1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Transforms/Utils/BuildLibCalls.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Transforms/Utils/SizeOpts.h"
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 static cl::opt<bool>
40     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
41                          cl::init(false),
42                          cl::desc("Enable unsafe double to float "
43                                   "shrinking for math lib calls"));
44 
45 //===----------------------------------------------------------------------===//
46 // Helper Functions
47 //===----------------------------------------------------------------------===//
48 
49 static bool ignoreCallingConv(LibFunc Func) {
50   return Func == LibFunc_abs || Func == LibFunc_labs ||
51          Func == LibFunc_llabs || Func == LibFunc_strlen;
52 }
53 
54 /// Return true if it is only used in equality comparisons with With.
55 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
56   for (User *U : V->users()) {
57     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
58       if (IC->isEquality() && IC->getOperand(1) == With)
59         continue;
60     // Unknown instruction.
61     return false;
62   }
63   return true;
64 }
65 
66 static bool callHasFloatingPointArgument(const CallInst *CI) {
67   return any_of(CI->operands(), [](const Use &OI) {
68     return OI->getType()->isFloatingPointTy();
69   });
70 }
71 
72 static bool callHasFP128Argument(const CallInst *CI) {
73   return any_of(CI->operands(), [](const Use &OI) {
74     return OI->getType()->isFP128Ty();
75   });
76 }
77 
78 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
79   if (Base < 2 || Base > 36)
80     // handle special zero base
81     if (Base != 0)
82       return nullptr;
83 
84   char *End;
85   std::string nptr = Str.str();
86   errno = 0;
87   long long int Result = strtoll(nptr.c_str(), &End, Base);
88   if (errno)
89     return nullptr;
90 
91   // if we assume all possible target locales are ASCII supersets,
92   // then if strtoll successfully parses a number on the host,
93   // it will also successfully parse the same way on the target
94   if (*End != '\0')
95     return nullptr;
96 
97   if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
98     return nullptr;
99 
100   return ConstantInt::get(CI->getType(), Result);
101 }
102 
103 static bool isOnlyUsedInComparisonWithZero(Value *V) {
104   for (User *U : V->users()) {
105     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
106       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
107         if (C->isNullValue())
108           continue;
109     // Unknown instruction.
110     return false;
111   }
112   return true;
113 }
114 
115 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
116                                  const DataLayout &DL) {
117   if (!isOnlyUsedInComparisonWithZero(CI))
118     return false;
119 
120   if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL))
121     return false;
122 
123   if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
124     return false;
125 
126   return true;
127 }
128 
129 static void annotateDereferenceableBytes(CallInst *CI,
130                                          ArrayRef<unsigned> ArgNos,
131                                          uint64_t DereferenceableBytes) {
132   const Function *F = CI->getCaller();
133   if (!F)
134     return;
135   for (unsigned ArgNo : ArgNos) {
136     uint64_t DerefBytes = DereferenceableBytes;
137     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
138     if (!llvm::NullPointerIsDefined(F, AS) ||
139         CI->paramHasAttr(ArgNo, Attribute::NonNull))
140       DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo),
141                             DereferenceableBytes);
142 
143     if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) {
144       CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
145       if (!llvm::NullPointerIsDefined(F, AS) ||
146           CI->paramHasAttr(ArgNo, Attribute::NonNull))
147         CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
148       CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
149                                   CI->getContext(), DerefBytes));
150     }
151   }
152 }
153 
154 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI,
155                                          ArrayRef<unsigned> ArgNos) {
156   Function *F = CI->getCaller();
157   if (!F)
158     return;
159 
160   for (unsigned ArgNo : ArgNos) {
161     if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef))
162       CI->addParamAttr(ArgNo, Attribute::NoUndef);
163 
164     if (CI->paramHasAttr(ArgNo, Attribute::NonNull))
165       continue;
166     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
167     if (llvm::NullPointerIsDefined(F, AS))
168       continue;
169 
170     CI->addParamAttr(ArgNo, Attribute::NonNull);
171     annotateDereferenceableBytes(CI, ArgNo, 1);
172   }
173 }
174 
175 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
176                                Value *Size, const DataLayout &DL) {
177   if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
178     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
179     annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
180   } else if (isKnownNonZero(Size, DL)) {
181     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
182     const APInt *X, *Y;
183     uint64_t DerefMin = 1;
184     if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
185       DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
186       annotateDereferenceableBytes(CI, ArgNos, DerefMin);
187     }
188   }
189 }
190 
191 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for
192 // easier chaining. Calls to emit* and B.createCall should probably be wrapped
193 // in this function when New is created to replace Old. Callers should take
194 // care to check Old.isMustTailCall() if they aren't replacing Old directly
195 // with New.
196 static Value *copyFlags(const CallInst &Old, Value *New) {
197   assert(!Old.isMustTailCall() && "do not copy musttail call flags");
198   assert(!Old.isNoTailCall() && "do not copy notail call flags");
199   if (auto *NewCI = dyn_cast_or_null<CallInst>(New))
200     NewCI->setTailCallKind(Old.getTailCallKind());
201   return New;
202 }
203 
204 //===----------------------------------------------------------------------===//
205 // String and Memory Library Call Optimizations
206 //===----------------------------------------------------------------------===//
207 
208 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) {
209   // Extract some information from the instruction
210   Value *Dst = CI->getArgOperand(0);
211   Value *Src = CI->getArgOperand(1);
212   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
213 
214   // See if we can get the length of the input string.
215   uint64_t Len = GetStringLength(Src);
216   if (Len)
217     annotateDereferenceableBytes(CI, 1, Len);
218   else
219     return nullptr;
220   --Len; // Unbias length.
221 
222   // Handle the simple, do-nothing case: strcat(x, "") -> x
223   if (Len == 0)
224     return Dst;
225 
226   return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B));
227 }
228 
229 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
230                                            IRBuilderBase &B) {
231   // We need to find the end of the destination string.  That's where the
232   // memory is to be moved to. We just generate a call to strlen.
233   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
234   if (!DstLen)
235     return nullptr;
236 
237   // Now that we have the destination's length, we must index into the
238   // destination's pointer to get the actual memcpy destination (end of
239   // the string .. we're concatenating).
240   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
241 
242   // We have enough information to now generate the memcpy call to do the
243   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
244   B.CreateMemCpy(
245       CpyDst, Align(1), Src, Align(1),
246       ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
247   return Dst;
248 }
249 
250 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) {
251   // Extract some information from the instruction.
252   Value *Dst = CI->getArgOperand(0);
253   Value *Src = CI->getArgOperand(1);
254   Value *Size = CI->getArgOperand(2);
255   uint64_t Len;
256   annotateNonNullNoUndefBasedOnAccess(CI, 0);
257   if (isKnownNonZero(Size, DL))
258     annotateNonNullNoUndefBasedOnAccess(CI, 1);
259 
260   // We don't do anything if length is not constant.
261   ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
262   if (LengthArg) {
263     Len = LengthArg->getZExtValue();
264     // strncat(x, c, 0) -> x
265     if (!Len)
266       return Dst;
267   } else {
268     return nullptr;
269   }
270 
271   // See if we can get the length of the input string.
272   uint64_t SrcLen = GetStringLength(Src);
273   if (SrcLen) {
274     annotateDereferenceableBytes(CI, 1, SrcLen);
275     --SrcLen; // Unbias length.
276   } else {
277     return nullptr;
278   }
279 
280   // strncat(x, "", c) -> x
281   if (SrcLen == 0)
282     return Dst;
283 
284   // We don't optimize this case.
285   if (Len < SrcLen)
286     return nullptr;
287 
288   // strncat(x, s, c) -> strcat(x, s)
289   // s is constant so the strcat can be optimized further.
290   return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B));
291 }
292 
293 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) {
294   Function *Callee = CI->getCalledFunction();
295   FunctionType *FT = Callee->getFunctionType();
296   Value *SrcStr = CI->getArgOperand(0);
297   annotateNonNullNoUndefBasedOnAccess(CI, 0);
298 
299   // If the second operand is non-constant, see if we can compute the length
300   // of the input string and turn this into memchr.
301   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
302   if (!CharC) {
303     uint64_t Len = GetStringLength(SrcStr);
304     if (Len)
305       annotateDereferenceableBytes(CI, 0, Len);
306     else
307       return nullptr;
308     if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
309       return nullptr;
310 
311     return copyFlags(
312         *CI,
313         emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
314                    ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), B,
315                    DL, TLI));
316   }
317 
318   // Otherwise, the character is a constant, see if the first argument is
319   // a string literal.  If so, we can constant fold.
320   StringRef Str;
321   if (!getConstantStringInfo(SrcStr, Str)) {
322     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
323       if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
324         return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
325     return nullptr;
326   }
327 
328   // Compute the offset, make sure to handle the case when we're searching for
329   // zero (a weird way to spell strlen).
330   size_t I = (0xFF & CharC->getSExtValue()) == 0
331                  ? Str.size()
332                  : Str.find(CharC->getSExtValue());
333   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
334     return Constant::getNullValue(CI->getType());
335 
336   // strchr(s+n,c)  -> gep(s+n+i,c)
337   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
338 }
339 
340 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) {
341   Value *SrcStr = CI->getArgOperand(0);
342   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
343   annotateNonNullNoUndefBasedOnAccess(CI, 0);
344 
345   // Cannot fold anything if we're not looking for a constant.
346   if (!CharC)
347     return nullptr;
348 
349   StringRef Str;
350   if (!getConstantStringInfo(SrcStr, Str)) {
351     // strrchr(s, 0) -> strchr(s, 0)
352     if (CharC->isZero())
353       return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI));
354     return nullptr;
355   }
356 
357   // Compute the offset.
358   size_t I = (0xFF & CharC->getSExtValue()) == 0
359                  ? Str.size()
360                  : Str.rfind(CharC->getSExtValue());
361   if (I == StringRef::npos) // Didn't find the char. Return null.
362     return Constant::getNullValue(CI->getType());
363 
364   // strrchr(s+n,c) -> gep(s+n+i,c)
365   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
366 }
367 
368 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) {
369   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
370   if (Str1P == Str2P) // strcmp(x,x)  -> 0
371     return ConstantInt::get(CI->getType(), 0);
372 
373   StringRef Str1, Str2;
374   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
375   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
376 
377   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
378   if (HasStr1 && HasStr2)
379     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
380 
381   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
382     return B.CreateNeg(B.CreateZExt(
383         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
384 
385   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
386     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
387                         CI->getType());
388 
389   // strcmp(P, "x") -> memcmp(P, "x", 2)
390   uint64_t Len1 = GetStringLength(Str1P);
391   if (Len1)
392     annotateDereferenceableBytes(CI, 0, Len1);
393   uint64_t Len2 = GetStringLength(Str2P);
394   if (Len2)
395     annotateDereferenceableBytes(CI, 1, Len2);
396 
397   if (Len1 && Len2) {
398     return copyFlags(
399         *CI, emitMemCmp(Str1P, Str2P,
400                         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
401                                          std::min(Len1, Len2)),
402                         B, DL, TLI));
403   }
404 
405   // strcmp to memcmp
406   if (!HasStr1 && HasStr2) {
407     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
408       return copyFlags(
409           *CI,
410           emitMemCmp(Str1P, Str2P,
411                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
412                      B, DL, TLI));
413   } else if (HasStr1 && !HasStr2) {
414     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
415       return copyFlags(
416           *CI,
417           emitMemCmp(Str1P, Str2P,
418                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
419                      B, DL, TLI));
420   }
421 
422   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
423   return nullptr;
424 }
425 
426 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) {
427   Value *Str1P = CI->getArgOperand(0);
428   Value *Str2P = CI->getArgOperand(1);
429   Value *Size = CI->getArgOperand(2);
430   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
431     return ConstantInt::get(CI->getType(), 0);
432 
433   if (isKnownNonZero(Size, DL))
434     annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
435   // Get the length argument if it is constant.
436   uint64_t Length;
437   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
438     Length = LengthArg->getZExtValue();
439   else
440     return nullptr;
441 
442   if (Length == 0) // strncmp(x,y,0)   -> 0
443     return ConstantInt::get(CI->getType(), 0);
444 
445   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
446     return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI));
447 
448   StringRef Str1, Str2;
449   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
450   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
451 
452   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
453   if (HasStr1 && HasStr2) {
454     StringRef SubStr1 = Str1.substr(0, Length);
455     StringRef SubStr2 = Str2.substr(0, Length);
456     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
457   }
458 
459   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
460     return B.CreateNeg(B.CreateZExt(
461         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
462 
463   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
464     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
465                         CI->getType());
466 
467   uint64_t Len1 = GetStringLength(Str1P);
468   if (Len1)
469     annotateDereferenceableBytes(CI, 0, Len1);
470   uint64_t Len2 = GetStringLength(Str2P);
471   if (Len2)
472     annotateDereferenceableBytes(CI, 1, Len2);
473 
474   // strncmp to memcmp
475   if (!HasStr1 && HasStr2) {
476     Len2 = std::min(Len2, Length);
477     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
478       return copyFlags(
479           *CI,
480           emitMemCmp(Str1P, Str2P,
481                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
482                      B, DL, TLI));
483   } else if (HasStr1 && !HasStr2) {
484     Len1 = std::min(Len1, Length);
485     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
486       return copyFlags(
487           *CI,
488           emitMemCmp(Str1P, Str2P,
489                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
490                      B, DL, TLI));
491   }
492 
493   return nullptr;
494 }
495 
496 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) {
497   Value *Src = CI->getArgOperand(0);
498   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
499   uint64_t SrcLen = GetStringLength(Src);
500   if (SrcLen && Size) {
501     annotateDereferenceableBytes(CI, 0, SrcLen);
502     if (SrcLen <= Size->getZExtValue() + 1)
503       return copyFlags(*CI, emitStrDup(Src, B, TLI));
504   }
505 
506   return nullptr;
507 }
508 
509 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) {
510   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
511   if (Dst == Src) // strcpy(x,x)  -> x
512     return Src;
513 
514   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
515   // See if we can get the length of the input string.
516   uint64_t Len = GetStringLength(Src);
517   if (Len)
518     annotateDereferenceableBytes(CI, 1, Len);
519   else
520     return nullptr;
521 
522   // We have enough information to now generate the memcpy call to do the
523   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
524   CallInst *NewCI =
525       B.CreateMemCpy(Dst, Align(1), Src, Align(1),
526                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
527   NewCI->setAttributes(CI->getAttributes());
528   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
529   copyFlags(*CI, NewCI);
530   return Dst;
531 }
532 
533 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) {
534   Function *Callee = CI->getCalledFunction();
535   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
536 
537   // stpcpy(d,s) -> strcpy(d,s) if the result is not used.
538   if (CI->use_empty())
539     return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
540 
541   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
542     Value *StrLen = emitStrLen(Src, B, DL, TLI);
543     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
544   }
545 
546   // See if we can get the length of the input string.
547   uint64_t Len = GetStringLength(Src);
548   if (Len)
549     annotateDereferenceableBytes(CI, 1, Len);
550   else
551     return nullptr;
552 
553   Type *PT = Callee->getFunctionType()->getParamType(0);
554   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
555   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
556                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
557 
558   // We have enough information to now generate the memcpy call to do the
559   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
560   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV);
561   NewCI->setAttributes(CI->getAttributes());
562   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
563   copyFlags(*CI, NewCI);
564   return DstEnd;
565 }
566 
567 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) {
568   Function *Callee = CI->getCalledFunction();
569   Value *Dst = CI->getArgOperand(0);
570   Value *Src = CI->getArgOperand(1);
571   Value *Size = CI->getArgOperand(2);
572   annotateNonNullNoUndefBasedOnAccess(CI, 0);
573   if (isKnownNonZero(Size, DL))
574     annotateNonNullNoUndefBasedOnAccess(CI, 1);
575 
576   uint64_t Len;
577   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
578     Len = LengthArg->getZExtValue();
579   else
580     return nullptr;
581 
582   // strncpy(x, y, 0) -> x
583   if (Len == 0)
584     return Dst;
585 
586   // See if we can get the length of the input string.
587   uint64_t SrcLen = GetStringLength(Src);
588   if (SrcLen) {
589     annotateDereferenceableBytes(CI, 1, SrcLen);
590     --SrcLen; // Unbias length.
591   } else {
592     return nullptr;
593   }
594 
595   if (SrcLen == 0) {
596     // strncpy(x, "", y) -> memset(x, '\0', y)
597     Align MemSetAlign =
598         CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne();
599     CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign);
600     AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0));
601     NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
602         CI->getContext(), 0, ArgAttrs));
603     copyFlags(*CI, NewCI);
604     return Dst;
605   }
606 
607   // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4)
608   if (Len > SrcLen + 1) {
609     if (Len <= 128) {
610       StringRef Str;
611       if (!getConstantStringInfo(Src, Str))
612         return nullptr;
613       std::string SrcStr = Str.str();
614       SrcStr.resize(Len, '\0');
615       Src = B.CreateGlobalString(SrcStr, "str");
616     } else {
617       return nullptr;
618     }
619   }
620 
621   Type *PT = Callee->getFunctionType()->getParamType(0);
622   // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
623   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
624                                    ConstantInt::get(DL.getIntPtrType(PT), Len));
625   NewCI->setAttributes(CI->getAttributes());
626   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
627   copyFlags(*CI, NewCI);
628   return Dst;
629 }
630 
631 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B,
632                                                unsigned CharSize) {
633   Value *Src = CI->getArgOperand(0);
634 
635   // Constant folding: strlen("xyz") -> 3
636   if (uint64_t Len = GetStringLength(Src, CharSize))
637     return ConstantInt::get(CI->getType(), Len - 1);
638 
639   // If s is a constant pointer pointing to a string literal, we can fold
640   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
641   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
642   // We only try to simplify strlen when the pointer s points to an array
643   // of i8. Otherwise, we would need to scale the offset x before doing the
644   // subtraction. This will make the optimization more complex, and it's not
645   // very useful because calling strlen for a pointer of other types is
646   // very uncommon.
647   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
648     if (!isGEPBasedOnPointerToString(GEP, CharSize))
649       return nullptr;
650 
651     ConstantDataArraySlice Slice;
652     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
653       uint64_t NullTermIdx;
654       if (Slice.Array == nullptr) {
655         NullTermIdx = 0;
656       } else {
657         NullTermIdx = ~((uint64_t)0);
658         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
659           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
660             NullTermIdx = I;
661             break;
662           }
663         }
664         // If the string does not have '\0', leave it to strlen to compute
665         // its length.
666         if (NullTermIdx == ~((uint64_t)0))
667           return nullptr;
668       }
669 
670       Value *Offset = GEP->getOperand(2);
671       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
672       Known.Zero.flipAllBits();
673       uint64_t ArrSize =
674              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
675 
676       // KnownZero's bits are flipped, so zeros in KnownZero now represent
677       // bits known to be zeros in Offset, and ones in KnowZero represent
678       // bits unknown in Offset. Therefore, Offset is known to be in range
679       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
680       // unsigned-less-than NullTermIdx.
681       //
682       // If Offset is not provably in the range [0, NullTermIdx], we can still
683       // optimize if we can prove that the program has undefined behavior when
684       // Offset is outside that range. That is the case when GEP->getOperand(0)
685       // is a pointer to an object whose memory extent is NullTermIdx+1.
686       if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
687           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
688            NullTermIdx == ArrSize - 1)) {
689         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
690         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
691                            Offset);
692       }
693     }
694   }
695 
696   // strlen(x?"foo":"bars") --> x ? 3 : 4
697   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
698     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
699     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
700     if (LenTrue && LenFalse) {
701       ORE.emit([&]() {
702         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
703                << "folded strlen(select) to select of constants";
704       });
705       return B.CreateSelect(SI->getCondition(),
706                             ConstantInt::get(CI->getType(), LenTrue - 1),
707                             ConstantInt::get(CI->getType(), LenFalse - 1));
708     }
709   }
710 
711   // strlen(x) != 0 --> *x != 0
712   // strlen(x) == 0 --> *x == 0
713   if (isOnlyUsedInZeroEqualityComparison(CI))
714     return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"),
715                         CI->getType());
716 
717   return nullptr;
718 }
719 
720 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) {
721   if (Value *V = optimizeStringLength(CI, B, 8))
722     return V;
723   annotateNonNullNoUndefBasedOnAccess(CI, 0);
724   return nullptr;
725 }
726 
727 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) {
728   Module &M = *CI->getModule();
729   unsigned WCharSize = TLI->getWCharSize(M) * 8;
730   // We cannot perform this optimization without wchar_size metadata.
731   if (WCharSize == 0)
732     return nullptr;
733 
734   return optimizeStringLength(CI, B, WCharSize);
735 }
736 
737 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) {
738   StringRef S1, S2;
739   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
740   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
741 
742   // strpbrk(s, "") -> nullptr
743   // strpbrk("", s) -> nullptr
744   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
745     return Constant::getNullValue(CI->getType());
746 
747   // Constant folding.
748   if (HasS1 && HasS2) {
749     size_t I = S1.find_first_of(S2);
750     if (I == StringRef::npos) // No match.
751       return Constant::getNullValue(CI->getType());
752 
753     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
754                        "strpbrk");
755   }
756 
757   // strpbrk(s, "a") -> strchr(s, 'a')
758   if (HasS2 && S2.size() == 1)
759     return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI));
760 
761   return nullptr;
762 }
763 
764 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) {
765   Value *EndPtr = CI->getArgOperand(1);
766   if (isa<ConstantPointerNull>(EndPtr)) {
767     // With a null EndPtr, this function won't capture the main argument.
768     // It would be readonly too, except that it still may write to errno.
769     CI->addParamAttr(0, Attribute::NoCapture);
770   }
771 
772   return nullptr;
773 }
774 
775 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) {
776   StringRef S1, S2;
777   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
778   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
779 
780   // strspn(s, "") -> 0
781   // strspn("", s) -> 0
782   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
783     return Constant::getNullValue(CI->getType());
784 
785   // Constant folding.
786   if (HasS1 && HasS2) {
787     size_t Pos = S1.find_first_not_of(S2);
788     if (Pos == StringRef::npos)
789       Pos = S1.size();
790     return ConstantInt::get(CI->getType(), Pos);
791   }
792 
793   return nullptr;
794 }
795 
796 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) {
797   StringRef S1, S2;
798   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
799   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
800 
801   // strcspn("", s) -> 0
802   if (HasS1 && S1.empty())
803     return Constant::getNullValue(CI->getType());
804 
805   // Constant folding.
806   if (HasS1 && HasS2) {
807     size_t Pos = S1.find_first_of(S2);
808     if (Pos == StringRef::npos)
809       Pos = S1.size();
810     return ConstantInt::get(CI->getType(), Pos);
811   }
812 
813   // strcspn(s, "") -> strlen(s)
814   if (HasS2 && S2.empty())
815     return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI));
816 
817   return nullptr;
818 }
819 
820 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) {
821   // fold strstr(x, x) -> x.
822   if (CI->getArgOperand(0) == CI->getArgOperand(1))
823     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
824 
825   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
826   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
827     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
828     if (!StrLen)
829       return nullptr;
830     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
831                                  StrLen, B, DL, TLI);
832     if (!StrNCmp)
833       return nullptr;
834     for (User *U : llvm::make_early_inc_range(CI->users())) {
835       ICmpInst *Old = cast<ICmpInst>(U);
836       Value *Cmp =
837           B.CreateICmp(Old->getPredicate(), StrNCmp,
838                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
839       replaceAllUsesWith(Old, Cmp);
840     }
841     return CI;
842   }
843 
844   // See if either input string is a constant string.
845   StringRef SearchStr, ToFindStr;
846   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
847   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
848 
849   // fold strstr(x, "") -> x.
850   if (HasStr2 && ToFindStr.empty())
851     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
852 
853   // If both strings are known, constant fold it.
854   if (HasStr1 && HasStr2) {
855     size_t Offset = SearchStr.find(ToFindStr);
856 
857     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
858       return Constant::getNullValue(CI->getType());
859 
860     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
861     Value *Result = castToCStr(CI->getArgOperand(0), B);
862     Result =
863         B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
864     return B.CreateBitCast(Result, CI->getType());
865   }
866 
867   // fold strstr(x, "y") -> strchr(x, 'y').
868   if (HasStr2 && ToFindStr.size() == 1) {
869     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
870     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
871   }
872 
873   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
874   return nullptr;
875 }
876 
877 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) {
878   if (isKnownNonZero(CI->getOperand(2), DL))
879     annotateNonNullNoUndefBasedOnAccess(CI, 0);
880   return nullptr;
881 }
882 
883 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) {
884   Value *SrcStr = CI->getArgOperand(0);
885   Value *Size = CI->getArgOperand(2);
886   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
887   Value *CharVal = CI->getArgOperand(1);
888   ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
889   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
890 
891   // memchr(x, y, 0) -> null
892   if (LenC) {
893     if (LenC->isZero())
894       return Constant::getNullValue(CI->getType());
895 
896     if (LenC->isOne()) {
897       // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y,
898       // constant or otherwise.
899       Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0");
900       // Slice off the character's high end bits.
901       CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
902       Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp");
903       Value *NullPtr = Constant::getNullValue(CI->getType());
904       return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel");
905     }
906   }
907 
908   StringRef Str;
909   if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
910     return nullptr;
911 
912   if (CharC) {
913     size_t Pos = Str.find(CharC->getZExtValue());
914     if (Pos == StringRef::npos)
915       // When the character is not in the source array fold the result
916       // to null regardless of Size.
917       return Constant::getNullValue(CI->getType());
918 
919     // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos
920     // When the constant Size is less than or equal to the character
921     // position also fold the result to null.
922     Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
923                                  "memchr.cmp");
924     Value *NullPtr = Constant::getNullValue(CI->getType());
925     Value *SrcPlus =
926         B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), "memchr.ptr");
927     return B.CreateSelect(Cmp, NullPtr, SrcPlus);
928   }
929 
930   if (!LenC)
931     // From now on we need a constant length and constant array.
932     return nullptr;
933 
934   // Truncate the string to LenC.
935   Str = Str.substr(0, LenC->getZExtValue());
936 
937   // If the char is variable but the input str and length are not we can turn
938   // this memchr call into a simple bit field test. Of course this only works
939   // when the return value is only checked against null.
940   //
941   // It would be really nice to reuse switch lowering here but we can't change
942   // the CFG at this point.
943   //
944   // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
945   // != 0
946   //   after bounds check.
947   if (Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI))
948     return nullptr;
949 
950   unsigned char Max =
951       *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
952                         reinterpret_cast<const unsigned char *>(Str.end()));
953 
954   // Make sure the bit field we're about to create fits in a register on the
955   // target.
956   // FIXME: On a 64 bit architecture this prevents us from using the
957   // interesting range of alpha ascii chars. We could do better by emitting
958   // two bitfields or shifting the range by 64 if no lower chars are used.
959   if (!DL.fitsInLegalInteger(Max + 1))
960     return nullptr;
961 
962   // For the bit field use a power-of-2 type with at least 8 bits to avoid
963   // creating unnecessary illegal types.
964   unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
965 
966   // Now build the bit field.
967   APInt Bitfield(Width, 0);
968   for (char C : Str)
969     Bitfield.setBit((unsigned char)C);
970   Value *BitfieldC = B.getInt(Bitfield);
971 
972   // Adjust width of "C" to the bitfield width, then mask off the high bits.
973   Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType());
974   C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
975 
976   // First check that the bit field access is within bounds.
977   Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
978                                "memchr.bounds");
979 
980   // Create code that checks if the given bit is set in the field.
981   Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
982   Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
983 
984   // Finally merge both checks and cast to pointer type. The inttoptr
985   // implicitly zexts the i1 to intptr type.
986   return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"),
987                           CI->getType());
988 }
989 
990 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
991                                          uint64_t Len, IRBuilderBase &B,
992                                          const DataLayout &DL) {
993   if (Len == 0) // memcmp(s1,s2,0) -> 0
994     return Constant::getNullValue(CI->getType());
995 
996   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
997   if (Len == 1) {
998     Value *LHSV =
999         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
1000                      CI->getType(), "lhsv");
1001     Value *RHSV =
1002         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
1003                      CI->getType(), "rhsv");
1004     return B.CreateSub(LHSV, RHSV, "chardiff");
1005   }
1006 
1007   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
1008   // TODO: The case where both inputs are constants does not need to be limited
1009   // to legal integers or equality comparison. See block below this.
1010   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
1011     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
1012     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
1013 
1014     // First, see if we can fold either argument to a constant.
1015     Value *LHSV = nullptr;
1016     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
1017       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
1018       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
1019     }
1020     Value *RHSV = nullptr;
1021     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
1022       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
1023       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
1024     }
1025 
1026     // Don't generate unaligned loads. If either source is constant data,
1027     // alignment doesn't matter for that source because there is no load.
1028     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
1029         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
1030       if (!LHSV) {
1031         Type *LHSPtrTy =
1032             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
1033         LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
1034       }
1035       if (!RHSV) {
1036         Type *RHSPtrTy =
1037             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
1038         RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
1039       }
1040       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1041     }
1042   }
1043 
1044   // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
1045   // TODO: This is limited to i8 arrays.
1046   StringRef LHSStr, RHSStr;
1047   if (getConstantStringInfo(LHS, LHSStr) &&
1048       getConstantStringInfo(RHS, RHSStr)) {
1049     // Make sure we're not reading out-of-bounds memory.
1050     if (Len > LHSStr.size() || Len > RHSStr.size())
1051       return nullptr;
1052     // Fold the memcmp and normalize the result.  This way we get consistent
1053     // results across multiple platforms.
1054     uint64_t Ret = 0;
1055     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
1056     if (Cmp < 0)
1057       Ret = -1;
1058     else if (Cmp > 0)
1059       Ret = 1;
1060     return ConstantInt::get(CI->getType(), Ret);
1061   }
1062 
1063   return nullptr;
1064 }
1065 
1066 // Most simplifications for memcmp also apply to bcmp.
1067 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1068                                                    IRBuilderBase &B) {
1069   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1070   Value *Size = CI->getArgOperand(2);
1071 
1072   if (LHS == RHS) // memcmp(s,s,x) -> 0
1073     return Constant::getNullValue(CI->getType());
1074 
1075   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1076   // Handle constant lengths.
1077   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1078   if (!LenC)
1079     return nullptr;
1080 
1081   // memcmp(d,s,0) -> 0
1082   if (LenC->getZExtValue() == 0)
1083     return Constant::getNullValue(CI->getType());
1084 
1085   if (Value *Res =
1086           optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL))
1087     return Res;
1088   return nullptr;
1089 }
1090 
1091 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
1092   if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1093     return V;
1094 
1095   // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1096   // bcmp can be more efficient than memcmp because it only has to know that
1097   // there is a difference, not how different one is to the other.
1098   if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) {
1099     Value *LHS = CI->getArgOperand(0);
1100     Value *RHS = CI->getArgOperand(1);
1101     Value *Size = CI->getArgOperand(2);
1102     return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI));
1103   }
1104 
1105   return nullptr;
1106 }
1107 
1108 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) {
1109   return optimizeMemCmpBCmpCommon(CI, B);
1110 }
1111 
1112 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) {
1113   Value *Size = CI->getArgOperand(2);
1114   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1115   if (isa<IntrinsicInst>(CI))
1116     return nullptr;
1117 
1118   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1119   CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1),
1120                                    CI->getArgOperand(1), Align(1), Size);
1121   NewCI->setAttributes(CI->getAttributes());
1122   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1123   copyFlags(*CI, NewCI);
1124   return CI->getArgOperand(0);
1125 }
1126 
1127 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) {
1128   Value *Dst = CI->getArgOperand(0);
1129   Value *Src = CI->getArgOperand(1);
1130   ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1131   ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1132   StringRef SrcStr;
1133   if (CI->use_empty() && Dst == Src)
1134     return Dst;
1135   // memccpy(d, s, c, 0) -> nullptr
1136   if (N) {
1137     if (N->isNullValue())
1138       return Constant::getNullValue(CI->getType());
1139     if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0,
1140                                /*TrimAtNul=*/false) ||
1141         !StopChar)
1142       return nullptr;
1143   } else {
1144     return nullptr;
1145   }
1146 
1147   // Wrap arg 'c' of type int to char
1148   size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1149   if (Pos == StringRef::npos) {
1150     if (N->getZExtValue() <= SrcStr.size()) {
1151       copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1),
1152                                     CI->getArgOperand(3)));
1153       return Constant::getNullValue(CI->getType());
1154     }
1155     return nullptr;
1156   }
1157 
1158   Value *NewN =
1159       ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1160   // memccpy -> llvm.memcpy
1161   copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN));
1162   return Pos + 1 <= N->getZExtValue()
1163              ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1164              : Constant::getNullValue(CI->getType());
1165 }
1166 
1167 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) {
1168   Value *Dst = CI->getArgOperand(0);
1169   Value *N = CI->getArgOperand(2);
1170   // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1171   CallInst *NewCI =
1172       B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N);
1173   // Propagate attributes, but memcpy has no return value, so make sure that
1174   // any return attributes are compliant.
1175   // TODO: Attach return value attributes to the 1st operand to preserve them?
1176   NewCI->setAttributes(CI->getAttributes());
1177   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1178   copyFlags(*CI, NewCI);
1179   return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1180 }
1181 
1182 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) {
1183   Value *Size = CI->getArgOperand(2);
1184   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1185   if (isa<IntrinsicInst>(CI))
1186     return nullptr;
1187 
1188   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1189   CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1),
1190                                     CI->getArgOperand(1), Align(1), Size);
1191   NewCI->setAttributes(CI->getAttributes());
1192   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1193   copyFlags(*CI, NewCI);
1194   return CI->getArgOperand(0);
1195 }
1196 
1197 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) {
1198   Value *Size = CI->getArgOperand(2);
1199   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1200   if (isa<IntrinsicInst>(CI))
1201     return nullptr;
1202 
1203   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1204   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1205   CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1));
1206   NewCI->setAttributes(CI->getAttributes());
1207   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1208   copyFlags(*CI, NewCI);
1209   return CI->getArgOperand(0);
1210 }
1211 
1212 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) {
1213   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1214     return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI));
1215 
1216   return nullptr;
1217 }
1218 
1219 //===----------------------------------------------------------------------===//
1220 // Math Library Optimizations
1221 //===----------------------------------------------------------------------===//
1222 
1223 // Replace a libcall \p CI with a call to intrinsic \p IID
1224 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B,
1225                                Intrinsic::ID IID) {
1226   // Propagate fast-math flags from the existing call to the new call.
1227   IRBuilderBase::FastMathFlagGuard Guard(B);
1228   B.setFastMathFlags(CI->getFastMathFlags());
1229 
1230   Module *M = CI->getModule();
1231   Value *V = CI->getArgOperand(0);
1232   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1233   CallInst *NewCall = B.CreateCall(F, V);
1234   NewCall->takeName(CI);
1235   return copyFlags(*CI, NewCall);
1236 }
1237 
1238 /// Return a variant of Val with float type.
1239 /// Currently this works in two cases: If Val is an FPExtension of a float
1240 /// value to something bigger, simply return the operand.
1241 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1242 /// loss of precision do so.
1243 static Value *valueHasFloatPrecision(Value *Val) {
1244   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1245     Value *Op = Cast->getOperand(0);
1246     if (Op->getType()->isFloatTy())
1247       return Op;
1248   }
1249   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1250     APFloat F = Const->getValueAPF();
1251     bool losesInfo;
1252     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1253                     &losesInfo);
1254     if (!losesInfo)
1255       return ConstantFP::get(Const->getContext(), F);
1256   }
1257   return nullptr;
1258 }
1259 
1260 /// Shrink double -> float functions.
1261 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
1262                                bool isBinary, bool isPrecise = false) {
1263   Function *CalleeFn = CI->getCalledFunction();
1264   if (!CI->getType()->isDoubleTy() || !CalleeFn)
1265     return nullptr;
1266 
1267   // If not all the uses of the function are converted to float, then bail out.
1268   // This matters if the precision of the result is more important than the
1269   // precision of the arguments.
1270   if (isPrecise)
1271     for (User *U : CI->users()) {
1272       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1273       if (!Cast || !Cast->getType()->isFloatTy())
1274         return nullptr;
1275     }
1276 
1277   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1278   Value *V[2];
1279   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1280   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1281   if (!V[0] || (isBinary && !V[1]))
1282     return nullptr;
1283 
1284   // If call isn't an intrinsic, check that it isn't within a function with the
1285   // same name as the float version of this call, otherwise the result is an
1286   // infinite loop.  For example, from MinGW-w64:
1287   //
1288   // float expf(float val) { return (float) exp((double) val); }
1289   StringRef CalleeName = CalleeFn->getName();
1290   bool IsIntrinsic = CalleeFn->isIntrinsic();
1291   if (!IsIntrinsic) {
1292     StringRef CallerName = CI->getFunction()->getName();
1293     if (!CallerName.empty() && CallerName.back() == 'f' &&
1294         CallerName.size() == (CalleeName.size() + 1) &&
1295         CallerName.startswith(CalleeName))
1296       return nullptr;
1297   }
1298 
1299   // Propagate the math semantics from the current function to the new function.
1300   IRBuilderBase::FastMathFlagGuard Guard(B);
1301   B.setFastMathFlags(CI->getFastMathFlags());
1302 
1303   // g((double) float) -> (double) gf(float)
1304   Value *R;
1305   if (IsIntrinsic) {
1306     Module *M = CI->getModule();
1307     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1308     Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1309     R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1310   } else {
1311     AttributeList CalleeAttrs = CalleeFn->getAttributes();
1312     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs)
1313                  : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs);
1314   }
1315   return B.CreateFPExt(R, B.getDoubleTy());
1316 }
1317 
1318 /// Shrink double -> float for unary functions.
1319 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1320                                     bool isPrecise = false) {
1321   return optimizeDoubleFP(CI, B, false, isPrecise);
1322 }
1323 
1324 /// Shrink double -> float for binary functions.
1325 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1326                                      bool isPrecise = false) {
1327   return optimizeDoubleFP(CI, B, true, isPrecise);
1328 }
1329 
1330 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1331 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) {
1332   if (!CI->isFast())
1333     return nullptr;
1334 
1335   // Propagate fast-math flags from the existing call to new instructions.
1336   IRBuilderBase::FastMathFlagGuard Guard(B);
1337   B.setFastMathFlags(CI->getFastMathFlags());
1338 
1339   Value *Real, *Imag;
1340   if (CI->arg_size() == 1) {
1341     Value *Op = CI->getArgOperand(0);
1342     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1343     Real = B.CreateExtractValue(Op, 0, "real");
1344     Imag = B.CreateExtractValue(Op, 1, "imag");
1345   } else {
1346     assert(CI->arg_size() == 2 && "Unexpected signature for cabs!");
1347     Real = CI->getArgOperand(0);
1348     Imag = CI->getArgOperand(1);
1349   }
1350 
1351   Value *RealReal = B.CreateFMul(Real, Real);
1352   Value *ImagImag = B.CreateFMul(Imag, Imag);
1353 
1354   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1355                                               CI->getType());
1356   return copyFlags(
1357       *CI, B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"));
1358 }
1359 
1360 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1361                                       IRBuilderBase &B) {
1362   if (!isa<FPMathOperator>(Call))
1363     return nullptr;
1364 
1365   IRBuilderBase::FastMathFlagGuard Guard(B);
1366   B.setFastMathFlags(Call->getFastMathFlags());
1367 
1368   // TODO: Can this be shared to also handle LLVM intrinsics?
1369   Value *X;
1370   switch (Func) {
1371   case LibFunc_sin:
1372   case LibFunc_sinf:
1373   case LibFunc_sinl:
1374   case LibFunc_tan:
1375   case LibFunc_tanf:
1376   case LibFunc_tanl:
1377     // sin(-X) --> -sin(X)
1378     // tan(-X) --> -tan(X)
1379     if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1380       return B.CreateFNeg(
1381           copyFlags(*Call, B.CreateCall(Call->getCalledFunction(), X)));
1382     break;
1383   case LibFunc_cos:
1384   case LibFunc_cosf:
1385   case LibFunc_cosl:
1386     // cos(-X) --> cos(X)
1387     if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1388       return copyFlags(*Call,
1389                        B.CreateCall(Call->getCalledFunction(), X, "cos"));
1390     break;
1391   default:
1392     break;
1393   }
1394   return nullptr;
1395 }
1396 
1397 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) {
1398   // Multiplications calculated using Addition Chains.
1399   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1400 
1401   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1402 
1403   if (InnerChain[Exp])
1404     return InnerChain[Exp];
1405 
1406   static const unsigned AddChain[33][2] = {
1407       {0, 0}, // Unused.
1408       {0, 0}, // Unused (base case = pow1).
1409       {1, 1}, // Unused (pre-computed).
1410       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1411       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1412       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1413       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1414       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1415   };
1416 
1417   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1418                                  getPow(InnerChain, AddChain[Exp][1], B));
1419   return InnerChain[Exp];
1420 }
1421 
1422 // Return a properly extended integer (DstWidth bits wide) if the operation is
1423 // an itofp.
1424 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) {
1425   if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
1426     Value *Op = cast<Instruction>(I2F)->getOperand(0);
1427     // Make sure that the exponent fits inside an "int" of size DstWidth,
1428     // thus avoiding any range issues that FP has not.
1429     unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1430     if (BitWidth < DstWidth ||
1431         (BitWidth == DstWidth && isa<SIToFPInst>(I2F)))
1432       return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth))
1433                                   : B.CreateZExt(Op, B.getIntNTy(DstWidth));
1434   }
1435 
1436   return nullptr;
1437 }
1438 
1439 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1440 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1441 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1442 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
1443   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1444   AttributeList Attrs; // Attributes are only meaningful on the original call
1445   Module *Mod = Pow->getModule();
1446   Type *Ty = Pow->getType();
1447   bool Ignored;
1448 
1449   // Evaluate special cases related to a nested function as the base.
1450 
1451   // pow(exp(x), y) -> exp(x * y)
1452   // pow(exp2(x), y) -> exp2(x * y)
1453   // If exp{,2}() is used only once, it is better to fold two transcendental
1454   // math functions into one.  If used again, exp{,2}() would still have to be
1455   // called with the original argument, then keep both original transcendental
1456   // functions.  However, this transformation is only safe with fully relaxed
1457   // math semantics, since, besides rounding differences, it changes overflow
1458   // and underflow behavior quite dramatically.  For example:
1459   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1460   // Whereas:
1461   //   exp(1000 * 0.001) = exp(1)
1462   // TODO: Loosen the requirement for fully relaxed math semantics.
1463   // TODO: Handle exp10() when more targets have it available.
1464   CallInst *BaseFn = dyn_cast<CallInst>(Base);
1465   if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1466     LibFunc LibFn;
1467 
1468     Function *CalleeFn = BaseFn->getCalledFunction();
1469     if (CalleeFn &&
1470         TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) {
1471       StringRef ExpName;
1472       Intrinsic::ID ID;
1473       Value *ExpFn;
1474       LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
1475 
1476       switch (LibFn) {
1477       default:
1478         return nullptr;
1479       case LibFunc_expf:  case LibFunc_exp:  case LibFunc_expl:
1480         ExpName = TLI->getName(LibFunc_exp);
1481         ID = Intrinsic::exp;
1482         LibFnFloat = LibFunc_expf;
1483         LibFnDouble = LibFunc_exp;
1484         LibFnLongDouble = LibFunc_expl;
1485         break;
1486       case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1487         ExpName = TLI->getName(LibFunc_exp2);
1488         ID = Intrinsic::exp2;
1489         LibFnFloat = LibFunc_exp2f;
1490         LibFnDouble = LibFunc_exp2;
1491         LibFnLongDouble = LibFunc_exp2l;
1492         break;
1493       }
1494 
1495       // Create new exp{,2}() with the product as its argument.
1496       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1497       ExpFn = BaseFn->doesNotAccessMemory()
1498               ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1499                              FMul, ExpName)
1500               : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1501                                      LibFnLongDouble, B,
1502                                      BaseFn->getAttributes());
1503 
1504       // Since the new exp{,2}() is different from the original one, dead code
1505       // elimination cannot be trusted to remove it, since it may have side
1506       // effects (e.g., errno).  When the only consumer for the original
1507       // exp{,2}() is pow(), then it has to be explicitly erased.
1508       substituteInParent(BaseFn, ExpFn);
1509       return ExpFn;
1510     }
1511   }
1512 
1513   // Evaluate special cases related to a constant base.
1514 
1515   const APFloat *BaseF;
1516   if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1517     return nullptr;
1518 
1519   // pow(2.0, itofp(x)) -> ldexp(1.0, x)
1520   if (match(Base, m_SpecificFP(2.0)) &&
1521       (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
1522       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1523     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
1524       return copyFlags(*Pow,
1525                        emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI,
1526                                              TLI, LibFunc_ldexp, LibFunc_ldexpf,
1527                                              LibFunc_ldexpl, B, Attrs));
1528   }
1529 
1530   // pow(2.0 ** n, x) -> exp2(n * x)
1531   if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1532     APFloat BaseR = APFloat(1.0);
1533     BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1534     BaseR = BaseR / *BaseF;
1535     bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
1536     const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1537     APSInt NI(64, false);
1538     if ((IsInteger || IsReciprocal) &&
1539         NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
1540             APFloat::opOK &&
1541         NI > 1 && NI.isPowerOf2()) {
1542       double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1543       Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1544       if (Pow->doesNotAccessMemory())
1545         return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
1546                                                 Mod, Intrinsic::exp2, Ty),
1547                                             FMul, "exp2"));
1548       else
1549         return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
1550                                                     LibFunc_exp2f,
1551                                                     LibFunc_exp2l, B, Attrs));
1552     }
1553   }
1554 
1555   // pow(10.0, x) -> exp10(x)
1556   // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1557   if (match(Base, m_SpecificFP(10.0)) &&
1558       hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1559     return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10,
1560                                                 LibFunc_exp10f, LibFunc_exp10l,
1561                                                 B, Attrs));
1562 
1563   // pow(x, y) -> exp2(log2(x) * y)
1564   if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() &&
1565       !BaseF->isNegative()) {
1566     // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
1567     // Luckily optimizePow has already handled the x == 1 case.
1568     assert(!match(Base, m_FPOne()) &&
1569            "pow(1.0, y) should have been simplified earlier!");
1570 
1571     Value *Log = nullptr;
1572     if (Ty->isFloatTy())
1573       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
1574     else if (Ty->isDoubleTy())
1575       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
1576 
1577     if (Log) {
1578       Value *FMul = B.CreateFMul(Log, Expo, "mul");
1579       if (Pow->doesNotAccessMemory())
1580         return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
1581                                                 Mod, Intrinsic::exp2, Ty),
1582                                             FMul, "exp2"));
1583       else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l))
1584         return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
1585                                                     LibFunc_exp2f,
1586                                                     LibFunc_exp2l, B, Attrs));
1587     }
1588   }
1589 
1590   return nullptr;
1591 }
1592 
1593 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1594                           Module *M, IRBuilderBase &B,
1595                           const TargetLibraryInfo *TLI) {
1596   // If errno is never set, then use the intrinsic for sqrt().
1597   if (NoErrno) {
1598     Function *SqrtFn =
1599         Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1600     return B.CreateCall(SqrtFn, V, "sqrt");
1601   }
1602 
1603   // Otherwise, use the libcall for sqrt().
1604   if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl))
1605     // TODO: We also should check that the target can in fact lower the sqrt()
1606     // libcall. We currently have no way to ask this question, so we ask if
1607     // the target has a sqrt() libcall, which is not exactly the same.
1608     return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1609                                 LibFunc_sqrtl, B, Attrs);
1610 
1611   return nullptr;
1612 }
1613 
1614 /// Use square root in place of pow(x, +/-0.5).
1615 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) {
1616   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1617   AttributeList Attrs; // Attributes are only meaningful on the original call
1618   Module *Mod = Pow->getModule();
1619   Type *Ty = Pow->getType();
1620 
1621   const APFloat *ExpoF;
1622   if (!match(Expo, m_APFloat(ExpoF)) ||
1623       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1624     return nullptr;
1625 
1626   // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
1627   // so that requires fast-math-flags (afn or reassoc).
1628   if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
1629     return nullptr;
1630 
1631   // If we have a pow() library call (accesses memory) and we can't guarantee
1632   // that the base is not an infinity, give up:
1633   // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting
1634   // errno), but sqrt(-Inf) is required by various standards to set errno.
1635   if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() &&
1636       !isKnownNeverInfinity(Base, TLI))
1637     return nullptr;
1638 
1639   Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1640   if (!Sqrt)
1641     return nullptr;
1642 
1643   // Handle signed zero base by expanding to fabs(sqrt(x)).
1644   if (!Pow->hasNoSignedZeros()) {
1645     Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1646     Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1647   }
1648 
1649   Sqrt = copyFlags(*Pow, Sqrt);
1650 
1651   // Handle non finite base by expanding to
1652   // (x == -infinity ? +infinity : sqrt(x)).
1653   if (!Pow->hasNoInfs()) {
1654     Value *PosInf = ConstantFP::getInfinity(Ty),
1655           *NegInf = ConstantFP::getInfinity(Ty, true);
1656     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1657     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1658   }
1659 
1660   // If the exponent is negative, then get the reciprocal.
1661   if (ExpoF->isNegative())
1662     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1663 
1664   return Sqrt;
1665 }
1666 
1667 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
1668                                            IRBuilderBase &B) {
1669   Value *Args[] = {Base, Expo};
1670   Type *Types[] = {Base->getType(), Expo->getType()};
1671   Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types);
1672   return B.CreateCall(F, Args);
1673 }
1674 
1675 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
1676   Value *Base = Pow->getArgOperand(0);
1677   Value *Expo = Pow->getArgOperand(1);
1678   Function *Callee = Pow->getCalledFunction();
1679   StringRef Name = Callee->getName();
1680   Type *Ty = Pow->getType();
1681   Module *M = Pow->getModule();
1682   bool AllowApprox = Pow->hasApproxFunc();
1683   bool Ignored;
1684 
1685   // Propagate the math semantics from the call to any created instructions.
1686   IRBuilderBase::FastMathFlagGuard Guard(B);
1687   B.setFastMathFlags(Pow->getFastMathFlags());
1688   // Evaluate special cases related to the base.
1689 
1690   // pow(1.0, x) -> 1.0
1691   if (match(Base, m_FPOne()))
1692     return Base;
1693 
1694   if (Value *Exp = replacePowWithExp(Pow, B))
1695     return Exp;
1696 
1697   // Evaluate special cases related to the exponent.
1698 
1699   // pow(x, -1.0) -> 1.0 / x
1700   if (match(Expo, m_SpecificFP(-1.0)))
1701     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1702 
1703   // pow(x, +/-0.0) -> 1.0
1704   if (match(Expo, m_AnyZeroFP()))
1705     return ConstantFP::get(Ty, 1.0);
1706 
1707   // pow(x, 1.0) -> x
1708   if (match(Expo, m_FPOne()))
1709     return Base;
1710 
1711   // pow(x, 2.0) -> x * x
1712   if (match(Expo, m_SpecificFP(2.0)))
1713     return B.CreateFMul(Base, Base, "square");
1714 
1715   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1716     return Sqrt;
1717 
1718   // pow(x, n) -> x * x * x * ...
1719   const APFloat *ExpoF;
1720   if (AllowApprox && match(Expo, m_APFloat(ExpoF)) &&
1721       !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) {
1722     // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1723     // If the exponent is an integer+0.5 we generate a call to sqrt and an
1724     // additional fmul.
1725     // TODO: This whole transformation should be backend specific (e.g. some
1726     //       backends might prefer libcalls or the limit for the exponent might
1727     //       be different) and it should also consider optimizing for size.
1728     APFloat LimF(ExpoF->getSemantics(), 33),
1729             ExpoA(abs(*ExpoF));
1730     if (ExpoA < LimF) {
1731       // This transformation applies to integer or integer+0.5 exponents only.
1732       // For integer+0.5, we create a sqrt(Base) call.
1733       Value *Sqrt = nullptr;
1734       if (!ExpoA.isInteger()) {
1735         APFloat Expo2 = ExpoA;
1736         // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1737         // is no floating point exception and the result is an integer, then
1738         // ExpoA == integer + 0.5
1739         if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
1740           return nullptr;
1741 
1742         if (!Expo2.isInteger())
1743           return nullptr;
1744 
1745         Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
1746                            Pow->doesNotAccessMemory(), M, B, TLI);
1747         if (!Sqrt)
1748           return nullptr;
1749       }
1750 
1751       // We will memoize intermediate products of the Addition Chain.
1752       Value *InnerChain[33] = {nullptr};
1753       InnerChain[1] = Base;
1754       InnerChain[2] = B.CreateFMul(Base, Base, "square");
1755 
1756       // We cannot readily convert a non-double type (like float) to a double.
1757       // So we first convert it to something which could be converted to double.
1758       ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1759       Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1760 
1761       // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
1762       if (Sqrt)
1763         FMul = B.CreateFMul(FMul, Sqrt);
1764 
1765       // If the exponent is negative, then get the reciprocal.
1766       if (ExpoF->isNegative())
1767         FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1768 
1769       return FMul;
1770     }
1771 
1772     APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false);
1773     // powf(x, n) -> powi(x, n) if n is a constant signed integer value
1774     if (ExpoF->isInteger() &&
1775         ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
1776             APFloat::opOK) {
1777       return copyFlags(
1778           *Pow,
1779           createPowWithIntegerExponent(
1780               Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo),
1781               M, B));
1782     }
1783   }
1784 
1785   // powf(x, itofp(y)) -> powi(x, y)
1786   if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
1787     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
1788       return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B));
1789   }
1790 
1791   // Shrink pow() to powf() if the arguments are single precision,
1792   // unless the result is expected to be double precision.
1793   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
1794       hasFloatVersion(Name)) {
1795     if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, true))
1796       return Shrunk;
1797   }
1798 
1799   return nullptr;
1800 }
1801 
1802 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
1803   Function *Callee = CI->getCalledFunction();
1804   AttributeList Attrs; // Attributes are only meaningful on the original call
1805   StringRef Name = Callee->getName();
1806   Value *Ret = nullptr;
1807   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
1808       hasFloatVersion(Name))
1809     Ret = optimizeUnaryDoubleFP(CI, B, true);
1810 
1811   Type *Ty = CI->getType();
1812   Value *Op = CI->getArgOperand(0);
1813 
1814   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= IntSize
1815   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < IntSize
1816   if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
1817       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1818     if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize()))
1819       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
1820                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1821                                    B, Attrs);
1822   }
1823 
1824   return Ret;
1825 }
1826 
1827 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
1828   // If we can shrink the call to a float function rather than a double
1829   // function, do that first.
1830   Function *Callee = CI->getCalledFunction();
1831   StringRef Name = Callee->getName();
1832   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1833     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1834       return Ret;
1835 
1836   // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
1837   // the intrinsics for improved optimization (for example, vectorization).
1838   // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
1839   // From the C standard draft WG14/N1256:
1840   // "Ideally, fmax would be sensitive to the sign of zero, for example
1841   // fmax(-0.0, +0.0) would return +0; however, implementation in software
1842   // might be impractical."
1843   IRBuilderBase::FastMathFlagGuard Guard(B);
1844   FastMathFlags FMF = CI->getFastMathFlags();
1845   FMF.setNoSignedZeros();
1846   B.setFastMathFlags(FMF);
1847 
1848   Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
1849                                                            : Intrinsic::maxnum;
1850   Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
1851   return copyFlags(
1852       *CI, B.CreateCall(F, {CI->getArgOperand(0), CI->getArgOperand(1)}));
1853 }
1854 
1855 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
1856   Function *LogFn = Log->getCalledFunction();
1857   AttributeList Attrs; // Attributes are only meaningful on the original call
1858   StringRef LogNm = LogFn->getName();
1859   Intrinsic::ID LogID = LogFn->getIntrinsicID();
1860   Module *Mod = Log->getModule();
1861   Type *Ty = Log->getType();
1862   Value *Ret = nullptr;
1863 
1864   if (UnsafeFPShrink && hasFloatVersion(LogNm))
1865     Ret = optimizeUnaryDoubleFP(Log, B, true);
1866 
1867   // The earlier call must also be 'fast' in order to do these transforms.
1868   CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
1869   if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
1870     return Ret;
1871 
1872   LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
1873 
1874   // This is only applicable to log(), log2(), log10().
1875   if (TLI->getLibFunc(LogNm, LogLb))
1876     switch (LogLb) {
1877     case LibFunc_logf:
1878       LogID = Intrinsic::log;
1879       ExpLb = LibFunc_expf;
1880       Exp2Lb = LibFunc_exp2f;
1881       Exp10Lb = LibFunc_exp10f;
1882       PowLb = LibFunc_powf;
1883       break;
1884     case LibFunc_log:
1885       LogID = Intrinsic::log;
1886       ExpLb = LibFunc_exp;
1887       Exp2Lb = LibFunc_exp2;
1888       Exp10Lb = LibFunc_exp10;
1889       PowLb = LibFunc_pow;
1890       break;
1891     case LibFunc_logl:
1892       LogID = Intrinsic::log;
1893       ExpLb = LibFunc_expl;
1894       Exp2Lb = LibFunc_exp2l;
1895       Exp10Lb = LibFunc_exp10l;
1896       PowLb = LibFunc_powl;
1897       break;
1898     case LibFunc_log2f:
1899       LogID = Intrinsic::log2;
1900       ExpLb = LibFunc_expf;
1901       Exp2Lb = LibFunc_exp2f;
1902       Exp10Lb = LibFunc_exp10f;
1903       PowLb = LibFunc_powf;
1904       break;
1905     case LibFunc_log2:
1906       LogID = Intrinsic::log2;
1907       ExpLb = LibFunc_exp;
1908       Exp2Lb = LibFunc_exp2;
1909       Exp10Lb = LibFunc_exp10;
1910       PowLb = LibFunc_pow;
1911       break;
1912     case LibFunc_log2l:
1913       LogID = Intrinsic::log2;
1914       ExpLb = LibFunc_expl;
1915       Exp2Lb = LibFunc_exp2l;
1916       Exp10Lb = LibFunc_exp10l;
1917       PowLb = LibFunc_powl;
1918       break;
1919     case LibFunc_log10f:
1920       LogID = Intrinsic::log10;
1921       ExpLb = LibFunc_expf;
1922       Exp2Lb = LibFunc_exp2f;
1923       Exp10Lb = LibFunc_exp10f;
1924       PowLb = LibFunc_powf;
1925       break;
1926     case LibFunc_log10:
1927       LogID = Intrinsic::log10;
1928       ExpLb = LibFunc_exp;
1929       Exp2Lb = LibFunc_exp2;
1930       Exp10Lb = LibFunc_exp10;
1931       PowLb = LibFunc_pow;
1932       break;
1933     case LibFunc_log10l:
1934       LogID = Intrinsic::log10;
1935       ExpLb = LibFunc_expl;
1936       Exp2Lb = LibFunc_exp2l;
1937       Exp10Lb = LibFunc_exp10l;
1938       PowLb = LibFunc_powl;
1939       break;
1940     default:
1941       return Ret;
1942     }
1943   else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
1944            LogID == Intrinsic::log10) {
1945     if (Ty->getScalarType()->isFloatTy()) {
1946       ExpLb = LibFunc_expf;
1947       Exp2Lb = LibFunc_exp2f;
1948       Exp10Lb = LibFunc_exp10f;
1949       PowLb = LibFunc_powf;
1950     } else if (Ty->getScalarType()->isDoubleTy()) {
1951       ExpLb = LibFunc_exp;
1952       Exp2Lb = LibFunc_exp2;
1953       Exp10Lb = LibFunc_exp10;
1954       PowLb = LibFunc_pow;
1955     } else
1956       return Ret;
1957   } else
1958     return Ret;
1959 
1960   IRBuilderBase::FastMathFlagGuard Guard(B);
1961   B.setFastMathFlags(FastMathFlags::getFast());
1962 
1963   Intrinsic::ID ArgID = Arg->getIntrinsicID();
1964   LibFunc ArgLb = NotLibFunc;
1965   TLI->getLibFunc(*Arg, ArgLb);
1966 
1967   // log(pow(x,y)) -> y*log(x)
1968   if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
1969     Value *LogX =
1970         Log->doesNotAccessMemory()
1971             ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1972                            Arg->getOperand(0), "log")
1973             : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs);
1974     Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
1975     // Since pow() may have side effects, e.g. errno,
1976     // dead code elimination may not be trusted to remove it.
1977     substituteInParent(Arg, MulY);
1978     return MulY;
1979   }
1980 
1981   // log(exp{,2,10}(y)) -> y*log({e,2,10})
1982   // TODO: There is no exp10() intrinsic yet.
1983   if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
1984            ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
1985     Constant *Eul;
1986     if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
1987       // FIXME: Add more precise value of e for long double.
1988       Eul = ConstantFP::get(Log->getType(), numbers::e);
1989     else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
1990       Eul = ConstantFP::get(Log->getType(), 2.0);
1991     else
1992       Eul = ConstantFP::get(Log->getType(), 10.0);
1993     Value *LogE = Log->doesNotAccessMemory()
1994                       ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1995                                      Eul, "log")
1996                       : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs);
1997     Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
1998     // Since exp() may have side effects, e.g. errno,
1999     // dead code elimination may not be trusted to remove it.
2000     substituteInParent(Arg, MulY);
2001     return MulY;
2002   }
2003 
2004   return Ret;
2005 }
2006 
2007 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
2008   Function *Callee = CI->getCalledFunction();
2009   Value *Ret = nullptr;
2010   // TODO: Once we have a way (other than checking for the existince of the
2011   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
2012   // condition below.
2013   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
2014                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
2015     Ret = optimizeUnaryDoubleFP(CI, B, true);
2016 
2017   if (!CI->isFast())
2018     return Ret;
2019 
2020   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
2021   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
2022     return Ret;
2023 
2024   // We're looking for a repeated factor in a multiplication tree,
2025   // so we can do this fold: sqrt(x * x) -> fabs(x);
2026   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2027   Value *Op0 = I->getOperand(0);
2028   Value *Op1 = I->getOperand(1);
2029   Value *RepeatOp = nullptr;
2030   Value *OtherOp = nullptr;
2031   if (Op0 == Op1) {
2032     // Simple match: the operands of the multiply are identical.
2033     RepeatOp = Op0;
2034   } else {
2035     // Look for a more complicated pattern: one of the operands is itself
2036     // a multiply, so search for a common factor in that multiply.
2037     // Note: We don't bother looking any deeper than this first level or for
2038     // variations of this pattern because instcombine's visitFMUL and/or the
2039     // reassociation pass should give us this form.
2040     Value *OtherMul0, *OtherMul1;
2041     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
2042       // Pattern: sqrt((x * y) * z)
2043       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
2044         // Matched: sqrt((x * x) * z)
2045         RepeatOp = OtherMul0;
2046         OtherOp = Op1;
2047       }
2048     }
2049   }
2050   if (!RepeatOp)
2051     return Ret;
2052 
2053   // Fast math flags for any created instructions should match the sqrt
2054   // and multiply.
2055   IRBuilderBase::FastMathFlagGuard Guard(B);
2056   B.setFastMathFlags(I->getFastMathFlags());
2057 
2058   // If we found a repeated factor, hoist it out of the square root and
2059   // replace it with the fabs of that factor.
2060   Module *M = Callee->getParent();
2061   Type *ArgType = I->getType();
2062   Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
2063   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
2064   if (OtherOp) {
2065     // If we found a non-repeated factor, we still need to get its square
2066     // root. We then multiply that by the value that was simplified out
2067     // of the square root calculation.
2068     Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
2069     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
2070     return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall));
2071   }
2072   return copyFlags(*CI, FabsCall);
2073 }
2074 
2075 // TODO: Generalize to handle any trig function and its inverse.
2076 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) {
2077   Function *Callee = CI->getCalledFunction();
2078   Value *Ret = nullptr;
2079   StringRef Name = Callee->getName();
2080   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
2081     Ret = optimizeUnaryDoubleFP(CI, B, true);
2082 
2083   Value *Op1 = CI->getArgOperand(0);
2084   auto *OpC = dyn_cast<CallInst>(Op1);
2085   if (!OpC)
2086     return Ret;
2087 
2088   // Both calls must be 'fast' in order to remove them.
2089   if (!CI->isFast() || !OpC->isFast())
2090     return Ret;
2091 
2092   // tan(atan(x)) -> x
2093   // tanf(atanf(x)) -> x
2094   // tanl(atanl(x)) -> x
2095   LibFunc Func;
2096   Function *F = OpC->getCalledFunction();
2097   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
2098       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
2099        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
2100        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
2101     Ret = OpC->getArgOperand(0);
2102   return Ret;
2103 }
2104 
2105 static bool isTrigLibCall(CallInst *CI) {
2106   // We can only hope to do anything useful if we can ignore things like errno
2107   // and floating-point exceptions.
2108   // We already checked the prototype.
2109   return CI->hasFnAttr(Attribute::NoUnwind) &&
2110          CI->hasFnAttr(Attribute::ReadNone);
2111 }
2112 
2113 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
2114                              bool UseFloat, Value *&Sin, Value *&Cos,
2115                              Value *&SinCos) {
2116   Type *ArgTy = Arg->getType();
2117   Type *ResTy;
2118   StringRef Name;
2119 
2120   Triple T(OrigCallee->getParent()->getTargetTriple());
2121   if (UseFloat) {
2122     Name = "__sincospif_stret";
2123 
2124     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2125     // x86_64 can't use {float, float} since that would be returned in both
2126     // xmm0 and xmm1, which isn't what a real struct would do.
2127     ResTy = T.getArch() == Triple::x86_64
2128                 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2))
2129                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2130   } else {
2131     Name = "__sincospi_stret";
2132     ResTy = StructType::get(ArgTy, ArgTy);
2133   }
2134 
2135   Module *M = OrigCallee->getParent();
2136   FunctionCallee Callee =
2137       M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy);
2138 
2139   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2140     // If the argument is an instruction, it must dominate all uses so put our
2141     // sincos call there.
2142     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2143   } else {
2144     // Otherwise (e.g. for a constant) the beginning of the function is as
2145     // good a place as any.
2146     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2147     B.SetInsertPoint(&EntryBB, EntryBB.begin());
2148   }
2149 
2150   SinCos = B.CreateCall(Callee, Arg, "sincospi");
2151 
2152   if (SinCos->getType()->isStructTy()) {
2153     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2154     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2155   } else {
2156     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2157                                  "sinpi");
2158     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2159                                  "cospi");
2160   }
2161 }
2162 
2163 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) {
2164   // Make sure the prototype is as expected, otherwise the rest of the
2165   // function is probably invalid and likely to abort.
2166   if (!isTrigLibCall(CI))
2167     return nullptr;
2168 
2169   Value *Arg = CI->getArgOperand(0);
2170   SmallVector<CallInst *, 1> SinCalls;
2171   SmallVector<CallInst *, 1> CosCalls;
2172   SmallVector<CallInst *, 1> SinCosCalls;
2173 
2174   bool IsFloat = Arg->getType()->isFloatTy();
2175 
2176   // Look for all compatible sinpi, cospi and sincospi calls with the same
2177   // argument. If there are enough (in some sense) we can make the
2178   // substitution.
2179   Function *F = CI->getFunction();
2180   for (User *U : Arg->users())
2181     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2182 
2183   // It's only worthwhile if both sinpi and cospi are actually used.
2184   if (SinCalls.empty() || CosCalls.empty())
2185     return nullptr;
2186 
2187   Value *Sin, *Cos, *SinCos;
2188   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
2189 
2190   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2191                                  Value *Res) {
2192     for (CallInst *C : Calls)
2193       replaceAllUsesWith(C, Res);
2194   };
2195 
2196   replaceTrigInsts(SinCalls, Sin);
2197   replaceTrigInsts(CosCalls, Cos);
2198   replaceTrigInsts(SinCosCalls, SinCos);
2199 
2200   return nullptr;
2201 }
2202 
2203 void LibCallSimplifier::classifyArgUse(
2204     Value *Val, Function *F, bool IsFloat,
2205     SmallVectorImpl<CallInst *> &SinCalls,
2206     SmallVectorImpl<CallInst *> &CosCalls,
2207     SmallVectorImpl<CallInst *> &SinCosCalls) {
2208   CallInst *CI = dyn_cast<CallInst>(Val);
2209 
2210   if (!CI || CI->use_empty())
2211     return;
2212 
2213   // Don't consider calls in other functions.
2214   if (CI->getFunction() != F)
2215     return;
2216 
2217   Function *Callee = CI->getCalledFunction();
2218   LibFunc Func;
2219   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
2220       !isTrigLibCall(CI))
2221     return;
2222 
2223   if (IsFloat) {
2224     if (Func == LibFunc_sinpif)
2225       SinCalls.push_back(CI);
2226     else if (Func == LibFunc_cospif)
2227       CosCalls.push_back(CI);
2228     else if (Func == LibFunc_sincospif_stret)
2229       SinCosCalls.push_back(CI);
2230   } else {
2231     if (Func == LibFunc_sinpi)
2232       SinCalls.push_back(CI);
2233     else if (Func == LibFunc_cospi)
2234       CosCalls.push_back(CI);
2235     else if (Func == LibFunc_sincospi_stret)
2236       SinCosCalls.push_back(CI);
2237   }
2238 }
2239 
2240 //===----------------------------------------------------------------------===//
2241 // Integer Library Call Optimizations
2242 //===----------------------------------------------------------------------===//
2243 
2244 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) {
2245   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
2246   Value *Op = CI->getArgOperand(0);
2247   Type *ArgType = Op->getType();
2248   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2249                                           Intrinsic::cttz, ArgType);
2250   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
2251   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
2252   V = B.CreateIntCast(V, B.getInt32Ty(), false);
2253 
2254   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
2255   return B.CreateSelect(Cond, V, B.getInt32(0));
2256 }
2257 
2258 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) {
2259   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
2260   Value *Op = CI->getArgOperand(0);
2261   Type *ArgType = Op->getType();
2262   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2263                                           Intrinsic::ctlz, ArgType);
2264   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
2265   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
2266                   V);
2267   return B.CreateIntCast(V, CI->getType(), false);
2268 }
2269 
2270 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) {
2271   // abs(x) -> x <s 0 ? -x : x
2272   // The negation has 'nsw' because abs of INT_MIN is undefined.
2273   Value *X = CI->getArgOperand(0);
2274   Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
2275   Value *NegX = B.CreateNSWNeg(X, "neg");
2276   return B.CreateSelect(IsNeg, NegX, X);
2277 }
2278 
2279 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) {
2280   // isdigit(c) -> (c-'0') <u 10
2281   Value *Op = CI->getArgOperand(0);
2282   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
2283   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
2284   return B.CreateZExt(Op, CI->getType());
2285 }
2286 
2287 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) {
2288   // isascii(c) -> c <u 128
2289   Value *Op = CI->getArgOperand(0);
2290   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
2291   return B.CreateZExt(Op, CI->getType());
2292 }
2293 
2294 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) {
2295   // toascii(c) -> c & 0x7f
2296   return B.CreateAnd(CI->getArgOperand(0),
2297                      ConstantInt::get(CI->getType(), 0x7F));
2298 }
2299 
2300 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) {
2301   StringRef Str;
2302   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2303     return nullptr;
2304 
2305   return convertStrToNumber(CI, Str, 10);
2306 }
2307 
2308 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) {
2309   StringRef Str;
2310   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2311     return nullptr;
2312 
2313   if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
2314     return nullptr;
2315 
2316   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2317     return convertStrToNumber(CI, Str, CInt->getSExtValue());
2318   }
2319 
2320   return nullptr;
2321 }
2322 
2323 //===----------------------------------------------------------------------===//
2324 // Formatting and IO Library Call Optimizations
2325 //===----------------------------------------------------------------------===//
2326 
2327 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2328 
2329 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B,
2330                                                  int StreamArg) {
2331   Function *Callee = CI->getCalledFunction();
2332   // Error reporting calls should be cold, mark them as such.
2333   // This applies even to non-builtin calls: it is only a hint and applies to
2334   // functions that the frontend might not understand as builtins.
2335 
2336   // This heuristic was suggested in:
2337   // Improving Static Branch Prediction in a Compiler
2338   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2339   // Proceedings of PACT'98, Oct. 1998, IEEE
2340   if (!CI->hasFnAttr(Attribute::Cold) &&
2341       isReportingError(Callee, CI, StreamArg)) {
2342     CI->addFnAttr(Attribute::Cold);
2343   }
2344 
2345   return nullptr;
2346 }
2347 
2348 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2349   if (!Callee || !Callee->isDeclaration())
2350     return false;
2351 
2352   if (StreamArg < 0)
2353     return true;
2354 
2355   // These functions might be considered cold, but only if their stream
2356   // argument is stderr.
2357 
2358   if (StreamArg >= (int)CI->arg_size())
2359     return false;
2360   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2361   if (!LI)
2362     return false;
2363   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
2364   if (!GV || !GV->isDeclaration())
2365     return false;
2366   return GV->getName() == "stderr";
2367 }
2368 
2369 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
2370   // Check for a fixed format string.
2371   StringRef FormatStr;
2372   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2373     return nullptr;
2374 
2375   // Empty format string -> noop.
2376   if (FormatStr.empty()) // Tolerate printf's declared void.
2377     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2378 
2379   // Do not do any of the following transformations if the printf return value
2380   // is used, in general the printf return value is not compatible with either
2381   // putchar() or puts().
2382   if (!CI->use_empty())
2383     return nullptr;
2384 
2385   // printf("x") -> putchar('x'), even for "%" and "%%".
2386   if (FormatStr.size() == 1 || FormatStr == "%%")
2387     return copyFlags(*CI, emitPutChar(B.getInt32(FormatStr[0]), B, TLI));
2388 
2389   // Try to remove call or emit putchar/puts.
2390   if (FormatStr == "%s" && CI->arg_size() > 1) {
2391     StringRef OperandStr;
2392     if (!getConstantStringInfo(CI->getOperand(1), OperandStr))
2393       return nullptr;
2394     // printf("%s", "") --> NOP
2395     if (OperandStr.empty())
2396       return (Value *)CI;
2397     // printf("%s", "a") --> putchar('a')
2398     if (OperandStr.size() == 1)
2399       return copyFlags(*CI, emitPutChar(B.getInt32(OperandStr[0]), B, TLI));
2400     // printf("%s", str"\n") --> puts(str)
2401     if (OperandStr.back() == '\n') {
2402       OperandStr = OperandStr.drop_back();
2403       Value *GV = B.CreateGlobalString(OperandStr, "str");
2404       return copyFlags(*CI, emitPutS(GV, B, TLI));
2405     }
2406     return nullptr;
2407   }
2408 
2409   // printf("foo\n") --> puts("foo")
2410   if (FormatStr.back() == '\n' &&
2411       !FormatStr.contains('%')) { // No format characters.
2412     // Create a string literal with no \n on it.  We expect the constant merge
2413     // pass to be run after this pass, to merge duplicate strings.
2414     FormatStr = FormatStr.drop_back();
2415     Value *GV = B.CreateGlobalString(FormatStr, "str");
2416     return copyFlags(*CI, emitPutS(GV, B, TLI));
2417   }
2418 
2419   // Optimize specific format strings.
2420   // printf("%c", chr) --> putchar(chr)
2421   if (FormatStr == "%c" && CI->arg_size() > 1 &&
2422       CI->getArgOperand(1)->getType()->isIntegerTy())
2423     return copyFlags(*CI, emitPutChar(CI->getArgOperand(1), B, TLI));
2424 
2425   // printf("%s\n", str) --> puts(str)
2426   if (FormatStr == "%s\n" && CI->arg_size() > 1 &&
2427       CI->getArgOperand(1)->getType()->isPointerTy())
2428     return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI));
2429   return nullptr;
2430 }
2431 
2432 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
2433 
2434   Function *Callee = CI->getCalledFunction();
2435   FunctionType *FT = Callee->getFunctionType();
2436   if (Value *V = optimizePrintFString(CI, B)) {
2437     return V;
2438   }
2439 
2440   // printf(format, ...) -> iprintf(format, ...) if no floating point
2441   // arguments.
2442   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
2443     Module *M = B.GetInsertBlock()->getParent()->getParent();
2444     FunctionCallee IPrintFFn =
2445         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
2446     CallInst *New = cast<CallInst>(CI->clone());
2447     New->setCalledFunction(IPrintFFn);
2448     B.Insert(New);
2449     return New;
2450   }
2451 
2452   // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2453   // arguments.
2454   if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) {
2455     Module *M = B.GetInsertBlock()->getParent()->getParent();
2456     auto SmallPrintFFn =
2457         M->getOrInsertFunction(TLI->getName(LibFunc_small_printf),
2458                                FT, Callee->getAttributes());
2459     CallInst *New = cast<CallInst>(CI->clone());
2460     New->setCalledFunction(SmallPrintFFn);
2461     B.Insert(New);
2462     return New;
2463   }
2464 
2465   annotateNonNullNoUndefBasedOnAccess(CI, 0);
2466   return nullptr;
2467 }
2468 
2469 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
2470                                                 IRBuilderBase &B) {
2471   // Check for a fixed format string.
2472   StringRef FormatStr;
2473   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2474     return nullptr;
2475 
2476   // If we just have a format string (nothing else crazy) transform it.
2477   Value *Dest = CI->getArgOperand(0);
2478   if (CI->arg_size() == 2) {
2479     // Make sure there's no % in the constant array.  We could try to handle
2480     // %% -> % in the future if we cared.
2481     if (FormatStr.contains('%'))
2482       return nullptr; // we found a format specifier, bail out.
2483 
2484     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2485     B.CreateMemCpy(
2486         Dest, Align(1), CI->getArgOperand(1), Align(1),
2487         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2488                          FormatStr.size() + 1)); // Copy the null byte.
2489     return ConstantInt::get(CI->getType(), FormatStr.size());
2490   }
2491 
2492   // The remaining optimizations require the format string to be "%s" or "%c"
2493   // and have an extra operand.
2494   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
2495     return nullptr;
2496 
2497   // Decode the second character of the format string.
2498   if (FormatStr[1] == 'c') {
2499     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2500     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2501       return nullptr;
2502     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2503     Value *Ptr = castToCStr(Dest, B);
2504     B.CreateStore(V, Ptr);
2505     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2506     B.CreateStore(B.getInt8(0), Ptr);
2507 
2508     return ConstantInt::get(CI->getType(), 1);
2509   }
2510 
2511   if (FormatStr[1] == 's') {
2512     // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2513     // strlen(str)+1)
2514     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2515       return nullptr;
2516 
2517     if (CI->use_empty())
2518       // sprintf(dest, "%s", str) -> strcpy(dest, str)
2519       return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI));
2520 
2521     uint64_t SrcLen = GetStringLength(CI->getArgOperand(2));
2522     if (SrcLen) {
2523       B.CreateMemCpy(
2524           Dest, Align(1), CI->getArgOperand(2), Align(1),
2525           ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen));
2526       // Returns total number of characters written without null-character.
2527       return ConstantInt::get(CI->getType(), SrcLen - 1);
2528     } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) {
2529       // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest
2530       // Handle mismatched pointer types (goes away with typeless pointers?).
2531       V = B.CreatePointerCast(V, B.getInt8PtrTy());
2532       Dest = B.CreatePointerCast(Dest, B.getInt8PtrTy());
2533       Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest);
2534       return B.CreateIntCast(PtrDiff, CI->getType(), false);
2535     }
2536 
2537     bool OptForSize = CI->getFunction()->hasOptSize() ||
2538                       llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2539                                                   PGSOQueryType::IRPass);
2540     if (OptForSize)
2541       return nullptr;
2542 
2543     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2544     if (!Len)
2545       return nullptr;
2546     Value *IncLen =
2547         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2548     B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen);
2549 
2550     // The sprintf result is the unincremented number of bytes in the string.
2551     return B.CreateIntCast(Len, CI->getType(), false);
2552   }
2553   return nullptr;
2554 }
2555 
2556 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
2557   Function *Callee = CI->getCalledFunction();
2558   FunctionType *FT = Callee->getFunctionType();
2559   if (Value *V = optimizeSPrintFString(CI, B)) {
2560     return V;
2561   }
2562 
2563   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2564   // point arguments.
2565   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
2566     Module *M = B.GetInsertBlock()->getParent()->getParent();
2567     FunctionCallee SIPrintFFn =
2568         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
2569     CallInst *New = cast<CallInst>(CI->clone());
2570     New->setCalledFunction(SIPrintFFn);
2571     B.Insert(New);
2572     return New;
2573   }
2574 
2575   // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
2576   // floating point arguments.
2577   if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) {
2578     Module *M = B.GetInsertBlock()->getParent()->getParent();
2579     auto SmallSPrintFFn =
2580         M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf),
2581                                FT, Callee->getAttributes());
2582     CallInst *New = cast<CallInst>(CI->clone());
2583     New->setCalledFunction(SmallSPrintFFn);
2584     B.Insert(New);
2585     return New;
2586   }
2587 
2588   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
2589   return nullptr;
2590 }
2591 
2592 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
2593                                                  IRBuilderBase &B) {
2594   // Check for size
2595   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2596   if (!Size)
2597     return nullptr;
2598 
2599   uint64_t N = Size->getZExtValue();
2600   // Check for a fixed format string.
2601   StringRef FormatStr;
2602   if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2603     return nullptr;
2604 
2605   // If we just have a format string (nothing else crazy) transform it.
2606   if (CI->arg_size() == 3) {
2607     // Make sure there's no % in the constant array.  We could try to handle
2608     // %% -> % in the future if we cared.
2609     if (FormatStr.contains('%'))
2610       return nullptr; // we found a format specifier, bail out.
2611 
2612     if (N == 0)
2613       return ConstantInt::get(CI->getType(), FormatStr.size());
2614     else if (N < FormatStr.size() + 1)
2615       return nullptr;
2616 
2617     // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2618     // strlen(fmt)+1)
2619     copyFlags(
2620         *CI,
2621         B.CreateMemCpy(
2622             CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1),
2623             ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2624                              FormatStr.size() + 1))); // Copy the null byte.
2625     return ConstantInt::get(CI->getType(), FormatStr.size());
2626   }
2627 
2628   // The remaining optimizations require the format string to be "%s" or "%c"
2629   // and have an extra operand.
2630   if (FormatStr.size() == 2 && FormatStr[0] == '%' && CI->arg_size() == 4) {
2631 
2632     // Decode the second character of the format string.
2633     if (FormatStr[1] == 'c') {
2634       if (N == 0)
2635         return ConstantInt::get(CI->getType(), 1);
2636       else if (N == 1)
2637         return nullptr;
2638 
2639       // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2640       if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2641         return nullptr;
2642       Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2643       Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2644       B.CreateStore(V, Ptr);
2645       Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2646       B.CreateStore(B.getInt8(0), Ptr);
2647 
2648       return ConstantInt::get(CI->getType(), 1);
2649     }
2650 
2651     if (FormatStr[1] == 's') {
2652       // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2653       StringRef Str;
2654       if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2655         return nullptr;
2656 
2657       if (N == 0)
2658         return ConstantInt::get(CI->getType(), Str.size());
2659       else if (N < Str.size() + 1)
2660         return nullptr;
2661 
2662       copyFlags(
2663           *CI, B.CreateMemCpy(CI->getArgOperand(0), Align(1),
2664                               CI->getArgOperand(3), Align(1),
2665                               ConstantInt::get(CI->getType(), Str.size() + 1)));
2666 
2667       // The snprintf result is the unincremented number of bytes in the string.
2668       return ConstantInt::get(CI->getType(), Str.size());
2669     }
2670   }
2671   return nullptr;
2672 }
2673 
2674 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) {
2675   if (Value *V = optimizeSnPrintFString(CI, B)) {
2676     return V;
2677   }
2678 
2679   if (isKnownNonZero(CI->getOperand(1), DL))
2680     annotateNonNullNoUndefBasedOnAccess(CI, 0);
2681   return nullptr;
2682 }
2683 
2684 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
2685                                                 IRBuilderBase &B) {
2686   optimizeErrorReporting(CI, B, 0);
2687 
2688   // All the optimizations depend on the format string.
2689   StringRef FormatStr;
2690   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2691     return nullptr;
2692 
2693   // Do not do any of the following transformations if the fprintf return
2694   // value is used, in general the fprintf return value is not compatible
2695   // with fwrite(), fputc() or fputs().
2696   if (!CI->use_empty())
2697     return nullptr;
2698 
2699   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2700   if (CI->arg_size() == 2) {
2701     // Could handle %% -> % if we cared.
2702     if (FormatStr.contains('%'))
2703       return nullptr; // We found a format specifier.
2704 
2705     return copyFlags(
2706         *CI, emitFWrite(CI->getArgOperand(1),
2707                         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2708                                          FormatStr.size()),
2709                         CI->getArgOperand(0), B, DL, TLI));
2710   }
2711 
2712   // The remaining optimizations require the format string to be "%s" or "%c"
2713   // and have an extra operand.
2714   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
2715     return nullptr;
2716 
2717   // Decode the second character of the format string.
2718   if (FormatStr[1] == 'c') {
2719     // fprintf(F, "%c", chr) --> fputc(chr, F)
2720     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2721       return nullptr;
2722     return copyFlags(
2723         *CI, emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI));
2724   }
2725 
2726   if (FormatStr[1] == 's') {
2727     // fprintf(F, "%s", str) --> fputs(str, F)
2728     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2729       return nullptr;
2730     return copyFlags(
2731         *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI));
2732   }
2733   return nullptr;
2734 }
2735 
2736 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
2737   Function *Callee = CI->getCalledFunction();
2738   FunctionType *FT = Callee->getFunctionType();
2739   if (Value *V = optimizeFPrintFString(CI, B)) {
2740     return V;
2741   }
2742 
2743   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2744   // floating point arguments.
2745   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
2746     Module *M = B.GetInsertBlock()->getParent()->getParent();
2747     FunctionCallee FIPrintFFn =
2748         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2749     CallInst *New = cast<CallInst>(CI->clone());
2750     New->setCalledFunction(FIPrintFFn);
2751     B.Insert(New);
2752     return New;
2753   }
2754 
2755   // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
2756   // 128-bit floating point arguments.
2757   if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) {
2758     Module *M = B.GetInsertBlock()->getParent()->getParent();
2759     auto SmallFPrintFFn =
2760         M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf),
2761                                FT, Callee->getAttributes());
2762     CallInst *New = cast<CallInst>(CI->clone());
2763     New->setCalledFunction(SmallFPrintFFn);
2764     B.Insert(New);
2765     return New;
2766   }
2767 
2768   return nullptr;
2769 }
2770 
2771 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) {
2772   optimizeErrorReporting(CI, B, 3);
2773 
2774   // Get the element size and count.
2775   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2776   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2777   if (SizeC && CountC) {
2778     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2779 
2780     // If this is writing zero records, remove the call (it's a noop).
2781     if (Bytes == 0)
2782       return ConstantInt::get(CI->getType(), 0);
2783 
2784     // If this is writing one byte, turn it into fputc.
2785     // This optimisation is only valid, if the return value is unused.
2786     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2787       Value *Char = B.CreateLoad(B.getInt8Ty(),
2788                                  castToCStr(CI->getArgOperand(0), B), "char");
2789       Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2790       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2791     }
2792   }
2793 
2794   return nullptr;
2795 }
2796 
2797 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) {
2798   optimizeErrorReporting(CI, B, 1);
2799 
2800   // Don't rewrite fputs to fwrite when optimising for size because fwrite
2801   // requires more arguments and thus extra MOVs are required.
2802   bool OptForSize = CI->getFunction()->hasOptSize() ||
2803                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2804                                                 PGSOQueryType::IRPass);
2805   if (OptForSize)
2806     return nullptr;
2807 
2808   // We can't optimize if return value is used.
2809   if (!CI->use_empty())
2810     return nullptr;
2811 
2812   // fputs(s,F) --> fwrite(s,strlen(s),1,F)
2813   uint64_t Len = GetStringLength(CI->getArgOperand(0));
2814   if (!Len)
2815     return nullptr;
2816 
2817   // Known to have no uses (see above).
2818   return copyFlags(
2819       *CI,
2820       emitFWrite(CI->getArgOperand(0),
2821                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2822                  CI->getArgOperand(1), B, DL, TLI));
2823 }
2824 
2825 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) {
2826   annotateNonNullNoUndefBasedOnAccess(CI, 0);
2827   if (!CI->use_empty())
2828     return nullptr;
2829 
2830   // Check for a constant string.
2831   // puts("") -> putchar('\n')
2832   StringRef Str;
2833   if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
2834     return copyFlags(*CI, emitPutChar(B.getInt32('\n'), B, TLI));
2835 
2836   return nullptr;
2837 }
2838 
2839 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
2840   // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
2841   return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1),
2842                                         CI->getArgOperand(0), Align(1),
2843                                         CI->getArgOperand(2)));
2844 }
2845 
2846 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2847   LibFunc Func;
2848   SmallString<20> FloatFuncName = FuncName;
2849   FloatFuncName += 'f';
2850   if (TLI->getLibFunc(FloatFuncName, Func))
2851     return TLI->has(Func);
2852   return false;
2853 }
2854 
2855 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2856                                                       IRBuilderBase &Builder) {
2857   LibFunc Func;
2858   Function *Callee = CI->getCalledFunction();
2859   // Check for string/memory library functions.
2860   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2861     // Make sure we never change the calling convention.
2862     assert(
2863         (ignoreCallingConv(Func) ||
2864          TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) &&
2865         "Optimizing string/memory libcall would change the calling convention");
2866     switch (Func) {
2867     case LibFunc_strcat:
2868       return optimizeStrCat(CI, Builder);
2869     case LibFunc_strncat:
2870       return optimizeStrNCat(CI, Builder);
2871     case LibFunc_strchr:
2872       return optimizeStrChr(CI, Builder);
2873     case LibFunc_strrchr:
2874       return optimizeStrRChr(CI, Builder);
2875     case LibFunc_strcmp:
2876       return optimizeStrCmp(CI, Builder);
2877     case LibFunc_strncmp:
2878       return optimizeStrNCmp(CI, Builder);
2879     case LibFunc_strcpy:
2880       return optimizeStrCpy(CI, Builder);
2881     case LibFunc_stpcpy:
2882       return optimizeStpCpy(CI, Builder);
2883     case LibFunc_strncpy:
2884       return optimizeStrNCpy(CI, Builder);
2885     case LibFunc_strlen:
2886       return optimizeStrLen(CI, Builder);
2887     case LibFunc_strpbrk:
2888       return optimizeStrPBrk(CI, Builder);
2889     case LibFunc_strndup:
2890       return optimizeStrNDup(CI, Builder);
2891     case LibFunc_strtol:
2892     case LibFunc_strtod:
2893     case LibFunc_strtof:
2894     case LibFunc_strtoul:
2895     case LibFunc_strtoll:
2896     case LibFunc_strtold:
2897     case LibFunc_strtoull:
2898       return optimizeStrTo(CI, Builder);
2899     case LibFunc_strspn:
2900       return optimizeStrSpn(CI, Builder);
2901     case LibFunc_strcspn:
2902       return optimizeStrCSpn(CI, Builder);
2903     case LibFunc_strstr:
2904       return optimizeStrStr(CI, Builder);
2905     case LibFunc_memchr:
2906       return optimizeMemChr(CI, Builder);
2907     case LibFunc_memrchr:
2908       return optimizeMemRChr(CI, Builder);
2909     case LibFunc_bcmp:
2910       return optimizeBCmp(CI, Builder);
2911     case LibFunc_memcmp:
2912       return optimizeMemCmp(CI, Builder);
2913     case LibFunc_memcpy:
2914       return optimizeMemCpy(CI, Builder);
2915     case LibFunc_memccpy:
2916       return optimizeMemCCpy(CI, Builder);
2917     case LibFunc_mempcpy:
2918       return optimizeMemPCpy(CI, Builder);
2919     case LibFunc_memmove:
2920       return optimizeMemMove(CI, Builder);
2921     case LibFunc_memset:
2922       return optimizeMemSet(CI, Builder);
2923     case LibFunc_realloc:
2924       return optimizeRealloc(CI, Builder);
2925     case LibFunc_wcslen:
2926       return optimizeWcslen(CI, Builder);
2927     case LibFunc_bcopy:
2928       return optimizeBCopy(CI, Builder);
2929     default:
2930       break;
2931     }
2932   }
2933   return nullptr;
2934 }
2935 
2936 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2937                                                        LibFunc Func,
2938                                                        IRBuilderBase &Builder) {
2939   // Don't optimize calls that require strict floating point semantics.
2940   if (CI->isStrictFP())
2941     return nullptr;
2942 
2943   if (Value *V = optimizeTrigReflections(CI, Func, Builder))
2944     return V;
2945 
2946   switch (Func) {
2947   case LibFunc_sinpif:
2948   case LibFunc_sinpi:
2949   case LibFunc_cospif:
2950   case LibFunc_cospi:
2951     return optimizeSinCosPi(CI, Builder);
2952   case LibFunc_powf:
2953   case LibFunc_pow:
2954   case LibFunc_powl:
2955     return optimizePow(CI, Builder);
2956   case LibFunc_exp2l:
2957   case LibFunc_exp2:
2958   case LibFunc_exp2f:
2959     return optimizeExp2(CI, Builder);
2960   case LibFunc_fabsf:
2961   case LibFunc_fabs:
2962   case LibFunc_fabsl:
2963     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2964   case LibFunc_sqrtf:
2965   case LibFunc_sqrt:
2966   case LibFunc_sqrtl:
2967     return optimizeSqrt(CI, Builder);
2968   case LibFunc_logf:
2969   case LibFunc_log:
2970   case LibFunc_logl:
2971   case LibFunc_log10f:
2972   case LibFunc_log10:
2973   case LibFunc_log10l:
2974   case LibFunc_log1pf:
2975   case LibFunc_log1p:
2976   case LibFunc_log1pl:
2977   case LibFunc_log2f:
2978   case LibFunc_log2:
2979   case LibFunc_log2l:
2980   case LibFunc_logbf:
2981   case LibFunc_logb:
2982   case LibFunc_logbl:
2983     return optimizeLog(CI, Builder);
2984   case LibFunc_tan:
2985   case LibFunc_tanf:
2986   case LibFunc_tanl:
2987     return optimizeTan(CI, Builder);
2988   case LibFunc_ceil:
2989     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2990   case LibFunc_floor:
2991     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2992   case LibFunc_round:
2993     return replaceUnaryCall(CI, Builder, Intrinsic::round);
2994   case LibFunc_roundeven:
2995     return replaceUnaryCall(CI, Builder, Intrinsic::roundeven);
2996   case LibFunc_nearbyint:
2997     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2998   case LibFunc_rint:
2999     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
3000   case LibFunc_trunc:
3001     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
3002   case LibFunc_acos:
3003   case LibFunc_acosh:
3004   case LibFunc_asin:
3005   case LibFunc_asinh:
3006   case LibFunc_atan:
3007   case LibFunc_atanh:
3008   case LibFunc_cbrt:
3009   case LibFunc_cosh:
3010   case LibFunc_exp:
3011   case LibFunc_exp10:
3012   case LibFunc_expm1:
3013   case LibFunc_cos:
3014   case LibFunc_sin:
3015   case LibFunc_sinh:
3016   case LibFunc_tanh:
3017     if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
3018       return optimizeUnaryDoubleFP(CI, Builder, true);
3019     return nullptr;
3020   case LibFunc_copysign:
3021     if (hasFloatVersion(CI->getCalledFunction()->getName()))
3022       return optimizeBinaryDoubleFP(CI, Builder);
3023     return nullptr;
3024   case LibFunc_fminf:
3025   case LibFunc_fmin:
3026   case LibFunc_fminl:
3027   case LibFunc_fmaxf:
3028   case LibFunc_fmax:
3029   case LibFunc_fmaxl:
3030     return optimizeFMinFMax(CI, Builder);
3031   case LibFunc_cabs:
3032   case LibFunc_cabsf:
3033   case LibFunc_cabsl:
3034     return optimizeCAbs(CI, Builder);
3035   default:
3036     return nullptr;
3037   }
3038 }
3039 
3040 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
3041   assert(!CI->isMustTailCall() && "These transforms aren't musttail safe.");
3042 
3043   // TODO: Split out the code below that operates on FP calls so that
3044   //       we can all non-FP calls with the StrictFP attribute to be
3045   //       optimized.
3046   if (CI->isNoBuiltin())
3047     return nullptr;
3048 
3049   LibFunc Func;
3050   Function *Callee = CI->getCalledFunction();
3051   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
3052 
3053   SmallVector<OperandBundleDef, 2> OpBundles;
3054   CI->getOperandBundlesAsDefs(OpBundles);
3055 
3056   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3057   Builder.setDefaultOperandBundles(OpBundles);
3058 
3059   // Command-line parameter overrides instruction attribute.
3060   // This can't be moved to optimizeFloatingPointLibCall() because it may be
3061   // used by the intrinsic optimizations.
3062   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
3063     UnsafeFPShrink = EnableUnsafeFPShrink;
3064   else if (isa<FPMathOperator>(CI) && CI->isFast())
3065     UnsafeFPShrink = true;
3066 
3067   // First, check for intrinsics.
3068   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
3069     if (!IsCallingConvC)
3070       return nullptr;
3071     // The FP intrinsics have corresponding constrained versions so we don't
3072     // need to check for the StrictFP attribute here.
3073     switch (II->getIntrinsicID()) {
3074     case Intrinsic::pow:
3075       return optimizePow(CI, Builder);
3076     case Intrinsic::exp2:
3077       return optimizeExp2(CI, Builder);
3078     case Intrinsic::log:
3079     case Intrinsic::log2:
3080     case Intrinsic::log10:
3081       return optimizeLog(CI, Builder);
3082     case Intrinsic::sqrt:
3083       return optimizeSqrt(CI, Builder);
3084     case Intrinsic::memset:
3085       return optimizeMemSet(CI, Builder);
3086     case Intrinsic::memcpy:
3087       return optimizeMemCpy(CI, Builder);
3088     case Intrinsic::memmove:
3089       return optimizeMemMove(CI, Builder);
3090     default:
3091       return nullptr;
3092     }
3093   }
3094 
3095   // Also try to simplify calls to fortified library functions.
3096   if (Value *SimplifiedFortifiedCI =
3097           FortifiedSimplifier.optimizeCall(CI, Builder)) {
3098     // Try to further simplify the result.
3099     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
3100     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
3101       // Ensure that SimplifiedCI's uses are complete, since some calls have
3102       // their uses analyzed.
3103       replaceAllUsesWith(CI, SimplifiedCI);
3104 
3105       // Set insertion point to SimplifiedCI to guarantee we reach all uses
3106       // we might replace later on.
3107       IRBuilderBase::InsertPointGuard Guard(Builder);
3108       Builder.SetInsertPoint(SimplifiedCI);
3109       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) {
3110         // If we were able to further simplify, remove the now redundant call.
3111         substituteInParent(SimplifiedCI, V);
3112         return V;
3113       }
3114     }
3115     return SimplifiedFortifiedCI;
3116   }
3117 
3118   // Then check for known library functions.
3119   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
3120     // We never change the calling convention.
3121     if (!ignoreCallingConv(Func) && !IsCallingConvC)
3122       return nullptr;
3123     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3124       return V;
3125     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3126       return V;
3127     switch (Func) {
3128     case LibFunc_ffs:
3129     case LibFunc_ffsl:
3130     case LibFunc_ffsll:
3131       return optimizeFFS(CI, Builder);
3132     case LibFunc_fls:
3133     case LibFunc_flsl:
3134     case LibFunc_flsll:
3135       return optimizeFls(CI, Builder);
3136     case LibFunc_abs:
3137     case LibFunc_labs:
3138     case LibFunc_llabs:
3139       return optimizeAbs(CI, Builder);
3140     case LibFunc_isdigit:
3141       return optimizeIsDigit(CI, Builder);
3142     case LibFunc_isascii:
3143       return optimizeIsAscii(CI, Builder);
3144     case LibFunc_toascii:
3145       return optimizeToAscii(CI, Builder);
3146     case LibFunc_atoi:
3147     case LibFunc_atol:
3148     case LibFunc_atoll:
3149       return optimizeAtoi(CI, Builder);
3150     case LibFunc_strtol:
3151     case LibFunc_strtoll:
3152       return optimizeStrtol(CI, Builder);
3153     case LibFunc_printf:
3154       return optimizePrintF(CI, Builder);
3155     case LibFunc_sprintf:
3156       return optimizeSPrintF(CI, Builder);
3157     case LibFunc_snprintf:
3158       return optimizeSnPrintF(CI, Builder);
3159     case LibFunc_fprintf:
3160       return optimizeFPrintF(CI, Builder);
3161     case LibFunc_fwrite:
3162       return optimizeFWrite(CI, Builder);
3163     case LibFunc_fputs:
3164       return optimizeFPuts(CI, Builder);
3165     case LibFunc_puts:
3166       return optimizePuts(CI, Builder);
3167     case LibFunc_perror:
3168       return optimizeErrorReporting(CI, Builder);
3169     case LibFunc_vfprintf:
3170     case LibFunc_fiprintf:
3171       return optimizeErrorReporting(CI, Builder, 0);
3172     default:
3173       return nullptr;
3174     }
3175   }
3176   return nullptr;
3177 }
3178 
3179 LibCallSimplifier::LibCallSimplifier(
3180     const DataLayout &DL, const TargetLibraryInfo *TLI,
3181     OptimizationRemarkEmitter &ORE,
3182     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
3183     function_ref<void(Instruction *, Value *)> Replacer,
3184     function_ref<void(Instruction *)> Eraser)
3185     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
3186       Replacer(Replacer), Eraser(Eraser) {}
3187 
3188 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3189   // Indirect through the replacer used in this instance.
3190   Replacer(I, With);
3191 }
3192 
3193 void LibCallSimplifier::eraseFromParent(Instruction *I) {
3194   Eraser(I);
3195 }
3196 
3197 // TODO:
3198 //   Additional cases that we need to add to this file:
3199 //
3200 // cbrt:
3201 //   * cbrt(expN(X))  -> expN(x/3)
3202 //   * cbrt(sqrt(x))  -> pow(x,1/6)
3203 //   * cbrt(cbrt(x))  -> pow(x,1/9)
3204 //
3205 // exp, expf, expl:
3206 //   * exp(log(x))  -> x
3207 //
3208 // log, logf, logl:
3209 //   * log(exp(x))   -> x
3210 //   * log(exp(y))   -> y*log(e)
3211 //   * log(exp10(y)) -> y*log(10)
3212 //   * log(sqrt(x))  -> 0.5*log(x)
3213 //
3214 // pow, powf, powl:
3215 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
3216 //   * pow(pow(x,y),z)-> pow(x,y*z)
3217 //
3218 // signbit:
3219 //   * signbit(cnst) -> cnst'
3220 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3221 //
3222 // sqrt, sqrtf, sqrtl:
3223 //   * sqrt(expN(x))  -> expN(x*0.5)
3224 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3225 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3226 //
3227 
3228 //===----------------------------------------------------------------------===//
3229 // Fortified Library Call Optimizations
3230 //===----------------------------------------------------------------------===//
3231 
3232 bool
3233 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
3234                                                     unsigned ObjSizeOp,
3235                                                     Optional<unsigned> SizeOp,
3236                                                     Optional<unsigned> StrOp,
3237                                                     Optional<unsigned> FlagOp) {
3238   // If this function takes a flag argument, the implementation may use it to
3239   // perform extra checks. Don't fold into the non-checking variant.
3240   if (FlagOp) {
3241     ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
3242     if (!Flag || !Flag->isZero())
3243       return false;
3244   }
3245 
3246   if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
3247     return true;
3248 
3249   if (ConstantInt *ObjSizeCI =
3250           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
3251     if (ObjSizeCI->isMinusOne())
3252       return true;
3253     // If the object size wasn't -1 (unknown), bail out if we were asked to.
3254     if (OnlyLowerUnknownSize)
3255       return false;
3256     if (StrOp) {
3257       uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
3258       // If the length is 0 we don't know how long it is and so we can't
3259       // remove the check.
3260       if (Len)
3261         annotateDereferenceableBytes(CI, *StrOp, Len);
3262       else
3263         return false;
3264       return ObjSizeCI->getZExtValue() >= Len;
3265     }
3266 
3267     if (SizeOp) {
3268       if (ConstantInt *SizeCI =
3269               dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
3270         return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
3271     }
3272   }
3273   return false;
3274 }
3275 
3276 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
3277                                                      IRBuilderBase &B) {
3278   if (isFortifiedCallFoldable(CI, 3, 2)) {
3279     CallInst *NewCI =
3280         B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3281                        Align(1), CI->getArgOperand(2));
3282     NewCI->setAttributes(CI->getAttributes());
3283     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3284     copyFlags(*CI, NewCI);
3285     return CI->getArgOperand(0);
3286   }
3287   return nullptr;
3288 }
3289 
3290 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
3291                                                       IRBuilderBase &B) {
3292   if (isFortifiedCallFoldable(CI, 3, 2)) {
3293     CallInst *NewCI =
3294         B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3295                         Align(1), CI->getArgOperand(2));
3296     NewCI->setAttributes(CI->getAttributes());
3297     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3298     copyFlags(*CI, NewCI);
3299     return CI->getArgOperand(0);
3300   }
3301   return nullptr;
3302 }
3303 
3304 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
3305                                                      IRBuilderBase &B) {
3306   if (isFortifiedCallFoldable(CI, 3, 2)) {
3307     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
3308     CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
3309                                      CI->getArgOperand(2), Align(1));
3310     NewCI->setAttributes(CI->getAttributes());
3311     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3312     copyFlags(*CI, NewCI);
3313     return CI->getArgOperand(0);
3314   }
3315   return nullptr;
3316 }
3317 
3318 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI,
3319                                                       IRBuilderBase &B) {
3320   const DataLayout &DL = CI->getModule()->getDataLayout();
3321   if (isFortifiedCallFoldable(CI, 3, 2))
3322     if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3323                                   CI->getArgOperand(2), B, DL, TLI)) {
3324       CallInst *NewCI = cast<CallInst>(Call);
3325       NewCI->setAttributes(CI->getAttributes());
3326       NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3327       return copyFlags(*CI, NewCI);
3328     }
3329   return nullptr;
3330 }
3331 
3332 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
3333                                                       IRBuilderBase &B,
3334                                                       LibFunc Func) {
3335   const DataLayout &DL = CI->getModule()->getDataLayout();
3336   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
3337         *ObjSize = CI->getArgOperand(2);
3338 
3339   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
3340   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
3341     Value *StrLen = emitStrLen(Src, B, DL, TLI);
3342     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
3343   }
3344 
3345   // If a) we don't have any length information, or b) we know this will
3346   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3347   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3348   // TODO: It might be nice to get a maximum length out of the possible
3349   // string lengths for varying.
3350   if (isFortifiedCallFoldable(CI, 2, None, 1)) {
3351     if (Func == LibFunc_strcpy_chk)
3352       return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
3353     else
3354       return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI));
3355   }
3356 
3357   if (OnlyLowerUnknownSize)
3358     return nullptr;
3359 
3360   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3361   uint64_t Len = GetStringLength(Src);
3362   if (Len)
3363     annotateDereferenceableBytes(CI, 1, Len);
3364   else
3365     return nullptr;
3366 
3367   // FIXME: There is really no guarantee that sizeof(size_t) is equal to
3368   // sizeof(int*) for every target. So the assumption used here to derive the
3369   // SizeTBits based on the size of an integer pointer in address space zero
3370   // isn't always valid.
3371   Type *SizeTTy = DL.getIntPtrType(CI->getContext(), /*AddressSpace=*/0);
3372   Value *LenV = ConstantInt::get(SizeTTy, Len);
3373   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
3374   // If the function was an __stpcpy_chk, and we were able to fold it into
3375   // a __memcpy_chk, we still need to return the correct end pointer.
3376   if (Ret && Func == LibFunc_stpcpy_chk)
3377     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
3378   return copyFlags(*CI, cast<CallInst>(Ret));
3379 }
3380 
3381 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
3382                                                      IRBuilderBase &B) {
3383   if (isFortifiedCallFoldable(CI, 1, None, 0))
3384     return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B,
3385                                      CI->getModule()->getDataLayout(), TLI));
3386   return nullptr;
3387 }
3388 
3389 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
3390                                                        IRBuilderBase &B,
3391                                                        LibFunc Func) {
3392   if (isFortifiedCallFoldable(CI, 3, 2)) {
3393     if (Func == LibFunc_strncpy_chk)
3394       return copyFlags(*CI,
3395                        emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3396                                    CI->getArgOperand(2), B, TLI));
3397     else
3398       return copyFlags(*CI,
3399                        emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3400                                    CI->getArgOperand(2), B, TLI));
3401   }
3402 
3403   return nullptr;
3404 }
3405 
3406 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
3407                                                       IRBuilderBase &B) {
3408   if (isFortifiedCallFoldable(CI, 4, 3))
3409     return copyFlags(
3410         *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3411                          CI->getArgOperand(2), CI->getArgOperand(3), B, TLI));
3412 
3413   return nullptr;
3414 }
3415 
3416 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
3417                                                        IRBuilderBase &B) {
3418   if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
3419     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5));
3420     return copyFlags(*CI,
3421                      emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3422                                   CI->getArgOperand(4), VariadicArgs, B, TLI));
3423   }
3424 
3425   return nullptr;
3426 }
3427 
3428 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
3429                                                       IRBuilderBase &B) {
3430   if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
3431     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4));
3432     return copyFlags(*CI,
3433                      emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3434                                  VariadicArgs, B, TLI));
3435   }
3436 
3437   return nullptr;
3438 }
3439 
3440 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
3441                                                      IRBuilderBase &B) {
3442   if (isFortifiedCallFoldable(CI, 2))
3443     return copyFlags(
3444         *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI));
3445 
3446   return nullptr;
3447 }
3448 
3449 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
3450                                                    IRBuilderBase &B) {
3451   if (isFortifiedCallFoldable(CI, 3))
3452     return copyFlags(*CI,
3453                      emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
3454                                  CI->getArgOperand(2), B, TLI));
3455 
3456   return nullptr;
3457 }
3458 
3459 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
3460                                                       IRBuilderBase &B) {
3461   if (isFortifiedCallFoldable(CI, 3))
3462     return copyFlags(*CI,
3463                      emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
3464                                  CI->getArgOperand(2), B, TLI));
3465 
3466   return nullptr;
3467 }
3468 
3469 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
3470                                                       IRBuilderBase &B) {
3471   if (isFortifiedCallFoldable(CI, 3))
3472     return copyFlags(*CI,
3473                      emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3474                                  CI->getArgOperand(2), B, TLI));
3475 
3476   return nullptr;
3477 }
3478 
3479 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
3480                                                         IRBuilderBase &B) {
3481   if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
3482     return copyFlags(
3483         *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3484                            CI->getArgOperand(4), CI->getArgOperand(5), B, TLI));
3485 
3486   return nullptr;
3487 }
3488 
3489 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
3490                                                        IRBuilderBase &B) {
3491   if (isFortifiedCallFoldable(CI, 2, None, None, 1))
3492     return copyFlags(*CI,
3493                      emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3494                                   CI->getArgOperand(4), B, TLI));
3495 
3496   return nullptr;
3497 }
3498 
3499 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI,
3500                                                 IRBuilderBase &Builder) {
3501   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
3502   // Some clang users checked for _chk libcall availability using:
3503   //   __has_builtin(__builtin___memcpy_chk)
3504   // When compiling with -fno-builtin, this is always true.
3505   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
3506   // end up with fortified libcalls, which isn't acceptable in a freestanding
3507   // environment which only provides their non-fortified counterparts.
3508   //
3509   // Until we change clang and/or teach external users to check for availability
3510   // differently, disregard the "nobuiltin" attribute and TLI::has.
3511   //
3512   // PR23093.
3513 
3514   LibFunc Func;
3515   Function *Callee = CI->getCalledFunction();
3516   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
3517 
3518   SmallVector<OperandBundleDef, 2> OpBundles;
3519   CI->getOperandBundlesAsDefs(OpBundles);
3520 
3521   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3522   Builder.setDefaultOperandBundles(OpBundles);
3523 
3524   // First, check that this is a known library functions and that the prototype
3525   // is correct.
3526   if (!TLI->getLibFunc(*Callee, Func))
3527     return nullptr;
3528 
3529   // We never change the calling convention.
3530   if (!ignoreCallingConv(Func) && !IsCallingConvC)
3531     return nullptr;
3532 
3533   switch (Func) {
3534   case LibFunc_memcpy_chk:
3535     return optimizeMemCpyChk(CI, Builder);
3536   case LibFunc_mempcpy_chk:
3537     return optimizeMemPCpyChk(CI, Builder);
3538   case LibFunc_memmove_chk:
3539     return optimizeMemMoveChk(CI, Builder);
3540   case LibFunc_memset_chk:
3541     return optimizeMemSetChk(CI, Builder);
3542   case LibFunc_stpcpy_chk:
3543   case LibFunc_strcpy_chk:
3544     return optimizeStrpCpyChk(CI, Builder, Func);
3545   case LibFunc_strlen_chk:
3546     return optimizeStrLenChk(CI, Builder);
3547   case LibFunc_stpncpy_chk:
3548   case LibFunc_strncpy_chk:
3549     return optimizeStrpNCpyChk(CI, Builder, Func);
3550   case LibFunc_memccpy_chk:
3551     return optimizeMemCCpyChk(CI, Builder);
3552   case LibFunc_snprintf_chk:
3553     return optimizeSNPrintfChk(CI, Builder);
3554   case LibFunc_sprintf_chk:
3555     return optimizeSPrintfChk(CI, Builder);
3556   case LibFunc_strcat_chk:
3557     return optimizeStrCatChk(CI, Builder);
3558   case LibFunc_strlcat_chk:
3559     return optimizeStrLCat(CI, Builder);
3560   case LibFunc_strncat_chk:
3561     return optimizeStrNCatChk(CI, Builder);
3562   case LibFunc_strlcpy_chk:
3563     return optimizeStrLCpyChk(CI, Builder);
3564   case LibFunc_vsnprintf_chk:
3565     return optimizeVSNPrintfChk(CI, Builder);
3566   case LibFunc_vsprintf_chk:
3567     return optimizeVSPrintfChk(CI, Builder);
3568   default:
3569     break;
3570   }
3571   return nullptr;
3572 }
3573 
3574 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
3575     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
3576     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
3577