1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is a utility pass used for testing the InstructionSimplify analysis. 11 // The analysis is applied to every instruction, and if it simplifies then the 12 // instruction is replaced by the simplification. If you are looking for a pass 13 // that performs serious instruction folding, use the instcombine pass instead. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DiagnosticInfo.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/PatternMatch.h" 31 #include "llvm/Support/Allocator.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/Transforms/Utils/BuildLibCalls.h" 35 #include "llvm/Transforms/Utils/Local.h" 36 37 using namespace llvm; 38 using namespace PatternMatch; 39 40 static cl::opt<bool> 41 ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden, 42 cl::desc("Treat error-reporting calls as cold")); 43 44 static cl::opt<bool> 45 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 46 cl::init(false), 47 cl::desc("Enable unsafe double to float " 48 "shrinking for math lib calls")); 49 50 51 //===----------------------------------------------------------------------===// 52 // Helper Functions 53 //===----------------------------------------------------------------------===// 54 55 static bool ignoreCallingConv(LibFunc::Func Func) { 56 switch (Func) { 57 case LibFunc::abs: 58 case LibFunc::labs: 59 case LibFunc::llabs: 60 case LibFunc::strlen: 61 return true; 62 default: 63 return false; 64 } 65 llvm_unreachable("All cases should be covered in the switch."); 66 } 67 68 /// isOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 69 /// value is equal or not-equal to zero. 70 static bool isOnlyUsedInZeroEqualityComparison(Value *V) { 71 for (User *U : V->users()) { 72 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 73 if (IC->isEquality()) 74 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 75 if (C->isNullValue()) 76 continue; 77 // Unknown instruction. 78 return false; 79 } 80 return true; 81 } 82 83 /// isOnlyUsedInEqualityComparison - Return true if it is only used in equality 84 /// comparisons with With. 85 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 86 for (User *U : V->users()) { 87 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 88 if (IC->isEquality() && IC->getOperand(1) == With) 89 continue; 90 // Unknown instruction. 91 return false; 92 } 93 return true; 94 } 95 96 static bool callHasFloatingPointArgument(const CallInst *CI) { 97 for (CallInst::const_op_iterator it = CI->op_begin(), e = CI->op_end(); 98 it != e; ++it) { 99 if ((*it)->getType()->isFloatingPointTy()) 100 return true; 101 } 102 return false; 103 } 104 105 /// \brief Check whether the overloaded unary floating point function 106 /// corresponding to \a Ty is available. 107 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty, 108 LibFunc::Func DoubleFn, LibFunc::Func FloatFn, 109 LibFunc::Func LongDoubleFn) { 110 switch (Ty->getTypeID()) { 111 case Type::FloatTyID: 112 return TLI->has(FloatFn); 113 case Type::DoubleTyID: 114 return TLI->has(DoubleFn); 115 default: 116 return TLI->has(LongDoubleFn); 117 } 118 } 119 120 /// \brief Check whether we can use unsafe floating point math for 121 /// the function passed as input. 122 static bool canUseUnsafeFPMath(Function *F) { 123 124 // FIXME: For finer-grain optimization, we need intrinsics to have the same 125 // fast-math flag decorations that are applied to FP instructions. For now, 126 // we have to rely on the function-level unsafe-fp-math attribute to do this 127 // optimization because there's no other way to express that the sqrt can be 128 // reassociated. 129 if (F->hasFnAttribute("unsafe-fp-math")) { 130 Attribute Attr = F->getFnAttribute("unsafe-fp-math"); 131 if (Attr.getValueAsString() == "true") 132 return true; 133 } 134 return false; 135 } 136 137 /// \brief Returns whether \p F matches the signature expected for the 138 /// string/memory copying library function \p Func. 139 /// Acceptable functions are st[rp][n]?cpy, memove, memcpy, and memset. 140 /// Their fortified (_chk) counterparts are also accepted. 141 static bool checkStringCopyLibFuncSignature(Function *F, LibFunc::Func Func) { 142 const DataLayout &DL = F->getParent()->getDataLayout(); 143 FunctionType *FT = F->getFunctionType(); 144 LLVMContext &Context = F->getContext(); 145 Type *PCharTy = Type::getInt8PtrTy(Context); 146 Type *SizeTTy = DL.getIntPtrType(Context); 147 unsigned NumParams = FT->getNumParams(); 148 149 // All string libfuncs return the same type as the first parameter. 150 if (FT->getReturnType() != FT->getParamType(0)) 151 return false; 152 153 switch (Func) { 154 default: 155 llvm_unreachable("Can't check signature for non-string-copy libfunc."); 156 case LibFunc::stpncpy_chk: 157 case LibFunc::strncpy_chk: 158 --NumParams; // fallthrough 159 case LibFunc::stpncpy: 160 case LibFunc::strncpy: { 161 if (NumParams != 3 || FT->getParamType(0) != FT->getParamType(1) || 162 FT->getParamType(0) != PCharTy || !FT->getParamType(2)->isIntegerTy()) 163 return false; 164 break; 165 } 166 case LibFunc::strcpy_chk: 167 case LibFunc::stpcpy_chk: 168 --NumParams; // fallthrough 169 case LibFunc::stpcpy: 170 case LibFunc::strcpy: { 171 if (NumParams != 2 || FT->getParamType(0) != FT->getParamType(1) || 172 FT->getParamType(0) != PCharTy) 173 return false; 174 break; 175 } 176 case LibFunc::memmove_chk: 177 case LibFunc::memcpy_chk: 178 --NumParams; // fallthrough 179 case LibFunc::memmove: 180 case LibFunc::memcpy: { 181 if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() || 182 !FT->getParamType(1)->isPointerTy() || FT->getParamType(2) != SizeTTy) 183 return false; 184 break; 185 } 186 case LibFunc::memset_chk: 187 --NumParams; // fallthrough 188 case LibFunc::memset: { 189 if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() || 190 !FT->getParamType(1)->isIntegerTy() || FT->getParamType(2) != SizeTTy) 191 return false; 192 break; 193 } 194 } 195 // If this is a fortified libcall, the last parameter is a size_t. 196 if (NumParams == FT->getNumParams() - 1) 197 return FT->getParamType(FT->getNumParams() - 1) == SizeTTy; 198 return true; 199 } 200 201 //===----------------------------------------------------------------------===// 202 // String and Memory Library Call Optimizations 203 //===----------------------------------------------------------------------===// 204 205 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 206 Function *Callee = CI->getCalledFunction(); 207 // Verify the "strcat" function prototype. 208 FunctionType *FT = Callee->getFunctionType(); 209 if (FT->getNumParams() != 2|| 210 FT->getReturnType() != B.getInt8PtrTy() || 211 FT->getParamType(0) != FT->getReturnType() || 212 FT->getParamType(1) != FT->getReturnType()) 213 return nullptr; 214 215 // Extract some information from the instruction 216 Value *Dst = CI->getArgOperand(0); 217 Value *Src = CI->getArgOperand(1); 218 219 // See if we can get the length of the input string. 220 uint64_t Len = GetStringLength(Src); 221 if (Len == 0) 222 return nullptr; 223 --Len; // Unbias length. 224 225 // Handle the simple, do-nothing case: strcat(x, "") -> x 226 if (Len == 0) 227 return Dst; 228 229 return emitStrLenMemCpy(Src, Dst, Len, B); 230 } 231 232 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 233 IRBuilder<> &B) { 234 // We need to find the end of the destination string. That's where the 235 // memory is to be moved to. We just generate a call to strlen. 236 Value *DstLen = EmitStrLen(Dst, B, DL, TLI); 237 if (!DstLen) 238 return nullptr; 239 240 // Now that we have the destination's length, we must index into the 241 // destination's pointer to get the actual memcpy destination (end of 242 // the string .. we're concatenating). 243 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 244 245 // We have enough information to now generate the memcpy call to do the 246 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 247 B.CreateMemCpy(CpyDst, Src, 248 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1), 249 1); 250 return Dst; 251 } 252 253 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 254 Function *Callee = CI->getCalledFunction(); 255 // Verify the "strncat" function prototype. 256 FunctionType *FT = Callee->getFunctionType(); 257 if (FT->getNumParams() != 3 || FT->getReturnType() != B.getInt8PtrTy() || 258 FT->getParamType(0) != FT->getReturnType() || 259 FT->getParamType(1) != FT->getReturnType() || 260 !FT->getParamType(2)->isIntegerTy()) 261 return nullptr; 262 263 // Extract some information from the instruction 264 Value *Dst = CI->getArgOperand(0); 265 Value *Src = CI->getArgOperand(1); 266 uint64_t Len; 267 268 // We don't do anything if length is not constant 269 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 270 Len = LengthArg->getZExtValue(); 271 else 272 return nullptr; 273 274 // See if we can get the length of the input string. 275 uint64_t SrcLen = GetStringLength(Src); 276 if (SrcLen == 0) 277 return nullptr; 278 --SrcLen; // Unbias length. 279 280 // Handle the simple, do-nothing cases: 281 // strncat(x, "", c) -> x 282 // strncat(x, c, 0) -> x 283 if (SrcLen == 0 || Len == 0) 284 return Dst; 285 286 // We don't optimize this case 287 if (Len < SrcLen) 288 return nullptr; 289 290 // strncat(x, s, c) -> strcat(x, s) 291 // s is constant so the strcat can be optimized further 292 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 293 } 294 295 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 296 Function *Callee = CI->getCalledFunction(); 297 // Verify the "strchr" function prototype. 298 FunctionType *FT = Callee->getFunctionType(); 299 if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() || 300 FT->getParamType(0) != FT->getReturnType() || 301 !FT->getParamType(1)->isIntegerTy(32)) 302 return nullptr; 303 304 Value *SrcStr = CI->getArgOperand(0); 305 306 // If the second operand is non-constant, see if we can compute the length 307 // of the input string and turn this into memchr. 308 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 309 if (!CharC) { 310 uint64_t Len = GetStringLength(SrcStr); 311 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 312 return nullptr; 313 314 return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 315 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 316 B, DL, TLI); 317 } 318 319 // Otherwise, the character is a constant, see if the first argument is 320 // a string literal. If so, we can constant fold. 321 StringRef Str; 322 if (!getConstantStringInfo(SrcStr, Str)) { 323 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 324 return B.CreateGEP(B.getInt8Ty(), SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr"); 325 return nullptr; 326 } 327 328 // Compute the offset, make sure to handle the case when we're searching for 329 // zero (a weird way to spell strlen). 330 size_t I = (0xFF & CharC->getSExtValue()) == 0 331 ? Str.size() 332 : Str.find(CharC->getSExtValue()); 333 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 334 return Constant::getNullValue(CI->getType()); 335 336 // strchr(s+n,c) -> gep(s+n+i,c) 337 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 338 } 339 340 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 341 Function *Callee = CI->getCalledFunction(); 342 // Verify the "strrchr" function prototype. 343 FunctionType *FT = Callee->getFunctionType(); 344 if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() || 345 FT->getParamType(0) != FT->getReturnType() || 346 !FT->getParamType(1)->isIntegerTy(32)) 347 return nullptr; 348 349 Value *SrcStr = CI->getArgOperand(0); 350 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 351 352 // Cannot fold anything if we're not looking for a constant. 353 if (!CharC) 354 return nullptr; 355 356 StringRef Str; 357 if (!getConstantStringInfo(SrcStr, Str)) { 358 // strrchr(s, 0) -> strchr(s, 0) 359 if (CharC->isZero()) 360 return EmitStrChr(SrcStr, '\0', B, TLI); 361 return nullptr; 362 } 363 364 // Compute the offset. 365 size_t I = (0xFF & CharC->getSExtValue()) == 0 366 ? Str.size() 367 : Str.rfind(CharC->getSExtValue()); 368 if (I == StringRef::npos) // Didn't find the char. Return null. 369 return Constant::getNullValue(CI->getType()); 370 371 // strrchr(s+n,c) -> gep(s+n+i,c) 372 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 373 } 374 375 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 376 Function *Callee = CI->getCalledFunction(); 377 // Verify the "strcmp" function prototype. 378 FunctionType *FT = Callee->getFunctionType(); 379 if (FT->getNumParams() != 2 || !FT->getReturnType()->isIntegerTy(32) || 380 FT->getParamType(0) != FT->getParamType(1) || 381 FT->getParamType(0) != B.getInt8PtrTy()) 382 return nullptr; 383 384 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 385 if (Str1P == Str2P) // strcmp(x,x) -> 0 386 return ConstantInt::get(CI->getType(), 0); 387 388 StringRef Str1, Str2; 389 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 390 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 391 392 // strcmp(x, y) -> cnst (if both x and y are constant strings) 393 if (HasStr1 && HasStr2) 394 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 395 396 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 397 return B.CreateNeg( 398 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 399 400 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 401 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 402 403 // strcmp(P, "x") -> memcmp(P, "x", 2) 404 uint64_t Len1 = GetStringLength(Str1P); 405 uint64_t Len2 = GetStringLength(Str2P); 406 if (Len1 && Len2) { 407 return EmitMemCmp(Str1P, Str2P, 408 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 409 std::min(Len1, Len2)), 410 B, DL, TLI); 411 } 412 413 return nullptr; 414 } 415 416 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 417 Function *Callee = CI->getCalledFunction(); 418 // Verify the "strncmp" function prototype. 419 FunctionType *FT = Callee->getFunctionType(); 420 if (FT->getNumParams() != 3 || !FT->getReturnType()->isIntegerTy(32) || 421 FT->getParamType(0) != FT->getParamType(1) || 422 FT->getParamType(0) != B.getInt8PtrTy() || 423 !FT->getParamType(2)->isIntegerTy()) 424 return nullptr; 425 426 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 427 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 428 return ConstantInt::get(CI->getType(), 0); 429 430 // Get the length argument if it is constant. 431 uint64_t Length; 432 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 433 Length = LengthArg->getZExtValue(); 434 else 435 return nullptr; 436 437 if (Length == 0) // strncmp(x,y,0) -> 0 438 return ConstantInt::get(CI->getType(), 0); 439 440 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 441 return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 442 443 StringRef Str1, Str2; 444 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 445 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 446 447 // strncmp(x, y) -> cnst (if both x and y are constant strings) 448 if (HasStr1 && HasStr2) { 449 StringRef SubStr1 = Str1.substr(0, Length); 450 StringRef SubStr2 = Str2.substr(0, Length); 451 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 452 } 453 454 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 455 return B.CreateNeg( 456 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 457 458 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 459 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 460 461 return nullptr; 462 } 463 464 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 465 Function *Callee = CI->getCalledFunction(); 466 467 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strcpy)) 468 return nullptr; 469 470 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 471 if (Dst == Src) // strcpy(x,x) -> x 472 return Src; 473 474 // See if we can get the length of the input string. 475 uint64_t Len = GetStringLength(Src); 476 if (Len == 0) 477 return nullptr; 478 479 // We have enough information to now generate the memcpy call to do the 480 // copy for us. Make a memcpy to copy the nul byte with align = 1. 481 B.CreateMemCpy(Dst, Src, 482 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1); 483 return Dst; 484 } 485 486 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 487 Function *Callee = CI->getCalledFunction(); 488 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::stpcpy)) 489 return nullptr; 490 491 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 492 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 493 Value *StrLen = EmitStrLen(Src, B, DL, TLI); 494 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 495 } 496 497 // See if we can get the length of the input string. 498 uint64_t Len = GetStringLength(Src); 499 if (Len == 0) 500 return nullptr; 501 502 Type *PT = Callee->getFunctionType()->getParamType(0); 503 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 504 Value *DstEnd = 505 B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 506 507 // We have enough information to now generate the memcpy call to do the 508 // copy for us. Make a memcpy to copy the nul byte with align = 1. 509 B.CreateMemCpy(Dst, Src, LenV, 1); 510 return DstEnd; 511 } 512 513 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 514 Function *Callee = CI->getCalledFunction(); 515 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strncpy)) 516 return nullptr; 517 518 Value *Dst = CI->getArgOperand(0); 519 Value *Src = CI->getArgOperand(1); 520 Value *LenOp = CI->getArgOperand(2); 521 522 // See if we can get the length of the input string. 523 uint64_t SrcLen = GetStringLength(Src); 524 if (SrcLen == 0) 525 return nullptr; 526 --SrcLen; 527 528 if (SrcLen == 0) { 529 // strncpy(x, "", y) -> memset(x, '\0', y, 1) 530 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 531 return Dst; 532 } 533 534 uint64_t Len; 535 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 536 Len = LengthArg->getZExtValue(); 537 else 538 return nullptr; 539 540 if (Len == 0) 541 return Dst; // strncpy(x, y, 0) -> x 542 543 // Let strncpy handle the zero padding 544 if (Len > SrcLen + 1) 545 return nullptr; 546 547 Type *PT = Callee->getFunctionType()->getParamType(0); 548 // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] 549 B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1); 550 551 return Dst; 552 } 553 554 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 555 Function *Callee = CI->getCalledFunction(); 556 FunctionType *FT = Callee->getFunctionType(); 557 if (FT->getNumParams() != 1 || FT->getParamType(0) != B.getInt8PtrTy() || 558 !FT->getReturnType()->isIntegerTy()) 559 return nullptr; 560 561 Value *Src = CI->getArgOperand(0); 562 563 // Constant folding: strlen("xyz") -> 3 564 if (uint64_t Len = GetStringLength(Src)) 565 return ConstantInt::get(CI->getType(), Len - 1); 566 567 // strlen(x?"foo":"bars") --> x ? 3 : 4 568 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 569 uint64_t LenTrue = GetStringLength(SI->getTrueValue()); 570 uint64_t LenFalse = GetStringLength(SI->getFalseValue()); 571 if (LenTrue && LenFalse) { 572 Function *Caller = CI->getParent()->getParent(); 573 emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller, 574 SI->getDebugLoc(), 575 "folded strlen(select) to select of constants"); 576 return B.CreateSelect(SI->getCondition(), 577 ConstantInt::get(CI->getType(), LenTrue - 1), 578 ConstantInt::get(CI->getType(), LenFalse - 1)); 579 } 580 } 581 582 // strlen(x) != 0 --> *x != 0 583 // strlen(x) == 0 --> *x == 0 584 if (isOnlyUsedInZeroEqualityComparison(CI)) 585 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); 586 587 return nullptr; 588 } 589 590 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 591 Function *Callee = CI->getCalledFunction(); 592 FunctionType *FT = Callee->getFunctionType(); 593 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || 594 FT->getParamType(1) != FT->getParamType(0) || 595 FT->getReturnType() != FT->getParamType(0)) 596 return nullptr; 597 598 StringRef S1, S2; 599 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 600 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 601 602 // strpbrk(s, "") -> nullptr 603 // strpbrk("", s) -> nullptr 604 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 605 return Constant::getNullValue(CI->getType()); 606 607 // Constant folding. 608 if (HasS1 && HasS2) { 609 size_t I = S1.find_first_of(S2); 610 if (I == StringRef::npos) // No match. 611 return Constant::getNullValue(CI->getType()); 612 613 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), "strpbrk"); 614 } 615 616 // strpbrk(s, "a") -> strchr(s, 'a') 617 if (HasS2 && S2.size() == 1) 618 return EmitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 619 620 return nullptr; 621 } 622 623 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 624 Function *Callee = CI->getCalledFunction(); 625 FunctionType *FT = Callee->getFunctionType(); 626 if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) || 627 !FT->getParamType(0)->isPointerTy() || 628 !FT->getParamType(1)->isPointerTy()) 629 return nullptr; 630 631 Value *EndPtr = CI->getArgOperand(1); 632 if (isa<ConstantPointerNull>(EndPtr)) { 633 // With a null EndPtr, this function won't capture the main argument. 634 // It would be readonly too, except that it still may write to errno. 635 CI->addAttribute(1, Attribute::NoCapture); 636 } 637 638 return nullptr; 639 } 640 641 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 642 Function *Callee = CI->getCalledFunction(); 643 FunctionType *FT = Callee->getFunctionType(); 644 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || 645 FT->getParamType(1) != FT->getParamType(0) || 646 !FT->getReturnType()->isIntegerTy()) 647 return nullptr; 648 649 StringRef S1, S2; 650 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 651 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 652 653 // strspn(s, "") -> 0 654 // strspn("", s) -> 0 655 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 656 return Constant::getNullValue(CI->getType()); 657 658 // Constant folding. 659 if (HasS1 && HasS2) { 660 size_t Pos = S1.find_first_not_of(S2); 661 if (Pos == StringRef::npos) 662 Pos = S1.size(); 663 return ConstantInt::get(CI->getType(), Pos); 664 } 665 666 return nullptr; 667 } 668 669 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 670 Function *Callee = CI->getCalledFunction(); 671 FunctionType *FT = Callee->getFunctionType(); 672 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || 673 FT->getParamType(1) != FT->getParamType(0) || 674 !FT->getReturnType()->isIntegerTy()) 675 return nullptr; 676 677 StringRef S1, S2; 678 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 679 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 680 681 // strcspn("", s) -> 0 682 if (HasS1 && S1.empty()) 683 return Constant::getNullValue(CI->getType()); 684 685 // Constant folding. 686 if (HasS1 && HasS2) { 687 size_t Pos = S1.find_first_of(S2); 688 if (Pos == StringRef::npos) 689 Pos = S1.size(); 690 return ConstantInt::get(CI->getType(), Pos); 691 } 692 693 // strcspn(s, "") -> strlen(s) 694 if (HasS2 && S2.empty()) 695 return EmitStrLen(CI->getArgOperand(0), B, DL, TLI); 696 697 return nullptr; 698 } 699 700 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 701 Function *Callee = CI->getCalledFunction(); 702 FunctionType *FT = Callee->getFunctionType(); 703 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 704 !FT->getParamType(1)->isPointerTy() || 705 !FT->getReturnType()->isPointerTy()) 706 return nullptr; 707 708 // fold strstr(x, x) -> x. 709 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 710 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 711 712 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 713 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 714 Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI); 715 if (!StrLen) 716 return nullptr; 717 Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 718 StrLen, B, DL, TLI); 719 if (!StrNCmp) 720 return nullptr; 721 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 722 ICmpInst *Old = cast<ICmpInst>(*UI++); 723 Value *Cmp = 724 B.CreateICmp(Old->getPredicate(), StrNCmp, 725 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 726 replaceAllUsesWith(Old, Cmp); 727 } 728 return CI; 729 } 730 731 // See if either input string is a constant string. 732 StringRef SearchStr, ToFindStr; 733 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 734 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 735 736 // fold strstr(x, "") -> x. 737 if (HasStr2 && ToFindStr.empty()) 738 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 739 740 // If both strings are known, constant fold it. 741 if (HasStr1 && HasStr2) { 742 size_t Offset = SearchStr.find(ToFindStr); 743 744 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 745 return Constant::getNullValue(CI->getType()); 746 747 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 748 Value *Result = CastToCStr(CI->getArgOperand(0), B); 749 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); 750 return B.CreateBitCast(Result, CI->getType()); 751 } 752 753 // fold strstr(x, "y") -> strchr(x, 'y'). 754 if (HasStr2 && ToFindStr.size() == 1) { 755 Value *StrChr = EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 756 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 757 } 758 return nullptr; 759 } 760 761 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { 762 Function *Callee = CI->getCalledFunction(); 763 FunctionType *FT = Callee->getFunctionType(); 764 if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() || 765 !FT->getParamType(1)->isIntegerTy(32) || 766 !FT->getParamType(2)->isIntegerTy() || 767 !FT->getReturnType()->isPointerTy()) 768 return nullptr; 769 770 Value *SrcStr = CI->getArgOperand(0); 771 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 772 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 773 774 // memchr(x, y, 0) -> null 775 if (LenC && LenC->isNullValue()) 776 return Constant::getNullValue(CI->getType()); 777 778 // From now on we need at least constant length and string. 779 StringRef Str; 780 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 781 return nullptr; 782 783 // Truncate the string to LenC. If Str is smaller than LenC we will still only 784 // scan the string, as reading past the end of it is undefined and we can just 785 // return null if we don't find the char. 786 Str = Str.substr(0, LenC->getZExtValue()); 787 788 // If the char is variable but the input str and length are not we can turn 789 // this memchr call into a simple bit field test. Of course this only works 790 // when the return value is only checked against null. 791 // 792 // It would be really nice to reuse switch lowering here but we can't change 793 // the CFG at this point. 794 // 795 // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0 796 // after bounds check. 797 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 798 unsigned char Max = 799 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 800 reinterpret_cast<const unsigned char *>(Str.end())); 801 802 // Make sure the bit field we're about to create fits in a register on the 803 // target. 804 // FIXME: On a 64 bit architecture this prevents us from using the 805 // interesting range of alpha ascii chars. We could do better by emitting 806 // two bitfields or shifting the range by 64 if no lower chars are used. 807 if (!DL.fitsInLegalInteger(Max + 1)) 808 return nullptr; 809 810 // For the bit field use a power-of-2 type with at least 8 bits to avoid 811 // creating unnecessary illegal types. 812 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 813 814 // Now build the bit field. 815 APInt Bitfield(Width, 0); 816 for (char C : Str) 817 Bitfield.setBit((unsigned char)C); 818 Value *BitfieldC = B.getInt(Bitfield); 819 820 // First check that the bit field access is within bounds. 821 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 822 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 823 "memchr.bounds"); 824 825 // Create code that checks if the given bit is set in the field. 826 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 827 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 828 829 // Finally merge both checks and cast to pointer type. The inttoptr 830 // implicitly zexts the i1 to intptr type. 831 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 832 } 833 834 // Check if all arguments are constants. If so, we can constant fold. 835 if (!CharC) 836 return nullptr; 837 838 // Compute the offset. 839 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 840 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 841 return Constant::getNullValue(CI->getType()); 842 843 // memchr(s+n,c,l) -> gep(s+n+i,c) 844 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 845 } 846 847 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 848 Function *Callee = CI->getCalledFunction(); 849 FunctionType *FT = Callee->getFunctionType(); 850 if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() || 851 !FT->getParamType(1)->isPointerTy() || 852 !FT->getReturnType()->isIntegerTy(32)) 853 return nullptr; 854 855 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 856 857 if (LHS == RHS) // memcmp(s,s,x) -> 0 858 return Constant::getNullValue(CI->getType()); 859 860 // Make sure we have a constant length. 861 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 862 if (!LenC) 863 return nullptr; 864 uint64_t Len = LenC->getZExtValue(); 865 866 if (Len == 0) // memcmp(s1,s2,0) -> 0 867 return Constant::getNullValue(CI->getType()); 868 869 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 870 if (Len == 1) { 871 Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"), 872 CI->getType(), "lhsv"); 873 Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"), 874 CI->getType(), "rhsv"); 875 return B.CreateSub(LHSV, RHSV, "chardiff"); 876 } 877 878 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 879 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 880 881 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 882 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 883 884 if (getKnownAlignment(LHS, DL, CI) >= PrefAlignment && 885 getKnownAlignment(RHS, DL, CI) >= PrefAlignment) { 886 887 Type *LHSPtrTy = 888 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 889 Type *RHSPtrTy = 890 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 891 892 Value *LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy, "lhsc"), "lhsv"); 893 Value *RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy, "rhsc"), "rhsv"); 894 895 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 896 } 897 } 898 899 // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant) 900 StringRef LHSStr, RHSStr; 901 if (getConstantStringInfo(LHS, LHSStr) && 902 getConstantStringInfo(RHS, RHSStr)) { 903 // Make sure we're not reading out-of-bounds memory. 904 if (Len > LHSStr.size() || Len > RHSStr.size()) 905 return nullptr; 906 // Fold the memcmp and normalize the result. This way we get consistent 907 // results across multiple platforms. 908 uint64_t Ret = 0; 909 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 910 if (Cmp < 0) 911 Ret = -1; 912 else if (Cmp > 0) 913 Ret = 1; 914 return ConstantInt::get(CI->getType(), Ret); 915 } 916 917 return nullptr; 918 } 919 920 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { 921 Function *Callee = CI->getCalledFunction(); 922 923 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy)) 924 return nullptr; 925 926 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) 927 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 928 CI->getArgOperand(2), 1); 929 return CI->getArgOperand(0); 930 } 931 932 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { 933 Function *Callee = CI->getCalledFunction(); 934 935 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove)) 936 return nullptr; 937 938 // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) 939 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 940 CI->getArgOperand(2), 1); 941 return CI->getArgOperand(0); 942 } 943 944 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { 945 Function *Callee = CI->getCalledFunction(); 946 947 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset)) 948 return nullptr; 949 950 // memset(p, v, n) -> llvm.memset(p, v, n, 1) 951 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 952 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 953 return CI->getArgOperand(0); 954 } 955 956 //===----------------------------------------------------------------------===// 957 // Math Library Optimizations 958 //===----------------------------------------------------------------------===// 959 960 /// Return a variant of Val with float type. 961 /// Currently this works in two cases: If Val is an FPExtension of a float 962 /// value to something bigger, simply return the operand. 963 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 964 /// loss of precision do so. 965 static Value *valueHasFloatPrecision(Value *Val) { 966 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 967 Value *Op = Cast->getOperand(0); 968 if (Op->getType()->isFloatTy()) 969 return Op; 970 } 971 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 972 APFloat F = Const->getValueAPF(); 973 bool losesInfo; 974 (void)F.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 975 &losesInfo); 976 if (!losesInfo) 977 return ConstantFP::get(Const->getContext(), F); 978 } 979 return nullptr; 980 } 981 982 //===----------------------------------------------------------------------===// 983 // Double -> Float Shrinking Optimizations for Unary Functions like 'floor' 984 985 Value *LibCallSimplifier::optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 986 bool CheckRetType) { 987 Function *Callee = CI->getCalledFunction(); 988 FunctionType *FT = Callee->getFunctionType(); 989 if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() || 990 !FT->getParamType(0)->isDoubleTy()) 991 return nullptr; 992 993 if (CheckRetType) { 994 // Check if all the uses for function like 'sin' are converted to float. 995 for (User *U : CI->users()) { 996 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 997 if (!Cast || !Cast->getType()->isFloatTy()) 998 return nullptr; 999 } 1000 } 1001 1002 // If this is something like 'floor((double)floatval)', convert to floorf. 1003 Value *V = valueHasFloatPrecision(CI->getArgOperand(0)); 1004 if (V == nullptr) 1005 return nullptr; 1006 1007 // floor((double)floatval) -> (double)floorf(floatval) 1008 if (Callee->isIntrinsic()) { 1009 Module *M = CI->getParent()->getParent()->getParent(); 1010 Intrinsic::ID IID = Callee->getIntrinsicID(); 1011 Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1012 V = B.CreateCall(F, V); 1013 } else { 1014 // The call is a library call rather than an intrinsic. 1015 V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes()); 1016 } 1017 1018 return B.CreateFPExt(V, B.getDoubleTy()); 1019 } 1020 1021 // Double -> Float Shrinking Optimizations for Binary Functions like 'fmin/fmax' 1022 Value *LibCallSimplifier::optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) { 1023 Function *Callee = CI->getCalledFunction(); 1024 FunctionType *FT = Callee->getFunctionType(); 1025 // Just make sure this has 2 arguments of the same FP type, which match the 1026 // result type. 1027 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || 1028 FT->getParamType(0) != FT->getParamType(1) || 1029 !FT->getParamType(0)->isFloatingPointTy()) 1030 return nullptr; 1031 1032 // If this is something like 'fmin((double)floatval1, (double)floatval2)', 1033 // or fmin(1.0, (double)floatval), then we convert it to fminf. 1034 Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0)); 1035 if (V1 == nullptr) 1036 return nullptr; 1037 Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1)); 1038 if (V2 == nullptr) 1039 return nullptr; 1040 1041 // fmin((double)floatval1, (double)floatval2) 1042 // -> (double)fminf(floatval1, floatval2) 1043 // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP(). 1044 Value *V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B, 1045 Callee->getAttributes()); 1046 return B.CreateFPExt(V, B.getDoubleTy()); 1047 } 1048 1049 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) { 1050 Function *Callee = CI->getCalledFunction(); 1051 Value *Ret = nullptr; 1052 StringRef Name = Callee->getName(); 1053 if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name)) 1054 Ret = optimizeUnaryDoubleFP(CI, B, true); 1055 1056 FunctionType *FT = Callee->getFunctionType(); 1057 // Just make sure this has 1 argument of FP type, which matches the 1058 // result type. 1059 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1060 !FT->getParamType(0)->isFloatingPointTy()) 1061 return Ret; 1062 1063 // cos(-x) -> cos(x) 1064 Value *Op1 = CI->getArgOperand(0); 1065 if (BinaryOperator::isFNeg(Op1)) { 1066 BinaryOperator *BinExpr = cast<BinaryOperator>(Op1); 1067 return B.CreateCall(Callee, BinExpr->getOperand(1), "cos"); 1068 } 1069 return Ret; 1070 } 1071 1072 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) { 1073 Function *Callee = CI->getCalledFunction(); 1074 Value *Ret = nullptr; 1075 StringRef Name = Callee->getName(); 1076 if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name)) 1077 Ret = optimizeUnaryDoubleFP(CI, B, true); 1078 1079 FunctionType *FT = Callee->getFunctionType(); 1080 // Just make sure this has 2 arguments of the same FP type, which match the 1081 // result type. 1082 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || 1083 FT->getParamType(0) != FT->getParamType(1) || 1084 !FT->getParamType(0)->isFloatingPointTy()) 1085 return Ret; 1086 1087 Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1); 1088 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { 1089 // pow(1.0, x) -> 1.0 1090 if (Op1C->isExactlyValue(1.0)) 1091 return Op1C; 1092 // pow(2.0, x) -> exp2(x) 1093 if (Op1C->isExactlyValue(2.0) && 1094 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f, 1095 LibFunc::exp2l)) 1096 return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp2), B, 1097 Callee->getAttributes()); 1098 // pow(10.0, x) -> exp10(x) 1099 if (Op1C->isExactlyValue(10.0) && 1100 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f, 1101 LibFunc::exp10l)) 1102 return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B, 1103 Callee->getAttributes()); 1104 } 1105 1106 // pow(exp(x), y) -> exp(x*y) 1107 // pow(exp2(x), y) -> exp2(x * y) 1108 // We enable these only under fast-math. Besides rounding 1109 // differences the transformation changes overflow and 1110 // underflow behavior quite dramatically. 1111 // Example: x = 1000, y = 0.001. 1112 // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1). 1113 if (canUseUnsafeFPMath(CI->getParent()->getParent())) { 1114 if (auto *OpC = dyn_cast<CallInst>(Op1)) { 1115 IRBuilder<>::FastMathFlagGuard Guard(B); 1116 FastMathFlags FMF; 1117 FMF.setUnsafeAlgebra(); 1118 B.SetFastMathFlags(FMF); 1119 1120 LibFunc::Func Func; 1121 Function *Callee = OpC->getCalledFunction(); 1122 StringRef FuncName = Callee->getName(); 1123 1124 if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func) && 1125 (Func == LibFunc::exp || Func == LibFunc::exp2)) 1126 return EmitUnaryFloatFnCall( 1127 B.CreateFMul(OpC->getArgOperand(0), Op2, "mul"), FuncName, B, 1128 Callee->getAttributes()); 1129 } 1130 } 1131 1132 ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2); 1133 if (!Op2C) 1134 return Ret; 1135 1136 if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 1137 return ConstantFP::get(CI->getType(), 1.0); 1138 1139 if (Op2C->isExactlyValue(0.5) && 1140 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf, 1141 LibFunc::sqrtl) && 1142 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf, 1143 LibFunc::fabsl)) { 1144 // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). 1145 // This is faster than calling pow, and still handles negative zero 1146 // and negative infinity correctly. 1147 // TODO: In fast-math mode, this could be just sqrt(x). 1148 // TODO: In finite-only mode, this could be just fabs(sqrt(x)). 1149 Value *Inf = ConstantFP::getInfinity(CI->getType()); 1150 Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); 1151 Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes()); 1152 Value *FAbs = 1153 EmitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes()); 1154 Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf); 1155 Value *Sel = B.CreateSelect(FCmp, Inf, FAbs); 1156 return Sel; 1157 } 1158 1159 if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x 1160 return Op1; 1161 if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x 1162 return B.CreateFMul(Op1, Op1, "pow2"); 1163 if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x 1164 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip"); 1165 return nullptr; 1166 } 1167 1168 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1169 Function *Callee = CI->getCalledFunction(); 1170 Function *Caller = CI->getParent()->getParent(); 1171 Value *Ret = nullptr; 1172 StringRef Name = Callee->getName(); 1173 if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name)) 1174 Ret = optimizeUnaryDoubleFP(CI, B, true); 1175 1176 FunctionType *FT = Callee->getFunctionType(); 1177 // Just make sure this has 1 argument of FP type, which matches the 1178 // result type. 1179 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1180 !FT->getParamType(0)->isFloatingPointTy()) 1181 return Ret; 1182 1183 Value *Op = CI->getArgOperand(0); 1184 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1185 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1186 LibFunc::Func LdExp = LibFunc::ldexpl; 1187 if (Op->getType()->isFloatTy()) 1188 LdExp = LibFunc::ldexpf; 1189 else if (Op->getType()->isDoubleTy()) 1190 LdExp = LibFunc::ldexp; 1191 1192 if (TLI->has(LdExp)) { 1193 Value *LdExpArg = nullptr; 1194 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 1195 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 1196 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 1197 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 1198 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 1199 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 1200 } 1201 1202 if (LdExpArg) { 1203 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); 1204 if (!Op->getType()->isFloatTy()) 1205 One = ConstantExpr::getFPExtend(One, Op->getType()); 1206 1207 Module *M = Caller->getParent(); 1208 Value *Callee = 1209 M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), 1210 Op->getType(), B.getInt32Ty(), nullptr); 1211 CallInst *CI = B.CreateCall(Callee, {One, LdExpArg}); 1212 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 1213 CI->setCallingConv(F->getCallingConv()); 1214 1215 return CI; 1216 } 1217 } 1218 return Ret; 1219 } 1220 1221 Value *LibCallSimplifier::optimizeFabs(CallInst *CI, IRBuilder<> &B) { 1222 Function *Callee = CI->getCalledFunction(); 1223 Value *Ret = nullptr; 1224 StringRef Name = Callee->getName(); 1225 if (Name == "fabs" && hasFloatVersion(Name)) 1226 Ret = optimizeUnaryDoubleFP(CI, B, false); 1227 1228 FunctionType *FT = Callee->getFunctionType(); 1229 // Make sure this has 1 argument of FP type which matches the result type. 1230 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1231 !FT->getParamType(0)->isFloatingPointTy()) 1232 return Ret; 1233 1234 Value *Op = CI->getArgOperand(0); 1235 if (Instruction *I = dyn_cast<Instruction>(Op)) { 1236 // Fold fabs(x * x) -> x * x; any squared FP value must already be positive. 1237 if (I->getOpcode() == Instruction::FMul) 1238 if (I->getOperand(0) == I->getOperand(1)) 1239 return Op; 1240 } 1241 return Ret; 1242 } 1243 1244 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { 1245 // If we can shrink the call to a float function rather than a double 1246 // function, do that first. 1247 Function *Callee = CI->getCalledFunction(); 1248 StringRef Name = Callee->getName(); 1249 if ((Name == "fmin" && hasFloatVersion(Name)) || 1250 (Name == "fmax" && hasFloatVersion(Name))) { 1251 Value *Ret = optimizeBinaryDoubleFP(CI, B); 1252 if (Ret) 1253 return Ret; 1254 } 1255 1256 // Make sure this has 2 arguments of FP type which match the result type. 1257 FunctionType *FT = Callee->getFunctionType(); 1258 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || 1259 FT->getParamType(0) != FT->getParamType(1) || 1260 !FT->getParamType(0)->isFloatingPointTy()) 1261 return nullptr; 1262 1263 IRBuilder<>::FastMathFlagGuard Guard(B); 1264 FastMathFlags FMF; 1265 Function *F = CI->getParent()->getParent(); 1266 if (canUseUnsafeFPMath(F)) { 1267 // Unsafe algebra sets all fast-math-flags to true. 1268 FMF.setUnsafeAlgebra(); 1269 } else { 1270 // At a minimum, no-nans-fp-math must be true. 1271 Attribute Attr = F->getFnAttribute("no-nans-fp-math"); 1272 if (Attr.getValueAsString() != "true") 1273 return nullptr; 1274 // No-signed-zeros is implied by the definitions of fmax/fmin themselves: 1275 // "Ideally, fmax would be sensitive to the sign of zero, for example 1276 // fmax(-0. 0, +0. 0) would return +0; however, implementation in software 1277 // might be impractical." 1278 FMF.setNoSignedZeros(); 1279 FMF.setNoNaNs(); 1280 } 1281 B.SetFastMathFlags(FMF); 1282 1283 // We have a relaxed floating-point environment. We can ignore NaN-handling 1284 // and transform to a compare and select. We do not have to consider errno or 1285 // exceptions, because fmin/fmax do not have those. 1286 Value *Op0 = CI->getArgOperand(0); 1287 Value *Op1 = CI->getArgOperand(1); 1288 Value *Cmp = Callee->getName().startswith("fmin") ? 1289 B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1); 1290 return B.CreateSelect(Cmp, Op0, Op1); 1291 } 1292 1293 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1294 Function *Callee = CI->getCalledFunction(); 1295 1296 Value *Ret = nullptr; 1297 if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" || 1298 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1299 Ret = optimizeUnaryDoubleFP(CI, B, true); 1300 if (!canUseUnsafeFPMath(CI->getParent()->getParent())) 1301 return Ret; 1302 1303 Value *Op = CI->getArgOperand(0); 1304 if (Instruction *I = dyn_cast<Instruction>(Op)) { 1305 if (I->getOpcode() == Instruction::FMul && I->hasUnsafeAlgebra()) { 1306 // We're looking for a repeated factor in a multiplication tree, 1307 // so we can do this fold: sqrt(x * x) -> fabs(x); 1308 // or this fold: sqrt(x * x * y) -> fabs(x) * sqrt(y). 1309 Value *Op0 = I->getOperand(0); 1310 Value *Op1 = I->getOperand(1); 1311 Value *RepeatOp = nullptr; 1312 Value *OtherOp = nullptr; 1313 if (Op0 == Op1) { 1314 // Simple match: the operands of the multiply are identical. 1315 RepeatOp = Op0; 1316 } else { 1317 // Look for a more complicated pattern: one of the operands is itself 1318 // a multiply, so search for a common factor in that multiply. 1319 // Note: We don't bother looking any deeper than this first level or for 1320 // variations of this pattern because instcombine's visitFMUL and/or the 1321 // reassociation pass should give us this form. 1322 Value *OtherMul0, *OtherMul1; 1323 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1324 // Pattern: sqrt((x * y) * z) 1325 if (OtherMul0 == OtherMul1) { 1326 // Matched: sqrt((x * x) * z) 1327 RepeatOp = OtherMul0; 1328 OtherOp = Op1; 1329 } 1330 } 1331 } 1332 if (RepeatOp) { 1333 // Fast math flags for any created instructions should match the sqrt 1334 // and multiply. 1335 // FIXME: We're not checking the sqrt because it doesn't have 1336 // fast-math-flags (see earlier comment). 1337 IRBuilder<>::FastMathFlagGuard Guard(B); 1338 B.SetFastMathFlags(I->getFastMathFlags()); 1339 // If we found a repeated factor, hoist it out of the square root and 1340 // replace it with the fabs of that factor. 1341 Module *M = Callee->getParent(); 1342 Type *ArgType = Op->getType(); 1343 Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1344 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1345 if (OtherOp) { 1346 // If we found a non-repeated factor, we still need to get its square 1347 // root. We then multiply that by the value that was simplified out 1348 // of the square root calculation. 1349 Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1350 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1351 return B.CreateFMul(FabsCall, SqrtCall); 1352 } 1353 return FabsCall; 1354 } 1355 } 1356 } 1357 return Ret; 1358 } 1359 1360 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { 1361 Function *Callee = CI->getCalledFunction(); 1362 Value *Ret = nullptr; 1363 StringRef Name = Callee->getName(); 1364 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 1365 Ret = optimizeUnaryDoubleFP(CI, B, true); 1366 FunctionType *FT = Callee->getFunctionType(); 1367 1368 // Just make sure this has 1 argument of FP type, which matches the 1369 // result type. 1370 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1371 !FT->getParamType(0)->isFloatingPointTy()) 1372 return Ret; 1373 1374 if (!canUseUnsafeFPMath(CI->getParent()->getParent())) 1375 return Ret; 1376 Value *Op1 = CI->getArgOperand(0); 1377 auto *OpC = dyn_cast<CallInst>(Op1); 1378 if (!OpC) 1379 return Ret; 1380 1381 // tan(atan(x)) -> x 1382 // tanf(atanf(x)) -> x 1383 // tanl(atanl(x)) -> x 1384 LibFunc::Func Func; 1385 Function *F = OpC->getCalledFunction(); 1386 StringRef FuncName = F->getName(); 1387 if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func) && 1388 ((Func == LibFunc::atan && Callee->getName() == "tan") || 1389 (Func == LibFunc::atanf && Callee->getName() == "tanf") || 1390 (Func == LibFunc::atanl && Callee->getName() == "tanl"))) 1391 Ret = OpC->getArgOperand(0); 1392 return Ret; 1393 } 1394 1395 static bool isTrigLibCall(CallInst *CI); 1396 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1397 bool UseFloat, Value *&Sin, Value *&Cos, 1398 Value *&SinCos); 1399 1400 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1401 1402 // Make sure the prototype is as expected, otherwise the rest of the 1403 // function is probably invalid and likely to abort. 1404 if (!isTrigLibCall(CI)) 1405 return nullptr; 1406 1407 Value *Arg = CI->getArgOperand(0); 1408 SmallVector<CallInst *, 1> SinCalls; 1409 SmallVector<CallInst *, 1> CosCalls; 1410 SmallVector<CallInst *, 1> SinCosCalls; 1411 1412 bool IsFloat = Arg->getType()->isFloatTy(); 1413 1414 // Look for all compatible sinpi, cospi and sincospi calls with the same 1415 // argument. If there are enough (in some sense) we can make the 1416 // substitution. 1417 for (User *U : Arg->users()) 1418 classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls, 1419 SinCosCalls); 1420 1421 // It's only worthwhile if both sinpi and cospi are actually used. 1422 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1423 return nullptr; 1424 1425 Value *Sin, *Cos, *SinCos; 1426 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1427 1428 replaceTrigInsts(SinCalls, Sin); 1429 replaceTrigInsts(CosCalls, Cos); 1430 replaceTrigInsts(SinCosCalls, SinCos); 1431 1432 return nullptr; 1433 } 1434 1435 static bool isTrigLibCall(CallInst *CI) { 1436 Function *Callee = CI->getCalledFunction(); 1437 FunctionType *FT = Callee->getFunctionType(); 1438 1439 // We can only hope to do anything useful if we can ignore things like errno 1440 // and floating-point exceptions. 1441 bool AttributesSafe = 1442 CI->hasFnAttr(Attribute::NoUnwind) && CI->hasFnAttr(Attribute::ReadNone); 1443 1444 // Other than that we need float(float) or double(double) 1445 return AttributesSafe && FT->getNumParams() == 1 && 1446 FT->getReturnType() == FT->getParamType(0) && 1447 (FT->getParamType(0)->isFloatTy() || 1448 FT->getParamType(0)->isDoubleTy()); 1449 } 1450 1451 void 1452 LibCallSimplifier::classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat, 1453 SmallVectorImpl<CallInst *> &SinCalls, 1454 SmallVectorImpl<CallInst *> &CosCalls, 1455 SmallVectorImpl<CallInst *> &SinCosCalls) { 1456 CallInst *CI = dyn_cast<CallInst>(Val); 1457 1458 if (!CI) 1459 return; 1460 1461 Function *Callee = CI->getCalledFunction(); 1462 StringRef FuncName = Callee->getName(); 1463 LibFunc::Func Func; 1464 if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) || !isTrigLibCall(CI)) 1465 return; 1466 1467 if (IsFloat) { 1468 if (Func == LibFunc::sinpif) 1469 SinCalls.push_back(CI); 1470 else if (Func == LibFunc::cospif) 1471 CosCalls.push_back(CI); 1472 else if (Func == LibFunc::sincospif_stret) 1473 SinCosCalls.push_back(CI); 1474 } else { 1475 if (Func == LibFunc::sinpi) 1476 SinCalls.push_back(CI); 1477 else if (Func == LibFunc::cospi) 1478 CosCalls.push_back(CI); 1479 else if (Func == LibFunc::sincospi_stret) 1480 SinCosCalls.push_back(CI); 1481 } 1482 } 1483 1484 void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls, 1485 Value *Res) { 1486 for (CallInst *C : Calls) 1487 replaceAllUsesWith(C, Res); 1488 } 1489 1490 void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1491 bool UseFloat, Value *&Sin, Value *&Cos, Value *&SinCos) { 1492 Type *ArgTy = Arg->getType(); 1493 Type *ResTy; 1494 StringRef Name; 1495 1496 Triple T(OrigCallee->getParent()->getTargetTriple()); 1497 if (UseFloat) { 1498 Name = "__sincospif_stret"; 1499 1500 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1501 // x86_64 can't use {float, float} since that would be returned in both 1502 // xmm0 and xmm1, which isn't what a real struct would do. 1503 ResTy = T.getArch() == Triple::x86_64 1504 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1505 : static_cast<Type *>(StructType::get(ArgTy, ArgTy, nullptr)); 1506 } else { 1507 Name = "__sincospi_stret"; 1508 ResTy = StructType::get(ArgTy, ArgTy, nullptr); 1509 } 1510 1511 Module *M = OrigCallee->getParent(); 1512 Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), 1513 ResTy, ArgTy, nullptr); 1514 1515 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1516 // If the argument is an instruction, it must dominate all uses so put our 1517 // sincos call there. 1518 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1519 } else { 1520 // Otherwise (e.g. for a constant) the beginning of the function is as 1521 // good a place as any. 1522 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1523 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1524 } 1525 1526 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1527 1528 if (SinCos->getType()->isStructTy()) { 1529 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1530 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1531 } else { 1532 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1533 "sinpi"); 1534 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1535 "cospi"); 1536 } 1537 } 1538 1539 //===----------------------------------------------------------------------===// 1540 // Integer Library Call Optimizations 1541 //===----------------------------------------------------------------------===// 1542 1543 static bool checkIntUnaryReturnAndParam(Function *Callee) { 1544 FunctionType *FT = Callee->getFunctionType(); 1545 return FT->getNumParams() == 1 && FT->getReturnType()->isIntegerTy(32) && 1546 FT->getParamType(0)->isIntegerTy(); 1547 } 1548 1549 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1550 Function *Callee = CI->getCalledFunction(); 1551 if (!checkIntUnaryReturnAndParam(Callee)) 1552 return nullptr; 1553 Value *Op = CI->getArgOperand(0); 1554 1555 // Constant fold. 1556 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1557 if (CI->isZero()) // ffs(0) -> 0. 1558 return B.getInt32(0); 1559 // ffs(c) -> cttz(c)+1 1560 return B.getInt32(CI->getValue().countTrailingZeros() + 1); 1561 } 1562 1563 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1564 Type *ArgType = Op->getType(); 1565 Value *F = 1566 Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType); 1567 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 1568 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1569 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1570 1571 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1572 return B.CreateSelect(Cond, V, B.getInt32(0)); 1573 } 1574 1575 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1576 Function *Callee = CI->getCalledFunction(); 1577 FunctionType *FT = Callee->getFunctionType(); 1578 // We require integer(integer) where the types agree. 1579 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || 1580 FT->getParamType(0) != FT->getReturnType()) 1581 return nullptr; 1582 1583 // abs(x) -> x >s -1 ? x : -x 1584 Value *Op = CI->getArgOperand(0); 1585 Value *Pos = 1586 B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos"); 1587 Value *Neg = B.CreateNeg(Op, "neg"); 1588 return B.CreateSelect(Pos, Op, Neg); 1589 } 1590 1591 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 1592 if (!checkIntUnaryReturnAndParam(CI->getCalledFunction())) 1593 return nullptr; 1594 1595 // isdigit(c) -> (c-'0') <u 10 1596 Value *Op = CI->getArgOperand(0); 1597 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1598 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1599 return B.CreateZExt(Op, CI->getType()); 1600 } 1601 1602 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 1603 if (!checkIntUnaryReturnAndParam(CI->getCalledFunction())) 1604 return nullptr; 1605 1606 // isascii(c) -> c <u 128 1607 Value *Op = CI->getArgOperand(0); 1608 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1609 return B.CreateZExt(Op, CI->getType()); 1610 } 1611 1612 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 1613 if (!checkIntUnaryReturnAndParam(CI->getCalledFunction())) 1614 return nullptr; 1615 1616 // toascii(c) -> c & 0x7f 1617 return B.CreateAnd(CI->getArgOperand(0), 1618 ConstantInt::get(CI->getType(), 0x7F)); 1619 } 1620 1621 //===----------------------------------------------------------------------===// 1622 // Formatting and IO Library Call Optimizations 1623 //===----------------------------------------------------------------------===// 1624 1625 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 1626 1627 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 1628 int StreamArg) { 1629 // Error reporting calls should be cold, mark them as such. 1630 // This applies even to non-builtin calls: it is only a hint and applies to 1631 // functions that the frontend might not understand as builtins. 1632 1633 // This heuristic was suggested in: 1634 // Improving Static Branch Prediction in a Compiler 1635 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 1636 // Proceedings of PACT'98, Oct. 1998, IEEE 1637 Function *Callee = CI->getCalledFunction(); 1638 1639 if (!CI->hasFnAttr(Attribute::Cold) && 1640 isReportingError(Callee, CI, StreamArg)) { 1641 CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold); 1642 } 1643 1644 return nullptr; 1645 } 1646 1647 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 1648 if (!ColdErrorCalls || !Callee || !Callee->isDeclaration()) 1649 return false; 1650 1651 if (StreamArg < 0) 1652 return true; 1653 1654 // These functions might be considered cold, but only if their stream 1655 // argument is stderr. 1656 1657 if (StreamArg >= (int)CI->getNumArgOperands()) 1658 return false; 1659 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 1660 if (!LI) 1661 return false; 1662 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 1663 if (!GV || !GV->isDeclaration()) 1664 return false; 1665 return GV->getName() == "stderr"; 1666 } 1667 1668 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 1669 // Check for a fixed format string. 1670 StringRef FormatStr; 1671 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 1672 return nullptr; 1673 1674 // Empty format string -> noop. 1675 if (FormatStr.empty()) // Tolerate printf's declared void. 1676 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 1677 1678 // Do not do any of the following transformations if the printf return value 1679 // is used, in general the printf return value is not compatible with either 1680 // putchar() or puts(). 1681 if (!CI->use_empty()) 1682 return nullptr; 1683 1684 // printf("x") -> putchar('x'), even for '%'. 1685 if (FormatStr.size() == 1) { 1686 Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, TLI); 1687 if (CI->use_empty() || !Res) 1688 return Res; 1689 return B.CreateIntCast(Res, CI->getType(), true); 1690 } 1691 1692 // printf("foo\n") --> puts("foo") 1693 if (FormatStr[FormatStr.size() - 1] == '\n' && 1694 FormatStr.find('%') == StringRef::npos) { // No format characters. 1695 // Create a string literal with no \n on it. We expect the constant merge 1696 // pass to be run after this pass, to merge duplicate strings. 1697 FormatStr = FormatStr.drop_back(); 1698 Value *GV = B.CreateGlobalString(FormatStr, "str"); 1699 Value *NewCI = EmitPutS(GV, B, TLI); 1700 return (CI->use_empty() || !NewCI) 1701 ? NewCI 1702 : ConstantInt::get(CI->getType(), FormatStr.size() + 1); 1703 } 1704 1705 // Optimize specific format strings. 1706 // printf("%c", chr) --> putchar(chr) 1707 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 1708 CI->getArgOperand(1)->getType()->isIntegerTy()) { 1709 Value *Res = EmitPutChar(CI->getArgOperand(1), B, TLI); 1710 1711 if (CI->use_empty() || !Res) 1712 return Res; 1713 return B.CreateIntCast(Res, CI->getType(), true); 1714 } 1715 1716 // printf("%s\n", str) --> puts(str) 1717 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 1718 CI->getArgOperand(1)->getType()->isPointerTy()) { 1719 return EmitPutS(CI->getArgOperand(1), B, TLI); 1720 } 1721 return nullptr; 1722 } 1723 1724 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 1725 1726 Function *Callee = CI->getCalledFunction(); 1727 // Require one fixed pointer argument and an integer/void result. 1728 FunctionType *FT = Callee->getFunctionType(); 1729 if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || 1730 !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy())) 1731 return nullptr; 1732 1733 if (Value *V = optimizePrintFString(CI, B)) { 1734 return V; 1735 } 1736 1737 // printf(format, ...) -> iprintf(format, ...) if no floating point 1738 // arguments. 1739 if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) { 1740 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1741 Constant *IPrintFFn = 1742 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 1743 CallInst *New = cast<CallInst>(CI->clone()); 1744 New->setCalledFunction(IPrintFFn); 1745 B.Insert(New); 1746 return New; 1747 } 1748 return nullptr; 1749 } 1750 1751 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 1752 // Check for a fixed format string. 1753 StringRef FormatStr; 1754 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1755 return nullptr; 1756 1757 // If we just have a format string (nothing else crazy) transform it. 1758 if (CI->getNumArgOperands() == 2) { 1759 // Make sure there's no % in the constant array. We could try to handle 1760 // %% -> % in the future if we cared. 1761 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1762 if (FormatStr[i] == '%') 1763 return nullptr; // we found a format specifier, bail out. 1764 1765 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) 1766 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 1767 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 1768 FormatStr.size() + 1), 1769 1); // Copy the null byte. 1770 return ConstantInt::get(CI->getType(), FormatStr.size()); 1771 } 1772 1773 // The remaining optimizations require the format string to be "%s" or "%c" 1774 // and have an extra operand. 1775 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1776 CI->getNumArgOperands() < 3) 1777 return nullptr; 1778 1779 // Decode the second character of the format string. 1780 if (FormatStr[1] == 'c') { 1781 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 1782 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1783 return nullptr; 1784 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 1785 Value *Ptr = CastToCStr(CI->getArgOperand(0), B); 1786 B.CreateStore(V, Ptr); 1787 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 1788 B.CreateStore(B.getInt8(0), Ptr); 1789 1790 return ConstantInt::get(CI->getType(), 1); 1791 } 1792 1793 if (FormatStr[1] == 's') { 1794 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) 1795 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1796 return nullptr; 1797 1798 Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI); 1799 if (!Len) 1800 return nullptr; 1801 Value *IncLen = 1802 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 1803 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1); 1804 1805 // The sprintf result is the unincremented number of bytes in the string. 1806 return B.CreateIntCast(Len, CI->getType(), false); 1807 } 1808 return nullptr; 1809 } 1810 1811 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 1812 Function *Callee = CI->getCalledFunction(); 1813 // Require two fixed pointer arguments and an integer result. 1814 FunctionType *FT = Callee->getFunctionType(); 1815 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 1816 !FT->getParamType(1)->isPointerTy() || 1817 !FT->getReturnType()->isIntegerTy()) 1818 return nullptr; 1819 1820 if (Value *V = optimizeSPrintFString(CI, B)) { 1821 return V; 1822 } 1823 1824 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 1825 // point arguments. 1826 if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) { 1827 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1828 Constant *SIPrintFFn = 1829 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 1830 CallInst *New = cast<CallInst>(CI->clone()); 1831 New->setCalledFunction(SIPrintFFn); 1832 B.Insert(New); 1833 return New; 1834 } 1835 return nullptr; 1836 } 1837 1838 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 1839 optimizeErrorReporting(CI, B, 0); 1840 1841 // All the optimizations depend on the format string. 1842 StringRef FormatStr; 1843 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1844 return nullptr; 1845 1846 // Do not do any of the following transformations if the fprintf return 1847 // value is used, in general the fprintf return value is not compatible 1848 // with fwrite(), fputc() or fputs(). 1849 if (!CI->use_empty()) 1850 return nullptr; 1851 1852 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 1853 if (CI->getNumArgOperands() == 2) { 1854 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1855 if (FormatStr[i] == '%') // Could handle %% -> % if we cared. 1856 return nullptr; // We found a format specifier. 1857 1858 return EmitFWrite( 1859 CI->getArgOperand(1), 1860 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 1861 CI->getArgOperand(0), B, DL, TLI); 1862 } 1863 1864 // The remaining optimizations require the format string to be "%s" or "%c" 1865 // and have an extra operand. 1866 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1867 CI->getNumArgOperands() < 3) 1868 return nullptr; 1869 1870 // Decode the second character of the format string. 1871 if (FormatStr[1] == 'c') { 1872 // fprintf(F, "%c", chr) --> fputc(chr, F) 1873 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1874 return nullptr; 1875 return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 1876 } 1877 1878 if (FormatStr[1] == 's') { 1879 // fprintf(F, "%s", str) --> fputs(str, F) 1880 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1881 return nullptr; 1882 return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 1883 } 1884 return nullptr; 1885 } 1886 1887 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 1888 Function *Callee = CI->getCalledFunction(); 1889 // Require two fixed paramters as pointers and integer result. 1890 FunctionType *FT = Callee->getFunctionType(); 1891 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 1892 !FT->getParamType(1)->isPointerTy() || 1893 !FT->getReturnType()->isIntegerTy()) 1894 return nullptr; 1895 1896 if (Value *V = optimizeFPrintFString(CI, B)) { 1897 return V; 1898 } 1899 1900 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 1901 // floating point arguments. 1902 if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) { 1903 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1904 Constant *FIPrintFFn = 1905 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 1906 CallInst *New = cast<CallInst>(CI->clone()); 1907 New->setCalledFunction(FIPrintFFn); 1908 B.Insert(New); 1909 return New; 1910 } 1911 return nullptr; 1912 } 1913 1914 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 1915 optimizeErrorReporting(CI, B, 3); 1916 1917 Function *Callee = CI->getCalledFunction(); 1918 // Require a pointer, an integer, an integer, a pointer, returning integer. 1919 FunctionType *FT = Callee->getFunctionType(); 1920 if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() || 1921 !FT->getParamType(1)->isIntegerTy() || 1922 !FT->getParamType(2)->isIntegerTy() || 1923 !FT->getParamType(3)->isPointerTy() || 1924 !FT->getReturnType()->isIntegerTy()) 1925 return nullptr; 1926 1927 // Get the element size and count. 1928 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 1929 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1930 if (!SizeC || !CountC) 1931 return nullptr; 1932 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 1933 1934 // If this is writing zero records, remove the call (it's a noop). 1935 if (Bytes == 0) 1936 return ConstantInt::get(CI->getType(), 0); 1937 1938 // If this is writing one byte, turn it into fputc. 1939 // This optimisation is only valid, if the return value is unused. 1940 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 1941 Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char"); 1942 Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, TLI); 1943 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 1944 } 1945 1946 return nullptr; 1947 } 1948 1949 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 1950 optimizeErrorReporting(CI, B, 1); 1951 1952 Function *Callee = CI->getCalledFunction(); 1953 1954 // Require two pointers. Also, we can't optimize if return value is used. 1955 FunctionType *FT = Callee->getFunctionType(); 1956 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 1957 !FT->getParamType(1)->isPointerTy() || !CI->use_empty()) 1958 return nullptr; 1959 1960 // fputs(s,F) --> fwrite(s,1,strlen(s),F) 1961 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 1962 if (!Len) 1963 return nullptr; 1964 1965 // Known to have no uses (see above). 1966 return EmitFWrite( 1967 CI->getArgOperand(0), 1968 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 1969 CI->getArgOperand(1), B, DL, TLI); 1970 } 1971 1972 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 1973 Function *Callee = CI->getCalledFunction(); 1974 // Require one fixed pointer argument and an integer/void result. 1975 FunctionType *FT = Callee->getFunctionType(); 1976 if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || 1977 !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy())) 1978 return nullptr; 1979 1980 // Check for a constant string. 1981 StringRef Str; 1982 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1983 return nullptr; 1984 1985 if (Str.empty() && CI->use_empty()) { 1986 // puts("") -> putchar('\n') 1987 Value *Res = EmitPutChar(B.getInt32('\n'), B, TLI); 1988 if (CI->use_empty() || !Res) 1989 return Res; 1990 return B.CreateIntCast(Res, CI->getType(), true); 1991 } 1992 1993 return nullptr; 1994 } 1995 1996 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 1997 LibFunc::Func Func; 1998 SmallString<20> FloatFuncName = FuncName; 1999 FloatFuncName += 'f'; 2000 if (TLI->getLibFunc(FloatFuncName, Func)) 2001 return TLI->has(Func); 2002 return false; 2003 } 2004 2005 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2006 IRBuilder<> &Builder) { 2007 LibFunc::Func Func; 2008 Function *Callee = CI->getCalledFunction(); 2009 StringRef FuncName = Callee->getName(); 2010 2011 // Check for string/memory library functions. 2012 if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) { 2013 // Make sure we never change the calling convention. 2014 assert((ignoreCallingConv(Func) || 2015 CI->getCallingConv() == llvm::CallingConv::C) && 2016 "Optimizing string/memory libcall would change the calling convention"); 2017 switch (Func) { 2018 case LibFunc::strcat: 2019 return optimizeStrCat(CI, Builder); 2020 case LibFunc::strncat: 2021 return optimizeStrNCat(CI, Builder); 2022 case LibFunc::strchr: 2023 return optimizeStrChr(CI, Builder); 2024 case LibFunc::strrchr: 2025 return optimizeStrRChr(CI, Builder); 2026 case LibFunc::strcmp: 2027 return optimizeStrCmp(CI, Builder); 2028 case LibFunc::strncmp: 2029 return optimizeStrNCmp(CI, Builder); 2030 case LibFunc::strcpy: 2031 return optimizeStrCpy(CI, Builder); 2032 case LibFunc::stpcpy: 2033 return optimizeStpCpy(CI, Builder); 2034 case LibFunc::strncpy: 2035 return optimizeStrNCpy(CI, Builder); 2036 case LibFunc::strlen: 2037 return optimizeStrLen(CI, Builder); 2038 case LibFunc::strpbrk: 2039 return optimizeStrPBrk(CI, Builder); 2040 case LibFunc::strtol: 2041 case LibFunc::strtod: 2042 case LibFunc::strtof: 2043 case LibFunc::strtoul: 2044 case LibFunc::strtoll: 2045 case LibFunc::strtold: 2046 case LibFunc::strtoull: 2047 return optimizeStrTo(CI, Builder); 2048 case LibFunc::strspn: 2049 return optimizeStrSpn(CI, Builder); 2050 case LibFunc::strcspn: 2051 return optimizeStrCSpn(CI, Builder); 2052 case LibFunc::strstr: 2053 return optimizeStrStr(CI, Builder); 2054 case LibFunc::memchr: 2055 return optimizeMemChr(CI, Builder); 2056 case LibFunc::memcmp: 2057 return optimizeMemCmp(CI, Builder); 2058 case LibFunc::memcpy: 2059 return optimizeMemCpy(CI, Builder); 2060 case LibFunc::memmove: 2061 return optimizeMemMove(CI, Builder); 2062 case LibFunc::memset: 2063 return optimizeMemSet(CI, Builder); 2064 default: 2065 break; 2066 } 2067 } 2068 return nullptr; 2069 } 2070 2071 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 2072 if (CI->isNoBuiltin()) 2073 return nullptr; 2074 2075 LibFunc::Func Func; 2076 Function *Callee = CI->getCalledFunction(); 2077 StringRef FuncName = Callee->getName(); 2078 IRBuilder<> Builder(CI); 2079 bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C; 2080 2081 // Command-line parameter overrides function attribute. 2082 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2083 UnsafeFPShrink = EnableUnsafeFPShrink; 2084 else if (canUseUnsafeFPMath(Callee)) 2085 UnsafeFPShrink = true; 2086 2087 // First, check for intrinsics. 2088 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2089 if (!isCallingConvC) 2090 return nullptr; 2091 switch (II->getIntrinsicID()) { 2092 case Intrinsic::pow: 2093 return optimizePow(CI, Builder); 2094 case Intrinsic::exp2: 2095 return optimizeExp2(CI, Builder); 2096 case Intrinsic::fabs: 2097 return optimizeFabs(CI, Builder); 2098 case Intrinsic::sqrt: 2099 return optimizeSqrt(CI, Builder); 2100 default: 2101 return nullptr; 2102 } 2103 } 2104 2105 // Also try to simplify calls to fortified library functions. 2106 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 2107 // Try to further simplify the result. 2108 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 2109 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 2110 // Use an IR Builder from SimplifiedCI if available instead of CI 2111 // to guarantee we reach all uses we might replace later on. 2112 IRBuilder<> TmpBuilder(SimplifiedCI); 2113 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { 2114 // If we were able to further simplify, remove the now redundant call. 2115 SimplifiedCI->replaceAllUsesWith(V); 2116 SimplifiedCI->eraseFromParent(); 2117 return V; 2118 } 2119 } 2120 return SimplifiedFortifiedCI; 2121 } 2122 2123 // Then check for known library functions. 2124 if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) { 2125 // We never change the calling convention. 2126 if (!ignoreCallingConv(Func) && !isCallingConvC) 2127 return nullptr; 2128 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 2129 return V; 2130 switch (Func) { 2131 case LibFunc::cosf: 2132 case LibFunc::cos: 2133 case LibFunc::cosl: 2134 return optimizeCos(CI, Builder); 2135 case LibFunc::sinpif: 2136 case LibFunc::sinpi: 2137 case LibFunc::cospif: 2138 case LibFunc::cospi: 2139 return optimizeSinCosPi(CI, Builder); 2140 case LibFunc::powf: 2141 case LibFunc::pow: 2142 case LibFunc::powl: 2143 return optimizePow(CI, Builder); 2144 case LibFunc::exp2l: 2145 case LibFunc::exp2: 2146 case LibFunc::exp2f: 2147 return optimizeExp2(CI, Builder); 2148 case LibFunc::fabsf: 2149 case LibFunc::fabs: 2150 case LibFunc::fabsl: 2151 return optimizeFabs(CI, Builder); 2152 case LibFunc::sqrtf: 2153 case LibFunc::sqrt: 2154 case LibFunc::sqrtl: 2155 return optimizeSqrt(CI, Builder); 2156 case LibFunc::ffs: 2157 case LibFunc::ffsl: 2158 case LibFunc::ffsll: 2159 return optimizeFFS(CI, Builder); 2160 case LibFunc::abs: 2161 case LibFunc::labs: 2162 case LibFunc::llabs: 2163 return optimizeAbs(CI, Builder); 2164 case LibFunc::isdigit: 2165 return optimizeIsDigit(CI, Builder); 2166 case LibFunc::isascii: 2167 return optimizeIsAscii(CI, Builder); 2168 case LibFunc::toascii: 2169 return optimizeToAscii(CI, Builder); 2170 case LibFunc::printf: 2171 return optimizePrintF(CI, Builder); 2172 case LibFunc::sprintf: 2173 return optimizeSPrintF(CI, Builder); 2174 case LibFunc::fprintf: 2175 return optimizeFPrintF(CI, Builder); 2176 case LibFunc::fwrite: 2177 return optimizeFWrite(CI, Builder); 2178 case LibFunc::fputs: 2179 return optimizeFPuts(CI, Builder); 2180 case LibFunc::puts: 2181 return optimizePuts(CI, Builder); 2182 case LibFunc::tan: 2183 case LibFunc::tanf: 2184 case LibFunc::tanl: 2185 return optimizeTan(CI, Builder); 2186 case LibFunc::perror: 2187 return optimizeErrorReporting(CI, Builder); 2188 case LibFunc::vfprintf: 2189 case LibFunc::fiprintf: 2190 return optimizeErrorReporting(CI, Builder, 0); 2191 case LibFunc::fputc: 2192 return optimizeErrorReporting(CI, Builder, 1); 2193 case LibFunc::ceil: 2194 case LibFunc::floor: 2195 case LibFunc::rint: 2196 case LibFunc::round: 2197 case LibFunc::nearbyint: 2198 case LibFunc::trunc: 2199 if (hasFloatVersion(FuncName)) 2200 return optimizeUnaryDoubleFP(CI, Builder, false); 2201 return nullptr; 2202 case LibFunc::acos: 2203 case LibFunc::acosh: 2204 case LibFunc::asin: 2205 case LibFunc::asinh: 2206 case LibFunc::atan: 2207 case LibFunc::atanh: 2208 case LibFunc::cbrt: 2209 case LibFunc::cosh: 2210 case LibFunc::exp: 2211 case LibFunc::exp10: 2212 case LibFunc::expm1: 2213 case LibFunc::log: 2214 case LibFunc::log10: 2215 case LibFunc::log1p: 2216 case LibFunc::log2: 2217 case LibFunc::logb: 2218 case LibFunc::sin: 2219 case LibFunc::sinh: 2220 case LibFunc::tanh: 2221 if (UnsafeFPShrink && hasFloatVersion(FuncName)) 2222 return optimizeUnaryDoubleFP(CI, Builder, true); 2223 return nullptr; 2224 case LibFunc::copysign: 2225 if (hasFloatVersion(FuncName)) 2226 return optimizeBinaryDoubleFP(CI, Builder); 2227 return nullptr; 2228 case LibFunc::fminf: 2229 case LibFunc::fmin: 2230 case LibFunc::fminl: 2231 case LibFunc::fmaxf: 2232 case LibFunc::fmax: 2233 case LibFunc::fmaxl: 2234 return optimizeFMinFMax(CI, Builder); 2235 default: 2236 return nullptr; 2237 } 2238 } 2239 return nullptr; 2240 } 2241 2242 LibCallSimplifier::LibCallSimplifier( 2243 const DataLayout &DL, const TargetLibraryInfo *TLI, 2244 function_ref<void(Instruction *, Value *)> Replacer) 2245 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), UnsafeFPShrink(false), 2246 Replacer(Replacer) {} 2247 2248 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 2249 // Indirect through the replacer used in this instance. 2250 Replacer(I, With); 2251 } 2252 2253 // TODO: 2254 // Additional cases that we need to add to this file: 2255 // 2256 // cbrt: 2257 // * cbrt(expN(X)) -> expN(x/3) 2258 // * cbrt(sqrt(x)) -> pow(x,1/6) 2259 // * cbrt(cbrt(x)) -> pow(x,1/9) 2260 // 2261 // exp, expf, expl: 2262 // * exp(log(x)) -> x 2263 // 2264 // log, logf, logl: 2265 // * log(exp(x)) -> x 2266 // * log(x**y) -> y*log(x) 2267 // * log(exp(y)) -> y*log(e) 2268 // * log(exp2(y)) -> y*log(2) 2269 // * log(exp10(y)) -> y*log(10) 2270 // * log(sqrt(x)) -> 0.5*log(x) 2271 // * log(pow(x,y)) -> y*log(x) 2272 // 2273 // lround, lroundf, lroundl: 2274 // * lround(cnst) -> cnst' 2275 // 2276 // pow, powf, powl: 2277 // * pow(exp(x),y) -> exp(x*y) 2278 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2279 // * pow(pow(x,y),z)-> pow(x,y*z) 2280 // 2281 // round, roundf, roundl: 2282 // * round(cnst) -> cnst' 2283 // 2284 // signbit: 2285 // * signbit(cnst) -> cnst' 2286 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2287 // 2288 // sqrt, sqrtf, sqrtl: 2289 // * sqrt(expN(x)) -> expN(x*0.5) 2290 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2291 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2292 // 2293 // tan, tanf, tanl: 2294 // * tan(atan(x)) -> x 2295 // 2296 // trunc, truncf, truncl: 2297 // * trunc(cnst) -> cnst' 2298 // 2299 // 2300 2301 //===----------------------------------------------------------------------===// 2302 // Fortified Library Call Optimizations 2303 //===----------------------------------------------------------------------===// 2304 2305 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2306 unsigned ObjSizeOp, 2307 unsigned SizeOp, 2308 bool isString) { 2309 if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp)) 2310 return true; 2311 if (ConstantInt *ObjSizeCI = 2312 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2313 if (ObjSizeCI->isAllOnesValue()) 2314 return true; 2315 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2316 if (OnlyLowerUnknownSize) 2317 return false; 2318 if (isString) { 2319 uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp)); 2320 // If the length is 0 we don't know how long it is and so we can't 2321 // remove the check. 2322 if (Len == 0) 2323 return false; 2324 return ObjSizeCI->getZExtValue() >= Len; 2325 } 2326 if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp))) 2327 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2328 } 2329 return false; 2330 } 2331 2332 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, IRBuilder<> &B) { 2333 Function *Callee = CI->getCalledFunction(); 2334 2335 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy_chk)) 2336 return nullptr; 2337 2338 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2339 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2340 CI->getArgOperand(2), 1); 2341 return CI->getArgOperand(0); 2342 } 2343 return nullptr; 2344 } 2345 2346 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, IRBuilder<> &B) { 2347 Function *Callee = CI->getCalledFunction(); 2348 2349 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove_chk)) 2350 return nullptr; 2351 2352 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2353 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 2354 CI->getArgOperand(2), 1); 2355 return CI->getArgOperand(0); 2356 } 2357 return nullptr; 2358 } 2359 2360 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, IRBuilder<> &B) { 2361 Function *Callee = CI->getCalledFunction(); 2362 2363 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset_chk)) 2364 return nullptr; 2365 2366 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2367 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2368 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2369 return CI->getArgOperand(0); 2370 } 2371 return nullptr; 2372 } 2373 2374 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 2375 IRBuilder<> &B, 2376 LibFunc::Func Func) { 2377 Function *Callee = CI->getCalledFunction(); 2378 StringRef Name = Callee->getName(); 2379 const DataLayout &DL = CI->getModule()->getDataLayout(); 2380 2381 if (!checkStringCopyLibFuncSignature(Callee, Func)) 2382 return nullptr; 2383 2384 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 2385 *ObjSize = CI->getArgOperand(2); 2386 2387 // __stpcpy_chk(x,x,...) -> x+strlen(x) 2388 if (Func == LibFunc::stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 2389 Value *StrLen = EmitStrLen(Src, B, DL, TLI); 2390 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 2391 } 2392 2393 // If a) we don't have any length information, or b) we know this will 2394 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 2395 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 2396 // TODO: It might be nice to get a maximum length out of the possible 2397 // string lengths for varying. 2398 if (isFortifiedCallFoldable(CI, 2, 1, true)) 2399 return EmitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6)); 2400 2401 if (OnlyLowerUnknownSize) 2402 return nullptr; 2403 2404 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 2405 uint64_t Len = GetStringLength(Src); 2406 if (Len == 0) 2407 return nullptr; 2408 2409 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 2410 Value *LenV = ConstantInt::get(SizeTTy, Len); 2411 Value *Ret = EmitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 2412 // If the function was an __stpcpy_chk, and we were able to fold it into 2413 // a __memcpy_chk, we still need to return the correct end pointer. 2414 if (Ret && Func == LibFunc::stpcpy_chk) 2415 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 2416 return Ret; 2417 } 2418 2419 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 2420 IRBuilder<> &B, 2421 LibFunc::Func Func) { 2422 Function *Callee = CI->getCalledFunction(); 2423 StringRef Name = Callee->getName(); 2424 2425 if (!checkStringCopyLibFuncSignature(Callee, Func)) 2426 return nullptr; 2427 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2428 Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2429 CI->getArgOperand(2), B, TLI, Name.substr(2, 7)); 2430 return Ret; 2431 } 2432 return nullptr; 2433 } 2434 2435 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 2436 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 2437 // Some clang users checked for _chk libcall availability using: 2438 // __has_builtin(__builtin___memcpy_chk) 2439 // When compiling with -fno-builtin, this is always true. 2440 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 2441 // end up with fortified libcalls, which isn't acceptable in a freestanding 2442 // environment which only provides their non-fortified counterparts. 2443 // 2444 // Until we change clang and/or teach external users to check for availability 2445 // differently, disregard the "nobuiltin" attribute and TLI::has. 2446 // 2447 // PR23093. 2448 2449 LibFunc::Func Func; 2450 Function *Callee = CI->getCalledFunction(); 2451 StringRef FuncName = Callee->getName(); 2452 IRBuilder<> Builder(CI); 2453 bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C; 2454 2455 // First, check that this is a known library functions. 2456 if (!TLI->getLibFunc(FuncName, Func)) 2457 return nullptr; 2458 2459 // We never change the calling convention. 2460 if (!ignoreCallingConv(Func) && !isCallingConvC) 2461 return nullptr; 2462 2463 switch (Func) { 2464 case LibFunc::memcpy_chk: 2465 return optimizeMemCpyChk(CI, Builder); 2466 case LibFunc::memmove_chk: 2467 return optimizeMemMoveChk(CI, Builder); 2468 case LibFunc::memset_chk: 2469 return optimizeMemSetChk(CI, Builder); 2470 case LibFunc::stpcpy_chk: 2471 case LibFunc::strcpy_chk: 2472 return optimizeStrpCpyChk(CI, Builder, Func); 2473 case LibFunc::stpncpy_chk: 2474 case LibFunc::strncpy_chk: 2475 return optimizeStrpNCpyChk(CI, Builder, Func); 2476 default: 2477 break; 2478 } 2479 return nullptr; 2480 } 2481 2482 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 2483 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 2484 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 2485