Value *EndPtr = CI->getArgOperand(1);
783   if (isa<ConstantPointerNull>(EndPtr)) {
784     // With a null EndPtr, this function won't capture the main argument.
785     // It would be readonly too, except that it still may write to errno.
786     CI->addParamAttr(0, Attribute::NoCapture);
787   }
788 
789   return nullptr;
790 }
791 
792 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
793   StringRef S1, S2;
794   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
795   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
796 
797   // strspn(s, "") -> 0
798   // strspn("", s) -> 0
799   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
800     return Constant::getNullValue(CI->getType());
801 
802   // Constant folding.
803   if (HasS1 && HasS2) {
804     size_t Pos = S1.find_first_not_of(S2);
805     if (Pos == StringRef::npos)
806       Pos = S1.size();
807     return ConstantInt::get(CI->getType(), Pos);
808   }
809 
810   return nullptr;
811 }
812 
813 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
814   StringRef S1, S2;
815   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
816   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
817 
818   // strcspn("", s) -> 0
819   if (HasS1 && S1.empty())
820     return Constant::getNullValue(CI->getType());
821 
822   // Constant folding.
823   if (HasS1 && HasS2) {
824     size_t Pos = S1.find_first_of(S2);
825     if (Pos == StringRef::npos)
826       Pos = S1.size();
827     return ConstantInt::get(CI->getType(), Pos);
828   }
829 
830   // strcspn(s, "") -> strlen(s)
831   if (HasS2 && S2.empty())
832     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
833 
834   return nullptr;
835 }
836 
837 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
838   // fold strstr(x, x) -> x.
839   if (CI->getArgOperand(0) == CI->getArgOperand(1))
840     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
841 
842   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
843   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
844     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
845     if (!StrLen)
846       return nullptr;
847     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
848                                  StrLen, B, DL, TLI);
849     if (!StrNCmp)
850       return nullptr;
851     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
852       ICmpInst *Old = cast<ICmpInst>(*UI++);
853       Value *Cmp =
854           B.CreateICmp(Old->getPredicate(), StrNCmp,
855                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
856       replaceAllUsesWith(Old, Cmp);
857     }
858     return CI;
859   }
860 
861   // See if either input string is a constant string.
862   StringRef SearchStr, ToFindStr;
863   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
864   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
865 
866   // fold strstr(x, "") -> x.
867   if (HasStr2 && ToFindStr.empty())
868     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
869 
870   // If both strings are known, constant fold it.
871   if (HasStr1 && HasStr2) {
872     size_t Offset = SearchStr.find(ToFindStr);
873 
874     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
875       return Constant::getNullValue(CI->getType());
876 
877     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
878     Value *Result = castToCStr(CI->getArgOperand(0), B);
879     Result =
880         B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
881     return B.CreateBitCast(Result, CI->getType());
882   }
883 
884   // fold strstr(x, "y") -> strchr(x, 'y').
885   if (HasStr2 && ToFindStr.size() == 1) {
886     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
887     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
888   }
889 
890   annotateNonNullBasedOnAccess(CI, {0, 1});
891   return nullptr;
892 }
893 
894 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilder<> &B) {
895   if (isKnownNonZero(CI->getOperand(2), DL))
896     annotateNonNullBasedOnAccess(CI, 0);
897   return nullptr;
898 }
899 
900 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
901   Value *SrcStr = CI->getArgOperand(0);
902   Value *Size = CI->getArgOperand(2);
903   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
904   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
905   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
906 
907   // memchr(x, y, 0) -> null
908   if (LenC) {
909     if (LenC->isZero())
910       return Constant::getNullValue(CI->getType());
911   } else {
912     // From now on we need at least constant length and string.
913     return nullptr;
914   }
915 
916   StringRef Str;
917   if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
918     return nullptr;
919 
920   // Truncate the string to LenC. If Str is smaller than LenC we will still only
921   // scan the string, as reading past the end of it is undefined and we can just
922   // return null if we don't find the char.
923   Str = Str.substr(0, LenC->getZExtValue());
924 
925   // If the char is variable but the input str and length are not we can turn
926   // this memchr call into a simple bit field test. Of course this only works
927   // when the return value is only checked against null.
928   //
929   // It would be really nice to reuse switch lowering here but we can't change
930   // the CFG at this point.
931   //
932   // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
933   // != 0
934   //   after bounds check.
935   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
936     unsigned char Max =
937         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
938                           reinterpret_cast<const unsigned char *>(Str.end()));
939 
940     // Make sure the bit field we're about to create fits in a register on the
941     // target.
942     // FIXME: On a 64 bit architecture this prevents us from using the
943     // interesting range of alpha ascii chars. We could do better by emitting
944     // two bitfields or shifting the range by 64 if no lower chars are used.
945     if (!DL.fitsInLegalInteger(Max + 1))
946       return nullptr;
947 
948     // For the bit field use a power-of-2 type with at least 8 bits to avoid
949     // creating unnecessary illegal types.
950     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
951 
952     // Now build the bit field.
953     APInt Bitfield(Width, 0);
954     for (char C : Str)
955       Bitfield.setBit((unsigned char)C);
956     Value *BitfieldC = B.getInt(Bitfield);
957 
958     // Adjust width of "C" to the bitfield width, then mask off the high bits.
959     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
960     C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
961 
962     // First check that the bit field access is within bounds.
963     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
964                                  "memchr.bounds");
965 
966     // Create code that checks if the given bit is set in the field.
967     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
968     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
969 
970     // Finally merge both checks and cast to pointer type. The inttoptr
971     // implicitly zexts the i1 to intptr type.
972     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
973   }
974 
975   // Check if all arguments are constants.  If so, we can constant fold.
976   if (!CharC)
977     return nullptr;
978 
979   // Compute the offset.
980   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
981   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
982     return Constant::getNullValue(CI->getType());
983 
984   // memchr(s+n,c,l) -> gep(s+n+i,c)
985   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
986 }
987 
988 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
989                                          uint64_t Len, IRBuilder<> &B,
990                                          const DataLayout &DL) {
991   if (Len == 0) // memcmp(s1,s2,0) -> 0
992     return Constant::getNullValue(CI->getType());
993 
994   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
995   if (Len == 1) {
996     Value *LHSV =
997         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
998                      CI->getType(), "lhsv");
999     Value *RHSV =
1000         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
1001                      CI->getType(), "rhsv");
1002     return B.CreateSub(LHSV, RHSV, "chardiff");
1003   }
1004 
1005   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
1006   // TODO: The case where both inputs are constants does not need to be limited
1007   // to legal integers or equality comparison. See block below this.
1008   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
1009     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
1010     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
1011 
1012     // First, see if we can fold either argument to a constant.
1013     Value *LHSV = nullptr;
1014     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
1015       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
1016       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
1017     }
1018     Value *RHSV = nullptr;
1019     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
1020       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
1021       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
1022     }
1023 
1024     // Don't generate unaligned loads. If either source is constant data,
1025     // alignment doesn't matter for that source because there is no load.
1026     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
1027         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
1028       if (!LHSV) {
1029         Type *LHSPtrTy =
1030             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
1031         LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
1032       }
1033       if (!RHSV) {
1034         Type *RHSPtrTy =
1035             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
1036         RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
1037       }
1038       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1039     }
1040   }
1041 
1042   // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
1043   // TODO: This is limited to i8 arrays.
1044   StringRef LHSStr, RHSStr;
1045   if (getConstantStringInfo(LHS, LHSStr) &&
1046       getConstantStringInfo(RHS, RHSStr)) {
1047     // Make sure we're not reading out-of-bounds memory.
1048     if (Len > LHSStr.size() || Len > RHSStr.size())
1049       return nullptr;
1050     // Fold the memcmp and normalize the result.  This way we get consistent
1051     // results across multiple platforms.
1052     uint64_t Ret = 0;
1053     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
1054     if (Cmp < 0)
1055       Ret = -1;
1056     else if (Cmp > 0)
1057       Ret = 1;
1058     return ConstantInt::get(CI->getType(), Ret);
1059   }
1060 
1061   return nullptr;
1062 }
1063 
1064 // Most simplifications for memcmp also apply to bcmp.
1065 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1066                                                    IRBuilder<> &B) {
1067   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1068   Value *Size = CI->getArgOperand(2);
1069 
1070   if (LHS == RHS) // memcmp(s,s,x) -> 0
1071     return Constant::getNullValue(CI->getType());
1072 
1073   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1074   // Handle constant lengths.
1075   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1076   if (!LenC)
1077     return nullptr;
1078 
1079   // memcmp(d,s,0) -> 0
1080   if (LenC->getZExtValue() == 0)
1081     return Constant::getNullValue(CI->getType());
1082 
1083   if (Value *Res =
1084           optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL))
1085     return Res;
1086   return nullptr;
1087 }
1088 
1089 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
1090   if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1091     return V;
1092 
1093   // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1094   // bcmp can be more efficient than memcmp because it only has to know that
1095   // there is a difference, not how different one is to the other.
1096   if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) {
1097     Value *LHS = CI->getArgOperand(0);
1098     Value *RHS = CI->getArgOperand(1);
1099     Value *Size = CI->getArgOperand(2);
1100     return emitBCmp(LHS, RHS, Size, B, DL, TLI);
1101   }
1102 
1103   return nullptr;
1104 }
1105 
1106 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilder<> &B) {
1107   return optimizeMemCmpBCmpCommon(CI, B);
1108 }
1109 
1110 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
1111   Value *Size = CI->getArgOperand(2);
1112   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1113   if (isa<IntrinsicInst>(CI))
1114     return nullptr;
1115 
1116   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1117   CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1),
1118                                    CI->getArgOperand(1), Align(1), Size);
1119   NewCI->setAttributes(CI->getAttributes());
1120   return CI->getArgOperand(0);
1121 }
1122 
1123 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilder<> &B) {
1124   Value *Dst = CI->getArgOperand(0);
1125   Value *Src = CI->getArgOperand(1);
1126   ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1127   ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1128   StringRef SrcStr;
1129   if (CI->use_empty() && Dst == Src)
1130     return Dst;
1131   // memccpy(d, s, c, 0) -> nullptr
1132   if (N) {
1133     if (N->isNullValue())
1134       return Constant::getNullValue(CI->getType());
1135     if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0,
1136                                /*TrimAtNul=*/false) ||
1137         !StopChar)
1138       return nullptr;
1139   } else {
1140     return nullptr;
1141   }
1142 
1143   // Wrap arg 'c' of type int to char
1144   size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1145   if (Pos == StringRef::npos) {
1146     if (N->getZExtValue() <= SrcStr.size()) {
1147       B.CreateMemCpy(Dst, Align(1), Src, Align(1), CI->getArgOperand(3));
1148       return Constant::getNullValue(CI->getType());
1149     }
1150     return nullptr;
1151   }
1152 
1153   Value *NewN =
1154       ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1155   // memccpy -> llvm.memcpy
1156   B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN);
1157   return Pos + 1 <= N->getZExtValue()
1158              ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1159              : Constant::getNullValue(CI->getType());
1160 }
1161 
1162 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilder<> &B) {
1163   Value *Dst = CI->getArgOperand(0);
1164   Value *N = CI->getArgOperand(2);
1165   // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1166   CallInst *NewCI =
1167       B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N);
1168   NewCI->setAttributes(CI->getAttributes());
1169   return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1170 }
1171 
1172 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
1173   Value *Size = CI->getArgOperand(2);
1174   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1175   if (isa<IntrinsicInst>(CI))
1176     return nullptr;
1177 
1178   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1179   CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1),
1180                                     CI->getArgOperand(1), Align(1), Size);
1181   NewCI->setAttributes(CI->getAttributes());
1182   return CI->getArgOperand(0);
1183 }
1184 
1185 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
1186 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilder<> &B) {
1187   // This has to be a memset of zeros (bzero).
1188   auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
1189   if (!FillValue || FillValue->getZExtValue() != 0)
1190     return nullptr;
1191 
1192   // TODO: We should handle the case where the malloc has more than one use.
1193   // This is necessary to optimize common patterns such as when the result of
1194   // the malloc is checked against null or when a memset intrinsic is used in
1195   // place of a memset library call.
1196   auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
1197   if (!Malloc || !Malloc->hasOneUse())
1198     return nullptr;
1199 
1200   // Is the inner call really malloc()?
1201   Function *InnerCallee = Malloc->getCalledFunction();
1202   if (!InnerCallee)
1203     return nullptr;
1204 
1205   LibFunc Func;
1206   if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
1207       Func != LibFunc_malloc)
1208     return nullptr;
1209 
1210   // The memset must cover the same number of bytes that are malloc'd.
1211   if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
1212     return nullptr;
1213 
1214   // Replace the malloc with a calloc. We need the data layout to know what the
1215   // actual size of a 'size_t' parameter is.
1216   B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
1217   const DataLayout &DL = Malloc->getModule()->getDataLayout();
1218   IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
1219   if (Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
1220                                  Malloc->getArgOperand(0),
1221                                  Malloc->getAttributes(), B, *TLI)) {
1222     substituteInParent(Malloc, Calloc);
1223     return Calloc;
1224   }
1225 
1226   return nullptr;
1227 }
1228 
1229 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
1230   Value *Size = CI->getArgOperand(2);
1231   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1232   if (isa<IntrinsicInst>(CI))
1233     return nullptr;
1234 
1235   if (auto *Calloc = foldMallocMemset(CI, B))
1236     return Calloc;
1237 
1238   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1239   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1240   CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1));
1241   NewCI->setAttributes(CI->getAttributes());
1242   return CI->getArgOperand(0);
1243 }
1244 
1245 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) {
1246   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1247     return emitMalloc(CI->getArgOperand(1), B, DL, TLI);
1248 
1249   return nullptr;
1250 }
1251 
1252 //===----------------------------------------------------------------------===//
1253 // Math Library Optimizations
1254 //===----------------------------------------------------------------------===//
1255 
1256 // Replace a libcall \p CI with a call to intrinsic \p IID
1257 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) {
1258   // Propagate fast-math flags from the existing call to the new call.
1259   IRBuilder<>::FastMathFlagGuard Guard(B);
1260   B.setFastMathFlags(CI->getFastMathFlags());
1261 
1262   Module *M = CI->getModule();
1263   Value *V = CI->getArgOperand(0);
1264   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1265   CallInst *NewCall = B.CreateCall(F, V);
1266   NewCall->takeName(CI);
1267   return NewCall;
1268 }
1269 
1270 /// Return a variant of Val with float type.
1271 /// Currently this works in two cases: If Val is an FPExtension of a float
1272 /// value to something bigger, simply return the operand.
1273 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1274 /// loss of precision do so.
1275 static Value *valueHasFloatPrecision(Value *Val) {
1276   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1277     Value *Op = Cast->getOperand(0);
1278     if (Op->getType()->isFloatTy())
1279       return Op;
1280   }
1281   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1282     APFloat F = Const->getValueAPF();
1283     bool losesInfo;
1284     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1285                     &losesInfo);
1286     if (!losesInfo)
1287       return ConstantFP::get(Const->getContext(), F);
1288   }
1289   return nullptr;
1290 }
1291 
1292 /// Shrink double -> float functions.
1293 static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B,
1294                                bool isBinary, bool isPrecise = false) {
1295   Function *CalleeFn = CI->getCalledFunction();
1296   if (!CI->getType()->isDoubleTy() || !CalleeFn)
1297     return nullptr;
1298 
1299   // If not all the uses of the function are converted to float, then bail out.
1300   // This matters if the precision of the result is more important than the
1301   // precision of the arguments.
1302   if (isPrecise)
1303     for (User *U : CI->users()) {
1304       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1305       if (!Cast || !Cast->getType()->isFloatTy())
1306         return nullptr;
1307     }
1308 
1309   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1310   Value *V[2];
1311   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1312   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1313   if (!V[0] || (isBinary && !V[1]))
1314     return nullptr;
1315 
1316   // If call isn't an intrinsic, check that it isn't within a function with the
1317   // same name as the float version of this call, otherwise the result is an
1318   // infinite loop.  For example, from MinGW-w64:
1319   //
1320   // float expf(float val) { return (float) exp((double) val); }
1321   StringRef CalleeName = CalleeFn->getName();
1322   bool IsIntrinsic = CalleeFn->isIntrinsic();
1323   if (!IsIntrinsic) {
1324     StringRef CallerName = CI->getFunction()->getName();
1325     if (!CallerName.empty() && CallerName.back() == 'f' &&
1326         CallerName.size() == (CalleeName.size() + 1) &&
1327         CallerName.startswith(CalleeName))
1328       return nullptr;
1329   }
1330 
1331   // Propagate the math semantics from the current function to the new function.
1332   IRBuilder<>::FastMathFlagGuard Guard(B);
1333   B.setFastMathFlags(CI->getFastMathFlags());
1334 
1335   // g((double) float) -> (double) gf(float)
1336   Value *R;
1337   if (IsIntrinsic) {
1338     Module *M = CI->getModule();
1339     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1340     Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1341     R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1342   } else {
1343     AttributeList CalleeAttrs = CalleeFn->getAttributes();
1344     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs)
1345                  : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs);
1346   }
1347   return B.CreateFPExt(R, B.getDoubleTy());
1348 }
1349 
1350 /// Shrink double -> float for unary functions.
1351 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
1352                                     bool isPrecise = false) {
1353   return optimizeDoubleFP(CI, B, false, isPrecise);
1354 }
1355 
1356 /// Shrink double -> float for binary functions.
1357 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B,
1358                                      bool isPrecise = false) {
1359   return optimizeDoubleFP(CI, B, true, isPrecise);
1360 }
1361 
1362 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1363 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) {
1364   if (!CI->isFast())
1365     return nullptr;
1366 
1367   // Propagate fast-math flags from the existing call to new instructions.
1368   IRBuilder<>::FastMathFlagGuard Guard(B);
1369   B.setFastMathFlags(CI->getFastMathFlags());
1370 
1371   Value *Real, *Imag;
1372   if (CI->getNumArgOperands() == 1) {
1373     Value *Op = CI->getArgOperand(0);
1374     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1375     Real = B.CreateExtractValue(Op, 0, "real");
1376     Imag = B.CreateExtractValue(Op, 1, "imag");
1377   } else {
1378     assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
1379     Real = CI->getArgOperand(0);
1380     Imag = CI->getArgOperand(1);
1381   }
1382 
1383   Value *RealReal = B.CreateFMul(Real, Real);
1384   Value *ImagImag = B.CreateFMul(Imag, Imag);
1385 
1386   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1387                                               CI->getType());
1388   return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
1389 }
1390 
1391 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1392                                       IRBuilder<> &B) {
1393   if (!isa<FPMathOperator>(Call))
1394     return nullptr;
1395 
1396   IRBuilder<>::FastMathFlagGuard Guard(B);
1397   B.setFastMathFlags(Call->getFastMathFlags());
1398 
1399   // TODO: Can this be shared to also handle LLVM intrinsics?
1400   Value *X;
1401   switch (Func) {
1402   case LibFunc_sin:
1403   case LibFunc_sinf:
1404   case LibFunc_sinl:
1405   case LibFunc_tan:
1406   case LibFunc_tanf:
1407   case LibFunc_tanl:
1408     // sin(-X) --> -sin(X)
1409     // tan(-X) --> -tan(X)
1410     if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1411       return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X));
1412     break;
1413   case LibFunc_cos:
1414   case LibFunc_cosf:
1415   case LibFunc_cosl:
1416     // cos(-X) --> cos(X)
1417     if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1418       return B.CreateCall(Call->getCalledFunction(), X, "cos");
1419     break;
1420   default:
1421     break;
1422   }
1423   return nullptr;
1424 }
1425 
1426 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
1427   // Multiplications calculated using Addition Chains.
1428   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1429 
1430   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1431 
1432   if (InnerChain[Exp])
1433     return InnerChain[Exp];
1434 
1435   static const unsigned AddChain[33][2] = {
1436       {0, 0}, // Unused.
1437       {0, 0}, // Unused (base case = pow1).
1438       {1, 1}, // Unused (pre-computed).
1439       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1440       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1441       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1442       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1443       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1444   };
1445 
1446   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1447                                  getPow(InnerChain, AddChain[Exp][1], B));
1448   return InnerChain[Exp];
1449 }
1450 
1451 // Return a properly extended 32-bit integer if the operation is an itofp.
1452 static Value *getIntToFPVal(Value *I2F, IRBuilder<> &B) {
1453   if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
1454     Value *Op = cast<Instruction>(I2F)->getOperand(0);
1455     // Make sure that the exponent fits inside an int32_t,
1456     // thus avoiding any range issues that FP has not.
1457     unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1458     if (BitWidth < 32 ||
1459         (BitWidth == 32 && isa<SIToFPInst>(I2F)))
1460       return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getInt32Ty())
1461                                   : B.CreateZExt(Op, B.getInt32Ty());
1462   }
1463 
1464   return nullptr;
1465 }
1466 
1467 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1468 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1469 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1470 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) {
1471   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1472   AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
1473   Module *Mod = Pow->getModule();
1474   Type *Ty = Pow->getType();
1475   bool Ignored;
1476 
1477   // Evaluate special cases related to a nested function as the base.
1478 
1479   // pow(exp(x), y) -> exp(x * y)
1480   // pow(exp2(x), y) -> exp2(x * y)
1481   // If exp{,2}() is used only once, it is better to fold two transcendental
1482   // math functions into one.  If used again, exp{,2}() would still have to be
1483   // called with the original argument, then keep both original transcendental
1484   // functions.  However, this transformation is only safe with fully relaxed
1485   // math semantics, since, besides rounding differences, it changes overflow
1486   // and underflow behavior quite dramatically.  For example:
1487   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1488   // Whereas:
1489   //   exp(1000 * 0.001) = exp(1)
1490   // TODO: Loosen the requirement for fully relaxed math semantics.
1491   // TODO: Handle exp10() when more targets have it available.
1492   CallInst *BaseFn = dyn_cast<CallInst>(Base);
1493   if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1494     LibFunc LibFn;
1495 
1496     Function *CalleeFn = BaseFn->getCalledFunction();
1497     if (CalleeFn &&
1498         TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) {
1499       StringRef ExpName;
1500       Intrinsic::ID ID;
1501       Value *ExpFn;
1502       LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
1503 
1504       switch (LibFn) {
1505       default:
1506         return nullptr;
1507       case LibFunc_expf:  case LibFunc_exp:  case LibFunc_expl:
1508         ExpName = TLI->getName(LibFunc_exp);
1509         ID = Intrinsic::exp;
1510         LibFnFloat = LibFunc_expf;
1511         LibFnDouble = LibFunc_exp;
1512         LibFnLongDouble = LibFunc_expl;
1513         break;
1514       case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1515         ExpName = TLI->getName(LibFunc_exp2);
1516         ID = Intrinsic::exp2;
1517         LibFnFloat = LibFunc_exp2f;
1518         LibFnDouble = LibFunc_exp2;
1519         LibFnLongDouble = LibFunc_exp2l;
1520         break;
1521       }
1522 
1523       // Create new exp{,2}() with the product as its argument.
1524       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1525       ExpFn = BaseFn->doesNotAccessMemory()
1526               ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1527                              FMul, ExpName)
1528               : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1529                                      LibFnLongDouble, B,
1530                                      BaseFn->getAttributes());
1531 
1532       // Since the new exp{,2}() is different from the original one, dead code
1533       // elimination cannot be trusted to remove it, since it may have side
1534       // effects (e.g., errno).  When the only consumer for the original
1535       // exp{,2}() is pow(), then it has to be explicitly erased.
1536       substituteInParent(BaseFn, ExpFn);
1537       return ExpFn;
1538     }
1539   }
1540 
1541   // Evaluate special cases related to a constant base.
1542 
1543   const APFloat *BaseF;
1544   if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1545     return nullptr;
1546 
1547   // pow(2.0, itofp(x)) -> ldexp(1.0, x)
1548   if (match(Base, m_SpecificFP(2.0)) &&
1549       (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
1550       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1551     if (Value *ExpoI = getIntToFPVal(Expo, B))
1552       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI,
1553                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1554                                    B, Attrs);
1555   }
1556 
1557   // pow(2.0 ** n, x) -> exp2(n * x)
1558   if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1559     APFloat BaseR = APFloat(1.0);
1560     BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1561     BaseR = BaseR / *BaseF;
1562     bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
1563     const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1564     APSInt NI(64, false);
1565     if ((IsInteger || IsReciprocal) &&
1566         NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
1567             APFloat::opOK &&
1568         NI > 1 && NI.isPowerOf2()) {
1569       double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1570       Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1571       if (Pow->doesNotAccessMemory())
1572         return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1573                             FMul, "exp2");
1574       else
1575         return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1576                                     LibFunc_exp2l, B, Attrs);
1577     }
1578   }
1579 
1580   // pow(10.0, x) -> exp10(x)
1581   // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1582   if (match(Base, m_SpecificFP(10.0)) &&
1583       hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1584     return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f,
1585                                 LibFunc_exp10l, B, Attrs);
1586 
1587   // pow(n, x) -> exp2(log2(n) * x)
1588   if (Pow->hasOneUse() && Pow->hasApproxFunc() && Pow->hasNoNaNs() &&
1589       Pow->hasNoInfs() && BaseF->isNormal() && !BaseF->isNegative()) {
1590     Value *Log = nullptr;
1591     if (Ty->isFloatTy())
1592       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
1593     else if (Ty->isDoubleTy())
1594       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
1595 
1596     if (Log) {
1597       Value *FMul = B.CreateFMul(Log, Expo, "mul");
1598       if (Pow->doesNotAccessMemory())
1599         return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1600                             FMul, "exp2");
1601       else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l))
1602         return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1603                                     LibFunc_exp2l, B, Attrs);
1604     }
1605   }
1606 
1607   return nullptr;
1608 }
1609 
1610 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1611                           Module *M, IRBuilder<> &B,
1612                           const TargetLibraryInfo *TLI) {
1613   // If errno is never set, then use the intrinsic for sqrt().
1614   if (NoErrno) {
1615     Function *SqrtFn =
1616         Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1617     return B.CreateCall(SqrtFn, V, "sqrt");
1618   }
1619 
1620   // Otherwise, use the libcall for sqrt().
1621   if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl))
1622     // TODO: We also should check that the target can in fact lower the sqrt()
1623     // libcall. We currently have no way to ask this question, so we ask if
1624     // the target has a sqrt() libcall, which is not exactly the same.
1625     return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1626                                 LibFunc_sqrtl, B, Attrs);
1627 
1628   return nullptr;
1629 }
1630 
1631 /// Use square root in place of pow(x, +/-0.5).
1632 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) {
1633   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1634   AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
1635   Module *Mod = Pow->getModule();
1636   Type *Ty = Pow->getType();
1637 
1638   const APFloat *ExpoF;
1639   if (!match(Expo, m_APFloat(ExpoF)) ||
1640       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1641     return nullptr;
1642 
1643   // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
1644   // so that requires fast-math-flags (afn or reassoc).
1645   if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
1646     return nullptr;
1647 
1648   Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1649   if (!Sqrt)
1650     return nullptr;
1651 
1652   // Handle signed zero base by expanding to fabs(sqrt(x)).
1653   if (!Pow->hasNoSignedZeros()) {
1654     Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1655     Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1656   }
1657 
1658   // Handle non finite base by expanding to
1659   // (x == -infinity ? +infinity : sqrt(x)).
1660   if (!Pow->hasNoInfs()) {
1661     Value *PosInf = ConstantFP::getInfinity(Ty),
1662           *NegInf = ConstantFP::getInfinity(Ty, true);
1663     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1664     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1665   }
1666 
1667   // If the exponent is negative, then get the reciprocal.
1668   if (ExpoF->isNegative())
1669     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1670 
1671   return Sqrt;
1672 }
1673 
1674 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
1675                                            IRBuilder<> &B) {
1676   Value *Args[] = {Base, Expo};
1677   Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType());
1678   return B.CreateCall(F, Args);
1679 }
1680 
1681 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) {
1682   Value *Base = Pow->getArgOperand(0);
1683   Value *Expo = Pow->getArgOperand(1);
1684   Function *Callee = Pow->getCalledFunction();
1685   StringRef Name = Callee->getName();
1686   Type *Ty = Pow->getType();
1687   Module *M = Pow->getModule();
1688   Value *Shrunk = nullptr;
1689   bool AllowApprox = Pow->hasApproxFunc();
1690   bool Ignored;
1691 
1692   // Bail out if simplifying libcalls to pow() is disabled.
1693   if (!hasFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl))
1694     return nullptr;
1695 
1696   // Propagate the math semantics from the call to any created instructions.
1697   IRBuilder<>::FastMathFlagGuard Guard(B);
1698   B.setFastMathFlags(Pow->getFastMathFlags());
1699 
1700   // Shrink pow() to powf() if the arguments are single precision,
1701   // unless the result is expected to be double precision.
1702   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
1703       hasFloatVersion(Name))
1704     Shrunk = optimizeBinaryDoubleFP(Pow, B, true);
1705 
1706   // Evaluate special cases related to the base.
1707 
1708   // pow(1.0, x) -> 1.0
1709   if (match(Base, m_FPOne()))
1710     return Base;
1711 
1712   if (Value *Exp = replacePowWithExp(Pow, B))
1713     return Exp;
1714 
1715   // Evaluate special cases related to the exponent.
1716 
1717   // pow(x, -1.0) -> 1.0 / x
1718   if (match(Expo, m_SpecificFP(-1.0)))
1719     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1720 
1721   // pow(x, +/-0.0) -> 1.0
1722   if (match(Expo, m_AnyZeroFP()))
1723     return ConstantFP::get(Ty, 1.0);
1724 
1725   // pow(x, 1.0) -> x
1726   if (match(Expo, m_FPOne()))
1727     return Base;
1728 
1729   // pow(x, 2.0) -> x * x
1730   if (match(Expo, m_SpecificFP(2.0)))
1731     return B.CreateFMul(Base, Base, "square");
1732 
1733   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1734     return Sqrt;
1735 
1736   // pow(x, n) -> x * x * x * ...
1737   const APFloat *ExpoF;
1738   if (AllowApprox && match(Expo, m_APFloat(ExpoF))) {
1739     // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1740     // If the exponent is an integer+0.5 we generate a call to sqrt and an
1741     // additional fmul.
1742     // TODO: This whole transformation should be backend specific (e.g. some
1743     //       backends might prefer libcalls or the limit for the exponent might
1744     //       be different) and it should also consider optimizing for size.
1745     APFloat LimF(ExpoF->getSemantics(), 33),
1746             ExpoA(abs(*ExpoF));
1747     if (ExpoA.compare(LimF) == APFloat::cmpLessThan) {
1748       // This transformation applies to integer or integer+0.5 exponents only.
1749       // For integer+0.5, we create a sqrt(Base) call.
1750       Value *Sqrt = nullptr;
1751       if (!ExpoA.isInteger()) {
1752         APFloat Expo2 = ExpoA;
1753         // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1754         // is no floating point exception and the result is an integer, then
1755         // ExpoA == integer + 0.5
1756         if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
1757           return nullptr;
1758 
1759         if (!Expo2.isInteger())
1760           return nullptr;
1761 
1762         Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
1763                            Pow->doesNotAccessMemory(), M, B, TLI);
1764       }
1765 
1766       // We will memoize intermediate products of the Addition Chain.
1767       Value *InnerChain[33] = {nullptr};
1768       InnerChain[1] = Base;
1769       InnerChain[2] = B.CreateFMul(Base, Base, "square");
1770 
1771       // We cannot readily convert a non-double type (like float) to a double.
1772       // So we first convert it to something which could be converted to double.
1773       ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1774       Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1775 
1776       // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
1777       if (Sqrt)
1778         FMul = B.CreateFMul(FMul, Sqrt);
1779 
1780       // If the exponent is negative, then get the reciprocal.
1781       if (ExpoF->isNegative())
1782         FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1783 
1784       return FMul;
1785     }
1786 
1787     APSInt IntExpo(32, /*isUnsigned=*/false);
1788     // powf(x, n) -> powi(x, n) if n is a constant signed integer value
1789     if (ExpoF->isInteger() &&
1790         ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
1791             APFloat::opOK) {
1792       return createPowWithIntegerExponent(
1793           Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B);
1794     }
1795   }
1796 
1797   // powf(x, itofp(y)) -> powi(x, y)
1798   if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
1799     if (Value *ExpoI = getIntToFPVal(Expo, B))
1800       return createPowWithIntegerExponent(Base, ExpoI, M, B);
1801   }
1802 
1803   return Shrunk;
1804 }
1805 
1806 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1807   Function *Callee = CI->getCalledFunction();
1808   StringRef Name = Callee->getName();
1809   Value *Ret = nullptr;
1810   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
1811       hasFloatVersion(Name))
1812     Ret = optimizeUnaryDoubleFP(CI, B, true);
1813 
1814   Type *Ty = CI->getType();
1815   Value *Op = CI->getArgOperand(0);
1816 
1817   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1818   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1819   if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
1820       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1821     if (Value *Exp = getIntToFPVal(Op, B))
1822       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
1823                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1824                                    B, CI->getCalledFunction()->getAttributes());
1825   }
1826 
1827   return Ret;
1828 }
1829 
1830 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1831   // If we can shrink the call to a float function rather than a double
1832   // function, do that first.
1833   Function *Callee = CI->getCalledFunction();
1834   StringRef Name = Callee->getName();
1835   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1836     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1837       return Ret;
1838 
1839   // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
1840   // the intrinsics for improved optimization (for example, vectorization).
1841   // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
1842   // From the C standard draft WG14/N1256:
1843   // "Ideally, fmax would be sensitive to the sign of zero, for example
1844   // fmax(-0.0, +0.0) would return +0; however, implementation in software
1845   // might be impractical."
1846   IRBuilder<>::FastMathFlagGuard Guard(B);
1847   FastMathFlags FMF = CI->getFastMathFlags();
1848   FMF.setNoSignedZeros();
1849   B.setFastMathFlags(FMF);
1850 
1851   Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
1852                                                            : Intrinsic::maxnum;
1853   Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
1854   return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) });
1855 }
1856 
1857 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilder<> &B) {
1858   Function *LogFn = Log->getCalledFunction();
1859   AttributeList Attrs = LogFn->getAttributes();
1860   StringRef LogNm = LogFn->getName();
1861   Intrinsic::ID LogID = LogFn->getIntrinsicID();
1862   Module *Mod = Log->getModule();
1863   Type *Ty = Log->getType();
1864   Value *Ret = nullptr;
1865 
1866   if (UnsafeFPShrink && hasFloatVersion(LogNm))
1867     Ret = optimizeUnaryDoubleFP(Log, B, true);
1868 
1869   // The earlier call must also be 'fast' in order to do these transforms.
1870   CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
1871   if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
1872     return Ret;
1873 
1874   LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
1875 
1876   // This is only applicable to log(), log2(), log10().
1877   if (TLI->getLibFunc(LogNm, LogLb))
1878     switch (LogLb) {
1879     case LibFunc_logf:
1880       LogID = Intrinsic::log;
1881       ExpLb = LibFunc_expf;
1882       Exp2Lb = LibFunc_exp2f;
1883       Exp10Lb = LibFunc_exp10f;
1884       PowLb = LibFunc_powf;
1885       break;
1886     case LibFunc_log:
1887       LogID = Intrinsic::log;
1888       ExpLb = LibFunc_exp;
1889       Exp2Lb = LibFunc_exp2;
1890       Exp10Lb = LibFunc_exp10;
1891       PowLb = LibFunc_pow;
1892       break;
1893     case LibFunc_logl:
1894       LogID = Intrinsic::log;
1895       ExpLb = LibFunc_expl;
1896       Exp2Lb = LibFunc_exp2l;
1897       Exp10Lb = LibFunc_exp10l;
1898       PowLb = LibFunc_powl;
1899       break;
1900     case LibFunc_log2f:
1901       LogID = Intrinsic::log2;
1902       ExpLb = LibFunc_expf;
1903       Exp2Lb = LibFunc_exp2f;
1904       Exp10Lb = LibFunc_exp10f;
1905       PowLb = LibFunc_powf;
1906       break;
1907     case LibFunc_log2:
1908       LogID = Intrinsic::log2;
1909       ExpLb = LibFunc_exp;
1910       Exp2Lb = LibFunc_exp2;
1911       Exp10Lb = LibFunc_exp10;
1912       PowLb = LibFunc_pow;
1913       break;
1914     case LibFunc_log2l:
1915       LogID = Intrinsic::log2;
1916       ExpLb = LibFunc_expl;
1917       Exp2Lb = LibFunc_exp2l;
1918       Exp10Lb = LibFunc_exp10l;
1919       PowLb = LibFunc_powl;
1920       break;
1921     case LibFunc_log10f:
1922       LogID = Intrinsic::log10;
1923       ExpLb = LibFunc_expf;
1924       Exp2Lb = LibFunc_exp2f;
1925       Exp10Lb = LibFunc_exp10f;
1926       PowLb = LibFunc_powf;
1927       break;
1928     case LibFunc_log10:
1929       LogID = Intrinsic::log10;
1930       ExpLb = LibFunc_exp;
1931       Exp2Lb = LibFunc_exp2;
1932       Exp10Lb = LibFunc_exp10;
1933       PowLb = LibFunc_pow;
1934       break;
1935     case LibFunc_log10l:
1936       LogID = Intrinsic::log10;
1937       ExpLb = LibFunc_expl;
1938       Exp2Lb = LibFunc_exp2l;
1939       Exp10Lb = LibFunc_exp10l;
1940       PowLb = LibFunc_powl;
1941       break;
1942     default:
1943       return Ret;
1944     }
1945   else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
1946            LogID == Intrinsic::log10) {
1947     if (Ty->getScalarType()->isFloatTy()) {
1948       ExpLb = LibFunc_expf;
1949       Exp2Lb = LibFunc_exp2f;
1950       Exp10Lb = LibFunc_exp10f;
1951       PowLb = LibFunc_powf;
1952     } else if (Ty->getScalarType()->isDoubleTy()) {
1953       ExpLb = LibFunc_exp;
1954       Exp2Lb = LibFunc_exp2;
1955       Exp10Lb = LibFunc_exp10;
1956       PowLb = LibFunc_pow;
1957     } else
1958       return Ret;
1959   } else
1960     return Ret;
1961 
1962   IRBuilder<>::FastMathFlagGuard Guard(B);
1963   B.setFastMathFlags(FastMathFlags::getFast());
1964 
1965   Intrinsic::ID ArgID = Arg->getIntrinsicID();
1966   LibFunc ArgLb = NotLibFunc;
1967   TLI->getLibFunc(Arg, ArgLb);
1968 
1969   // log(pow(x,y)) -> y*log(x)
1970   if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
1971     Value *LogX =
1972         Log->doesNotAccessMemory()
1973             ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1974                            Arg->getOperand(0), "log")
1975             : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs);
1976     Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
1977     // Since pow() may have side effects, e.g. errno,
1978     // dead code elimination may not be trusted to remove it.
1979     substituteInParent(Arg, MulY);
1980     return MulY;
1981   }
1982 
1983   // log(exp{,2,10}(y)) -> y*log({e,2,10})
1984   // TODO: There is no exp10() intrinsic yet.
1985   if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
1986            ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
1987     Constant *Eul;
1988     if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
1989       // FIXME: Add more precise value of e for long double.
1990       Eul = ConstantFP::get(Log->getType(), numbers::e);
1991     else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
1992       Eul = ConstantFP::get(Log->getType(), 2.0);
1993     else
1994       Eul = ConstantFP::get(Log->getType(), 10.0);
1995     Value *LogE = Log->doesNotAccessMemory()
1996                       ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1997                                      Eul, "log")
1998                       : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs);
1999     Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
2000     // Since exp() may have side effects, e.g. errno,
2001     // dead code elimination may not be trusted to remove it.
2002     substituteInParent(Arg, MulY);
2003     return MulY;
2004   }
2005 
2006   return Ret;
2007 }
2008 
2009 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
2010   Function *Callee = CI->getCalledFunction();
2011   Value *Ret = nullptr;
2012   // TODO: Once we have a way (other than checking for the existince of the
2013   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
2014   // condition below.
2015   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
2016                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
2017     Ret = optimizeUnaryDoubleFP(CI, B, true);
2018 
2019   if (!CI->isFast())
2020     return Ret;
2021 
2022   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
2023   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
2024     return Ret;
2025 
2026   // We're looking for a repeated factor in a multiplication tree,
2027   // so we can do this fold: sqrt(x * x) -> fabs(x);
2028   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2029   Value *Op0 = I->getOperand(0);
2030   Value *Op1 = I->getOperand(1);
2031   Value *RepeatOp = nullptr;
2032   Value *OtherOp = nullptr;
2033   if (Op0 == Op1) {
2034     // Simple match: the operands of the multiply are identical.
2035     RepeatOp = Op0;
2036   } else {
2037     // Look for a more complicated pattern: one of the operands is itself
2038     // a multiply, so search for a common factor in that multiply.
2039     // Note: We don't bother looking any deeper than this first level or for
2040     // variations of this pattern because instcombine's visitFMUL and/or the
2041     // reassociation pass should give us this form.
2042     Value *OtherMul0, *OtherMul1;
2043     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
2044       // Pattern: sqrt((x * y) * z)
2045       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
2046         // Matched: sqrt((x * x) * z)
2047         RepeatOp = OtherMul0;
2048         OtherOp = Op1;
2049       }
2050     }
2051   }
2052   if (!RepeatOp)
2053     return Ret;
2054 
2055   // Fast math flags for any created instructions should match the sqrt
2056   // and multiply.
2057   IRBuilder<>::FastMathFlagGuard Guard(B);
2058   B.setFastMathFlags(I->getFastMathFlags());
2059 
2060   // If we found a repeated factor, hoist it out of the square root and
2061   // replace it with the fabs of that factor.
2062   Module *M = Callee->getParent();
2063   Type *ArgType = I->getType();
2064   Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
2065   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
2066   if (OtherOp) {
2067     // If we found a non-repeated factor, we still need to get its square
2068     // root. We then multiply that by the value that was simplified out
2069     // of the square root calculation.
2070     Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
2071     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
2072     return B.CreateFMul(FabsCall, SqrtCall);
2073   }
2074   return FabsCall;
2075 }
2076 
2077 // TODO: Generalize to handle any trig function and its inverse.
2078 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
2079   Function *Callee = CI->getCalledFunction();
2080   Value *Ret = nullptr;
2081   StringRef Name = Callee->getName();
2082   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
2083     Ret = optimizeUnaryDoubleFP(CI, B, true);
2084 
2085   Value *Op1 = CI->getArgOperand(0);
2086   auto *OpC = dyn_cast<CallInst>(Op1);
2087   if (!OpC)
2088     return Ret;
2089 
2090   // Both calls must be 'fast' in order to remove them.
2091   if (!CI->isFast() || !OpC->isFast())
2092     return Ret;
2093 
2094   // tan(atan(x)) -> x
2095   // tanf(atanf(x)) -> x
2096   // tanl(atanl(x)) -> x
2097   LibFunc Func;
2098   Function *F = OpC->getCalledFunction();
2099   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
2100       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
2101        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
2102        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
2103     Ret = OpC->getArgOperand(0);
2104   return Ret;
2105 }
2106 
2107 static bool isTrigLibCall(CallInst *CI) {
2108   // We can only hope to do anything useful if we can ignore things like errno
2109   // and floating-point exceptions.
2110   // We already checked the prototype.
2111   return CI->hasFnAttr(Attribute::NoUnwind) &&
2112          CI->hasFnAttr(Attribute::ReadNone);
2113 }
2114 
2115 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
2116                              bool UseFloat, Value *&Sin, Value *&Cos,
2117                              Value *&SinCos) {
2118   Type *ArgTy = Arg->getType();
2119   Type *ResTy;
2120   StringRef Name;
2121 
2122   Triple T(OrigCallee->getParent()->getTargetTriple());
2123   if (UseFloat) {
2124     Name = "__sincospif_stret";
2125 
2126     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2127     // x86_64 can't use {float, float} since that would be returned in both
2128     // xmm0 and xmm1, which isn't what a real struct would do.
2129     ResTy = T.getArch() == Triple::x86_64
2130                 ? static_cast<Type *>(VectorType::get(ArgTy, 2))
2131                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2132   } else {
2133     Name = "__sincospi_stret";
2134     ResTy = StructType::get(ArgTy, ArgTy);
2135   }
2136 
2137   Module *M = OrigCallee->getParent();
2138   FunctionCallee Callee =
2139       M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy);
2140 
2141   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2142     // If the argument is an instruction, it must dominate all uses so put our
2143     // sincos call there.
2144     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2145   } else {
2146     // Otherwise (e.g. for a constant) the beginning of the function is as
2147     // good a place as any.
2148     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2149     B.SetInsertPoint(&EntryBB, EntryBB.begin());
2150   }
2151 
2152   SinCos = B.CreateCall(Callee, Arg, "sincospi");
2153 
2154   if (SinCos->getType()->isStructTy()) {
2155     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2156     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2157   } else {
2158     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2159                                  "sinpi");
2160     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2161                                  "cospi");
2162   }
2163 }
2164 
2165 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
2166   // Make sure the prototype is as expected, otherwise the rest of the
2167   // function is probably invalid and likely to abort.
2168   if (!isTrigLibCall(CI))
2169     return nullptr;
2170 
2171   Value *Arg = CI->getArgOperand(0);
2172   SmallVector<CallInst *, 1> SinCalls;
2173   SmallVector<CallInst *, 1> CosCalls;
2174   SmallVector<CallInst *, 1> SinCosCalls;
2175 
2176   bool IsFloat = Arg->getType()->isFloatTy();
2177 
2178   // Look for all compatible sinpi, cospi and sincospi calls with the same
2179   // argument. If there are enough (in some sense) we can make the
2180   // substitution.
2181   Function *F = CI->getFunction();
2182   for (User *U : Arg->users())
2183     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2184 
2185   // It's only worthwhile if both sinpi and cospi are actually used.
2186   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
2187     return nullptr;
2188 
2189   Value *Sin, *Cos, *SinCos;
2190   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
2191 
2192   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2193                                  Value *Res) {
2194     for (CallInst *C : Calls)
2195       replaceAllUsesWith(C, Res);
2196   };
2197 
2198   replaceTrigInsts(SinCalls, Sin);
2199   replaceTrigInsts(CosCalls, Cos);
2200   replaceTrigInsts(SinCosCalls, SinCos);
2201 
2202   return nullptr;
2203 }
2204 
2205 void LibCallSimplifier::classifyArgUse(
2206     Value *Val, Function *F, bool IsFloat,
2207     SmallVectorImpl<CallInst *> &SinCalls,
2208     SmallVectorImpl<CallInst *> &CosCalls,
2209     SmallVectorImpl<CallInst *> &SinCosCalls) {
2210   CallInst *CI = dyn_cast<CallInst>(Val);
2211 
2212   if (!CI)
2213     return;
2214 
2215   // Don't consider calls in other functions.
2216   if (CI->getFunction() != F)
2217     return;
2218 
2219   Function *Callee = CI->getCalledFunction();
2220   LibFunc Func;
2221   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
2222       !isTrigLibCall(CI))
2223     return;
2224 
2225   if (IsFloat) {
2226     if (Func == LibFunc_sinpif)
2227       SinCalls.push_back(CI);
2228     else if (Func == LibFunc_cospif)
2229       CosCalls.push_back(CI);
2230     else if (Func == LibFunc_sincospif_stret)
2231       SinCosCalls.push_back(CI);
2232   } else {
2233     if (Func == LibFunc_sinpi)
2234       SinCalls.push_back(CI);
2235     else if (Func == LibFunc_cospi)
2236       CosCalls.push_back(CI);
2237     else if (Func == LibFunc_sincospi_stret)
2238       SinCosCalls.push_back(CI);
2239   }
2240 }
2241 
2242 //===----------------------------------------------------------------------===//
2243 // Integer Library Call Optimizations
2244 //===----------------------------------------------------------------------===//
2245 
2246 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
2247   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
2248   Value *Op = CI->getArgOperand(0);
2249   Type *ArgType = Op->getType();
2250   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2251                                           Intrinsic::cttz, ArgType);
2252   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
2253   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
2254   V = B.CreateIntCast(V, B.getInt32Ty(), false);
2255 
2256   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
2257   return B.CreateSelect(Cond, V, B.getInt32(0));
2258 }
2259 
2260 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
2261   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
2262   Value *Op = CI->getArgOperand(0);
2263   Type *ArgType = Op->getType();
2264   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2265                                           Intrinsic::ctlz, ArgType);
2266   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
2267   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
2268                   V);
2269   return B.CreateIntCast(V, CI->getType(), false);
2270 }
2271 
2272 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
2273   // abs(x) -> x <s 0 ? -x : x
2274   // The negation has 'nsw' because abs of INT_MIN is undefined.
2275   Value *X = CI->getArgOperand(0);
2276   Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
2277   Value *NegX = B.CreateNSWNeg(X, "neg");
2278   return B.CreateSelect(IsNeg, NegX, X);
2279 }
2280 
2281 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
2282   // isdigit(c) -> (c-'0') <u 10
2283   Value *Op = CI->getArgOperand(0);
2284   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
2285   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
2286   return B.CreateZExt(Op, CI->getType());
2287 }
2288 
2289 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
2290   // isascii(c) -> c <u 128
2291   Value *Op = CI->getArgOperand(0);
2292   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
2293   return B.CreateZExt(Op, CI->getType());
2294 }
2295 
2296 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
2297   // toascii(c) -> c & 0x7f
2298   return B.CreateAnd(CI->getArgOperand(0),
2299                      ConstantInt::get(CI->getType(), 0x7F));
2300 }
2301 
2302 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) {
2303   StringRef Str;
2304   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2305     return nullptr;
2306 
2307   return convertStrToNumber(CI, Str, 10);
2308 }
2309 
2310 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) {
2311   StringRef Str;
2312   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2313     return nullptr;
2314 
2315   if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
2316     return nullptr;
2317 
2318   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2319     return convertStrToNumber(CI, Str, CInt->getSExtValue());
2320   }
2321 
2322   return nullptr;
2323 }
2324 
2325 //===----------------------------------------------------------------------===//
2326 // Formatting and IO Library Call Optimizations
2327 //===----------------------------------------------------------------------===//
2328 
2329 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2330 
2331 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
2332                                                  int StreamArg) {
2333   Function *Callee = CI->getCalledFunction();
2334   // Error reporting calls should be cold, mark them as such.
2335   // This applies even to non-builtin calls: it is only a hint and applies to
2336   // functions that the frontend might not understand as builtins.
2337 
2338   // This heuristic was suggested in:
2339   // Improving Static Branch Prediction in a Compiler
2340   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2341   // Proceedings of PACT'98, Oct. 1998, IEEE
2342   if (!CI->hasFnAttr(Attribute::Cold) &&
2343       isReportingError(Callee, CI, StreamArg)) {
2344     CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
2345   }
2346 
2347   return nullptr;
2348 }
2349 
2350 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2351   if (!Callee || !Callee->isDeclaration())
2352     return false;
2353 
2354   if (StreamArg < 0)
2355     return true;
2356 
2357   // These functions might be considered cold, but only if their stream
2358   // argument is stderr.
2359 
2360   if (StreamArg >= (int)CI->getNumArgOperands())
2361     return false;
2362   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2363   if (!LI)
2364     return false;
2365   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
2366   if (!GV || !GV->isDeclaration())
2367     return false;
2368   return GV->getName() == "stderr";
2369 }
2370 
2371 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
2372   // Check for a fixed format string.
2373   StringRef FormatStr;
2374   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2375     return nullptr;
2376 
2377   // Empty format string -> noop.
2378   if (FormatStr.empty()) // Tolerate printf's declared void.
2379     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2380 
2381   // Do not do any of the following transformations if the printf return value
2382   // is used, in general the printf return value is not compatible with either
2383   // putchar() or puts().
2384   if (!CI->use_empty())
2385     return nullptr;
2386 
2387   // printf("x") -> putchar('x'), even for "%" and "%%".
2388   if (FormatStr.size() == 1 || FormatStr == "%%")
2389     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
2390 
2391   // printf("%s", "a") --> putchar('a')
2392   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
2393     StringRef ChrStr;
2394     if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
2395       return nullptr;
2396     if (ChrStr.size() != 1)
2397       return nullptr;
2398     return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
2399   }
2400 
2401   // printf("foo\n") --> puts("foo")
2402   if (FormatStr[FormatStr.size() - 1] == '\n' &&
2403       FormatStr.find('%') == StringRef::npos) { // No format characters.
2404     // Create a string literal with no \n on it.  We expect the constant merge
2405     // pass to be run after this pass, to merge duplicate strings.
2406     FormatStr = FormatStr.drop_back();
2407     Value *GV = B.CreateGlobalString(FormatStr, "str");
2408     return emitPutS(GV, B, TLI);
2409   }
2410 
2411   // Optimize specific format strings.
2412   // printf("%c", chr) --> putchar(chr)
2413   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
2414       CI->getArgOperand(1)->getType()->isIntegerTy())
2415     return emitPutChar(CI->getArgOperand(1), B, TLI);
2416 
2417   // printf("%s\n", str) --> puts(str)
2418   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
2419       CI->getArgOperand(1)->getType()->isPointerTy())
2420     return emitPutS(CI->getArgOperand(1), B, TLI);
2421   return nullptr;
2422 }
2423 
2424 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
2425 
2426   Function *Callee = CI->getCalledFunction();
2427   FunctionType *FT = Callee->getFunctionType();
2428   if (Value *V = optimizePrintFString(CI, B)) {
2429     return V;
2430   }
2431 
2432   // printf(format, ...) -> iprintf(format, ...) if no floating point
2433   // arguments.
2434   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
2435     Module *M = B.GetInsertBlock()->getParent()->getParent();
2436     FunctionCallee IPrintFFn =
2437         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
2438     CallInst *New = cast<CallInst>(CI->clone());
2439     New->setCalledFunction(IPrintFFn);
2440     B.Insert(New);
2441     return New;
2442   }
2443 
2444   // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2445   // arguments.
2446   if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) {
2447     Module *M = B.GetInsertBlock()->getParent()->getParent();
2448     auto SmallPrintFFn =
2449         M->getOrInsertFunction(TLI->getName(LibFunc_small_printf),
2450                                FT, Callee->getAttributes());
2451     CallInst *New = cast<CallInst>(CI->clone());
2452     New->setCalledFunction(SmallPrintFFn);
2453     B.Insert(New);
2454     return New;
2455   }
2456 
2457   annotateNonNullBasedOnAccess(CI, 0);
2458   return nullptr;
2459 }
2460 
2461 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
2462   // Check for a fixed format string.
2463   StringRef FormatStr;
2464   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2465     return nullptr;
2466 
2467   // If we just have a format string (nothing else crazy) transform it.
2468   if (CI->getNumArgOperands() == 2) {
2469     // Make sure there's no % in the constant array.  We could try to handle
2470     // %% -> % in the future if we cared.
2471     if (FormatStr.find('%') != StringRef::npos)
2472       return nullptr; // we found a format specifier, bail out.
2473 
2474     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2475     B.CreateMemCpy(
2476         CI->getArgOperand(0), Align(1), CI->getArgOperand(1), Align(1),
2477         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2478                          FormatStr.size() + 1)); // Copy the null byte.
2479     return ConstantInt::get(CI->getType(), FormatStr.size());
2480   }
2481 
2482   // The remaining optimizations require the format string to be "%s" or "%c"
2483   // and have an extra operand.
2484   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2485       CI->getNumArgOperands() < 3)
2486     return nullptr;
2487 
2488   // Decode the second character of the format string.
2489   if (FormatStr[1] == 'c') {
2490     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2491     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2492       return nullptr;
2493     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2494     Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2495     B.CreateStore(V, Ptr);
2496     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2497     B.CreateStore(B.getInt8(0), Ptr);
2498 
2499     return ConstantInt::get(CI->getType(), 1);
2500   }
2501 
2502   if (FormatStr[1] == 's') {
2503     // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2504     // strlen(str)+1)
2505     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2506       return nullptr;
2507 
2508     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2509     if (!Len)
2510       return nullptr;
2511     Value *IncLen =
2512         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2513     B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(2),
2514                    Align(1), IncLen);
2515 
2516     // The sprintf result is the unincremented number of bytes in the string.
2517     return B.CreateIntCast(Len, CI->getType(), false);
2518   }
2519   return nullptr;
2520 }
2521 
2522 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
2523   Function *Callee = CI->getCalledFunction();
2524   FunctionType *FT = Callee->getFunctionType();
2525   if (Value *V = optimizeSPrintFString(CI, B)) {
2526     return V;
2527   }
2528 
2529   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2530   // point arguments.
2531   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
2532     Module *M = B.GetInsertBlock()->getParent()->getParent();
2533     FunctionCallee SIPrintFFn =
2534         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
2535     CallInst *New = cast<CallInst>(CI->clone());
2536     New->setCalledFunction(SIPrintFFn);
2537     B.Insert(New);
2538     return New;
2539   }
2540 
2541   // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
2542   // floating point arguments.
2543   if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) {
2544     Module *M = B.GetInsertBlock()->getParent()->getParent();
2545     auto SmallSPrintFFn =
2546         M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf),
2547                                FT, Callee->getAttributes());
2548     CallInst *New = cast<CallInst>(CI->clone());
2549     New->setCalledFunction(SmallSPrintFFn);
2550     B.Insert(New);
2551     return New;
2552   }
2553 
2554   annotateNonNullBasedOnAccess(CI, {0, 1});
2555   return nullptr;
2556 }
2557 
2558 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) {
2559   // Check for size
2560   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2561   if (!Size)
2562     return nullptr;
2563 
2564   uint64_t N = Size->getZExtValue();
2565   // Check for a fixed format string.
2566   StringRef FormatStr;
2567   if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2568     return nullptr;
2569 
2570   // If we just have a format string (nothing else crazy) transform it.
2571   if (CI->getNumArgOperands() == 3) {
2572     // Make sure there's no % in the constant array.  We could try to handle
2573     // %% -> % in the future if we cared.
2574     if (FormatStr.find('%') != StringRef::npos)
2575       return nullptr; // we found a format specifier, bail out.
2576 
2577     if (N == 0)
2578       return ConstantInt::get(CI->getType(), FormatStr.size());
2579     else if (N < FormatStr.size() + 1)
2580       return nullptr;
2581 
2582     // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2583     // strlen(fmt)+1)
2584     B.CreateMemCpy(
2585         CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1),
2586         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2587                          FormatStr.size() + 1)); // Copy the null byte.
2588     return ConstantInt::get(CI->getType(), FormatStr.size());
2589   }
2590 
2591   // The remaining optimizations require the format string to be "%s" or "%c"
2592   // and have an extra operand.
2593   if (FormatStr.size() == 2 && FormatStr[0] == '%' &&
2594       CI->getNumArgOperands() == 4) {
2595 
2596     // Decode the second character of the format string.
2597     if (FormatStr[1] == 'c') {
2598       if (N == 0)
2599         return ConstantInt::get(CI->getType(), 1);
2600       else if (N == 1)
2601         return nullptr;
2602 
2603       // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2604       if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2605         return nullptr;
2606       Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2607       Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2608       B.CreateStore(V, Ptr);
2609       Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2610       B.CreateStore(B.getInt8(0), Ptr);
2611 
2612       return ConstantInt::get(CI->getType(), 1);
2613     }
2614 
2615     if (FormatStr[1] == 's') {
2616       // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2617       StringRef Str;
2618       if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2619         return nullptr;
2620 
2621       if (N == 0)
2622         return ConstantInt::get(CI->getType(), Str.size());
2623       else if (N < Str.size() + 1)
2624         return nullptr;
2625 
2626       B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(3),
2627                      Align(1), ConstantInt::get(CI->getType(), Str.size() + 1));
2628 
2629       // The snprintf result is the unincremented number of bytes in the string.
2630       return ConstantInt::get(CI->getType(), Str.size());
2631     }
2632   }
2633   return nullptr;
2634 }
2635 
2636 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) {
2637   if (Value *V = optimizeSnPrintFString(CI, B)) {
2638     return V;
2639   }
2640 
2641   if (isKnownNonZero(CI->getOperand(1), DL))
2642     annotateNonNullBasedOnAccess(CI, 0);
2643   return nullptr;
2644 }
2645 
2646 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
2647   optimizeErrorReporting(CI, B, 0);
2648 
2649   // All the optimizations depend on the format string.
2650   StringRef FormatStr;
2651   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2652     return nullptr;
2653 
2654   // Do not do any of the following transformations if the fprintf return
2655   // value is used, in general the fprintf return value is not compatible
2656   // with fwrite(), fputc() or fputs().
2657   if (!CI->use_empty())
2658     return nullptr;
2659 
2660   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2661   if (CI->getNumArgOperands() == 2) {
2662     // Could handle %% -> % if we cared.
2663     if (FormatStr.find('%') != StringRef::npos)
2664       return nullptr; // We found a format specifier.
2665 
2666     return emitFWrite(
2667         CI->getArgOperand(1),
2668         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
2669         CI->getArgOperand(0), B, DL, TLI);
2670   }
2671 
2672   // The remaining optimizations require the format string to be "%s" or "%c"
2673   // and have an extra operand.
2674   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2675       CI->getNumArgOperands() < 3)
2676     return nullptr;
2677 
2678   // Decode the second character of the format string.
2679   if (FormatStr[1] == 'c') {
2680     // fprintf(F, "%c", chr) --> fputc(chr, F)
2681     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2682       return nullptr;
2683     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2684   }
2685 
2686   if (FormatStr[1] == 's') {
2687     // fprintf(F, "%s", str) --> fputs(str, F)
2688     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2689       return nullptr;
2690     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2691   }
2692   return nullptr;
2693 }
2694 
2695 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
2696   Function *Callee = CI->getCalledFunction();
2697   FunctionType *FT = Callee->getFunctionType();
2698   if (Value *V = optimizeFPrintFString(CI, B)) {
2699     return V;
2700   }
2701 
2702   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2703   // floating point arguments.
2704   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
2705     Module *M = B.GetInsertBlock()->getParent()->getParent();
2706     FunctionCallee FIPrintFFn =
2707         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2708     CallInst *New = cast<CallInst>(CI->clone());
2709     New->setCalledFunction(FIPrintFFn);
2710     B.Insert(New);
2711     return New;
2712   }
2713 
2714   // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
2715   // 128-bit floating point arguments.
2716   if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) {
2717     Module *M = B.GetInsertBlock()->getParent()->getParent();
2718     auto SmallFPrintFFn =
2719         M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf),
2720                                FT, Callee->getAttributes());
2721     CallInst *New = cast<CallInst>(CI->clone());
2722     New->setCalledFunction(SmallFPrintFFn);
2723     B.Insert(New);
2724     return New;
2725   }
2726 
2727   return nullptr;
2728 }
2729 
2730 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
2731   optimizeErrorReporting(CI, B, 3);
2732 
2733   // Get the element size and count.
2734   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2735   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2736   if (SizeC && CountC) {
2737     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2738 
2739     // If this is writing zero records, remove the call (it's a noop).
2740     if (Bytes == 0)
2741       return ConstantInt::get(CI->getType(), 0);
2742 
2743     // If this is writing one byte, turn it into fputc.
2744     // This optimisation is only valid, if the return value is unused.
2745     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2746       Value *Char = B.CreateLoad(B.getInt8Ty(),
2747                                  castToCStr(CI->getArgOperand(0), B), "char");
2748       Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2749       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2750     }
2751   }
2752 
2753   if (isLocallyOpenedFile(CI->getArgOperand(3), CI, TLI))
2754     return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2755                               CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2756                               TLI);
2757 
2758   return nullptr;
2759 }
2760 
2761 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
2762   optimizeErrorReporting(CI, B, 1);
2763 
2764   // Don't rewrite fputs to fwrite when optimising for size because fwrite
2765   // requires more arguments and thus extra MOVs are required.
2766   bool OptForSize = CI->getFunction()->hasOptSize() ||
2767                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2768                                                 PGSOQueryType::IRPass);
2769   if (OptForSize)
2770     return nullptr;
2771 
2772   // Check if has any use
2773   if (!CI->use_empty()) {
2774     if (isLocallyOpenedFile(CI->getArgOperand(1), CI, TLI))
2775       return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2776                                TLI);
2777     else
2778       // We can't optimize if return value is used.
2779       return nullptr;
2780   }
2781 
2782   // fputs(s,F) --> fwrite(s,strlen(s),1,F)
2783   uint64_t Len = GetStringLength(CI->getArgOperand(0));
2784   if (!Len)
2785     return nullptr;
2786 
2787   // Known to have no uses (see above).
2788   return emitFWrite(
2789       CI->getArgOperand(0),
2790       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2791       CI->getArgOperand(1), B, DL, TLI);
2792 }
2793 
2794 Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) {
2795   optimizeErrorReporting(CI, B, 1);
2796 
2797   if (isLocallyOpenedFile(CI->getArgOperand(1), CI, TLI))
2798     return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2799                              TLI);
2800 
2801   return nullptr;
2802 }
2803 
2804 Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) {
2805   if (isLocallyOpenedFile(CI->getArgOperand(0), CI, TLI))
2806     return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI);
2807 
2808   return nullptr;
2809 }
2810 
2811 Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) {
2812   if (isLocallyOpenedFile(CI->getArgOperand(2), CI, TLI))
2813     return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2814                              CI->getArgOperand(2), B, TLI);
2815 
2816   return nullptr;
2817 }
2818 
2819 Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) {
2820   if (isLocallyOpenedFile(CI->getArgOperand(3), CI, TLI))
2821     return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2822                              CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2823                              TLI);
2824 
2825   return nullptr;
2826 }
2827 
2828 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
2829   annotateNonNullBasedOnAccess(CI, 0);
2830   if (!CI->use_empty())
2831     return nullptr;
2832 
2833   // Check for a constant string.
2834   // puts("") -> putchar('\n')
2835   StringRef Str;
2836   if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
2837     return emitPutChar(B.getInt32('\n'), B, TLI);
2838 
2839   return nullptr;
2840 }
2841 
2842 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilder<> &B) {
2843   // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
2844   return B.CreateMemMove(CI->getArgOperand(1), Align(1), CI->getArgOperand(0),
2845                          Align(1), CI->getArgOperand(2));
2846 }
2847 
2848 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2849   LibFunc Func;
2850   SmallString<20> FloatFuncName = FuncName;
2851   FloatFuncName += 'f';
2852   if (TLI->getLibFunc(FloatFuncName, Func))
2853     return TLI->has(Func);
2854   return false;
2855 }
2856 
2857 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2858                                                       IRBuilder<> &Builder) {
2859   LibFunc Func;
2860   Function *Callee = CI->getCalledFunction();
2861   // Check for string/memory library functions.
2862   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2863     // Make sure we never change the calling convention.
2864     assert((ignoreCallingConv(Func) ||
2865             isCallingConvCCompatible(CI)) &&
2866       "Optimizing string/memory libcall would change the calling convention");
2867     switch (Func) {
2868     case LibFunc_strcat:
2869       return optimizeStrCat(CI, Builder);
2870     case LibFunc_strncat:
2871       return optimizeStrNCat(CI, Builder);
2872     case LibFunc_strchr:
2873       return optimizeStrChr(CI, Builder);
2874     case LibFunc_strrchr:
2875       return optimizeStrRChr(CI, Builder);
2876     case LibFunc_strcmp:
2877       return optimizeStrCmp(CI, Builder);
2878     case LibFunc_strncmp:
2879       return optimizeStrNCmp(CI, Builder);
2880     case LibFunc_strcpy:
2881       return optimizeStrCpy(CI, Builder);
2882     case LibFunc_stpcpy:
2883       return optimizeStpCpy(CI, Builder);
2884     case LibFunc_strncpy:
2885       return optimizeStrNCpy(CI, Builder);
2886     case LibFunc_strlen:
2887       return optimizeStrLen(CI, Builder);
2888     case LibFunc_strpbrk:
2889       return optimizeStrPBrk(CI, Builder);
2890     case LibFunc_strndup:
2891       return optimizeStrNDup(CI, Builder);
2892     case LibFunc_strtol:
2893     case LibFunc_strtod:
2894     case LibFunc_strtof:
2895     case LibFunc_strtoul:
2896     case LibFunc_strtoll:
2897     case LibFunc_strtold:
2898     case LibFunc_strtoull:
2899       return optimizeStrTo(CI, Builder);
2900     case LibFunc_strspn:
2901       return optimizeStrSpn(CI, Builder);
2902     case LibFunc_strcspn:
2903       return optimizeStrCSpn(CI, Builder);
2904     case LibFunc_strstr:
2905       return optimizeStrStr(CI, Builder);
2906     case LibFunc_memchr:
2907       return optimizeMemChr(CI, Builder);
2908     case LibFunc_memrchr:
2909       return optimizeMemRChr(CI, Builder);
2910     case LibFunc_bcmp:
2911       return optimizeBCmp(CI, Builder);
2912     case LibFunc_memcmp:
2913       return optimizeMemCmp(CI, Builder);
2914     case LibFunc_memcpy:
2915       return optimizeMemCpy(CI, Builder);
2916     case LibFunc_memccpy:
2917       return optimizeMemCCpy(CI, Builder);
2918     case LibFunc_mempcpy:
2919       return optimizeMemPCpy(CI, Builder);
2920     case LibFunc_memmove:
2921       return optimizeMemMove(CI, Builder);
2922     case LibFunc_memset:
2923       return optimizeMemSet(CI, Builder);
2924     case LibFunc_realloc:
2925       return optimizeRealloc(CI, Builder);
2926     case LibFunc_wcslen:
2927       return optimizeWcslen(CI, Builder);
2928     case LibFunc_bcopy:
2929       return optimizeBCopy(CI, Builder);
2930     default:
2931       break;
2932     }
2933   }
2934   return nullptr;
2935 }
2936 
2937 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2938                                                        LibFunc Func,
2939                                                        IRBuilder<> &Builder) {
2940   // Don't optimize calls that require strict floating point semantics.
2941   if (CI->isStrictFP())
2942     return nullptr;
2943 
2944   if (Value *V = optimizeTrigReflections(CI, Func, Builder))
2945     return V;
2946 
2947   switch (Func) {
2948   case LibFunc_sinpif:
2949   case LibFunc_sinpi:
2950   case LibFunc_cospif:
2951   case LibFunc_cospi:
2952     return optimizeSinCosPi(CI, Builder);
2953   case LibFunc_powf:
2954   case LibFunc_pow:
2955   case LibFunc_powl:
2956     return optimizePow(CI, Builder);
2957   case LibFunc_exp2l:
2958   case LibFunc_exp2:
2959   case LibFunc_exp2f:
2960     return optimizeExp2(CI, Builder);
2961   case LibFunc_fabsf:
2962   case LibFunc_fabs:
2963   case LibFunc_fabsl:
2964     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2965   case LibFunc_sqrtf:
2966   case LibFunc_sqrt:
2967   case LibFunc_sqrtl:
2968     return optimizeSqrt(CI, Builder);
2969   case LibFunc_logf:
2970   case LibFunc_log:
2971   case LibFunc_logl:
2972   case LibFunc_log10f:
2973   case LibFunc_log10:
2974   case LibFunc_log10l:
2975   case LibFunc_log1pf:
2976   case LibFunc_log1p:
2977   case LibFunc_log1pl:
2978   case LibFunc_log2f:
2979   case LibFunc_log2:
2980   case LibFunc_log2l:
2981   case LibFunc_logbf:
2982   case LibFunc_logb:
2983   case LibFunc_logbl:
2984     return optimizeLog(CI, Builder);
2985   case LibFunc_tan:
2986   case LibFunc_tanf:
2987   case LibFunc_tanl:
2988     return optimizeTan(CI, Builder);
2989   case LibFunc_ceil:
2990     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2991   case LibFunc_floor:
2992     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2993   case LibFunc_round:
2994     return replaceUnaryCall(CI, Builder, Intrinsic::round);
2995   case LibFunc_nearbyint:
2996     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2997   case LibFunc_rint:
2998     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2999   case LibFunc_trunc:
3000     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
3001   case LibFunc_acos:
3002   case LibFunc_acosh:
3003   case LibFunc_asin:
3004   case LibFunc_asinh:
3005   case LibFunc_atan:
3006   case LibFunc_atanh:
3007   case LibFunc_cbrt:
3008   case LibFunc_cosh:
3009   case LibFunc_exp:
3010   case LibFunc_exp10:
3011   case LibFunc_expm1:
3012   case LibFunc_cos:
3013   case LibFunc_sin:
3014   case LibFunc_sinh:
3015   case LibFunc_tanh:
3016     if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
3017       return optimizeUnaryDoubleFP(CI, Builder, true);
3018     return nullptr;
3019   case LibFunc_copysign:
3020     if (hasFloatVersion(CI->getCalledFunction()->getName()))
3021       return optimizeBinaryDoubleFP(CI, Builder);
3022     return nullptr;
3023   case LibFunc_fminf:
3024   case LibFunc_fmin:
3025   case LibFunc_fminl:
3026   case LibFunc_fmaxf:
3027   case LibFunc_fmax:
3028   case LibFunc_fmaxl:
3029     return optimizeFMinFMax(CI, Builder);
3030   case LibFunc_cabs:
3031   case LibFunc_cabsf:
3032   case LibFunc_cabsl:
3033     return optimizeCAbs(CI, Builder);
3034   default:
3035     return nullptr;
3036   }
3037 }
3038 
3039 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
3040   // TODO: Split out the code below that operates on FP calls so that
3041   //       we can all non-FP calls with the StrictFP attribute to be
3042   //       optimized.
3043   if (CI->isNoBuiltin())
3044     return nullptr;
3045 
3046   LibFunc Func;
3047   Function *Callee = CI->getCalledFunction();
3048 
3049   SmallVector<OperandBundleDef, 2> OpBundles;
3050   CI->getOperandBundlesAsDefs(OpBundles);
3051   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
3052   bool isCallingConvC = isCallingConvCCompatible(CI);
3053 
3054   // Command-line parameter overrides instruction attribute.
3055   // This can't be moved to optimizeFloatingPointLibCall() because it may be
3056   // used by the intrinsic optimizations.
3057   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
3058     UnsafeFPShrink = EnableUnsafeFPShrink;
3059   else if (isa<FPMathOperator>(CI) && CI->isFast())
3060     UnsafeFPShrink = true;
3061 
3062   // First, check for intrinsics.
3063   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
3064     if (!isCallingConvC)
3065       return nullptr;
3066     // The FP intrinsics have corresponding constrained versions so we don't
3067     // need to check for the StrictFP attribute here.
3068     switch (II->getIntrinsicID()) {
3069     case Intrinsic::pow:
3070       return optimizePow(CI, Builder);
3071     case Intrinsic::exp2:
3072       return optimizeExp2(CI, Builder);
3073     case Intrinsic::log:
3074     case Intrinsic::log2:
3075     case Intrinsic::log10:
3076       return optimizeLog(CI, Builder);
3077     case Intrinsic::sqrt:
3078       return optimizeSqrt(CI, Builder);
3079     // TODO: Use foldMallocMemset() with memset intrinsic.
3080     case Intrinsic::memset:
3081       return optimizeMemSet(CI, Builder);
3082     case Intrinsic::memcpy:
3083       return optimizeMemCpy(CI, Builder);
3084     case Intrinsic::memmove:
3085       return optimizeMemMove(CI, Builder);
3086     default:
3087       return nullptr;
3088     }
3089   }
3090 
3091   // Also try to simplify calls to fortified library functions.
3092   if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
3093     // Try to further simplify the result.
3094     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
3095     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
3096       // Ensure that SimplifiedCI's uses are complete, since some calls have
3097       // their uses analyzed.
3098       replaceAllUsesWith(CI, SimplifiedCI);
3099 
3100       // Use an IR Builder from SimplifiedCI if available instead of CI
3101       // to guarantee we reach all uses we might replace later on.
3102       IRBuilder<> TmpBuilder(SimplifiedCI);
3103       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
3104         // If we were able to further simplify, remove the now redundant call.
3105         substituteInParent(SimplifiedCI, V);
3106         return V;
3107       }
3108     }
3109     return SimplifiedFortifiedCI;
3110   }
3111 
3112   // Then check for known library functions.
3113   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
3114     // We never change the calling convention.
3115     if (!ignoreCallingConv(Func) && !isCallingConvC)
3116       return nullptr;
3117     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3118       return V;
3119     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3120       return V;
3121     switch (Func) {
3122     case LibFunc_ffs:
3123     case LibFunc_ffsl:
3124     case LibFunc_ffsll:
3125       return optimizeFFS(CI, Builder);
3126     case LibFunc_fls:
3127     case LibFunc_flsl:
3128     case LibFunc_flsll:
3129       return optimizeFls(CI, Builder);
3130     case LibFunc_abs:
3131     case LibFunc_labs:
3132     case LibFunc_llabs:
3133       return optimizeAbs(CI, Builder);
3134     case LibFunc_isdigit:
3135       return optimizeIsDigit(CI, Builder);
3136     case LibFunc_isascii:
3137       return optimizeIsAscii(CI, Builder);
3138     case LibFunc_toascii:
3139       return optimizeToAscii(CI, Builder);
3140     case LibFunc_atoi:
3141     case LibFunc_atol:
3142     case LibFunc_atoll:
3143       return optimizeAtoi(CI, Builder);
3144     case LibFunc_strtol:
3145     case LibFunc_strtoll:
3146       return optimizeStrtol(CI, Builder);
3147     case LibFunc_printf:
3148       return optimizePrintF(CI, Builder);
3149     case LibFunc_sprintf:
3150       return optimizeSPrintF(CI, Builder);
3151     case LibFunc_snprintf:
3152       return optimizeSnPrintF(CI, Builder);
3153     case LibFunc_fprintf:
3154       return optimizeFPrintF(CI, Builder);
3155     case LibFunc_fwrite:
3156       return optimizeFWrite(CI, Builder);
3157     case LibFunc_fread:
3158       return optimizeFRead(CI, Builder);
3159     case LibFunc_fputs:
3160       return optimizeFPuts(CI, Builder);
3161     case LibFunc_fgets:
3162       return optimizeFGets(CI, Builder);
3163     case LibFunc_fputc:
3164       return optimizeFPutc(CI, Builder);
3165     case LibFunc_fgetc:
3166       return optimizeFGetc(CI, Builder);
3167     case LibFunc_puts:
3168       return optimizePuts(CI, Builder);
3169     case LibFunc_perror:
3170       return optimizeErrorReporting(CI, Builder);
3171     case LibFunc_vfprintf:
3172     case LibFunc_fiprintf:
3173       return optimizeErrorReporting(CI, Builder, 0);
3174     default:
3175       return nullptr;
3176     }
3177   }
3178   return nullptr;
3179 }
3180 
3181 LibCallSimplifier::LibCallSimplifier(
3182     const DataLayout &DL, const TargetLibraryInfo *TLI,
3183     OptimizationRemarkEmitter &ORE,
3184     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
3185     function_ref<void(Instruction *, Value *)> Replacer,
3186     function_ref<void(Instruction *)> Eraser)
3187     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
3188       UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {}
3189 
3190 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3191   // Indirect through the replacer used in this instance.
3192   Replacer(I, With);
3193 }
3194 
3195 void LibCallSimplifier::eraseFromParent(Instruction *I) {
3196   Eraser(I);
3197 }
3198 
3199 // TODO:
3200 //   Additional cases that we need to add to this file:
3201 //
3202 // cbrt:
3203 //   * cbrt(expN(X))  -> expN(x/3)
3204 //   * cbrt(sqrt(x))  -> pow(x,1/6)
3205 //   * cbrt(cbrt(x))  -> pow(x,1/9)
3206 //
3207 // exp, expf, expl:
3208 //   * exp(log(x))  -> x
3209 //
3210 // log, logf, logl:
3211 //   * log(exp(x))   -> x
3212 //   * log(exp(y))   -> y*log(e)
3213 //   * log(exp10(y)) -> y*log(10)
3214 //   * log(sqrt(x))  -> 0.5*log(x)
3215 //
3216 // pow, powf, powl:
3217 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
3218 //   * pow(pow(x,y),z)-> pow(x,y*z)
3219 //
3220 // signbit:
3221 //   * signbit(cnst) -> cnst'
3222 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3223 //
3224 // sqrt, sqrtf, sqrtl:
3225 //   * sqrt(expN(x))  -> expN(x*0.5)
3226 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3227 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3228 //
3229 
3230 //===----------------------------------------------------------------------===//
3231 // Fortified Library Call Optimizations
3232 //===----------------------------------------------------------------------===//
3233 
3234 bool
3235 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
3236                                                     unsigned ObjSizeOp,
3237                                                     Optional<unsigned> SizeOp,
3238                                                     Optional<unsigned> StrOp,
3239                                                     Optional<unsigned> FlagOp) {
3240   // If this function takes a flag argument, the implementation may use it to
3241   // perform extra checks. Don't fold into the non-checking variant.
3242   if (FlagOp) {
3243     ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
3244     if (!Flag || !Flag->isZero())
3245       return false;
3246   }
3247 
3248   if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
3249     return true;
3250 
3251   if (ConstantInt *ObjSizeCI =
3252           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
3253     if (ObjSizeCI->isMinusOne())
3254       return true;
3255     // If the object size wasn't -1 (unknown), bail out if we were asked to.
3256     if (OnlyLowerUnknownSize)
3257       return false;
3258     if (StrOp) {
3259       uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
3260       // If the length is 0 we don't know how long it is and so we can't
3261       // remove the check.
3262       if (Len)
3263         annotateDereferenceableBytes(CI, *StrOp, Len);
3264       else
3265         return false;
3266       return ObjSizeCI->getZExtValue() >= Len;
3267     }
3268 
3269     if (SizeOp) {
3270       if (ConstantInt *SizeCI =
3271               dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
3272         return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
3273     }
3274   }
3275   return false;
3276 }
3277 
3278 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
3279                                                      IRBuilder<> &B) {
3280   if (isFortifiedCallFoldable(CI, 3, 2)) {
3281     CallInst *NewCI =
3282         B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3283                        Align(1), CI->getArgOperand(2));
3284     NewCI->setAttributes(CI->getAttributes());
3285     return CI->getArgOperand(0);
3286   }
3287   return nullptr;
3288 }
3289 
3290 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
3291                                                       IRBuilder<> &B) {
3292   if (isFortifiedCallFoldable(CI, 3, 2)) {
3293     CallInst *NewCI =
3294         B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3295                         Align(1), CI->getArgOperand(2));
3296     NewCI->setAttributes(CI->getAttributes());
3297     return CI->getArgOperand(0);
3298   }
3299   return nullptr;
3300 }
3301 
3302 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
3303                                                      IRBuilder<> &B) {
3304   // TODO: Try foldMallocMemset() here.
3305 
3306   if (isFortifiedCallFoldable(CI, 3, 2)) {
3307     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
3308     CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
3309                                      CI->getArgOperand(2), Align(1));
3310     NewCI->setAttributes(CI->getAttributes());
3311     return CI->getArgOperand(0);
3312   }
3313   return nullptr;
3314 }
3315 
3316 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
3317                                                       IRBuilder<> &B,
3318                                                       LibFunc Func) {
3319   const DataLayout &DL = CI->getModule()->getDataLayout();
3320   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
3321         *ObjSize = CI->getArgOperand(2);
3322 
3323   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
3324   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
3325     Value *StrLen = emitStrLen(Src, B, DL, TLI);
3326     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
3327   }
3328 
3329   // If a) we don't have any length information, or b) we know this will
3330   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3331   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3332   // TODO: It might be nice to get a maximum length out of the possible
3333   // string lengths for varying.
3334   if (isFortifiedCallFoldable(CI, 2, None, 1)) {
3335     if (Func == LibFunc_strcpy_chk)
3336       return emitStrCpy(Dst, Src, B, TLI);
3337     else
3338       return emitStpCpy(Dst, Src, B, TLI);
3339   }
3340 
3341   if (OnlyLowerUnknownSize)
3342     return nullptr;
3343 
3344   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3345   uint64_t Len = GetStringLength(Src);
3346   if (Len)
3347     annotateDereferenceableBytes(CI, 1, Len);
3348   else
3349     return nullptr;
3350 
3351   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
3352   Value *LenV = ConstantInt::get(SizeTTy, Len);
3353   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
3354   // If the function was an __stpcpy_chk, and we were able to fold it into
3355   // a __memcpy_chk, we still need to return the correct end pointer.
3356   if (Ret && Func == LibFunc_stpcpy_chk)
3357     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
3358   return Ret;
3359 }
3360 
3361 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
3362                                                      IRBuilder<> &B) {
3363   if (isFortifiedCallFoldable(CI, 1, None, 0))
3364     return emitStrLen(CI->getArgOperand(0), B, CI->getModule()->getDataLayout(),
3365                       TLI);
3366   return nullptr;
3367 }
3368 
3369 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
3370                                                        IRBuilder<> &B,
3371                                                        LibFunc Func) {
3372   if (isFortifiedCallFoldable(CI, 3, 2)) {
3373     if (Func == LibFunc_strncpy_chk)
3374       return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3375                                CI->getArgOperand(2), B, TLI);
3376     else
3377       return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3378                          CI->getArgOperand(2), B, TLI);
3379   }
3380 
3381   return nullptr;
3382 }
3383 
3384 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
3385                                                       IRBuilder<> &B) {
3386   if (isFortifiedCallFoldable(CI, 4, 3))
3387     return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3388                        CI->getArgOperand(2), CI->getArgOperand(3), B, TLI);
3389 
3390   return nullptr;
3391 }
3392 
3393 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
3394                                                        IRBuilder<> &B) {
3395   if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
3396     SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 5, CI->arg_end());
3397     return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3398                         CI->getArgOperand(4), VariadicArgs, B, TLI);
3399   }
3400 
3401   return nullptr;
3402 }
3403 
3404 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
3405                                                       IRBuilder<> &B) {
3406   if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
3407     SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 4, CI->arg_end());
3408     return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs,
3409                        B, TLI);
3410   }
3411 
3412   return nullptr;
3413 }
3414 
3415 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
3416                                                      IRBuilder<> &B) {
3417   if (isFortifiedCallFoldable(CI, 2))
3418     return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI);
3419 
3420   return nullptr;
3421 }
3422 
3423 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
3424                                                    IRBuilder<> &B) {
3425   if (isFortifiedCallFoldable(CI, 3))
3426     return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
3427                        CI->getArgOperand(2), B, TLI);
3428 
3429   return nullptr;
3430 }
3431 
3432 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
3433                                                       IRBuilder<> &B) {
3434   if (isFortifiedCallFoldable(CI, 3))
3435     return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
3436                        CI->getArgOperand(2), B, TLI);
3437 
3438   return nullptr;
3439 }
3440 
3441 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
3442                                                       IRBuilder<> &B) {
3443   if (isFortifiedCallFoldable(CI, 3))
3444     return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3445                        CI->getArgOperand(2), B, TLI);
3446 
3447   return nullptr;
3448 }
3449 
3450 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
3451                                                         IRBuilder<> &B) {
3452   if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
3453     return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3454                          CI->getArgOperand(4), CI->getArgOperand(5), B, TLI);
3455 
3456   return nullptr;
3457 }
3458 
3459 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
3460                                                        IRBuilder<> &B) {
3461   if (isFortifiedCallFoldable(CI, 2, None, None, 1))
3462     return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3463                         CI->getArgOperand(4), B, TLI);
3464 
3465   return nullptr;
3466 }
3467 
3468 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
3469   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
3470   // Some clang users checked for _chk libcall availability using:
3471   //   __has_builtin(__builtin___memcpy_chk)
3472   // When compiling with -fno-builtin, this is always true.
3473   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
3474   // end up with fortified libcalls, which isn't acceptable in a freestanding
3475   // environment which only provides their non-fortified counterparts.
3476   //
3477   // Until we change clang and/or teach external users to check for availability
3478   // differently, disregard the "nobuiltin" attribute and TLI::has.
3479   //
3480   // PR23093.
3481 
3482   LibFunc Func;
3483   Function *Callee = CI->getCalledFunction();
3484 
3485   SmallVector<OperandBundleDef, 2> OpBundles;
3486   CI->getOperandBundlesAsDefs(OpBundles);
3487   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
3488   bool isCallingConvC = isCallingConvCCompatible(CI);
3489 
3490   // First, check that this is a known library functions and that the prototype
3491   // is correct.
3492   if (!TLI->getLibFunc(*Callee, Func))
3493     return nullptr;
3494 
3495   // We never change the calling convention.
3496   if (!ignoreCallingConv(Func) && !isCallingConvC)
3497     return nullptr;
3498 
3499   switch (Func) {
3500   case LibFunc_memcpy_chk:
3501     return optimizeMemCpyChk(CI, Builder);
3502   case LibFunc_memmove_chk:
3503     return optimizeMemMoveChk(CI, Builder);
3504   case LibFunc_memset_chk:
3505     return optimizeMemSetChk(CI, Builder);
3506   case LibFunc_stpcpy_chk:
3507   case LibFunc_strcpy_chk:
3508     return optimizeStrpCpyChk(CI, Builder, Func);
3509   case LibFunc_strlen_chk:
3510     return optimizeStrLenChk(CI, Builder);
3511   case LibFunc_stpncpy_chk:
3512   case LibFunc_strncpy_chk:
3513     return optimizeStrpNCpyChk(CI, Builder, Func);
3514   case LibFunc_memccpy_chk:
3515     return optimizeMemCCpyChk(CI, Builder);
3516   case LibFunc_snprintf_chk:
3517     return optimizeSNPrintfChk(CI, Builder);
3518   case LibFunc_sprintf_chk:
3519     return optimizeSPrintfChk(CI, Builder);
3520   case LibFunc_strcat_chk:
3521     return optimizeStrCatChk(CI, Builder);
3522   case LibFunc_strlcat_chk:
3523     return optimizeStrLCat(CI, Builder);
3524   case LibFunc_strncat_chk:
3525     return optimizeStrNCatChk(CI, Builder);
3526   case LibFunc_strlcpy_chk:
3527     return optimizeStrLCpyChk(CI, Builder);
3528   case LibFunc_vsnprintf_chk:
3529     return optimizeVSNPrintfChk(CI, Builder);
3530   case LibFunc_vsprintf_chk:
3531     return optimizeVSPrintfChk(CI, Builder);
3532   default:
3533     break;
3534   }
3535   return nullptr;
3536 }
3537 
3538 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
3539     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
3540     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
3541