1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Analysis/BlockFrequencyInfo.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ProfileSummaryInfo.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/KnownBits.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Transforms/Utils/BuildLibCalls.h" 39 #include "llvm/Transforms/Utils/SizeOpts.h" 40 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 static cl::opt<bool> 45 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 46 cl::init(false), 47 cl::desc("Enable unsafe double to float " 48 "shrinking for math lib calls")); 49 50 //===----------------------------------------------------------------------===// 51 // Helper Functions 52 //===----------------------------------------------------------------------===// 53 54 static bool ignoreCallingConv(LibFunc Func) { 55 return Func == LibFunc_abs || Func == LibFunc_labs || 56 Func == LibFunc_llabs || Func == LibFunc_strlen; 57 } 58 59 static bool isCallingConvCCompatible(CallInst *CI) { 60 switch(CI->getCallingConv()) { 61 default: 62 return false; 63 case llvm::CallingConv::C: 64 return true; 65 case llvm::CallingConv::ARM_APCS: 66 case llvm::CallingConv::ARM_AAPCS: 67 case llvm::CallingConv::ARM_AAPCS_VFP: { 68 69 // The iOS ABI diverges from the standard in some cases, so for now don't 70 // try to simplify those calls. 71 if (Triple(CI->getModule()->getTargetTriple()).isiOS()) 72 return false; 73 74 auto *FuncTy = CI->getFunctionType(); 75 76 if (!FuncTy->getReturnType()->isPointerTy() && 77 !FuncTy->getReturnType()->isIntegerTy() && 78 !FuncTy->getReturnType()->isVoidTy()) 79 return false; 80 81 for (auto Param : FuncTy->params()) { 82 if (!Param->isPointerTy() && !Param->isIntegerTy()) 83 return false; 84 } 85 return true; 86 } 87 } 88 return false; 89 } 90 91 /// Return true if it is only used in equality comparisons with With. 92 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 93 for (User *U : V->users()) { 94 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 95 if (IC->isEquality() && IC->getOperand(1) == With) 96 continue; 97 // Unknown instruction. 98 return false; 99 } 100 return true; 101 } 102 103 static bool callHasFloatingPointArgument(const CallInst *CI) { 104 return any_of(CI->operands(), [](const Use &OI) { 105 return OI->getType()->isFloatingPointTy(); 106 }); 107 } 108 109 static bool callHasFP128Argument(const CallInst *CI) { 110 return any_of(CI->operands(), [](const Use &OI) { 111 return OI->getType()->isFP128Ty(); 112 }); 113 } 114 115 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 116 if (Base < 2 || Base > 36) 117 // handle special zero base 118 if (Base != 0) 119 return nullptr; 120 121 char *End; 122 std::string nptr = Str.str(); 123 errno = 0; 124 long long int Result = strtoll(nptr.c_str(), &End, Base); 125 if (errno) 126 return nullptr; 127 128 // if we assume all possible target locales are ASCII supersets, 129 // then if strtoll successfully parses a number on the host, 130 // it will also successfully parse the same way on the target 131 if (*End != '\0') 132 return nullptr; 133 134 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 135 return nullptr; 136 137 return ConstantInt::get(CI->getType(), Result); 138 } 139 140 static bool isOnlyUsedInComparisonWithZero(Value *V) { 141 for (User *U : V->users()) { 142 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 143 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 144 if (C->isNullValue()) 145 continue; 146 // Unknown instruction. 147 return false; 148 } 149 return true; 150 } 151 152 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 153 const DataLayout &DL) { 154 if (!isOnlyUsedInComparisonWithZero(CI)) 155 return false; 156 157 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 158 return false; 159 160 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 161 return false; 162 163 return true; 164 } 165 166 static void annotateDereferenceableBytes(CallInst *CI, 167 ArrayRef<unsigned> ArgNos, 168 uint64_t DereferenceableBytes) { 169 const Function *F = CI->getCaller(); 170 if (!F) 171 return; 172 for (unsigned ArgNo : ArgNos) { 173 uint64_t DerefBytes = DereferenceableBytes; 174 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 175 if (!llvm::NullPointerIsDefined(F, AS) || 176 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 177 DerefBytes = std::max(CI->getDereferenceableOrNullBytes( 178 ArgNo + AttributeList::FirstArgIndex), 179 DereferenceableBytes); 180 181 if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) < 182 DerefBytes) { 183 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 184 if (!llvm::NullPointerIsDefined(F, AS) || 185 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 186 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 187 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 188 CI->getContext(), DerefBytes)); 189 } 190 } 191 } 192 193 static void annotateNonNullBasedOnAccess(CallInst *CI, 194 ArrayRef<unsigned> ArgNos) { 195 Function *F = CI->getCaller(); 196 if (!F) 197 return; 198 199 for (unsigned ArgNo : ArgNos) { 200 if (CI->paramHasAttr(ArgNo, Attribute::NonNull)) 201 continue; 202 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 203 if (llvm::NullPointerIsDefined(F, AS)) 204 continue; 205 206 CI->addParamAttr(ArgNo, Attribute::NonNull); 207 annotateDereferenceableBytes(CI, ArgNo, 1); 208 } 209 } 210 211 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 212 Value *Size, const DataLayout &DL) { 213 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 214 annotateNonNullBasedOnAccess(CI, ArgNos); 215 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 216 } else if (isKnownNonZero(Size, DL)) { 217 annotateNonNullBasedOnAccess(CI, ArgNos); 218 const APInt *X, *Y; 219 uint64_t DerefMin = 1; 220 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 221 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 222 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 223 } 224 } 225 } 226 227 //===----------------------------------------------------------------------===// 228 // String and Memory Library Call Optimizations 229 //===----------------------------------------------------------------------===// 230 231 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 232 // Extract some information from the instruction 233 Value *Dst = CI->getArgOperand(0); 234 Value *Src = CI->getArgOperand(1); 235 annotateNonNullBasedOnAccess(CI, {0, 1}); 236 237 // See if we can get the length of the input string. 238 uint64_t Len = GetStringLength(Src); 239 if (Len) 240 annotateDereferenceableBytes(CI, 1, Len); 241 else 242 return nullptr; 243 --Len; // Unbias length. 244 245 // Handle the simple, do-nothing case: strcat(x, "") -> x 246 if (Len == 0) 247 return Dst; 248 249 return emitStrLenMemCpy(Src, Dst, Len, B); 250 } 251 252 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 253 IRBuilderBase &B) { 254 // We need to find the end of the destination string. That's where the 255 // memory is to be moved to. We just generate a call to strlen. 256 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 257 if (!DstLen) 258 return nullptr; 259 260 // Now that we have the destination's length, we must index into the 261 // destination's pointer to get the actual memcpy destination (end of 262 // the string .. we're concatenating). 263 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 264 265 // We have enough information to now generate the memcpy call to do the 266 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 267 B.CreateMemCpy( 268 CpyDst, Align(1), Src, Align(1), 269 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 270 return Dst; 271 } 272 273 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 274 // Extract some information from the instruction. 275 Value *Dst = CI->getArgOperand(0); 276 Value *Src = CI->getArgOperand(1); 277 Value *Size = CI->getArgOperand(2); 278 uint64_t Len; 279 annotateNonNullBasedOnAccess(CI, 0); 280 if (isKnownNonZero(Size, DL)) 281 annotateNonNullBasedOnAccess(CI, 1); 282 283 // We don't do anything if length is not constant. 284 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 285 if (LengthArg) { 286 Len = LengthArg->getZExtValue(); 287 // strncat(x, c, 0) -> x 288 if (!Len) 289 return Dst; 290 } else { 291 return nullptr; 292 } 293 294 // See if we can get the length of the input string. 295 uint64_t SrcLen = GetStringLength(Src); 296 if (SrcLen) { 297 annotateDereferenceableBytes(CI, 1, SrcLen); 298 --SrcLen; // Unbias length. 299 } else { 300 return nullptr; 301 } 302 303 // strncat(x, "", c) -> x 304 if (SrcLen == 0) 305 return Dst; 306 307 // We don't optimize this case. 308 if (Len < SrcLen) 309 return nullptr; 310 311 // strncat(x, s, c) -> strcat(x, s) 312 // s is constant so the strcat can be optimized further. 313 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 314 } 315 316 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 317 Function *Callee = CI->getCalledFunction(); 318 FunctionType *FT = Callee->getFunctionType(); 319 Value *SrcStr = CI->getArgOperand(0); 320 annotateNonNullBasedOnAccess(CI, 0); 321 322 // If the second operand is non-constant, see if we can compute the length 323 // of the input string and turn this into memchr. 324 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 325 if (!CharC) { 326 uint64_t Len = GetStringLength(SrcStr); 327 if (Len) 328 annotateDereferenceableBytes(CI, 0, Len); 329 else 330 return nullptr; 331 if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 332 return nullptr; 333 334 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 335 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 336 B, DL, TLI); 337 } 338 339 // Otherwise, the character is a constant, see if the first argument is 340 // a string literal. If so, we can constant fold. 341 StringRef Str; 342 if (!getConstantStringInfo(SrcStr, Str)) { 343 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 344 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 345 return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 346 return nullptr; 347 } 348 349 // Compute the offset, make sure to handle the case when we're searching for 350 // zero (a weird way to spell strlen). 351 size_t I = (0xFF & CharC->getSExtValue()) == 0 352 ? Str.size() 353 : Str.find(CharC->getSExtValue()); 354 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 355 return Constant::getNullValue(CI->getType()); 356 357 // strchr(s+n,c) -> gep(s+n+i,c) 358 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 359 } 360 361 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 362 Value *SrcStr = CI->getArgOperand(0); 363 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 364 annotateNonNullBasedOnAccess(CI, 0); 365 366 // Cannot fold anything if we're not looking for a constant. 367 if (!CharC) 368 return nullptr; 369 370 StringRef Str; 371 if (!getConstantStringInfo(SrcStr, Str)) { 372 // strrchr(s, 0) -> strchr(s, 0) 373 if (CharC->isZero()) 374 return emitStrChr(SrcStr, '\0', B, TLI); 375 return nullptr; 376 } 377 378 // Compute the offset. 379 size_t I = (0xFF & CharC->getSExtValue()) == 0 380 ? Str.size() 381 : Str.rfind(CharC->getSExtValue()); 382 if (I == StringRef::npos) // Didn't find the char. Return null. 383 return Constant::getNullValue(CI->getType()); 384 385 // strrchr(s+n,c) -> gep(s+n+i,c) 386 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 387 } 388 389 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 390 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 391 if (Str1P == Str2P) // strcmp(x,x) -> 0 392 return ConstantInt::get(CI->getType(), 0); 393 394 StringRef Str1, Str2; 395 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 396 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 397 398 // strcmp(x, y) -> cnst (if both x and y are constant strings) 399 if (HasStr1 && HasStr2) 400 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 401 402 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 403 return B.CreateNeg(B.CreateZExt( 404 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 405 406 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 407 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 408 CI->getType()); 409 410 // strcmp(P, "x") -> memcmp(P, "x", 2) 411 uint64_t Len1 = GetStringLength(Str1P); 412 if (Len1) 413 annotateDereferenceableBytes(CI, 0, Len1); 414 uint64_t Len2 = GetStringLength(Str2P); 415 if (Len2) 416 annotateDereferenceableBytes(CI, 1, Len2); 417 418 if (Len1 && Len2) { 419 return emitMemCmp(Str1P, Str2P, 420 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 421 std::min(Len1, Len2)), 422 B, DL, TLI); 423 } 424 425 // strcmp to memcmp 426 if (!HasStr1 && HasStr2) { 427 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 428 return emitMemCmp( 429 Str1P, Str2P, 430 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 431 TLI); 432 } else if (HasStr1 && !HasStr2) { 433 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 434 return emitMemCmp( 435 Str1P, Str2P, 436 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 437 TLI); 438 } 439 440 annotateNonNullBasedOnAccess(CI, {0, 1}); 441 return nullptr; 442 } 443 444 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 445 Value *Str1P = CI->getArgOperand(0); 446 Value *Str2P = CI->getArgOperand(1); 447 Value *Size = CI->getArgOperand(2); 448 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 449 return ConstantInt::get(CI->getType(), 0); 450 451 if (isKnownNonZero(Size, DL)) 452 annotateNonNullBasedOnAccess(CI, {0, 1}); 453 // Get the length argument if it is constant. 454 uint64_t Length; 455 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 456 Length = LengthArg->getZExtValue(); 457 else 458 return nullptr; 459 460 if (Length == 0) // strncmp(x,y,0) -> 0 461 return ConstantInt::get(CI->getType(), 0); 462 463 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 464 return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI); 465 466 StringRef Str1, Str2; 467 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 468 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 469 470 // strncmp(x, y) -> cnst (if both x and y are constant strings) 471 if (HasStr1 && HasStr2) { 472 StringRef SubStr1 = Str1.substr(0, Length); 473 StringRef SubStr2 = Str2.substr(0, Length); 474 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 475 } 476 477 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 478 return B.CreateNeg(B.CreateZExt( 479 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 480 481 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 482 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 483 CI->getType()); 484 485 uint64_t Len1 = GetStringLength(Str1P); 486 if (Len1) 487 annotateDereferenceableBytes(CI, 0, Len1); 488 uint64_t Len2 = GetStringLength(Str2P); 489 if (Len2) 490 annotateDereferenceableBytes(CI, 1, Len2); 491 492 // strncmp to memcmp 493 if (!HasStr1 && HasStr2) { 494 Len2 = std::min(Len2, Length); 495 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 496 return emitMemCmp( 497 Str1P, Str2P, 498 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 499 TLI); 500 } else if (HasStr1 && !HasStr2) { 501 Len1 = std::min(Len1, Length); 502 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 503 return emitMemCmp( 504 Str1P, Str2P, 505 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 506 TLI); 507 } 508 509 return nullptr; 510 } 511 512 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 513 Value *Src = CI->getArgOperand(0); 514 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 515 uint64_t SrcLen = GetStringLength(Src); 516 if (SrcLen && Size) { 517 annotateDereferenceableBytes(CI, 0, SrcLen); 518 if (SrcLen <= Size->getZExtValue() + 1) 519 return emitStrDup(Src, B, TLI); 520 } 521 522 return nullptr; 523 } 524 525 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 526 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 527 if (Dst == Src) // strcpy(x,x) -> x 528 return Src; 529 530 annotateNonNullBasedOnAccess(CI, {0, 1}); 531 // See if we can get the length of the input string. 532 uint64_t Len = GetStringLength(Src); 533 if (Len) 534 annotateDereferenceableBytes(CI, 1, Len); 535 else 536 return nullptr; 537 538 // We have enough information to now generate the memcpy call to do the 539 // copy for us. Make a memcpy to copy the nul byte with align = 1. 540 CallInst *NewCI = 541 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 542 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 543 NewCI->setAttributes(CI->getAttributes()); 544 return Dst; 545 } 546 547 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 548 Function *Callee = CI->getCalledFunction(); 549 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 550 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 551 Value *StrLen = emitStrLen(Src, B, DL, TLI); 552 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 553 } 554 555 // See if we can get the length of the input string. 556 uint64_t Len = GetStringLength(Src); 557 if (Len) 558 annotateDereferenceableBytes(CI, 1, Len); 559 else 560 return nullptr; 561 562 Type *PT = Callee->getFunctionType()->getParamType(0); 563 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 564 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 565 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 566 567 // We have enough information to now generate the memcpy call to do the 568 // copy for us. Make a memcpy to copy the nul byte with align = 1. 569 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 570 NewCI->setAttributes(CI->getAttributes()); 571 return DstEnd; 572 } 573 574 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) { 575 Function *Callee = CI->getCalledFunction(); 576 Value *Dst = CI->getArgOperand(0); 577 Value *Src = CI->getArgOperand(1); 578 Value *Size = CI->getArgOperand(2); 579 annotateNonNullBasedOnAccess(CI, 0); 580 if (isKnownNonZero(Size, DL)) 581 annotateNonNullBasedOnAccess(CI, 1); 582 583 uint64_t Len; 584 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 585 Len = LengthArg->getZExtValue(); 586 else 587 return nullptr; 588 589 // strncpy(x, y, 0) -> x 590 if (Len == 0) 591 return Dst; 592 593 // See if we can get the length of the input string. 594 uint64_t SrcLen = GetStringLength(Src); 595 if (SrcLen) { 596 annotateDereferenceableBytes(CI, 1, SrcLen); 597 --SrcLen; // Unbias length. 598 } else { 599 return nullptr; 600 } 601 602 if (SrcLen == 0) { 603 // strncpy(x, "", y) -> memset(align 1 x, '\0', y) 604 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, Align(1)); 605 AttrBuilder ArgAttrs(CI->getAttributes().getParamAttributes(0)); 606 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 607 CI->getContext(), 0, ArgAttrs)); 608 return Dst; 609 } 610 611 // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4) 612 if (Len > SrcLen + 1) { 613 if (Len <= 128) { 614 StringRef Str; 615 if (!getConstantStringInfo(Src, Str)) 616 return nullptr; 617 std::string SrcStr = Str.str(); 618 SrcStr.resize(Len, '\0'); 619 Src = B.CreateGlobalString(SrcStr, "str"); 620 } else { 621 return nullptr; 622 } 623 } 624 625 Type *PT = Callee->getFunctionType()->getParamType(0); 626 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 627 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 628 ConstantInt::get(DL.getIntPtrType(PT), Len)); 629 NewCI->setAttributes(CI->getAttributes()); 630 return Dst; 631 } 632 633 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 634 unsigned CharSize) { 635 Value *Src = CI->getArgOperand(0); 636 637 // Constant folding: strlen("xyz") -> 3 638 if (uint64_t Len = GetStringLength(Src, CharSize)) 639 return ConstantInt::get(CI->getType(), Len - 1); 640 641 // If s is a constant pointer pointing to a string literal, we can fold 642 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 643 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 644 // We only try to simplify strlen when the pointer s points to an array 645 // of i8. Otherwise, we would need to scale the offset x before doing the 646 // subtraction. This will make the optimization more complex, and it's not 647 // very useful because calling strlen for a pointer of other types is 648 // very uncommon. 649 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 650 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 651 return nullptr; 652 653 ConstantDataArraySlice Slice; 654 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 655 uint64_t NullTermIdx; 656 if (Slice.Array == nullptr) { 657 NullTermIdx = 0; 658 } else { 659 NullTermIdx = ~((uint64_t)0); 660 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 661 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 662 NullTermIdx = I; 663 break; 664 } 665 } 666 // If the string does not have '\0', leave it to strlen to compute 667 // its length. 668 if (NullTermIdx == ~((uint64_t)0)) 669 return nullptr; 670 } 671 672 Value *Offset = GEP->getOperand(2); 673 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 674 Known.Zero.flipAllBits(); 675 uint64_t ArrSize = 676 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 677 678 // KnownZero's bits are flipped, so zeros in KnownZero now represent 679 // bits known to be zeros in Offset, and ones in KnowZero represent 680 // bits unknown in Offset. Therefore, Offset is known to be in range 681 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 682 // unsigned-less-than NullTermIdx. 683 // 684 // If Offset is not provably in the range [0, NullTermIdx], we can still 685 // optimize if we can prove that the program has undefined behavior when 686 // Offset is outside that range. That is the case when GEP->getOperand(0) 687 // is a pointer to an object whose memory extent is NullTermIdx+1. 688 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 689 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 690 NullTermIdx == ArrSize - 1)) { 691 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 692 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 693 Offset); 694 } 695 } 696 } 697 698 // strlen(x?"foo":"bars") --> x ? 3 : 4 699 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 700 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 701 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 702 if (LenTrue && LenFalse) { 703 ORE.emit([&]() { 704 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 705 << "folded strlen(select) to select of constants"; 706 }); 707 return B.CreateSelect(SI->getCondition(), 708 ConstantInt::get(CI->getType(), LenTrue - 1), 709 ConstantInt::get(CI->getType(), LenFalse - 1)); 710 } 711 } 712 713 // strlen(x) != 0 --> *x != 0 714 // strlen(x) == 0 --> *x == 0 715 if (isOnlyUsedInZeroEqualityComparison(CI)) 716 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), 717 CI->getType()); 718 719 return nullptr; 720 } 721 722 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 723 if (Value *V = optimizeStringLength(CI, B, 8)) 724 return V; 725 annotateNonNullBasedOnAccess(CI, 0); 726 return nullptr; 727 } 728 729 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 730 Module &M = *CI->getModule(); 731 unsigned WCharSize = TLI->getWCharSize(M) * 8; 732 // We cannot perform this optimization without wchar_size metadata. 733 if (WCharSize == 0) 734 return nullptr; 735 736 return optimizeStringLength(CI, B, WCharSize); 737 } 738 739 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 740 StringRef S1, S2; 741 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 742 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 743 744 // strpbrk(s, "") -> nullptr 745 // strpbrk("", s) -> nullptr 746 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 747 return Constant::getNullValue(CI->getType()); 748 749 // Constant folding. 750 if (HasS1 && HasS2) { 751 size_t I = S1.find_first_of(S2); 752 if (I == StringRef::npos) // No match. 753 return Constant::getNullValue(CI->getType()); 754 755 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 756 "strpbrk"); 757 } 758 759 // strpbrk(s, "a") -> strchr(s, 'a') 760 if (HasS2 && S2.size() == 1) 761 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 762 763 return nullptr; 764 } 765 766 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 767 Value *EndPtr = CI->getArgOperand(1); 768 if (isa<ConstantPointerNull>(EndPtr)) { 769 // With a null EndPtr, this function won't capture the main argument. 770 // It would be readonly too, except that it still may write to errno. 771 CI->addParamAttr(0, Attribute::NoCapture); 772 } 773 774 return nullptr; 775 } 776 777 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 778 StringRef S1, S2; 779 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 780 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 781 782 // strspn(s, "") -> 0 783 // strspn("", s) -> 0 784 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 785 return Constant::getNullValue(CI->getType()); 786 787 // Constant folding. 788 if (HasS1 && HasS2) { 789 size_t Pos = S1.find_first_not_of(S2); 790 if (Pos == StringRef::npos) 791 Pos = S1.size(); 792 return ConstantInt::get(CI->getType(), Pos); 793 } 794 795 return nullptr; 796 } 797 798 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 799 StringRef S1, S2; 800 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 801 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 802 803 // strcspn("", s) -> 0 804 if (HasS1 && S1.empty()) 805 return Constant::getNullValue(CI->getType()); 806 807 // Constant folding. 808 if (HasS1 && HasS2) { 809 size_t Pos = S1.find_first_of(S2); 810 if (Pos == StringRef::npos) 811 Pos = S1.size(); 812 return ConstantInt::get(CI->getType(), Pos); 813 } 814 815 // strcspn(s, "") -> strlen(s) 816 if (HasS2 && S2.empty()) 817 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 818 819 return nullptr; 820 } 821 822 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 823 // fold strstr(x, x) -> x. 824 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 825 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 826 827 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 828 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 829 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 830 if (!StrLen) 831 return nullptr; 832 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 833 StrLen, B, DL, TLI); 834 if (!StrNCmp) 835 return nullptr; 836 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 837 ICmpInst *Old = cast<ICmpInst>(*UI++); 838 Value *Cmp = 839 B.CreateICmp(Old->getPredicate(), StrNCmp, 840 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 841 replaceAllUsesWith(Old, Cmp); 842 } 843 return CI; 844 } 845 846 // See if either input string is a constant string. 847 StringRef SearchStr, ToFindStr; 848 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 849 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 850 851 // fold strstr(x, "") -> x. 852 if (HasStr2 && ToFindStr.empty()) 853 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 854 855 // If both strings are known, constant fold it. 856 if (HasStr1 && HasStr2) { 857 size_t Offset = SearchStr.find(ToFindStr); 858 859 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 860 return Constant::getNullValue(CI->getType()); 861 862 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 863 Value *Result = castToCStr(CI->getArgOperand(0), B); 864 Result = 865 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 866 return B.CreateBitCast(Result, CI->getType()); 867 } 868 869 // fold strstr(x, "y") -> strchr(x, 'y'). 870 if (HasStr2 && ToFindStr.size() == 1) { 871 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 872 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 873 } 874 875 annotateNonNullBasedOnAccess(CI, {0, 1}); 876 return nullptr; 877 } 878 879 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 880 if (isKnownNonZero(CI->getOperand(2), DL)) 881 annotateNonNullBasedOnAccess(CI, 0); 882 return nullptr; 883 } 884 885 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 886 Value *SrcStr = CI->getArgOperand(0); 887 Value *Size = CI->getArgOperand(2); 888 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 889 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 890 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 891 892 // memchr(x, y, 0) -> null 893 if (LenC) { 894 if (LenC->isZero()) 895 return Constant::getNullValue(CI->getType()); 896 } else { 897 // From now on we need at least constant length and string. 898 return nullptr; 899 } 900 901 StringRef Str; 902 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 903 return nullptr; 904 905 // Truncate the string to LenC. If Str is smaller than LenC we will still only 906 // scan the string, as reading past the end of it is undefined and we can just 907 // return null if we don't find the char. 908 Str = Str.substr(0, LenC->getZExtValue()); 909 910 // If the char is variable but the input str and length are not we can turn 911 // this memchr call into a simple bit field test. Of course this only works 912 // when the return value is only checked against null. 913 // 914 // It would be really nice to reuse switch lowering here but we can't change 915 // the CFG at this point. 916 // 917 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 918 // != 0 919 // after bounds check. 920 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 921 unsigned char Max = 922 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 923 reinterpret_cast<const unsigned char *>(Str.end())); 924 925 // Make sure the bit field we're about to create fits in a register on the 926 // target. 927 // FIXME: On a 64 bit architecture this prevents us from using the 928 // interesting range of alpha ascii chars. We could do better by emitting 929 // two bitfields or shifting the range by 64 if no lower chars are used. 930 if (!DL.fitsInLegalInteger(Max + 1)) 931 return nullptr; 932 933 // For the bit field use a power-of-2 type with at least 8 bits to avoid 934 // creating unnecessary illegal types. 935 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 936 937 // Now build the bit field. 938 APInt Bitfield(Width, 0); 939 for (char C : Str) 940 Bitfield.setBit((unsigned char)C); 941 Value *BitfieldC = B.getInt(Bitfield); 942 943 // Adjust width of "C" to the bitfield width, then mask off the high bits. 944 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 945 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 946 947 // First check that the bit field access is within bounds. 948 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 949 "memchr.bounds"); 950 951 // Create code that checks if the given bit is set in the field. 952 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 953 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 954 955 // Finally merge both checks and cast to pointer type. The inttoptr 956 // implicitly zexts the i1 to intptr type. 957 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 958 } 959 960 // Check if all arguments are constants. If so, we can constant fold. 961 if (!CharC) 962 return nullptr; 963 964 // Compute the offset. 965 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 966 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 967 return Constant::getNullValue(CI->getType()); 968 969 // memchr(s+n,c,l) -> gep(s+n+i,c) 970 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 971 } 972 973 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 974 uint64_t Len, IRBuilderBase &B, 975 const DataLayout &DL) { 976 if (Len == 0) // memcmp(s1,s2,0) -> 0 977 return Constant::getNullValue(CI->getType()); 978 979 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 980 if (Len == 1) { 981 Value *LHSV = 982 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 983 CI->getType(), "lhsv"); 984 Value *RHSV = 985 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 986 CI->getType(), "rhsv"); 987 return B.CreateSub(LHSV, RHSV, "chardiff"); 988 } 989 990 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 991 // TODO: The case where both inputs are constants does not need to be limited 992 // to legal integers or equality comparison. See block below this. 993 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 994 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 995 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 996 997 // First, see if we can fold either argument to a constant. 998 Value *LHSV = nullptr; 999 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 1000 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 1001 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 1002 } 1003 Value *RHSV = nullptr; 1004 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 1005 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 1006 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 1007 } 1008 1009 // Don't generate unaligned loads. If either source is constant data, 1010 // alignment doesn't matter for that source because there is no load. 1011 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 1012 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 1013 if (!LHSV) { 1014 Type *LHSPtrTy = 1015 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 1016 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 1017 } 1018 if (!RHSV) { 1019 Type *RHSPtrTy = 1020 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 1021 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 1022 } 1023 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1024 } 1025 } 1026 1027 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 1028 // TODO: This is limited to i8 arrays. 1029 StringRef LHSStr, RHSStr; 1030 if (getConstantStringInfo(LHS, LHSStr) && 1031 getConstantStringInfo(RHS, RHSStr)) { 1032 // Make sure we're not reading out-of-bounds memory. 1033 if (Len > LHSStr.size() || Len > RHSStr.size()) 1034 return nullptr; 1035 // Fold the memcmp and normalize the result. This way we get consistent 1036 // results across multiple platforms. 1037 uint64_t Ret = 0; 1038 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 1039 if (Cmp < 0) 1040 Ret = -1; 1041 else if (Cmp > 0) 1042 Ret = 1; 1043 return ConstantInt::get(CI->getType(), Ret); 1044 } 1045 1046 return nullptr; 1047 } 1048 1049 // Most simplifications for memcmp also apply to bcmp. 1050 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1051 IRBuilderBase &B) { 1052 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1053 Value *Size = CI->getArgOperand(2); 1054 1055 if (LHS == RHS) // memcmp(s,s,x) -> 0 1056 return Constant::getNullValue(CI->getType()); 1057 1058 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1059 // Handle constant lengths. 1060 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1061 if (!LenC) 1062 return nullptr; 1063 1064 // memcmp(d,s,0) -> 0 1065 if (LenC->getZExtValue() == 0) 1066 return Constant::getNullValue(CI->getType()); 1067 1068 if (Value *Res = 1069 optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL)) 1070 return Res; 1071 return nullptr; 1072 } 1073 1074 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1075 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1076 return V; 1077 1078 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1079 // bcmp can be more efficient than memcmp because it only has to know that 1080 // there is a difference, not how different one is to the other. 1081 if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) { 1082 Value *LHS = CI->getArgOperand(0); 1083 Value *RHS = CI->getArgOperand(1); 1084 Value *Size = CI->getArgOperand(2); 1085 return emitBCmp(LHS, RHS, Size, B, DL, TLI); 1086 } 1087 1088 return nullptr; 1089 } 1090 1091 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1092 return optimizeMemCmpBCmpCommon(CI, B); 1093 } 1094 1095 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1096 Value *Size = CI->getArgOperand(2); 1097 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1098 if (isa<IntrinsicInst>(CI)) 1099 return nullptr; 1100 1101 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1102 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1103 CI->getArgOperand(1), Align(1), Size); 1104 NewCI->setAttributes(CI->getAttributes()); 1105 return CI->getArgOperand(0); 1106 } 1107 1108 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1109 Value *Dst = CI->getArgOperand(0); 1110 Value *Src = CI->getArgOperand(1); 1111 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1112 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1113 StringRef SrcStr; 1114 if (CI->use_empty() && Dst == Src) 1115 return Dst; 1116 // memccpy(d, s, c, 0) -> nullptr 1117 if (N) { 1118 if (N->isNullValue()) 1119 return Constant::getNullValue(CI->getType()); 1120 if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0, 1121 /*TrimAtNul=*/false) || 1122 !StopChar) 1123 return nullptr; 1124 } else { 1125 return nullptr; 1126 } 1127 1128 // Wrap arg 'c' of type int to char 1129 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1130 if (Pos == StringRef::npos) { 1131 if (N->getZExtValue() <= SrcStr.size()) { 1132 B.CreateMemCpy(Dst, Align(1), Src, Align(1), CI->getArgOperand(3)); 1133 return Constant::getNullValue(CI->getType()); 1134 } 1135 return nullptr; 1136 } 1137 1138 Value *NewN = 1139 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1140 // memccpy -> llvm.memcpy 1141 B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN); 1142 return Pos + 1 <= N->getZExtValue() 1143 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1144 : Constant::getNullValue(CI->getType()); 1145 } 1146 1147 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1148 Value *Dst = CI->getArgOperand(0); 1149 Value *N = CI->getArgOperand(2); 1150 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1151 CallInst *NewCI = 1152 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1153 NewCI->setAttributes(CI->getAttributes()); 1154 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1155 } 1156 1157 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1158 Value *Size = CI->getArgOperand(2); 1159 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1160 if (isa<IntrinsicInst>(CI)) 1161 return nullptr; 1162 1163 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1164 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1165 CI->getArgOperand(1), Align(1), Size); 1166 NewCI->setAttributes(CI->getAttributes()); 1167 return CI->getArgOperand(0); 1168 } 1169 1170 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 1171 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilderBase &B) { 1172 // This has to be a memset of zeros (bzero). 1173 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 1174 if (!FillValue || FillValue->getZExtValue() != 0) 1175 return nullptr; 1176 1177 // TODO: We should handle the case where the malloc has more than one use. 1178 // This is necessary to optimize common patterns such as when the result of 1179 // the malloc is checked against null or when a memset intrinsic is used in 1180 // place of a memset library call. 1181 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 1182 if (!Malloc || !Malloc->hasOneUse()) 1183 return nullptr; 1184 1185 // Is the inner call really malloc()? 1186 Function *InnerCallee = Malloc->getCalledFunction(); 1187 if (!InnerCallee) 1188 return nullptr; 1189 1190 LibFunc Func; 1191 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 1192 Func != LibFunc_malloc) 1193 return nullptr; 1194 1195 // The memset must cover the same number of bytes that are malloc'd. 1196 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 1197 return nullptr; 1198 1199 // Replace the malloc with a calloc. We need the data layout to know what the 1200 // actual size of a 'size_t' parameter is. 1201 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 1202 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 1203 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 1204 if (Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 1205 Malloc->getArgOperand(0), 1206 Malloc->getAttributes(), B, *TLI)) { 1207 substituteInParent(Malloc, Calloc); 1208 return Calloc; 1209 } 1210 1211 return nullptr; 1212 } 1213 1214 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1215 Value *Size = CI->getArgOperand(2); 1216 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1217 if (isa<IntrinsicInst>(CI)) 1218 return nullptr; 1219 1220 if (auto *Calloc = foldMallocMemset(CI, B)) 1221 return Calloc; 1222 1223 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1224 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1225 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1226 NewCI->setAttributes(CI->getAttributes()); 1227 return CI->getArgOperand(0); 1228 } 1229 1230 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1231 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1232 return emitMalloc(CI->getArgOperand(1), B, DL, TLI); 1233 1234 return nullptr; 1235 } 1236 1237 //===----------------------------------------------------------------------===// 1238 // Math Library Optimizations 1239 //===----------------------------------------------------------------------===// 1240 1241 // Replace a libcall \p CI with a call to intrinsic \p IID 1242 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1243 Intrinsic::ID IID) { 1244 // Propagate fast-math flags from the existing call to the new call. 1245 IRBuilderBase::FastMathFlagGuard Guard(B); 1246 B.setFastMathFlags(CI->getFastMathFlags()); 1247 1248 Module *M = CI->getModule(); 1249 Value *V = CI->getArgOperand(0); 1250 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1251 CallInst *NewCall = B.CreateCall(F, V); 1252 NewCall->takeName(CI); 1253 return NewCall; 1254 } 1255 1256 /// Return a variant of Val with float type. 1257 /// Currently this works in two cases: If Val is an FPExtension of a float 1258 /// value to something bigger, simply return the operand. 1259 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1260 /// loss of precision do so. 1261 static Value *valueHasFloatPrecision(Value *Val) { 1262 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1263 Value *Op = Cast->getOperand(0); 1264 if (Op->getType()->isFloatTy()) 1265 return Op; 1266 } 1267 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1268 APFloat F = Const->getValueAPF(); 1269 bool losesInfo; 1270 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1271 &losesInfo); 1272 if (!losesInfo) 1273 return ConstantFP::get(Const->getContext(), F); 1274 } 1275 return nullptr; 1276 } 1277 1278 /// Shrink double -> float functions. 1279 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1280 bool isBinary, bool isPrecise = false) { 1281 Function *CalleeFn = CI->getCalledFunction(); 1282 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1283 return nullptr; 1284 1285 // If not all the uses of the function are converted to float, then bail out. 1286 // This matters if the precision of the result is more important than the 1287 // precision of the arguments. 1288 if (isPrecise) 1289 for (User *U : CI->users()) { 1290 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1291 if (!Cast || !Cast->getType()->isFloatTy()) 1292 return nullptr; 1293 } 1294 1295 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1296 Value *V[2]; 1297 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1298 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1299 if (!V[0] || (isBinary && !V[1])) 1300 return nullptr; 1301 1302 // If call isn't an intrinsic, check that it isn't within a function with the 1303 // same name as the float version of this call, otherwise the result is an 1304 // infinite loop. For example, from MinGW-w64: 1305 // 1306 // float expf(float val) { return (float) exp((double) val); } 1307 StringRef CalleeName = CalleeFn->getName(); 1308 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1309 if (!IsIntrinsic) { 1310 StringRef CallerName = CI->getFunction()->getName(); 1311 if (!CallerName.empty() && CallerName.back() == 'f' && 1312 CallerName.size() == (CalleeName.size() + 1) && 1313 CallerName.startswith(CalleeName)) 1314 return nullptr; 1315 } 1316 1317 // Propagate the math semantics from the current function to the new function. 1318 IRBuilderBase::FastMathFlagGuard Guard(B); 1319 B.setFastMathFlags(CI->getFastMathFlags()); 1320 1321 // g((double) float) -> (double) gf(float) 1322 Value *R; 1323 if (IsIntrinsic) { 1324 Module *M = CI->getModule(); 1325 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1326 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1327 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1328 } else { 1329 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1330 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs) 1331 : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs); 1332 } 1333 return B.CreateFPExt(R, B.getDoubleTy()); 1334 } 1335 1336 /// Shrink double -> float for unary functions. 1337 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1338 bool isPrecise = false) { 1339 return optimizeDoubleFP(CI, B, false, isPrecise); 1340 } 1341 1342 /// Shrink double -> float for binary functions. 1343 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1344 bool isPrecise = false) { 1345 return optimizeDoubleFP(CI, B, true, isPrecise); 1346 } 1347 1348 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1349 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1350 if (!CI->isFast()) 1351 return nullptr; 1352 1353 // Propagate fast-math flags from the existing call to new instructions. 1354 IRBuilderBase::FastMathFlagGuard Guard(B); 1355 B.setFastMathFlags(CI->getFastMathFlags()); 1356 1357 Value *Real, *Imag; 1358 if (CI->getNumArgOperands() == 1) { 1359 Value *Op = CI->getArgOperand(0); 1360 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1361 Real = B.CreateExtractValue(Op, 0, "real"); 1362 Imag = B.CreateExtractValue(Op, 1, "imag"); 1363 } else { 1364 assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); 1365 Real = CI->getArgOperand(0); 1366 Imag = CI->getArgOperand(1); 1367 } 1368 1369 Value *RealReal = B.CreateFMul(Real, Real); 1370 Value *ImagImag = B.CreateFMul(Imag, Imag); 1371 1372 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1373 CI->getType()); 1374 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); 1375 } 1376 1377 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1378 IRBuilderBase &B) { 1379 if (!isa<FPMathOperator>(Call)) 1380 return nullptr; 1381 1382 IRBuilderBase::FastMathFlagGuard Guard(B); 1383 B.setFastMathFlags(Call->getFastMathFlags()); 1384 1385 // TODO: Can this be shared to also handle LLVM intrinsics? 1386 Value *X; 1387 switch (Func) { 1388 case LibFunc_sin: 1389 case LibFunc_sinf: 1390 case LibFunc_sinl: 1391 case LibFunc_tan: 1392 case LibFunc_tanf: 1393 case LibFunc_tanl: 1394 // sin(-X) --> -sin(X) 1395 // tan(-X) --> -tan(X) 1396 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1397 return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X)); 1398 break; 1399 case LibFunc_cos: 1400 case LibFunc_cosf: 1401 case LibFunc_cosl: 1402 // cos(-X) --> cos(X) 1403 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1404 return B.CreateCall(Call->getCalledFunction(), X, "cos"); 1405 break; 1406 default: 1407 break; 1408 } 1409 return nullptr; 1410 } 1411 1412 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) { 1413 // Multiplications calculated using Addition Chains. 1414 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1415 1416 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1417 1418 if (InnerChain[Exp]) 1419 return InnerChain[Exp]; 1420 1421 static const unsigned AddChain[33][2] = { 1422 {0, 0}, // Unused. 1423 {0, 0}, // Unused (base case = pow1). 1424 {1, 1}, // Unused (pre-computed). 1425 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1426 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1427 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1428 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1429 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1430 }; 1431 1432 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1433 getPow(InnerChain, AddChain[Exp][1], B)); 1434 return InnerChain[Exp]; 1435 } 1436 1437 // Return a properly extended 32-bit integer if the operation is an itofp. 1438 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B) { 1439 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1440 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1441 // Make sure that the exponent fits inside an int32_t, 1442 // thus avoiding any range issues that FP has not. 1443 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); 1444 if (BitWidth < 32 || 1445 (BitWidth == 32 && isa<SIToFPInst>(I2F))) 1446 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getInt32Ty()) 1447 : B.CreateZExt(Op, B.getInt32Ty()); 1448 } 1449 1450 return nullptr; 1451 } 1452 1453 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1454 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 1455 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 1456 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 1457 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1458 AttributeList Attrs; // Attributes are only meaningful on the original call 1459 Module *Mod = Pow->getModule(); 1460 Type *Ty = Pow->getType(); 1461 bool Ignored; 1462 1463 // Evaluate special cases related to a nested function as the base. 1464 1465 // pow(exp(x), y) -> exp(x * y) 1466 // pow(exp2(x), y) -> exp2(x * y) 1467 // If exp{,2}() is used only once, it is better to fold two transcendental 1468 // math functions into one. If used again, exp{,2}() would still have to be 1469 // called with the original argument, then keep both original transcendental 1470 // functions. However, this transformation is only safe with fully relaxed 1471 // math semantics, since, besides rounding differences, it changes overflow 1472 // and underflow behavior quite dramatically. For example: 1473 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1474 // Whereas: 1475 // exp(1000 * 0.001) = exp(1) 1476 // TODO: Loosen the requirement for fully relaxed math semantics. 1477 // TODO: Handle exp10() when more targets have it available. 1478 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1479 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1480 LibFunc LibFn; 1481 1482 Function *CalleeFn = BaseFn->getCalledFunction(); 1483 if (CalleeFn && 1484 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1485 StringRef ExpName; 1486 Intrinsic::ID ID; 1487 Value *ExpFn; 1488 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 1489 1490 switch (LibFn) { 1491 default: 1492 return nullptr; 1493 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1494 ExpName = TLI->getName(LibFunc_exp); 1495 ID = Intrinsic::exp; 1496 LibFnFloat = LibFunc_expf; 1497 LibFnDouble = LibFunc_exp; 1498 LibFnLongDouble = LibFunc_expl; 1499 break; 1500 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1501 ExpName = TLI->getName(LibFunc_exp2); 1502 ID = Intrinsic::exp2; 1503 LibFnFloat = LibFunc_exp2f; 1504 LibFnDouble = LibFunc_exp2; 1505 LibFnLongDouble = LibFunc_exp2l; 1506 break; 1507 } 1508 1509 // Create new exp{,2}() with the product as its argument. 1510 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1511 ExpFn = BaseFn->doesNotAccessMemory() 1512 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1513 FMul, ExpName) 1514 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1515 LibFnLongDouble, B, 1516 BaseFn->getAttributes()); 1517 1518 // Since the new exp{,2}() is different from the original one, dead code 1519 // elimination cannot be trusted to remove it, since it may have side 1520 // effects (e.g., errno). When the only consumer for the original 1521 // exp{,2}() is pow(), then it has to be explicitly erased. 1522 substituteInParent(BaseFn, ExpFn); 1523 return ExpFn; 1524 } 1525 } 1526 1527 // Evaluate special cases related to a constant base. 1528 1529 const APFloat *BaseF; 1530 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1531 return nullptr; 1532 1533 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 1534 if (match(Base, m_SpecificFP(2.0)) && 1535 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 1536 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1537 if (Value *ExpoI = getIntToFPVal(Expo, B)) 1538 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI, 1539 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1540 B, Attrs); 1541 } 1542 1543 // pow(2.0 ** n, x) -> exp2(n * x) 1544 if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1545 APFloat BaseR = APFloat(1.0); 1546 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1547 BaseR = BaseR / *BaseF; 1548 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1549 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1550 APSInt NI(64, false); 1551 if ((IsInteger || IsReciprocal) && 1552 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1553 APFloat::opOK && 1554 NI > 1 && NI.isPowerOf2()) { 1555 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1556 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1557 if (Pow->doesNotAccessMemory()) 1558 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1559 FMul, "exp2"); 1560 else 1561 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1562 LibFunc_exp2l, B, Attrs); 1563 } 1564 } 1565 1566 // pow(10.0, x) -> exp10(x) 1567 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1568 if (match(Base, m_SpecificFP(10.0)) && 1569 hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1570 return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f, 1571 LibFunc_exp10l, B, Attrs); 1572 1573 // pow(x, y) -> exp2(log2(x) * y) 1574 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 1575 !BaseF->isNegative()) { 1576 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 1577 // Luckily optimizePow has already handled the x == 1 case. 1578 assert(!match(Base, m_FPOne()) && 1579 "pow(1.0, y) should have been simplified earlier!"); 1580 1581 Value *Log = nullptr; 1582 if (Ty->isFloatTy()) 1583 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 1584 else if (Ty->isDoubleTy()) 1585 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 1586 1587 if (Log) { 1588 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 1589 if (Pow->doesNotAccessMemory()) 1590 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1591 FMul, "exp2"); 1592 else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) 1593 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1594 LibFunc_exp2l, B, Attrs); 1595 } 1596 } 1597 1598 return nullptr; 1599 } 1600 1601 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1602 Module *M, IRBuilderBase &B, 1603 const TargetLibraryInfo *TLI) { 1604 // If errno is never set, then use the intrinsic for sqrt(). 1605 if (NoErrno) { 1606 Function *SqrtFn = 1607 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1608 return B.CreateCall(SqrtFn, V, "sqrt"); 1609 } 1610 1611 // Otherwise, use the libcall for sqrt(). 1612 if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) 1613 // TODO: We also should check that the target can in fact lower the sqrt() 1614 // libcall. We currently have no way to ask this question, so we ask if 1615 // the target has a sqrt() libcall, which is not exactly the same. 1616 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1617 LibFunc_sqrtl, B, Attrs); 1618 1619 return nullptr; 1620 } 1621 1622 /// Use square root in place of pow(x, +/-0.5). 1623 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 1624 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1625 AttributeList Attrs; // Attributes are only meaningful on the original call 1626 Module *Mod = Pow->getModule(); 1627 Type *Ty = Pow->getType(); 1628 1629 const APFloat *ExpoF; 1630 if (!match(Expo, m_APFloat(ExpoF)) || 1631 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1632 return nullptr; 1633 1634 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 1635 // so that requires fast-math-flags (afn or reassoc). 1636 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 1637 return nullptr; 1638 1639 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1640 if (!Sqrt) 1641 return nullptr; 1642 1643 // Handle signed zero base by expanding to fabs(sqrt(x)). 1644 if (!Pow->hasNoSignedZeros()) { 1645 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1646 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1647 } 1648 1649 // Handle non finite base by expanding to 1650 // (x == -infinity ? +infinity : sqrt(x)). 1651 if (!Pow->hasNoInfs()) { 1652 Value *PosInf = ConstantFP::getInfinity(Ty), 1653 *NegInf = ConstantFP::getInfinity(Ty, true); 1654 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1655 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1656 } 1657 1658 // If the exponent is negative, then get the reciprocal. 1659 if (ExpoF->isNegative()) 1660 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1661 1662 return Sqrt; 1663 } 1664 1665 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1666 IRBuilderBase &B) { 1667 Value *Args[] = {Base, Expo}; 1668 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType()); 1669 return B.CreateCall(F, Args); 1670 } 1671 1672 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 1673 Value *Base = Pow->getArgOperand(0); 1674 Value *Expo = Pow->getArgOperand(1); 1675 Function *Callee = Pow->getCalledFunction(); 1676 StringRef Name = Callee->getName(); 1677 Type *Ty = Pow->getType(); 1678 Module *M = Pow->getModule(); 1679 Value *Shrunk = nullptr; 1680 bool AllowApprox = Pow->hasApproxFunc(); 1681 bool Ignored; 1682 1683 // Propagate the math semantics from the call to any created instructions. 1684 IRBuilderBase::FastMathFlagGuard Guard(B); 1685 B.setFastMathFlags(Pow->getFastMathFlags()); 1686 1687 // Shrink pow() to powf() if the arguments are single precision, 1688 // unless the result is expected to be double precision. 1689 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 1690 hasFloatVersion(Name)) 1691 Shrunk = optimizeBinaryDoubleFP(Pow, B, true); 1692 1693 // Evaluate special cases related to the base. 1694 1695 // pow(1.0, x) -> 1.0 1696 if (match(Base, m_FPOne())) 1697 return Base; 1698 1699 if (Value *Exp = replacePowWithExp(Pow, B)) 1700 return Exp; 1701 1702 // Evaluate special cases related to the exponent. 1703 1704 // pow(x, -1.0) -> 1.0 / x 1705 if (match(Expo, m_SpecificFP(-1.0))) 1706 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1707 1708 // pow(x, +/-0.0) -> 1.0 1709 if (match(Expo, m_AnyZeroFP())) 1710 return ConstantFP::get(Ty, 1.0); 1711 1712 // pow(x, 1.0) -> x 1713 if (match(Expo, m_FPOne())) 1714 return Base; 1715 1716 // pow(x, 2.0) -> x * x 1717 if (match(Expo, m_SpecificFP(2.0))) 1718 return B.CreateFMul(Base, Base, "square"); 1719 1720 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1721 return Sqrt; 1722 1723 // pow(x, n) -> x * x * x * ... 1724 const APFloat *ExpoF; 1725 if (AllowApprox && match(Expo, m_APFloat(ExpoF))) { 1726 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1727 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1728 // additional fmul. 1729 // TODO: This whole transformation should be backend specific (e.g. some 1730 // backends might prefer libcalls or the limit for the exponent might 1731 // be different) and it should also consider optimizing for size. 1732 APFloat LimF(ExpoF->getSemantics(), 33), 1733 ExpoA(abs(*ExpoF)); 1734 if (ExpoA < LimF) { 1735 // This transformation applies to integer or integer+0.5 exponents only. 1736 // For integer+0.5, we create a sqrt(Base) call. 1737 Value *Sqrt = nullptr; 1738 if (!ExpoA.isInteger()) { 1739 APFloat Expo2 = ExpoA; 1740 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1741 // is no floating point exception and the result is an integer, then 1742 // ExpoA == integer + 0.5 1743 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1744 return nullptr; 1745 1746 if (!Expo2.isInteger()) 1747 return nullptr; 1748 1749 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1750 Pow->doesNotAccessMemory(), M, B, TLI); 1751 if (!Sqrt) 1752 return nullptr; 1753 } 1754 1755 // We will memoize intermediate products of the Addition Chain. 1756 Value *InnerChain[33] = {nullptr}; 1757 InnerChain[1] = Base; 1758 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1759 1760 // We cannot readily convert a non-double type (like float) to a double. 1761 // So we first convert it to something which could be converted to double. 1762 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1763 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1764 1765 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1766 if (Sqrt) 1767 FMul = B.CreateFMul(FMul, Sqrt); 1768 1769 // If the exponent is negative, then get the reciprocal. 1770 if (ExpoF->isNegative()) 1771 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1772 1773 return FMul; 1774 } 1775 1776 APSInt IntExpo(32, /*isUnsigned=*/false); 1777 // powf(x, n) -> powi(x, n) if n is a constant signed integer value 1778 if (ExpoF->isInteger() && 1779 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 1780 APFloat::opOK) { 1781 return createPowWithIntegerExponent( 1782 Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B); 1783 } 1784 } 1785 1786 // powf(x, itofp(y)) -> powi(x, y) 1787 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 1788 if (Value *ExpoI = getIntToFPVal(Expo, B)) 1789 return createPowWithIntegerExponent(Base, ExpoI, M, B); 1790 } 1791 1792 return Shrunk; 1793 } 1794 1795 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 1796 Function *Callee = CI->getCalledFunction(); 1797 AttributeList Attrs; // Attributes are only meaningful on the original call 1798 StringRef Name = Callee->getName(); 1799 Value *Ret = nullptr; 1800 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 1801 hasFloatVersion(Name)) 1802 Ret = optimizeUnaryDoubleFP(CI, B, true); 1803 1804 Type *Ty = CI->getType(); 1805 Value *Op = CI->getArgOperand(0); 1806 1807 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1808 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1809 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 1810 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1811 if (Value *Exp = getIntToFPVal(Op, B)) 1812 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 1813 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1814 B, Attrs); 1815 } 1816 1817 return Ret; 1818 } 1819 1820 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 1821 // If we can shrink the call to a float function rather than a double 1822 // function, do that first. 1823 Function *Callee = CI->getCalledFunction(); 1824 StringRef Name = Callee->getName(); 1825 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1826 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1827 return Ret; 1828 1829 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 1830 // the intrinsics for improved optimization (for example, vectorization). 1831 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 1832 // From the C standard draft WG14/N1256: 1833 // "Ideally, fmax would be sensitive to the sign of zero, for example 1834 // fmax(-0.0, +0.0) would return +0; however, implementation in software 1835 // might be impractical." 1836 IRBuilderBase::FastMathFlagGuard Guard(B); 1837 FastMathFlags FMF = CI->getFastMathFlags(); 1838 FMF.setNoSignedZeros(); 1839 B.setFastMathFlags(FMF); 1840 1841 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 1842 : Intrinsic::maxnum; 1843 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 1844 return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) }); 1845 } 1846 1847 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 1848 Function *LogFn = Log->getCalledFunction(); 1849 AttributeList Attrs; // Attributes are only meaningful on the original call 1850 StringRef LogNm = LogFn->getName(); 1851 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 1852 Module *Mod = Log->getModule(); 1853 Type *Ty = Log->getType(); 1854 Value *Ret = nullptr; 1855 1856 if (UnsafeFPShrink && hasFloatVersion(LogNm)) 1857 Ret = optimizeUnaryDoubleFP(Log, B, true); 1858 1859 // The earlier call must also be 'fast' in order to do these transforms. 1860 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 1861 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 1862 return Ret; 1863 1864 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 1865 1866 // This is only applicable to log(), log2(), log10(). 1867 if (TLI->getLibFunc(LogNm, LogLb)) 1868 switch (LogLb) { 1869 case LibFunc_logf: 1870 LogID = Intrinsic::log; 1871 ExpLb = LibFunc_expf; 1872 Exp2Lb = LibFunc_exp2f; 1873 Exp10Lb = LibFunc_exp10f; 1874 PowLb = LibFunc_powf; 1875 break; 1876 case LibFunc_log: 1877 LogID = Intrinsic::log; 1878 ExpLb = LibFunc_exp; 1879 Exp2Lb = LibFunc_exp2; 1880 Exp10Lb = LibFunc_exp10; 1881 PowLb = LibFunc_pow; 1882 break; 1883 case LibFunc_logl: 1884 LogID = Intrinsic::log; 1885 ExpLb = LibFunc_expl; 1886 Exp2Lb = LibFunc_exp2l; 1887 Exp10Lb = LibFunc_exp10l; 1888 PowLb = LibFunc_powl; 1889 break; 1890 case LibFunc_log2f: 1891 LogID = Intrinsic::log2; 1892 ExpLb = LibFunc_expf; 1893 Exp2Lb = LibFunc_exp2f; 1894 Exp10Lb = LibFunc_exp10f; 1895 PowLb = LibFunc_powf; 1896 break; 1897 case LibFunc_log2: 1898 LogID = Intrinsic::log2; 1899 ExpLb = LibFunc_exp; 1900 Exp2Lb = LibFunc_exp2; 1901 Exp10Lb = LibFunc_exp10; 1902 PowLb = LibFunc_pow; 1903 break; 1904 case LibFunc_log2l: 1905 LogID = Intrinsic::log2; 1906 ExpLb = LibFunc_expl; 1907 Exp2Lb = LibFunc_exp2l; 1908 Exp10Lb = LibFunc_exp10l; 1909 PowLb = LibFunc_powl; 1910 break; 1911 case LibFunc_log10f: 1912 LogID = Intrinsic::log10; 1913 ExpLb = LibFunc_expf; 1914 Exp2Lb = LibFunc_exp2f; 1915 Exp10Lb = LibFunc_exp10f; 1916 PowLb = LibFunc_powf; 1917 break; 1918 case LibFunc_log10: 1919 LogID = Intrinsic::log10; 1920 ExpLb = LibFunc_exp; 1921 Exp2Lb = LibFunc_exp2; 1922 Exp10Lb = LibFunc_exp10; 1923 PowLb = LibFunc_pow; 1924 break; 1925 case LibFunc_log10l: 1926 LogID = Intrinsic::log10; 1927 ExpLb = LibFunc_expl; 1928 Exp2Lb = LibFunc_exp2l; 1929 Exp10Lb = LibFunc_exp10l; 1930 PowLb = LibFunc_powl; 1931 break; 1932 default: 1933 return Ret; 1934 } 1935 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 1936 LogID == Intrinsic::log10) { 1937 if (Ty->getScalarType()->isFloatTy()) { 1938 ExpLb = LibFunc_expf; 1939 Exp2Lb = LibFunc_exp2f; 1940 Exp10Lb = LibFunc_exp10f; 1941 PowLb = LibFunc_powf; 1942 } else if (Ty->getScalarType()->isDoubleTy()) { 1943 ExpLb = LibFunc_exp; 1944 Exp2Lb = LibFunc_exp2; 1945 Exp10Lb = LibFunc_exp10; 1946 PowLb = LibFunc_pow; 1947 } else 1948 return Ret; 1949 } else 1950 return Ret; 1951 1952 IRBuilderBase::FastMathFlagGuard Guard(B); 1953 B.setFastMathFlags(FastMathFlags::getFast()); 1954 1955 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 1956 LibFunc ArgLb = NotLibFunc; 1957 TLI->getLibFunc(*Arg, ArgLb); 1958 1959 // log(pow(x,y)) -> y*log(x) 1960 if (ArgLb == PowLb || ArgID == Intrinsic::pow) { 1961 Value *LogX = 1962 Log->doesNotAccessMemory() 1963 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 1964 Arg->getOperand(0), "log") 1965 : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs); 1966 Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul"); 1967 // Since pow() may have side effects, e.g. errno, 1968 // dead code elimination may not be trusted to remove it. 1969 substituteInParent(Arg, MulY); 1970 return MulY; 1971 } 1972 1973 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 1974 // TODO: There is no exp10() intrinsic yet. 1975 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 1976 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 1977 Constant *Eul; 1978 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 1979 // FIXME: Add more precise value of e for long double. 1980 Eul = ConstantFP::get(Log->getType(), numbers::e); 1981 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 1982 Eul = ConstantFP::get(Log->getType(), 2.0); 1983 else 1984 Eul = ConstantFP::get(Log->getType(), 10.0); 1985 Value *LogE = Log->doesNotAccessMemory() 1986 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 1987 Eul, "log") 1988 : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs); 1989 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 1990 // Since exp() may have side effects, e.g. errno, 1991 // dead code elimination may not be trusted to remove it. 1992 substituteInParent(Arg, MulY); 1993 return MulY; 1994 } 1995 1996 return Ret; 1997 } 1998 1999 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 2000 Function *Callee = CI->getCalledFunction(); 2001 Value *Ret = nullptr; 2002 // TODO: Once we have a way (other than checking for the existince of the 2003 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 2004 // condition below. 2005 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 2006 Callee->getIntrinsicID() == Intrinsic::sqrt)) 2007 Ret = optimizeUnaryDoubleFP(CI, B, true); 2008 2009 if (!CI->isFast()) 2010 return Ret; 2011 2012 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 2013 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 2014 return Ret; 2015 2016 // We're looking for a repeated factor in a multiplication tree, 2017 // so we can do this fold: sqrt(x * x) -> fabs(x); 2018 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 2019 Value *Op0 = I->getOperand(0); 2020 Value *Op1 = I->getOperand(1); 2021 Value *RepeatOp = nullptr; 2022 Value *OtherOp = nullptr; 2023 if (Op0 == Op1) { 2024 // Simple match: the operands of the multiply are identical. 2025 RepeatOp = Op0; 2026 } else { 2027 // Look for a more complicated pattern: one of the operands is itself 2028 // a multiply, so search for a common factor in that multiply. 2029 // Note: We don't bother looking any deeper than this first level or for 2030 // variations of this pattern because instcombine's visitFMUL and/or the 2031 // reassociation pass should give us this form. 2032 Value *OtherMul0, *OtherMul1; 2033 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 2034 // Pattern: sqrt((x * y) * z) 2035 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 2036 // Matched: sqrt((x * x) * z) 2037 RepeatOp = OtherMul0; 2038 OtherOp = Op1; 2039 } 2040 } 2041 } 2042 if (!RepeatOp) 2043 return Ret; 2044 2045 // Fast math flags for any created instructions should match the sqrt 2046 // and multiply. 2047 IRBuilderBase::FastMathFlagGuard Guard(B); 2048 B.setFastMathFlags(I->getFastMathFlags()); 2049 2050 // If we found a repeated factor, hoist it out of the square root and 2051 // replace it with the fabs of that factor. 2052 Module *M = Callee->getParent(); 2053 Type *ArgType = I->getType(); 2054 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 2055 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 2056 if (OtherOp) { 2057 // If we found a non-repeated factor, we still need to get its square 2058 // root. We then multiply that by the value that was simplified out 2059 // of the square root calculation. 2060 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 2061 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 2062 return B.CreateFMul(FabsCall, SqrtCall); 2063 } 2064 return FabsCall; 2065 } 2066 2067 // TODO: Generalize to handle any trig function and its inverse. 2068 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) { 2069 Function *Callee = CI->getCalledFunction(); 2070 Value *Ret = nullptr; 2071 StringRef Name = Callee->getName(); 2072 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 2073 Ret = optimizeUnaryDoubleFP(CI, B, true); 2074 2075 Value *Op1 = CI->getArgOperand(0); 2076 auto *OpC = dyn_cast<CallInst>(Op1); 2077 if (!OpC) 2078 return Ret; 2079 2080 // Both calls must be 'fast' in order to remove them. 2081 if (!CI->isFast() || !OpC->isFast()) 2082 return Ret; 2083 2084 // tan(atan(x)) -> x 2085 // tanf(atanf(x)) -> x 2086 // tanl(atanl(x)) -> x 2087 LibFunc Func; 2088 Function *F = OpC->getCalledFunction(); 2089 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 2090 ((Func == LibFunc_atan && Callee->getName() == "tan") || 2091 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 2092 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 2093 Ret = OpC->getArgOperand(0); 2094 return Ret; 2095 } 2096 2097 static bool isTrigLibCall(CallInst *CI) { 2098 // We can only hope to do anything useful if we can ignore things like errno 2099 // and floating-point exceptions. 2100 // We already checked the prototype. 2101 return CI->hasFnAttr(Attribute::NoUnwind) && 2102 CI->hasFnAttr(Attribute::ReadNone); 2103 } 2104 2105 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2106 bool UseFloat, Value *&Sin, Value *&Cos, 2107 Value *&SinCos) { 2108 Type *ArgTy = Arg->getType(); 2109 Type *ResTy; 2110 StringRef Name; 2111 2112 Triple T(OrigCallee->getParent()->getTargetTriple()); 2113 if (UseFloat) { 2114 Name = "__sincospif_stret"; 2115 2116 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2117 // x86_64 can't use {float, float} since that would be returned in both 2118 // xmm0 and xmm1, which isn't what a real struct would do. 2119 ResTy = T.getArch() == Triple::x86_64 2120 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2121 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2122 } else { 2123 Name = "__sincospi_stret"; 2124 ResTy = StructType::get(ArgTy, ArgTy); 2125 } 2126 2127 Module *M = OrigCallee->getParent(); 2128 FunctionCallee Callee = 2129 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); 2130 2131 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2132 // If the argument is an instruction, it must dominate all uses so put our 2133 // sincos call there. 2134 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2135 } else { 2136 // Otherwise (e.g. for a constant) the beginning of the function is as 2137 // good a place as any. 2138 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2139 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2140 } 2141 2142 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2143 2144 if (SinCos->getType()->isStructTy()) { 2145 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2146 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2147 } else { 2148 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2149 "sinpi"); 2150 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2151 "cospi"); 2152 } 2153 } 2154 2155 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) { 2156 // Make sure the prototype is as expected, otherwise the rest of the 2157 // function is probably invalid and likely to abort. 2158 if (!isTrigLibCall(CI)) 2159 return nullptr; 2160 2161 Value *Arg = CI->getArgOperand(0); 2162 SmallVector<CallInst *, 1> SinCalls; 2163 SmallVector<CallInst *, 1> CosCalls; 2164 SmallVector<CallInst *, 1> SinCosCalls; 2165 2166 bool IsFloat = Arg->getType()->isFloatTy(); 2167 2168 // Look for all compatible sinpi, cospi and sincospi calls with the same 2169 // argument. If there are enough (in some sense) we can make the 2170 // substitution. 2171 Function *F = CI->getFunction(); 2172 for (User *U : Arg->users()) 2173 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2174 2175 // It's only worthwhile if both sinpi and cospi are actually used. 2176 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 2177 return nullptr; 2178 2179 Value *Sin, *Cos, *SinCos; 2180 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 2181 2182 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2183 Value *Res) { 2184 for (CallInst *C : Calls) 2185 replaceAllUsesWith(C, Res); 2186 }; 2187 2188 replaceTrigInsts(SinCalls, Sin); 2189 replaceTrigInsts(CosCalls, Cos); 2190 replaceTrigInsts(SinCosCalls, SinCos); 2191 2192 return nullptr; 2193 } 2194 2195 void LibCallSimplifier::classifyArgUse( 2196 Value *Val, Function *F, bool IsFloat, 2197 SmallVectorImpl<CallInst *> &SinCalls, 2198 SmallVectorImpl<CallInst *> &CosCalls, 2199 SmallVectorImpl<CallInst *> &SinCosCalls) { 2200 CallInst *CI = dyn_cast<CallInst>(Val); 2201 2202 if (!CI) 2203 return; 2204 2205 // Don't consider calls in other functions. 2206 if (CI->getFunction() != F) 2207 return; 2208 2209 Function *Callee = CI->getCalledFunction(); 2210 LibFunc Func; 2211 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 2212 !isTrigLibCall(CI)) 2213 return; 2214 2215 if (IsFloat) { 2216 if (Func == LibFunc_sinpif) 2217 SinCalls.push_back(CI); 2218 else if (Func == LibFunc_cospif) 2219 CosCalls.push_back(CI); 2220 else if (Func == LibFunc_sincospif_stret) 2221 SinCosCalls.push_back(CI); 2222 } else { 2223 if (Func == LibFunc_sinpi) 2224 SinCalls.push_back(CI); 2225 else if (Func == LibFunc_cospi) 2226 CosCalls.push_back(CI); 2227 else if (Func == LibFunc_sincospi_stret) 2228 SinCosCalls.push_back(CI); 2229 } 2230 } 2231 2232 //===----------------------------------------------------------------------===// 2233 // Integer Library Call Optimizations 2234 //===----------------------------------------------------------------------===// 2235 2236 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 2237 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 2238 Value *Op = CI->getArgOperand(0); 2239 Type *ArgType = Op->getType(); 2240 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2241 Intrinsic::cttz, ArgType); 2242 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 2243 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 2244 V = B.CreateIntCast(V, B.getInt32Ty(), false); 2245 2246 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 2247 return B.CreateSelect(Cond, V, B.getInt32(0)); 2248 } 2249 2250 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 2251 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 2252 Value *Op = CI->getArgOperand(0); 2253 Type *ArgType = Op->getType(); 2254 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2255 Intrinsic::ctlz, ArgType); 2256 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 2257 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 2258 V); 2259 return B.CreateIntCast(V, CI->getType(), false); 2260 } 2261 2262 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 2263 // abs(x) -> x <s 0 ? -x : x 2264 // The negation has 'nsw' because abs of INT_MIN is undefined. 2265 Value *X = CI->getArgOperand(0); 2266 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 2267 Value *NegX = B.CreateNSWNeg(X, "neg"); 2268 return B.CreateSelect(IsNeg, NegX, X); 2269 } 2270 2271 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 2272 // isdigit(c) -> (c-'0') <u 10 2273 Value *Op = CI->getArgOperand(0); 2274 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 2275 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 2276 return B.CreateZExt(Op, CI->getType()); 2277 } 2278 2279 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 2280 // isascii(c) -> c <u 128 2281 Value *Op = CI->getArgOperand(0); 2282 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 2283 return B.CreateZExt(Op, CI->getType()); 2284 } 2285 2286 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 2287 // toascii(c) -> c & 0x7f 2288 return B.CreateAnd(CI->getArgOperand(0), 2289 ConstantInt::get(CI->getType(), 0x7F)); 2290 } 2291 2292 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 2293 StringRef Str; 2294 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2295 return nullptr; 2296 2297 return convertStrToNumber(CI, Str, 10); 2298 } 2299 2300 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) { 2301 StringRef Str; 2302 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2303 return nullptr; 2304 2305 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 2306 return nullptr; 2307 2308 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2309 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 2310 } 2311 2312 return nullptr; 2313 } 2314 2315 //===----------------------------------------------------------------------===// 2316 // Formatting and IO Library Call Optimizations 2317 //===----------------------------------------------------------------------===// 2318 2319 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2320 2321 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 2322 int StreamArg) { 2323 Function *Callee = CI->getCalledFunction(); 2324 // Error reporting calls should be cold, mark them as such. 2325 // This applies even to non-builtin calls: it is only a hint and applies to 2326 // functions that the frontend might not understand as builtins. 2327 2328 // This heuristic was suggested in: 2329 // Improving Static Branch Prediction in a Compiler 2330 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2331 // Proceedings of PACT'98, Oct. 1998, IEEE 2332 if (!CI->hasFnAttr(Attribute::Cold) && 2333 isReportingError(Callee, CI, StreamArg)) { 2334 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 2335 } 2336 2337 return nullptr; 2338 } 2339 2340 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2341 if (!Callee || !Callee->isDeclaration()) 2342 return false; 2343 2344 if (StreamArg < 0) 2345 return true; 2346 2347 // These functions might be considered cold, but only if their stream 2348 // argument is stderr. 2349 2350 if (StreamArg >= (int)CI->getNumArgOperands()) 2351 return false; 2352 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2353 if (!LI) 2354 return false; 2355 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2356 if (!GV || !GV->isDeclaration()) 2357 return false; 2358 return GV->getName() == "stderr"; 2359 } 2360 2361 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 2362 // Check for a fixed format string. 2363 StringRef FormatStr; 2364 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2365 return nullptr; 2366 2367 // Empty format string -> noop. 2368 if (FormatStr.empty()) // Tolerate printf's declared void. 2369 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2370 2371 // Do not do any of the following transformations if the printf return value 2372 // is used, in general the printf return value is not compatible with either 2373 // putchar() or puts(). 2374 if (!CI->use_empty()) 2375 return nullptr; 2376 2377 // printf("x") -> putchar('x'), even for "%" and "%%". 2378 if (FormatStr.size() == 1 || FormatStr == "%%") 2379 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 2380 2381 // printf("%s", "a") --> putchar('a') 2382 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 2383 StringRef ChrStr; 2384 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 2385 return nullptr; 2386 if (ChrStr.size() != 1) 2387 return nullptr; 2388 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 2389 } 2390 2391 // printf("foo\n") --> puts("foo") 2392 if (FormatStr[FormatStr.size() - 1] == '\n' && 2393 FormatStr.find('%') == StringRef::npos) { // No format characters. 2394 // Create a string literal with no \n on it. We expect the constant merge 2395 // pass to be run after this pass, to merge duplicate strings. 2396 FormatStr = FormatStr.drop_back(); 2397 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2398 return emitPutS(GV, B, TLI); 2399 } 2400 2401 // Optimize specific format strings. 2402 // printf("%c", chr) --> putchar(chr) 2403 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 2404 CI->getArgOperand(1)->getType()->isIntegerTy()) 2405 return emitPutChar(CI->getArgOperand(1), B, TLI); 2406 2407 // printf("%s\n", str) --> puts(str) 2408 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 2409 CI->getArgOperand(1)->getType()->isPointerTy()) 2410 return emitPutS(CI->getArgOperand(1), B, TLI); 2411 return nullptr; 2412 } 2413 2414 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 2415 2416 Function *Callee = CI->getCalledFunction(); 2417 FunctionType *FT = Callee->getFunctionType(); 2418 if (Value *V = optimizePrintFString(CI, B)) { 2419 return V; 2420 } 2421 2422 // printf(format, ...) -> iprintf(format, ...) if no floating point 2423 // arguments. 2424 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2425 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2426 FunctionCallee IPrintFFn = 2427 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2428 CallInst *New = cast<CallInst>(CI->clone()); 2429 New->setCalledFunction(IPrintFFn); 2430 B.Insert(New); 2431 return New; 2432 } 2433 2434 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2435 // arguments. 2436 if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) { 2437 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2438 auto SmallPrintFFn = 2439 M->getOrInsertFunction(TLI->getName(LibFunc_small_printf), 2440 FT, Callee->getAttributes()); 2441 CallInst *New = cast<CallInst>(CI->clone()); 2442 New->setCalledFunction(SmallPrintFFn); 2443 B.Insert(New); 2444 return New; 2445 } 2446 2447 annotateNonNullBasedOnAccess(CI, 0); 2448 return nullptr; 2449 } 2450 2451 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 2452 IRBuilderBase &B) { 2453 // Check for a fixed format string. 2454 StringRef FormatStr; 2455 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2456 return nullptr; 2457 2458 // If we just have a format string (nothing else crazy) transform it. 2459 if (CI->getNumArgOperands() == 2) { 2460 // Make sure there's no % in the constant array. We could try to handle 2461 // %% -> % in the future if we cared. 2462 if (FormatStr.find('%') != StringRef::npos) 2463 return nullptr; // we found a format specifier, bail out. 2464 2465 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2466 B.CreateMemCpy( 2467 CI->getArgOperand(0), Align(1), CI->getArgOperand(1), Align(1), 2468 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2469 FormatStr.size() + 1)); // Copy the null byte. 2470 return ConstantInt::get(CI->getType(), FormatStr.size()); 2471 } 2472 2473 // The remaining optimizations require the format string to be "%s" or "%c" 2474 // and have an extra operand. 2475 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2476 CI->getNumArgOperands() < 3) 2477 return nullptr; 2478 2479 // Decode the second character of the format string. 2480 if (FormatStr[1] == 'c') { 2481 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2482 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2483 return nullptr; 2484 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2485 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2486 B.CreateStore(V, Ptr); 2487 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2488 B.CreateStore(B.getInt8(0), Ptr); 2489 2490 return ConstantInt::get(CI->getType(), 1); 2491 } 2492 2493 if (FormatStr[1] == 's') { 2494 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2495 // strlen(str)+1) 2496 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2497 return nullptr; 2498 2499 if (CI->use_empty()) 2500 // sprintf(dest, "%s", str) -> strcpy(dest, str) 2501 return emitStrCpy(CI->getArgOperand(0), CI->getArgOperand(2), B, TLI); 2502 2503 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 2504 if (SrcLen) { 2505 B.CreateMemCpy( 2506 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2507 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 2508 // Returns total number of characters written without null-character. 2509 return ConstantInt::get(CI->getType(), SrcLen - 1); 2510 } else if (Value *V = emitStpCpy(CI->getArgOperand(0), CI->getArgOperand(2), 2511 B, TLI)) { 2512 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 2513 Value *PtrDiff = B.CreatePtrDiff(V, CI->getArgOperand(0)); 2514 return B.CreateIntCast(PtrDiff, CI->getType(), false); 2515 } 2516 2517 bool OptForSize = CI->getFunction()->hasOptSize() || 2518 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2519 PGSOQueryType::IRPass); 2520 if (OptForSize) 2521 return nullptr; 2522 2523 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2524 if (!Len) 2525 return nullptr; 2526 Value *IncLen = 2527 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2528 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(2), 2529 Align(1), IncLen); 2530 2531 // The sprintf result is the unincremented number of bytes in the string. 2532 return B.CreateIntCast(Len, CI->getType(), false); 2533 } 2534 return nullptr; 2535 } 2536 2537 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 2538 Function *Callee = CI->getCalledFunction(); 2539 FunctionType *FT = Callee->getFunctionType(); 2540 if (Value *V = optimizeSPrintFString(CI, B)) { 2541 return V; 2542 } 2543 2544 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2545 // point arguments. 2546 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2547 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2548 FunctionCallee SIPrintFFn = 2549 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2550 CallInst *New = cast<CallInst>(CI->clone()); 2551 New->setCalledFunction(SIPrintFFn); 2552 B.Insert(New); 2553 return New; 2554 } 2555 2556 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2557 // floating point arguments. 2558 if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) { 2559 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2560 auto SmallSPrintFFn = 2561 M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf), 2562 FT, Callee->getAttributes()); 2563 CallInst *New = cast<CallInst>(CI->clone()); 2564 New->setCalledFunction(SmallSPrintFFn); 2565 B.Insert(New); 2566 return New; 2567 } 2568 2569 annotateNonNullBasedOnAccess(CI, {0, 1}); 2570 return nullptr; 2571 } 2572 2573 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 2574 IRBuilderBase &B) { 2575 // Check for size 2576 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2577 if (!Size) 2578 return nullptr; 2579 2580 uint64_t N = Size->getZExtValue(); 2581 // Check for a fixed format string. 2582 StringRef FormatStr; 2583 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2584 return nullptr; 2585 2586 // If we just have a format string (nothing else crazy) transform it. 2587 if (CI->getNumArgOperands() == 3) { 2588 // Make sure there's no % in the constant array. We could try to handle 2589 // %% -> % in the future if we cared. 2590 if (FormatStr.find('%') != StringRef::npos) 2591 return nullptr; // we found a format specifier, bail out. 2592 2593 if (N == 0) 2594 return ConstantInt::get(CI->getType(), FormatStr.size()); 2595 else if (N < FormatStr.size() + 1) 2596 return nullptr; 2597 2598 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2599 // strlen(fmt)+1) 2600 B.CreateMemCpy( 2601 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2602 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2603 FormatStr.size() + 1)); // Copy the null byte. 2604 return ConstantInt::get(CI->getType(), FormatStr.size()); 2605 } 2606 2607 // The remaining optimizations require the format string to be "%s" or "%c" 2608 // and have an extra operand. 2609 if (FormatStr.size() == 2 && FormatStr[0] == '%' && 2610 CI->getNumArgOperands() == 4) { 2611 2612 // Decode the second character of the format string. 2613 if (FormatStr[1] == 'c') { 2614 if (N == 0) 2615 return ConstantInt::get(CI->getType(), 1); 2616 else if (N == 1) 2617 return nullptr; 2618 2619 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2620 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2621 return nullptr; 2622 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2623 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2624 B.CreateStore(V, Ptr); 2625 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2626 B.CreateStore(B.getInt8(0), Ptr); 2627 2628 return ConstantInt::get(CI->getType(), 1); 2629 } 2630 2631 if (FormatStr[1] == 's') { 2632 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2633 StringRef Str; 2634 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2635 return nullptr; 2636 2637 if (N == 0) 2638 return ConstantInt::get(CI->getType(), Str.size()); 2639 else if (N < Str.size() + 1) 2640 return nullptr; 2641 2642 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(3), 2643 Align(1), ConstantInt::get(CI->getType(), Str.size() + 1)); 2644 2645 // The snprintf result is the unincremented number of bytes in the string. 2646 return ConstantInt::get(CI->getType(), Str.size()); 2647 } 2648 } 2649 return nullptr; 2650 } 2651 2652 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 2653 if (Value *V = optimizeSnPrintFString(CI, B)) { 2654 return V; 2655 } 2656 2657 if (isKnownNonZero(CI->getOperand(1), DL)) 2658 annotateNonNullBasedOnAccess(CI, 0); 2659 return nullptr; 2660 } 2661 2662 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 2663 IRBuilderBase &B) { 2664 optimizeErrorReporting(CI, B, 0); 2665 2666 // All the optimizations depend on the format string. 2667 StringRef FormatStr; 2668 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2669 return nullptr; 2670 2671 // Do not do any of the following transformations if the fprintf return 2672 // value is used, in general the fprintf return value is not compatible 2673 // with fwrite(), fputc() or fputs(). 2674 if (!CI->use_empty()) 2675 return nullptr; 2676 2677 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2678 if (CI->getNumArgOperands() == 2) { 2679 // Could handle %% -> % if we cared. 2680 if (FormatStr.find('%') != StringRef::npos) 2681 return nullptr; // We found a format specifier. 2682 2683 return emitFWrite( 2684 CI->getArgOperand(1), 2685 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 2686 CI->getArgOperand(0), B, DL, TLI); 2687 } 2688 2689 // The remaining optimizations require the format string to be "%s" or "%c" 2690 // and have an extra operand. 2691 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2692 CI->getNumArgOperands() < 3) 2693 return nullptr; 2694 2695 // Decode the second character of the format string. 2696 if (FormatStr[1] == 'c') { 2697 // fprintf(F, "%c", chr) --> fputc(chr, F) 2698 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2699 return nullptr; 2700 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2701 } 2702 2703 if (FormatStr[1] == 's') { 2704 // fprintf(F, "%s", str) --> fputs(str, F) 2705 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2706 return nullptr; 2707 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2708 } 2709 return nullptr; 2710 } 2711 2712 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 2713 Function *Callee = CI->getCalledFunction(); 2714 FunctionType *FT = Callee->getFunctionType(); 2715 if (Value *V = optimizeFPrintFString(CI, B)) { 2716 return V; 2717 } 2718 2719 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2720 // floating point arguments. 2721 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2722 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2723 FunctionCallee FIPrintFFn = 2724 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2725 CallInst *New = cast<CallInst>(CI->clone()); 2726 New->setCalledFunction(FIPrintFFn); 2727 B.Insert(New); 2728 return New; 2729 } 2730 2731 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2732 // 128-bit floating point arguments. 2733 if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) { 2734 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2735 auto SmallFPrintFFn = 2736 M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf), 2737 FT, Callee->getAttributes()); 2738 CallInst *New = cast<CallInst>(CI->clone()); 2739 New->setCalledFunction(SmallFPrintFFn); 2740 B.Insert(New); 2741 return New; 2742 } 2743 2744 return nullptr; 2745 } 2746 2747 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 2748 optimizeErrorReporting(CI, B, 3); 2749 2750 // Get the element size and count. 2751 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2752 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2753 if (SizeC && CountC) { 2754 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2755 2756 // If this is writing zero records, remove the call (it's a noop). 2757 if (Bytes == 0) 2758 return ConstantInt::get(CI->getType(), 0); 2759 2760 // If this is writing one byte, turn it into fputc. 2761 // This optimisation is only valid, if the return value is unused. 2762 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2763 Value *Char = B.CreateLoad(B.getInt8Ty(), 2764 castToCStr(CI->getArgOperand(0), B), "char"); 2765 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2766 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2767 } 2768 } 2769 2770 return nullptr; 2771 } 2772 2773 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 2774 optimizeErrorReporting(CI, B, 1); 2775 2776 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2777 // requires more arguments and thus extra MOVs are required. 2778 bool OptForSize = CI->getFunction()->hasOptSize() || 2779 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2780 PGSOQueryType::IRPass); 2781 if (OptForSize) 2782 return nullptr; 2783 2784 // We can't optimize if return value is used. 2785 if (!CI->use_empty()) 2786 return nullptr; 2787 2788 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2789 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2790 if (!Len) 2791 return nullptr; 2792 2793 // Known to have no uses (see above). 2794 return emitFWrite( 2795 CI->getArgOperand(0), 2796 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2797 CI->getArgOperand(1), B, DL, TLI); 2798 } 2799 2800 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 2801 annotateNonNullBasedOnAccess(CI, 0); 2802 if (!CI->use_empty()) 2803 return nullptr; 2804 2805 // Check for a constant string. 2806 // puts("") -> putchar('\n') 2807 StringRef Str; 2808 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 2809 return emitPutChar(B.getInt32('\n'), B, TLI); 2810 2811 return nullptr; 2812 } 2813 2814 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 2815 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 2816 return B.CreateMemMove(CI->getArgOperand(1), Align(1), CI->getArgOperand(0), 2817 Align(1), CI->getArgOperand(2)); 2818 } 2819 2820 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2821 LibFunc Func; 2822 SmallString<20> FloatFuncName = FuncName; 2823 FloatFuncName += 'f'; 2824 if (TLI->getLibFunc(FloatFuncName, Func)) 2825 return TLI->has(Func); 2826 return false; 2827 } 2828 2829 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2830 IRBuilderBase &Builder) { 2831 LibFunc Func; 2832 Function *Callee = CI->getCalledFunction(); 2833 // Check for string/memory library functions. 2834 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2835 // Make sure we never change the calling convention. 2836 assert((ignoreCallingConv(Func) || 2837 isCallingConvCCompatible(CI)) && 2838 "Optimizing string/memory libcall would change the calling convention"); 2839 switch (Func) { 2840 case LibFunc_strcat: 2841 return optimizeStrCat(CI, Builder); 2842 case LibFunc_strncat: 2843 return optimizeStrNCat(CI, Builder); 2844 case LibFunc_strchr: 2845 return optimizeStrChr(CI, Builder); 2846 case LibFunc_strrchr: 2847 return optimizeStrRChr(CI, Builder); 2848 case LibFunc_strcmp: 2849 return optimizeStrCmp(CI, Builder); 2850 case LibFunc_strncmp: 2851 return optimizeStrNCmp(CI, Builder); 2852 case LibFunc_strcpy: 2853 return optimizeStrCpy(CI, Builder); 2854 case LibFunc_stpcpy: 2855 return optimizeStpCpy(CI, Builder); 2856 case LibFunc_strncpy: 2857 return optimizeStrNCpy(CI, Builder); 2858 case LibFunc_strlen: 2859 return optimizeStrLen(CI, Builder); 2860 case LibFunc_strpbrk: 2861 return optimizeStrPBrk(CI, Builder); 2862 case LibFunc_strndup: 2863 return optimizeStrNDup(CI, Builder); 2864 case LibFunc_strtol: 2865 case LibFunc_strtod: 2866 case LibFunc_strtof: 2867 case LibFunc_strtoul: 2868 case LibFunc_strtoll: 2869 case LibFunc_strtold: 2870 case LibFunc_strtoull: 2871 return optimizeStrTo(CI, Builder); 2872 case LibFunc_strspn: 2873 return optimizeStrSpn(CI, Builder); 2874 case LibFunc_strcspn: 2875 return optimizeStrCSpn(CI, Builder); 2876 case LibFunc_strstr: 2877 return optimizeStrStr(CI, Builder); 2878 case LibFunc_memchr: 2879 return optimizeMemChr(CI, Builder); 2880 case LibFunc_memrchr: 2881 return optimizeMemRChr(CI, Builder); 2882 case LibFunc_bcmp: 2883 return optimizeBCmp(CI, Builder); 2884 case LibFunc_memcmp: 2885 return optimizeMemCmp(CI, Builder); 2886 case LibFunc_memcpy: 2887 return optimizeMemCpy(CI, Builder); 2888 case LibFunc_memccpy: 2889 return optimizeMemCCpy(CI, Builder); 2890 case LibFunc_mempcpy: 2891 return optimizeMemPCpy(CI, Builder); 2892 case LibFunc_memmove: 2893 return optimizeMemMove(CI, Builder); 2894 case LibFunc_memset: 2895 return optimizeMemSet(CI, Builder); 2896 case LibFunc_realloc: 2897 return optimizeRealloc(CI, Builder); 2898 case LibFunc_wcslen: 2899 return optimizeWcslen(CI, Builder); 2900 case LibFunc_bcopy: 2901 return optimizeBCopy(CI, Builder); 2902 default: 2903 break; 2904 } 2905 } 2906 return nullptr; 2907 } 2908 2909 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2910 LibFunc Func, 2911 IRBuilderBase &Builder) { 2912 // Don't optimize calls that require strict floating point semantics. 2913 if (CI->isStrictFP()) 2914 return nullptr; 2915 2916 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 2917 return V; 2918 2919 switch (Func) { 2920 case LibFunc_sinpif: 2921 case LibFunc_sinpi: 2922 case LibFunc_cospif: 2923 case LibFunc_cospi: 2924 return optimizeSinCosPi(CI, Builder); 2925 case LibFunc_powf: 2926 case LibFunc_pow: 2927 case LibFunc_powl: 2928 return optimizePow(CI, Builder); 2929 case LibFunc_exp2l: 2930 case LibFunc_exp2: 2931 case LibFunc_exp2f: 2932 return optimizeExp2(CI, Builder); 2933 case LibFunc_fabsf: 2934 case LibFunc_fabs: 2935 case LibFunc_fabsl: 2936 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2937 case LibFunc_sqrtf: 2938 case LibFunc_sqrt: 2939 case LibFunc_sqrtl: 2940 return optimizeSqrt(CI, Builder); 2941 case LibFunc_logf: 2942 case LibFunc_log: 2943 case LibFunc_logl: 2944 case LibFunc_log10f: 2945 case LibFunc_log10: 2946 case LibFunc_log10l: 2947 case LibFunc_log1pf: 2948 case LibFunc_log1p: 2949 case LibFunc_log1pl: 2950 case LibFunc_log2f: 2951 case LibFunc_log2: 2952 case LibFunc_log2l: 2953 case LibFunc_logbf: 2954 case LibFunc_logb: 2955 case LibFunc_logbl: 2956 return optimizeLog(CI, Builder); 2957 case LibFunc_tan: 2958 case LibFunc_tanf: 2959 case LibFunc_tanl: 2960 return optimizeTan(CI, Builder); 2961 case LibFunc_ceil: 2962 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2963 case LibFunc_floor: 2964 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2965 case LibFunc_round: 2966 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2967 case LibFunc_roundeven: 2968 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 2969 case LibFunc_nearbyint: 2970 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2971 case LibFunc_rint: 2972 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2973 case LibFunc_trunc: 2974 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2975 case LibFunc_acos: 2976 case LibFunc_acosh: 2977 case LibFunc_asin: 2978 case LibFunc_asinh: 2979 case LibFunc_atan: 2980 case LibFunc_atanh: 2981 case LibFunc_cbrt: 2982 case LibFunc_cosh: 2983 case LibFunc_exp: 2984 case LibFunc_exp10: 2985 case LibFunc_expm1: 2986 case LibFunc_cos: 2987 case LibFunc_sin: 2988 case LibFunc_sinh: 2989 case LibFunc_tanh: 2990 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 2991 return optimizeUnaryDoubleFP(CI, Builder, true); 2992 return nullptr; 2993 case LibFunc_copysign: 2994 if (hasFloatVersion(CI->getCalledFunction()->getName())) 2995 return optimizeBinaryDoubleFP(CI, Builder); 2996 return nullptr; 2997 case LibFunc_fminf: 2998 case LibFunc_fmin: 2999 case LibFunc_fminl: 3000 case LibFunc_fmaxf: 3001 case LibFunc_fmax: 3002 case LibFunc_fmaxl: 3003 return optimizeFMinFMax(CI, Builder); 3004 case LibFunc_cabs: 3005 case LibFunc_cabsf: 3006 case LibFunc_cabsl: 3007 return optimizeCAbs(CI, Builder); 3008 default: 3009 return nullptr; 3010 } 3011 } 3012 3013 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 3014 // TODO: Split out the code below that operates on FP calls so that 3015 // we can all non-FP calls with the StrictFP attribute to be 3016 // optimized. 3017 if (CI->isNoBuiltin()) 3018 return nullptr; 3019 3020 LibFunc Func; 3021 Function *Callee = CI->getCalledFunction(); 3022 bool isCallingConvC = isCallingConvCCompatible(CI); 3023 3024 SmallVector<OperandBundleDef, 2> OpBundles; 3025 CI->getOperandBundlesAsDefs(OpBundles); 3026 3027 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3028 Builder.setDefaultOperandBundles(OpBundles); 3029 3030 // Command-line parameter overrides instruction attribute. 3031 // This can't be moved to optimizeFloatingPointLibCall() because it may be 3032 // used by the intrinsic optimizations. 3033 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 3034 UnsafeFPShrink = EnableUnsafeFPShrink; 3035 else if (isa<FPMathOperator>(CI) && CI->isFast()) 3036 UnsafeFPShrink = true; 3037 3038 // First, check for intrinsics. 3039 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 3040 if (!isCallingConvC) 3041 return nullptr; 3042 // The FP intrinsics have corresponding constrained versions so we don't 3043 // need to check for the StrictFP attribute here. 3044 switch (II->getIntrinsicID()) { 3045 case Intrinsic::pow: 3046 return optimizePow(CI, Builder); 3047 case Intrinsic::exp2: 3048 return optimizeExp2(CI, Builder); 3049 case Intrinsic::log: 3050 case Intrinsic::log2: 3051 case Intrinsic::log10: 3052 return optimizeLog(CI, Builder); 3053 case Intrinsic::sqrt: 3054 return optimizeSqrt(CI, Builder); 3055 // TODO: Use foldMallocMemset() with memset intrinsic. 3056 case Intrinsic::memset: 3057 return optimizeMemSet(CI, Builder); 3058 case Intrinsic::memcpy: 3059 return optimizeMemCpy(CI, Builder); 3060 case Intrinsic::memmove: 3061 return optimizeMemMove(CI, Builder); 3062 default: 3063 return nullptr; 3064 } 3065 } 3066 3067 // Also try to simplify calls to fortified library functions. 3068 if (Value *SimplifiedFortifiedCI = 3069 FortifiedSimplifier.optimizeCall(CI, Builder)) { 3070 // Try to further simplify the result. 3071 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 3072 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 3073 // Ensure that SimplifiedCI's uses are complete, since some calls have 3074 // their uses analyzed. 3075 replaceAllUsesWith(CI, SimplifiedCI); 3076 3077 // Set insertion point to SimplifiedCI to guarantee we reach all uses 3078 // we might replace later on. 3079 IRBuilderBase::InsertPointGuard Guard(Builder); 3080 Builder.SetInsertPoint(SimplifiedCI); 3081 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) { 3082 // If we were able to further simplify, remove the now redundant call. 3083 substituteInParent(SimplifiedCI, V); 3084 return V; 3085 } 3086 } 3087 return SimplifiedFortifiedCI; 3088 } 3089 3090 // Then check for known library functions. 3091 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 3092 // We never change the calling convention. 3093 if (!ignoreCallingConv(Func) && !isCallingConvC) 3094 return nullptr; 3095 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 3096 return V; 3097 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 3098 return V; 3099 switch (Func) { 3100 case LibFunc_ffs: 3101 case LibFunc_ffsl: 3102 case LibFunc_ffsll: 3103 return optimizeFFS(CI, Builder); 3104 case LibFunc_fls: 3105 case LibFunc_flsl: 3106 case LibFunc_flsll: 3107 return optimizeFls(CI, Builder); 3108 case LibFunc_abs: 3109 case LibFunc_labs: 3110 case LibFunc_llabs: 3111 return optimizeAbs(CI, Builder); 3112 case LibFunc_isdigit: 3113 return optimizeIsDigit(CI, Builder); 3114 case LibFunc_isascii: 3115 return optimizeIsAscii(CI, Builder); 3116 case LibFunc_toascii: 3117 return optimizeToAscii(CI, Builder); 3118 case LibFunc_atoi: 3119 case LibFunc_atol: 3120 case LibFunc_atoll: 3121 return optimizeAtoi(CI, Builder); 3122 case LibFunc_strtol: 3123 case LibFunc_strtoll: 3124 return optimizeStrtol(CI, Builder); 3125 case LibFunc_printf: 3126 return optimizePrintF(CI, Builder); 3127 case LibFunc_sprintf: 3128 return optimizeSPrintF(CI, Builder); 3129 case LibFunc_snprintf: 3130 return optimizeSnPrintF(CI, Builder); 3131 case LibFunc_fprintf: 3132 return optimizeFPrintF(CI, Builder); 3133 case LibFunc_fwrite: 3134 return optimizeFWrite(CI, Builder); 3135 case LibFunc_fputs: 3136 return optimizeFPuts(CI, Builder); 3137 case LibFunc_puts: 3138 return optimizePuts(CI, Builder); 3139 case LibFunc_perror: 3140 return optimizeErrorReporting(CI, Builder); 3141 case LibFunc_vfprintf: 3142 case LibFunc_fiprintf: 3143 return optimizeErrorReporting(CI, Builder, 0); 3144 default: 3145 return nullptr; 3146 } 3147 } 3148 return nullptr; 3149 } 3150 3151 LibCallSimplifier::LibCallSimplifier( 3152 const DataLayout &DL, const TargetLibraryInfo *TLI, 3153 OptimizationRemarkEmitter &ORE, 3154 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 3155 function_ref<void(Instruction *, Value *)> Replacer, 3156 function_ref<void(Instruction *)> Eraser) 3157 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 3158 UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {} 3159 3160 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 3161 // Indirect through the replacer used in this instance. 3162 Replacer(I, With); 3163 } 3164 3165 void LibCallSimplifier::eraseFromParent(Instruction *I) { 3166 Eraser(I); 3167 } 3168 3169 // TODO: 3170 // Additional cases that we need to add to this file: 3171 // 3172 // cbrt: 3173 // * cbrt(expN(X)) -> expN(x/3) 3174 // * cbrt(sqrt(x)) -> pow(x,1/6) 3175 // * cbrt(cbrt(x)) -> pow(x,1/9) 3176 // 3177 // exp, expf, expl: 3178 // * exp(log(x)) -> x 3179 // 3180 // log, logf, logl: 3181 // * log(exp(x)) -> x 3182 // * log(exp(y)) -> y*log(e) 3183 // * log(exp10(y)) -> y*log(10) 3184 // * log(sqrt(x)) -> 0.5*log(x) 3185 // 3186 // pow, powf, powl: 3187 // * pow(sqrt(x),y) -> pow(x,y*0.5) 3188 // * pow(pow(x,y),z)-> pow(x,y*z) 3189 // 3190 // signbit: 3191 // * signbit(cnst) -> cnst' 3192 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 3193 // 3194 // sqrt, sqrtf, sqrtl: 3195 // * sqrt(expN(x)) -> expN(x*0.5) 3196 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 3197 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 3198 // 3199 3200 //===----------------------------------------------------------------------===// 3201 // Fortified Library Call Optimizations 3202 //===----------------------------------------------------------------------===// 3203 3204 bool 3205 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 3206 unsigned ObjSizeOp, 3207 Optional<unsigned> SizeOp, 3208 Optional<unsigned> StrOp, 3209 Optional<unsigned> FlagOp) { 3210 // If this function takes a flag argument, the implementation may use it to 3211 // perform extra checks. Don't fold into the non-checking variant. 3212 if (FlagOp) { 3213 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 3214 if (!Flag || !Flag->isZero()) 3215 return false; 3216 } 3217 3218 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 3219 return true; 3220 3221 if (ConstantInt *ObjSizeCI = 3222 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 3223 if (ObjSizeCI->isMinusOne()) 3224 return true; 3225 // If the object size wasn't -1 (unknown), bail out if we were asked to. 3226 if (OnlyLowerUnknownSize) 3227 return false; 3228 if (StrOp) { 3229 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 3230 // If the length is 0 we don't know how long it is and so we can't 3231 // remove the check. 3232 if (Len) 3233 annotateDereferenceableBytes(CI, *StrOp, Len); 3234 else 3235 return false; 3236 return ObjSizeCI->getZExtValue() >= Len; 3237 } 3238 3239 if (SizeOp) { 3240 if (ConstantInt *SizeCI = 3241 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 3242 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 3243 } 3244 } 3245 return false; 3246 } 3247 3248 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 3249 IRBuilderBase &B) { 3250 if (isFortifiedCallFoldable(CI, 3, 2)) { 3251 CallInst *NewCI = 3252 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3253 Align(1), CI->getArgOperand(2)); 3254 NewCI->setAttributes(CI->getAttributes()); 3255 return CI->getArgOperand(0); 3256 } 3257 return nullptr; 3258 } 3259 3260 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 3261 IRBuilderBase &B) { 3262 if (isFortifiedCallFoldable(CI, 3, 2)) { 3263 CallInst *NewCI = 3264 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3265 Align(1), CI->getArgOperand(2)); 3266 NewCI->setAttributes(CI->getAttributes()); 3267 return CI->getArgOperand(0); 3268 } 3269 return nullptr; 3270 } 3271 3272 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 3273 IRBuilderBase &B) { 3274 // TODO: Try foldMallocMemset() here. 3275 3276 if (isFortifiedCallFoldable(CI, 3, 2)) { 3277 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 3278 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 3279 CI->getArgOperand(2), Align(1)); 3280 NewCI->setAttributes(CI->getAttributes()); 3281 return CI->getArgOperand(0); 3282 } 3283 return nullptr; 3284 } 3285 3286 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 3287 IRBuilderBase &B, 3288 LibFunc Func) { 3289 const DataLayout &DL = CI->getModule()->getDataLayout(); 3290 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 3291 *ObjSize = CI->getArgOperand(2); 3292 3293 // __stpcpy_chk(x,x,...) -> x+strlen(x) 3294 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 3295 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3296 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3297 } 3298 3299 // If a) we don't have any length information, or b) we know this will 3300 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3301 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3302 // TODO: It might be nice to get a maximum length out of the possible 3303 // string lengths for varying. 3304 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 3305 if (Func == LibFunc_strcpy_chk) 3306 return emitStrCpy(Dst, Src, B, TLI); 3307 else 3308 return emitStpCpy(Dst, Src, B, TLI); 3309 } 3310 3311 if (OnlyLowerUnknownSize) 3312 return nullptr; 3313 3314 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3315 uint64_t Len = GetStringLength(Src); 3316 if (Len) 3317 annotateDereferenceableBytes(CI, 1, Len); 3318 else 3319 return nullptr; 3320 3321 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 3322 Value *LenV = ConstantInt::get(SizeTTy, Len); 3323 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 3324 // If the function was an __stpcpy_chk, and we were able to fold it into 3325 // a __memcpy_chk, we still need to return the correct end pointer. 3326 if (Ret && Func == LibFunc_stpcpy_chk) 3327 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 3328 return Ret; 3329 } 3330 3331 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 3332 IRBuilderBase &B) { 3333 if (isFortifiedCallFoldable(CI, 1, None, 0)) 3334 return emitStrLen(CI->getArgOperand(0), B, CI->getModule()->getDataLayout(), 3335 TLI); 3336 return nullptr; 3337 } 3338 3339 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 3340 IRBuilderBase &B, 3341 LibFunc Func) { 3342 if (isFortifiedCallFoldable(CI, 3, 2)) { 3343 if (Func == LibFunc_strncpy_chk) 3344 return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3345 CI->getArgOperand(2), B, TLI); 3346 else 3347 return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3348 CI->getArgOperand(2), B, TLI); 3349 } 3350 3351 return nullptr; 3352 } 3353 3354 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 3355 IRBuilderBase &B) { 3356 if (isFortifiedCallFoldable(CI, 4, 3)) 3357 return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3358 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI); 3359 3360 return nullptr; 3361 } 3362 3363 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 3364 IRBuilderBase &B) { 3365 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 3366 SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 5, CI->arg_end()); 3367 return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3368 CI->getArgOperand(4), VariadicArgs, B, TLI); 3369 } 3370 3371 return nullptr; 3372 } 3373 3374 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3375 IRBuilderBase &B) { 3376 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3377 SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 4, CI->arg_end()); 3378 return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs, 3379 B, TLI); 3380 } 3381 3382 return nullptr; 3383 } 3384 3385 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3386 IRBuilderBase &B) { 3387 if (isFortifiedCallFoldable(CI, 2)) 3388 return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI); 3389 3390 return nullptr; 3391 } 3392 3393 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3394 IRBuilderBase &B) { 3395 if (isFortifiedCallFoldable(CI, 3)) 3396 return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3397 CI->getArgOperand(2), B, TLI); 3398 3399 return nullptr; 3400 } 3401 3402 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3403 IRBuilderBase &B) { 3404 if (isFortifiedCallFoldable(CI, 3)) 3405 return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3406 CI->getArgOperand(2), B, TLI); 3407 3408 return nullptr; 3409 } 3410 3411 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3412 IRBuilderBase &B) { 3413 if (isFortifiedCallFoldable(CI, 3)) 3414 return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3415 CI->getArgOperand(2), B, TLI); 3416 3417 return nullptr; 3418 } 3419 3420 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3421 IRBuilderBase &B) { 3422 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3423 return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3424 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI); 3425 3426 return nullptr; 3427 } 3428 3429 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3430 IRBuilderBase &B) { 3431 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3432 return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3433 CI->getArgOperand(4), B, TLI); 3434 3435 return nullptr; 3436 } 3437 3438 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 3439 IRBuilderBase &Builder) { 3440 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3441 // Some clang users checked for _chk libcall availability using: 3442 // __has_builtin(__builtin___memcpy_chk) 3443 // When compiling with -fno-builtin, this is always true. 3444 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3445 // end up with fortified libcalls, which isn't acceptable in a freestanding 3446 // environment which only provides their non-fortified counterparts. 3447 // 3448 // Until we change clang and/or teach external users to check for availability 3449 // differently, disregard the "nobuiltin" attribute and TLI::has. 3450 // 3451 // PR23093. 3452 3453 LibFunc Func; 3454 Function *Callee = CI->getCalledFunction(); 3455 bool isCallingConvC = isCallingConvCCompatible(CI); 3456 3457 SmallVector<OperandBundleDef, 2> OpBundles; 3458 CI->getOperandBundlesAsDefs(OpBundles); 3459 3460 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3461 Builder.setDefaultOperandBundles(OpBundles); 3462 3463 // First, check that this is a known library functions and that the prototype 3464 // is correct. 3465 if (!TLI->getLibFunc(*Callee, Func)) 3466 return nullptr; 3467 3468 // We never change the calling convention. 3469 if (!ignoreCallingConv(Func) && !isCallingConvC) 3470 return nullptr; 3471 3472 switch (Func) { 3473 case LibFunc_memcpy_chk: 3474 return optimizeMemCpyChk(CI, Builder); 3475 case LibFunc_memmove_chk: 3476 return optimizeMemMoveChk(CI, Builder); 3477 case LibFunc_memset_chk: 3478 return optimizeMemSetChk(CI, Builder); 3479 case LibFunc_stpcpy_chk: 3480 case LibFunc_strcpy_chk: 3481 return optimizeStrpCpyChk(CI, Builder, Func); 3482 case LibFunc_strlen_chk: 3483 return optimizeStrLenChk(CI, Builder); 3484 case LibFunc_stpncpy_chk: 3485 case LibFunc_strncpy_chk: 3486 return optimizeStrpNCpyChk(CI, Builder, Func); 3487 case LibFunc_memccpy_chk: 3488 return optimizeMemCCpyChk(CI, Builder); 3489 case LibFunc_snprintf_chk: 3490 return optimizeSNPrintfChk(CI, Builder); 3491 case LibFunc_sprintf_chk: 3492 return optimizeSPrintfChk(CI, Builder); 3493 case LibFunc_strcat_chk: 3494 return optimizeStrCatChk(CI, Builder); 3495 case LibFunc_strlcat_chk: 3496 return optimizeStrLCat(CI, Builder); 3497 case LibFunc_strncat_chk: 3498 return optimizeStrNCatChk(CI, Builder); 3499 case LibFunc_strlcpy_chk: 3500 return optimizeStrLCpyChk(CI, Builder); 3501 case LibFunc_vsnprintf_chk: 3502 return optimizeVSNPrintfChk(CI, Builder); 3503 case LibFunc_vsprintf_chk: 3504 return optimizeVSPrintfChk(CI, Builder); 3505 default: 3506 break; 3507 } 3508 return nullptr; 3509 } 3510 3511 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3512 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3513 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 3514