1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Transforms/Utils/BuildLibCalls.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Transforms/Utils/SizeOpts.h" 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 static cl::opt<bool> 40 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 41 cl::init(false), 42 cl::desc("Enable unsafe double to float " 43 "shrinking for math lib calls")); 44 45 //===----------------------------------------------------------------------===// 46 // Helper Functions 47 //===----------------------------------------------------------------------===// 48 49 static bool ignoreCallingConv(LibFunc Func) { 50 return Func == LibFunc_abs || Func == LibFunc_labs || 51 Func == LibFunc_llabs || Func == LibFunc_strlen; 52 } 53 54 /// Return true if it is only used in equality comparisons with With. 55 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 56 for (User *U : V->users()) { 57 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 58 if (IC->isEquality() && IC->getOperand(1) == With) 59 continue; 60 // Unknown instruction. 61 return false; 62 } 63 return true; 64 } 65 66 static bool callHasFloatingPointArgument(const CallInst *CI) { 67 return any_of(CI->operands(), [](const Use &OI) { 68 return OI->getType()->isFloatingPointTy(); 69 }); 70 } 71 72 static bool callHasFP128Argument(const CallInst *CI) { 73 return any_of(CI->operands(), [](const Use &OI) { 74 return OI->getType()->isFP128Ty(); 75 }); 76 } 77 78 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 79 if (Base < 2 || Base > 36) 80 // handle special zero base 81 if (Base != 0) 82 return nullptr; 83 84 char *End; 85 std::string nptr = Str.str(); 86 errno = 0; 87 long long int Result = strtoll(nptr.c_str(), &End, Base); 88 if (errno) 89 return nullptr; 90 91 // if we assume all possible target locales are ASCII supersets, 92 // then if strtoll successfully parses a number on the host, 93 // it will also successfully parse the same way on the target 94 if (*End != '\0') 95 return nullptr; 96 97 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 98 return nullptr; 99 100 return ConstantInt::get(CI->getType(), Result); 101 } 102 103 static bool isOnlyUsedInComparisonWithZero(Value *V) { 104 for (User *U : V->users()) { 105 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 106 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 107 if (C->isNullValue()) 108 continue; 109 // Unknown instruction. 110 return false; 111 } 112 return true; 113 } 114 115 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 116 const DataLayout &DL) { 117 if (!isOnlyUsedInComparisonWithZero(CI)) 118 return false; 119 120 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 121 return false; 122 123 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 124 return false; 125 126 return true; 127 } 128 129 static void annotateDereferenceableBytes(CallInst *CI, 130 ArrayRef<unsigned> ArgNos, 131 uint64_t DereferenceableBytes) { 132 const Function *F = CI->getCaller(); 133 if (!F) 134 return; 135 for (unsigned ArgNo : ArgNos) { 136 uint64_t DerefBytes = DereferenceableBytes; 137 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 138 if (!llvm::NullPointerIsDefined(F, AS) || 139 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 140 DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo), 141 DereferenceableBytes); 142 143 if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) { 144 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 145 if (!llvm::NullPointerIsDefined(F, AS) || 146 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 147 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 148 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 149 CI->getContext(), DerefBytes)); 150 } 151 } 152 } 153 154 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, 155 ArrayRef<unsigned> ArgNos) { 156 Function *F = CI->getCaller(); 157 if (!F) 158 return; 159 160 for (unsigned ArgNo : ArgNos) { 161 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef)) 162 CI->addParamAttr(ArgNo, Attribute::NoUndef); 163 164 if (CI->paramHasAttr(ArgNo, Attribute::NonNull)) 165 continue; 166 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 167 if (llvm::NullPointerIsDefined(F, AS)) 168 continue; 169 170 CI->addParamAttr(ArgNo, Attribute::NonNull); 171 annotateDereferenceableBytes(CI, ArgNo, 1); 172 } 173 } 174 175 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 176 Value *Size, const DataLayout &DL) { 177 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 178 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 179 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 180 } else if (isKnownNonZero(Size, DL)) { 181 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 182 const APInt *X, *Y; 183 uint64_t DerefMin = 1; 184 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 185 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 186 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 187 } 188 } 189 } 190 191 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for 192 // easier chaining. Calls to emit* and B.createCall should probably be wrapped 193 // in this function when New is created to replace Old. Callers should take 194 // care to check Old.isMustTailCall() if they aren't replacing Old directly 195 // with New. 196 static Value *copyFlags(const CallInst &Old, Value *New) { 197 assert(!Old.isMustTailCall() && "do not copy musttail call flags"); 198 assert(!Old.isNoTailCall() && "do not copy notail call flags"); 199 if (auto *NewCI = dyn_cast_or_null<CallInst>(New)) 200 NewCI->setTailCallKind(Old.getTailCallKind()); 201 return New; 202 } 203 204 //===----------------------------------------------------------------------===// 205 // String and Memory Library Call Optimizations 206 //===----------------------------------------------------------------------===// 207 208 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 209 // Extract some information from the instruction 210 Value *Dst = CI->getArgOperand(0); 211 Value *Src = CI->getArgOperand(1); 212 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 213 214 // See if we can get the length of the input string. 215 uint64_t Len = GetStringLength(Src); 216 if (Len) 217 annotateDereferenceableBytes(CI, 1, Len); 218 else 219 return nullptr; 220 --Len; // Unbias length. 221 222 // Handle the simple, do-nothing case: strcat(x, "") -> x 223 if (Len == 0) 224 return Dst; 225 226 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B)); 227 } 228 229 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 230 IRBuilderBase &B) { 231 // We need to find the end of the destination string. That's where the 232 // memory is to be moved to. We just generate a call to strlen. 233 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 234 if (!DstLen) 235 return nullptr; 236 237 // Now that we have the destination's length, we must index into the 238 // destination's pointer to get the actual memcpy destination (end of 239 // the string .. we're concatenating). 240 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 241 242 // We have enough information to now generate the memcpy call to do the 243 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 244 B.CreateMemCpy( 245 CpyDst, Align(1), Src, Align(1), 246 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 247 return Dst; 248 } 249 250 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 251 // Extract some information from the instruction. 252 Value *Dst = CI->getArgOperand(0); 253 Value *Src = CI->getArgOperand(1); 254 Value *Size = CI->getArgOperand(2); 255 uint64_t Len; 256 annotateNonNullNoUndefBasedOnAccess(CI, 0); 257 if (isKnownNonZero(Size, DL)) 258 annotateNonNullNoUndefBasedOnAccess(CI, 1); 259 260 // We don't do anything if length is not constant. 261 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 262 if (LengthArg) { 263 Len = LengthArg->getZExtValue(); 264 // strncat(x, c, 0) -> x 265 if (!Len) 266 return Dst; 267 } else { 268 return nullptr; 269 } 270 271 // See if we can get the length of the input string. 272 uint64_t SrcLen = GetStringLength(Src); 273 if (SrcLen) { 274 annotateDereferenceableBytes(CI, 1, SrcLen); 275 --SrcLen; // Unbias length. 276 } else { 277 return nullptr; 278 } 279 280 // strncat(x, "", c) -> x 281 if (SrcLen == 0) 282 return Dst; 283 284 // We don't optimize this case. 285 if (Len < SrcLen) 286 return nullptr; 287 288 // strncat(x, s, c) -> strcat(x, s) 289 // s is constant so the strcat can be optimized further. 290 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B)); 291 } 292 293 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 294 Function *Callee = CI->getCalledFunction(); 295 FunctionType *FT = Callee->getFunctionType(); 296 Value *SrcStr = CI->getArgOperand(0); 297 annotateNonNullNoUndefBasedOnAccess(CI, 0); 298 299 // If the second operand is non-constant, see if we can compute the length 300 // of the input string and turn this into memchr. 301 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 302 if (!CharC) { 303 uint64_t Len = GetStringLength(SrcStr); 304 if (Len) 305 annotateDereferenceableBytes(CI, 0, Len); 306 else 307 return nullptr; 308 if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 309 return nullptr; 310 311 return copyFlags( 312 *CI, 313 emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 314 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), B, 315 DL, TLI)); 316 } 317 318 // Otherwise, the character is a constant, see if the first argument is 319 // a string literal. If so, we can constant fold. 320 StringRef Str; 321 if (!getConstantStringInfo(SrcStr, Str)) { 322 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 323 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 324 return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 325 return nullptr; 326 } 327 328 // Compute the offset, make sure to handle the case when we're searching for 329 // zero (a weird way to spell strlen). 330 size_t I = (0xFF & CharC->getSExtValue()) == 0 331 ? Str.size() 332 : Str.find(CharC->getSExtValue()); 333 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 334 return Constant::getNullValue(CI->getType()); 335 336 // strchr(s+n,c) -> gep(s+n+i,c) 337 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 338 } 339 340 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 341 Value *SrcStr = CI->getArgOperand(0); 342 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 343 annotateNonNullNoUndefBasedOnAccess(CI, 0); 344 345 // Cannot fold anything if we're not looking for a constant. 346 if (!CharC) 347 return nullptr; 348 349 StringRef Str; 350 if (!getConstantStringInfo(SrcStr, Str)) { 351 // strrchr(s, 0) -> strchr(s, 0) 352 if (CharC->isZero()) 353 return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI)); 354 return nullptr; 355 } 356 357 // Compute the offset. 358 size_t I = (0xFF & CharC->getSExtValue()) == 0 359 ? Str.size() 360 : Str.rfind(CharC->getSExtValue()); 361 if (I == StringRef::npos) // Didn't find the char. Return null. 362 return Constant::getNullValue(CI->getType()); 363 364 // strrchr(s+n,c) -> gep(s+n+i,c) 365 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 366 } 367 368 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 369 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 370 if (Str1P == Str2P) // strcmp(x,x) -> 0 371 return ConstantInt::get(CI->getType(), 0); 372 373 StringRef Str1, Str2; 374 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 375 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 376 377 // strcmp(x, y) -> cnst (if both x and y are constant strings) 378 if (HasStr1 && HasStr2) 379 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 380 381 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 382 return B.CreateNeg(B.CreateZExt( 383 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 384 385 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 386 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 387 CI->getType()); 388 389 // strcmp(P, "x") -> memcmp(P, "x", 2) 390 uint64_t Len1 = GetStringLength(Str1P); 391 if (Len1) 392 annotateDereferenceableBytes(CI, 0, Len1); 393 uint64_t Len2 = GetStringLength(Str2P); 394 if (Len2) 395 annotateDereferenceableBytes(CI, 1, Len2); 396 397 if (Len1 && Len2) { 398 return copyFlags( 399 *CI, emitMemCmp(Str1P, Str2P, 400 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 401 std::min(Len1, Len2)), 402 B, DL, TLI)); 403 } 404 405 // strcmp to memcmp 406 if (!HasStr1 && HasStr2) { 407 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 408 return copyFlags( 409 *CI, 410 emitMemCmp(Str1P, Str2P, 411 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 412 B, DL, TLI)); 413 } else if (HasStr1 && !HasStr2) { 414 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 415 return copyFlags( 416 *CI, 417 emitMemCmp(Str1P, Str2P, 418 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 419 B, DL, TLI)); 420 } 421 422 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 423 return nullptr; 424 } 425 426 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 427 Value *Str1P = CI->getArgOperand(0); 428 Value *Str2P = CI->getArgOperand(1); 429 Value *Size = CI->getArgOperand(2); 430 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 431 return ConstantInt::get(CI->getType(), 0); 432 433 if (isKnownNonZero(Size, DL)) 434 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 435 // Get the length argument if it is constant. 436 uint64_t Length; 437 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 438 Length = LengthArg->getZExtValue(); 439 else 440 return nullptr; 441 442 if (Length == 0) // strncmp(x,y,0) -> 0 443 return ConstantInt::get(CI->getType(), 0); 444 445 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 446 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI)); 447 448 StringRef Str1, Str2; 449 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 450 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 451 452 // strncmp(x, y) -> cnst (if both x and y are constant strings) 453 if (HasStr1 && HasStr2) { 454 // Avoid truncating the 64-bit Length to 32 bits in ILP32. 455 StringRef::size_type MinLen1 = std::min((uint64_t)Str1.size(), Length); 456 StringRef::size_type MinLen2 = std::min((uint64_t)Str2.size(), Length); 457 StringRef SubStr1 = Str1.substr(0, MinLen1); 458 StringRef SubStr2 = Str2.substr(0, MinLen2); 459 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 460 } 461 462 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 463 return B.CreateNeg(B.CreateZExt( 464 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 465 466 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 467 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 468 CI->getType()); 469 470 uint64_t Len1 = GetStringLength(Str1P); 471 if (Len1) 472 annotateDereferenceableBytes(CI, 0, Len1); 473 uint64_t Len2 = GetStringLength(Str2P); 474 if (Len2) 475 annotateDereferenceableBytes(CI, 1, Len2); 476 477 // strncmp to memcmp 478 if (!HasStr1 && HasStr2) { 479 Len2 = std::min(Len2, Length); 480 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 481 return copyFlags( 482 *CI, 483 emitMemCmp(Str1P, Str2P, 484 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 485 B, DL, TLI)); 486 } else if (HasStr1 && !HasStr2) { 487 Len1 = std::min(Len1, Length); 488 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 489 return copyFlags( 490 *CI, 491 emitMemCmp(Str1P, Str2P, 492 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 493 B, DL, TLI)); 494 } 495 496 return nullptr; 497 } 498 499 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 500 Value *Src = CI->getArgOperand(0); 501 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 502 uint64_t SrcLen = GetStringLength(Src); 503 if (SrcLen && Size) { 504 annotateDereferenceableBytes(CI, 0, SrcLen); 505 if (SrcLen <= Size->getZExtValue() + 1) 506 return copyFlags(*CI, emitStrDup(Src, B, TLI)); 507 } 508 509 return nullptr; 510 } 511 512 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 513 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 514 if (Dst == Src) // strcpy(x,x) -> x 515 return Src; 516 517 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 518 // See if we can get the length of the input string. 519 uint64_t Len = GetStringLength(Src); 520 if (Len) 521 annotateDereferenceableBytes(CI, 1, Len); 522 else 523 return nullptr; 524 525 // We have enough information to now generate the memcpy call to do the 526 // copy for us. Make a memcpy to copy the nul byte with align = 1. 527 CallInst *NewCI = 528 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 529 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 530 NewCI->setAttributes(CI->getAttributes()); 531 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 532 copyFlags(*CI, NewCI); 533 return Dst; 534 } 535 536 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 537 Function *Callee = CI->getCalledFunction(); 538 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 539 540 // stpcpy(d,s) -> strcpy(d,s) if the result is not used. 541 if (CI->use_empty()) 542 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 543 544 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 545 Value *StrLen = emitStrLen(Src, B, DL, TLI); 546 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 547 } 548 549 // See if we can get the length of the input string. 550 uint64_t Len = GetStringLength(Src); 551 if (Len) 552 annotateDereferenceableBytes(CI, 1, Len); 553 else 554 return nullptr; 555 556 Type *PT = Callee->getFunctionType()->getParamType(0); 557 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 558 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 559 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 560 561 // We have enough information to now generate the memcpy call to do the 562 // copy for us. Make a memcpy to copy the nul byte with align = 1. 563 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 564 NewCI->setAttributes(CI->getAttributes()); 565 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 566 copyFlags(*CI, NewCI); 567 return DstEnd; 568 } 569 570 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) { 571 Function *Callee = CI->getCalledFunction(); 572 Value *Dst = CI->getArgOperand(0); 573 Value *Src = CI->getArgOperand(1); 574 Value *Size = CI->getArgOperand(2); 575 annotateNonNullNoUndefBasedOnAccess(CI, 0); 576 if (isKnownNonZero(Size, DL)) 577 annotateNonNullNoUndefBasedOnAccess(CI, 1); 578 579 uint64_t Len; 580 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 581 Len = LengthArg->getZExtValue(); 582 else 583 return nullptr; 584 585 // strncpy(x, y, 0) -> x 586 if (Len == 0) 587 return Dst; 588 589 // See if we can get the length of the input string. 590 uint64_t SrcLen = GetStringLength(Src); 591 if (SrcLen) { 592 annotateDereferenceableBytes(CI, 1, SrcLen); 593 --SrcLen; // Unbias length. 594 } else { 595 return nullptr; 596 } 597 598 if (SrcLen == 0) { 599 // strncpy(x, "", y) -> memset(x, '\0', y) 600 Align MemSetAlign = 601 CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne(); 602 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign); 603 AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0)); 604 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 605 CI->getContext(), 0, ArgAttrs)); 606 copyFlags(*CI, NewCI); 607 return Dst; 608 } 609 610 // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4) 611 if (Len > SrcLen + 1) { 612 if (Len <= 128) { 613 StringRef Str; 614 if (!getConstantStringInfo(Src, Str)) 615 return nullptr; 616 std::string SrcStr = Str.str(); 617 SrcStr.resize(Len, '\0'); 618 Src = B.CreateGlobalString(SrcStr, "str"); 619 } else { 620 return nullptr; 621 } 622 } 623 624 Type *PT = Callee->getFunctionType()->getParamType(0); 625 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 626 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 627 ConstantInt::get(DL.getIntPtrType(PT), Len)); 628 NewCI->setAttributes(CI->getAttributes()); 629 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 630 copyFlags(*CI, NewCI); 631 return Dst; 632 } 633 634 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 635 unsigned CharSize, 636 Value *Bound) { 637 Value *Src = CI->getArgOperand(0); 638 Type *CharTy = B.getIntNTy(CharSize); 639 640 if (isOnlyUsedInZeroEqualityComparison(CI) && 641 (!Bound || isKnownNonZero(Bound, DL))) { 642 // Fold strlen: 643 // strlen(x) != 0 --> *x != 0 644 // strlen(x) == 0 --> *x == 0 645 // and likewise strnlen with constant N > 0: 646 // strnlen(x, N) != 0 --> *x != 0 647 // strnlen(x, N) == 0 --> *x == 0 648 return B.CreateZExt(B.CreateLoad(CharTy, Src, "char0"), 649 CI->getType()); 650 } 651 652 if (Bound) { 653 if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) { 654 if (BoundCst->isZero()) 655 // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise. 656 return ConstantInt::get(CI->getType(), 0); 657 658 if (BoundCst->isOne()) { 659 // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s. 660 Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0"); 661 Value *ZeroChar = ConstantInt::get(CharTy, 0); 662 Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp"); 663 return B.CreateZExt(Cmp, CI->getType()); 664 } 665 } 666 } 667 668 if (uint64_t Len = GetStringLength(Src, CharSize)) { 669 Value *LenC = ConstantInt::get(CI->getType(), Len - 1); 670 // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2 671 // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound. 672 if (Bound) 673 return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound); 674 return LenC; 675 } 676 677 if (Bound) 678 // Punt for strnlen for now. 679 return nullptr; 680 681 // If s is a constant pointer pointing to a string literal, we can fold 682 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 683 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 684 // We only try to simplify strlen when the pointer s points to an array 685 // of i8. Otherwise, we would need to scale the offset x before doing the 686 // subtraction. This will make the optimization more complex, and it's not 687 // very useful because calling strlen for a pointer of other types is 688 // very uncommon. 689 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 690 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 691 return nullptr; 692 693 ConstantDataArraySlice Slice; 694 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 695 uint64_t NullTermIdx; 696 if (Slice.Array == nullptr) { 697 NullTermIdx = 0; 698 } else { 699 NullTermIdx = ~((uint64_t)0); 700 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 701 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 702 NullTermIdx = I; 703 break; 704 } 705 } 706 // If the string does not have '\0', leave it to strlen to compute 707 // its length. 708 if (NullTermIdx == ~((uint64_t)0)) 709 return nullptr; 710 } 711 712 Value *Offset = GEP->getOperand(2); 713 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 714 uint64_t ArrSize = 715 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 716 717 // If Offset is not provably in the range [0, NullTermIdx], we can still 718 // optimize if we can prove that the program has undefined behavior when 719 // Offset is outside that range. That is the case when GEP->getOperand(0) 720 // is a pointer to an object whose memory extent is NullTermIdx+1. 721 if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) || 722 (isa<GlobalVariable>(GEP->getOperand(0)) && 723 NullTermIdx == ArrSize - 1)) { 724 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 725 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 726 Offset); 727 } 728 } 729 } 730 731 // strlen(x?"foo":"bars") --> x ? 3 : 4 732 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 733 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 734 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 735 if (LenTrue && LenFalse) { 736 ORE.emit([&]() { 737 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 738 << "folded strlen(select) to select of constants"; 739 }); 740 return B.CreateSelect(SI->getCondition(), 741 ConstantInt::get(CI->getType(), LenTrue - 1), 742 ConstantInt::get(CI->getType(), LenFalse - 1)); 743 } 744 } 745 746 return nullptr; 747 } 748 749 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 750 if (Value *V = optimizeStringLength(CI, B, 8)) 751 return V; 752 annotateNonNullNoUndefBasedOnAccess(CI, 0); 753 return nullptr; 754 } 755 756 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) { 757 Value *Bound = CI->getArgOperand(1); 758 if (Value *V = optimizeStringLength(CI, B, 8, Bound)) 759 return V; 760 761 if (isKnownNonZero(Bound, DL)) 762 annotateNonNullNoUndefBasedOnAccess(CI, 0); 763 return nullptr; 764 } 765 766 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 767 Module &M = *CI->getModule(); 768 unsigned WCharSize = TLI->getWCharSize(M) * 8; 769 // We cannot perform this optimization without wchar_size metadata. 770 if (WCharSize == 0) 771 return nullptr; 772 773 return optimizeStringLength(CI, B, WCharSize); 774 } 775 776 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 777 StringRef S1, S2; 778 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 779 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 780 781 // strpbrk(s, "") -> nullptr 782 // strpbrk("", s) -> nullptr 783 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 784 return Constant::getNullValue(CI->getType()); 785 786 // Constant folding. 787 if (HasS1 && HasS2) { 788 size_t I = S1.find_first_of(S2); 789 if (I == StringRef::npos) // No match. 790 return Constant::getNullValue(CI->getType()); 791 792 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 793 "strpbrk"); 794 } 795 796 // strpbrk(s, "a") -> strchr(s, 'a') 797 if (HasS2 && S2.size() == 1) 798 return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI)); 799 800 return nullptr; 801 } 802 803 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 804 Value *EndPtr = CI->getArgOperand(1); 805 if (isa<ConstantPointerNull>(EndPtr)) { 806 // With a null EndPtr, this function won't capture the main argument. 807 // It would be readonly too, except that it still may write to errno. 808 CI->addParamAttr(0, Attribute::NoCapture); 809 } 810 811 return nullptr; 812 } 813 814 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 815 StringRef S1, S2; 816 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 817 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 818 819 // strspn(s, "") -> 0 820 // strspn("", s) -> 0 821 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 822 return Constant::getNullValue(CI->getType()); 823 824 // Constant folding. 825 if (HasS1 && HasS2) { 826 size_t Pos = S1.find_first_not_of(S2); 827 if (Pos == StringRef::npos) 828 Pos = S1.size(); 829 return ConstantInt::get(CI->getType(), Pos); 830 } 831 832 return nullptr; 833 } 834 835 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 836 StringRef S1, S2; 837 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 838 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 839 840 // strcspn("", s) -> 0 841 if (HasS1 && S1.empty()) 842 return Constant::getNullValue(CI->getType()); 843 844 // Constant folding. 845 if (HasS1 && HasS2) { 846 size_t Pos = S1.find_first_of(S2); 847 if (Pos == StringRef::npos) 848 Pos = S1.size(); 849 return ConstantInt::get(CI->getType(), Pos); 850 } 851 852 // strcspn(s, "") -> strlen(s) 853 if (HasS2 && S2.empty()) 854 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI)); 855 856 return nullptr; 857 } 858 859 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 860 // fold strstr(x, x) -> x. 861 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 862 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 863 864 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 865 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 866 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 867 if (!StrLen) 868 return nullptr; 869 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 870 StrLen, B, DL, TLI); 871 if (!StrNCmp) 872 return nullptr; 873 for (User *U : llvm::make_early_inc_range(CI->users())) { 874 ICmpInst *Old = cast<ICmpInst>(U); 875 Value *Cmp = 876 B.CreateICmp(Old->getPredicate(), StrNCmp, 877 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 878 replaceAllUsesWith(Old, Cmp); 879 } 880 return CI; 881 } 882 883 // See if either input string is a constant string. 884 StringRef SearchStr, ToFindStr; 885 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 886 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 887 888 // fold strstr(x, "") -> x. 889 if (HasStr2 && ToFindStr.empty()) 890 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 891 892 // If both strings are known, constant fold it. 893 if (HasStr1 && HasStr2) { 894 size_t Offset = SearchStr.find(ToFindStr); 895 896 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 897 return Constant::getNullValue(CI->getType()); 898 899 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 900 Value *Result = castToCStr(CI->getArgOperand(0), B); 901 Result = 902 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 903 return B.CreateBitCast(Result, CI->getType()); 904 } 905 906 // fold strstr(x, "y") -> strchr(x, 'y'). 907 if (HasStr2 && ToFindStr.size() == 1) { 908 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 909 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 910 } 911 912 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 913 return nullptr; 914 } 915 916 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 917 Value *SrcStr = CI->getArgOperand(0); 918 Value *Size = CI->getArgOperand(2); 919 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 920 Value *CharVal = CI->getArgOperand(1); 921 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 922 Value *NullPtr = Constant::getNullValue(CI->getType()); 923 924 if (LenC) { 925 if (LenC->isZero()) 926 // Fold memrchr(x, y, 0) --> null. 927 return NullPtr; 928 929 if (LenC->isOne()) { 930 // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y, 931 // constant or otherwise. 932 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0"); 933 // Slice off the character's high end bits. 934 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 935 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp"); 936 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel"); 937 } 938 } 939 940 StringRef Str; 941 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 942 return nullptr; 943 944 uint64_t EndOff = UINT64_MAX; 945 if (LenC) { 946 EndOff = LenC->getZExtValue(); 947 if (Str.size() < EndOff) 948 // Punt out-of-bounds accesses to sanitizers and/or libc. 949 return nullptr; 950 } 951 952 if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) { 953 // Fold memrchr(S, C, N) for a constant C. 954 size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff); 955 if (Pos == StringRef::npos) 956 // When the character is not in the source array fold the result 957 // to null regardless of Size. 958 return NullPtr; 959 960 if (LenC) 961 // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos. 962 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos)); 963 964 if (Str.find(CharC->getZExtValue(), Pos) == StringRef::npos) { 965 // When there is just a single occurrence of C in S, fold 966 // memrchr(s, c, N) --> N <= Pos ? null : s + Pos 967 // for nonconstant N. 968 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), 969 Pos), 970 "memrchr.cmp"); 971 Value *SrcPlus = B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), 972 "memrchr.ptr_plus"); 973 return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel"); 974 } 975 } 976 977 // Truncate the string to search at most EndOff characters. 978 Str = Str.substr(0, EndOff); 979 if (Str.find_first_not_of(Str[0]) != StringRef::npos) 980 return nullptr; 981 982 // If the source array consists of all equal characters, then for any 983 // C and N (whether in bounds or not), fold memrchr(S, C, N) to 984 // N != 0 && *S == C ? S + N - 1 : null 985 Type *SizeTy = Size->getType(); 986 Type *Int8Ty = B.getInt8Ty(); 987 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0)); 988 // Slice off the sought character's high end bits. 989 CharVal = B.CreateTrunc(CharVal, Int8Ty); 990 Value *CEqS0 = B.CreateICmpEQ(ConstantInt::get(Int8Ty, Str[0]), CharVal); 991 Value *And = B.CreateLogicalAnd(NNeZ, CEqS0); 992 Value *SizeM1 = B.CreateSub(Size, ConstantInt::get(SizeTy, 1)); 993 Value *SrcPlus = B.CreateGEP(Int8Ty, SrcStr, SizeM1, "memrchr.ptr_plus"); 994 return B.CreateSelect(And, SrcPlus, NullPtr, "memrchr.sel"); 995 } 996 997 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 998 Value *SrcStr = CI->getArgOperand(0); 999 Value *Size = CI->getArgOperand(2); 1000 if (isKnownNonZero(Size, DL)) 1001 annotateNonNullNoUndefBasedOnAccess(CI, 0); 1002 1003 Value *CharVal = CI->getArgOperand(1); 1004 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 1005 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1006 1007 // memchr(x, y, 0) -> null 1008 if (LenC) { 1009 if (LenC->isZero()) 1010 return Constant::getNullValue(CI->getType()); 1011 1012 if (LenC->isOne()) { 1013 // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y, 1014 // constant or otherwise. 1015 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0"); 1016 // Slice off the character's high end bits. 1017 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 1018 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp"); 1019 Value *NullPtr = Constant::getNullValue(CI->getType()); 1020 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel"); 1021 } 1022 } 1023 1024 StringRef Str; 1025 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 1026 return nullptr; 1027 1028 if (CharC) { 1029 size_t Pos = Str.find(CharC->getZExtValue()); 1030 if (Pos == StringRef::npos) 1031 // When the character is not in the source array fold the result 1032 // to null regardless of Size. 1033 return Constant::getNullValue(CI->getType()); 1034 1035 // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos 1036 // When the constant Size is less than or equal to the character 1037 // position also fold the result to null. 1038 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos), 1039 "memchr.cmp"); 1040 Value *NullPtr = Constant::getNullValue(CI->getType()); 1041 Value *SrcPlus = 1042 B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), "memchr.ptr"); 1043 return B.CreateSelect(Cmp, NullPtr, SrcPlus); 1044 } 1045 1046 if (!LenC) 1047 // From now on we need a constant length and constant array. 1048 return nullptr; 1049 1050 // Truncate the string to LenC without slicing when targeting LP64 1051 // on an ILP32 host. 1052 uint64_t EndOff = std::min(LenC->getZExtValue(), (uint64_t)StringRef::npos); 1053 Str = Str.substr(0, EndOff); 1054 1055 // If the char is variable but the input str and length are not we can turn 1056 // this memchr call into a simple bit field test. Of course this only works 1057 // when the return value is only checked against null. 1058 // 1059 // It would be really nice to reuse switch lowering here but we can't change 1060 // the CFG at this point. 1061 // 1062 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 1063 // != 0 1064 // after bounds check. 1065 if (Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI)) 1066 return nullptr; 1067 1068 unsigned char Max = 1069 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 1070 reinterpret_cast<const unsigned char *>(Str.end())); 1071 1072 // Make sure the bit field we're about to create fits in a register on the 1073 // target. 1074 // FIXME: On a 64 bit architecture this prevents us from using the 1075 // interesting range of alpha ascii chars. We could do better by emitting 1076 // two bitfields or shifting the range by 64 if no lower chars are used. 1077 if (!DL.fitsInLegalInteger(Max + 1)) 1078 return nullptr; 1079 1080 // For the bit field use a power-of-2 type with at least 8 bits to avoid 1081 // creating unnecessary illegal types. 1082 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 1083 1084 // Now build the bit field. 1085 APInt Bitfield(Width, 0); 1086 for (char C : Str) 1087 Bitfield.setBit((unsigned char)C); 1088 Value *BitfieldC = B.getInt(Bitfield); 1089 1090 // Adjust width of "C" to the bitfield width, then mask off the high bits. 1091 Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType()); 1092 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 1093 1094 // First check that the bit field access is within bounds. 1095 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 1096 "memchr.bounds"); 1097 1098 // Create code that checks if the given bit is set in the field. 1099 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 1100 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 1101 1102 // Finally merge both checks and cast to pointer type. The inttoptr 1103 // implicitly zexts the i1 to intptr type. 1104 return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"), 1105 CI->getType()); 1106 } 1107 1108 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 1109 uint64_t Len, IRBuilderBase &B, 1110 const DataLayout &DL) { 1111 if (Len == 0) // memcmp(s1,s2,0) -> 0 1112 return Constant::getNullValue(CI->getType()); 1113 1114 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 1115 if (Len == 1) { 1116 Value *LHSV = 1117 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 1118 CI->getType(), "lhsv"); 1119 Value *RHSV = 1120 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 1121 CI->getType(), "rhsv"); 1122 return B.CreateSub(LHSV, RHSV, "chardiff"); 1123 } 1124 1125 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 1126 // TODO: The case where both inputs are constants does not need to be limited 1127 // to legal integers or equality comparison. See block below this. 1128 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 1129 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 1130 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 1131 1132 // First, see if we can fold either argument to a constant. 1133 Value *LHSV = nullptr; 1134 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 1135 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 1136 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 1137 } 1138 Value *RHSV = nullptr; 1139 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 1140 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 1141 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 1142 } 1143 1144 // Don't generate unaligned loads. If either source is constant data, 1145 // alignment doesn't matter for that source because there is no load. 1146 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 1147 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 1148 if (!LHSV) { 1149 Type *LHSPtrTy = 1150 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 1151 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 1152 } 1153 if (!RHSV) { 1154 Type *RHSPtrTy = 1155 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 1156 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 1157 } 1158 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1159 } 1160 } 1161 1162 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 1163 // TODO: This is limited to i8 arrays. 1164 StringRef LHSStr, RHSStr; 1165 if (getConstantStringInfo(LHS, LHSStr) && 1166 getConstantStringInfo(RHS, RHSStr)) { 1167 // Make sure we're not reading out-of-bounds memory. 1168 if (Len > LHSStr.size() || Len > RHSStr.size()) 1169 return nullptr; 1170 // Fold the memcmp and normalize the result. This way we get consistent 1171 // results across multiple platforms. 1172 uint64_t Ret = 0; 1173 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 1174 if (Cmp < 0) 1175 Ret = -1; 1176 else if (Cmp > 0) 1177 Ret = 1; 1178 return ConstantInt::get(CI->getType(), Ret); 1179 } 1180 1181 return nullptr; 1182 } 1183 1184 // Most simplifications for memcmp also apply to bcmp. 1185 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1186 IRBuilderBase &B) { 1187 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1188 Value *Size = CI->getArgOperand(2); 1189 1190 if (LHS == RHS) // memcmp(s,s,x) -> 0 1191 return Constant::getNullValue(CI->getType()); 1192 1193 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1194 // Handle constant lengths. 1195 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1196 if (!LenC) 1197 return nullptr; 1198 1199 // memcmp(d,s,0) -> 0 1200 if (LenC->getZExtValue() == 0) 1201 return Constant::getNullValue(CI->getType()); 1202 1203 if (Value *Res = 1204 optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL)) 1205 return Res; 1206 return nullptr; 1207 } 1208 1209 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1210 Module *M = CI->getModule(); 1211 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1212 return V; 1213 1214 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1215 // bcmp can be more efficient than memcmp because it only has to know that 1216 // there is a difference, not how different one is to the other. 1217 if (isLibFuncEmittable(M, TLI, LibFunc_bcmp) && 1218 isOnlyUsedInZeroEqualityComparison(CI)) { 1219 Value *LHS = CI->getArgOperand(0); 1220 Value *RHS = CI->getArgOperand(1); 1221 Value *Size = CI->getArgOperand(2); 1222 return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI)); 1223 } 1224 1225 return nullptr; 1226 } 1227 1228 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1229 return optimizeMemCmpBCmpCommon(CI, B); 1230 } 1231 1232 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1233 Value *Size = CI->getArgOperand(2); 1234 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1235 if (isa<IntrinsicInst>(CI)) 1236 return nullptr; 1237 1238 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1239 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1240 CI->getArgOperand(1), Align(1), Size); 1241 NewCI->setAttributes(CI->getAttributes()); 1242 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1243 copyFlags(*CI, NewCI); 1244 return CI->getArgOperand(0); 1245 } 1246 1247 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1248 Value *Dst = CI->getArgOperand(0); 1249 Value *Src = CI->getArgOperand(1); 1250 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1251 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1252 StringRef SrcStr; 1253 if (CI->use_empty() && Dst == Src) 1254 return Dst; 1255 // memccpy(d, s, c, 0) -> nullptr 1256 if (N) { 1257 if (N->isNullValue()) 1258 return Constant::getNullValue(CI->getType()); 1259 if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0, 1260 /*TrimAtNul=*/false) || 1261 !StopChar) 1262 return nullptr; 1263 } else { 1264 return nullptr; 1265 } 1266 1267 // Wrap arg 'c' of type int to char 1268 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1269 if (Pos == StringRef::npos) { 1270 if (N->getZExtValue() <= SrcStr.size()) { 1271 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), 1272 CI->getArgOperand(3))); 1273 return Constant::getNullValue(CI->getType()); 1274 } 1275 return nullptr; 1276 } 1277 1278 Value *NewN = 1279 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1280 // memccpy -> llvm.memcpy 1281 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN)); 1282 return Pos + 1 <= N->getZExtValue() 1283 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1284 : Constant::getNullValue(CI->getType()); 1285 } 1286 1287 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1288 Value *Dst = CI->getArgOperand(0); 1289 Value *N = CI->getArgOperand(2); 1290 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1291 CallInst *NewCI = 1292 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1293 // Propagate attributes, but memcpy has no return value, so make sure that 1294 // any return attributes are compliant. 1295 // TODO: Attach return value attributes to the 1st operand to preserve them? 1296 NewCI->setAttributes(CI->getAttributes()); 1297 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1298 copyFlags(*CI, NewCI); 1299 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1300 } 1301 1302 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1303 Value *Size = CI->getArgOperand(2); 1304 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1305 if (isa<IntrinsicInst>(CI)) 1306 return nullptr; 1307 1308 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1309 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1310 CI->getArgOperand(1), Align(1), Size); 1311 NewCI->setAttributes(CI->getAttributes()); 1312 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1313 copyFlags(*CI, NewCI); 1314 return CI->getArgOperand(0); 1315 } 1316 1317 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1318 Value *Size = CI->getArgOperand(2); 1319 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1320 if (isa<IntrinsicInst>(CI)) 1321 return nullptr; 1322 1323 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1324 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1325 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1326 NewCI->setAttributes(CI->getAttributes()); 1327 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1328 copyFlags(*CI, NewCI); 1329 return CI->getArgOperand(0); 1330 } 1331 1332 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1333 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1334 return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI)); 1335 1336 return nullptr; 1337 } 1338 1339 //===----------------------------------------------------------------------===// 1340 // Math Library Optimizations 1341 //===----------------------------------------------------------------------===// 1342 1343 // Replace a libcall \p CI with a call to intrinsic \p IID 1344 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1345 Intrinsic::ID IID) { 1346 // Propagate fast-math flags from the existing call to the new call. 1347 IRBuilderBase::FastMathFlagGuard Guard(B); 1348 B.setFastMathFlags(CI->getFastMathFlags()); 1349 1350 Module *M = CI->getModule(); 1351 Value *V = CI->getArgOperand(0); 1352 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1353 CallInst *NewCall = B.CreateCall(F, V); 1354 NewCall->takeName(CI); 1355 return copyFlags(*CI, NewCall); 1356 } 1357 1358 /// Return a variant of Val with float type. 1359 /// Currently this works in two cases: If Val is an FPExtension of a float 1360 /// value to something bigger, simply return the operand. 1361 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1362 /// loss of precision do so. 1363 static Value *valueHasFloatPrecision(Value *Val) { 1364 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1365 Value *Op = Cast->getOperand(0); 1366 if (Op->getType()->isFloatTy()) 1367 return Op; 1368 } 1369 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1370 APFloat F = Const->getValueAPF(); 1371 bool losesInfo; 1372 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1373 &losesInfo); 1374 if (!losesInfo) 1375 return ConstantFP::get(Const->getContext(), F); 1376 } 1377 return nullptr; 1378 } 1379 1380 /// Shrink double -> float functions. 1381 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1382 bool isBinary, const TargetLibraryInfo *TLI, 1383 bool isPrecise = false) { 1384 Function *CalleeFn = CI->getCalledFunction(); 1385 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1386 return nullptr; 1387 1388 // If not all the uses of the function are converted to float, then bail out. 1389 // This matters if the precision of the result is more important than the 1390 // precision of the arguments. 1391 if (isPrecise) 1392 for (User *U : CI->users()) { 1393 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1394 if (!Cast || !Cast->getType()->isFloatTy()) 1395 return nullptr; 1396 } 1397 1398 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1399 Value *V[2]; 1400 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1401 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1402 if (!V[0] || (isBinary && !V[1])) 1403 return nullptr; 1404 1405 // If call isn't an intrinsic, check that it isn't within a function with the 1406 // same name as the float version of this call, otherwise the result is an 1407 // infinite loop. For example, from MinGW-w64: 1408 // 1409 // float expf(float val) { return (float) exp((double) val); } 1410 StringRef CalleeName = CalleeFn->getName(); 1411 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1412 if (!IsIntrinsic) { 1413 StringRef CallerName = CI->getFunction()->getName(); 1414 if (!CallerName.empty() && CallerName.back() == 'f' && 1415 CallerName.size() == (CalleeName.size() + 1) && 1416 CallerName.startswith(CalleeName)) 1417 return nullptr; 1418 } 1419 1420 // Propagate the math semantics from the current function to the new function. 1421 IRBuilderBase::FastMathFlagGuard Guard(B); 1422 B.setFastMathFlags(CI->getFastMathFlags()); 1423 1424 // g((double) float) -> (double) gf(float) 1425 Value *R; 1426 if (IsIntrinsic) { 1427 Module *M = CI->getModule(); 1428 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1429 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1430 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1431 } else { 1432 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1433 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B, 1434 CalleeAttrs) 1435 : emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs); 1436 } 1437 return B.CreateFPExt(R, B.getDoubleTy()); 1438 } 1439 1440 /// Shrink double -> float for unary functions. 1441 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1442 const TargetLibraryInfo *TLI, 1443 bool isPrecise = false) { 1444 return optimizeDoubleFP(CI, B, false, TLI, isPrecise); 1445 } 1446 1447 /// Shrink double -> float for binary functions. 1448 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1449 const TargetLibraryInfo *TLI, 1450 bool isPrecise = false) { 1451 return optimizeDoubleFP(CI, B, true, TLI, isPrecise); 1452 } 1453 1454 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1455 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1456 if (!CI->isFast()) 1457 return nullptr; 1458 1459 // Propagate fast-math flags from the existing call to new instructions. 1460 IRBuilderBase::FastMathFlagGuard Guard(B); 1461 B.setFastMathFlags(CI->getFastMathFlags()); 1462 1463 Value *Real, *Imag; 1464 if (CI->arg_size() == 1) { 1465 Value *Op = CI->getArgOperand(0); 1466 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1467 Real = B.CreateExtractValue(Op, 0, "real"); 1468 Imag = B.CreateExtractValue(Op, 1, "imag"); 1469 } else { 1470 assert(CI->arg_size() == 2 && "Unexpected signature for cabs!"); 1471 Real = CI->getArgOperand(0); 1472 Imag = CI->getArgOperand(1); 1473 } 1474 1475 Value *RealReal = B.CreateFMul(Real, Real); 1476 Value *ImagImag = B.CreateFMul(Imag, Imag); 1477 1478 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1479 CI->getType()); 1480 return copyFlags( 1481 *CI, B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs")); 1482 } 1483 1484 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1485 IRBuilderBase &B) { 1486 if (!isa<FPMathOperator>(Call)) 1487 return nullptr; 1488 1489 IRBuilderBase::FastMathFlagGuard Guard(B); 1490 B.setFastMathFlags(Call->getFastMathFlags()); 1491 1492 // TODO: Can this be shared to also handle LLVM intrinsics? 1493 Value *X; 1494 switch (Func) { 1495 case LibFunc_sin: 1496 case LibFunc_sinf: 1497 case LibFunc_sinl: 1498 case LibFunc_tan: 1499 case LibFunc_tanf: 1500 case LibFunc_tanl: 1501 // sin(-X) --> -sin(X) 1502 // tan(-X) --> -tan(X) 1503 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1504 return B.CreateFNeg( 1505 copyFlags(*Call, B.CreateCall(Call->getCalledFunction(), X))); 1506 break; 1507 case LibFunc_cos: 1508 case LibFunc_cosf: 1509 case LibFunc_cosl: 1510 // cos(-X) --> cos(X) 1511 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1512 return copyFlags(*Call, 1513 B.CreateCall(Call->getCalledFunction(), X, "cos")); 1514 break; 1515 default: 1516 break; 1517 } 1518 return nullptr; 1519 } 1520 1521 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) { 1522 // Multiplications calculated using Addition Chains. 1523 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1524 1525 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1526 1527 if (InnerChain[Exp]) 1528 return InnerChain[Exp]; 1529 1530 static const unsigned AddChain[33][2] = { 1531 {0, 0}, // Unused. 1532 {0, 0}, // Unused (base case = pow1). 1533 {1, 1}, // Unused (pre-computed). 1534 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1535 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1536 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1537 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1538 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1539 }; 1540 1541 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1542 getPow(InnerChain, AddChain[Exp][1], B)); 1543 return InnerChain[Exp]; 1544 } 1545 1546 // Return a properly extended integer (DstWidth bits wide) if the operation is 1547 // an itofp. 1548 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) { 1549 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1550 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1551 // Make sure that the exponent fits inside an "int" of size DstWidth, 1552 // thus avoiding any range issues that FP has not. 1553 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); 1554 if (BitWidth < DstWidth || 1555 (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) 1556 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth)) 1557 : B.CreateZExt(Op, B.getIntNTy(DstWidth)); 1558 } 1559 1560 return nullptr; 1561 } 1562 1563 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1564 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 1565 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 1566 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 1567 Module *M = Pow->getModule(); 1568 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1569 AttributeList Attrs; // Attributes are only meaningful on the original call 1570 Module *Mod = Pow->getModule(); 1571 Type *Ty = Pow->getType(); 1572 bool Ignored; 1573 1574 // Evaluate special cases related to a nested function as the base. 1575 1576 // pow(exp(x), y) -> exp(x * y) 1577 // pow(exp2(x), y) -> exp2(x * y) 1578 // If exp{,2}() is used only once, it is better to fold two transcendental 1579 // math functions into one. If used again, exp{,2}() would still have to be 1580 // called with the original argument, then keep both original transcendental 1581 // functions. However, this transformation is only safe with fully relaxed 1582 // math semantics, since, besides rounding differences, it changes overflow 1583 // and underflow behavior quite dramatically. For example: 1584 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1585 // Whereas: 1586 // exp(1000 * 0.001) = exp(1) 1587 // TODO: Loosen the requirement for fully relaxed math semantics. 1588 // TODO: Handle exp10() when more targets have it available. 1589 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1590 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1591 LibFunc LibFn; 1592 1593 Function *CalleeFn = BaseFn->getCalledFunction(); 1594 if (CalleeFn && 1595 TLI->getLibFunc(CalleeFn->getName(), LibFn) && 1596 isLibFuncEmittable(M, TLI, LibFn)) { 1597 StringRef ExpName; 1598 Intrinsic::ID ID; 1599 Value *ExpFn; 1600 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 1601 1602 switch (LibFn) { 1603 default: 1604 return nullptr; 1605 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1606 ExpName = TLI->getName(LibFunc_exp); 1607 ID = Intrinsic::exp; 1608 LibFnFloat = LibFunc_expf; 1609 LibFnDouble = LibFunc_exp; 1610 LibFnLongDouble = LibFunc_expl; 1611 break; 1612 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1613 ExpName = TLI->getName(LibFunc_exp2); 1614 ID = Intrinsic::exp2; 1615 LibFnFloat = LibFunc_exp2f; 1616 LibFnDouble = LibFunc_exp2; 1617 LibFnLongDouble = LibFunc_exp2l; 1618 break; 1619 } 1620 1621 // Create new exp{,2}() with the product as its argument. 1622 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1623 ExpFn = BaseFn->doesNotAccessMemory() 1624 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1625 FMul, ExpName) 1626 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1627 LibFnLongDouble, B, 1628 BaseFn->getAttributes()); 1629 1630 // Since the new exp{,2}() is different from the original one, dead code 1631 // elimination cannot be trusted to remove it, since it may have side 1632 // effects (e.g., errno). When the only consumer for the original 1633 // exp{,2}() is pow(), then it has to be explicitly erased. 1634 substituteInParent(BaseFn, ExpFn); 1635 return ExpFn; 1636 } 1637 } 1638 1639 // Evaluate special cases related to a constant base. 1640 1641 const APFloat *BaseF; 1642 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1643 return nullptr; 1644 1645 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 1646 if (match(Base, m_SpecificFP(2.0)) && 1647 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 1648 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1649 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1650 return copyFlags(*Pow, 1651 emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, 1652 TLI, LibFunc_ldexp, LibFunc_ldexpf, 1653 LibFunc_ldexpl, B, Attrs)); 1654 } 1655 1656 // pow(2.0 ** n, x) -> exp2(n * x) 1657 if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1658 APFloat BaseR = APFloat(1.0); 1659 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1660 BaseR = BaseR / *BaseF; 1661 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1662 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1663 APSInt NI(64, false); 1664 if ((IsInteger || IsReciprocal) && 1665 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1666 APFloat::opOK && 1667 NI > 1 && NI.isPowerOf2()) { 1668 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1669 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1670 if (Pow->doesNotAccessMemory()) 1671 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 1672 Mod, Intrinsic::exp2, Ty), 1673 FMul, "exp2")); 1674 else 1675 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 1676 LibFunc_exp2f, 1677 LibFunc_exp2l, B, Attrs)); 1678 } 1679 } 1680 1681 // pow(10.0, x) -> exp10(x) 1682 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1683 if (match(Base, m_SpecificFP(10.0)) && 1684 hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1685 return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, 1686 LibFunc_exp10f, LibFunc_exp10l, 1687 B, Attrs)); 1688 1689 // pow(x, y) -> exp2(log2(x) * y) 1690 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 1691 !BaseF->isNegative()) { 1692 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 1693 // Luckily optimizePow has already handled the x == 1 case. 1694 assert(!match(Base, m_FPOne()) && 1695 "pow(1.0, y) should have been simplified earlier!"); 1696 1697 Value *Log = nullptr; 1698 if (Ty->isFloatTy()) 1699 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 1700 else if (Ty->isDoubleTy()) 1701 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 1702 1703 if (Log) { 1704 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 1705 if (Pow->doesNotAccessMemory()) 1706 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 1707 Mod, Intrinsic::exp2, Ty), 1708 FMul, "exp2")); 1709 else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, 1710 LibFunc_exp2l)) 1711 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 1712 LibFunc_exp2f, 1713 LibFunc_exp2l, B, Attrs)); 1714 } 1715 } 1716 1717 return nullptr; 1718 } 1719 1720 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1721 Module *M, IRBuilderBase &B, 1722 const TargetLibraryInfo *TLI) { 1723 // If errno is never set, then use the intrinsic for sqrt(). 1724 if (NoErrno) { 1725 Function *SqrtFn = 1726 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1727 return B.CreateCall(SqrtFn, V, "sqrt"); 1728 } 1729 1730 // Otherwise, use the libcall for sqrt(). 1731 if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, 1732 LibFunc_sqrtl)) 1733 // TODO: We also should check that the target can in fact lower the sqrt() 1734 // libcall. We currently have no way to ask this question, so we ask if 1735 // the target has a sqrt() libcall, which is not exactly the same. 1736 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1737 LibFunc_sqrtl, B, Attrs); 1738 1739 return nullptr; 1740 } 1741 1742 /// Use square root in place of pow(x, +/-0.5). 1743 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 1744 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1745 AttributeList Attrs; // Attributes are only meaningful on the original call 1746 Module *Mod = Pow->getModule(); 1747 Type *Ty = Pow->getType(); 1748 1749 const APFloat *ExpoF; 1750 if (!match(Expo, m_APFloat(ExpoF)) || 1751 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1752 return nullptr; 1753 1754 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 1755 // so that requires fast-math-flags (afn or reassoc). 1756 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 1757 return nullptr; 1758 1759 // If we have a pow() library call (accesses memory) and we can't guarantee 1760 // that the base is not an infinity, give up: 1761 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 1762 // errno), but sqrt(-Inf) is required by various standards to set errno. 1763 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 1764 !isKnownNeverInfinity(Base, TLI)) 1765 return nullptr; 1766 1767 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1768 if (!Sqrt) 1769 return nullptr; 1770 1771 // Handle signed zero base by expanding to fabs(sqrt(x)). 1772 if (!Pow->hasNoSignedZeros()) { 1773 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1774 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1775 } 1776 1777 Sqrt = copyFlags(*Pow, Sqrt); 1778 1779 // Handle non finite base by expanding to 1780 // (x == -infinity ? +infinity : sqrt(x)). 1781 if (!Pow->hasNoInfs()) { 1782 Value *PosInf = ConstantFP::getInfinity(Ty), 1783 *NegInf = ConstantFP::getInfinity(Ty, true); 1784 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1785 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1786 } 1787 1788 // If the exponent is negative, then get the reciprocal. 1789 if (ExpoF->isNegative()) 1790 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1791 1792 return Sqrt; 1793 } 1794 1795 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1796 IRBuilderBase &B) { 1797 Value *Args[] = {Base, Expo}; 1798 Type *Types[] = {Base->getType(), Expo->getType()}; 1799 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types); 1800 return B.CreateCall(F, Args); 1801 } 1802 1803 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 1804 Value *Base = Pow->getArgOperand(0); 1805 Value *Expo = Pow->getArgOperand(1); 1806 Function *Callee = Pow->getCalledFunction(); 1807 StringRef Name = Callee->getName(); 1808 Type *Ty = Pow->getType(); 1809 Module *M = Pow->getModule(); 1810 bool AllowApprox = Pow->hasApproxFunc(); 1811 bool Ignored; 1812 1813 // Propagate the math semantics from the call to any created instructions. 1814 IRBuilderBase::FastMathFlagGuard Guard(B); 1815 B.setFastMathFlags(Pow->getFastMathFlags()); 1816 // Evaluate special cases related to the base. 1817 1818 // pow(1.0, x) -> 1.0 1819 if (match(Base, m_FPOne())) 1820 return Base; 1821 1822 if (Value *Exp = replacePowWithExp(Pow, B)) 1823 return Exp; 1824 1825 // Evaluate special cases related to the exponent. 1826 1827 // pow(x, -1.0) -> 1.0 / x 1828 if (match(Expo, m_SpecificFP(-1.0))) 1829 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1830 1831 // pow(x, +/-0.0) -> 1.0 1832 if (match(Expo, m_AnyZeroFP())) 1833 return ConstantFP::get(Ty, 1.0); 1834 1835 // pow(x, 1.0) -> x 1836 if (match(Expo, m_FPOne())) 1837 return Base; 1838 1839 // pow(x, 2.0) -> x * x 1840 if (match(Expo, m_SpecificFP(2.0))) 1841 return B.CreateFMul(Base, Base, "square"); 1842 1843 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1844 return Sqrt; 1845 1846 // pow(x, n) -> x * x * x * ... 1847 const APFloat *ExpoF; 1848 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 1849 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 1850 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1851 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1852 // additional fmul. 1853 // TODO: This whole transformation should be backend specific (e.g. some 1854 // backends might prefer libcalls or the limit for the exponent might 1855 // be different) and it should also consider optimizing for size. 1856 APFloat LimF(ExpoF->getSemantics(), 33), 1857 ExpoA(abs(*ExpoF)); 1858 if (ExpoA < LimF) { 1859 // This transformation applies to integer or integer+0.5 exponents only. 1860 // For integer+0.5, we create a sqrt(Base) call. 1861 Value *Sqrt = nullptr; 1862 if (!ExpoA.isInteger()) { 1863 APFloat Expo2 = ExpoA; 1864 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1865 // is no floating point exception and the result is an integer, then 1866 // ExpoA == integer + 0.5 1867 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1868 return nullptr; 1869 1870 if (!Expo2.isInteger()) 1871 return nullptr; 1872 1873 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1874 Pow->doesNotAccessMemory(), M, B, TLI); 1875 if (!Sqrt) 1876 return nullptr; 1877 } 1878 1879 // We will memoize intermediate products of the Addition Chain. 1880 Value *InnerChain[33] = {nullptr}; 1881 InnerChain[1] = Base; 1882 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1883 1884 // We cannot readily convert a non-double type (like float) to a double. 1885 // So we first convert it to something which could be converted to double. 1886 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1887 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1888 1889 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1890 if (Sqrt) 1891 FMul = B.CreateFMul(FMul, Sqrt); 1892 1893 // If the exponent is negative, then get the reciprocal. 1894 if (ExpoF->isNegative()) 1895 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1896 1897 return FMul; 1898 } 1899 1900 APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false); 1901 // powf(x, n) -> powi(x, n) if n is a constant signed integer value 1902 if (ExpoF->isInteger() && 1903 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 1904 APFloat::opOK) { 1905 return copyFlags( 1906 *Pow, 1907 createPowWithIntegerExponent( 1908 Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo), 1909 M, B)); 1910 } 1911 } 1912 1913 // powf(x, itofp(y)) -> powi(x, y) 1914 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 1915 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1916 return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B)); 1917 } 1918 1919 // Shrink pow() to powf() if the arguments are single precision, 1920 // unless the result is expected to be double precision. 1921 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 1922 hasFloatVersion(M, Name)) { 1923 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true)) 1924 return Shrunk; 1925 } 1926 1927 return nullptr; 1928 } 1929 1930 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 1931 Module *M = CI->getModule(); 1932 Function *Callee = CI->getCalledFunction(); 1933 AttributeList Attrs; // Attributes are only meaningful on the original call 1934 StringRef Name = Callee->getName(); 1935 Value *Ret = nullptr; 1936 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 1937 hasFloatVersion(M, Name)) 1938 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 1939 1940 Type *Ty = CI->getType(); 1941 Value *Op = CI->getArgOperand(0); 1942 1943 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize 1944 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize 1945 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 1946 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1947 if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) 1948 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 1949 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1950 B, Attrs); 1951 } 1952 1953 return Ret; 1954 } 1955 1956 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 1957 Module *M = CI->getModule(); 1958 1959 // If we can shrink the call to a float function rather than a double 1960 // function, do that first. 1961 Function *Callee = CI->getCalledFunction(); 1962 StringRef Name = Callee->getName(); 1963 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name)) 1964 if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI)) 1965 return Ret; 1966 1967 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 1968 // the intrinsics for improved optimization (for example, vectorization). 1969 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 1970 // From the C standard draft WG14/N1256: 1971 // "Ideally, fmax would be sensitive to the sign of zero, for example 1972 // fmax(-0.0, +0.0) would return +0; however, implementation in software 1973 // might be impractical." 1974 IRBuilderBase::FastMathFlagGuard Guard(B); 1975 FastMathFlags FMF = CI->getFastMathFlags(); 1976 FMF.setNoSignedZeros(); 1977 B.setFastMathFlags(FMF); 1978 1979 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 1980 : Intrinsic::maxnum; 1981 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 1982 return copyFlags( 1983 *CI, B.CreateCall(F, {CI->getArgOperand(0), CI->getArgOperand(1)})); 1984 } 1985 1986 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 1987 Function *LogFn = Log->getCalledFunction(); 1988 AttributeList Attrs; // Attributes are only meaningful on the original call 1989 StringRef LogNm = LogFn->getName(); 1990 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 1991 Module *Mod = Log->getModule(); 1992 Type *Ty = Log->getType(); 1993 Value *Ret = nullptr; 1994 1995 if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm)) 1996 Ret = optimizeUnaryDoubleFP(Log, B, TLI, true); 1997 1998 // The earlier call must also be 'fast' in order to do these transforms. 1999 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 2000 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 2001 return Ret; 2002 2003 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 2004 2005 // This is only applicable to log(), log2(), log10(). 2006 if (TLI->getLibFunc(LogNm, LogLb)) 2007 switch (LogLb) { 2008 case LibFunc_logf: 2009 LogID = Intrinsic::log; 2010 ExpLb = LibFunc_expf; 2011 Exp2Lb = LibFunc_exp2f; 2012 Exp10Lb = LibFunc_exp10f; 2013 PowLb = LibFunc_powf; 2014 break; 2015 case LibFunc_log: 2016 LogID = Intrinsic::log; 2017 ExpLb = LibFunc_exp; 2018 Exp2Lb = LibFunc_exp2; 2019 Exp10Lb = LibFunc_exp10; 2020 PowLb = LibFunc_pow; 2021 break; 2022 case LibFunc_logl: 2023 LogID = Intrinsic::log; 2024 ExpLb = LibFunc_expl; 2025 Exp2Lb = LibFunc_exp2l; 2026 Exp10Lb = LibFunc_exp10l; 2027 PowLb = LibFunc_powl; 2028 break; 2029 case LibFunc_log2f: 2030 LogID = Intrinsic::log2; 2031 ExpLb = LibFunc_expf; 2032 Exp2Lb = LibFunc_exp2f; 2033 Exp10Lb = LibFunc_exp10f; 2034 PowLb = LibFunc_powf; 2035 break; 2036 case LibFunc_log2: 2037 LogID = Intrinsic::log2; 2038 ExpLb = LibFunc_exp; 2039 Exp2Lb = LibFunc_exp2; 2040 Exp10Lb = LibFunc_exp10; 2041 PowLb = LibFunc_pow; 2042 break; 2043 case LibFunc_log2l: 2044 LogID = Intrinsic::log2; 2045 ExpLb = LibFunc_expl; 2046 Exp2Lb = LibFunc_exp2l; 2047 Exp10Lb = LibFunc_exp10l; 2048 PowLb = LibFunc_powl; 2049 break; 2050 case LibFunc_log10f: 2051 LogID = Intrinsic::log10; 2052 ExpLb = LibFunc_expf; 2053 Exp2Lb = LibFunc_exp2f; 2054 Exp10Lb = LibFunc_exp10f; 2055 PowLb = LibFunc_powf; 2056 break; 2057 case LibFunc_log10: 2058 LogID = Intrinsic::log10; 2059 ExpLb = LibFunc_exp; 2060 Exp2Lb = LibFunc_exp2; 2061 Exp10Lb = LibFunc_exp10; 2062 PowLb = LibFunc_pow; 2063 break; 2064 case LibFunc_log10l: 2065 LogID = Intrinsic::log10; 2066 ExpLb = LibFunc_expl; 2067 Exp2Lb = LibFunc_exp2l; 2068 Exp10Lb = LibFunc_exp10l; 2069 PowLb = LibFunc_powl; 2070 break; 2071 default: 2072 return Ret; 2073 } 2074 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 2075 LogID == Intrinsic::log10) { 2076 if (Ty->getScalarType()->isFloatTy()) { 2077 ExpLb = LibFunc_expf; 2078 Exp2Lb = LibFunc_exp2f; 2079 Exp10Lb = LibFunc_exp10f; 2080 PowLb = LibFunc_powf; 2081 } else if (Ty->getScalarType()->isDoubleTy()) { 2082 ExpLb = LibFunc_exp; 2083 Exp2Lb = LibFunc_exp2; 2084 Exp10Lb = LibFunc_exp10; 2085 PowLb = LibFunc_pow; 2086 } else 2087 return Ret; 2088 } else 2089 return Ret; 2090 2091 IRBuilderBase::FastMathFlagGuard Guard(B); 2092 B.setFastMathFlags(FastMathFlags::getFast()); 2093 2094 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 2095 LibFunc ArgLb = NotLibFunc; 2096 TLI->getLibFunc(*Arg, ArgLb); 2097 2098 // log(pow(x,y)) -> y*log(x) 2099 if (ArgLb == PowLb || ArgID == Intrinsic::pow) { 2100 Value *LogX = 2101 Log->doesNotAccessMemory() 2102 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 2103 Arg->getOperand(0), "log") 2104 : emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, Attrs); 2105 Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul"); 2106 // Since pow() may have side effects, e.g. errno, 2107 // dead code elimination may not be trusted to remove it. 2108 substituteInParent(Arg, MulY); 2109 return MulY; 2110 } 2111 2112 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 2113 // TODO: There is no exp10() intrinsic yet. 2114 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 2115 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 2116 Constant *Eul; 2117 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 2118 // FIXME: Add more precise value of e for long double. 2119 Eul = ConstantFP::get(Log->getType(), numbers::e); 2120 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 2121 Eul = ConstantFP::get(Log->getType(), 2.0); 2122 else 2123 Eul = ConstantFP::get(Log->getType(), 10.0); 2124 Value *LogE = Log->doesNotAccessMemory() 2125 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 2126 Eul, "log") 2127 : emitUnaryFloatFnCall(Eul, TLI, LogNm, B, Attrs); 2128 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 2129 // Since exp() may have side effects, e.g. errno, 2130 // dead code elimination may not be trusted to remove it. 2131 substituteInParent(Arg, MulY); 2132 return MulY; 2133 } 2134 2135 return Ret; 2136 } 2137 2138 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 2139 Module *M = CI->getModule(); 2140 Function *Callee = CI->getCalledFunction(); 2141 Value *Ret = nullptr; 2142 // TODO: Once we have a way (other than checking for the existince of the 2143 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 2144 // condition below. 2145 if (isLibFuncEmittable(M, TLI, LibFunc_sqrtf) && 2146 (Callee->getName() == "sqrt" || 2147 Callee->getIntrinsicID() == Intrinsic::sqrt)) 2148 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2149 2150 if (!CI->isFast()) 2151 return Ret; 2152 2153 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 2154 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 2155 return Ret; 2156 2157 // We're looking for a repeated factor in a multiplication tree, 2158 // so we can do this fold: sqrt(x * x) -> fabs(x); 2159 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 2160 Value *Op0 = I->getOperand(0); 2161 Value *Op1 = I->getOperand(1); 2162 Value *RepeatOp = nullptr; 2163 Value *OtherOp = nullptr; 2164 if (Op0 == Op1) { 2165 // Simple match: the operands of the multiply are identical. 2166 RepeatOp = Op0; 2167 } else { 2168 // Look for a more complicated pattern: one of the operands is itself 2169 // a multiply, so search for a common factor in that multiply. 2170 // Note: We don't bother looking any deeper than this first level or for 2171 // variations of this pattern because instcombine's visitFMUL and/or the 2172 // reassociation pass should give us this form. 2173 Value *OtherMul0, *OtherMul1; 2174 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 2175 // Pattern: sqrt((x * y) * z) 2176 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 2177 // Matched: sqrt((x * x) * z) 2178 RepeatOp = OtherMul0; 2179 OtherOp = Op1; 2180 } 2181 } 2182 } 2183 if (!RepeatOp) 2184 return Ret; 2185 2186 // Fast math flags for any created instructions should match the sqrt 2187 // and multiply. 2188 IRBuilderBase::FastMathFlagGuard Guard(B); 2189 B.setFastMathFlags(I->getFastMathFlags()); 2190 2191 // If we found a repeated factor, hoist it out of the square root and 2192 // replace it with the fabs of that factor. 2193 Type *ArgType = I->getType(); 2194 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 2195 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 2196 if (OtherOp) { 2197 // If we found a non-repeated factor, we still need to get its square 2198 // root. We then multiply that by the value that was simplified out 2199 // of the square root calculation. 2200 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 2201 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 2202 return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall)); 2203 } 2204 return copyFlags(*CI, FabsCall); 2205 } 2206 2207 // TODO: Generalize to handle any trig function and its inverse. 2208 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) { 2209 Module *M = CI->getModule(); 2210 Function *Callee = CI->getCalledFunction(); 2211 Value *Ret = nullptr; 2212 StringRef Name = Callee->getName(); 2213 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(M, Name)) 2214 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2215 2216 Value *Op1 = CI->getArgOperand(0); 2217 auto *OpC = dyn_cast<CallInst>(Op1); 2218 if (!OpC) 2219 return Ret; 2220 2221 // Both calls must be 'fast' in order to remove them. 2222 if (!CI->isFast() || !OpC->isFast()) 2223 return Ret; 2224 2225 // tan(atan(x)) -> x 2226 // tanf(atanf(x)) -> x 2227 // tanl(atanl(x)) -> x 2228 LibFunc Func; 2229 Function *F = OpC->getCalledFunction(); 2230 if (F && TLI->getLibFunc(F->getName(), Func) && 2231 isLibFuncEmittable(M, TLI, Func) && 2232 ((Func == LibFunc_atan && Callee->getName() == "tan") || 2233 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 2234 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 2235 Ret = OpC->getArgOperand(0); 2236 return Ret; 2237 } 2238 2239 static bool isTrigLibCall(CallInst *CI) { 2240 // We can only hope to do anything useful if we can ignore things like errno 2241 // and floating-point exceptions. 2242 // We already checked the prototype. 2243 return CI->hasFnAttr(Attribute::NoUnwind) && 2244 CI->hasFnAttr(Attribute::ReadNone); 2245 } 2246 2247 static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2248 bool UseFloat, Value *&Sin, Value *&Cos, 2249 Value *&SinCos, const TargetLibraryInfo *TLI) { 2250 Module *M = OrigCallee->getParent(); 2251 Type *ArgTy = Arg->getType(); 2252 Type *ResTy; 2253 StringRef Name; 2254 2255 Triple T(OrigCallee->getParent()->getTargetTriple()); 2256 if (UseFloat) { 2257 Name = "__sincospif_stret"; 2258 2259 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2260 // x86_64 can't use {float, float} since that would be returned in both 2261 // xmm0 and xmm1, which isn't what a real struct would do. 2262 ResTy = T.getArch() == Triple::x86_64 2263 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2264 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2265 } else { 2266 Name = "__sincospi_stret"; 2267 ResTy = StructType::get(ArgTy, ArgTy); 2268 } 2269 2270 if (!isLibFuncEmittable(M, TLI, Name)) 2271 return false; 2272 LibFunc TheLibFunc; 2273 TLI->getLibFunc(Name, TheLibFunc); 2274 FunctionCallee Callee = getOrInsertLibFunc( 2275 M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy); 2276 2277 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2278 // If the argument is an instruction, it must dominate all uses so put our 2279 // sincos call there. 2280 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2281 } else { 2282 // Otherwise (e.g. for a constant) the beginning of the function is as 2283 // good a place as any. 2284 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2285 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2286 } 2287 2288 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2289 2290 if (SinCos->getType()->isStructTy()) { 2291 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2292 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2293 } else { 2294 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2295 "sinpi"); 2296 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2297 "cospi"); 2298 } 2299 2300 return true; 2301 } 2302 2303 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) { 2304 // Make sure the prototype is as expected, otherwise the rest of the 2305 // function is probably invalid and likely to abort. 2306 if (!isTrigLibCall(CI)) 2307 return nullptr; 2308 2309 Value *Arg = CI->getArgOperand(0); 2310 SmallVector<CallInst *, 1> SinCalls; 2311 SmallVector<CallInst *, 1> CosCalls; 2312 SmallVector<CallInst *, 1> SinCosCalls; 2313 2314 bool IsFloat = Arg->getType()->isFloatTy(); 2315 2316 // Look for all compatible sinpi, cospi and sincospi calls with the same 2317 // argument. If there are enough (in some sense) we can make the 2318 // substitution. 2319 Function *F = CI->getFunction(); 2320 for (User *U : Arg->users()) 2321 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2322 2323 // It's only worthwhile if both sinpi and cospi are actually used. 2324 if (SinCalls.empty() || CosCalls.empty()) 2325 return nullptr; 2326 2327 Value *Sin, *Cos, *SinCos; 2328 if (!insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, 2329 SinCos, TLI)) 2330 return nullptr; 2331 2332 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2333 Value *Res) { 2334 for (CallInst *C : Calls) 2335 replaceAllUsesWith(C, Res); 2336 }; 2337 2338 replaceTrigInsts(SinCalls, Sin); 2339 replaceTrigInsts(CosCalls, Cos); 2340 replaceTrigInsts(SinCosCalls, SinCos); 2341 2342 return nullptr; 2343 } 2344 2345 void LibCallSimplifier::classifyArgUse( 2346 Value *Val, Function *F, bool IsFloat, 2347 SmallVectorImpl<CallInst *> &SinCalls, 2348 SmallVectorImpl<CallInst *> &CosCalls, 2349 SmallVectorImpl<CallInst *> &SinCosCalls) { 2350 CallInst *CI = dyn_cast<CallInst>(Val); 2351 Module *M = CI->getModule(); 2352 2353 if (!CI || CI->use_empty()) 2354 return; 2355 2356 // Don't consider calls in other functions. 2357 if (CI->getFunction() != F) 2358 return; 2359 2360 Function *Callee = CI->getCalledFunction(); 2361 LibFunc Func; 2362 if (!Callee || !TLI->getLibFunc(*Callee, Func) || 2363 !isLibFuncEmittable(M, TLI, Func) || 2364 !isTrigLibCall(CI)) 2365 return; 2366 2367 if (IsFloat) { 2368 if (Func == LibFunc_sinpif) 2369 SinCalls.push_back(CI); 2370 else if (Func == LibFunc_cospif) 2371 CosCalls.push_back(CI); 2372 else if (Func == LibFunc_sincospif_stret) 2373 SinCosCalls.push_back(CI); 2374 } else { 2375 if (Func == LibFunc_sinpi) 2376 SinCalls.push_back(CI); 2377 else if (Func == LibFunc_cospi) 2378 CosCalls.push_back(CI); 2379 else if (Func == LibFunc_sincospi_stret) 2380 SinCosCalls.push_back(CI); 2381 } 2382 } 2383 2384 //===----------------------------------------------------------------------===// 2385 // Integer Library Call Optimizations 2386 //===----------------------------------------------------------------------===// 2387 2388 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 2389 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 2390 Value *Op = CI->getArgOperand(0); 2391 Type *ArgType = Op->getType(); 2392 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2393 Intrinsic::cttz, ArgType); 2394 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 2395 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 2396 V = B.CreateIntCast(V, B.getInt32Ty(), false); 2397 2398 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 2399 return B.CreateSelect(Cond, V, B.getInt32(0)); 2400 } 2401 2402 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 2403 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 2404 Value *Op = CI->getArgOperand(0); 2405 Type *ArgType = Op->getType(); 2406 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2407 Intrinsic::ctlz, ArgType); 2408 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 2409 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 2410 V); 2411 return B.CreateIntCast(V, CI->getType(), false); 2412 } 2413 2414 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 2415 // abs(x) -> x <s 0 ? -x : x 2416 // The negation has 'nsw' because abs of INT_MIN is undefined. 2417 Value *X = CI->getArgOperand(0); 2418 Value *IsNeg = B.CreateIsNeg(X); 2419 Value *NegX = B.CreateNSWNeg(X, "neg"); 2420 return B.CreateSelect(IsNeg, NegX, X); 2421 } 2422 2423 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 2424 // isdigit(c) -> (c-'0') <u 10 2425 Value *Op = CI->getArgOperand(0); 2426 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 2427 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 2428 return B.CreateZExt(Op, CI->getType()); 2429 } 2430 2431 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 2432 // isascii(c) -> c <u 128 2433 Value *Op = CI->getArgOperand(0); 2434 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 2435 return B.CreateZExt(Op, CI->getType()); 2436 } 2437 2438 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 2439 // toascii(c) -> c & 0x7f 2440 return B.CreateAnd(CI->getArgOperand(0), 2441 ConstantInt::get(CI->getType(), 0x7F)); 2442 } 2443 2444 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 2445 StringRef Str; 2446 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2447 return nullptr; 2448 2449 return convertStrToNumber(CI, Str, 10); 2450 } 2451 2452 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) { 2453 StringRef Str; 2454 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2455 return nullptr; 2456 2457 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 2458 return nullptr; 2459 2460 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2461 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 2462 } 2463 2464 return nullptr; 2465 } 2466 2467 //===----------------------------------------------------------------------===// 2468 // Formatting and IO Library Call Optimizations 2469 //===----------------------------------------------------------------------===// 2470 2471 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2472 2473 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 2474 int StreamArg) { 2475 Function *Callee = CI->getCalledFunction(); 2476 // Error reporting calls should be cold, mark them as such. 2477 // This applies even to non-builtin calls: it is only a hint and applies to 2478 // functions that the frontend might not understand as builtins. 2479 2480 // This heuristic was suggested in: 2481 // Improving Static Branch Prediction in a Compiler 2482 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2483 // Proceedings of PACT'98, Oct. 1998, IEEE 2484 if (!CI->hasFnAttr(Attribute::Cold) && 2485 isReportingError(Callee, CI, StreamArg)) { 2486 CI->addFnAttr(Attribute::Cold); 2487 } 2488 2489 return nullptr; 2490 } 2491 2492 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2493 if (!Callee || !Callee->isDeclaration()) 2494 return false; 2495 2496 if (StreamArg < 0) 2497 return true; 2498 2499 // These functions might be considered cold, but only if their stream 2500 // argument is stderr. 2501 2502 if (StreamArg >= (int)CI->arg_size()) 2503 return false; 2504 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2505 if (!LI) 2506 return false; 2507 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2508 if (!GV || !GV->isDeclaration()) 2509 return false; 2510 return GV->getName() == "stderr"; 2511 } 2512 2513 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 2514 // Check for a fixed format string. 2515 StringRef FormatStr; 2516 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2517 return nullptr; 2518 2519 // Empty format string -> noop. 2520 if (FormatStr.empty()) // Tolerate printf's declared void. 2521 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2522 2523 // Do not do any of the following transformations if the printf return value 2524 // is used, in general the printf return value is not compatible with either 2525 // putchar() or puts(). 2526 if (!CI->use_empty()) 2527 return nullptr; 2528 2529 // printf("x") -> putchar('x'), even for "%" and "%%". 2530 if (FormatStr.size() == 1 || FormatStr == "%%") 2531 return copyFlags(*CI, emitPutChar(B.getInt32(FormatStr[0]), B, TLI)); 2532 2533 // Try to remove call or emit putchar/puts. 2534 if (FormatStr == "%s" && CI->arg_size() > 1) { 2535 StringRef OperandStr; 2536 if (!getConstantStringInfo(CI->getOperand(1), OperandStr)) 2537 return nullptr; 2538 // printf("%s", "") --> NOP 2539 if (OperandStr.empty()) 2540 return (Value *)CI; 2541 // printf("%s", "a") --> putchar('a') 2542 if (OperandStr.size() == 1) 2543 return copyFlags(*CI, emitPutChar(B.getInt32(OperandStr[0]), B, TLI)); 2544 // printf("%s", str"\n") --> puts(str) 2545 if (OperandStr.back() == '\n') { 2546 OperandStr = OperandStr.drop_back(); 2547 Value *GV = B.CreateGlobalString(OperandStr, "str"); 2548 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2549 } 2550 return nullptr; 2551 } 2552 2553 // printf("foo\n") --> puts("foo") 2554 if (FormatStr.back() == '\n' && 2555 !FormatStr.contains('%')) { // No format characters. 2556 // Create a string literal with no \n on it. We expect the constant merge 2557 // pass to be run after this pass, to merge duplicate strings. 2558 FormatStr = FormatStr.drop_back(); 2559 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2560 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2561 } 2562 2563 // Optimize specific format strings. 2564 // printf("%c", chr) --> putchar(chr) 2565 if (FormatStr == "%c" && CI->arg_size() > 1 && 2566 CI->getArgOperand(1)->getType()->isIntegerTy()) 2567 return copyFlags(*CI, emitPutChar(CI->getArgOperand(1), B, TLI)); 2568 2569 // printf("%s\n", str) --> puts(str) 2570 if (FormatStr == "%s\n" && CI->arg_size() > 1 && 2571 CI->getArgOperand(1)->getType()->isPointerTy()) 2572 return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI)); 2573 return nullptr; 2574 } 2575 2576 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 2577 2578 Module *M = CI->getModule(); 2579 Function *Callee = CI->getCalledFunction(); 2580 FunctionType *FT = Callee->getFunctionType(); 2581 if (Value *V = optimizePrintFString(CI, B)) { 2582 return V; 2583 } 2584 2585 // printf(format, ...) -> iprintf(format, ...) if no floating point 2586 // arguments. 2587 if (isLibFuncEmittable(M, TLI, LibFunc_iprintf) && 2588 !callHasFloatingPointArgument(CI)) { 2589 FunctionCallee IPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_iprintf, FT, 2590 Callee->getAttributes()); 2591 CallInst *New = cast<CallInst>(CI->clone()); 2592 New->setCalledFunction(IPrintFFn); 2593 B.Insert(New); 2594 return New; 2595 } 2596 2597 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2598 // arguments. 2599 if (isLibFuncEmittable(M, TLI, LibFunc_small_printf) && 2600 !callHasFP128Argument(CI)) { 2601 auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT, 2602 Callee->getAttributes()); 2603 CallInst *New = cast<CallInst>(CI->clone()); 2604 New->setCalledFunction(SmallPrintFFn); 2605 B.Insert(New); 2606 return New; 2607 } 2608 2609 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2610 return nullptr; 2611 } 2612 2613 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 2614 IRBuilderBase &B) { 2615 // Check for a fixed format string. 2616 StringRef FormatStr; 2617 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2618 return nullptr; 2619 2620 // If we just have a format string (nothing else crazy) transform it. 2621 Value *Dest = CI->getArgOperand(0); 2622 if (CI->arg_size() == 2) { 2623 // Make sure there's no % in the constant array. We could try to handle 2624 // %% -> % in the future if we cared. 2625 if (FormatStr.contains('%')) 2626 return nullptr; // we found a format specifier, bail out. 2627 2628 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2629 B.CreateMemCpy( 2630 Dest, Align(1), CI->getArgOperand(1), Align(1), 2631 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2632 FormatStr.size() + 1)); // Copy the null byte. 2633 return ConstantInt::get(CI->getType(), FormatStr.size()); 2634 } 2635 2636 // The remaining optimizations require the format string to be "%s" or "%c" 2637 // and have an extra operand. 2638 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 2639 return nullptr; 2640 2641 // Decode the second character of the format string. 2642 if (FormatStr[1] == 'c') { 2643 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2644 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2645 return nullptr; 2646 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2647 Value *Ptr = castToCStr(Dest, B); 2648 B.CreateStore(V, Ptr); 2649 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2650 B.CreateStore(B.getInt8(0), Ptr); 2651 2652 return ConstantInt::get(CI->getType(), 1); 2653 } 2654 2655 if (FormatStr[1] == 's') { 2656 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2657 // strlen(str)+1) 2658 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2659 return nullptr; 2660 2661 if (CI->use_empty()) 2662 // sprintf(dest, "%s", str) -> strcpy(dest, str) 2663 return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI)); 2664 2665 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 2666 if (SrcLen) { 2667 B.CreateMemCpy( 2668 Dest, Align(1), CI->getArgOperand(2), Align(1), 2669 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 2670 // Returns total number of characters written without null-character. 2671 return ConstantInt::get(CI->getType(), SrcLen - 1); 2672 } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) { 2673 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 2674 // Handle mismatched pointer types (goes away with typeless pointers?). 2675 V = B.CreatePointerCast(V, B.getInt8PtrTy()); 2676 Dest = B.CreatePointerCast(Dest, B.getInt8PtrTy()); 2677 Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest); 2678 return B.CreateIntCast(PtrDiff, CI->getType(), false); 2679 } 2680 2681 bool OptForSize = CI->getFunction()->hasOptSize() || 2682 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2683 PGSOQueryType::IRPass); 2684 if (OptForSize) 2685 return nullptr; 2686 2687 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2688 if (!Len) 2689 return nullptr; 2690 Value *IncLen = 2691 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2692 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen); 2693 2694 // The sprintf result is the unincremented number of bytes in the string. 2695 return B.CreateIntCast(Len, CI->getType(), false); 2696 } 2697 return nullptr; 2698 } 2699 2700 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 2701 Module *M = CI->getModule(); 2702 Function *Callee = CI->getCalledFunction(); 2703 FunctionType *FT = Callee->getFunctionType(); 2704 if (Value *V = optimizeSPrintFString(CI, B)) { 2705 return V; 2706 } 2707 2708 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2709 // point arguments. 2710 if (isLibFuncEmittable(M, TLI, LibFunc_siprintf) && 2711 !callHasFloatingPointArgument(CI)) { 2712 FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_siprintf, 2713 FT, Callee->getAttributes()); 2714 CallInst *New = cast<CallInst>(CI->clone()); 2715 New->setCalledFunction(SIPrintFFn); 2716 B.Insert(New); 2717 return New; 2718 } 2719 2720 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2721 // floating point arguments. 2722 if (isLibFuncEmittable(M, TLI, LibFunc_small_sprintf) && 2723 !callHasFP128Argument(CI)) { 2724 auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT, 2725 Callee->getAttributes()); 2726 CallInst *New = cast<CallInst>(CI->clone()); 2727 New->setCalledFunction(SmallSPrintFFn); 2728 B.Insert(New); 2729 return New; 2730 } 2731 2732 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 2733 return nullptr; 2734 } 2735 2736 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 2737 IRBuilderBase &B) { 2738 // Check for size 2739 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2740 if (!Size) 2741 return nullptr; 2742 2743 uint64_t N = Size->getZExtValue(); 2744 // Check for a fixed format string. 2745 StringRef FormatStr; 2746 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2747 return nullptr; 2748 2749 // If we just have a format string (nothing else crazy) transform it. 2750 if (CI->arg_size() == 3) { 2751 // Make sure there's no % in the constant array. We could try to handle 2752 // %% -> % in the future if we cared. 2753 if (FormatStr.contains('%')) 2754 return nullptr; // we found a format specifier, bail out. 2755 2756 if (N == 0) 2757 return ConstantInt::get(CI->getType(), FormatStr.size()); 2758 else if (N < FormatStr.size() + 1) 2759 return nullptr; 2760 2761 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2762 // strlen(fmt)+1) 2763 copyFlags( 2764 *CI, 2765 B.CreateMemCpy( 2766 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2767 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2768 FormatStr.size() + 1))); // Copy the null byte. 2769 return ConstantInt::get(CI->getType(), FormatStr.size()); 2770 } 2771 2772 // The remaining optimizations require the format string to be "%s" or "%c" 2773 // and have an extra operand. 2774 if (FormatStr.size() == 2 && FormatStr[0] == '%' && CI->arg_size() == 4) { 2775 2776 // Decode the second character of the format string. 2777 if (FormatStr[1] == 'c') { 2778 if (N == 0) 2779 return ConstantInt::get(CI->getType(), 1); 2780 else if (N == 1) 2781 return nullptr; 2782 2783 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2784 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2785 return nullptr; 2786 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2787 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2788 B.CreateStore(V, Ptr); 2789 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2790 B.CreateStore(B.getInt8(0), Ptr); 2791 2792 return ConstantInt::get(CI->getType(), 1); 2793 } 2794 2795 if (FormatStr[1] == 's') { 2796 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2797 StringRef Str; 2798 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2799 return nullptr; 2800 2801 if (N == 0) 2802 return ConstantInt::get(CI->getType(), Str.size()); 2803 else if (N < Str.size() + 1) 2804 return nullptr; 2805 2806 copyFlags( 2807 *CI, B.CreateMemCpy(CI->getArgOperand(0), Align(1), 2808 CI->getArgOperand(3), Align(1), 2809 ConstantInt::get(CI->getType(), Str.size() + 1))); 2810 2811 // The snprintf result is the unincremented number of bytes in the string. 2812 return ConstantInt::get(CI->getType(), Str.size()); 2813 } 2814 } 2815 return nullptr; 2816 } 2817 2818 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 2819 if (Value *V = optimizeSnPrintFString(CI, B)) { 2820 return V; 2821 } 2822 2823 if (isKnownNonZero(CI->getOperand(1), DL)) 2824 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2825 return nullptr; 2826 } 2827 2828 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 2829 IRBuilderBase &B) { 2830 optimizeErrorReporting(CI, B, 0); 2831 2832 // All the optimizations depend on the format string. 2833 StringRef FormatStr; 2834 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2835 return nullptr; 2836 2837 // Do not do any of the following transformations if the fprintf return 2838 // value is used, in general the fprintf return value is not compatible 2839 // with fwrite(), fputc() or fputs(). 2840 if (!CI->use_empty()) 2841 return nullptr; 2842 2843 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2844 if (CI->arg_size() == 2) { 2845 // Could handle %% -> % if we cared. 2846 if (FormatStr.contains('%')) 2847 return nullptr; // We found a format specifier. 2848 2849 return copyFlags( 2850 *CI, emitFWrite(CI->getArgOperand(1), 2851 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2852 FormatStr.size()), 2853 CI->getArgOperand(0), B, DL, TLI)); 2854 } 2855 2856 // The remaining optimizations require the format string to be "%s" or "%c" 2857 // and have an extra operand. 2858 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 2859 return nullptr; 2860 2861 // Decode the second character of the format string. 2862 if (FormatStr[1] == 'c') { 2863 // fprintf(F, "%c", chr) --> fputc(chr, F) 2864 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2865 return nullptr; 2866 return copyFlags( 2867 *CI, emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 2868 } 2869 2870 if (FormatStr[1] == 's') { 2871 // fprintf(F, "%s", str) --> fputs(str, F) 2872 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2873 return nullptr; 2874 return copyFlags( 2875 *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 2876 } 2877 return nullptr; 2878 } 2879 2880 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 2881 Module *M = CI->getModule(); 2882 Function *Callee = CI->getCalledFunction(); 2883 FunctionType *FT = Callee->getFunctionType(); 2884 if (Value *V = optimizeFPrintFString(CI, B)) { 2885 return V; 2886 } 2887 2888 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2889 // floating point arguments. 2890 if (isLibFuncEmittable(M, TLI, LibFunc_fiprintf) && 2891 !callHasFloatingPointArgument(CI)) { 2892 FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_fiprintf, 2893 FT, Callee->getAttributes()); 2894 CallInst *New = cast<CallInst>(CI->clone()); 2895 New->setCalledFunction(FIPrintFFn); 2896 B.Insert(New); 2897 return New; 2898 } 2899 2900 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2901 // 128-bit floating point arguments. 2902 if (isLibFuncEmittable(M, TLI, LibFunc_small_fprintf) && 2903 !callHasFP128Argument(CI)) { 2904 auto SmallFPrintFFn = 2905 getOrInsertLibFunc(M, *TLI, LibFunc_small_fprintf, FT, 2906 Callee->getAttributes()); 2907 CallInst *New = cast<CallInst>(CI->clone()); 2908 New->setCalledFunction(SmallFPrintFFn); 2909 B.Insert(New); 2910 return New; 2911 } 2912 2913 return nullptr; 2914 } 2915 2916 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 2917 optimizeErrorReporting(CI, B, 3); 2918 2919 // Get the element size and count. 2920 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2921 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2922 if (SizeC && CountC) { 2923 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2924 2925 // If this is writing zero records, remove the call (it's a noop). 2926 if (Bytes == 0) 2927 return ConstantInt::get(CI->getType(), 0); 2928 2929 // If this is writing one byte, turn it into fputc. 2930 // This optimisation is only valid, if the return value is unused. 2931 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2932 Value *Char = B.CreateLoad(B.getInt8Ty(), 2933 castToCStr(CI->getArgOperand(0), B), "char"); 2934 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2935 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2936 } 2937 } 2938 2939 return nullptr; 2940 } 2941 2942 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 2943 optimizeErrorReporting(CI, B, 1); 2944 2945 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2946 // requires more arguments and thus extra MOVs are required. 2947 bool OptForSize = CI->getFunction()->hasOptSize() || 2948 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2949 PGSOQueryType::IRPass); 2950 if (OptForSize) 2951 return nullptr; 2952 2953 // We can't optimize if return value is used. 2954 if (!CI->use_empty()) 2955 return nullptr; 2956 2957 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2958 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2959 if (!Len) 2960 return nullptr; 2961 2962 // Known to have no uses (see above). 2963 return copyFlags( 2964 *CI, 2965 emitFWrite(CI->getArgOperand(0), 2966 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2967 CI->getArgOperand(1), B, DL, TLI)); 2968 } 2969 2970 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 2971 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2972 if (!CI->use_empty()) 2973 return nullptr; 2974 2975 // Check for a constant string. 2976 // puts("") -> putchar('\n') 2977 StringRef Str; 2978 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 2979 return copyFlags(*CI, emitPutChar(B.getInt32('\n'), B, TLI)); 2980 2981 return nullptr; 2982 } 2983 2984 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 2985 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 2986 return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1), 2987 CI->getArgOperand(0), Align(1), 2988 CI->getArgOperand(2))); 2989 } 2990 2991 bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) { 2992 SmallString<20> FloatFuncName = FuncName; 2993 FloatFuncName += 'f'; 2994 return isLibFuncEmittable(M, TLI, FloatFuncName); 2995 } 2996 2997 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2998 IRBuilderBase &Builder) { 2999 Module *M = CI->getModule(); 3000 LibFunc Func; 3001 Function *Callee = CI->getCalledFunction(); 3002 // Check for string/memory library functions. 3003 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) { 3004 // Make sure we never change the calling convention. 3005 assert( 3006 (ignoreCallingConv(Func) || 3007 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) && 3008 "Optimizing string/memory libcall would change the calling convention"); 3009 switch (Func) { 3010 case LibFunc_strcat: 3011 return optimizeStrCat(CI, Builder); 3012 case LibFunc_strncat: 3013 return optimizeStrNCat(CI, Builder); 3014 case LibFunc_strchr: 3015 return optimizeStrChr(CI, Builder); 3016 case LibFunc_strrchr: 3017 return optimizeStrRChr(CI, Builder); 3018 case LibFunc_strcmp: 3019 return optimizeStrCmp(CI, Builder); 3020 case LibFunc_strncmp: 3021 return optimizeStrNCmp(CI, Builder); 3022 case LibFunc_strcpy: 3023 return optimizeStrCpy(CI, Builder); 3024 case LibFunc_stpcpy: 3025 return optimizeStpCpy(CI, Builder); 3026 case LibFunc_strncpy: 3027 return optimizeStrNCpy(CI, Builder); 3028 case LibFunc_strlen: 3029 return optimizeStrLen(CI, Builder); 3030 case LibFunc_strnlen: 3031 return optimizeStrNLen(CI, Builder); 3032 case LibFunc_strpbrk: 3033 return optimizeStrPBrk(CI, Builder); 3034 case LibFunc_strndup: 3035 return optimizeStrNDup(CI, Builder); 3036 case LibFunc_strtol: 3037 case LibFunc_strtod: 3038 case LibFunc_strtof: 3039 case LibFunc_strtoul: 3040 case LibFunc_strtoll: 3041 case LibFunc_strtold: 3042 case LibFunc_strtoull: 3043 return optimizeStrTo(CI, Builder); 3044 case LibFunc_strspn: 3045 return optimizeStrSpn(CI, Builder); 3046 case LibFunc_strcspn: 3047 return optimizeStrCSpn(CI, Builder); 3048 case LibFunc_strstr: 3049 return optimizeStrStr(CI, Builder); 3050 case LibFunc_memchr: 3051 return optimizeMemChr(CI, Builder); 3052 case LibFunc_memrchr: 3053 return optimizeMemRChr(CI, Builder); 3054 case LibFunc_bcmp: 3055 return optimizeBCmp(CI, Builder); 3056 case LibFunc_memcmp: 3057 return optimizeMemCmp(CI, Builder); 3058 case LibFunc_memcpy: 3059 return optimizeMemCpy(CI, Builder); 3060 case LibFunc_memccpy: 3061 return optimizeMemCCpy(CI, Builder); 3062 case LibFunc_mempcpy: 3063 return optimizeMemPCpy(CI, Builder); 3064 case LibFunc_memmove: 3065 return optimizeMemMove(CI, Builder); 3066 case LibFunc_memset: 3067 return optimizeMemSet(CI, Builder); 3068 case LibFunc_realloc: 3069 return optimizeRealloc(CI, Builder); 3070 case LibFunc_wcslen: 3071 return optimizeWcslen(CI, Builder); 3072 case LibFunc_bcopy: 3073 return optimizeBCopy(CI, Builder); 3074 default: 3075 break; 3076 } 3077 } 3078 return nullptr; 3079 } 3080 3081 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 3082 LibFunc Func, 3083 IRBuilderBase &Builder) { 3084 const Module *M = CI->getModule(); 3085 3086 // Don't optimize calls that require strict floating point semantics. 3087 if (CI->isStrictFP()) 3088 return nullptr; 3089 3090 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 3091 return V; 3092 3093 switch (Func) { 3094 case LibFunc_sinpif: 3095 case LibFunc_sinpi: 3096 case LibFunc_cospif: 3097 case LibFunc_cospi: 3098 return optimizeSinCosPi(CI, Builder); 3099 case LibFunc_powf: 3100 case LibFunc_pow: 3101 case LibFunc_powl: 3102 return optimizePow(CI, Builder); 3103 case LibFunc_exp2l: 3104 case LibFunc_exp2: 3105 case LibFunc_exp2f: 3106 return optimizeExp2(CI, Builder); 3107 case LibFunc_fabsf: 3108 case LibFunc_fabs: 3109 case LibFunc_fabsl: 3110 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 3111 case LibFunc_sqrtf: 3112 case LibFunc_sqrt: 3113 case LibFunc_sqrtl: 3114 return optimizeSqrt(CI, Builder); 3115 case LibFunc_logf: 3116 case LibFunc_log: 3117 case LibFunc_logl: 3118 case LibFunc_log10f: 3119 case LibFunc_log10: 3120 case LibFunc_log10l: 3121 case LibFunc_log1pf: 3122 case LibFunc_log1p: 3123 case LibFunc_log1pl: 3124 case LibFunc_log2f: 3125 case LibFunc_log2: 3126 case LibFunc_log2l: 3127 case LibFunc_logbf: 3128 case LibFunc_logb: 3129 case LibFunc_logbl: 3130 return optimizeLog(CI, Builder); 3131 case LibFunc_tan: 3132 case LibFunc_tanf: 3133 case LibFunc_tanl: 3134 return optimizeTan(CI, Builder); 3135 case LibFunc_ceil: 3136 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 3137 case LibFunc_floor: 3138 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 3139 case LibFunc_round: 3140 return replaceUnaryCall(CI, Builder, Intrinsic::round); 3141 case LibFunc_roundeven: 3142 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 3143 case LibFunc_nearbyint: 3144 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 3145 case LibFunc_rint: 3146 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 3147 case LibFunc_trunc: 3148 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 3149 case LibFunc_acos: 3150 case LibFunc_acosh: 3151 case LibFunc_asin: 3152 case LibFunc_asinh: 3153 case LibFunc_atan: 3154 case LibFunc_atanh: 3155 case LibFunc_cbrt: 3156 case LibFunc_cosh: 3157 case LibFunc_exp: 3158 case LibFunc_exp10: 3159 case LibFunc_expm1: 3160 case LibFunc_cos: 3161 case LibFunc_sin: 3162 case LibFunc_sinh: 3163 case LibFunc_tanh: 3164 if (UnsafeFPShrink && hasFloatVersion(M, CI->getCalledFunction()->getName())) 3165 return optimizeUnaryDoubleFP(CI, Builder, TLI, true); 3166 return nullptr; 3167 case LibFunc_copysign: 3168 if (hasFloatVersion(M, CI->getCalledFunction()->getName())) 3169 return optimizeBinaryDoubleFP(CI, Builder, TLI); 3170 return nullptr; 3171 case LibFunc_fminf: 3172 case LibFunc_fmin: 3173 case LibFunc_fminl: 3174 case LibFunc_fmaxf: 3175 case LibFunc_fmax: 3176 case LibFunc_fmaxl: 3177 return optimizeFMinFMax(CI, Builder); 3178 case LibFunc_cabs: 3179 case LibFunc_cabsf: 3180 case LibFunc_cabsl: 3181 return optimizeCAbs(CI, Builder); 3182 default: 3183 return nullptr; 3184 } 3185 } 3186 3187 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 3188 Module *M = CI->getModule(); 3189 assert(!CI->isMustTailCall() && "These transforms aren't musttail safe."); 3190 3191 // TODO: Split out the code below that operates on FP calls so that 3192 // we can all non-FP calls with the StrictFP attribute to be 3193 // optimized. 3194 if (CI->isNoBuiltin()) 3195 return nullptr; 3196 3197 LibFunc Func; 3198 Function *Callee = CI->getCalledFunction(); 3199 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3200 3201 SmallVector<OperandBundleDef, 2> OpBundles; 3202 CI->getOperandBundlesAsDefs(OpBundles); 3203 3204 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3205 Builder.setDefaultOperandBundles(OpBundles); 3206 3207 // Command-line parameter overrides instruction attribute. 3208 // This can't be moved to optimizeFloatingPointLibCall() because it may be 3209 // used by the intrinsic optimizations. 3210 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 3211 UnsafeFPShrink = EnableUnsafeFPShrink; 3212 else if (isa<FPMathOperator>(CI) && CI->isFast()) 3213 UnsafeFPShrink = true; 3214 3215 // First, check for intrinsics. 3216 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 3217 if (!IsCallingConvC) 3218 return nullptr; 3219 // The FP intrinsics have corresponding constrained versions so we don't 3220 // need to check for the StrictFP attribute here. 3221 switch (II->getIntrinsicID()) { 3222 case Intrinsic::pow: 3223 return optimizePow(CI, Builder); 3224 case Intrinsic::exp2: 3225 return optimizeExp2(CI, Builder); 3226 case Intrinsic::log: 3227 case Intrinsic::log2: 3228 case Intrinsic::log10: 3229 return optimizeLog(CI, Builder); 3230 case Intrinsic::sqrt: 3231 return optimizeSqrt(CI, Builder); 3232 case Intrinsic::memset: 3233 return optimizeMemSet(CI, Builder); 3234 case Intrinsic::memcpy: 3235 return optimizeMemCpy(CI, Builder); 3236 case Intrinsic::memmove: 3237 return optimizeMemMove(CI, Builder); 3238 default: 3239 return nullptr; 3240 } 3241 } 3242 3243 // Also try to simplify calls to fortified library functions. 3244 if (Value *SimplifiedFortifiedCI = 3245 FortifiedSimplifier.optimizeCall(CI, Builder)) { 3246 // Try to further simplify the result. 3247 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 3248 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 3249 // Ensure that SimplifiedCI's uses are complete, since some calls have 3250 // their uses analyzed. 3251 replaceAllUsesWith(CI, SimplifiedCI); 3252 3253 // Set insertion point to SimplifiedCI to guarantee we reach all uses 3254 // we might replace later on. 3255 IRBuilderBase::InsertPointGuard Guard(Builder); 3256 Builder.SetInsertPoint(SimplifiedCI); 3257 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) { 3258 // If we were able to further simplify, remove the now redundant call. 3259 substituteInParent(SimplifiedCI, V); 3260 return V; 3261 } 3262 } 3263 return SimplifiedFortifiedCI; 3264 } 3265 3266 // Then check for known library functions. 3267 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) { 3268 // We never change the calling convention. 3269 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3270 return nullptr; 3271 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 3272 return V; 3273 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 3274 return V; 3275 switch (Func) { 3276 case LibFunc_ffs: 3277 case LibFunc_ffsl: 3278 case LibFunc_ffsll: 3279 return optimizeFFS(CI, Builder); 3280 case LibFunc_fls: 3281 case LibFunc_flsl: 3282 case LibFunc_flsll: 3283 return optimizeFls(CI, Builder); 3284 case LibFunc_abs: 3285 case LibFunc_labs: 3286 case LibFunc_llabs: 3287 return optimizeAbs(CI, Builder); 3288 case LibFunc_isdigit: 3289 return optimizeIsDigit(CI, Builder); 3290 case LibFunc_isascii: 3291 return optimizeIsAscii(CI, Builder); 3292 case LibFunc_toascii: 3293 return optimizeToAscii(CI, Builder); 3294 case LibFunc_atoi: 3295 case LibFunc_atol: 3296 case LibFunc_atoll: 3297 return optimizeAtoi(CI, Builder); 3298 case LibFunc_strtol: 3299 case LibFunc_strtoll: 3300 return optimizeStrtol(CI, Builder); 3301 case LibFunc_printf: 3302 return optimizePrintF(CI, Builder); 3303 case LibFunc_sprintf: 3304 return optimizeSPrintF(CI, Builder); 3305 case LibFunc_snprintf: 3306 return optimizeSnPrintF(CI, Builder); 3307 case LibFunc_fprintf: 3308 return optimizeFPrintF(CI, Builder); 3309 case LibFunc_fwrite: 3310 return optimizeFWrite(CI, Builder); 3311 case LibFunc_fputs: 3312 return optimizeFPuts(CI, Builder); 3313 case LibFunc_puts: 3314 return optimizePuts(CI, Builder); 3315 case LibFunc_perror: 3316 return optimizeErrorReporting(CI, Builder); 3317 case LibFunc_vfprintf: 3318 case LibFunc_fiprintf: 3319 return optimizeErrorReporting(CI, Builder, 0); 3320 default: 3321 return nullptr; 3322 } 3323 } 3324 return nullptr; 3325 } 3326 3327 LibCallSimplifier::LibCallSimplifier( 3328 const DataLayout &DL, const TargetLibraryInfo *TLI, 3329 OptimizationRemarkEmitter &ORE, 3330 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 3331 function_ref<void(Instruction *, Value *)> Replacer, 3332 function_ref<void(Instruction *)> Eraser) 3333 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 3334 Replacer(Replacer), Eraser(Eraser) {} 3335 3336 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 3337 // Indirect through the replacer used in this instance. 3338 Replacer(I, With); 3339 } 3340 3341 void LibCallSimplifier::eraseFromParent(Instruction *I) { 3342 Eraser(I); 3343 } 3344 3345 // TODO: 3346 // Additional cases that we need to add to this file: 3347 // 3348 // cbrt: 3349 // * cbrt(expN(X)) -> expN(x/3) 3350 // * cbrt(sqrt(x)) -> pow(x,1/6) 3351 // * cbrt(cbrt(x)) -> pow(x,1/9) 3352 // 3353 // exp, expf, expl: 3354 // * exp(log(x)) -> x 3355 // 3356 // log, logf, logl: 3357 // * log(exp(x)) -> x 3358 // * log(exp(y)) -> y*log(e) 3359 // * log(exp10(y)) -> y*log(10) 3360 // * log(sqrt(x)) -> 0.5*log(x) 3361 // 3362 // pow, powf, powl: 3363 // * pow(sqrt(x),y) -> pow(x,y*0.5) 3364 // * pow(pow(x,y),z)-> pow(x,y*z) 3365 // 3366 // signbit: 3367 // * signbit(cnst) -> cnst' 3368 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 3369 // 3370 // sqrt, sqrtf, sqrtl: 3371 // * sqrt(expN(x)) -> expN(x*0.5) 3372 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 3373 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 3374 // 3375 3376 //===----------------------------------------------------------------------===// 3377 // Fortified Library Call Optimizations 3378 //===----------------------------------------------------------------------===// 3379 3380 bool 3381 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 3382 unsigned ObjSizeOp, 3383 Optional<unsigned> SizeOp, 3384 Optional<unsigned> StrOp, 3385 Optional<unsigned> FlagOp) { 3386 // If this function takes a flag argument, the implementation may use it to 3387 // perform extra checks. Don't fold into the non-checking variant. 3388 if (FlagOp) { 3389 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 3390 if (!Flag || !Flag->isZero()) 3391 return false; 3392 } 3393 3394 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 3395 return true; 3396 3397 if (ConstantInt *ObjSizeCI = 3398 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 3399 if (ObjSizeCI->isMinusOne()) 3400 return true; 3401 // If the object size wasn't -1 (unknown), bail out if we were asked to. 3402 if (OnlyLowerUnknownSize) 3403 return false; 3404 if (StrOp) { 3405 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 3406 // If the length is 0 we don't know how long it is and so we can't 3407 // remove the check. 3408 if (Len) 3409 annotateDereferenceableBytes(CI, *StrOp, Len); 3410 else 3411 return false; 3412 return ObjSizeCI->getZExtValue() >= Len; 3413 } 3414 3415 if (SizeOp) { 3416 if (ConstantInt *SizeCI = 3417 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 3418 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 3419 } 3420 } 3421 return false; 3422 } 3423 3424 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 3425 IRBuilderBase &B) { 3426 if (isFortifiedCallFoldable(CI, 3, 2)) { 3427 CallInst *NewCI = 3428 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3429 Align(1), CI->getArgOperand(2)); 3430 NewCI->setAttributes(CI->getAttributes()); 3431 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3432 copyFlags(*CI, NewCI); 3433 return CI->getArgOperand(0); 3434 } 3435 return nullptr; 3436 } 3437 3438 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 3439 IRBuilderBase &B) { 3440 if (isFortifiedCallFoldable(CI, 3, 2)) { 3441 CallInst *NewCI = 3442 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3443 Align(1), CI->getArgOperand(2)); 3444 NewCI->setAttributes(CI->getAttributes()); 3445 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3446 copyFlags(*CI, NewCI); 3447 return CI->getArgOperand(0); 3448 } 3449 return nullptr; 3450 } 3451 3452 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 3453 IRBuilderBase &B) { 3454 if (isFortifiedCallFoldable(CI, 3, 2)) { 3455 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 3456 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 3457 CI->getArgOperand(2), Align(1)); 3458 NewCI->setAttributes(CI->getAttributes()); 3459 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3460 copyFlags(*CI, NewCI); 3461 return CI->getArgOperand(0); 3462 } 3463 return nullptr; 3464 } 3465 3466 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 3467 IRBuilderBase &B) { 3468 const DataLayout &DL = CI->getModule()->getDataLayout(); 3469 if (isFortifiedCallFoldable(CI, 3, 2)) 3470 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3471 CI->getArgOperand(2), B, DL, TLI)) { 3472 CallInst *NewCI = cast<CallInst>(Call); 3473 NewCI->setAttributes(CI->getAttributes()); 3474 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3475 return copyFlags(*CI, NewCI); 3476 } 3477 return nullptr; 3478 } 3479 3480 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 3481 IRBuilderBase &B, 3482 LibFunc Func) { 3483 const DataLayout &DL = CI->getModule()->getDataLayout(); 3484 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 3485 *ObjSize = CI->getArgOperand(2); 3486 3487 // __stpcpy_chk(x,x,...) -> x+strlen(x) 3488 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 3489 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3490 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3491 } 3492 3493 // If a) we don't have any length information, or b) we know this will 3494 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3495 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3496 // TODO: It might be nice to get a maximum length out of the possible 3497 // string lengths for varying. 3498 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 3499 if (Func == LibFunc_strcpy_chk) 3500 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 3501 else 3502 return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI)); 3503 } 3504 3505 if (OnlyLowerUnknownSize) 3506 return nullptr; 3507 3508 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3509 uint64_t Len = GetStringLength(Src); 3510 if (Len) 3511 annotateDereferenceableBytes(CI, 1, Len); 3512 else 3513 return nullptr; 3514 3515 // FIXME: There is really no guarantee that sizeof(size_t) is equal to 3516 // sizeof(int*) for every target. So the assumption used here to derive the 3517 // SizeTBits based on the size of an integer pointer in address space zero 3518 // isn't always valid. 3519 Type *SizeTTy = DL.getIntPtrType(CI->getContext(), /*AddressSpace=*/0); 3520 Value *LenV = ConstantInt::get(SizeTTy, Len); 3521 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 3522 // If the function was an __stpcpy_chk, and we were able to fold it into 3523 // a __memcpy_chk, we still need to return the correct end pointer. 3524 if (Ret && Func == LibFunc_stpcpy_chk) 3525 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 3526 return copyFlags(*CI, cast<CallInst>(Ret)); 3527 } 3528 3529 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 3530 IRBuilderBase &B) { 3531 if (isFortifiedCallFoldable(CI, 1, None, 0)) 3532 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, 3533 CI->getModule()->getDataLayout(), TLI)); 3534 return nullptr; 3535 } 3536 3537 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 3538 IRBuilderBase &B, 3539 LibFunc Func) { 3540 if (isFortifiedCallFoldable(CI, 3, 2)) { 3541 if (Func == LibFunc_strncpy_chk) 3542 return copyFlags(*CI, 3543 emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3544 CI->getArgOperand(2), B, TLI)); 3545 else 3546 return copyFlags(*CI, 3547 emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3548 CI->getArgOperand(2), B, TLI)); 3549 } 3550 3551 return nullptr; 3552 } 3553 3554 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 3555 IRBuilderBase &B) { 3556 if (isFortifiedCallFoldable(CI, 4, 3)) 3557 return copyFlags( 3558 *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3559 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI)); 3560 3561 return nullptr; 3562 } 3563 3564 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 3565 IRBuilderBase &B) { 3566 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 3567 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 3568 return copyFlags(*CI, 3569 emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3570 CI->getArgOperand(4), VariadicArgs, B, TLI)); 3571 } 3572 3573 return nullptr; 3574 } 3575 3576 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3577 IRBuilderBase &B) { 3578 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3579 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 3580 return copyFlags(*CI, 3581 emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3582 VariadicArgs, B, TLI)); 3583 } 3584 3585 return nullptr; 3586 } 3587 3588 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3589 IRBuilderBase &B) { 3590 if (isFortifiedCallFoldable(CI, 2)) 3591 return copyFlags( 3592 *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI)); 3593 3594 return nullptr; 3595 } 3596 3597 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3598 IRBuilderBase &B) { 3599 if (isFortifiedCallFoldable(CI, 3)) 3600 return copyFlags(*CI, 3601 emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3602 CI->getArgOperand(2), B, TLI)); 3603 3604 return nullptr; 3605 } 3606 3607 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3608 IRBuilderBase &B) { 3609 if (isFortifiedCallFoldable(CI, 3)) 3610 return copyFlags(*CI, 3611 emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3612 CI->getArgOperand(2), B, TLI)); 3613 3614 return nullptr; 3615 } 3616 3617 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3618 IRBuilderBase &B) { 3619 if (isFortifiedCallFoldable(CI, 3)) 3620 return copyFlags(*CI, 3621 emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3622 CI->getArgOperand(2), B, TLI)); 3623 3624 return nullptr; 3625 } 3626 3627 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3628 IRBuilderBase &B) { 3629 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3630 return copyFlags( 3631 *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3632 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI)); 3633 3634 return nullptr; 3635 } 3636 3637 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3638 IRBuilderBase &B) { 3639 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3640 return copyFlags(*CI, 3641 emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3642 CI->getArgOperand(4), B, TLI)); 3643 3644 return nullptr; 3645 } 3646 3647 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 3648 IRBuilderBase &Builder) { 3649 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3650 // Some clang users checked for _chk libcall availability using: 3651 // __has_builtin(__builtin___memcpy_chk) 3652 // When compiling with -fno-builtin, this is always true. 3653 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3654 // end up with fortified libcalls, which isn't acceptable in a freestanding 3655 // environment which only provides their non-fortified counterparts. 3656 // 3657 // Until we change clang and/or teach external users to check for availability 3658 // differently, disregard the "nobuiltin" attribute and TLI::has. 3659 // 3660 // PR23093. 3661 3662 LibFunc Func; 3663 Function *Callee = CI->getCalledFunction(); 3664 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3665 3666 SmallVector<OperandBundleDef, 2> OpBundles; 3667 CI->getOperandBundlesAsDefs(OpBundles); 3668 3669 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3670 Builder.setDefaultOperandBundles(OpBundles); 3671 3672 // First, check that this is a known library functions and that the prototype 3673 // is correct. 3674 if (!TLI->getLibFunc(*Callee, Func)) 3675 return nullptr; 3676 3677 // We never change the calling convention. 3678 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3679 return nullptr; 3680 3681 switch (Func) { 3682 case LibFunc_memcpy_chk: 3683 return optimizeMemCpyChk(CI, Builder); 3684 case LibFunc_mempcpy_chk: 3685 return optimizeMemPCpyChk(CI, Builder); 3686 case LibFunc_memmove_chk: 3687 return optimizeMemMoveChk(CI, Builder); 3688 case LibFunc_memset_chk: 3689 return optimizeMemSetChk(CI, Builder); 3690 case LibFunc_stpcpy_chk: 3691 case LibFunc_strcpy_chk: 3692 return optimizeStrpCpyChk(CI, Builder, Func); 3693 case LibFunc_strlen_chk: 3694 return optimizeStrLenChk(CI, Builder); 3695 case LibFunc_stpncpy_chk: 3696 case LibFunc_strncpy_chk: 3697 return optimizeStrpNCpyChk(CI, Builder, Func); 3698 case LibFunc_memccpy_chk: 3699 return optimizeMemCCpyChk(CI, Builder); 3700 case LibFunc_snprintf_chk: 3701 return optimizeSNPrintfChk(CI, Builder); 3702 case LibFunc_sprintf_chk: 3703 return optimizeSPrintfChk(CI, Builder); 3704 case LibFunc_strcat_chk: 3705 return optimizeStrCatChk(CI, Builder); 3706 case LibFunc_strlcat_chk: 3707 return optimizeStrLCat(CI, Builder); 3708 case LibFunc_strncat_chk: 3709 return optimizeStrNCatChk(CI, Builder); 3710 case LibFunc_strlcpy_chk: 3711 return optimizeStrLCpyChk(CI, Builder); 3712 case LibFunc_vsnprintf_chk: 3713 return optimizeVSNPrintfChk(CI, Builder); 3714 case LibFunc_vsprintf_chk: 3715 return optimizeVSPrintfChk(CI, Builder); 3716 default: 3717 break; 3718 } 3719 return nullptr; 3720 } 3721 3722 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3723 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3724 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 3725