1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Transforms/Utils/BuildLibCalls.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Transforms/Utils/SizeOpts.h"
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 static cl::opt<bool>
40     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
41                          cl::init(false),
42                          cl::desc("Enable unsafe double to float "
43                                   "shrinking for math lib calls"));
44 
45 //===----------------------------------------------------------------------===//
46 // Helper Functions
47 //===----------------------------------------------------------------------===//
48 
49 static bool ignoreCallingConv(LibFunc Func) {
50   return Func == LibFunc_abs || Func == LibFunc_labs ||
51          Func == LibFunc_llabs || Func == LibFunc_strlen;
52 }
53 
54 /// Return true if it is only used in equality comparisons with With.
55 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
56   for (User *U : V->users()) {
57     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
58       if (IC->isEquality() && IC->getOperand(1) == With)
59         continue;
60     // Unknown instruction.
61     return false;
62   }
63   return true;
64 }
65 
66 static bool callHasFloatingPointArgument(const CallInst *CI) {
67   return any_of(CI->operands(), [](const Use &OI) {
68     return OI->getType()->isFloatingPointTy();
69   });
70 }
71 
72 static bool callHasFP128Argument(const CallInst *CI) {
73   return any_of(CI->operands(), [](const Use &OI) {
74     return OI->getType()->isFP128Ty();
75   });
76 }
77 
78 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
79   if (Base < 2 || Base > 36)
80     // handle special zero base
81     if (Base != 0)
82       return nullptr;
83 
84   char *End;
85   std::string nptr = Str.str();
86   errno = 0;
87   long long int Result = strtoll(nptr.c_str(), &End, Base);
88   if (errno)
89     return nullptr;
90 
91   // if we assume all possible target locales are ASCII supersets,
92   // then if strtoll successfully parses a number on the host,
93   // it will also successfully parse the same way on the target
94   if (*End != '\0')
95     return nullptr;
96 
97   if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
98     return nullptr;
99 
100   return ConstantInt::get(CI->getType(), Result);
101 }
102 
103 static bool isOnlyUsedInComparisonWithZero(Value *V) {
104   for (User *U : V->users()) {
105     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
106       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
107         if (C->isNullValue())
108           continue;
109     // Unknown instruction.
110     return false;
111   }
112   return true;
113 }
114 
115 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
116                                  const DataLayout &DL) {
117   if (!isOnlyUsedInComparisonWithZero(CI))
118     return false;
119 
120   if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL))
121     return false;
122 
123   if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
124     return false;
125 
126   return true;
127 }
128 
129 static void annotateDereferenceableBytes(CallInst *CI,
130                                          ArrayRef<unsigned> ArgNos,
131                                          uint64_t DereferenceableBytes) {
132   const Function *F = CI->getCaller();
133   if (!F)
134     return;
135   for (unsigned ArgNo : ArgNos) {
136     uint64_t DerefBytes = DereferenceableBytes;
137     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
138     if (!llvm::NullPointerIsDefined(F, AS) ||
139         CI->paramHasAttr(ArgNo, Attribute::NonNull))
140       DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo),
141                             DereferenceableBytes);
142 
143     if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) {
144       CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
145       if (!llvm::NullPointerIsDefined(F, AS) ||
146           CI->paramHasAttr(ArgNo, Attribute::NonNull))
147         CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
148       CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
149                                   CI->getContext(), DerefBytes));
150     }
151   }
152 }
153 
154 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI,
155                                          ArrayRef<unsigned> ArgNos) {
156   Function *F = CI->getCaller();
157   if (!F)
158     return;
159 
160   for (unsigned ArgNo : ArgNos) {
161     if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef))
162       CI->addParamAttr(ArgNo, Attribute::NoUndef);
163 
164     if (CI->paramHasAttr(ArgNo, Attribute::NonNull))
165       continue;
166     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
167     if (llvm::NullPointerIsDefined(F, AS))
168       continue;
169 
170     CI->addParamAttr(ArgNo, Attribute::NonNull);
171     annotateDereferenceableBytes(CI, ArgNo, 1);
172   }
173 }
174 
175 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
176                                Value *Size, const DataLayout &DL) {
177   if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
178     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
179     annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
180   } else if (isKnownNonZero(Size, DL)) {
181     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
182     const APInt *X, *Y;
183     uint64_t DerefMin = 1;
184     if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
185       DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
186       annotateDereferenceableBytes(CI, ArgNos, DerefMin);
187     }
188   }
189 }
190 
191 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for
192 // easier chaining. Calls to emit* and B.createCall should probably be wrapped
193 // in this function when New is created to replace Old. Callers should take
194 // care to check Old.isMustTailCall() if they aren't replacing Old directly
195 // with New.
196 static Value *copyFlags(const CallInst &Old, Value *New) {
197   assert(!Old.isMustTailCall() && "do not copy musttail call flags");
198   assert(!Old.isNoTailCall() && "do not copy notail call flags");
199   if (auto *NewCI = dyn_cast_or_null<CallInst>(New))
200     NewCI->setTailCallKind(Old.getTailCallKind());
201   return New;
202 }
203 
204 // Helper to avoid truncating the length if size_t is 32-bits.
205 static StringRef substr(StringRef Str, uint64_t Len) {
206   return Len >= Str.size() ? Str : Str.substr(0, Len);
207 }
208 
209 //===----------------------------------------------------------------------===//
210 // String and Memory Library Call Optimizations
211 //===----------------------------------------------------------------------===//
212 
213 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) {
214   // Extract some information from the instruction
215   Value *Dst = CI->getArgOperand(0);
216   Value *Src = CI->getArgOperand(1);
217   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
218 
219   // See if we can get the length of the input string.
220   uint64_t Len = GetStringLength(Src);
221   if (Len)
222     annotateDereferenceableBytes(CI, 1, Len);
223   else
224     return nullptr;
225   --Len; // Unbias length.
226 
227   // Handle the simple, do-nothing case: strcat(x, "") -> x
228   if (Len == 0)
229     return Dst;
230 
231   return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B));
232 }
233 
234 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
235                                            IRBuilderBase &B) {
236   // We need to find the end of the destination string.  That's where the
237   // memory is to be moved to. We just generate a call to strlen.
238   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
239   if (!DstLen)
240     return nullptr;
241 
242   // Now that we have the destination's length, we must index into the
243   // destination's pointer to get the actual memcpy destination (end of
244   // the string .. we're concatenating).
245   Value *CpyDst = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
246 
247   // We have enough information to now generate the memcpy call to do the
248   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
249   B.CreateMemCpy(
250       CpyDst, Align(1), Src, Align(1),
251       ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
252   return Dst;
253 }
254 
255 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) {
256   // Extract some information from the instruction.
257   Value *Dst = CI->getArgOperand(0);
258   Value *Src = CI->getArgOperand(1);
259   Value *Size = CI->getArgOperand(2);
260   uint64_t Len;
261   annotateNonNullNoUndefBasedOnAccess(CI, 0);
262   if (isKnownNonZero(Size, DL))
263     annotateNonNullNoUndefBasedOnAccess(CI, 1);
264 
265   // We don't do anything if length is not constant.
266   ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
267   if (LengthArg) {
268     Len = LengthArg->getZExtValue();
269     // strncat(x, c, 0) -> x
270     if (!Len)
271       return Dst;
272   } else {
273     return nullptr;
274   }
275 
276   // See if we can get the length of the input string.
277   uint64_t SrcLen = GetStringLength(Src);
278   if (SrcLen) {
279     annotateDereferenceableBytes(CI, 1, SrcLen);
280     --SrcLen; // Unbias length.
281   } else {
282     return nullptr;
283   }
284 
285   // strncat(x, "", c) -> x
286   if (SrcLen == 0)
287     return Dst;
288 
289   // We don't optimize this case.
290   if (Len < SrcLen)
291     return nullptr;
292 
293   // strncat(x, s, c) -> strcat(x, s)
294   // s is constant so the strcat can be optimized further.
295   return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B));
296 }
297 
298 // Helper to transform memchr(S, C, N) == S to N && *S == C and, when
299 // NBytes is null, strchr(S, C) to *S == C.  A precondition of the function
300 // is that either S is dereferenceable or the value of N is nonzero.
301 static Value* memChrToCharCompare(CallInst *CI, Value *NBytes,
302                                   IRBuilderBase &B, const DataLayout &DL)
303 {
304   Value *Src = CI->getArgOperand(0);
305   Value *CharVal = CI->getArgOperand(1);
306 
307   // Fold memchr(A, C, N) == A to N && *A == C.
308   Type *CharTy = B.getInt8Ty();
309   Value *Char0 = B.CreateLoad(CharTy, Src);
310   CharVal = B.CreateTrunc(CharVal, CharTy);
311   Value *Cmp = B.CreateICmpEQ(Char0, CharVal, "char0cmp");
312 
313   if (NBytes) {
314     Value *Zero = ConstantInt::get(NBytes->getType(), 0);
315     Value *And = B.CreateICmpNE(NBytes, Zero);
316     Cmp = B.CreateLogicalAnd(And, Cmp);
317   }
318 
319   Value *NullPtr = Constant::getNullValue(CI->getType());
320   return B.CreateSelect(Cmp, Src, NullPtr);
321 }
322 
323 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) {
324   Value *SrcStr = CI->getArgOperand(0);
325   Value *CharVal = CI->getArgOperand(1);
326   annotateNonNullNoUndefBasedOnAccess(CI, 0);
327 
328   if (isOnlyUsedInEqualityComparison(CI, SrcStr))
329     return memChrToCharCompare(CI, nullptr, B, DL);
330 
331   // If the second operand is non-constant, see if we can compute the length
332   // of the input string and turn this into memchr.
333   ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
334   if (!CharC) {
335     uint64_t Len = GetStringLength(SrcStr);
336     if (Len)
337       annotateDereferenceableBytes(CI, 0, Len);
338     else
339       return nullptr;
340 
341     Function *Callee = CI->getCalledFunction();
342     FunctionType *FT = Callee->getFunctionType();
343     if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
344       return nullptr;
345 
346     return copyFlags(
347         *CI,
348         emitMemChr(SrcStr, CharVal, // include nul.
349                    ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), B,
350                    DL, TLI));
351   }
352 
353   if (CharC->isZero()) {
354     Value *NullPtr = Constant::getNullValue(CI->getType());
355     if (isOnlyUsedInEqualityComparison(CI, NullPtr))
356       // Pre-empt the transformation to strlen below and fold
357       // strchr(A, '\0') == null to false.
358       return B.CreateIntToPtr(B.getTrue(), CI->getType());
359   }
360 
361   // Otherwise, the character is a constant, see if the first argument is
362   // a string literal.  If so, we can constant fold.
363   StringRef Str;
364   if (!getConstantStringInfo(SrcStr, Str)) {
365     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
366       if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
367         return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
368     return nullptr;
369   }
370 
371   // Compute the offset, make sure to handle the case when we're searching for
372   // zero (a weird way to spell strlen).
373   size_t I = (0xFF & CharC->getSExtValue()) == 0
374                  ? Str.size()
375                  : Str.find(CharC->getSExtValue());
376   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
377     return Constant::getNullValue(CI->getType());
378 
379   // strchr(s+n,c)  -> gep(s+n+i,c)
380   return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
381 }
382 
383 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) {
384   Value *SrcStr = CI->getArgOperand(0);
385   Value *CharVal = CI->getArgOperand(1);
386   ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
387   annotateNonNullNoUndefBasedOnAccess(CI, 0);
388 
389   StringRef Str;
390   if (!getConstantStringInfo(SrcStr, Str)) {
391     // strrchr(s, 0) -> strchr(s, 0)
392     if (CharC && CharC->isZero())
393       return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI));
394     return nullptr;
395   }
396 
397   // Try to expand strrchr to the memrchr nonstandard extension if it's
398   // available, or simply fail otherwise.
399   uint64_t NBytes = Str.size() + 1;   // Include the terminating nul.
400   Type *IntPtrType = DL.getIntPtrType(CI->getContext());
401   Value *Size = ConstantInt::get(IntPtrType, NBytes);
402   return copyFlags(*CI, emitMemRChr(SrcStr, CharVal, Size, B, DL, TLI));
403 }
404 
405 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) {
406   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
407   if (Str1P == Str2P) // strcmp(x,x)  -> 0
408     return ConstantInt::get(CI->getType(), 0);
409 
410   StringRef Str1, Str2;
411   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
412   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
413 
414   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
415   if (HasStr1 && HasStr2)
416     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
417 
418   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
419     return B.CreateNeg(B.CreateZExt(
420         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
421 
422   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
423     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
424                         CI->getType());
425 
426   // strcmp(P, "x") -> memcmp(P, "x", 2)
427   uint64_t Len1 = GetStringLength(Str1P);
428   if (Len1)
429     annotateDereferenceableBytes(CI, 0, Len1);
430   uint64_t Len2 = GetStringLength(Str2P);
431   if (Len2)
432     annotateDereferenceableBytes(CI, 1, Len2);
433 
434   if (Len1 && Len2) {
435     return copyFlags(
436         *CI, emitMemCmp(Str1P, Str2P,
437                         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
438                                          std::min(Len1, Len2)),
439                         B, DL, TLI));
440   }
441 
442   // strcmp to memcmp
443   if (!HasStr1 && HasStr2) {
444     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
445       return copyFlags(
446           *CI,
447           emitMemCmp(Str1P, Str2P,
448                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
449                      B, DL, TLI));
450   } else if (HasStr1 && !HasStr2) {
451     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
452       return copyFlags(
453           *CI,
454           emitMemCmp(Str1P, Str2P,
455                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
456                      B, DL, TLI));
457   }
458 
459   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
460   return nullptr;
461 }
462 
463 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
464 // arrays LHS and RHS and nonconstant Size.
465 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS,
466                                     Value *Size, bool StrNCmp,
467                                     IRBuilderBase &B, const DataLayout &DL);
468 
469 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) {
470   Value *Str1P = CI->getArgOperand(0);
471   Value *Str2P = CI->getArgOperand(1);
472   Value *Size = CI->getArgOperand(2);
473   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
474     return ConstantInt::get(CI->getType(), 0);
475 
476   if (isKnownNonZero(Size, DL))
477     annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
478   // Get the length argument if it is constant.
479   uint64_t Length;
480   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
481     Length = LengthArg->getZExtValue();
482   else
483     return optimizeMemCmpVarSize(CI, Str1P, Str2P, Size, true, B, DL);
484 
485   if (Length == 0) // strncmp(x,y,0)   -> 0
486     return ConstantInt::get(CI->getType(), 0);
487 
488   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
489     return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI));
490 
491   StringRef Str1, Str2;
492   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
493   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
494 
495   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
496   if (HasStr1 && HasStr2) {
497     // Avoid truncating the 64-bit Length to 32 bits in ILP32.
498     StringRef SubStr1 = substr(Str1, Length);
499     StringRef SubStr2 = substr(Str2, Length);
500     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
501   }
502 
503   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
504     return B.CreateNeg(B.CreateZExt(
505         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
506 
507   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
508     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
509                         CI->getType());
510 
511   uint64_t Len1 = GetStringLength(Str1P);
512   if (Len1)
513     annotateDereferenceableBytes(CI, 0, Len1);
514   uint64_t Len2 = GetStringLength(Str2P);
515   if (Len2)
516     annotateDereferenceableBytes(CI, 1, Len2);
517 
518   // strncmp to memcmp
519   if (!HasStr1 && HasStr2) {
520     Len2 = std::min(Len2, Length);
521     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
522       return copyFlags(
523           *CI,
524           emitMemCmp(Str1P, Str2P,
525                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
526                      B, DL, TLI));
527   } else if (HasStr1 && !HasStr2) {
528     Len1 = std::min(Len1, Length);
529     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
530       return copyFlags(
531           *CI,
532           emitMemCmp(Str1P, Str2P,
533                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
534                      B, DL, TLI));
535   }
536 
537   return nullptr;
538 }
539 
540 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) {
541   Value *Src = CI->getArgOperand(0);
542   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
543   uint64_t SrcLen = GetStringLength(Src);
544   if (SrcLen && Size) {
545     annotateDereferenceableBytes(CI, 0, SrcLen);
546     if (SrcLen <= Size->getZExtValue() + 1)
547       return copyFlags(*CI, emitStrDup(Src, B, TLI));
548   }
549 
550   return nullptr;
551 }
552 
553 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) {
554   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
555   if (Dst == Src) // strcpy(x,x)  -> x
556     return Src;
557 
558   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
559   // See if we can get the length of the input string.
560   uint64_t Len = GetStringLength(Src);
561   if (Len)
562     annotateDereferenceableBytes(CI, 1, Len);
563   else
564     return nullptr;
565 
566   // We have enough information to now generate the memcpy call to do the
567   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
568   CallInst *NewCI =
569       B.CreateMemCpy(Dst, Align(1), Src, Align(1),
570                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
571   NewCI->setAttributes(CI->getAttributes());
572   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
573   copyFlags(*CI, NewCI);
574   return Dst;
575 }
576 
577 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) {
578   Function *Callee = CI->getCalledFunction();
579   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
580 
581   // stpcpy(d,s) -> strcpy(d,s) if the result is not used.
582   if (CI->use_empty())
583     return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
584 
585   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
586     Value *StrLen = emitStrLen(Src, B, DL, TLI);
587     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
588   }
589 
590   // See if we can get the length of the input string.
591   uint64_t Len = GetStringLength(Src);
592   if (Len)
593     annotateDereferenceableBytes(CI, 1, Len);
594   else
595     return nullptr;
596 
597   Type *PT = Callee->getFunctionType()->getParamType(0);
598   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
599   Value *DstEnd = B.CreateInBoundsGEP(
600       B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
601 
602   // We have enough information to now generate the memcpy call to do the
603   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
604   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV);
605   NewCI->setAttributes(CI->getAttributes());
606   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
607   copyFlags(*CI, NewCI);
608   return DstEnd;
609 }
610 
611 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) {
612   Function *Callee = CI->getCalledFunction();
613   Value *Dst = CI->getArgOperand(0);
614   Value *Src = CI->getArgOperand(1);
615   Value *Size = CI->getArgOperand(2);
616   annotateNonNullNoUndefBasedOnAccess(CI, 0);
617   if (isKnownNonZero(Size, DL))
618     annotateNonNullNoUndefBasedOnAccess(CI, 1);
619 
620   uint64_t Len;
621   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
622     Len = LengthArg->getZExtValue();
623   else
624     return nullptr;
625 
626   // strncpy(x, y, 0) -> x
627   if (Len == 0)
628     return Dst;
629 
630   // See if we can get the length of the input string.
631   uint64_t SrcLen = GetStringLength(Src);
632   if (SrcLen) {
633     annotateDereferenceableBytes(CI, 1, SrcLen);
634     --SrcLen; // Unbias length.
635   } else {
636     return nullptr;
637   }
638 
639   if (SrcLen == 0) {
640     // strncpy(x, "", y) -> memset(x, '\0', y)
641     Align MemSetAlign =
642         CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne();
643     CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign);
644     AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0));
645     NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
646         CI->getContext(), 0, ArgAttrs));
647     copyFlags(*CI, NewCI);
648     return Dst;
649   }
650 
651   // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4)
652   if (Len > SrcLen + 1) {
653     if (Len <= 128) {
654       StringRef Str;
655       if (!getConstantStringInfo(Src, Str))
656         return nullptr;
657       std::string SrcStr = Str.str();
658       SrcStr.resize(Len, '\0');
659       Src = B.CreateGlobalString(SrcStr, "str");
660     } else {
661       return nullptr;
662     }
663   }
664 
665   Type *PT = Callee->getFunctionType()->getParamType(0);
666   // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
667   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
668                                    ConstantInt::get(DL.getIntPtrType(PT), Len));
669   NewCI->setAttributes(CI->getAttributes());
670   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
671   copyFlags(*CI, NewCI);
672   return Dst;
673 }
674 
675 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B,
676                                                unsigned CharSize,
677                                                Value *Bound) {
678   Value *Src = CI->getArgOperand(0);
679   Type *CharTy = B.getIntNTy(CharSize);
680 
681   if (isOnlyUsedInZeroEqualityComparison(CI) &&
682       (!Bound || isKnownNonZero(Bound, DL))) {
683     // Fold strlen:
684     //   strlen(x) != 0 --> *x != 0
685     //   strlen(x) == 0 --> *x == 0
686     // and likewise strnlen with constant N > 0:
687     //   strnlen(x, N) != 0 --> *x != 0
688     //   strnlen(x, N) == 0 --> *x == 0
689     return B.CreateZExt(B.CreateLoad(CharTy, Src, "char0"),
690                         CI->getType());
691   }
692 
693   if (Bound) {
694     if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) {
695       if (BoundCst->isZero())
696         // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise.
697         return ConstantInt::get(CI->getType(), 0);
698 
699       if (BoundCst->isOne()) {
700         // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s.
701         Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0");
702         Value *ZeroChar = ConstantInt::get(CharTy, 0);
703         Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp");
704         return B.CreateZExt(Cmp, CI->getType());
705       }
706     }
707   }
708 
709   if (uint64_t Len = GetStringLength(Src, CharSize)) {
710     Value *LenC = ConstantInt::get(CI->getType(), Len - 1);
711     // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2
712     // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound.
713     if (Bound)
714       return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound);
715     return LenC;
716   }
717 
718   if (Bound)
719     // Punt for strnlen for now.
720     return nullptr;
721 
722   // If s is a constant pointer pointing to a string literal, we can fold
723   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
724   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
725   // We only try to simplify strlen when the pointer s points to an array
726   // of i8. Otherwise, we would need to scale the offset x before doing the
727   // subtraction. This will make the optimization more complex, and it's not
728   // very useful because calling strlen for a pointer of other types is
729   // very uncommon.
730   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
731     // TODO: Handle subobjects.
732     if (!isGEPBasedOnPointerToString(GEP, CharSize))
733       return nullptr;
734 
735     ConstantDataArraySlice Slice;
736     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
737       uint64_t NullTermIdx;
738       if (Slice.Array == nullptr) {
739         NullTermIdx = 0;
740       } else {
741         NullTermIdx = ~((uint64_t)0);
742         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
743           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
744             NullTermIdx = I;
745             break;
746           }
747         }
748         // If the string does not have '\0', leave it to strlen to compute
749         // its length.
750         if (NullTermIdx == ~((uint64_t)0))
751           return nullptr;
752       }
753 
754       Value *Offset = GEP->getOperand(2);
755       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
756       uint64_t ArrSize =
757              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
758 
759       // If Offset is not provably in the range [0, NullTermIdx], we can still
760       // optimize if we can prove that the program has undefined behavior when
761       // Offset is outside that range. That is the case when GEP->getOperand(0)
762       // is a pointer to an object whose memory extent is NullTermIdx+1.
763       if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) ||
764           (isa<GlobalVariable>(GEP->getOperand(0)) &&
765            NullTermIdx == ArrSize - 1)) {
766         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
767         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
768                            Offset);
769       }
770     }
771   }
772 
773   // strlen(x?"foo":"bars") --> x ? 3 : 4
774   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
775     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
776     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
777     if (LenTrue && LenFalse) {
778       ORE.emit([&]() {
779         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
780                << "folded strlen(select) to select of constants";
781       });
782       return B.CreateSelect(SI->getCondition(),
783                             ConstantInt::get(CI->getType(), LenTrue - 1),
784                             ConstantInt::get(CI->getType(), LenFalse - 1));
785     }
786   }
787 
788   return nullptr;
789 }
790 
791 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) {
792   if (Value *V = optimizeStringLength(CI, B, 8))
793     return V;
794   annotateNonNullNoUndefBasedOnAccess(CI, 0);
795   return nullptr;
796 }
797 
798 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) {
799   Value *Bound = CI->getArgOperand(1);
800   if (Value *V = optimizeStringLength(CI, B, 8, Bound))
801     return V;
802 
803   if (isKnownNonZero(Bound, DL))
804     annotateNonNullNoUndefBasedOnAccess(CI, 0);
805   return nullptr;
806 }
807 
808 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) {
809   Module &M = *CI->getModule();
810   unsigned WCharSize = TLI->getWCharSize(M) * 8;
811   // We cannot perform this optimization without wchar_size metadata.
812   if (WCharSize == 0)
813     return nullptr;
814 
815   return optimizeStringLength(CI, B, WCharSize);
816 }
817 
818 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) {
819   StringRef S1, S2;
820   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
821   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
822 
823   // strpbrk(s, "") -> nullptr
824   // strpbrk("", s) -> nullptr
825   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
826     return Constant::getNullValue(CI->getType());
827 
828   // Constant folding.
829   if (HasS1 && HasS2) {
830     size_t I = S1.find_first_of(S2);
831     if (I == StringRef::npos) // No match.
832       return Constant::getNullValue(CI->getType());
833 
834     return B.CreateInBoundsGEP(B.getInt8Ty(), CI->getArgOperand(0),
835                                B.getInt64(I), "strpbrk");
836   }
837 
838   // strpbrk(s, "a") -> strchr(s, 'a')
839   if (HasS2 && S2.size() == 1)
840     return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI));
841 
842   return nullptr;
843 }
844 
845 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) {
846   Value *EndPtr = CI->getArgOperand(1);
847   if (isa<ConstantPointerNull>(EndPtr)) {
848     // With a null EndPtr, this function won't capture the main argument.
849     // It would be readonly too, except that it still may write to errno.
850     CI->addParamAttr(0, Attribute::NoCapture);
851   }
852 
853   return nullptr;
854 }
855 
856 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) {
857   StringRef S1, S2;
858   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
859   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
860 
861   // strspn(s, "") -> 0
862   // strspn("", s) -> 0
863   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
864     return Constant::getNullValue(CI->getType());
865 
866   // Constant folding.
867   if (HasS1 && HasS2) {
868     size_t Pos = S1.find_first_not_of(S2);
869     if (Pos == StringRef::npos)
870       Pos = S1.size();
871     return ConstantInt::get(CI->getType(), Pos);
872   }
873 
874   return nullptr;
875 }
876 
877 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) {
878   StringRef S1, S2;
879   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
880   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
881 
882   // strcspn("", s) -> 0
883   if (HasS1 && S1.empty())
884     return Constant::getNullValue(CI->getType());
885 
886   // Constant folding.
887   if (HasS1 && HasS2) {
888     size_t Pos = S1.find_first_of(S2);
889     if (Pos == StringRef::npos)
890       Pos = S1.size();
891     return ConstantInt::get(CI->getType(), Pos);
892   }
893 
894   // strcspn(s, "") -> strlen(s)
895   if (HasS2 && S2.empty())
896     return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI));
897 
898   return nullptr;
899 }
900 
901 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) {
902   // fold strstr(x, x) -> x.
903   if (CI->getArgOperand(0) == CI->getArgOperand(1))
904     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
905 
906   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
907   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
908     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
909     if (!StrLen)
910       return nullptr;
911     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
912                                  StrLen, B, DL, TLI);
913     if (!StrNCmp)
914       return nullptr;
915     for (User *U : llvm::make_early_inc_range(CI->users())) {
916       ICmpInst *Old = cast<ICmpInst>(U);
917       Value *Cmp =
918           B.CreateICmp(Old->getPredicate(), StrNCmp,
919                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
920       replaceAllUsesWith(Old, Cmp);
921     }
922     return CI;
923   }
924 
925   // See if either input string is a constant string.
926   StringRef SearchStr, ToFindStr;
927   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
928   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
929 
930   // fold strstr(x, "") -> x.
931   if (HasStr2 && ToFindStr.empty())
932     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
933 
934   // If both strings are known, constant fold it.
935   if (HasStr1 && HasStr2) {
936     size_t Offset = SearchStr.find(ToFindStr);
937 
938     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
939       return Constant::getNullValue(CI->getType());
940 
941     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
942     Value *Result = castToCStr(CI->getArgOperand(0), B);
943     Result =
944         B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
945     return B.CreateBitCast(Result, CI->getType());
946   }
947 
948   // fold strstr(x, "y") -> strchr(x, 'y').
949   if (HasStr2 && ToFindStr.size() == 1) {
950     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
951     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
952   }
953 
954   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
955   return nullptr;
956 }
957 
958 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) {
959   Value *SrcStr = CI->getArgOperand(0);
960   Value *Size = CI->getArgOperand(2);
961   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
962   Value *CharVal = CI->getArgOperand(1);
963   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
964   Value *NullPtr = Constant::getNullValue(CI->getType());
965 
966   if (LenC) {
967     if (LenC->isZero())
968       // Fold memrchr(x, y, 0) --> null.
969       return NullPtr;
970 
971     if (LenC->isOne()) {
972       // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y,
973       // constant or otherwise.
974       Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0");
975       // Slice off the character's high end bits.
976       CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
977       Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp");
978       return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel");
979     }
980   }
981 
982   StringRef Str;
983   if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
984     return nullptr;
985 
986   if (Str.size() == 0)
987     // If the array is empty fold memrchr(A, C, N) to null for any value
988     // of C and N on the basis that the only valid value of N is zero
989     // (otherwise the call is undefined).
990     return NullPtr;
991 
992   uint64_t EndOff = UINT64_MAX;
993   if (LenC) {
994     EndOff = LenC->getZExtValue();
995     if (Str.size() < EndOff)
996       // Punt out-of-bounds accesses to sanitizers and/or libc.
997       return nullptr;
998   }
999 
1000   if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) {
1001     // Fold memrchr(S, C, N) for a constant C.
1002     size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff);
1003     if (Pos == StringRef::npos)
1004       // When the character is not in the source array fold the result
1005       // to null regardless of Size.
1006       return NullPtr;
1007 
1008     if (LenC)
1009       // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos.
1010       return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos));
1011 
1012     if (Str.find(Str[Pos]) == Pos) {
1013       // When there is just a single occurrence of C in S, i.e., the one
1014       // in Str[Pos], fold
1015       //   memrchr(s, c, N) --> N <= Pos ? null : s + Pos
1016       // for nonconstant N.
1017       Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
1018                                    "memrchr.cmp");
1019       Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr,
1020                                            B.getInt64(Pos), "memrchr.ptr_plus");
1021       return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel");
1022     }
1023   }
1024 
1025   // Truncate the string to search at most EndOff characters.
1026   Str = Str.substr(0, EndOff);
1027   if (Str.find_first_not_of(Str[0]) != StringRef::npos)
1028     return nullptr;
1029 
1030   // If the source array consists of all equal characters, then for any
1031   // C and N (whether in bounds or not), fold memrchr(S, C, N) to
1032   //   N != 0 && *S == C ? S + N - 1 : null
1033   Type *SizeTy = Size->getType();
1034   Type *Int8Ty = B.getInt8Ty();
1035   Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
1036   // Slice off the sought character's high end bits.
1037   CharVal = B.CreateTrunc(CharVal, Int8Ty);
1038   Value *CEqS0 = B.CreateICmpEQ(ConstantInt::get(Int8Ty, Str[0]), CharVal);
1039   Value *And = B.CreateLogicalAnd(NNeZ, CEqS0);
1040   Value *SizeM1 = B.CreateSub(Size, ConstantInt::get(SizeTy, 1));
1041   Value *SrcPlus =
1042       B.CreateInBoundsGEP(Int8Ty, SrcStr, SizeM1, "memrchr.ptr_plus");
1043   return B.CreateSelect(And, SrcPlus, NullPtr, "memrchr.sel");
1044 }
1045 
1046 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) {
1047   Value *SrcStr = CI->getArgOperand(0);
1048   Value *Size = CI->getArgOperand(2);
1049 
1050   if (isKnownNonZero(Size, DL)) {
1051     annotateNonNullNoUndefBasedOnAccess(CI, 0);
1052     if (isOnlyUsedInEqualityComparison(CI, SrcStr))
1053       return memChrToCharCompare(CI, Size, B, DL);
1054   }
1055 
1056   Value *CharVal = CI->getArgOperand(1);
1057   ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
1058   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1059   Value *NullPtr = Constant::getNullValue(CI->getType());
1060 
1061   // memchr(x, y, 0) -> null
1062   if (LenC) {
1063     if (LenC->isZero())
1064       return NullPtr;
1065 
1066     if (LenC->isOne()) {
1067       // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y,
1068       // constant or otherwise.
1069       Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0");
1070       // Slice off the character's high end bits.
1071       CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
1072       Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp");
1073       return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel");
1074     }
1075   }
1076 
1077   StringRef Str;
1078   if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
1079     return nullptr;
1080 
1081   if (CharC) {
1082     size_t Pos = Str.find(CharC->getZExtValue());
1083     if (Pos == StringRef::npos)
1084       // When the character is not in the source array fold the result
1085       // to null regardless of Size.
1086       return NullPtr;
1087 
1088     // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos
1089     // When the constant Size is less than or equal to the character
1090     // position also fold the result to null.
1091     Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
1092                                  "memchr.cmp");
1093     Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos),
1094                                          "memchr.ptr");
1095     return B.CreateSelect(Cmp, NullPtr, SrcPlus);
1096   }
1097 
1098   if (Str.size() == 0)
1099     // If the array is empty fold memchr(A, C, N) to null for any value
1100     // of C and N on the basis that the only valid value of N is zero
1101     // (otherwise the call is undefined).
1102     return NullPtr;
1103 
1104   if (LenC)
1105     Str = substr(Str, LenC->getZExtValue());
1106 
1107   size_t Pos = Str.find_first_not_of(Str[0]);
1108   if (Pos == StringRef::npos
1109       || Str.find_first_not_of(Str[Pos], Pos) == StringRef::npos) {
1110     // If the source array consists of at most two consecutive sequences
1111     // of the same characters, then for any C and N (whether in bounds or
1112     // not), fold memchr(S, C, N) to
1113     //   N != 0 && *S == C ? S : null
1114     // or for the two sequences to:
1115     //   N != 0 && *S == C ? S : (N > Pos && S[Pos] == C ? S + Pos : null)
1116     //   ^Sel2                   ^Sel1 are denoted above.
1117     // The latter makes it also possible to fold strchr() calls with strings
1118     // of the same characters.
1119     Type *SizeTy = Size->getType();
1120     Type *Int8Ty = B.getInt8Ty();
1121 
1122     // Slice off the sought character's high end bits.
1123     CharVal = B.CreateTrunc(CharVal, Int8Ty);
1124 
1125     Value *Sel1 = NullPtr;
1126     if (Pos != StringRef::npos) {
1127       // Handle two consecutive sequences of the same characters.
1128       Value *PosVal = ConstantInt::get(SizeTy, Pos);
1129       Value *StrPos = ConstantInt::get(Int8Ty, Str[Pos]);
1130       Value *CEqSPos = B.CreateICmpEQ(CharVal, StrPos);
1131       Value *NGtPos = B.CreateICmp(ICmpInst::ICMP_UGT, Size, PosVal);
1132       Value *And = B.CreateAnd(CEqSPos, NGtPos);
1133       Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, PosVal);
1134       Sel1 = B.CreateSelect(And, SrcPlus, NullPtr, "memchr.sel1");
1135     }
1136 
1137     Value *Str0 = ConstantInt::get(Int8Ty, Str[0]);
1138     Value *CEqS0 = B.CreateICmpEQ(Str0, CharVal);
1139     Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
1140     Value *And = B.CreateAnd(NNeZ, CEqS0);
1141     return B.CreateSelect(And, SrcStr, Sel1, "memchr.sel2");
1142   }
1143 
1144   if (!LenC) {
1145     if (isOnlyUsedInEqualityComparison(CI, SrcStr))
1146       // S is dereferenceable so it's safe to load from it and fold
1147       //   memchr(S, C, N) == S to N && *S == C for any C and N.
1148       // TODO: This is safe even even for nonconstant S.
1149       return memChrToCharCompare(CI, Size, B, DL);
1150 
1151     // From now on we need a constant length and constant array.
1152     return nullptr;
1153   }
1154 
1155   // If the char is variable but the input str and length are not we can turn
1156   // this memchr call into a simple bit field test. Of course this only works
1157   // when the return value is only checked against null.
1158   //
1159   // It would be really nice to reuse switch lowering here but we can't change
1160   // the CFG at this point.
1161   //
1162   // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
1163   // != 0
1164   //   after bounds check.
1165   if (Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI))
1166     return nullptr;
1167 
1168   unsigned char Max =
1169       *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
1170                         reinterpret_cast<const unsigned char *>(Str.end()));
1171 
1172   // Make sure the bit field we're about to create fits in a register on the
1173   // target.
1174   // FIXME: On a 64 bit architecture this prevents us from using the
1175   // interesting range of alpha ascii chars. We could do better by emitting
1176   // two bitfields or shifting the range by 64 if no lower chars are used.
1177   if (!DL.fitsInLegalInteger(Max + 1))
1178     return nullptr;
1179 
1180   // For the bit field use a power-of-2 type with at least 8 bits to avoid
1181   // creating unnecessary illegal types.
1182   unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
1183 
1184   // Now build the bit field.
1185   APInt Bitfield(Width, 0);
1186   for (char C : Str)
1187     Bitfield.setBit((unsigned char)C);
1188   Value *BitfieldC = B.getInt(Bitfield);
1189 
1190   // Adjust width of "C" to the bitfield width, then mask off the high bits.
1191   Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType());
1192   C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
1193 
1194   // First check that the bit field access is within bounds.
1195   Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
1196                                "memchr.bounds");
1197 
1198   // Create code that checks if the given bit is set in the field.
1199   Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
1200   Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
1201 
1202   // Finally merge both checks and cast to pointer type. The inttoptr
1203   // implicitly zexts the i1 to intptr type.
1204   return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"),
1205                           CI->getType());
1206 }
1207 
1208 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
1209 // arrays LHS and RHS and nonconstant Size.
1210 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS,
1211                                     Value *Size, bool StrNCmp,
1212                                     IRBuilderBase &B, const DataLayout &DL) {
1213   if (LHS == RHS) // memcmp(s,s,x) -> 0
1214     return Constant::getNullValue(CI->getType());
1215 
1216   StringRef LStr, RStr;
1217   if (!getConstantStringInfo(LHS, LStr, 0, /*TrimAtNul=*/false) ||
1218       !getConstantStringInfo(RHS, RStr, 0, /*TrimAtNul=*/false))
1219     return nullptr;
1220 
1221   // If the contents of both constant arrays are known, fold a call to
1222   // memcmp(A, B, N) to
1223   //   N <= Pos ? 0 : (A < B ? -1 : B < A ? +1 : 0)
1224   // where Pos is the first mismatch between A and B, determined below.
1225 
1226   uint64_t Pos = 0;
1227   Value *Zero = ConstantInt::get(CI->getType(), 0);
1228   for (uint64_t MinSize = std::min(LStr.size(), RStr.size()); ; ++Pos) {
1229     if (Pos == MinSize ||
1230         (StrNCmp && (LStr[Pos] == '\0' && RStr[Pos] == '\0'))) {
1231       // One array is a leading part of the other of equal or greater
1232       // size, or for strncmp, the arrays are equal strings.
1233       // Fold the result to zero.  Size is assumed to be in bounds, since
1234       // otherwise the call would be undefined.
1235       return Zero;
1236     }
1237 
1238     if (LStr[Pos] != RStr[Pos])
1239       break;
1240   }
1241 
1242   // Normalize the result.
1243   typedef unsigned char UChar;
1244   int IRes = UChar(LStr[Pos]) < UChar(RStr[Pos]) ? -1 : 1;
1245   Value *MaxSize = ConstantInt::get(Size->getType(), Pos);
1246   Value *Cmp = B.CreateICmp(ICmpInst::ICMP_ULE, Size, MaxSize);
1247   Value *Res = ConstantInt::get(CI->getType(), IRes);
1248   return B.CreateSelect(Cmp, Zero, Res);
1249 }
1250 
1251 // Optimize a memcmp call CI with constant size Len.
1252 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
1253                                          uint64_t Len, IRBuilderBase &B,
1254                                          const DataLayout &DL) {
1255   if (Len == 0) // memcmp(s1,s2,0) -> 0
1256     return Constant::getNullValue(CI->getType());
1257 
1258   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
1259   if (Len == 1) {
1260     Value *LHSV =
1261         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
1262                      CI->getType(), "lhsv");
1263     Value *RHSV =
1264         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
1265                      CI->getType(), "rhsv");
1266     return B.CreateSub(LHSV, RHSV, "chardiff");
1267   }
1268 
1269   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
1270   // TODO: The case where both inputs are constants does not need to be limited
1271   // to legal integers or equality comparison. See block below this.
1272   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
1273     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
1274     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
1275 
1276     // First, see if we can fold either argument to a constant.
1277     Value *LHSV = nullptr;
1278     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
1279       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
1280       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
1281     }
1282     Value *RHSV = nullptr;
1283     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
1284       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
1285       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
1286     }
1287 
1288     // Don't generate unaligned loads. If either source is constant data,
1289     // alignment doesn't matter for that source because there is no load.
1290     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
1291         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
1292       if (!LHSV) {
1293         Type *LHSPtrTy =
1294             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
1295         LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
1296       }
1297       if (!RHSV) {
1298         Type *RHSPtrTy =
1299             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
1300         RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
1301       }
1302       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1303     }
1304   }
1305 
1306   return nullptr;
1307 }
1308 
1309 // Most simplifications for memcmp also apply to bcmp.
1310 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1311                                                    IRBuilderBase &B) {
1312   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1313   Value *Size = CI->getArgOperand(2);
1314 
1315   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1316 
1317   if (Value *Res = optimizeMemCmpVarSize(CI, LHS, RHS, Size, false, B, DL))
1318     return Res;
1319 
1320   // Handle constant Size.
1321   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1322   if (!LenC)
1323     return nullptr;
1324 
1325   return optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL);
1326 }
1327 
1328 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
1329   Module *M = CI->getModule();
1330   if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1331     return V;
1332 
1333   // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1334   // bcmp can be more efficient than memcmp because it only has to know that
1335   // there is a difference, not how different one is to the other.
1336   if (isLibFuncEmittable(M, TLI, LibFunc_bcmp) &&
1337       isOnlyUsedInZeroEqualityComparison(CI)) {
1338     Value *LHS = CI->getArgOperand(0);
1339     Value *RHS = CI->getArgOperand(1);
1340     Value *Size = CI->getArgOperand(2);
1341     return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI));
1342   }
1343 
1344   return nullptr;
1345 }
1346 
1347 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) {
1348   return optimizeMemCmpBCmpCommon(CI, B);
1349 }
1350 
1351 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) {
1352   Value *Size = CI->getArgOperand(2);
1353   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1354   if (isa<IntrinsicInst>(CI))
1355     return nullptr;
1356 
1357   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1358   CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1),
1359                                    CI->getArgOperand(1), Align(1), Size);
1360   NewCI->setAttributes(CI->getAttributes());
1361   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1362   copyFlags(*CI, NewCI);
1363   return CI->getArgOperand(0);
1364 }
1365 
1366 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) {
1367   Value *Dst = CI->getArgOperand(0);
1368   Value *Src = CI->getArgOperand(1);
1369   ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1370   ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1371   StringRef SrcStr;
1372   if (CI->use_empty() && Dst == Src)
1373     return Dst;
1374   // memccpy(d, s, c, 0) -> nullptr
1375   if (N) {
1376     if (N->isNullValue())
1377       return Constant::getNullValue(CI->getType());
1378     if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0,
1379                                /*TrimAtNul=*/false) ||
1380         // TODO: Handle zeroinitializer.
1381         !StopChar)
1382       return nullptr;
1383   } else {
1384     return nullptr;
1385   }
1386 
1387   // Wrap arg 'c' of type int to char
1388   size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1389   if (Pos == StringRef::npos) {
1390     if (N->getZExtValue() <= SrcStr.size()) {
1391       copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1),
1392                                     CI->getArgOperand(3)));
1393       return Constant::getNullValue(CI->getType());
1394     }
1395     return nullptr;
1396   }
1397 
1398   Value *NewN =
1399       ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1400   // memccpy -> llvm.memcpy
1401   copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN));
1402   return Pos + 1 <= N->getZExtValue()
1403              ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1404              : Constant::getNullValue(CI->getType());
1405 }
1406 
1407 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) {
1408   Value *Dst = CI->getArgOperand(0);
1409   Value *N = CI->getArgOperand(2);
1410   // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1411   CallInst *NewCI =
1412       B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N);
1413   // Propagate attributes, but memcpy has no return value, so make sure that
1414   // any return attributes are compliant.
1415   // TODO: Attach return value attributes to the 1st operand to preserve them?
1416   NewCI->setAttributes(CI->getAttributes());
1417   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1418   copyFlags(*CI, NewCI);
1419   return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1420 }
1421 
1422 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) {
1423   Value *Size = CI->getArgOperand(2);
1424   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1425   if (isa<IntrinsicInst>(CI))
1426     return nullptr;
1427 
1428   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1429   CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1),
1430                                     CI->getArgOperand(1), Align(1), Size);
1431   NewCI->setAttributes(CI->getAttributes());
1432   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1433   copyFlags(*CI, NewCI);
1434   return CI->getArgOperand(0);
1435 }
1436 
1437 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) {
1438   Value *Size = CI->getArgOperand(2);
1439   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1440   if (isa<IntrinsicInst>(CI))
1441     return nullptr;
1442 
1443   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1444   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1445   CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1));
1446   NewCI->setAttributes(CI->getAttributes());
1447   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1448   copyFlags(*CI, NewCI);
1449   return CI->getArgOperand(0);
1450 }
1451 
1452 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) {
1453   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1454     return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI));
1455 
1456   return nullptr;
1457 }
1458 
1459 //===----------------------------------------------------------------------===//
1460 // Math Library Optimizations
1461 //===----------------------------------------------------------------------===//
1462 
1463 // Replace a libcall \p CI with a call to intrinsic \p IID
1464 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B,
1465                                Intrinsic::ID IID) {
1466   // Propagate fast-math flags from the existing call to the new call.
1467   IRBuilderBase::FastMathFlagGuard Guard(B);
1468   B.setFastMathFlags(CI->getFastMathFlags());
1469 
1470   Module *M = CI->getModule();
1471   Value *V = CI->getArgOperand(0);
1472   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1473   CallInst *NewCall = B.CreateCall(F, V);
1474   NewCall->takeName(CI);
1475   return copyFlags(*CI, NewCall);
1476 }
1477 
1478 /// Return a variant of Val with float type.
1479 /// Currently this works in two cases: If Val is an FPExtension of a float
1480 /// value to something bigger, simply return the operand.
1481 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1482 /// loss of precision do so.
1483 static Value *valueHasFloatPrecision(Value *Val) {
1484   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1485     Value *Op = Cast->getOperand(0);
1486     if (Op->getType()->isFloatTy())
1487       return Op;
1488   }
1489   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1490     APFloat F = Const->getValueAPF();
1491     bool losesInfo;
1492     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1493                     &losesInfo);
1494     if (!losesInfo)
1495       return ConstantFP::get(Const->getContext(), F);
1496   }
1497   return nullptr;
1498 }
1499 
1500 /// Shrink double -> float functions.
1501 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
1502                                bool isBinary, const TargetLibraryInfo *TLI,
1503                                bool isPrecise = false) {
1504   Function *CalleeFn = CI->getCalledFunction();
1505   if (!CI->getType()->isDoubleTy() || !CalleeFn)
1506     return nullptr;
1507 
1508   // If not all the uses of the function are converted to float, then bail out.
1509   // This matters if the precision of the result is more important than the
1510   // precision of the arguments.
1511   if (isPrecise)
1512     for (User *U : CI->users()) {
1513       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1514       if (!Cast || !Cast->getType()->isFloatTy())
1515         return nullptr;
1516     }
1517 
1518   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1519   Value *V[2];
1520   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1521   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1522   if (!V[0] || (isBinary && !V[1]))
1523     return nullptr;
1524 
1525   // If call isn't an intrinsic, check that it isn't within a function with the
1526   // same name as the float version of this call, otherwise the result is an
1527   // infinite loop.  For example, from MinGW-w64:
1528   //
1529   // float expf(float val) { return (float) exp((double) val); }
1530   StringRef CalleeName = CalleeFn->getName();
1531   bool IsIntrinsic = CalleeFn->isIntrinsic();
1532   if (!IsIntrinsic) {
1533     StringRef CallerName = CI->getFunction()->getName();
1534     if (!CallerName.empty() && CallerName.back() == 'f' &&
1535         CallerName.size() == (CalleeName.size() + 1) &&
1536         CallerName.startswith(CalleeName))
1537       return nullptr;
1538   }
1539 
1540   // Propagate the math semantics from the current function to the new function.
1541   IRBuilderBase::FastMathFlagGuard Guard(B);
1542   B.setFastMathFlags(CI->getFastMathFlags());
1543 
1544   // g((double) float) -> (double) gf(float)
1545   Value *R;
1546   if (IsIntrinsic) {
1547     Module *M = CI->getModule();
1548     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1549     Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1550     R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1551   } else {
1552     AttributeList CalleeAttrs = CalleeFn->getAttributes();
1553     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B,
1554                                          CalleeAttrs)
1555                  : emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs);
1556   }
1557   return B.CreateFPExt(R, B.getDoubleTy());
1558 }
1559 
1560 /// Shrink double -> float for unary functions.
1561 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1562                                     const TargetLibraryInfo *TLI,
1563                                     bool isPrecise = false) {
1564   return optimizeDoubleFP(CI, B, false, TLI, isPrecise);
1565 }
1566 
1567 /// Shrink double -> float for binary functions.
1568 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1569                                      const TargetLibraryInfo *TLI,
1570                                      bool isPrecise = false) {
1571   return optimizeDoubleFP(CI, B, true, TLI, isPrecise);
1572 }
1573 
1574 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1575 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) {
1576   if (!CI->isFast())
1577     return nullptr;
1578 
1579   // Propagate fast-math flags from the existing call to new instructions.
1580   IRBuilderBase::FastMathFlagGuard Guard(B);
1581   B.setFastMathFlags(CI->getFastMathFlags());
1582 
1583   Value *Real, *Imag;
1584   if (CI->arg_size() == 1) {
1585     Value *Op = CI->getArgOperand(0);
1586     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1587     Real = B.CreateExtractValue(Op, 0, "real");
1588     Imag = B.CreateExtractValue(Op, 1, "imag");
1589   } else {
1590     assert(CI->arg_size() == 2 && "Unexpected signature for cabs!");
1591     Real = CI->getArgOperand(0);
1592     Imag = CI->getArgOperand(1);
1593   }
1594 
1595   Value *RealReal = B.CreateFMul(Real, Real);
1596   Value *ImagImag = B.CreateFMul(Imag, Imag);
1597 
1598   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1599                                               CI->getType());
1600   return copyFlags(
1601       *CI, B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"));
1602 }
1603 
1604 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1605                                       IRBuilderBase &B) {
1606   if (!isa<FPMathOperator>(Call))
1607     return nullptr;
1608 
1609   IRBuilderBase::FastMathFlagGuard Guard(B);
1610   B.setFastMathFlags(Call->getFastMathFlags());
1611 
1612   // TODO: Can this be shared to also handle LLVM intrinsics?
1613   Value *X;
1614   switch (Func) {
1615   case LibFunc_sin:
1616   case LibFunc_sinf:
1617   case LibFunc_sinl:
1618   case LibFunc_tan:
1619   case LibFunc_tanf:
1620   case LibFunc_tanl:
1621     // sin(-X) --> -sin(X)
1622     // tan(-X) --> -tan(X)
1623     if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1624       return B.CreateFNeg(
1625           copyFlags(*Call, B.CreateCall(Call->getCalledFunction(), X)));
1626     break;
1627   case LibFunc_cos:
1628   case LibFunc_cosf:
1629   case LibFunc_cosl:
1630     // cos(-X) --> cos(X)
1631     if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1632       return copyFlags(*Call,
1633                        B.CreateCall(Call->getCalledFunction(), X, "cos"));
1634     break;
1635   default:
1636     break;
1637   }
1638   return nullptr;
1639 }
1640 
1641 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) {
1642   // Multiplications calculated using Addition Chains.
1643   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1644 
1645   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1646 
1647   if (InnerChain[Exp])
1648     return InnerChain[Exp];
1649 
1650   static const unsigned AddChain[33][2] = {
1651       {0, 0}, // Unused.
1652       {0, 0}, // Unused (base case = pow1).
1653       {1, 1}, // Unused (pre-computed).
1654       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1655       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1656       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1657       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1658       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1659   };
1660 
1661   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1662                                  getPow(InnerChain, AddChain[Exp][1], B));
1663   return InnerChain[Exp];
1664 }
1665 
1666 // Return a properly extended integer (DstWidth bits wide) if the operation is
1667 // an itofp.
1668 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) {
1669   if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
1670     Value *Op = cast<Instruction>(I2F)->getOperand(0);
1671     // Make sure that the exponent fits inside an "int" of size DstWidth,
1672     // thus avoiding any range issues that FP has not.
1673     unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1674     if (BitWidth < DstWidth ||
1675         (BitWidth == DstWidth && isa<SIToFPInst>(I2F)))
1676       return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth))
1677                                   : B.CreateZExt(Op, B.getIntNTy(DstWidth));
1678   }
1679 
1680   return nullptr;
1681 }
1682 
1683 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1684 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1685 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1686 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
1687   Module *M = Pow->getModule();
1688   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1689   AttributeList Attrs; // Attributes are only meaningful on the original call
1690   Module *Mod = Pow->getModule();
1691   Type *Ty = Pow->getType();
1692   bool Ignored;
1693 
1694   // Evaluate special cases related to a nested function as the base.
1695 
1696   // pow(exp(x), y) -> exp(x * y)
1697   // pow(exp2(x), y) -> exp2(x * y)
1698   // If exp{,2}() is used only once, it is better to fold two transcendental
1699   // math functions into one.  If used again, exp{,2}() would still have to be
1700   // called with the original argument, then keep both original transcendental
1701   // functions.  However, this transformation is only safe with fully relaxed
1702   // math semantics, since, besides rounding differences, it changes overflow
1703   // and underflow behavior quite dramatically.  For example:
1704   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1705   // Whereas:
1706   //   exp(1000 * 0.001) = exp(1)
1707   // TODO: Loosen the requirement for fully relaxed math semantics.
1708   // TODO: Handle exp10() when more targets have it available.
1709   CallInst *BaseFn = dyn_cast<CallInst>(Base);
1710   if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1711     LibFunc LibFn;
1712 
1713     Function *CalleeFn = BaseFn->getCalledFunction();
1714     if (CalleeFn &&
1715         TLI->getLibFunc(CalleeFn->getName(), LibFn) &&
1716         isLibFuncEmittable(M, TLI, LibFn)) {
1717       StringRef ExpName;
1718       Intrinsic::ID ID;
1719       Value *ExpFn;
1720       LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
1721 
1722       switch (LibFn) {
1723       default:
1724         return nullptr;
1725       case LibFunc_expf:  case LibFunc_exp:  case LibFunc_expl:
1726         ExpName = TLI->getName(LibFunc_exp);
1727         ID = Intrinsic::exp;
1728         LibFnFloat = LibFunc_expf;
1729         LibFnDouble = LibFunc_exp;
1730         LibFnLongDouble = LibFunc_expl;
1731         break;
1732       case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1733         ExpName = TLI->getName(LibFunc_exp2);
1734         ID = Intrinsic::exp2;
1735         LibFnFloat = LibFunc_exp2f;
1736         LibFnDouble = LibFunc_exp2;
1737         LibFnLongDouble = LibFunc_exp2l;
1738         break;
1739       }
1740 
1741       // Create new exp{,2}() with the product as its argument.
1742       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1743       ExpFn = BaseFn->doesNotAccessMemory()
1744               ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1745                              FMul, ExpName)
1746               : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1747                                      LibFnLongDouble, B,
1748                                      BaseFn->getAttributes());
1749 
1750       // Since the new exp{,2}() is different from the original one, dead code
1751       // elimination cannot be trusted to remove it, since it may have side
1752       // effects (e.g., errno).  When the only consumer for the original
1753       // exp{,2}() is pow(), then it has to be explicitly erased.
1754       substituteInParent(BaseFn, ExpFn);
1755       return ExpFn;
1756     }
1757   }
1758 
1759   // Evaluate special cases related to a constant base.
1760 
1761   const APFloat *BaseF;
1762   if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1763     return nullptr;
1764 
1765   // pow(2.0, itofp(x)) -> ldexp(1.0, x)
1766   if (match(Base, m_SpecificFP(2.0)) &&
1767       (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
1768       hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1769     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
1770       return copyFlags(*Pow,
1771                        emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI,
1772                                              TLI, LibFunc_ldexp, LibFunc_ldexpf,
1773                                              LibFunc_ldexpl, B, Attrs));
1774   }
1775 
1776   // pow(2.0 ** n, x) -> exp2(n * x)
1777   if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1778     APFloat BaseR = APFloat(1.0);
1779     BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1780     BaseR = BaseR / *BaseF;
1781     bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
1782     const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1783     APSInt NI(64, false);
1784     if ((IsInteger || IsReciprocal) &&
1785         NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
1786             APFloat::opOK &&
1787         NI > 1 && NI.isPowerOf2()) {
1788       double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1789       Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1790       if (Pow->doesNotAccessMemory())
1791         return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
1792                                                 Mod, Intrinsic::exp2, Ty),
1793                                             FMul, "exp2"));
1794       else
1795         return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
1796                                                     LibFunc_exp2f,
1797                                                     LibFunc_exp2l, B, Attrs));
1798     }
1799   }
1800 
1801   // pow(10.0, x) -> exp10(x)
1802   // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1803   if (match(Base, m_SpecificFP(10.0)) &&
1804       hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1805     return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10,
1806                                                 LibFunc_exp10f, LibFunc_exp10l,
1807                                                 B, Attrs));
1808 
1809   // pow(x, y) -> exp2(log2(x) * y)
1810   if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() &&
1811       !BaseF->isNegative()) {
1812     // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
1813     // Luckily optimizePow has already handled the x == 1 case.
1814     assert(!match(Base, m_FPOne()) &&
1815            "pow(1.0, y) should have been simplified earlier!");
1816 
1817     Value *Log = nullptr;
1818     if (Ty->isFloatTy())
1819       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
1820     else if (Ty->isDoubleTy())
1821       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
1822 
1823     if (Log) {
1824       Value *FMul = B.CreateFMul(Log, Expo, "mul");
1825       if (Pow->doesNotAccessMemory())
1826         return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
1827                                                 Mod, Intrinsic::exp2, Ty),
1828                                             FMul, "exp2"));
1829       else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f,
1830                           LibFunc_exp2l))
1831         return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
1832                                                     LibFunc_exp2f,
1833                                                     LibFunc_exp2l, B, Attrs));
1834     }
1835   }
1836 
1837   return nullptr;
1838 }
1839 
1840 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1841                           Module *M, IRBuilderBase &B,
1842                           const TargetLibraryInfo *TLI) {
1843   // If errno is never set, then use the intrinsic for sqrt().
1844   if (NoErrno) {
1845     Function *SqrtFn =
1846         Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1847     return B.CreateCall(SqrtFn, V, "sqrt");
1848   }
1849 
1850   // Otherwise, use the libcall for sqrt().
1851   if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf,
1852                  LibFunc_sqrtl))
1853     // TODO: We also should check that the target can in fact lower the sqrt()
1854     // libcall. We currently have no way to ask this question, so we ask if
1855     // the target has a sqrt() libcall, which is not exactly the same.
1856     return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1857                                 LibFunc_sqrtl, B, Attrs);
1858 
1859   return nullptr;
1860 }
1861 
1862 /// Use square root in place of pow(x, +/-0.5).
1863 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) {
1864   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1865   AttributeList Attrs; // Attributes are only meaningful on the original call
1866   Module *Mod = Pow->getModule();
1867   Type *Ty = Pow->getType();
1868 
1869   const APFloat *ExpoF;
1870   if (!match(Expo, m_APFloat(ExpoF)) ||
1871       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1872     return nullptr;
1873 
1874   // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
1875   // so that requires fast-math-flags (afn or reassoc).
1876   if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
1877     return nullptr;
1878 
1879   // If we have a pow() library call (accesses memory) and we can't guarantee
1880   // that the base is not an infinity, give up:
1881   // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting
1882   // errno), but sqrt(-Inf) is required by various standards to set errno.
1883   if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() &&
1884       !isKnownNeverInfinity(Base, TLI))
1885     return nullptr;
1886 
1887   Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1888   if (!Sqrt)
1889     return nullptr;
1890 
1891   // Handle signed zero base by expanding to fabs(sqrt(x)).
1892   if (!Pow->hasNoSignedZeros()) {
1893     Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1894     Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1895   }
1896 
1897   Sqrt = copyFlags(*Pow, Sqrt);
1898 
1899   // Handle non finite base by expanding to
1900   // (x == -infinity ? +infinity : sqrt(x)).
1901   if (!Pow->hasNoInfs()) {
1902     Value *PosInf = ConstantFP::getInfinity(Ty),
1903           *NegInf = ConstantFP::getInfinity(Ty, true);
1904     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1905     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1906   }
1907 
1908   // If the exponent is negative, then get the reciprocal.
1909   if (ExpoF->isNegative())
1910     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1911 
1912   return Sqrt;
1913 }
1914 
1915 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
1916                                            IRBuilderBase &B) {
1917   Value *Args[] = {Base, Expo};
1918   Type *Types[] = {Base->getType(), Expo->getType()};
1919   Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types);
1920   return B.CreateCall(F, Args);
1921 }
1922 
1923 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
1924   Value *Base = Pow->getArgOperand(0);
1925   Value *Expo = Pow->getArgOperand(1);
1926   Function *Callee = Pow->getCalledFunction();
1927   StringRef Name = Callee->getName();
1928   Type *Ty = Pow->getType();
1929   Module *M = Pow->getModule();
1930   bool AllowApprox = Pow->hasApproxFunc();
1931   bool Ignored;
1932 
1933   // Propagate the math semantics from the call to any created instructions.
1934   IRBuilderBase::FastMathFlagGuard Guard(B);
1935   B.setFastMathFlags(Pow->getFastMathFlags());
1936   // Evaluate special cases related to the base.
1937 
1938   // pow(1.0, x) -> 1.0
1939   if (match(Base, m_FPOne()))
1940     return Base;
1941 
1942   if (Value *Exp = replacePowWithExp(Pow, B))
1943     return Exp;
1944 
1945   // Evaluate special cases related to the exponent.
1946 
1947   // pow(x, -1.0) -> 1.0 / x
1948   if (match(Expo, m_SpecificFP(-1.0)))
1949     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1950 
1951   // pow(x, +/-0.0) -> 1.0
1952   if (match(Expo, m_AnyZeroFP()))
1953     return ConstantFP::get(Ty, 1.0);
1954 
1955   // pow(x, 1.0) -> x
1956   if (match(Expo, m_FPOne()))
1957     return Base;
1958 
1959   // pow(x, 2.0) -> x * x
1960   if (match(Expo, m_SpecificFP(2.0)))
1961     return B.CreateFMul(Base, Base, "square");
1962 
1963   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1964     return Sqrt;
1965 
1966   // pow(x, n) -> x * x * x * ...
1967   const APFloat *ExpoF;
1968   if (AllowApprox && match(Expo, m_APFloat(ExpoF)) &&
1969       !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) {
1970     // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1971     // If the exponent is an integer+0.5 we generate a call to sqrt and an
1972     // additional fmul.
1973     // TODO: This whole transformation should be backend specific (e.g. some
1974     //       backends might prefer libcalls or the limit for the exponent might
1975     //       be different) and it should also consider optimizing for size.
1976     APFloat LimF(ExpoF->getSemantics(), 33),
1977             ExpoA(abs(*ExpoF));
1978     if (ExpoA < LimF) {
1979       // This transformation applies to integer or integer+0.5 exponents only.
1980       // For integer+0.5, we create a sqrt(Base) call.
1981       Value *Sqrt = nullptr;
1982       if (!ExpoA.isInteger()) {
1983         APFloat Expo2 = ExpoA;
1984         // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1985         // is no floating point exception and the result is an integer, then
1986         // ExpoA == integer + 0.5
1987         if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
1988           return nullptr;
1989 
1990         if (!Expo2.isInteger())
1991           return nullptr;
1992 
1993         Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
1994                            Pow->doesNotAccessMemory(), M, B, TLI);
1995         if (!Sqrt)
1996           return nullptr;
1997       }
1998 
1999       // We will memoize intermediate products of the Addition Chain.
2000       Value *InnerChain[33] = {nullptr};
2001       InnerChain[1] = Base;
2002       InnerChain[2] = B.CreateFMul(Base, Base, "square");
2003 
2004       // We cannot readily convert a non-double type (like float) to a double.
2005       // So we first convert it to something which could be converted to double.
2006       ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
2007       Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
2008 
2009       // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
2010       if (Sqrt)
2011         FMul = B.CreateFMul(FMul, Sqrt);
2012 
2013       // If the exponent is negative, then get the reciprocal.
2014       if (ExpoF->isNegative())
2015         FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
2016 
2017       return FMul;
2018     }
2019 
2020     APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false);
2021     // powf(x, n) -> powi(x, n) if n is a constant signed integer value
2022     if (ExpoF->isInteger() &&
2023         ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
2024             APFloat::opOK) {
2025       return copyFlags(
2026           *Pow,
2027           createPowWithIntegerExponent(
2028               Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo),
2029               M, B));
2030     }
2031   }
2032 
2033   // powf(x, itofp(y)) -> powi(x, y)
2034   if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
2035     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
2036       return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B));
2037   }
2038 
2039   // Shrink pow() to powf() if the arguments are single precision,
2040   // unless the result is expected to be double precision.
2041   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
2042       hasFloatVersion(M, Name)) {
2043     if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true))
2044       return Shrunk;
2045   }
2046 
2047   return nullptr;
2048 }
2049 
2050 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
2051   Module *M = CI->getModule();
2052   Function *Callee = CI->getCalledFunction();
2053   AttributeList Attrs; // Attributes are only meaningful on the original call
2054   StringRef Name = Callee->getName();
2055   Value *Ret = nullptr;
2056   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
2057       hasFloatVersion(M, Name))
2058     Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2059 
2060   Type *Ty = CI->getType();
2061   Value *Op = CI->getArgOperand(0);
2062 
2063   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= IntSize
2064   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < IntSize
2065   if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
2066       hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
2067     if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize()))
2068       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
2069                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
2070                                    B, Attrs);
2071   }
2072 
2073   return Ret;
2074 }
2075 
2076 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
2077   Module *M = CI->getModule();
2078 
2079   // If we can shrink the call to a float function rather than a double
2080   // function, do that first.
2081   Function *Callee = CI->getCalledFunction();
2082   StringRef Name = Callee->getName();
2083   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name))
2084     if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI))
2085       return Ret;
2086 
2087   // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
2088   // the intrinsics for improved optimization (for example, vectorization).
2089   // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
2090   // From the C standard draft WG14/N1256:
2091   // "Ideally, fmax would be sensitive to the sign of zero, for example
2092   // fmax(-0.0, +0.0) would return +0; however, implementation in software
2093   // might be impractical."
2094   IRBuilderBase::FastMathFlagGuard Guard(B);
2095   FastMathFlags FMF = CI->getFastMathFlags();
2096   FMF.setNoSignedZeros();
2097   B.setFastMathFlags(FMF);
2098 
2099   Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
2100                                                            : Intrinsic::maxnum;
2101   Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
2102   return copyFlags(
2103       *CI, B.CreateCall(F, {CI->getArgOperand(0), CI->getArgOperand(1)}));
2104 }
2105 
2106 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
2107   Function *LogFn = Log->getCalledFunction();
2108   AttributeList Attrs; // Attributes are only meaningful on the original call
2109   StringRef LogNm = LogFn->getName();
2110   Intrinsic::ID LogID = LogFn->getIntrinsicID();
2111   Module *Mod = Log->getModule();
2112   Type *Ty = Log->getType();
2113   Value *Ret = nullptr;
2114 
2115   if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm))
2116     Ret = optimizeUnaryDoubleFP(Log, B, TLI, true);
2117 
2118   // The earlier call must also be 'fast' in order to do these transforms.
2119   CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
2120   if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
2121     return Ret;
2122 
2123   LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
2124 
2125   // This is only applicable to log(), log2(), log10().
2126   if (TLI->getLibFunc(LogNm, LogLb))
2127     switch (LogLb) {
2128     case LibFunc_logf:
2129       LogID = Intrinsic::log;
2130       ExpLb = LibFunc_expf;
2131       Exp2Lb = LibFunc_exp2f;
2132       Exp10Lb = LibFunc_exp10f;
2133       PowLb = LibFunc_powf;
2134       break;
2135     case LibFunc_log:
2136       LogID = Intrinsic::log;
2137       ExpLb = LibFunc_exp;
2138       Exp2Lb = LibFunc_exp2;
2139       Exp10Lb = LibFunc_exp10;
2140       PowLb = LibFunc_pow;
2141       break;
2142     case LibFunc_logl:
2143       LogID = Intrinsic::log;
2144       ExpLb = LibFunc_expl;
2145       Exp2Lb = LibFunc_exp2l;
2146       Exp10Lb = LibFunc_exp10l;
2147       PowLb = LibFunc_powl;
2148       break;
2149     case LibFunc_log2f:
2150       LogID = Intrinsic::log2;
2151       ExpLb = LibFunc_expf;
2152       Exp2Lb = LibFunc_exp2f;
2153       Exp10Lb = LibFunc_exp10f;
2154       PowLb = LibFunc_powf;
2155       break;
2156     case LibFunc_log2:
2157       LogID = Intrinsic::log2;
2158       ExpLb = LibFunc_exp;
2159       Exp2Lb = LibFunc_exp2;
2160       Exp10Lb = LibFunc_exp10;
2161       PowLb = LibFunc_pow;
2162       break;
2163     case LibFunc_log2l:
2164       LogID = Intrinsic::log2;
2165       ExpLb = LibFunc_expl;
2166       Exp2Lb = LibFunc_exp2l;
2167       Exp10Lb = LibFunc_exp10l;
2168       PowLb = LibFunc_powl;
2169       break;
2170     case LibFunc_log10f:
2171       LogID = Intrinsic::log10;
2172       ExpLb = LibFunc_expf;
2173       Exp2Lb = LibFunc_exp2f;
2174       Exp10Lb = LibFunc_exp10f;
2175       PowLb = LibFunc_powf;
2176       break;
2177     case LibFunc_log10:
2178       LogID = Intrinsic::log10;
2179       ExpLb = LibFunc_exp;
2180       Exp2Lb = LibFunc_exp2;
2181       Exp10Lb = LibFunc_exp10;
2182       PowLb = LibFunc_pow;
2183       break;
2184     case LibFunc_log10l:
2185       LogID = Intrinsic::log10;
2186       ExpLb = LibFunc_expl;
2187       Exp2Lb = LibFunc_exp2l;
2188       Exp10Lb = LibFunc_exp10l;
2189       PowLb = LibFunc_powl;
2190       break;
2191     default:
2192       return Ret;
2193     }
2194   else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
2195            LogID == Intrinsic::log10) {
2196     if (Ty->getScalarType()->isFloatTy()) {
2197       ExpLb = LibFunc_expf;
2198       Exp2Lb = LibFunc_exp2f;
2199       Exp10Lb = LibFunc_exp10f;
2200       PowLb = LibFunc_powf;
2201     } else if (Ty->getScalarType()->isDoubleTy()) {
2202       ExpLb = LibFunc_exp;
2203       Exp2Lb = LibFunc_exp2;
2204       Exp10Lb = LibFunc_exp10;
2205       PowLb = LibFunc_pow;
2206     } else
2207       return Ret;
2208   } else
2209     return Ret;
2210 
2211   IRBuilderBase::FastMathFlagGuard Guard(B);
2212   B.setFastMathFlags(FastMathFlags::getFast());
2213 
2214   Intrinsic::ID ArgID = Arg->getIntrinsicID();
2215   LibFunc ArgLb = NotLibFunc;
2216   TLI->getLibFunc(*Arg, ArgLb);
2217 
2218   // log(pow(x,y)) -> y*log(x)
2219   if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
2220     Value *LogX =
2221         Log->doesNotAccessMemory()
2222             ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
2223                            Arg->getOperand(0), "log")
2224             : emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, Attrs);
2225     Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
2226     // Since pow() may have side effects, e.g. errno,
2227     // dead code elimination may not be trusted to remove it.
2228     substituteInParent(Arg, MulY);
2229     return MulY;
2230   }
2231 
2232   // log(exp{,2,10}(y)) -> y*log({e,2,10})
2233   // TODO: There is no exp10() intrinsic yet.
2234   if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
2235            ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
2236     Constant *Eul;
2237     if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
2238       // FIXME: Add more precise value of e for long double.
2239       Eul = ConstantFP::get(Log->getType(), numbers::e);
2240     else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
2241       Eul = ConstantFP::get(Log->getType(), 2.0);
2242     else
2243       Eul = ConstantFP::get(Log->getType(), 10.0);
2244     Value *LogE = Log->doesNotAccessMemory()
2245                       ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
2246                                      Eul, "log")
2247                       : emitUnaryFloatFnCall(Eul, TLI, LogNm, B, Attrs);
2248     Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
2249     // Since exp() may have side effects, e.g. errno,
2250     // dead code elimination may not be trusted to remove it.
2251     substituteInParent(Arg, MulY);
2252     return MulY;
2253   }
2254 
2255   return Ret;
2256 }
2257 
2258 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
2259   Module *M = CI->getModule();
2260   Function *Callee = CI->getCalledFunction();
2261   Value *Ret = nullptr;
2262   // TODO: Once we have a way (other than checking for the existince of the
2263   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
2264   // condition below.
2265   if (isLibFuncEmittable(M, TLI, LibFunc_sqrtf) &&
2266       (Callee->getName() == "sqrt" ||
2267        Callee->getIntrinsicID() == Intrinsic::sqrt))
2268     Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2269 
2270   if (!CI->isFast())
2271     return Ret;
2272 
2273   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
2274   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
2275     return Ret;
2276 
2277   // We're looking for a repeated factor in a multiplication tree,
2278   // so we can do this fold: sqrt(x * x) -> fabs(x);
2279   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2280   Value *Op0 = I->getOperand(0);
2281   Value *Op1 = I->getOperand(1);
2282   Value *RepeatOp = nullptr;
2283   Value *OtherOp = nullptr;
2284   if (Op0 == Op1) {
2285     // Simple match: the operands of the multiply are identical.
2286     RepeatOp = Op0;
2287   } else {
2288     // Look for a more complicated pattern: one of the operands is itself
2289     // a multiply, so search for a common factor in that multiply.
2290     // Note: We don't bother looking any deeper than this first level or for
2291     // variations of this pattern because instcombine's visitFMUL and/or the
2292     // reassociation pass should give us this form.
2293     Value *OtherMul0, *OtherMul1;
2294     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
2295       // Pattern: sqrt((x * y) * z)
2296       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
2297         // Matched: sqrt((x * x) * z)
2298         RepeatOp = OtherMul0;
2299         OtherOp = Op1;
2300       }
2301     }
2302   }
2303   if (!RepeatOp)
2304     return Ret;
2305 
2306   // Fast math flags for any created instructions should match the sqrt
2307   // and multiply.
2308   IRBuilderBase::FastMathFlagGuard Guard(B);
2309   B.setFastMathFlags(I->getFastMathFlags());
2310 
2311   // If we found a repeated factor, hoist it out of the square root and
2312   // replace it with the fabs of that factor.
2313   Type *ArgType = I->getType();
2314   Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
2315   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
2316   if (OtherOp) {
2317     // If we found a non-repeated factor, we still need to get its square
2318     // root. We then multiply that by the value that was simplified out
2319     // of the square root calculation.
2320     Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
2321     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
2322     return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall));
2323   }
2324   return copyFlags(*CI, FabsCall);
2325 }
2326 
2327 // TODO: Generalize to handle any trig function and its inverse.
2328 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) {
2329   Module *M = CI->getModule();
2330   Function *Callee = CI->getCalledFunction();
2331   Value *Ret = nullptr;
2332   StringRef Name = Callee->getName();
2333   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(M, Name))
2334     Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2335 
2336   Value *Op1 = CI->getArgOperand(0);
2337   auto *OpC = dyn_cast<CallInst>(Op1);
2338   if (!OpC)
2339     return Ret;
2340 
2341   // Both calls must be 'fast' in order to remove them.
2342   if (!CI->isFast() || !OpC->isFast())
2343     return Ret;
2344 
2345   // tan(atan(x)) -> x
2346   // tanf(atanf(x)) -> x
2347   // tanl(atanl(x)) -> x
2348   LibFunc Func;
2349   Function *F = OpC->getCalledFunction();
2350   if (F && TLI->getLibFunc(F->getName(), Func) &&
2351       isLibFuncEmittable(M, TLI, Func) &&
2352       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
2353        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
2354        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
2355     Ret = OpC->getArgOperand(0);
2356   return Ret;
2357 }
2358 
2359 static bool isTrigLibCall(CallInst *CI) {
2360   // We can only hope to do anything useful if we can ignore things like errno
2361   // and floating-point exceptions.
2362   // We already checked the prototype.
2363   return CI->hasFnAttr(Attribute::NoUnwind) &&
2364          CI->hasFnAttr(Attribute::ReadNone);
2365 }
2366 
2367 static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
2368                              bool UseFloat, Value *&Sin, Value *&Cos,
2369                              Value *&SinCos, const TargetLibraryInfo *TLI) {
2370   Module *M = OrigCallee->getParent();
2371   Type *ArgTy = Arg->getType();
2372   Type *ResTy;
2373   StringRef Name;
2374 
2375   Triple T(OrigCallee->getParent()->getTargetTriple());
2376   if (UseFloat) {
2377     Name = "__sincospif_stret";
2378 
2379     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2380     // x86_64 can't use {float, float} since that would be returned in both
2381     // xmm0 and xmm1, which isn't what a real struct would do.
2382     ResTy = T.getArch() == Triple::x86_64
2383                 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2))
2384                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2385   } else {
2386     Name = "__sincospi_stret";
2387     ResTy = StructType::get(ArgTy, ArgTy);
2388   }
2389 
2390   if (!isLibFuncEmittable(M, TLI, Name))
2391     return false;
2392   LibFunc TheLibFunc;
2393   TLI->getLibFunc(Name, TheLibFunc);
2394   FunctionCallee Callee = getOrInsertLibFunc(
2395       M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy);
2396 
2397   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2398     // If the argument is an instruction, it must dominate all uses so put our
2399     // sincos call there.
2400     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2401   } else {
2402     // Otherwise (e.g. for a constant) the beginning of the function is as
2403     // good a place as any.
2404     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2405     B.SetInsertPoint(&EntryBB, EntryBB.begin());
2406   }
2407 
2408   SinCos = B.CreateCall(Callee, Arg, "sincospi");
2409 
2410   if (SinCos->getType()->isStructTy()) {
2411     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2412     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2413   } else {
2414     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2415                                  "sinpi");
2416     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2417                                  "cospi");
2418   }
2419 
2420   return true;
2421 }
2422 
2423 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) {
2424   // Make sure the prototype is as expected, otherwise the rest of the
2425   // function is probably invalid and likely to abort.
2426   if (!isTrigLibCall(CI))
2427     return nullptr;
2428 
2429   Value *Arg = CI->getArgOperand(0);
2430   SmallVector<CallInst *, 1> SinCalls;
2431   SmallVector<CallInst *, 1> CosCalls;
2432   SmallVector<CallInst *, 1> SinCosCalls;
2433 
2434   bool IsFloat = Arg->getType()->isFloatTy();
2435 
2436   // Look for all compatible sinpi, cospi and sincospi calls with the same
2437   // argument. If there are enough (in some sense) we can make the
2438   // substitution.
2439   Function *F = CI->getFunction();
2440   for (User *U : Arg->users())
2441     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2442 
2443   // It's only worthwhile if both sinpi and cospi are actually used.
2444   if (SinCalls.empty() || CosCalls.empty())
2445     return nullptr;
2446 
2447   Value *Sin, *Cos, *SinCos;
2448   if (!insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos,
2449                         SinCos, TLI))
2450     return nullptr;
2451 
2452   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2453                                  Value *Res) {
2454     for (CallInst *C : Calls)
2455       replaceAllUsesWith(C, Res);
2456   };
2457 
2458   replaceTrigInsts(SinCalls, Sin);
2459   replaceTrigInsts(CosCalls, Cos);
2460   replaceTrigInsts(SinCosCalls, SinCos);
2461 
2462   return nullptr;
2463 }
2464 
2465 void LibCallSimplifier::classifyArgUse(
2466     Value *Val, Function *F, bool IsFloat,
2467     SmallVectorImpl<CallInst *> &SinCalls,
2468     SmallVectorImpl<CallInst *> &CosCalls,
2469     SmallVectorImpl<CallInst *> &SinCosCalls) {
2470   CallInst *CI = dyn_cast<CallInst>(Val);
2471   Module *M = CI->getModule();
2472 
2473   if (!CI || CI->use_empty())
2474     return;
2475 
2476   // Don't consider calls in other functions.
2477   if (CI->getFunction() != F)
2478     return;
2479 
2480   Function *Callee = CI->getCalledFunction();
2481   LibFunc Func;
2482   if (!Callee || !TLI->getLibFunc(*Callee, Func) ||
2483       !isLibFuncEmittable(M, TLI, Func) ||
2484       !isTrigLibCall(CI))
2485     return;
2486 
2487   if (IsFloat) {
2488     if (Func == LibFunc_sinpif)
2489       SinCalls.push_back(CI);
2490     else if (Func == LibFunc_cospif)
2491       CosCalls.push_back(CI);
2492     else if (Func == LibFunc_sincospif_stret)
2493       SinCosCalls.push_back(CI);
2494   } else {
2495     if (Func == LibFunc_sinpi)
2496       SinCalls.push_back(CI);
2497     else if (Func == LibFunc_cospi)
2498       CosCalls.push_back(CI);
2499     else if (Func == LibFunc_sincospi_stret)
2500       SinCosCalls.push_back(CI);
2501   }
2502 }
2503 
2504 //===----------------------------------------------------------------------===//
2505 // Integer Library Call Optimizations
2506 //===----------------------------------------------------------------------===//
2507 
2508 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) {
2509   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
2510   Value *Op = CI->getArgOperand(0);
2511   Type *ArgType = Op->getType();
2512   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2513                                           Intrinsic::cttz, ArgType);
2514   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
2515   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
2516   V = B.CreateIntCast(V, B.getInt32Ty(), false);
2517 
2518   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
2519   return B.CreateSelect(Cond, V, B.getInt32(0));
2520 }
2521 
2522 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) {
2523   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
2524   Value *Op = CI->getArgOperand(0);
2525   Type *ArgType = Op->getType();
2526   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2527                                           Intrinsic::ctlz, ArgType);
2528   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
2529   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
2530                   V);
2531   return B.CreateIntCast(V, CI->getType(), false);
2532 }
2533 
2534 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) {
2535   // abs(x) -> x <s 0 ? -x : x
2536   // The negation has 'nsw' because abs of INT_MIN is undefined.
2537   Value *X = CI->getArgOperand(0);
2538   Value *IsNeg = B.CreateIsNeg(X);
2539   Value *NegX = B.CreateNSWNeg(X, "neg");
2540   return B.CreateSelect(IsNeg, NegX, X);
2541 }
2542 
2543 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) {
2544   // isdigit(c) -> (c-'0') <u 10
2545   Value *Op = CI->getArgOperand(0);
2546   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
2547   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
2548   return B.CreateZExt(Op, CI->getType());
2549 }
2550 
2551 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) {
2552   // isascii(c) -> c <u 128
2553   Value *Op = CI->getArgOperand(0);
2554   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
2555   return B.CreateZExt(Op, CI->getType());
2556 }
2557 
2558 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) {
2559   // toascii(c) -> c & 0x7f
2560   return B.CreateAnd(CI->getArgOperand(0),
2561                      ConstantInt::get(CI->getType(), 0x7F));
2562 }
2563 
2564 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) {
2565   StringRef Str;
2566   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2567     return nullptr;
2568 
2569   return convertStrToNumber(CI, Str, 10);
2570 }
2571 
2572 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) {
2573   StringRef Str;
2574   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2575     return nullptr;
2576 
2577   if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
2578     return nullptr;
2579 
2580   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2581     return convertStrToNumber(CI, Str, CInt->getSExtValue());
2582   }
2583 
2584   return nullptr;
2585 }
2586 
2587 //===----------------------------------------------------------------------===//
2588 // Formatting and IO Library Call Optimizations
2589 //===----------------------------------------------------------------------===//
2590 
2591 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2592 
2593 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B,
2594                                                  int StreamArg) {
2595   Function *Callee = CI->getCalledFunction();
2596   // Error reporting calls should be cold, mark them as such.
2597   // This applies even to non-builtin calls: it is only a hint and applies to
2598   // functions that the frontend might not understand as builtins.
2599 
2600   // This heuristic was suggested in:
2601   // Improving Static Branch Prediction in a Compiler
2602   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2603   // Proceedings of PACT'98, Oct. 1998, IEEE
2604   if (!CI->hasFnAttr(Attribute::Cold) &&
2605       isReportingError(Callee, CI, StreamArg)) {
2606     CI->addFnAttr(Attribute::Cold);
2607   }
2608 
2609   return nullptr;
2610 }
2611 
2612 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2613   if (!Callee || !Callee->isDeclaration())
2614     return false;
2615 
2616   if (StreamArg < 0)
2617     return true;
2618 
2619   // These functions might be considered cold, but only if their stream
2620   // argument is stderr.
2621 
2622   if (StreamArg >= (int)CI->arg_size())
2623     return false;
2624   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2625   if (!LI)
2626     return false;
2627   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
2628   if (!GV || !GV->isDeclaration())
2629     return false;
2630   return GV->getName() == "stderr";
2631 }
2632 
2633 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
2634   // Check for a fixed format string.
2635   StringRef FormatStr;
2636   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2637     return nullptr;
2638 
2639   // Empty format string -> noop.
2640   if (FormatStr.empty()) // Tolerate printf's declared void.
2641     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2642 
2643   // Do not do any of the following transformations if the printf return value
2644   // is used, in general the printf return value is not compatible with either
2645   // putchar() or puts().
2646   if (!CI->use_empty())
2647     return nullptr;
2648 
2649   // printf("x") -> putchar('x'), even for "%" and "%%".
2650   if (FormatStr.size() == 1 || FormatStr == "%%")
2651     return copyFlags(*CI, emitPutChar(B.getInt32(FormatStr[0]), B, TLI));
2652 
2653   // Try to remove call or emit putchar/puts.
2654   if (FormatStr == "%s" && CI->arg_size() > 1) {
2655     StringRef OperandStr;
2656     if (!getConstantStringInfo(CI->getOperand(1), OperandStr))
2657       return nullptr;
2658     // printf("%s", "") --> NOP
2659     if (OperandStr.empty())
2660       return (Value *)CI;
2661     // printf("%s", "a") --> putchar('a')
2662     if (OperandStr.size() == 1)
2663       return copyFlags(*CI, emitPutChar(B.getInt32(OperandStr[0]), B, TLI));
2664     // printf("%s", str"\n") --> puts(str)
2665     if (OperandStr.back() == '\n') {
2666       OperandStr = OperandStr.drop_back();
2667       Value *GV = B.CreateGlobalString(OperandStr, "str");
2668       return copyFlags(*CI, emitPutS(GV, B, TLI));
2669     }
2670     return nullptr;
2671   }
2672 
2673   // printf("foo\n") --> puts("foo")
2674   if (FormatStr.back() == '\n' &&
2675       !FormatStr.contains('%')) { // No format characters.
2676     // Create a string literal with no \n on it.  We expect the constant merge
2677     // pass to be run after this pass, to merge duplicate strings.
2678     FormatStr = FormatStr.drop_back();
2679     Value *GV = B.CreateGlobalString(FormatStr, "str");
2680     return copyFlags(*CI, emitPutS(GV, B, TLI));
2681   }
2682 
2683   // Optimize specific format strings.
2684   // printf("%c", chr) --> putchar(chr)
2685   if (FormatStr == "%c" && CI->arg_size() > 1 &&
2686       CI->getArgOperand(1)->getType()->isIntegerTy())
2687     return copyFlags(*CI, emitPutChar(CI->getArgOperand(1), B, TLI));
2688 
2689   // printf("%s\n", str) --> puts(str)
2690   if (FormatStr == "%s\n" && CI->arg_size() > 1 &&
2691       CI->getArgOperand(1)->getType()->isPointerTy())
2692     return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI));
2693   return nullptr;
2694 }
2695 
2696 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
2697 
2698   Module *M = CI->getModule();
2699   Function *Callee = CI->getCalledFunction();
2700   FunctionType *FT = Callee->getFunctionType();
2701   if (Value *V = optimizePrintFString(CI, B)) {
2702     return V;
2703   }
2704 
2705   // printf(format, ...) -> iprintf(format, ...) if no floating point
2706   // arguments.
2707   if (isLibFuncEmittable(M, TLI, LibFunc_iprintf) &&
2708       !callHasFloatingPointArgument(CI)) {
2709     FunctionCallee IPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_iprintf, FT,
2710                                                   Callee->getAttributes());
2711     CallInst *New = cast<CallInst>(CI->clone());
2712     New->setCalledFunction(IPrintFFn);
2713     B.Insert(New);
2714     return New;
2715   }
2716 
2717   // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2718   // arguments.
2719   if (isLibFuncEmittable(M, TLI, LibFunc_small_printf) &&
2720       !callHasFP128Argument(CI)) {
2721     auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT,
2722                                             Callee->getAttributes());
2723     CallInst *New = cast<CallInst>(CI->clone());
2724     New->setCalledFunction(SmallPrintFFn);
2725     B.Insert(New);
2726     return New;
2727   }
2728 
2729   annotateNonNullNoUndefBasedOnAccess(CI, 0);
2730   return nullptr;
2731 }
2732 
2733 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
2734                                                 IRBuilderBase &B) {
2735   // Check for a fixed format string.
2736   StringRef FormatStr;
2737   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2738     return nullptr;
2739 
2740   // If we just have a format string (nothing else crazy) transform it.
2741   Value *Dest = CI->getArgOperand(0);
2742   if (CI->arg_size() == 2) {
2743     // Make sure there's no % in the constant array.  We could try to handle
2744     // %% -> % in the future if we cared.
2745     if (FormatStr.contains('%'))
2746       return nullptr; // we found a format specifier, bail out.
2747 
2748     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2749     B.CreateMemCpy(
2750         Dest, Align(1), CI->getArgOperand(1), Align(1),
2751         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2752                          FormatStr.size() + 1)); // Copy the null byte.
2753     return ConstantInt::get(CI->getType(), FormatStr.size());
2754   }
2755 
2756   // The remaining optimizations require the format string to be "%s" or "%c"
2757   // and have an extra operand.
2758   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
2759     return nullptr;
2760 
2761   // Decode the second character of the format string.
2762   if (FormatStr[1] == 'c') {
2763     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2764     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2765       return nullptr;
2766     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2767     Value *Ptr = castToCStr(Dest, B);
2768     B.CreateStore(V, Ptr);
2769     Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2770     B.CreateStore(B.getInt8(0), Ptr);
2771 
2772     return ConstantInt::get(CI->getType(), 1);
2773   }
2774 
2775   if (FormatStr[1] == 's') {
2776     // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2777     // strlen(str)+1)
2778     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2779       return nullptr;
2780 
2781     if (CI->use_empty())
2782       // sprintf(dest, "%s", str) -> strcpy(dest, str)
2783       return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI));
2784 
2785     uint64_t SrcLen = GetStringLength(CI->getArgOperand(2));
2786     if (SrcLen) {
2787       B.CreateMemCpy(
2788           Dest, Align(1), CI->getArgOperand(2), Align(1),
2789           ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen));
2790       // Returns total number of characters written without null-character.
2791       return ConstantInt::get(CI->getType(), SrcLen - 1);
2792     } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) {
2793       // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest
2794       // Handle mismatched pointer types (goes away with typeless pointers?).
2795       V = B.CreatePointerCast(V, B.getInt8PtrTy());
2796       Dest = B.CreatePointerCast(Dest, B.getInt8PtrTy());
2797       Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest);
2798       return B.CreateIntCast(PtrDiff, CI->getType(), false);
2799     }
2800 
2801     bool OptForSize = CI->getFunction()->hasOptSize() ||
2802                       llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2803                                                   PGSOQueryType::IRPass);
2804     if (OptForSize)
2805       return nullptr;
2806 
2807     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2808     if (!Len)
2809       return nullptr;
2810     Value *IncLen =
2811         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2812     B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen);
2813 
2814     // The sprintf result is the unincremented number of bytes in the string.
2815     return B.CreateIntCast(Len, CI->getType(), false);
2816   }
2817   return nullptr;
2818 }
2819 
2820 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
2821   Module *M = CI->getModule();
2822   Function *Callee = CI->getCalledFunction();
2823   FunctionType *FT = Callee->getFunctionType();
2824   if (Value *V = optimizeSPrintFString(CI, B)) {
2825     return V;
2826   }
2827 
2828   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2829   // point arguments.
2830   if (isLibFuncEmittable(M, TLI, LibFunc_siprintf) &&
2831       !callHasFloatingPointArgument(CI)) {
2832     FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_siprintf,
2833                                                    FT, Callee->getAttributes());
2834     CallInst *New = cast<CallInst>(CI->clone());
2835     New->setCalledFunction(SIPrintFFn);
2836     B.Insert(New);
2837     return New;
2838   }
2839 
2840   // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
2841   // floating point arguments.
2842   if (isLibFuncEmittable(M, TLI, LibFunc_small_sprintf) &&
2843       !callHasFP128Argument(CI)) {
2844     auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT,
2845                                              Callee->getAttributes());
2846     CallInst *New = cast<CallInst>(CI->clone());
2847     New->setCalledFunction(SmallSPrintFFn);
2848     B.Insert(New);
2849     return New;
2850   }
2851 
2852   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
2853   return nullptr;
2854 }
2855 
2856 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
2857                                                  IRBuilderBase &B) {
2858   // Check for size
2859   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2860   if (!Size)
2861     return nullptr;
2862 
2863   uint64_t N = Size->getZExtValue();
2864   // Check for a fixed format string.
2865   StringRef FormatStr;
2866   if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2867     return nullptr;
2868 
2869   // If we just have a format string (nothing else crazy) transform it.
2870   if (CI->arg_size() == 3) {
2871     // Make sure there's no % in the constant array.  We could try to handle
2872     // %% -> % in the future if we cared.
2873     if (FormatStr.contains('%'))
2874       return nullptr; // we found a format specifier, bail out.
2875 
2876     if (N == 0)
2877       return ConstantInt::get(CI->getType(), FormatStr.size());
2878     else if (N < FormatStr.size() + 1)
2879       return nullptr;
2880 
2881     // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2882     // strlen(fmt)+1)
2883     copyFlags(
2884         *CI,
2885         B.CreateMemCpy(
2886             CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1),
2887             ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2888                              FormatStr.size() + 1))); // Copy the null byte.
2889     return ConstantInt::get(CI->getType(), FormatStr.size());
2890   }
2891 
2892   // The remaining optimizations require the format string to be "%s" or "%c"
2893   // and have an extra operand.
2894   if (FormatStr.size() == 2 && FormatStr[0] == '%' && CI->arg_size() == 4) {
2895 
2896     // Decode the second character of the format string.
2897     if (FormatStr[1] == 'c') {
2898       if (N == 0)
2899         return ConstantInt::get(CI->getType(), 1);
2900       else if (N == 1)
2901         return nullptr;
2902 
2903       // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2904       if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2905         return nullptr;
2906       Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2907       Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2908       B.CreateStore(V, Ptr);
2909       Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2910       B.CreateStore(B.getInt8(0), Ptr);
2911 
2912       return ConstantInt::get(CI->getType(), 1);
2913     }
2914 
2915     if (FormatStr[1] == 's') {
2916       // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2917       StringRef Str;
2918       if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2919         return nullptr;
2920 
2921       if (N == 0)
2922         return ConstantInt::get(CI->getType(), Str.size());
2923       else if (N < Str.size() + 1)
2924         return nullptr;
2925 
2926       copyFlags(
2927           *CI, B.CreateMemCpy(CI->getArgOperand(0), Align(1),
2928                               CI->getArgOperand(3), Align(1),
2929                               ConstantInt::get(CI->getType(), Str.size() + 1)));
2930 
2931       // The snprintf result is the unincremented number of bytes in the string.
2932       return ConstantInt::get(CI->getType(), Str.size());
2933     }
2934   }
2935   return nullptr;
2936 }
2937 
2938 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) {
2939   if (Value *V = optimizeSnPrintFString(CI, B)) {
2940     return V;
2941   }
2942 
2943   if (isKnownNonZero(CI->getOperand(1), DL))
2944     annotateNonNullNoUndefBasedOnAccess(CI, 0);
2945   return nullptr;
2946 }
2947 
2948 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
2949                                                 IRBuilderBase &B) {
2950   optimizeErrorReporting(CI, B, 0);
2951 
2952   // All the optimizations depend on the format string.
2953   StringRef FormatStr;
2954   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2955     return nullptr;
2956 
2957   // Do not do any of the following transformations if the fprintf return
2958   // value is used, in general the fprintf return value is not compatible
2959   // with fwrite(), fputc() or fputs().
2960   if (!CI->use_empty())
2961     return nullptr;
2962 
2963   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2964   if (CI->arg_size() == 2) {
2965     // Could handle %% -> % if we cared.
2966     if (FormatStr.contains('%'))
2967       return nullptr; // We found a format specifier.
2968 
2969     return copyFlags(
2970         *CI, emitFWrite(CI->getArgOperand(1),
2971                         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2972                                          FormatStr.size()),
2973                         CI->getArgOperand(0), B, DL, TLI));
2974   }
2975 
2976   // The remaining optimizations require the format string to be "%s" or "%c"
2977   // and have an extra operand.
2978   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
2979     return nullptr;
2980 
2981   // Decode the second character of the format string.
2982   if (FormatStr[1] == 'c') {
2983     // fprintf(F, "%c", chr) --> fputc(chr, F)
2984     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2985       return nullptr;
2986     return copyFlags(
2987         *CI, emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI));
2988   }
2989 
2990   if (FormatStr[1] == 's') {
2991     // fprintf(F, "%s", str) --> fputs(str, F)
2992     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2993       return nullptr;
2994     return copyFlags(
2995         *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI));
2996   }
2997   return nullptr;
2998 }
2999 
3000 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
3001   Module *M = CI->getModule();
3002   Function *Callee = CI->getCalledFunction();
3003   FunctionType *FT = Callee->getFunctionType();
3004   if (Value *V = optimizeFPrintFString(CI, B)) {
3005     return V;
3006   }
3007 
3008   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
3009   // floating point arguments.
3010   if (isLibFuncEmittable(M, TLI, LibFunc_fiprintf) &&
3011       !callHasFloatingPointArgument(CI)) {
3012     FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_fiprintf,
3013                                                    FT, Callee->getAttributes());
3014     CallInst *New = cast<CallInst>(CI->clone());
3015     New->setCalledFunction(FIPrintFFn);
3016     B.Insert(New);
3017     return New;
3018   }
3019 
3020   // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
3021   // 128-bit floating point arguments.
3022   if (isLibFuncEmittable(M, TLI, LibFunc_small_fprintf) &&
3023       !callHasFP128Argument(CI)) {
3024     auto SmallFPrintFFn =
3025         getOrInsertLibFunc(M, *TLI, LibFunc_small_fprintf, FT,
3026                            Callee->getAttributes());
3027     CallInst *New = cast<CallInst>(CI->clone());
3028     New->setCalledFunction(SmallFPrintFFn);
3029     B.Insert(New);
3030     return New;
3031   }
3032 
3033   return nullptr;
3034 }
3035 
3036 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) {
3037   optimizeErrorReporting(CI, B, 3);
3038 
3039   // Get the element size and count.
3040   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
3041   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
3042   if (SizeC && CountC) {
3043     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
3044 
3045     // If this is writing zero records, remove the call (it's a noop).
3046     if (Bytes == 0)
3047       return ConstantInt::get(CI->getType(), 0);
3048 
3049     // If this is writing one byte, turn it into fputc.
3050     // This optimisation is only valid, if the return value is unused.
3051     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
3052       Value *Char = B.CreateLoad(B.getInt8Ty(),
3053                                  castToCStr(CI->getArgOperand(0), B), "char");
3054       Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
3055       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
3056     }
3057   }
3058 
3059   return nullptr;
3060 }
3061 
3062 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) {
3063   optimizeErrorReporting(CI, B, 1);
3064 
3065   // Don't rewrite fputs to fwrite when optimising for size because fwrite
3066   // requires more arguments and thus extra MOVs are required.
3067   bool OptForSize = CI->getFunction()->hasOptSize() ||
3068                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
3069                                                 PGSOQueryType::IRPass);
3070   if (OptForSize)
3071     return nullptr;
3072 
3073   // We can't optimize if return value is used.
3074   if (!CI->use_empty())
3075     return nullptr;
3076 
3077   // fputs(s,F) --> fwrite(s,strlen(s),1,F)
3078   uint64_t Len = GetStringLength(CI->getArgOperand(0));
3079   if (!Len)
3080     return nullptr;
3081 
3082   // Known to have no uses (see above).
3083   return copyFlags(
3084       *CI,
3085       emitFWrite(CI->getArgOperand(0),
3086                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
3087                  CI->getArgOperand(1), B, DL, TLI));
3088 }
3089 
3090 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) {
3091   annotateNonNullNoUndefBasedOnAccess(CI, 0);
3092   if (!CI->use_empty())
3093     return nullptr;
3094 
3095   // Check for a constant string.
3096   // puts("") -> putchar('\n')
3097   StringRef Str;
3098   if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
3099     return copyFlags(*CI, emitPutChar(B.getInt32('\n'), B, TLI));
3100 
3101   return nullptr;
3102 }
3103 
3104 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
3105   // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
3106   return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1),
3107                                         CI->getArgOperand(0), Align(1),
3108                                         CI->getArgOperand(2)));
3109 }
3110 
3111 bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) {
3112   SmallString<20> FloatFuncName = FuncName;
3113   FloatFuncName += 'f';
3114   return isLibFuncEmittable(M, TLI, FloatFuncName);
3115 }
3116 
3117 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
3118                                                       IRBuilderBase &Builder) {
3119   Module *M = CI->getModule();
3120   LibFunc Func;
3121   Function *Callee = CI->getCalledFunction();
3122   // Check for string/memory library functions.
3123   if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
3124     // Make sure we never change the calling convention.
3125     assert(
3126         (ignoreCallingConv(Func) ||
3127          TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) &&
3128         "Optimizing string/memory libcall would change the calling convention");
3129     switch (Func) {
3130     case LibFunc_strcat:
3131       return optimizeStrCat(CI, Builder);
3132     case LibFunc_strncat:
3133       return optimizeStrNCat(CI, Builder);
3134     case LibFunc_strchr:
3135       return optimizeStrChr(CI, Builder);
3136     case LibFunc_strrchr:
3137       return optimizeStrRChr(CI, Builder);
3138     case LibFunc_strcmp:
3139       return optimizeStrCmp(CI, Builder);
3140     case LibFunc_strncmp:
3141       return optimizeStrNCmp(CI, Builder);
3142     case LibFunc_strcpy:
3143       return optimizeStrCpy(CI, Builder);
3144     case LibFunc_stpcpy:
3145       return optimizeStpCpy(CI, Builder);
3146     case LibFunc_strncpy:
3147       return optimizeStrNCpy(CI, Builder);
3148     case LibFunc_strlen:
3149       return optimizeStrLen(CI, Builder);
3150     case LibFunc_strnlen:
3151       return optimizeStrNLen(CI, Builder);
3152     case LibFunc_strpbrk:
3153       return optimizeStrPBrk(CI, Builder);
3154     case LibFunc_strndup:
3155       return optimizeStrNDup(CI, Builder);
3156     case LibFunc_strtol:
3157     case LibFunc_strtod:
3158     case LibFunc_strtof:
3159     case LibFunc_strtoul:
3160     case LibFunc_strtoll:
3161     case LibFunc_strtold:
3162     case LibFunc_strtoull:
3163       return optimizeStrTo(CI, Builder);
3164     case LibFunc_strspn:
3165       return optimizeStrSpn(CI, Builder);
3166     case LibFunc_strcspn:
3167       return optimizeStrCSpn(CI, Builder);
3168     case LibFunc_strstr:
3169       return optimizeStrStr(CI, Builder);
3170     case LibFunc_memchr:
3171       return optimizeMemChr(CI, Builder);
3172     case LibFunc_memrchr:
3173       return optimizeMemRChr(CI, Builder);
3174     case LibFunc_bcmp:
3175       return optimizeBCmp(CI, Builder);
3176     case LibFunc_memcmp:
3177       return optimizeMemCmp(CI, Builder);
3178     case LibFunc_memcpy:
3179       return optimizeMemCpy(CI, Builder);
3180     case LibFunc_memccpy:
3181       return optimizeMemCCpy(CI, Builder);
3182     case LibFunc_mempcpy:
3183       return optimizeMemPCpy(CI, Builder);
3184     case LibFunc_memmove:
3185       return optimizeMemMove(CI, Builder);
3186     case LibFunc_memset:
3187       return optimizeMemSet(CI, Builder);
3188     case LibFunc_realloc:
3189       return optimizeRealloc(CI, Builder);
3190     case LibFunc_wcslen:
3191       return optimizeWcslen(CI, Builder);
3192     case LibFunc_bcopy:
3193       return optimizeBCopy(CI, Builder);
3194     default:
3195       break;
3196     }
3197   }
3198   return nullptr;
3199 }
3200 
3201 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
3202                                                        LibFunc Func,
3203                                                        IRBuilderBase &Builder) {
3204   const Module *M = CI->getModule();
3205 
3206   // Don't optimize calls that require strict floating point semantics.
3207   if (CI->isStrictFP())
3208     return nullptr;
3209 
3210   if (Value *V = optimizeTrigReflections(CI, Func, Builder))
3211     return V;
3212 
3213   switch (Func) {
3214   case LibFunc_sinpif:
3215   case LibFunc_sinpi:
3216   case LibFunc_cospif:
3217   case LibFunc_cospi:
3218     return optimizeSinCosPi(CI, Builder);
3219   case LibFunc_powf:
3220   case LibFunc_pow:
3221   case LibFunc_powl:
3222     return optimizePow(CI, Builder);
3223   case LibFunc_exp2l:
3224   case LibFunc_exp2:
3225   case LibFunc_exp2f:
3226     return optimizeExp2(CI, Builder);
3227   case LibFunc_fabsf:
3228   case LibFunc_fabs:
3229   case LibFunc_fabsl:
3230     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
3231   case LibFunc_sqrtf:
3232   case LibFunc_sqrt:
3233   case LibFunc_sqrtl:
3234     return optimizeSqrt(CI, Builder);
3235   case LibFunc_logf:
3236   case LibFunc_log:
3237   case LibFunc_logl:
3238   case LibFunc_log10f:
3239   case LibFunc_log10:
3240   case LibFunc_log10l:
3241   case LibFunc_log1pf:
3242   case LibFunc_log1p:
3243   case LibFunc_log1pl:
3244   case LibFunc_log2f:
3245   case LibFunc_log2:
3246   case LibFunc_log2l:
3247   case LibFunc_logbf:
3248   case LibFunc_logb:
3249   case LibFunc_logbl:
3250     return optimizeLog(CI, Builder);
3251   case LibFunc_tan:
3252   case LibFunc_tanf:
3253   case LibFunc_tanl:
3254     return optimizeTan(CI, Builder);
3255   case LibFunc_ceil:
3256     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
3257   case LibFunc_floor:
3258     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
3259   case LibFunc_round:
3260     return replaceUnaryCall(CI, Builder, Intrinsic::round);
3261   case LibFunc_roundeven:
3262     return replaceUnaryCall(CI, Builder, Intrinsic::roundeven);
3263   case LibFunc_nearbyint:
3264     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
3265   case LibFunc_rint:
3266     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
3267   case LibFunc_trunc:
3268     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
3269   case LibFunc_acos:
3270   case LibFunc_acosh:
3271   case LibFunc_asin:
3272   case LibFunc_asinh:
3273   case LibFunc_atan:
3274   case LibFunc_atanh:
3275   case LibFunc_cbrt:
3276   case LibFunc_cosh:
3277   case LibFunc_exp:
3278   case LibFunc_exp10:
3279   case LibFunc_expm1:
3280   case LibFunc_cos:
3281   case LibFunc_sin:
3282   case LibFunc_sinh:
3283   case LibFunc_tanh:
3284     if (UnsafeFPShrink && hasFloatVersion(M, CI->getCalledFunction()->getName()))
3285       return optimizeUnaryDoubleFP(CI, Builder, TLI, true);
3286     return nullptr;
3287   case LibFunc_copysign:
3288     if (hasFloatVersion(M, CI->getCalledFunction()->getName()))
3289       return optimizeBinaryDoubleFP(CI, Builder, TLI);
3290     return nullptr;
3291   case LibFunc_fminf:
3292   case LibFunc_fmin:
3293   case LibFunc_fminl:
3294   case LibFunc_fmaxf:
3295   case LibFunc_fmax:
3296   case LibFunc_fmaxl:
3297     return optimizeFMinFMax(CI, Builder);
3298   case LibFunc_cabs:
3299   case LibFunc_cabsf:
3300   case LibFunc_cabsl:
3301     return optimizeCAbs(CI, Builder);
3302   default:
3303     return nullptr;
3304   }
3305 }
3306 
3307 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
3308   Module *M = CI->getModule();
3309   assert(!CI->isMustTailCall() && "These transforms aren't musttail safe.");
3310 
3311   // TODO: Split out the code below that operates on FP calls so that
3312   //       we can all non-FP calls with the StrictFP attribute to be
3313   //       optimized.
3314   if (CI->isNoBuiltin())
3315     return nullptr;
3316 
3317   LibFunc Func;
3318   Function *Callee = CI->getCalledFunction();
3319   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
3320 
3321   SmallVector<OperandBundleDef, 2> OpBundles;
3322   CI->getOperandBundlesAsDefs(OpBundles);
3323 
3324   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3325   Builder.setDefaultOperandBundles(OpBundles);
3326 
3327   // Command-line parameter overrides instruction attribute.
3328   // This can't be moved to optimizeFloatingPointLibCall() because it may be
3329   // used by the intrinsic optimizations.
3330   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
3331     UnsafeFPShrink = EnableUnsafeFPShrink;
3332   else if (isa<FPMathOperator>(CI) && CI->isFast())
3333     UnsafeFPShrink = true;
3334 
3335   // First, check for intrinsics.
3336   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
3337     if (!IsCallingConvC)
3338       return nullptr;
3339     // The FP intrinsics have corresponding constrained versions so we don't
3340     // need to check for the StrictFP attribute here.
3341     switch (II->getIntrinsicID()) {
3342     case Intrinsic::pow:
3343       return optimizePow(CI, Builder);
3344     case Intrinsic::exp2:
3345       return optimizeExp2(CI, Builder);
3346     case Intrinsic::log:
3347     case Intrinsic::log2:
3348     case Intrinsic::log10:
3349       return optimizeLog(CI, Builder);
3350     case Intrinsic::sqrt:
3351       return optimizeSqrt(CI, Builder);
3352     case Intrinsic::memset:
3353       return optimizeMemSet(CI, Builder);
3354     case Intrinsic::memcpy:
3355       return optimizeMemCpy(CI, Builder);
3356     case Intrinsic::memmove:
3357       return optimizeMemMove(CI, Builder);
3358     default:
3359       return nullptr;
3360     }
3361   }
3362 
3363   // Also try to simplify calls to fortified library functions.
3364   if (Value *SimplifiedFortifiedCI =
3365           FortifiedSimplifier.optimizeCall(CI, Builder)) {
3366     // Try to further simplify the result.
3367     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
3368     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
3369       // Ensure that SimplifiedCI's uses are complete, since some calls have
3370       // their uses analyzed.
3371       replaceAllUsesWith(CI, SimplifiedCI);
3372 
3373       // Set insertion point to SimplifiedCI to guarantee we reach all uses
3374       // we might replace later on.
3375       IRBuilderBase::InsertPointGuard Guard(Builder);
3376       Builder.SetInsertPoint(SimplifiedCI);
3377       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) {
3378         // If we were able to further simplify, remove the now redundant call.
3379         substituteInParent(SimplifiedCI, V);
3380         return V;
3381       }
3382     }
3383     return SimplifiedFortifiedCI;
3384   }
3385 
3386   // Then check for known library functions.
3387   if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
3388     // We never change the calling convention.
3389     if (!ignoreCallingConv(Func) && !IsCallingConvC)
3390       return nullptr;
3391     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3392       return V;
3393     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3394       return V;
3395     switch (Func) {
3396     case LibFunc_ffs:
3397     case LibFunc_ffsl:
3398     case LibFunc_ffsll:
3399       return optimizeFFS(CI, Builder);
3400     case LibFunc_fls:
3401     case LibFunc_flsl:
3402     case LibFunc_flsll:
3403       return optimizeFls(CI, Builder);
3404     case LibFunc_abs:
3405     case LibFunc_labs:
3406     case LibFunc_llabs:
3407       return optimizeAbs(CI, Builder);
3408     case LibFunc_isdigit:
3409       return optimizeIsDigit(CI, Builder);
3410     case LibFunc_isascii:
3411       return optimizeIsAscii(CI, Builder);
3412     case LibFunc_toascii:
3413       return optimizeToAscii(CI, Builder);
3414     case LibFunc_atoi:
3415     case LibFunc_atol:
3416     case LibFunc_atoll:
3417       return optimizeAtoi(CI, Builder);
3418     case LibFunc_strtol:
3419     case LibFunc_strtoll:
3420       return optimizeStrtol(CI, Builder);
3421     case LibFunc_printf:
3422       return optimizePrintF(CI, Builder);
3423     case LibFunc_sprintf:
3424       return optimizeSPrintF(CI, Builder);
3425     case LibFunc_snprintf:
3426       return optimizeSnPrintF(CI, Builder);
3427     case LibFunc_fprintf:
3428       return optimizeFPrintF(CI, Builder);
3429     case LibFunc_fwrite:
3430       return optimizeFWrite(CI, Builder);
3431     case LibFunc_fputs:
3432       return optimizeFPuts(CI, Builder);
3433     case LibFunc_puts:
3434       return optimizePuts(CI, Builder);
3435     case LibFunc_perror:
3436       return optimizeErrorReporting(CI, Builder);
3437     case LibFunc_vfprintf:
3438     case LibFunc_fiprintf:
3439       return optimizeErrorReporting(CI, Builder, 0);
3440     default:
3441       return nullptr;
3442     }
3443   }
3444   return nullptr;
3445 }
3446 
3447 LibCallSimplifier::LibCallSimplifier(
3448     const DataLayout &DL, const TargetLibraryInfo *TLI,
3449     OptimizationRemarkEmitter &ORE,
3450     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
3451     function_ref<void(Instruction *, Value *)> Replacer,
3452     function_ref<void(Instruction *)> Eraser)
3453     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
3454       Replacer(Replacer), Eraser(Eraser) {}
3455 
3456 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3457   // Indirect through the replacer used in this instance.
3458   Replacer(I, With);
3459 }
3460 
3461 void LibCallSimplifier::eraseFromParent(Instruction *I) {
3462   Eraser(I);
3463 }
3464 
3465 // TODO:
3466 //   Additional cases that we need to add to this file:
3467 //
3468 // cbrt:
3469 //   * cbrt(expN(X))  -> expN(x/3)
3470 //   * cbrt(sqrt(x))  -> pow(x,1/6)
3471 //   * cbrt(cbrt(x))  -> pow(x,1/9)
3472 //
3473 // exp, expf, expl:
3474 //   * exp(log(x))  -> x
3475 //
3476 // log, logf, logl:
3477 //   * log(exp(x))   -> x
3478 //   * log(exp(y))   -> y*log(e)
3479 //   * log(exp10(y)) -> y*log(10)
3480 //   * log(sqrt(x))  -> 0.5*log(x)
3481 //
3482 // pow, powf, powl:
3483 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
3484 //   * pow(pow(x,y),z)-> pow(x,y*z)
3485 //
3486 // signbit:
3487 //   * signbit(cnst) -> cnst'
3488 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3489 //
3490 // sqrt, sqrtf, sqrtl:
3491 //   * sqrt(expN(x))  -> expN(x*0.5)
3492 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3493 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3494 //
3495 
3496 //===----------------------------------------------------------------------===//
3497 // Fortified Library Call Optimizations
3498 //===----------------------------------------------------------------------===//
3499 
3500 bool
3501 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
3502                                                     unsigned ObjSizeOp,
3503                                                     Optional<unsigned> SizeOp,
3504                                                     Optional<unsigned> StrOp,
3505                                                     Optional<unsigned> FlagOp) {
3506   // If this function takes a flag argument, the implementation may use it to
3507   // perform extra checks. Don't fold into the non-checking variant.
3508   if (FlagOp) {
3509     ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
3510     if (!Flag || !Flag->isZero())
3511       return false;
3512   }
3513 
3514   if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
3515     return true;
3516 
3517   if (ConstantInt *ObjSizeCI =
3518           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
3519     if (ObjSizeCI->isMinusOne())
3520       return true;
3521     // If the object size wasn't -1 (unknown), bail out if we were asked to.
3522     if (OnlyLowerUnknownSize)
3523       return false;
3524     if (StrOp) {
3525       uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
3526       // If the length is 0 we don't know how long it is and so we can't
3527       // remove the check.
3528       if (Len)
3529         annotateDereferenceableBytes(CI, *StrOp, Len);
3530       else
3531         return false;
3532       return ObjSizeCI->getZExtValue() >= Len;
3533     }
3534 
3535     if (SizeOp) {
3536       if (ConstantInt *SizeCI =
3537               dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
3538         return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
3539     }
3540   }
3541   return false;
3542 }
3543 
3544 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
3545                                                      IRBuilderBase &B) {
3546   if (isFortifiedCallFoldable(CI, 3, 2)) {
3547     CallInst *NewCI =
3548         B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3549                        Align(1), CI->getArgOperand(2));
3550     NewCI->setAttributes(CI->getAttributes());
3551     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3552     copyFlags(*CI, NewCI);
3553     return CI->getArgOperand(0);
3554   }
3555   return nullptr;
3556 }
3557 
3558 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
3559                                                       IRBuilderBase &B) {
3560   if (isFortifiedCallFoldable(CI, 3, 2)) {
3561     CallInst *NewCI =
3562         B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3563                         Align(1), CI->getArgOperand(2));
3564     NewCI->setAttributes(CI->getAttributes());
3565     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3566     copyFlags(*CI, NewCI);
3567     return CI->getArgOperand(0);
3568   }
3569   return nullptr;
3570 }
3571 
3572 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
3573                                                      IRBuilderBase &B) {
3574   if (isFortifiedCallFoldable(CI, 3, 2)) {
3575     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
3576     CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
3577                                      CI->getArgOperand(2), Align(1));
3578     NewCI->setAttributes(CI->getAttributes());
3579     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3580     copyFlags(*CI, NewCI);
3581     return CI->getArgOperand(0);
3582   }
3583   return nullptr;
3584 }
3585 
3586 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI,
3587                                                       IRBuilderBase &B) {
3588   const DataLayout &DL = CI->getModule()->getDataLayout();
3589   if (isFortifiedCallFoldable(CI, 3, 2))
3590     if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3591                                   CI->getArgOperand(2), B, DL, TLI)) {
3592       CallInst *NewCI = cast<CallInst>(Call);
3593       NewCI->setAttributes(CI->getAttributes());
3594       NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3595       return copyFlags(*CI, NewCI);
3596     }
3597   return nullptr;
3598 }
3599 
3600 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
3601                                                       IRBuilderBase &B,
3602                                                       LibFunc Func) {
3603   const DataLayout &DL = CI->getModule()->getDataLayout();
3604   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
3605         *ObjSize = CI->getArgOperand(2);
3606 
3607   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
3608   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
3609     Value *StrLen = emitStrLen(Src, B, DL, TLI);
3610     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
3611   }
3612 
3613   // If a) we don't have any length information, or b) we know this will
3614   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3615   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3616   // TODO: It might be nice to get a maximum length out of the possible
3617   // string lengths for varying.
3618   if (isFortifiedCallFoldable(CI, 2, None, 1)) {
3619     if (Func == LibFunc_strcpy_chk)
3620       return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
3621     else
3622       return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI));
3623   }
3624 
3625   if (OnlyLowerUnknownSize)
3626     return nullptr;
3627 
3628   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3629   uint64_t Len = GetStringLength(Src);
3630   if (Len)
3631     annotateDereferenceableBytes(CI, 1, Len);
3632   else
3633     return nullptr;
3634 
3635   // FIXME: There is really no guarantee that sizeof(size_t) is equal to
3636   // sizeof(int*) for every target. So the assumption used here to derive the
3637   // SizeTBits based on the size of an integer pointer in address space zero
3638   // isn't always valid.
3639   Type *SizeTTy = DL.getIntPtrType(CI->getContext(), /*AddressSpace=*/0);
3640   Value *LenV = ConstantInt::get(SizeTTy, Len);
3641   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
3642   // If the function was an __stpcpy_chk, and we were able to fold it into
3643   // a __memcpy_chk, we still need to return the correct end pointer.
3644   if (Ret && Func == LibFunc_stpcpy_chk)
3645     return B.CreateInBoundsGEP(B.getInt8Ty(), Dst,
3646                                ConstantInt::get(SizeTTy, Len - 1));
3647   return copyFlags(*CI, cast<CallInst>(Ret));
3648 }
3649 
3650 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
3651                                                      IRBuilderBase &B) {
3652   if (isFortifiedCallFoldable(CI, 1, None, 0))
3653     return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B,
3654                                      CI->getModule()->getDataLayout(), TLI));
3655   return nullptr;
3656 }
3657 
3658 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
3659                                                        IRBuilderBase &B,
3660                                                        LibFunc Func) {
3661   if (isFortifiedCallFoldable(CI, 3, 2)) {
3662     if (Func == LibFunc_strncpy_chk)
3663       return copyFlags(*CI,
3664                        emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3665                                    CI->getArgOperand(2), B, TLI));
3666     else
3667       return copyFlags(*CI,
3668                        emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3669                                    CI->getArgOperand(2), B, TLI));
3670   }
3671 
3672   return nullptr;
3673 }
3674 
3675 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
3676                                                       IRBuilderBase &B) {
3677   if (isFortifiedCallFoldable(CI, 4, 3))
3678     return copyFlags(
3679         *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3680                          CI->getArgOperand(2), CI->getArgOperand(3), B, TLI));
3681 
3682   return nullptr;
3683 }
3684 
3685 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
3686                                                        IRBuilderBase &B) {
3687   if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
3688     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5));
3689     return copyFlags(*CI,
3690                      emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3691                                   CI->getArgOperand(4), VariadicArgs, B, TLI));
3692   }
3693 
3694   return nullptr;
3695 }
3696 
3697 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
3698                                                       IRBuilderBase &B) {
3699   if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
3700     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4));
3701     return copyFlags(*CI,
3702                      emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3703                                  VariadicArgs, B, TLI));
3704   }
3705 
3706   return nullptr;
3707 }
3708 
3709 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
3710                                                      IRBuilderBase &B) {
3711   if (isFortifiedCallFoldable(CI, 2))
3712     return copyFlags(
3713         *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI));
3714 
3715   return nullptr;
3716 }
3717 
3718 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
3719                                                    IRBuilderBase &B) {
3720   if (isFortifiedCallFoldable(CI, 3))
3721     return copyFlags(*CI,
3722                      emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
3723                                  CI->getArgOperand(2), B, TLI));
3724 
3725   return nullptr;
3726 }
3727 
3728 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
3729                                                       IRBuilderBase &B) {
3730   if (isFortifiedCallFoldable(CI, 3))
3731     return copyFlags(*CI,
3732                      emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
3733                                  CI->getArgOperand(2), B, TLI));
3734 
3735   return nullptr;
3736 }
3737 
3738 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
3739                                                       IRBuilderBase &B) {
3740   if (isFortifiedCallFoldable(CI, 3))
3741     return copyFlags(*CI,
3742                      emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3743                                  CI->getArgOperand(2), B, TLI));
3744 
3745   return nullptr;
3746 }
3747 
3748 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
3749                                                         IRBuilderBase &B) {
3750   if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
3751     return copyFlags(
3752         *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3753                            CI->getArgOperand(4), CI->getArgOperand(5), B, TLI));
3754 
3755   return nullptr;
3756 }
3757 
3758 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
3759                                                        IRBuilderBase &B) {
3760   if (isFortifiedCallFoldable(CI, 2, None, None, 1))
3761     return copyFlags(*CI,
3762                      emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3763                                   CI->getArgOperand(4), B, TLI));
3764 
3765   return nullptr;
3766 }
3767 
3768 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI,
3769                                                 IRBuilderBase &Builder) {
3770   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
3771   // Some clang users checked for _chk libcall availability using:
3772   //   __has_builtin(__builtin___memcpy_chk)
3773   // When compiling with -fno-builtin, this is always true.
3774   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
3775   // end up with fortified libcalls, which isn't acceptable in a freestanding
3776   // environment which only provides their non-fortified counterparts.
3777   //
3778   // Until we change clang and/or teach external users to check for availability
3779   // differently, disregard the "nobuiltin" attribute and TLI::has.
3780   //
3781   // PR23093.
3782 
3783   LibFunc Func;
3784   Function *Callee = CI->getCalledFunction();
3785   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
3786 
3787   SmallVector<OperandBundleDef, 2> OpBundles;
3788   CI->getOperandBundlesAsDefs(OpBundles);
3789 
3790   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3791   Builder.setDefaultOperandBundles(OpBundles);
3792 
3793   // First, check that this is a known library functions and that the prototype
3794   // is correct.
3795   if (!TLI->getLibFunc(*Callee, Func))
3796     return nullptr;
3797 
3798   // We never change the calling convention.
3799   if (!ignoreCallingConv(Func) && !IsCallingConvC)
3800     return nullptr;
3801 
3802   switch (Func) {
3803   case LibFunc_memcpy_chk:
3804     return optimizeMemCpyChk(CI, Builder);
3805   case LibFunc_mempcpy_chk:
3806     return optimizeMemPCpyChk(CI, Builder);
3807   case LibFunc_memmove_chk:
3808     return optimizeMemMoveChk(CI, Builder);
3809   case LibFunc_memset_chk:
3810     return optimizeMemSetChk(CI, Builder);
3811   case LibFunc_stpcpy_chk:
3812   case LibFunc_strcpy_chk:
3813     return optimizeStrpCpyChk(CI, Builder, Func);
3814   case LibFunc_strlen_chk:
3815     return optimizeStrLenChk(CI, Builder);
3816   case LibFunc_stpncpy_chk:
3817   case LibFunc_strncpy_chk:
3818     return optimizeStrpNCpyChk(CI, Builder, Func);
3819   case LibFunc_memccpy_chk:
3820     return optimizeMemCCpyChk(CI, Builder);
3821   case LibFunc_snprintf_chk:
3822     return optimizeSNPrintfChk(CI, Builder);
3823   case LibFunc_sprintf_chk:
3824     return optimizeSPrintfChk(CI, Builder);
3825   case LibFunc_strcat_chk:
3826     return optimizeStrCatChk(CI, Builder);
3827   case LibFunc_strlcat_chk:
3828     return optimizeStrLCat(CI, Builder);
3829   case LibFunc_strncat_chk:
3830     return optimizeStrNCatChk(CI, Builder);
3831   case LibFunc_strlcpy_chk:
3832     return optimizeStrLCpyChk(CI, Builder);
3833   case LibFunc_vsnprintf_chk:
3834     return optimizeVSNPrintfChk(CI, Builder);
3835   case LibFunc_vsprintf_chk:
3836     return optimizeVSPrintfChk(CI, Builder);
3837   default:
3838     break;
3839   }
3840   return nullptr;
3841 }
3842 
3843 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
3844     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
3845     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
3846