1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is a utility pass used for testing the InstructionSimplify analysis.
11 // The analysis is applied to every instruction, and if it simplifies then the
12 // instruction is replaced by the simplification.  If you are looking for a pass
13 // that performs serious instruction folding, use the instcombine pass instead.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/KnownBits.h"
35 #include "llvm/Transforms/Utils/BuildLibCalls.h"
36 #include "llvm/Transforms/Utils/Local.h"
37 
38 using namespace llvm;
39 using namespace PatternMatch;
40 
41 static cl::opt<bool>
42     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
43                          cl::init(false),
44                          cl::desc("Enable unsafe double to float "
45                                   "shrinking for math lib calls"));
46 
47 
48 //===----------------------------------------------------------------------===//
49 // Helper Functions
50 //===----------------------------------------------------------------------===//
51 
52 static bool ignoreCallingConv(LibFunc Func) {
53   return Func == LibFunc_abs || Func == LibFunc_labs ||
54          Func == LibFunc_llabs || Func == LibFunc_strlen;
55 }
56 
57 static bool isCallingConvCCompatible(CallInst *CI) {
58   switch(CI->getCallingConv()) {
59   default:
60     return false;
61   case llvm::CallingConv::C:
62     return true;
63   case llvm::CallingConv::ARM_APCS:
64   case llvm::CallingConv::ARM_AAPCS:
65   case llvm::CallingConv::ARM_AAPCS_VFP: {
66 
67     // The iOS ABI diverges from the standard in some cases, so for now don't
68     // try to simplify those calls.
69     if (Triple(CI->getModule()->getTargetTriple()).isiOS())
70       return false;
71 
72     auto *FuncTy = CI->getFunctionType();
73 
74     if (!FuncTy->getReturnType()->isPointerTy() &&
75         !FuncTy->getReturnType()->isIntegerTy() &&
76         !FuncTy->getReturnType()->isVoidTy())
77       return false;
78 
79     for (auto Param : FuncTy->params()) {
80       if (!Param->isPointerTy() && !Param->isIntegerTy())
81         return false;
82     }
83     return true;
84   }
85   }
86   return false;
87 }
88 
89 /// Return true if it is only used in equality comparisons with With.
90 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
91   for (User *U : V->users()) {
92     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
93       if (IC->isEquality() && IC->getOperand(1) == With)
94         continue;
95     // Unknown instruction.
96     return false;
97   }
98   return true;
99 }
100 
101 static bool callHasFloatingPointArgument(const CallInst *CI) {
102   return any_of(CI->operands(), [](const Use &OI) {
103     return OI->getType()->isFloatingPointTy();
104   });
105 }
106 
107 /// \brief Check whether the overloaded unary floating point function
108 /// corresponding to \a Ty is available.
109 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
110                             LibFunc DoubleFn, LibFunc FloatFn,
111                             LibFunc LongDoubleFn) {
112   switch (Ty->getTypeID()) {
113   case Type::FloatTyID:
114     return TLI->has(FloatFn);
115   case Type::DoubleTyID:
116     return TLI->has(DoubleFn);
117   default:
118     return TLI->has(LongDoubleFn);
119   }
120 }
121 
122 //===----------------------------------------------------------------------===//
123 // String and Memory Library Call Optimizations
124 //===----------------------------------------------------------------------===//
125 
126 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
127   // Extract some information from the instruction
128   Value *Dst = CI->getArgOperand(0);
129   Value *Src = CI->getArgOperand(1);
130 
131   // See if we can get the length of the input string.
132   uint64_t Len = GetStringLength(Src);
133   if (Len == 0)
134     return nullptr;
135   --Len; // Unbias length.
136 
137   // Handle the simple, do-nothing case: strcat(x, "") -> x
138   if (Len == 0)
139     return Dst;
140 
141   return emitStrLenMemCpy(Src, Dst, Len, B);
142 }
143 
144 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
145                                            IRBuilder<> &B) {
146   // We need to find the end of the destination string.  That's where the
147   // memory is to be moved to. We just generate a call to strlen.
148   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
149   if (!DstLen)
150     return nullptr;
151 
152   // Now that we have the destination's length, we must index into the
153   // destination's pointer to get the actual memcpy destination (end of
154   // the string .. we're concatenating).
155   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
156 
157   // We have enough information to now generate the memcpy call to do the
158   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
159   B.CreateMemCpy(CpyDst, Src,
160                  ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1),
161                  1);
162   return Dst;
163 }
164 
165 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
166   // Extract some information from the instruction.
167   Value *Dst = CI->getArgOperand(0);
168   Value *Src = CI->getArgOperand(1);
169   uint64_t Len;
170 
171   // We don't do anything if length is not constant.
172   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
173     Len = LengthArg->getZExtValue();
174   else
175     return nullptr;
176 
177   // See if we can get the length of the input string.
178   uint64_t SrcLen = GetStringLength(Src);
179   if (SrcLen == 0)
180     return nullptr;
181   --SrcLen; // Unbias length.
182 
183   // Handle the simple, do-nothing cases:
184   // strncat(x, "", c) -> x
185   // strncat(x,  c, 0) -> x
186   if (SrcLen == 0 || Len == 0)
187     return Dst;
188 
189   // We don't optimize this case.
190   if (Len < SrcLen)
191     return nullptr;
192 
193   // strncat(x, s, c) -> strcat(x, s)
194   // s is constant so the strcat can be optimized further.
195   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
196 }
197 
198 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
199   Function *Callee = CI->getCalledFunction();
200   FunctionType *FT = Callee->getFunctionType();
201   Value *SrcStr = CI->getArgOperand(0);
202 
203   // If the second operand is non-constant, see if we can compute the length
204   // of the input string and turn this into memchr.
205   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
206   if (!CharC) {
207     uint64_t Len = GetStringLength(SrcStr);
208     if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
209       return nullptr;
210 
211     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
212                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
213                       B, DL, TLI);
214   }
215 
216   // Otherwise, the character is a constant, see if the first argument is
217   // a string literal.  If so, we can constant fold.
218   StringRef Str;
219   if (!getConstantStringInfo(SrcStr, Str)) {
220     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
221       return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI),
222                          "strchr");
223     return nullptr;
224   }
225 
226   // Compute the offset, make sure to handle the case when we're searching for
227   // zero (a weird way to spell strlen).
228   size_t I = (0xFF & CharC->getSExtValue()) == 0
229                  ? Str.size()
230                  : Str.find(CharC->getSExtValue());
231   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
232     return Constant::getNullValue(CI->getType());
233 
234   // strchr(s+n,c)  -> gep(s+n+i,c)
235   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
236 }
237 
238 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
239   Value *SrcStr = CI->getArgOperand(0);
240   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
241 
242   // Cannot fold anything if we're not looking for a constant.
243   if (!CharC)
244     return nullptr;
245 
246   StringRef Str;
247   if (!getConstantStringInfo(SrcStr, Str)) {
248     // strrchr(s, 0) -> strchr(s, 0)
249     if (CharC->isZero())
250       return emitStrChr(SrcStr, '\0', B, TLI);
251     return nullptr;
252   }
253 
254   // Compute the offset.
255   size_t I = (0xFF & CharC->getSExtValue()) == 0
256                  ? Str.size()
257                  : Str.rfind(CharC->getSExtValue());
258   if (I == StringRef::npos) // Didn't find the char. Return null.
259     return Constant::getNullValue(CI->getType());
260 
261   // strrchr(s+n,c) -> gep(s+n+i,c)
262   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
263 }
264 
265 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
266   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
267   if (Str1P == Str2P) // strcmp(x,x)  -> 0
268     return ConstantInt::get(CI->getType(), 0);
269 
270   StringRef Str1, Str2;
271   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
272   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
273 
274   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
275   if (HasStr1 && HasStr2)
276     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
277 
278   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
279     return B.CreateNeg(
280         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
281 
282   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
283     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
284 
285   // strcmp(P, "x") -> memcmp(P, "x", 2)
286   uint64_t Len1 = GetStringLength(Str1P);
287   uint64_t Len2 = GetStringLength(Str2P);
288   if (Len1 && Len2) {
289     return emitMemCmp(Str1P, Str2P,
290                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
291                                        std::min(Len1, Len2)),
292                       B, DL, TLI);
293   }
294 
295   return nullptr;
296 }
297 
298 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
299   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
300   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
301     return ConstantInt::get(CI->getType(), 0);
302 
303   // Get the length argument if it is constant.
304   uint64_t Length;
305   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
306     Length = LengthArg->getZExtValue();
307   else
308     return nullptr;
309 
310   if (Length == 0) // strncmp(x,y,0)   -> 0
311     return ConstantInt::get(CI->getType(), 0);
312 
313   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
314     return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
315 
316   StringRef Str1, Str2;
317   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
318   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
319 
320   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
321   if (HasStr1 && HasStr2) {
322     StringRef SubStr1 = Str1.substr(0, Length);
323     StringRef SubStr2 = Str2.substr(0, Length);
324     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
325   }
326 
327   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
328     return B.CreateNeg(
329         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
330 
331   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
332     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
333 
334   return nullptr;
335 }
336 
337 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
338   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
339   if (Dst == Src) // strcpy(x,x)  -> x
340     return Src;
341 
342   // See if we can get the length of the input string.
343   uint64_t Len = GetStringLength(Src);
344   if (Len == 0)
345     return nullptr;
346 
347   // We have enough information to now generate the memcpy call to do the
348   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
349   B.CreateMemCpy(Dst, Src,
350                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1);
351   return Dst;
352 }
353 
354 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
355   Function *Callee = CI->getCalledFunction();
356   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
357   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
358     Value *StrLen = emitStrLen(Src, B, DL, TLI);
359     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
360   }
361 
362   // See if we can get the length of the input string.
363   uint64_t Len = GetStringLength(Src);
364   if (Len == 0)
365     return nullptr;
366 
367   Type *PT = Callee->getFunctionType()->getParamType(0);
368   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
369   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
370                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
371 
372   // We have enough information to now generate the memcpy call to do the
373   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
374   B.CreateMemCpy(Dst, Src, LenV, 1);
375   return DstEnd;
376 }
377 
378 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
379   Function *Callee = CI->getCalledFunction();
380   Value *Dst = CI->getArgOperand(0);
381   Value *Src = CI->getArgOperand(1);
382   Value *LenOp = CI->getArgOperand(2);
383 
384   // See if we can get the length of the input string.
385   uint64_t SrcLen = GetStringLength(Src);
386   if (SrcLen == 0)
387     return nullptr;
388   --SrcLen;
389 
390   if (SrcLen == 0) {
391     // strncpy(x, "", y) -> memset(x, '\0', y, 1)
392     B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
393     return Dst;
394   }
395 
396   uint64_t Len;
397   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
398     Len = LengthArg->getZExtValue();
399   else
400     return nullptr;
401 
402   if (Len == 0)
403     return Dst; // strncpy(x, y, 0) -> x
404 
405   // Let strncpy handle the zero padding
406   if (Len > SrcLen + 1)
407     return nullptr;
408 
409   Type *PT = Callee->getFunctionType()->getParamType(0);
410   // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
411   B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1);
412 
413   return Dst;
414 }
415 
416 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B,
417                                                unsigned CharSize) {
418   Value *Src = CI->getArgOperand(0);
419 
420   // Constant folding: strlen("xyz") -> 3
421   if (uint64_t Len = GetStringLength(Src, CharSize))
422     return ConstantInt::get(CI->getType(), Len - 1);
423 
424   // If s is a constant pointer pointing to a string literal, we can fold
425   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
426   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
427   // We only try to simplify strlen when the pointer s points to an array
428   // of i8. Otherwise, we would need to scale the offset x before doing the
429   // subtraction. This will make the optimization more complex, and it's not
430   // very useful because calling strlen for a pointer of other types is
431   // very uncommon.
432   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
433     if (!isGEPBasedOnPointerToString(GEP, CharSize))
434       return nullptr;
435 
436     ConstantDataArraySlice Slice;
437     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
438       uint64_t NullTermIdx;
439       if (Slice.Array == nullptr) {
440         NullTermIdx = 0;
441       } else {
442         NullTermIdx = ~((uint64_t)0);
443         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
444           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
445             NullTermIdx = I;
446             break;
447           }
448         }
449         // If the string does not have '\0', leave it to strlen to compute
450         // its length.
451         if (NullTermIdx == ~((uint64_t)0))
452           return nullptr;
453       }
454 
455       Value *Offset = GEP->getOperand(2);
456       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
457       Known.Zero.flipAllBits();
458       uint64_t ArrSize =
459              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
460 
461       // KnownZero's bits are flipped, so zeros in KnownZero now represent
462       // bits known to be zeros in Offset, and ones in KnowZero represent
463       // bits unknown in Offset. Therefore, Offset is known to be in range
464       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
465       // unsigned-less-than NullTermIdx.
466       //
467       // If Offset is not provably in the range [0, NullTermIdx], we can still
468       // optimize if we can prove that the program has undefined behavior when
469       // Offset is outside that range. That is the case when GEP->getOperand(0)
470       // is a pointer to an object whose memory extent is NullTermIdx+1.
471       if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
472           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
473            NullTermIdx == ArrSize - 1)) {
474         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
475         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
476                            Offset);
477       }
478     }
479 
480     return nullptr;
481   }
482 
483   // strlen(x?"foo":"bars") --> x ? 3 : 4
484   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
485     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
486     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
487     if (LenTrue && LenFalse) {
488       ORE.emit([&]() {
489         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
490                << "folded strlen(select) to select of constants";
491       });
492       return B.CreateSelect(SI->getCondition(),
493                             ConstantInt::get(CI->getType(), LenTrue - 1),
494                             ConstantInt::get(CI->getType(), LenFalse - 1));
495     }
496   }
497 
498   // strlen(x) != 0 --> *x != 0
499   // strlen(x) == 0 --> *x == 0
500   if (isOnlyUsedInZeroEqualityComparison(CI))
501     return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
502 
503   return nullptr;
504 }
505 
506 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
507   return optimizeStringLength(CI, B, 8);
508 }
509 
510 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) {
511   Module &M = *CI->getParent()->getParent()->getParent();
512   unsigned WCharSize = TLI->getWCharSize(M) * 8;
513   // We cannot perform this optimization without wchar_size metadata.
514   if (WCharSize == 0)
515     return nullptr;
516 
517   return optimizeStringLength(CI, B, WCharSize);
518 }
519 
520 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
521   StringRef S1, S2;
522   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
523   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
524 
525   // strpbrk(s, "") -> nullptr
526   // strpbrk("", s) -> nullptr
527   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
528     return Constant::getNullValue(CI->getType());
529 
530   // Constant folding.
531   if (HasS1 && HasS2) {
532     size_t I = S1.find_first_of(S2);
533     if (I == StringRef::npos) // No match.
534       return Constant::getNullValue(CI->getType());
535 
536     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
537                        "strpbrk");
538   }
539 
540   // strpbrk(s, "a") -> strchr(s, 'a')
541   if (HasS2 && S2.size() == 1)
542     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
543 
544   return nullptr;
545 }
546 
547 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
548   Value *EndPtr = CI->getArgOperand(1);
549   if (isa<ConstantPointerNull>(EndPtr)) {
550     // With a null EndPtr, this function won't capture the main argument.
551     // It would be readonly too, except that it still may write to errno.
552     CI->addParamAttr(0, Attribute::NoCapture);
553   }
554 
555   return nullptr;
556 }
557 
558 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
559   StringRef S1, S2;
560   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
561   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
562 
563   // strspn(s, "") -> 0
564   // strspn("", s) -> 0
565   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
566     return Constant::getNullValue(CI->getType());
567 
568   // Constant folding.
569   if (HasS1 && HasS2) {
570     size_t Pos = S1.find_first_not_of(S2);
571     if (Pos == StringRef::npos)
572       Pos = S1.size();
573     return ConstantInt::get(CI->getType(), Pos);
574   }
575 
576   return nullptr;
577 }
578 
579 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
580   StringRef S1, S2;
581   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
582   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
583 
584   // strcspn("", s) -> 0
585   if (HasS1 && S1.empty())
586     return Constant::getNullValue(CI->getType());
587 
588   // Constant folding.
589   if (HasS1 && HasS2) {
590     size_t Pos = S1.find_first_of(S2);
591     if (Pos == StringRef::npos)
592       Pos = S1.size();
593     return ConstantInt::get(CI->getType(), Pos);
594   }
595 
596   // strcspn(s, "") -> strlen(s)
597   if (HasS2 && S2.empty())
598     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
599 
600   return nullptr;
601 }
602 
603 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
604   // fold strstr(x, x) -> x.
605   if (CI->getArgOperand(0) == CI->getArgOperand(1))
606     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
607 
608   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
609   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
610     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
611     if (!StrLen)
612       return nullptr;
613     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
614                                  StrLen, B, DL, TLI);
615     if (!StrNCmp)
616       return nullptr;
617     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
618       ICmpInst *Old = cast<ICmpInst>(*UI++);
619       Value *Cmp =
620           B.CreateICmp(Old->getPredicate(), StrNCmp,
621                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
622       replaceAllUsesWith(Old, Cmp);
623     }
624     return CI;
625   }
626 
627   // See if either input string is a constant string.
628   StringRef SearchStr, ToFindStr;
629   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
630   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
631 
632   // fold strstr(x, "") -> x.
633   if (HasStr2 && ToFindStr.empty())
634     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
635 
636   // If both strings are known, constant fold it.
637   if (HasStr1 && HasStr2) {
638     size_t Offset = SearchStr.find(ToFindStr);
639 
640     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
641       return Constant::getNullValue(CI->getType());
642 
643     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
644     Value *Result = castToCStr(CI->getArgOperand(0), B);
645     Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
646     return B.CreateBitCast(Result, CI->getType());
647   }
648 
649   // fold strstr(x, "y") -> strchr(x, 'y').
650   if (HasStr2 && ToFindStr.size() == 1) {
651     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
652     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
653   }
654   return nullptr;
655 }
656 
657 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
658   Value *SrcStr = CI->getArgOperand(0);
659   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
660   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
661 
662   // memchr(x, y, 0) -> null
663   if (LenC && LenC->isZero())
664     return Constant::getNullValue(CI->getType());
665 
666   // From now on we need at least constant length and string.
667   StringRef Str;
668   if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
669     return nullptr;
670 
671   // Truncate the string to LenC. If Str is smaller than LenC we will still only
672   // scan the string, as reading past the end of it is undefined and we can just
673   // return null if we don't find the char.
674   Str = Str.substr(0, LenC->getZExtValue());
675 
676   // If the char is variable but the input str and length are not we can turn
677   // this memchr call into a simple bit field test. Of course this only works
678   // when the return value is only checked against null.
679   //
680   // It would be really nice to reuse switch lowering here but we can't change
681   // the CFG at this point.
682   //
683   // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
684   //   after bounds check.
685   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
686     unsigned char Max =
687         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
688                           reinterpret_cast<const unsigned char *>(Str.end()));
689 
690     // Make sure the bit field we're about to create fits in a register on the
691     // target.
692     // FIXME: On a 64 bit architecture this prevents us from using the
693     // interesting range of alpha ascii chars. We could do better by emitting
694     // two bitfields or shifting the range by 64 if no lower chars are used.
695     if (!DL.fitsInLegalInteger(Max + 1))
696       return nullptr;
697 
698     // For the bit field use a power-of-2 type with at least 8 bits to avoid
699     // creating unnecessary illegal types.
700     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
701 
702     // Now build the bit field.
703     APInt Bitfield(Width, 0);
704     for (char C : Str)
705       Bitfield.setBit((unsigned char)C);
706     Value *BitfieldC = B.getInt(Bitfield);
707 
708     // First check that the bit field access is within bounds.
709     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
710     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
711                                  "memchr.bounds");
712 
713     // Create code that checks if the given bit is set in the field.
714     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
715     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
716 
717     // Finally merge both checks and cast to pointer type. The inttoptr
718     // implicitly zexts the i1 to intptr type.
719     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
720   }
721 
722   // Check if all arguments are constants.  If so, we can constant fold.
723   if (!CharC)
724     return nullptr;
725 
726   // Compute the offset.
727   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
728   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
729     return Constant::getNullValue(CI->getType());
730 
731   // memchr(s+n,c,l) -> gep(s+n+i,c)
732   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
733 }
734 
735 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
736   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
737 
738   if (LHS == RHS) // memcmp(s,s,x) -> 0
739     return Constant::getNullValue(CI->getType());
740 
741   // Make sure we have a constant length.
742   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
743   if (!LenC)
744     return nullptr;
745 
746   uint64_t Len = LenC->getZExtValue();
747   if (Len == 0) // memcmp(s1,s2,0) -> 0
748     return Constant::getNullValue(CI->getType());
749 
750   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
751   if (Len == 1) {
752     Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"),
753                                CI->getType(), "lhsv");
754     Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"),
755                                CI->getType(), "rhsv");
756     return B.CreateSub(LHSV, RHSV, "chardiff");
757   }
758 
759   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
760   // TODO: The case where both inputs are constants does not need to be limited
761   // to legal integers or equality comparison. See block below this.
762   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
763     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
764     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
765 
766     // First, see if we can fold either argument to a constant.
767     Value *LHSV = nullptr;
768     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
769       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
770       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
771     }
772     Value *RHSV = nullptr;
773     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
774       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
775       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
776     }
777 
778     // Don't generate unaligned loads. If either source is constant data,
779     // alignment doesn't matter for that source because there is no load.
780     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
781         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
782       if (!LHSV) {
783         Type *LHSPtrTy =
784             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
785         LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
786       }
787       if (!RHSV) {
788         Type *RHSPtrTy =
789             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
790         RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
791       }
792       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
793     }
794   }
795 
796   // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
797   // TODO: This is limited to i8 arrays.
798   StringRef LHSStr, RHSStr;
799   if (getConstantStringInfo(LHS, LHSStr) &&
800       getConstantStringInfo(RHS, RHSStr)) {
801     // Make sure we're not reading out-of-bounds memory.
802     if (Len > LHSStr.size() || Len > RHSStr.size())
803       return nullptr;
804     // Fold the memcmp and normalize the result.  This way we get consistent
805     // results across multiple platforms.
806     uint64_t Ret = 0;
807     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
808     if (Cmp < 0)
809       Ret = -1;
810     else if (Cmp > 0)
811       Ret = 1;
812     return ConstantInt::get(CI->getType(), Ret);
813   }
814 
815   return nullptr;
816 }
817 
818 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
819   // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
820   B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
821                  CI->getArgOperand(2), 1);
822   return CI->getArgOperand(0);
823 }
824 
825 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
826   // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
827   B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
828                   CI->getArgOperand(2), 1);
829   return CI->getArgOperand(0);
830 }
831 
832 // TODO: Does this belong in BuildLibCalls or should all of those similar
833 // functions be moved here?
834 static Value *emitCalloc(Value *Num, Value *Size, const AttributeList &Attrs,
835                          IRBuilder<> &B, const TargetLibraryInfo &TLI) {
836   LibFunc Func;
837   if (!TLI.getLibFunc("calloc", Func) || !TLI.has(Func))
838     return nullptr;
839 
840   Module *M = B.GetInsertBlock()->getModule();
841   const DataLayout &DL = M->getDataLayout();
842   IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext()));
843   Value *Calloc = M->getOrInsertFunction("calloc", Attrs, B.getInt8PtrTy(),
844                                          PtrType, PtrType);
845   CallInst *CI = B.CreateCall(Calloc, { Num, Size }, "calloc");
846 
847   if (const auto *F = dyn_cast<Function>(Calloc->stripPointerCasts()))
848     CI->setCallingConv(F->getCallingConv());
849 
850   return CI;
851 }
852 
853 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
854 static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B,
855                                const TargetLibraryInfo &TLI) {
856   // This has to be a memset of zeros (bzero).
857   auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
858   if (!FillValue || FillValue->getZExtValue() != 0)
859     return nullptr;
860 
861   // TODO: We should handle the case where the malloc has more than one use.
862   // This is necessary to optimize common patterns such as when the result of
863   // the malloc is checked against null or when a memset intrinsic is used in
864   // place of a memset library call.
865   auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
866   if (!Malloc || !Malloc->hasOneUse())
867     return nullptr;
868 
869   // Is the inner call really malloc()?
870   Function *InnerCallee = Malloc->getCalledFunction();
871   if (!InnerCallee)
872     return nullptr;
873 
874   LibFunc Func;
875   if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
876       Func != LibFunc_malloc)
877     return nullptr;
878 
879   // The memset must cover the same number of bytes that are malloc'd.
880   if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
881     return nullptr;
882 
883   // Replace the malloc with a calloc. We need the data layout to know what the
884   // actual size of a 'size_t' parameter is.
885   B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
886   const DataLayout &DL = Malloc->getModule()->getDataLayout();
887   IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
888   Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
889                              Malloc->getArgOperand(0), Malloc->getAttributes(),
890                              B, TLI);
891   if (!Calloc)
892     return nullptr;
893 
894   Malloc->replaceAllUsesWith(Calloc);
895   Malloc->eraseFromParent();
896 
897   return Calloc;
898 }
899 
900 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
901   if (auto *Calloc = foldMallocMemset(CI, B, *TLI))
902     return Calloc;
903 
904   // memset(p, v, n) -> llvm.memset(p, v, n, 1)
905   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
906   B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
907   return CI->getArgOperand(0);
908 }
909 
910 //===----------------------------------------------------------------------===//
911 // Math Library Optimizations
912 //===----------------------------------------------------------------------===//
913 
914 /// Return a variant of Val with float type.
915 /// Currently this works in two cases: If Val is an FPExtension of a float
916 /// value to something bigger, simply return the operand.
917 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
918 /// loss of precision do so.
919 static Value *valueHasFloatPrecision(Value *Val) {
920   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
921     Value *Op = Cast->getOperand(0);
922     if (Op->getType()->isFloatTy())
923       return Op;
924   }
925   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
926     APFloat F = Const->getValueAPF();
927     bool losesInfo;
928     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
929                     &losesInfo);
930     if (!losesInfo)
931       return ConstantFP::get(Const->getContext(), F);
932   }
933   return nullptr;
934 }
935 
936 /// Shrink double -> float for unary functions like 'floor'.
937 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
938                                     bool CheckRetType) {
939   Function *Callee = CI->getCalledFunction();
940   // We know this libcall has a valid prototype, but we don't know which.
941   if (!CI->getType()->isDoubleTy())
942     return nullptr;
943 
944   if (CheckRetType) {
945     // Check if all the uses for function like 'sin' are converted to float.
946     for (User *U : CI->users()) {
947       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
948       if (!Cast || !Cast->getType()->isFloatTy())
949         return nullptr;
950     }
951   }
952 
953   // If this is something like 'floor((double)floatval)', convert to floorf.
954   Value *V = valueHasFloatPrecision(CI->getArgOperand(0));
955   if (V == nullptr)
956     return nullptr;
957 
958   // If call isn't an intrinsic, check that it isn't within a function with the
959   // same name as the float version of this call.
960   //
961   // e.g. inline float expf(float val) { return (float) exp((double) val); }
962   //
963   // A similar such definition exists in the MinGW-w64 math.h header file which
964   // when compiled with -O2 -ffast-math causes the generation of infinite loops
965   // where expf is called.
966   if (!Callee->isIntrinsic()) {
967     const Function *F = CI->getFunction();
968     StringRef FName = F->getName();
969     StringRef CalleeName = Callee->getName();
970     if ((FName.size() == (CalleeName.size() + 1)) &&
971         (FName.back() == 'f') &&
972         FName.startswith(CalleeName))
973       return nullptr;
974   }
975 
976   // Propagate fast-math flags from the existing call to the new call.
977   IRBuilder<>::FastMathFlagGuard Guard(B);
978   B.setFastMathFlags(CI->getFastMathFlags());
979 
980   // floor((double)floatval) -> (double)floorf(floatval)
981   if (Callee->isIntrinsic()) {
982     Module *M = CI->getModule();
983     Intrinsic::ID IID = Callee->getIntrinsicID();
984     Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
985     V = B.CreateCall(F, V);
986   } else {
987     // The call is a library call rather than an intrinsic.
988     V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
989   }
990 
991   return B.CreateFPExt(V, B.getDoubleTy());
992 }
993 
994 // Replace a libcall \p CI with a call to intrinsic \p IID
995 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) {
996   // Propagate fast-math flags from the existing call to the new call.
997   IRBuilder<>::FastMathFlagGuard Guard(B);
998   B.setFastMathFlags(CI->getFastMathFlags());
999 
1000   Module *M = CI->getModule();
1001   Value *V = CI->getArgOperand(0);
1002   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1003   CallInst *NewCall = B.CreateCall(F, V);
1004   NewCall->takeName(CI);
1005   return NewCall;
1006 }
1007 
1008 /// Shrink double -> float for binary functions like 'fmin/fmax'.
1009 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
1010   Function *Callee = CI->getCalledFunction();
1011   // We know this libcall has a valid prototype, but we don't know which.
1012   if (!CI->getType()->isDoubleTy())
1013     return nullptr;
1014 
1015   // If this is something like 'fmin((double)floatval1, (double)floatval2)',
1016   // or fmin(1.0, (double)floatval), then we convert it to fminf.
1017   Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0));
1018   if (V1 == nullptr)
1019     return nullptr;
1020   Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1));
1021   if (V2 == nullptr)
1022     return nullptr;
1023 
1024   // Propagate fast-math flags from the existing call to the new call.
1025   IRBuilder<>::FastMathFlagGuard Guard(B);
1026   B.setFastMathFlags(CI->getFastMathFlags());
1027 
1028   // fmin((double)floatval1, (double)floatval2)
1029   //                      -> (double)fminf(floatval1, floatval2)
1030   // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP().
1031   Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
1032                                    Callee->getAttributes());
1033   return B.CreateFPExt(V, B.getDoubleTy());
1034 }
1035 
1036 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
1037   Function *Callee = CI->getCalledFunction();
1038   Value *Ret = nullptr;
1039   StringRef Name = Callee->getName();
1040   if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name))
1041     Ret = optimizeUnaryDoubleFP(CI, B, true);
1042 
1043   // cos(-x) -> cos(x)
1044   Value *Op1 = CI->getArgOperand(0);
1045   if (BinaryOperator::isFNeg(Op1)) {
1046     BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
1047     return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
1048   }
1049   return Ret;
1050 }
1051 
1052 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
1053   // Multiplications calculated using Addition Chains.
1054   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1055 
1056   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1057 
1058   if (InnerChain[Exp])
1059     return InnerChain[Exp];
1060 
1061   static const unsigned AddChain[33][2] = {
1062       {0, 0}, // Unused.
1063       {0, 0}, // Unused (base case = pow1).
1064       {1, 1}, // Unused (pre-computed).
1065       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1066       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1067       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1068       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1069       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1070   };
1071 
1072   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1073                                  getPow(InnerChain, AddChain[Exp][1], B));
1074   return InnerChain[Exp];
1075 }
1076 
1077 /// Use square root in place of pow(x, +/-0.5).
1078 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) {
1079   // TODO: There is some subset of 'fast' under which these transforms should
1080   // be allowed.
1081   if (!Pow->isFast())
1082     return nullptr;
1083 
1084   const APFloat *Arg1C;
1085   if (!match(Pow->getArgOperand(1), m_APFloat(Arg1C)))
1086     return nullptr;
1087   if (!Arg1C->isExactlyValue(0.5) && !Arg1C->isExactlyValue(-0.5))
1088     return nullptr;
1089 
1090   // Fast-math flags from the pow() are propagated to all replacement ops.
1091   IRBuilder<>::FastMathFlagGuard Guard(B);
1092   B.setFastMathFlags(Pow->getFastMathFlags());
1093   Type *Ty = Pow->getType();
1094   Value *Sqrt;
1095   if (Pow->hasFnAttr(Attribute::ReadNone)) {
1096     // We know that errno is never set, so replace with an intrinsic:
1097     // pow(x, 0.5) --> llvm.sqrt(x)
1098     // llvm.pow(x, 0.5) --> llvm.sqrt(x)
1099     auto *F = Intrinsic::getDeclaration(Pow->getModule(), Intrinsic::sqrt, Ty);
1100     Sqrt = B.CreateCall(F, Pow->getArgOperand(0));
1101   } else if (hasUnaryFloatFn(TLI, Ty, LibFunc_sqrt, LibFunc_sqrtf,
1102                              LibFunc_sqrtl)) {
1103     // Errno could be set, so we must use a sqrt libcall.
1104     // TODO: We also should check that the target can in fact lower the sqrt
1105     // libcall. We currently have no way to ask this question, so we ask
1106     // whether the target has a sqrt libcall which is not exactly the same.
1107     Sqrt = emitUnaryFloatFnCall(Pow->getArgOperand(0),
1108                                 TLI->getName(LibFunc_sqrt), B,
1109                                 Pow->getCalledFunction()->getAttributes());
1110   } else {
1111     // We can't replace with an intrinsic or a libcall.
1112     return nullptr;
1113   }
1114 
1115   // If this is pow(x, -0.5), get the reciprocal.
1116   if (Arg1C->isExactlyValue(-0.5))
1117     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt);
1118 
1119   return Sqrt;
1120 }
1121 
1122 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
1123   Function *Callee = CI->getCalledFunction();
1124   Value *Ret = nullptr;
1125   StringRef Name = Callee->getName();
1126   if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name))
1127     Ret = optimizeUnaryDoubleFP(CI, B, true);
1128 
1129   Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
1130 
1131   // pow(1.0, x) -> 1.0
1132   if (match(Op1, m_SpecificFP(1.0)))
1133     return Op1;
1134   // pow(2.0, x) -> llvm.exp2(x)
1135   if (match(Op1, m_SpecificFP(2.0))) {
1136     Value *Exp2 = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::exp2,
1137                                             CI->getType());
1138     return B.CreateCall(Exp2, Op2, "exp2");
1139   }
1140 
1141   // There's no llvm.exp10 intrinsic yet, but, maybe, some day there will
1142   // be one.
1143   if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
1144     // pow(10.0, x) -> exp10(x)
1145     if (Op1C->isExactlyValue(10.0) &&
1146         hasUnaryFloatFn(TLI, Op1->getType(), LibFunc_exp10, LibFunc_exp10f,
1147                         LibFunc_exp10l))
1148       return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc_exp10), B,
1149                                   Callee->getAttributes());
1150   }
1151 
1152   // pow(exp(x), y) -> exp(x * y)
1153   // pow(exp2(x), y) -> exp2(x * y)
1154   // We enable these only with fast-math. Besides rounding differences, the
1155   // transformation changes overflow and underflow behavior quite dramatically.
1156   // Example: x = 1000, y = 0.001.
1157   // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1).
1158   auto *OpC = dyn_cast<CallInst>(Op1);
1159   if (OpC && OpC->isFast() && CI->isFast()) {
1160     LibFunc Func;
1161     Function *OpCCallee = OpC->getCalledFunction();
1162     if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) &&
1163         TLI->has(Func) && (Func == LibFunc_exp || Func == LibFunc_exp2)) {
1164       IRBuilder<>::FastMathFlagGuard Guard(B);
1165       B.setFastMathFlags(CI->getFastMathFlags());
1166       Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul");
1167       return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B,
1168                                   OpCCallee->getAttributes());
1169     }
1170   }
1171 
1172   if (Value *Sqrt = replacePowWithSqrt(CI, B))
1173     return Sqrt;
1174 
1175   ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
1176   if (!Op2C)
1177     return Ret;
1178 
1179   if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
1180     return ConstantFP::get(CI->getType(), 1.0);
1181 
1182   // FIXME: Correct the transforms and pull this into replacePowWithSqrt().
1183   if (Op2C->isExactlyValue(0.5) &&
1184       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf,
1185                       LibFunc_sqrtl)) {
1186     // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
1187     // This is faster than calling pow, and still handles negative zero
1188     // and negative infinity correctly.
1189     // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
1190     Value *Inf = ConstantFP::getInfinity(CI->getType());
1191     Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
1192 
1193     // TODO: As above, we should lower to the sqrt intrinsic if the pow is an
1194     // intrinsic, to match errno semantics.
1195     Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes());
1196 
1197     Module *M = Callee->getParent();
1198     Function *FabsF = Intrinsic::getDeclaration(M, Intrinsic::fabs,
1199                                                 CI->getType());
1200     Value *FAbs = B.CreateCall(FabsF, Sqrt);
1201 
1202     Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
1203     Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
1204     return Sel;
1205   }
1206 
1207   if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
1208     return Op1;
1209   if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
1210     return B.CreateFMul(Op1, Op1, "pow2");
1211   if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
1212     return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
1213 
1214   // In -ffast-math, generate repeated fmul instead of generating pow(x, n).
1215   if (CI->isFast()) {
1216     APFloat V = abs(Op2C->getValueAPF());
1217     // We limit to a max of 7 fmul(s). Thus max exponent is 32.
1218     // This transformation applies to integer exponents only.
1219     if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan ||
1220         !V.isInteger())
1221       return nullptr;
1222 
1223     // Propagate fast math flags.
1224     IRBuilder<>::FastMathFlagGuard Guard(B);
1225     B.setFastMathFlags(CI->getFastMathFlags());
1226 
1227     // We will memoize intermediate products of the Addition Chain.
1228     Value *InnerChain[33] = {nullptr};
1229     InnerChain[1] = Op1;
1230     InnerChain[2] = B.CreateFMul(Op1, Op1);
1231 
1232     // We cannot readily convert a non-double type (like float) to a double.
1233     // So we first convert V to something which could be converted to double.
1234     bool ignored;
1235     V.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &ignored);
1236 
1237     Value *FMul = getPow(InnerChain, V.convertToDouble(), B);
1238     // For negative exponents simply compute the reciprocal.
1239     if (Op2C->isNegative())
1240       FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul);
1241     return FMul;
1242   }
1243 
1244   return nullptr;
1245 }
1246 
1247 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1248   Function *Callee = CI->getCalledFunction();
1249   Value *Ret = nullptr;
1250   StringRef Name = Callee->getName();
1251   if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name))
1252     Ret = optimizeUnaryDoubleFP(CI, B, true);
1253 
1254   Value *Op = CI->getArgOperand(0);
1255   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1256   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1257   LibFunc LdExp = LibFunc_ldexpl;
1258   if (Op->getType()->isFloatTy())
1259     LdExp = LibFunc_ldexpf;
1260   else if (Op->getType()->isDoubleTy())
1261     LdExp = LibFunc_ldexp;
1262 
1263   if (TLI->has(LdExp)) {
1264     Value *LdExpArg = nullptr;
1265     if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
1266       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
1267         LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
1268     } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
1269       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
1270         LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
1271     }
1272 
1273     if (LdExpArg) {
1274       Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
1275       if (!Op->getType()->isFloatTy())
1276         One = ConstantExpr::getFPExtend(One, Op->getType());
1277 
1278       Module *M = CI->getModule();
1279       Value *NewCallee =
1280           M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
1281                                  Op->getType(), B.getInt32Ty());
1282       CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg});
1283       if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
1284         CI->setCallingConv(F->getCallingConv());
1285 
1286       return CI;
1287     }
1288   }
1289   return Ret;
1290 }
1291 
1292 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1293   Function *Callee = CI->getCalledFunction();
1294   // If we can shrink the call to a float function rather than a double
1295   // function, do that first.
1296   StringRef Name = Callee->getName();
1297   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1298     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1299       return Ret;
1300 
1301   IRBuilder<>::FastMathFlagGuard Guard(B);
1302   FastMathFlags FMF;
1303   if (CI->isFast()) {
1304     // If the call is 'fast', then anything we create here will also be 'fast'.
1305     FMF.setFast();
1306   } else {
1307     // At a minimum, no-nans-fp-math must be true.
1308     if (!CI->hasNoNaNs())
1309       return nullptr;
1310     // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
1311     // "Ideally, fmax would be sensitive to the sign of zero, for example
1312     // fmax(-0. 0, +0. 0) would return +0; however, implementation in software
1313     // might be impractical."
1314     FMF.setNoSignedZeros();
1315     FMF.setNoNaNs();
1316   }
1317   B.setFastMathFlags(FMF);
1318 
1319   // We have a relaxed floating-point environment. We can ignore NaN-handling
1320   // and transform to a compare and select. We do not have to consider errno or
1321   // exceptions, because fmin/fmax do not have those.
1322   Value *Op0 = CI->getArgOperand(0);
1323   Value *Op1 = CI->getArgOperand(1);
1324   Value *Cmp = Callee->getName().startswith("fmin") ?
1325     B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
1326   return B.CreateSelect(Cmp, Op0, Op1);
1327 }
1328 
1329 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
1330   Function *Callee = CI->getCalledFunction();
1331   Value *Ret = nullptr;
1332   StringRef Name = Callee->getName();
1333   if (UnsafeFPShrink && hasFloatVersion(Name))
1334     Ret = optimizeUnaryDoubleFP(CI, B, true);
1335 
1336   if (!CI->isFast())
1337     return Ret;
1338   Value *Op1 = CI->getArgOperand(0);
1339   auto *OpC = dyn_cast<CallInst>(Op1);
1340 
1341   // The earlier call must also be 'fast' in order to do these transforms.
1342   if (!OpC || !OpC->isFast())
1343     return Ret;
1344 
1345   // log(pow(x,y)) -> y*log(x)
1346   // This is only applicable to log, log2, log10.
1347   if (Name != "log" && Name != "log2" && Name != "log10")
1348     return Ret;
1349 
1350   IRBuilder<>::FastMathFlagGuard Guard(B);
1351   FastMathFlags FMF;
1352   FMF.setFast();
1353   B.setFastMathFlags(FMF);
1354 
1355   LibFunc Func;
1356   Function *F = OpC->getCalledFunction();
1357   if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1358       Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow))
1359     return B.CreateFMul(OpC->getArgOperand(1),
1360       emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B,
1361                            Callee->getAttributes()), "mul");
1362 
1363   // log(exp2(y)) -> y*log(2)
1364   if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) &&
1365       TLI->has(Func) && Func == LibFunc_exp2)
1366     return B.CreateFMul(
1367         OpC->getArgOperand(0),
1368         emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0),
1369                              Callee->getName(), B, Callee->getAttributes()),
1370         "logmul");
1371   return Ret;
1372 }
1373 
1374 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
1375   Function *Callee = CI->getCalledFunction();
1376   Value *Ret = nullptr;
1377   // TODO: Once we have a way (other than checking for the existince of the
1378   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
1379   // condition below.
1380   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
1381                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
1382     Ret = optimizeUnaryDoubleFP(CI, B, true);
1383 
1384   if (!CI->isFast())
1385     return Ret;
1386 
1387   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
1388   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
1389     return Ret;
1390 
1391   // We're looking for a repeated factor in a multiplication tree,
1392   // so we can do this fold: sqrt(x * x) -> fabs(x);
1393   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
1394   Value *Op0 = I->getOperand(0);
1395   Value *Op1 = I->getOperand(1);
1396   Value *RepeatOp = nullptr;
1397   Value *OtherOp = nullptr;
1398   if (Op0 == Op1) {
1399     // Simple match: the operands of the multiply are identical.
1400     RepeatOp = Op0;
1401   } else {
1402     // Look for a more complicated pattern: one of the operands is itself
1403     // a multiply, so search for a common factor in that multiply.
1404     // Note: We don't bother looking any deeper than this first level or for
1405     // variations of this pattern because instcombine's visitFMUL and/or the
1406     // reassociation pass should give us this form.
1407     Value *OtherMul0, *OtherMul1;
1408     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
1409       // Pattern: sqrt((x * y) * z)
1410       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
1411         // Matched: sqrt((x * x) * z)
1412         RepeatOp = OtherMul0;
1413         OtherOp = Op1;
1414       }
1415     }
1416   }
1417   if (!RepeatOp)
1418     return Ret;
1419 
1420   // Fast math flags for any created instructions should match the sqrt
1421   // and multiply.
1422   IRBuilder<>::FastMathFlagGuard Guard(B);
1423   B.setFastMathFlags(I->getFastMathFlags());
1424 
1425   // If we found a repeated factor, hoist it out of the square root and
1426   // replace it with the fabs of that factor.
1427   Module *M = Callee->getParent();
1428   Type *ArgType = I->getType();
1429   Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
1430   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
1431   if (OtherOp) {
1432     // If we found a non-repeated factor, we still need to get its square
1433     // root. We then multiply that by the value that was simplified out
1434     // of the square root calculation.
1435     Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
1436     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
1437     return B.CreateFMul(FabsCall, SqrtCall);
1438   }
1439   return FabsCall;
1440 }
1441 
1442 // TODO: Generalize to handle any trig function and its inverse.
1443 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
1444   Function *Callee = CI->getCalledFunction();
1445   Value *Ret = nullptr;
1446   StringRef Name = Callee->getName();
1447   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
1448     Ret = optimizeUnaryDoubleFP(CI, B, true);
1449 
1450   Value *Op1 = CI->getArgOperand(0);
1451   auto *OpC = dyn_cast<CallInst>(Op1);
1452   if (!OpC)
1453     return Ret;
1454 
1455   // Both calls must be 'fast' in order to remove them.
1456   if (!CI->isFast() || !OpC->isFast())
1457     return Ret;
1458 
1459   // tan(atan(x)) -> x
1460   // tanf(atanf(x)) -> x
1461   // tanl(atanl(x)) -> x
1462   LibFunc Func;
1463   Function *F = OpC->getCalledFunction();
1464   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1465       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
1466        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
1467        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
1468     Ret = OpC->getArgOperand(0);
1469   return Ret;
1470 }
1471 
1472 static bool isTrigLibCall(CallInst *CI) {
1473   // We can only hope to do anything useful if we can ignore things like errno
1474   // and floating-point exceptions.
1475   // We already checked the prototype.
1476   return CI->hasFnAttr(Attribute::NoUnwind) &&
1477          CI->hasFnAttr(Attribute::ReadNone);
1478 }
1479 
1480 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
1481                              bool UseFloat, Value *&Sin, Value *&Cos,
1482                              Value *&SinCos) {
1483   Type *ArgTy = Arg->getType();
1484   Type *ResTy;
1485   StringRef Name;
1486 
1487   Triple T(OrigCallee->getParent()->getTargetTriple());
1488   if (UseFloat) {
1489     Name = "__sincospif_stret";
1490 
1491     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
1492     // x86_64 can't use {float, float} since that would be returned in both
1493     // xmm0 and xmm1, which isn't what a real struct would do.
1494     ResTy = T.getArch() == Triple::x86_64
1495                 ? static_cast<Type *>(VectorType::get(ArgTy, 2))
1496                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
1497   } else {
1498     Name = "__sincospi_stret";
1499     ResTy = StructType::get(ArgTy, ArgTy);
1500   }
1501 
1502   Module *M = OrigCallee->getParent();
1503   Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
1504                                          ResTy, ArgTy);
1505 
1506   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
1507     // If the argument is an instruction, it must dominate all uses so put our
1508     // sincos call there.
1509     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
1510   } else {
1511     // Otherwise (e.g. for a constant) the beginning of the function is as
1512     // good a place as any.
1513     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
1514     B.SetInsertPoint(&EntryBB, EntryBB.begin());
1515   }
1516 
1517   SinCos = B.CreateCall(Callee, Arg, "sincospi");
1518 
1519   if (SinCos->getType()->isStructTy()) {
1520     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
1521     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
1522   } else {
1523     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
1524                                  "sinpi");
1525     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
1526                                  "cospi");
1527   }
1528 }
1529 
1530 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
1531   // Make sure the prototype is as expected, otherwise the rest of the
1532   // function is probably invalid and likely to abort.
1533   if (!isTrigLibCall(CI))
1534     return nullptr;
1535 
1536   Value *Arg = CI->getArgOperand(0);
1537   SmallVector<CallInst *, 1> SinCalls;
1538   SmallVector<CallInst *, 1> CosCalls;
1539   SmallVector<CallInst *, 1> SinCosCalls;
1540 
1541   bool IsFloat = Arg->getType()->isFloatTy();
1542 
1543   // Look for all compatible sinpi, cospi and sincospi calls with the same
1544   // argument. If there are enough (in some sense) we can make the
1545   // substitution.
1546   Function *F = CI->getFunction();
1547   for (User *U : Arg->users())
1548     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
1549 
1550   // It's only worthwhile if both sinpi and cospi are actually used.
1551   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
1552     return nullptr;
1553 
1554   Value *Sin, *Cos, *SinCos;
1555   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
1556 
1557   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
1558                                  Value *Res) {
1559     for (CallInst *C : Calls)
1560       replaceAllUsesWith(C, Res);
1561   };
1562 
1563   replaceTrigInsts(SinCalls, Sin);
1564   replaceTrigInsts(CosCalls, Cos);
1565   replaceTrigInsts(SinCosCalls, SinCos);
1566 
1567   return nullptr;
1568 }
1569 
1570 void LibCallSimplifier::classifyArgUse(
1571     Value *Val, Function *F, bool IsFloat,
1572     SmallVectorImpl<CallInst *> &SinCalls,
1573     SmallVectorImpl<CallInst *> &CosCalls,
1574     SmallVectorImpl<CallInst *> &SinCosCalls) {
1575   CallInst *CI = dyn_cast<CallInst>(Val);
1576 
1577   if (!CI)
1578     return;
1579 
1580   // Don't consider calls in other functions.
1581   if (CI->getFunction() != F)
1582     return;
1583 
1584   Function *Callee = CI->getCalledFunction();
1585   LibFunc Func;
1586   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
1587       !isTrigLibCall(CI))
1588     return;
1589 
1590   if (IsFloat) {
1591     if (Func == LibFunc_sinpif)
1592       SinCalls.push_back(CI);
1593     else if (Func == LibFunc_cospif)
1594       CosCalls.push_back(CI);
1595     else if (Func == LibFunc_sincospif_stret)
1596       SinCosCalls.push_back(CI);
1597   } else {
1598     if (Func == LibFunc_sinpi)
1599       SinCalls.push_back(CI);
1600     else if (Func == LibFunc_cospi)
1601       CosCalls.push_back(CI);
1602     else if (Func == LibFunc_sincospi_stret)
1603       SinCosCalls.push_back(CI);
1604   }
1605 }
1606 
1607 //===----------------------------------------------------------------------===//
1608 // Integer Library Call Optimizations
1609 //===----------------------------------------------------------------------===//
1610 
1611 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
1612   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
1613   Value *Op = CI->getArgOperand(0);
1614   Type *ArgType = Op->getType();
1615   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1616                                        Intrinsic::cttz, ArgType);
1617   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
1618   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
1619   V = B.CreateIntCast(V, B.getInt32Ty(), false);
1620 
1621   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
1622   return B.CreateSelect(Cond, V, B.getInt32(0));
1623 }
1624 
1625 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
1626   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
1627   Value *Op = CI->getArgOperand(0);
1628   Type *ArgType = Op->getType();
1629   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1630                                        Intrinsic::ctlz, ArgType);
1631   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
1632   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
1633                   V);
1634   return B.CreateIntCast(V, CI->getType(), false);
1635 }
1636 
1637 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
1638   // abs(x) -> x >s -1 ? x : -x
1639   Value *Op = CI->getArgOperand(0);
1640   Value *Pos =
1641       B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos");
1642   Value *Neg = B.CreateNeg(Op, "neg");
1643   return B.CreateSelect(Pos, Op, Neg);
1644 }
1645 
1646 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
1647   // isdigit(c) -> (c-'0') <u 10
1648   Value *Op = CI->getArgOperand(0);
1649   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
1650   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
1651   return B.CreateZExt(Op, CI->getType());
1652 }
1653 
1654 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
1655   // isascii(c) -> c <u 128
1656   Value *Op = CI->getArgOperand(0);
1657   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
1658   return B.CreateZExt(Op, CI->getType());
1659 }
1660 
1661 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
1662   // toascii(c) -> c & 0x7f
1663   return B.CreateAnd(CI->getArgOperand(0),
1664                      ConstantInt::get(CI->getType(), 0x7F));
1665 }
1666 
1667 //===----------------------------------------------------------------------===//
1668 // Formatting and IO Library Call Optimizations
1669 //===----------------------------------------------------------------------===//
1670 
1671 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
1672 
1673 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
1674                                                  int StreamArg) {
1675   Function *Callee = CI->getCalledFunction();
1676   // Error reporting calls should be cold, mark them as such.
1677   // This applies even to non-builtin calls: it is only a hint and applies to
1678   // functions that the frontend might not understand as builtins.
1679 
1680   // This heuristic was suggested in:
1681   // Improving Static Branch Prediction in a Compiler
1682   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
1683   // Proceedings of PACT'98, Oct. 1998, IEEE
1684   if (!CI->hasFnAttr(Attribute::Cold) &&
1685       isReportingError(Callee, CI, StreamArg)) {
1686     CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
1687   }
1688 
1689   return nullptr;
1690 }
1691 
1692 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
1693   if (!Callee || !Callee->isDeclaration())
1694     return false;
1695 
1696   if (StreamArg < 0)
1697     return true;
1698 
1699   // These functions might be considered cold, but only if their stream
1700   // argument is stderr.
1701 
1702   if (StreamArg >= (int)CI->getNumArgOperands())
1703     return false;
1704   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
1705   if (!LI)
1706     return false;
1707   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
1708   if (!GV || !GV->isDeclaration())
1709     return false;
1710   return GV->getName() == "stderr";
1711 }
1712 
1713 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
1714   // Check for a fixed format string.
1715   StringRef FormatStr;
1716   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
1717     return nullptr;
1718 
1719   // Empty format string -> noop.
1720   if (FormatStr.empty()) // Tolerate printf's declared void.
1721     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
1722 
1723   // Do not do any of the following transformations if the printf return value
1724   // is used, in general the printf return value is not compatible with either
1725   // putchar() or puts().
1726   if (!CI->use_empty())
1727     return nullptr;
1728 
1729   // printf("x") -> putchar('x'), even for "%" and "%%".
1730   if (FormatStr.size() == 1 || FormatStr == "%%")
1731     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
1732 
1733   // printf("%s", "a") --> putchar('a')
1734   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
1735     StringRef ChrStr;
1736     if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
1737       return nullptr;
1738     if (ChrStr.size() != 1)
1739       return nullptr;
1740     return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
1741   }
1742 
1743   // printf("foo\n") --> puts("foo")
1744   if (FormatStr[FormatStr.size() - 1] == '\n' &&
1745       FormatStr.find('%') == StringRef::npos) { // No format characters.
1746     // Create a string literal with no \n on it.  We expect the constant merge
1747     // pass to be run after this pass, to merge duplicate strings.
1748     FormatStr = FormatStr.drop_back();
1749     Value *GV = B.CreateGlobalString(FormatStr, "str");
1750     return emitPutS(GV, B, TLI);
1751   }
1752 
1753   // Optimize specific format strings.
1754   // printf("%c", chr) --> putchar(chr)
1755   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
1756       CI->getArgOperand(1)->getType()->isIntegerTy())
1757     return emitPutChar(CI->getArgOperand(1), B, TLI);
1758 
1759   // printf("%s\n", str) --> puts(str)
1760   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
1761       CI->getArgOperand(1)->getType()->isPointerTy())
1762     return emitPutS(CI->getArgOperand(1), B, TLI);
1763   return nullptr;
1764 }
1765 
1766 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
1767 
1768   Function *Callee = CI->getCalledFunction();
1769   FunctionType *FT = Callee->getFunctionType();
1770   if (Value *V = optimizePrintFString(CI, B)) {
1771     return V;
1772   }
1773 
1774   // printf(format, ...) -> iprintf(format, ...) if no floating point
1775   // arguments.
1776   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
1777     Module *M = B.GetInsertBlock()->getParent()->getParent();
1778     Constant *IPrintFFn =
1779         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
1780     CallInst *New = cast<CallInst>(CI->clone());
1781     New->setCalledFunction(IPrintFFn);
1782     B.Insert(New);
1783     return New;
1784   }
1785   return nullptr;
1786 }
1787 
1788 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
1789   // Check for a fixed format string.
1790   StringRef FormatStr;
1791   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1792     return nullptr;
1793 
1794   // If we just have a format string (nothing else crazy) transform it.
1795   if (CI->getNumArgOperands() == 2) {
1796     // Make sure there's no % in the constant array.  We could try to handle
1797     // %% -> % in the future if we cared.
1798     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1799       if (FormatStr[i] == '%')
1800         return nullptr; // we found a format specifier, bail out.
1801 
1802     // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
1803     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
1804                    ConstantInt::get(DL.getIntPtrType(CI->getContext()),
1805                                     FormatStr.size() + 1),
1806                    1); // Copy the null byte.
1807     return ConstantInt::get(CI->getType(), FormatStr.size());
1808   }
1809 
1810   // The remaining optimizations require the format string to be "%s" or "%c"
1811   // and have an extra operand.
1812   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1813       CI->getNumArgOperands() < 3)
1814     return nullptr;
1815 
1816   // Decode the second character of the format string.
1817   if (FormatStr[1] == 'c') {
1818     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
1819     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1820       return nullptr;
1821     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
1822     Value *Ptr = castToCStr(CI->getArgOperand(0), B);
1823     B.CreateStore(V, Ptr);
1824     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
1825     B.CreateStore(B.getInt8(0), Ptr);
1826 
1827     return ConstantInt::get(CI->getType(), 1);
1828   }
1829 
1830   if (FormatStr[1] == 's') {
1831     // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1832     if (!CI->getArgOperand(2)->getType()->isPointerTy())
1833       return nullptr;
1834 
1835     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
1836     if (!Len)
1837       return nullptr;
1838     Value *IncLen =
1839         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
1840     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
1841 
1842     // The sprintf result is the unincremented number of bytes in the string.
1843     return B.CreateIntCast(Len, CI->getType(), false);
1844   }
1845   return nullptr;
1846 }
1847 
1848 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
1849   Function *Callee = CI->getCalledFunction();
1850   FunctionType *FT = Callee->getFunctionType();
1851   if (Value *V = optimizeSPrintFString(CI, B)) {
1852     return V;
1853   }
1854 
1855   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
1856   // point arguments.
1857   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
1858     Module *M = B.GetInsertBlock()->getParent()->getParent();
1859     Constant *SIPrintFFn =
1860         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
1861     CallInst *New = cast<CallInst>(CI->clone());
1862     New->setCalledFunction(SIPrintFFn);
1863     B.Insert(New);
1864     return New;
1865   }
1866   return nullptr;
1867 }
1868 
1869 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
1870   optimizeErrorReporting(CI, B, 0);
1871 
1872   // All the optimizations depend on the format string.
1873   StringRef FormatStr;
1874   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1875     return nullptr;
1876 
1877   // Do not do any of the following transformations if the fprintf return
1878   // value is used, in general the fprintf return value is not compatible
1879   // with fwrite(), fputc() or fputs().
1880   if (!CI->use_empty())
1881     return nullptr;
1882 
1883   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
1884   if (CI->getNumArgOperands() == 2) {
1885     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1886       if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
1887         return nullptr;        // We found a format specifier.
1888 
1889     return emitFWrite(
1890         CI->getArgOperand(1),
1891         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
1892         CI->getArgOperand(0), B, DL, TLI);
1893   }
1894 
1895   // The remaining optimizations require the format string to be "%s" or "%c"
1896   // and have an extra operand.
1897   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1898       CI->getNumArgOperands() < 3)
1899     return nullptr;
1900 
1901   // Decode the second character of the format string.
1902   if (FormatStr[1] == 'c') {
1903     // fprintf(F, "%c", chr) --> fputc(chr, F)
1904     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1905       return nullptr;
1906     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1907   }
1908 
1909   if (FormatStr[1] == 's') {
1910     // fprintf(F, "%s", str) --> fputs(str, F)
1911     if (!CI->getArgOperand(2)->getType()->isPointerTy())
1912       return nullptr;
1913     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1914   }
1915   return nullptr;
1916 }
1917 
1918 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
1919   Function *Callee = CI->getCalledFunction();
1920   FunctionType *FT = Callee->getFunctionType();
1921   if (Value *V = optimizeFPrintFString(CI, B)) {
1922     return V;
1923   }
1924 
1925   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
1926   // floating point arguments.
1927   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
1928     Module *M = B.GetInsertBlock()->getParent()->getParent();
1929     Constant *FIPrintFFn =
1930         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
1931     CallInst *New = cast<CallInst>(CI->clone());
1932     New->setCalledFunction(FIPrintFFn);
1933     B.Insert(New);
1934     return New;
1935   }
1936   return nullptr;
1937 }
1938 
1939 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
1940   optimizeErrorReporting(CI, B, 3);
1941 
1942   // Get the element size and count.
1943   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
1944   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1945   if (!SizeC || !CountC)
1946     return nullptr;
1947   uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
1948 
1949   // If this is writing zero records, remove the call (it's a noop).
1950   if (Bytes == 0)
1951     return ConstantInt::get(CI->getType(), 0);
1952 
1953   // If this is writing one byte, turn it into fputc.
1954   // This optimisation is only valid, if the return value is unused.
1955   if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
1956     Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char");
1957     Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
1958     return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
1959   }
1960 
1961   return nullptr;
1962 }
1963 
1964 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
1965   optimizeErrorReporting(CI, B, 1);
1966 
1967   // Don't rewrite fputs to fwrite when optimising for size because fwrite
1968   // requires more arguments and thus extra MOVs are required.
1969   if (CI->getParent()->getParent()->optForSize())
1970     return nullptr;
1971 
1972   // We can't optimize if return value is used.
1973   if (!CI->use_empty())
1974     return nullptr;
1975 
1976   // fputs(s,F) --> fwrite(s,1,strlen(s),F)
1977   uint64_t Len = GetStringLength(CI->getArgOperand(0));
1978   if (!Len)
1979     return nullptr;
1980 
1981   // Known to have no uses (see above).
1982   return emitFWrite(
1983       CI->getArgOperand(0),
1984       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
1985       CI->getArgOperand(1), B, DL, TLI);
1986 }
1987 
1988 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
1989   // Check for a constant string.
1990   StringRef Str;
1991   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
1992     return nullptr;
1993 
1994   if (Str.empty() && CI->use_empty()) {
1995     // puts("") -> putchar('\n')
1996     Value *Res = emitPutChar(B.getInt32('\n'), B, TLI);
1997     if (CI->use_empty() || !Res)
1998       return Res;
1999     return B.CreateIntCast(Res, CI->getType(), true);
2000   }
2001 
2002   return nullptr;
2003 }
2004 
2005 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2006   LibFunc Func;
2007   SmallString<20> FloatFuncName = FuncName;
2008   FloatFuncName += 'f';
2009   if (TLI->getLibFunc(FloatFuncName, Func))
2010     return TLI->has(Func);
2011   return false;
2012 }
2013 
2014 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2015                                                       IRBuilder<> &Builder) {
2016   LibFunc Func;
2017   Function *Callee = CI->getCalledFunction();
2018   // Check for string/memory library functions.
2019   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2020     // Make sure we never change the calling convention.
2021     assert((ignoreCallingConv(Func) ||
2022             isCallingConvCCompatible(CI)) &&
2023       "Optimizing string/memory libcall would change the calling convention");
2024     switch (Func) {
2025     case LibFunc_strcat:
2026       return optimizeStrCat(CI, Builder);
2027     case LibFunc_strncat:
2028       return optimizeStrNCat(CI, Builder);
2029     case LibFunc_strchr:
2030       return optimizeStrChr(CI, Builder);
2031     case LibFunc_strrchr:
2032       return optimizeStrRChr(CI, Builder);
2033     case LibFunc_strcmp:
2034       return optimizeStrCmp(CI, Builder);
2035     case LibFunc_strncmp:
2036       return optimizeStrNCmp(CI, Builder);
2037     case LibFunc_strcpy:
2038       return optimizeStrCpy(CI, Builder);
2039     case LibFunc_stpcpy:
2040       return optimizeStpCpy(CI, Builder);
2041     case LibFunc_strncpy:
2042       return optimizeStrNCpy(CI, Builder);
2043     case LibFunc_strlen:
2044       return optimizeStrLen(CI, Builder);
2045     case LibFunc_strpbrk:
2046       return optimizeStrPBrk(CI, Builder);
2047     case LibFunc_strtol:
2048     case LibFunc_strtod:
2049     case LibFunc_strtof:
2050     case LibFunc_strtoul:
2051     case LibFunc_strtoll:
2052     case LibFunc_strtold:
2053     case LibFunc_strtoull:
2054       return optimizeStrTo(CI, Builder);
2055     case LibFunc_strspn:
2056       return optimizeStrSpn(CI, Builder);
2057     case LibFunc_strcspn:
2058       return optimizeStrCSpn(CI, Builder);
2059     case LibFunc_strstr:
2060       return optimizeStrStr(CI, Builder);
2061     case LibFunc_memchr:
2062       return optimizeMemChr(CI, Builder);
2063     case LibFunc_memcmp:
2064       return optimizeMemCmp(CI, Builder);
2065     case LibFunc_memcpy:
2066       return optimizeMemCpy(CI, Builder);
2067     case LibFunc_memmove:
2068       return optimizeMemMove(CI, Builder);
2069     case LibFunc_memset:
2070       return optimizeMemSet(CI, Builder);
2071     case LibFunc_wcslen:
2072       return optimizeWcslen(CI, Builder);
2073     default:
2074       break;
2075     }
2076   }
2077   return nullptr;
2078 }
2079 
2080 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2081                                                        LibFunc Func,
2082                                                        IRBuilder<> &Builder) {
2083   // Don't optimize calls that require strict floating point semantics.
2084   if (CI->isStrictFP())
2085     return nullptr;
2086 
2087   switch (Func) {
2088   case LibFunc_cosf:
2089   case LibFunc_cos:
2090   case LibFunc_cosl:
2091     return optimizeCos(CI, Builder);
2092   case LibFunc_sinpif:
2093   case LibFunc_sinpi:
2094   case LibFunc_cospif:
2095   case LibFunc_cospi:
2096     return optimizeSinCosPi(CI, Builder);
2097   case LibFunc_powf:
2098   case LibFunc_pow:
2099   case LibFunc_powl:
2100     return optimizePow(CI, Builder);
2101   case LibFunc_exp2l:
2102   case LibFunc_exp2:
2103   case LibFunc_exp2f:
2104     return optimizeExp2(CI, Builder);
2105   case LibFunc_fabsf:
2106   case LibFunc_fabs:
2107   case LibFunc_fabsl:
2108     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2109   case LibFunc_sqrtf:
2110   case LibFunc_sqrt:
2111   case LibFunc_sqrtl:
2112     return optimizeSqrt(CI, Builder);
2113   case LibFunc_log:
2114   case LibFunc_log10:
2115   case LibFunc_log1p:
2116   case LibFunc_log2:
2117   case LibFunc_logb:
2118     return optimizeLog(CI, Builder);
2119   case LibFunc_tan:
2120   case LibFunc_tanf:
2121   case LibFunc_tanl:
2122     return optimizeTan(CI, Builder);
2123   case LibFunc_ceil:
2124     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2125   case LibFunc_floor:
2126     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2127   case LibFunc_round:
2128     return replaceUnaryCall(CI, Builder, Intrinsic::round);
2129   case LibFunc_nearbyint:
2130     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2131   case LibFunc_rint:
2132     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2133   case LibFunc_trunc:
2134     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
2135   case LibFunc_acos:
2136   case LibFunc_acosh:
2137   case LibFunc_asin:
2138   case LibFunc_asinh:
2139   case LibFunc_atan:
2140   case LibFunc_atanh:
2141   case LibFunc_cbrt:
2142   case LibFunc_cosh:
2143   case LibFunc_exp:
2144   case LibFunc_exp10:
2145   case LibFunc_expm1:
2146   case LibFunc_sin:
2147   case LibFunc_sinh:
2148   case LibFunc_tanh:
2149     if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
2150       return optimizeUnaryDoubleFP(CI, Builder, true);
2151     return nullptr;
2152   case LibFunc_copysign:
2153     if (hasFloatVersion(CI->getCalledFunction()->getName()))
2154       return optimizeBinaryDoubleFP(CI, Builder);
2155     return nullptr;
2156   case LibFunc_fminf:
2157   case LibFunc_fmin:
2158   case LibFunc_fminl:
2159   case LibFunc_fmaxf:
2160   case LibFunc_fmax:
2161   case LibFunc_fmaxl:
2162     return optimizeFMinFMax(CI, Builder);
2163   default:
2164     return nullptr;
2165   }
2166 }
2167 
2168 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
2169   // TODO: Split out the code below that operates on FP calls so that
2170   //       we can all non-FP calls with the StrictFP attribute to be
2171   //       optimized.
2172   if (CI->isNoBuiltin())
2173     return nullptr;
2174 
2175   LibFunc Func;
2176   Function *Callee = CI->getCalledFunction();
2177 
2178   SmallVector<OperandBundleDef, 2> OpBundles;
2179   CI->getOperandBundlesAsDefs(OpBundles);
2180   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2181   bool isCallingConvC = isCallingConvCCompatible(CI);
2182 
2183   // Command-line parameter overrides instruction attribute.
2184   // This can't be moved to optimizeFloatingPointLibCall() because it may be
2185   // used by the intrinsic optimizations.
2186   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
2187     UnsafeFPShrink = EnableUnsafeFPShrink;
2188   else if (isa<FPMathOperator>(CI) && CI->isFast())
2189     UnsafeFPShrink = true;
2190 
2191   // First, check for intrinsics.
2192   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
2193     if (!isCallingConvC)
2194       return nullptr;
2195     // The FP intrinsics have corresponding constrained versions so we don't
2196     // need to check for the StrictFP attribute here.
2197     switch (II->getIntrinsicID()) {
2198     case Intrinsic::pow:
2199       return optimizePow(CI, Builder);
2200     case Intrinsic::exp2:
2201       return optimizeExp2(CI, Builder);
2202     case Intrinsic::log:
2203       return optimizeLog(CI, Builder);
2204     case Intrinsic::sqrt:
2205       return optimizeSqrt(CI, Builder);
2206     // TODO: Use foldMallocMemset() with memset intrinsic.
2207     default:
2208       return nullptr;
2209     }
2210   }
2211 
2212   // Also try to simplify calls to fortified library functions.
2213   if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
2214     // Try to further simplify the result.
2215     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
2216     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
2217       // Use an IR Builder from SimplifiedCI if available instead of CI
2218       // to guarantee we reach all uses we might replace later on.
2219       IRBuilder<> TmpBuilder(SimplifiedCI);
2220       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
2221         // If we were able to further simplify, remove the now redundant call.
2222         SimplifiedCI->replaceAllUsesWith(V);
2223         SimplifiedCI->eraseFromParent();
2224         return V;
2225       }
2226     }
2227     return SimplifiedFortifiedCI;
2228   }
2229 
2230   // Then check for known library functions.
2231   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2232     // We never change the calling convention.
2233     if (!ignoreCallingConv(Func) && !isCallingConvC)
2234       return nullptr;
2235     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
2236       return V;
2237     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
2238       return V;
2239     switch (Func) {
2240     case LibFunc_ffs:
2241     case LibFunc_ffsl:
2242     case LibFunc_ffsll:
2243       return optimizeFFS(CI, Builder);
2244     case LibFunc_fls:
2245     case LibFunc_flsl:
2246     case LibFunc_flsll:
2247       return optimizeFls(CI, Builder);
2248     case LibFunc_abs:
2249     case LibFunc_labs:
2250     case LibFunc_llabs:
2251       return optimizeAbs(CI, Builder);
2252     case LibFunc_isdigit:
2253       return optimizeIsDigit(CI, Builder);
2254     case LibFunc_isascii:
2255       return optimizeIsAscii(CI, Builder);
2256     case LibFunc_toascii:
2257       return optimizeToAscii(CI, Builder);
2258     case LibFunc_printf:
2259       return optimizePrintF(CI, Builder);
2260     case LibFunc_sprintf:
2261       return optimizeSPrintF(CI, Builder);
2262     case LibFunc_fprintf:
2263       return optimizeFPrintF(CI, Builder);
2264     case LibFunc_fwrite:
2265       return optimizeFWrite(CI, Builder);
2266     case LibFunc_fputs:
2267       return optimizeFPuts(CI, Builder);
2268     case LibFunc_puts:
2269       return optimizePuts(CI, Builder);
2270     case LibFunc_perror:
2271       return optimizeErrorReporting(CI, Builder);
2272     case LibFunc_vfprintf:
2273     case LibFunc_fiprintf:
2274       return optimizeErrorReporting(CI, Builder, 0);
2275     case LibFunc_fputc:
2276       return optimizeErrorReporting(CI, Builder, 1);
2277     default:
2278       return nullptr;
2279     }
2280   }
2281   return nullptr;
2282 }
2283 
2284 LibCallSimplifier::LibCallSimplifier(
2285     const DataLayout &DL, const TargetLibraryInfo *TLI,
2286     OptimizationRemarkEmitter &ORE,
2287     function_ref<void(Instruction *, Value *)> Replacer)
2288     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE),
2289       UnsafeFPShrink(false), Replacer(Replacer) {}
2290 
2291 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
2292   // Indirect through the replacer used in this instance.
2293   Replacer(I, With);
2294 }
2295 
2296 // TODO:
2297 //   Additional cases that we need to add to this file:
2298 //
2299 // cbrt:
2300 //   * cbrt(expN(X))  -> expN(x/3)
2301 //   * cbrt(sqrt(x))  -> pow(x,1/6)
2302 //   * cbrt(cbrt(x))  -> pow(x,1/9)
2303 //
2304 // exp, expf, expl:
2305 //   * exp(log(x))  -> x
2306 //
2307 // log, logf, logl:
2308 //   * log(exp(x))   -> x
2309 //   * log(exp(y))   -> y*log(e)
2310 //   * log(exp10(y)) -> y*log(10)
2311 //   * log(sqrt(x))  -> 0.5*log(x)
2312 //
2313 // pow, powf, powl:
2314 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
2315 //   * pow(pow(x,y),z)-> pow(x,y*z)
2316 //
2317 // signbit:
2318 //   * signbit(cnst) -> cnst'
2319 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2320 //
2321 // sqrt, sqrtf, sqrtl:
2322 //   * sqrt(expN(x))  -> expN(x*0.5)
2323 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2324 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2325 //
2326 
2327 //===----------------------------------------------------------------------===//
2328 // Fortified Library Call Optimizations
2329 //===----------------------------------------------------------------------===//
2330 
2331 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
2332                                                          unsigned ObjSizeOp,
2333                                                          unsigned SizeOp,
2334                                                          bool isString) {
2335   if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
2336     return true;
2337   if (ConstantInt *ObjSizeCI =
2338           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
2339     if (ObjSizeCI->isMinusOne())
2340       return true;
2341     // If the object size wasn't -1 (unknown), bail out if we were asked to.
2342     if (OnlyLowerUnknownSize)
2343       return false;
2344     if (isString) {
2345       uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
2346       // If the length is 0 we don't know how long it is and so we can't
2347       // remove the check.
2348       if (Len == 0)
2349         return false;
2350       return ObjSizeCI->getZExtValue() >= Len;
2351     }
2352     if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
2353       return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
2354   }
2355   return false;
2356 }
2357 
2358 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
2359                                                      IRBuilder<> &B) {
2360   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2361     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2362                    CI->getArgOperand(2), 1);
2363     return CI->getArgOperand(0);
2364   }
2365   return nullptr;
2366 }
2367 
2368 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
2369                                                       IRBuilder<> &B) {
2370   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2371     B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
2372                     CI->getArgOperand(2), 1);
2373     return CI->getArgOperand(0);
2374   }
2375   return nullptr;
2376 }
2377 
2378 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
2379                                                      IRBuilder<> &B) {
2380   // TODO: Try foldMallocMemset() here.
2381 
2382   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2383     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
2384     B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
2385     return CI->getArgOperand(0);
2386   }
2387   return nullptr;
2388 }
2389 
2390 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
2391                                                       IRBuilder<> &B,
2392                                                       LibFunc Func) {
2393   Function *Callee = CI->getCalledFunction();
2394   StringRef Name = Callee->getName();
2395   const DataLayout &DL = CI->getModule()->getDataLayout();
2396   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
2397         *ObjSize = CI->getArgOperand(2);
2398 
2399   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
2400   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
2401     Value *StrLen = emitStrLen(Src, B, DL, TLI);
2402     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
2403   }
2404 
2405   // If a) we don't have any length information, or b) we know this will
2406   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
2407   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
2408   // TODO: It might be nice to get a maximum length out of the possible
2409   // string lengths for varying.
2410   if (isFortifiedCallFoldable(CI, 2, 1, true))
2411     return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
2412 
2413   if (OnlyLowerUnknownSize)
2414     return nullptr;
2415 
2416   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
2417   uint64_t Len = GetStringLength(Src);
2418   if (Len == 0)
2419     return nullptr;
2420 
2421   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
2422   Value *LenV = ConstantInt::get(SizeTTy, Len);
2423   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
2424   // If the function was an __stpcpy_chk, and we were able to fold it into
2425   // a __memcpy_chk, we still need to return the correct end pointer.
2426   if (Ret && Func == LibFunc_stpcpy_chk)
2427     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
2428   return Ret;
2429 }
2430 
2431 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
2432                                                        IRBuilder<> &B,
2433                                                        LibFunc Func) {
2434   Function *Callee = CI->getCalledFunction();
2435   StringRef Name = Callee->getName();
2436   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2437     Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2438                              CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
2439     return Ret;
2440   }
2441   return nullptr;
2442 }
2443 
2444 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
2445   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
2446   // Some clang users checked for _chk libcall availability using:
2447   //   __has_builtin(__builtin___memcpy_chk)
2448   // When compiling with -fno-builtin, this is always true.
2449   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
2450   // end up with fortified libcalls, which isn't acceptable in a freestanding
2451   // environment which only provides their non-fortified counterparts.
2452   //
2453   // Until we change clang and/or teach external users to check for availability
2454   // differently, disregard the "nobuiltin" attribute and TLI::has.
2455   //
2456   // PR23093.
2457 
2458   LibFunc Func;
2459   Function *Callee = CI->getCalledFunction();
2460 
2461   SmallVector<OperandBundleDef, 2> OpBundles;
2462   CI->getOperandBundlesAsDefs(OpBundles);
2463   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2464   bool isCallingConvC = isCallingConvCCompatible(CI);
2465 
2466   // First, check that this is a known library functions and that the prototype
2467   // is correct.
2468   if (!TLI->getLibFunc(*Callee, Func))
2469     return nullptr;
2470 
2471   // We never change the calling convention.
2472   if (!ignoreCallingConv(Func) && !isCallingConvC)
2473     return nullptr;
2474 
2475   switch (Func) {
2476   case LibFunc_memcpy_chk:
2477     return optimizeMemCpyChk(CI, Builder);
2478   case LibFunc_memmove_chk:
2479     return optimizeMemMoveChk(CI, Builder);
2480   case LibFunc_memset_chk:
2481     return optimizeMemSetChk(CI, Builder);
2482   case LibFunc_stpcpy_chk:
2483   case LibFunc_strcpy_chk:
2484     return optimizeStrpCpyChk(CI, Builder, Func);
2485   case LibFunc_stpncpy_chk:
2486   case LibFunc_strncpy_chk:
2487     return optimizeStrpNCpyChk(CI, Builder, Func);
2488   default:
2489     break;
2490   }
2491   return nullptr;
2492 }
2493 
2494 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
2495     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
2496     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
2497