1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is a utility pass used for testing the InstructionSimplify analysis. 11 // The analysis is applied to every instruction, and if it simplifies then the 12 // instruction is replaced by the simplification. If you are looking for a pass 13 // that performs serious instruction folding, use the instcombine pass instead. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/KnownBits.h" 34 #include "llvm/Transforms/Utils/BuildLibCalls.h" 35 #include "llvm/Transforms/Utils/Local.h" 36 37 using namespace llvm; 38 using namespace PatternMatch; 39 40 static cl::opt<bool> 41 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 42 cl::init(false), 43 cl::desc("Enable unsafe double to float " 44 "shrinking for math lib calls")); 45 46 47 //===----------------------------------------------------------------------===// 48 // Helper Functions 49 //===----------------------------------------------------------------------===// 50 51 static bool ignoreCallingConv(LibFunc Func) { 52 return Func == LibFunc_abs || Func == LibFunc_labs || 53 Func == LibFunc_llabs || Func == LibFunc_strlen; 54 } 55 56 static bool isCallingConvCCompatible(CallInst *CI) { 57 switch(CI->getCallingConv()) { 58 default: 59 return false; 60 case llvm::CallingConv::C: 61 return true; 62 case llvm::CallingConv::ARM_APCS: 63 case llvm::CallingConv::ARM_AAPCS: 64 case llvm::CallingConv::ARM_AAPCS_VFP: { 65 66 // The iOS ABI diverges from the standard in some cases, so for now don't 67 // try to simplify those calls. 68 if (Triple(CI->getModule()->getTargetTriple()).isiOS()) 69 return false; 70 71 auto *FuncTy = CI->getFunctionType(); 72 73 if (!FuncTy->getReturnType()->isPointerTy() && 74 !FuncTy->getReturnType()->isIntegerTy() && 75 !FuncTy->getReturnType()->isVoidTy()) 76 return false; 77 78 for (auto Param : FuncTy->params()) { 79 if (!Param->isPointerTy() && !Param->isIntegerTy()) 80 return false; 81 } 82 return true; 83 } 84 } 85 return false; 86 } 87 88 /// Return true if it is only used in equality comparisons with With. 89 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 90 for (User *U : V->users()) { 91 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 92 if (IC->isEquality() && IC->getOperand(1) == With) 93 continue; 94 // Unknown instruction. 95 return false; 96 } 97 return true; 98 } 99 100 static bool callHasFloatingPointArgument(const CallInst *CI) { 101 return any_of(CI->operands(), [](const Use &OI) { 102 return OI->getType()->isFloatingPointTy(); 103 }); 104 } 105 106 /// \brief Check whether the overloaded unary floating point function 107 /// corresponding to \a Ty is available. 108 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty, 109 LibFunc DoubleFn, LibFunc FloatFn, 110 LibFunc LongDoubleFn) { 111 switch (Ty->getTypeID()) { 112 case Type::FloatTyID: 113 return TLI->has(FloatFn); 114 case Type::DoubleTyID: 115 return TLI->has(DoubleFn); 116 default: 117 return TLI->has(LongDoubleFn); 118 } 119 } 120 121 //===----------------------------------------------------------------------===// 122 // String and Memory Library Call Optimizations 123 //===----------------------------------------------------------------------===// 124 125 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 126 // Extract some information from the instruction 127 Value *Dst = CI->getArgOperand(0); 128 Value *Src = CI->getArgOperand(1); 129 130 // See if we can get the length of the input string. 131 uint64_t Len = GetStringLength(Src); 132 if (Len == 0) 133 return nullptr; 134 --Len; // Unbias length. 135 136 // Handle the simple, do-nothing case: strcat(x, "") -> x 137 if (Len == 0) 138 return Dst; 139 140 return emitStrLenMemCpy(Src, Dst, Len, B); 141 } 142 143 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 144 IRBuilder<> &B) { 145 // We need to find the end of the destination string. That's where the 146 // memory is to be moved to. We just generate a call to strlen. 147 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 148 if (!DstLen) 149 return nullptr; 150 151 // Now that we have the destination's length, we must index into the 152 // destination's pointer to get the actual memcpy destination (end of 153 // the string .. we're concatenating). 154 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 155 156 // We have enough information to now generate the memcpy call to do the 157 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 158 B.CreateMemCpy(CpyDst, Src, 159 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1), 160 1); 161 return Dst; 162 } 163 164 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 165 // Extract some information from the instruction. 166 Value *Dst = CI->getArgOperand(0); 167 Value *Src = CI->getArgOperand(1); 168 uint64_t Len; 169 170 // We don't do anything if length is not constant. 171 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 172 Len = LengthArg->getZExtValue(); 173 else 174 return nullptr; 175 176 // See if we can get the length of the input string. 177 uint64_t SrcLen = GetStringLength(Src); 178 if (SrcLen == 0) 179 return nullptr; 180 --SrcLen; // Unbias length. 181 182 // Handle the simple, do-nothing cases: 183 // strncat(x, "", c) -> x 184 // strncat(x, c, 0) -> x 185 if (SrcLen == 0 || Len == 0) 186 return Dst; 187 188 // We don't optimize this case. 189 if (Len < SrcLen) 190 return nullptr; 191 192 // strncat(x, s, c) -> strcat(x, s) 193 // s is constant so the strcat can be optimized further. 194 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 195 } 196 197 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 198 Function *Callee = CI->getCalledFunction(); 199 FunctionType *FT = Callee->getFunctionType(); 200 Value *SrcStr = CI->getArgOperand(0); 201 202 // If the second operand is non-constant, see if we can compute the length 203 // of the input string and turn this into memchr. 204 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 205 if (!CharC) { 206 uint64_t Len = GetStringLength(SrcStr); 207 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 208 return nullptr; 209 210 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 211 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 212 B, DL, TLI); 213 } 214 215 // Otherwise, the character is a constant, see if the first argument is 216 // a string literal. If so, we can constant fold. 217 StringRef Str; 218 if (!getConstantStringInfo(SrcStr, Str)) { 219 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 220 return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI), 221 "strchr"); 222 return nullptr; 223 } 224 225 // Compute the offset, make sure to handle the case when we're searching for 226 // zero (a weird way to spell strlen). 227 size_t I = (0xFF & CharC->getSExtValue()) == 0 228 ? Str.size() 229 : Str.find(CharC->getSExtValue()); 230 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 231 return Constant::getNullValue(CI->getType()); 232 233 // strchr(s+n,c) -> gep(s+n+i,c) 234 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 235 } 236 237 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 238 Value *SrcStr = CI->getArgOperand(0); 239 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 240 241 // Cannot fold anything if we're not looking for a constant. 242 if (!CharC) 243 return nullptr; 244 245 StringRef Str; 246 if (!getConstantStringInfo(SrcStr, Str)) { 247 // strrchr(s, 0) -> strchr(s, 0) 248 if (CharC->isZero()) 249 return emitStrChr(SrcStr, '\0', B, TLI); 250 return nullptr; 251 } 252 253 // Compute the offset. 254 size_t I = (0xFF & CharC->getSExtValue()) == 0 255 ? Str.size() 256 : Str.rfind(CharC->getSExtValue()); 257 if (I == StringRef::npos) // Didn't find the char. Return null. 258 return Constant::getNullValue(CI->getType()); 259 260 // strrchr(s+n,c) -> gep(s+n+i,c) 261 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 262 } 263 264 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 265 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 266 if (Str1P == Str2P) // strcmp(x,x) -> 0 267 return ConstantInt::get(CI->getType(), 0); 268 269 StringRef Str1, Str2; 270 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 271 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 272 273 // strcmp(x, y) -> cnst (if both x and y are constant strings) 274 if (HasStr1 && HasStr2) 275 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 276 277 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 278 return B.CreateNeg( 279 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 280 281 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 282 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 283 284 // strcmp(P, "x") -> memcmp(P, "x", 2) 285 uint64_t Len1 = GetStringLength(Str1P); 286 uint64_t Len2 = GetStringLength(Str2P); 287 if (Len1 && Len2) { 288 return emitMemCmp(Str1P, Str2P, 289 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 290 std::min(Len1, Len2)), 291 B, DL, TLI); 292 } 293 294 return nullptr; 295 } 296 297 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 298 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 299 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 300 return ConstantInt::get(CI->getType(), 0); 301 302 // Get the length argument if it is constant. 303 uint64_t Length; 304 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 305 Length = LengthArg->getZExtValue(); 306 else 307 return nullptr; 308 309 if (Length == 0) // strncmp(x,y,0) -> 0 310 return ConstantInt::get(CI->getType(), 0); 311 312 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 313 return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 314 315 StringRef Str1, Str2; 316 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 317 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 318 319 // strncmp(x, y) -> cnst (if both x and y are constant strings) 320 if (HasStr1 && HasStr2) { 321 StringRef SubStr1 = Str1.substr(0, Length); 322 StringRef SubStr2 = Str2.substr(0, Length); 323 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 324 } 325 326 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 327 return B.CreateNeg( 328 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 329 330 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 331 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 332 333 return nullptr; 334 } 335 336 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 337 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 338 if (Dst == Src) // strcpy(x,x) -> x 339 return Src; 340 341 // See if we can get the length of the input string. 342 uint64_t Len = GetStringLength(Src); 343 if (Len == 0) 344 return nullptr; 345 346 // We have enough information to now generate the memcpy call to do the 347 // copy for us. Make a memcpy to copy the nul byte with align = 1. 348 B.CreateMemCpy(Dst, Src, 349 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1); 350 return Dst; 351 } 352 353 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 354 Function *Callee = CI->getCalledFunction(); 355 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 356 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 357 Value *StrLen = emitStrLen(Src, B, DL, TLI); 358 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 359 } 360 361 // See if we can get the length of the input string. 362 uint64_t Len = GetStringLength(Src); 363 if (Len == 0) 364 return nullptr; 365 366 Type *PT = Callee->getFunctionType()->getParamType(0); 367 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 368 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 369 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 370 371 // We have enough information to now generate the memcpy call to do the 372 // copy for us. Make a memcpy to copy the nul byte with align = 1. 373 B.CreateMemCpy(Dst, Src, LenV, 1); 374 return DstEnd; 375 } 376 377 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 378 Function *Callee = CI->getCalledFunction(); 379 Value *Dst = CI->getArgOperand(0); 380 Value *Src = CI->getArgOperand(1); 381 Value *LenOp = CI->getArgOperand(2); 382 383 // See if we can get the length of the input string. 384 uint64_t SrcLen = GetStringLength(Src); 385 if (SrcLen == 0) 386 return nullptr; 387 --SrcLen; 388 389 if (SrcLen == 0) { 390 // strncpy(x, "", y) -> memset(x, '\0', y, 1) 391 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 392 return Dst; 393 } 394 395 uint64_t Len; 396 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 397 Len = LengthArg->getZExtValue(); 398 else 399 return nullptr; 400 401 if (Len == 0) 402 return Dst; // strncpy(x, y, 0) -> x 403 404 // Let strncpy handle the zero padding 405 if (Len > SrcLen + 1) 406 return nullptr; 407 408 Type *PT = Callee->getFunctionType()->getParamType(0); 409 // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] 410 B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1); 411 412 return Dst; 413 } 414 415 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B, 416 unsigned CharSize) { 417 Value *Src = CI->getArgOperand(0); 418 419 // Constant folding: strlen("xyz") -> 3 420 if (uint64_t Len = GetStringLength(Src, CharSize)) 421 return ConstantInt::get(CI->getType(), Len - 1); 422 423 // If s is a constant pointer pointing to a string literal, we can fold 424 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 425 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 426 // We only try to simplify strlen when the pointer s points to an array 427 // of i8. Otherwise, we would need to scale the offset x before doing the 428 // subtraction. This will make the optimization more complex, and it's not 429 // very useful because calling strlen for a pointer of other types is 430 // very uncommon. 431 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 432 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 433 return nullptr; 434 435 ConstantDataArraySlice Slice; 436 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 437 uint64_t NullTermIdx; 438 if (Slice.Array == nullptr) { 439 NullTermIdx = 0; 440 } else { 441 NullTermIdx = ~((uint64_t)0); 442 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 443 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 444 NullTermIdx = I; 445 break; 446 } 447 } 448 // If the string does not have '\0', leave it to strlen to compute 449 // its length. 450 if (NullTermIdx == ~((uint64_t)0)) 451 return nullptr; 452 } 453 454 Value *Offset = GEP->getOperand(2); 455 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 456 Known.Zero.flipAllBits(); 457 uint64_t ArrSize = 458 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 459 460 // KnownZero's bits are flipped, so zeros in KnownZero now represent 461 // bits known to be zeros in Offset, and ones in KnowZero represent 462 // bits unknown in Offset. Therefore, Offset is known to be in range 463 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 464 // unsigned-less-than NullTermIdx. 465 // 466 // If Offset is not provably in the range [0, NullTermIdx], we can still 467 // optimize if we can prove that the program has undefined behavior when 468 // Offset is outside that range. That is the case when GEP->getOperand(0) 469 // is a pointer to an object whose memory extent is NullTermIdx+1. 470 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 471 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 472 NullTermIdx == ArrSize - 1)) { 473 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 474 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 475 Offset); 476 } 477 } 478 479 return nullptr; 480 } 481 482 // strlen(x?"foo":"bars") --> x ? 3 : 4 483 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 484 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 485 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 486 if (LenTrue && LenFalse) { 487 ORE.emit(OptimizationRemark("instcombine", "simplify-libcalls", CI) 488 << "folded strlen(select) to select of constants"); 489 return B.CreateSelect(SI->getCondition(), 490 ConstantInt::get(CI->getType(), LenTrue - 1), 491 ConstantInt::get(CI->getType(), LenFalse - 1)); 492 } 493 } 494 495 // strlen(x) != 0 --> *x != 0 496 // strlen(x) == 0 --> *x == 0 497 if (isOnlyUsedInZeroEqualityComparison(CI)) 498 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); 499 500 return nullptr; 501 } 502 503 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 504 return optimizeStringLength(CI, B, 8); 505 } 506 507 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) { 508 Module &M = *CI->getParent()->getParent()->getParent(); 509 unsigned WCharSize = TLI->getWCharSize(M) * 8; 510 511 return optimizeStringLength(CI, B, WCharSize); 512 } 513 514 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 515 StringRef S1, S2; 516 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 517 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 518 519 // strpbrk(s, "") -> nullptr 520 // strpbrk("", s) -> nullptr 521 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 522 return Constant::getNullValue(CI->getType()); 523 524 // Constant folding. 525 if (HasS1 && HasS2) { 526 size_t I = S1.find_first_of(S2); 527 if (I == StringRef::npos) // No match. 528 return Constant::getNullValue(CI->getType()); 529 530 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 531 "strpbrk"); 532 } 533 534 // strpbrk(s, "a") -> strchr(s, 'a') 535 if (HasS2 && S2.size() == 1) 536 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 537 538 return nullptr; 539 } 540 541 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 542 Value *EndPtr = CI->getArgOperand(1); 543 if (isa<ConstantPointerNull>(EndPtr)) { 544 // With a null EndPtr, this function won't capture the main argument. 545 // It would be readonly too, except that it still may write to errno. 546 CI->addParamAttr(0, Attribute::NoCapture); 547 } 548 549 return nullptr; 550 } 551 552 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 553 StringRef S1, S2; 554 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 555 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 556 557 // strspn(s, "") -> 0 558 // strspn("", s) -> 0 559 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 560 return Constant::getNullValue(CI->getType()); 561 562 // Constant folding. 563 if (HasS1 && HasS2) { 564 size_t Pos = S1.find_first_not_of(S2); 565 if (Pos == StringRef::npos) 566 Pos = S1.size(); 567 return ConstantInt::get(CI->getType(), Pos); 568 } 569 570 return nullptr; 571 } 572 573 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 574 StringRef S1, S2; 575 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 576 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 577 578 // strcspn("", s) -> 0 579 if (HasS1 && S1.empty()) 580 return Constant::getNullValue(CI->getType()); 581 582 // Constant folding. 583 if (HasS1 && HasS2) { 584 size_t Pos = S1.find_first_of(S2); 585 if (Pos == StringRef::npos) 586 Pos = S1.size(); 587 return ConstantInt::get(CI->getType(), Pos); 588 } 589 590 // strcspn(s, "") -> strlen(s) 591 if (HasS2 && S2.empty()) 592 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 593 594 return nullptr; 595 } 596 597 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 598 // fold strstr(x, x) -> x. 599 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 600 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 601 602 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 603 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 604 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 605 if (!StrLen) 606 return nullptr; 607 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 608 StrLen, B, DL, TLI); 609 if (!StrNCmp) 610 return nullptr; 611 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 612 ICmpInst *Old = cast<ICmpInst>(*UI++); 613 Value *Cmp = 614 B.CreateICmp(Old->getPredicate(), StrNCmp, 615 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 616 replaceAllUsesWith(Old, Cmp); 617 } 618 return CI; 619 } 620 621 // See if either input string is a constant string. 622 StringRef SearchStr, ToFindStr; 623 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 624 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 625 626 // fold strstr(x, "") -> x. 627 if (HasStr2 && ToFindStr.empty()) 628 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 629 630 // If both strings are known, constant fold it. 631 if (HasStr1 && HasStr2) { 632 size_t Offset = SearchStr.find(ToFindStr); 633 634 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 635 return Constant::getNullValue(CI->getType()); 636 637 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 638 Value *Result = castToCStr(CI->getArgOperand(0), B); 639 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); 640 return B.CreateBitCast(Result, CI->getType()); 641 } 642 643 // fold strstr(x, "y") -> strchr(x, 'y'). 644 if (HasStr2 && ToFindStr.size() == 1) { 645 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 646 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 647 } 648 return nullptr; 649 } 650 651 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { 652 Value *SrcStr = CI->getArgOperand(0); 653 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 654 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 655 656 // memchr(x, y, 0) -> null 657 if (LenC && LenC->isZero()) 658 return Constant::getNullValue(CI->getType()); 659 660 // From now on we need at least constant length and string. 661 StringRef Str; 662 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 663 return nullptr; 664 665 // Truncate the string to LenC. If Str is smaller than LenC we will still only 666 // scan the string, as reading past the end of it is undefined and we can just 667 // return null if we don't find the char. 668 Str = Str.substr(0, LenC->getZExtValue()); 669 670 // If the char is variable but the input str and length are not we can turn 671 // this memchr call into a simple bit field test. Of course this only works 672 // when the return value is only checked against null. 673 // 674 // It would be really nice to reuse switch lowering here but we can't change 675 // the CFG at this point. 676 // 677 // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0 678 // after bounds check. 679 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 680 unsigned char Max = 681 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 682 reinterpret_cast<const unsigned char *>(Str.end())); 683 684 // Make sure the bit field we're about to create fits in a register on the 685 // target. 686 // FIXME: On a 64 bit architecture this prevents us from using the 687 // interesting range of alpha ascii chars. We could do better by emitting 688 // two bitfields or shifting the range by 64 if no lower chars are used. 689 if (!DL.fitsInLegalInteger(Max + 1)) 690 return nullptr; 691 692 // For the bit field use a power-of-2 type with at least 8 bits to avoid 693 // creating unnecessary illegal types. 694 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 695 696 // Now build the bit field. 697 APInt Bitfield(Width, 0); 698 for (char C : Str) 699 Bitfield.setBit((unsigned char)C); 700 Value *BitfieldC = B.getInt(Bitfield); 701 702 // First check that the bit field access is within bounds. 703 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 704 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 705 "memchr.bounds"); 706 707 // Create code that checks if the given bit is set in the field. 708 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 709 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 710 711 // Finally merge both checks and cast to pointer type. The inttoptr 712 // implicitly zexts the i1 to intptr type. 713 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 714 } 715 716 // Check if all arguments are constants. If so, we can constant fold. 717 if (!CharC) 718 return nullptr; 719 720 // Compute the offset. 721 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 722 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 723 return Constant::getNullValue(CI->getType()); 724 725 // memchr(s+n,c,l) -> gep(s+n+i,c) 726 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 727 } 728 729 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 730 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 731 732 if (LHS == RHS) // memcmp(s,s,x) -> 0 733 return Constant::getNullValue(CI->getType()); 734 735 // Make sure we have a constant length. 736 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 737 if (!LenC) 738 return nullptr; 739 740 uint64_t Len = LenC->getZExtValue(); 741 if (Len == 0) // memcmp(s1,s2,0) -> 0 742 return Constant::getNullValue(CI->getType()); 743 744 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 745 if (Len == 1) { 746 Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"), 747 CI->getType(), "lhsv"); 748 Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"), 749 CI->getType(), "rhsv"); 750 return B.CreateSub(LHSV, RHSV, "chardiff"); 751 } 752 753 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 754 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 755 756 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 757 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 758 759 if (getKnownAlignment(LHS, DL, CI) >= PrefAlignment && 760 getKnownAlignment(RHS, DL, CI) >= PrefAlignment) { 761 762 Type *LHSPtrTy = 763 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 764 Type *RHSPtrTy = 765 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 766 767 Value *LHSV = 768 B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy, "lhsc"), "lhsv"); 769 Value *RHSV = 770 B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy, "rhsc"), "rhsv"); 771 772 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 773 } 774 } 775 776 // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant) 777 StringRef LHSStr, RHSStr; 778 if (getConstantStringInfo(LHS, LHSStr) && 779 getConstantStringInfo(RHS, RHSStr)) { 780 // Make sure we're not reading out-of-bounds memory. 781 if (Len > LHSStr.size() || Len > RHSStr.size()) 782 return nullptr; 783 // Fold the memcmp and normalize the result. This way we get consistent 784 // results across multiple platforms. 785 uint64_t Ret = 0; 786 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 787 if (Cmp < 0) 788 Ret = -1; 789 else if (Cmp > 0) 790 Ret = 1; 791 return ConstantInt::get(CI->getType(), Ret); 792 } 793 794 return nullptr; 795 } 796 797 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { 798 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) 799 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 800 CI->getArgOperand(2), 1); 801 return CI->getArgOperand(0); 802 } 803 804 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { 805 // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) 806 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 807 CI->getArgOperand(2), 1); 808 return CI->getArgOperand(0); 809 } 810 811 // TODO: Does this belong in BuildLibCalls or should all of those similar 812 // functions be moved here? 813 static Value *emitCalloc(Value *Num, Value *Size, const AttributeList &Attrs, 814 IRBuilder<> &B, const TargetLibraryInfo &TLI) { 815 LibFunc Func; 816 if (!TLI.getLibFunc("calloc", Func) || !TLI.has(Func)) 817 return nullptr; 818 819 Module *M = B.GetInsertBlock()->getModule(); 820 const DataLayout &DL = M->getDataLayout(); 821 IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext())); 822 Value *Calloc = M->getOrInsertFunction("calloc", Attrs, B.getInt8PtrTy(), 823 PtrType, PtrType); 824 CallInst *CI = B.CreateCall(Calloc, { Num, Size }, "calloc"); 825 826 if (const auto *F = dyn_cast<Function>(Calloc->stripPointerCasts())) 827 CI->setCallingConv(F->getCallingConv()); 828 829 return CI; 830 } 831 832 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 833 static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B, 834 const TargetLibraryInfo &TLI) { 835 // This has to be a memset of zeros (bzero). 836 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 837 if (!FillValue || FillValue->getZExtValue() != 0) 838 return nullptr; 839 840 // TODO: We should handle the case where the malloc has more than one use. 841 // This is necessary to optimize common patterns such as when the result of 842 // the malloc is checked against null or when a memset intrinsic is used in 843 // place of a memset library call. 844 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 845 if (!Malloc || !Malloc->hasOneUse()) 846 return nullptr; 847 848 // Is the inner call really malloc()? 849 Function *InnerCallee = Malloc->getCalledFunction(); 850 if (!InnerCallee) 851 return nullptr; 852 853 LibFunc Func; 854 if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) || 855 Func != LibFunc_malloc) 856 return nullptr; 857 858 // The memset must cover the same number of bytes that are malloc'd. 859 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 860 return nullptr; 861 862 // Replace the malloc with a calloc. We need the data layout to know what the 863 // actual size of a 'size_t' parameter is. 864 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 865 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 866 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 867 Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 868 Malloc->getArgOperand(0), Malloc->getAttributes(), 869 B, TLI); 870 if (!Calloc) 871 return nullptr; 872 873 Malloc->replaceAllUsesWith(Calloc); 874 Malloc->eraseFromParent(); 875 876 return Calloc; 877 } 878 879 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { 880 if (auto *Calloc = foldMallocMemset(CI, B, *TLI)) 881 return Calloc; 882 883 // memset(p, v, n) -> llvm.memset(p, v, n, 1) 884 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 885 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 886 return CI->getArgOperand(0); 887 } 888 889 //===----------------------------------------------------------------------===// 890 // Math Library Optimizations 891 //===----------------------------------------------------------------------===// 892 893 /// Return a variant of Val with float type. 894 /// Currently this works in two cases: If Val is an FPExtension of a float 895 /// value to something bigger, simply return the operand. 896 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 897 /// loss of precision do so. 898 static Value *valueHasFloatPrecision(Value *Val) { 899 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 900 Value *Op = Cast->getOperand(0); 901 if (Op->getType()->isFloatTy()) 902 return Op; 903 } 904 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 905 APFloat F = Const->getValueAPF(); 906 bool losesInfo; 907 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 908 &losesInfo); 909 if (!losesInfo) 910 return ConstantFP::get(Const->getContext(), F); 911 } 912 return nullptr; 913 } 914 915 /// Shrink double -> float for unary functions like 'floor'. 916 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 917 bool CheckRetType) { 918 Function *Callee = CI->getCalledFunction(); 919 // We know this libcall has a valid prototype, but we don't know which. 920 if (!CI->getType()->isDoubleTy()) 921 return nullptr; 922 923 if (CheckRetType) { 924 // Check if all the uses for function like 'sin' are converted to float. 925 for (User *U : CI->users()) { 926 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 927 if (!Cast || !Cast->getType()->isFloatTy()) 928 return nullptr; 929 } 930 } 931 932 // If this is something like 'floor((double)floatval)', convert to floorf. 933 Value *V = valueHasFloatPrecision(CI->getArgOperand(0)); 934 if (V == nullptr) 935 return nullptr; 936 937 // If call isn't an intrinsic, check that it isn't within a function with the 938 // same name as the float version of this call. 939 // 940 // e.g. inline float expf(float val) { return (float) exp((double) val); } 941 // 942 // A similar such definition exists in the MinGW-w64 math.h header file which 943 // when compiled with -O2 -ffast-math causes the generation of infinite loops 944 // where expf is called. 945 if (!Callee->isIntrinsic()) { 946 const Function *F = CI->getFunction(); 947 StringRef FName = F->getName(); 948 StringRef CalleeName = Callee->getName(); 949 if ((FName.size() == (CalleeName.size() + 1)) && 950 (FName.back() == 'f') && 951 FName.startswith(CalleeName)) 952 return nullptr; 953 } 954 955 // Propagate fast-math flags from the existing call to the new call. 956 IRBuilder<>::FastMathFlagGuard Guard(B); 957 B.setFastMathFlags(CI->getFastMathFlags()); 958 959 // floor((double)floatval) -> (double)floorf(floatval) 960 if (Callee->isIntrinsic()) { 961 Module *M = CI->getModule(); 962 Intrinsic::ID IID = Callee->getIntrinsicID(); 963 Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 964 V = B.CreateCall(F, V); 965 } else { 966 // The call is a library call rather than an intrinsic. 967 V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes()); 968 } 969 970 return B.CreateFPExt(V, B.getDoubleTy()); 971 } 972 973 // Replace a libcall \p CI with a call to intrinsic \p IID 974 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) { 975 // Propagate fast-math flags from the existing call to the new call. 976 IRBuilder<>::FastMathFlagGuard Guard(B); 977 B.setFastMathFlags(CI->getFastMathFlags()); 978 979 Module *M = CI->getModule(); 980 Value *V = CI->getArgOperand(0); 981 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 982 CallInst *NewCall = B.CreateCall(F, V); 983 NewCall->takeName(CI); 984 return NewCall; 985 } 986 987 /// Shrink double -> float for binary functions like 'fmin/fmax'. 988 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) { 989 Function *Callee = CI->getCalledFunction(); 990 // We know this libcall has a valid prototype, but we don't know which. 991 if (!CI->getType()->isDoubleTy()) 992 return nullptr; 993 994 // If this is something like 'fmin((double)floatval1, (double)floatval2)', 995 // or fmin(1.0, (double)floatval), then we convert it to fminf. 996 Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0)); 997 if (V1 == nullptr) 998 return nullptr; 999 Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1)); 1000 if (V2 == nullptr) 1001 return nullptr; 1002 1003 // Propagate fast-math flags from the existing call to the new call. 1004 IRBuilder<>::FastMathFlagGuard Guard(B); 1005 B.setFastMathFlags(CI->getFastMathFlags()); 1006 1007 // fmin((double)floatval1, (double)floatval2) 1008 // -> (double)fminf(floatval1, floatval2) 1009 // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP(). 1010 Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B, 1011 Callee->getAttributes()); 1012 return B.CreateFPExt(V, B.getDoubleTy()); 1013 } 1014 1015 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) { 1016 Function *Callee = CI->getCalledFunction(); 1017 Value *Ret = nullptr; 1018 StringRef Name = Callee->getName(); 1019 if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name)) 1020 Ret = optimizeUnaryDoubleFP(CI, B, true); 1021 1022 // cos(-x) -> cos(x) 1023 Value *Op1 = CI->getArgOperand(0); 1024 if (BinaryOperator::isFNeg(Op1)) { 1025 BinaryOperator *BinExpr = cast<BinaryOperator>(Op1); 1026 return B.CreateCall(Callee, BinExpr->getOperand(1), "cos"); 1027 } 1028 return Ret; 1029 } 1030 1031 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) { 1032 // Multiplications calculated using Addition Chains. 1033 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1034 1035 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1036 1037 if (InnerChain[Exp]) 1038 return InnerChain[Exp]; 1039 1040 static const unsigned AddChain[33][2] = { 1041 {0, 0}, // Unused. 1042 {0, 0}, // Unused (base case = pow1). 1043 {1, 1}, // Unused (pre-computed). 1044 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1045 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1046 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1047 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1048 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1049 }; 1050 1051 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1052 getPow(InnerChain, AddChain[Exp][1], B)); 1053 return InnerChain[Exp]; 1054 } 1055 1056 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) { 1057 Function *Callee = CI->getCalledFunction(); 1058 Value *Ret = nullptr; 1059 StringRef Name = Callee->getName(); 1060 if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name)) 1061 Ret = optimizeUnaryDoubleFP(CI, B, true); 1062 1063 Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1); 1064 1065 // pow(1.0, x) -> 1.0 1066 if (match(Op1, m_SpecificFP(1.0))) 1067 return Op1; 1068 // pow(2.0, x) -> llvm.exp2(x) 1069 if (match(Op1, m_SpecificFP(2.0))) { 1070 Value *Exp2 = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::exp2, 1071 CI->getType()); 1072 return B.CreateCall(Exp2, Op2, "exp2"); 1073 } 1074 1075 // There's no llvm.exp10 intrinsic yet, but, maybe, some day there will 1076 // be one. 1077 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { 1078 // pow(10.0, x) -> exp10(x) 1079 if (Op1C->isExactlyValue(10.0) && 1080 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc_exp10, LibFunc_exp10f, 1081 LibFunc_exp10l)) 1082 return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc_exp10), B, 1083 Callee->getAttributes()); 1084 } 1085 1086 // pow(exp(x), y) -> exp(x * y) 1087 // pow(exp2(x), y) -> exp2(x * y) 1088 // We enable these only with fast-math. Besides rounding differences, the 1089 // transformation changes overflow and underflow behavior quite dramatically. 1090 // Example: x = 1000, y = 0.001. 1091 // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1). 1092 auto *OpC = dyn_cast<CallInst>(Op1); 1093 if (OpC && OpC->hasUnsafeAlgebra() && CI->hasUnsafeAlgebra()) { 1094 LibFunc Func; 1095 Function *OpCCallee = OpC->getCalledFunction(); 1096 if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) && 1097 TLI->has(Func) && (Func == LibFunc_exp || Func == LibFunc_exp2)) { 1098 IRBuilder<>::FastMathFlagGuard Guard(B); 1099 B.setFastMathFlags(CI->getFastMathFlags()); 1100 Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul"); 1101 return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B, 1102 OpCCallee->getAttributes()); 1103 } 1104 } 1105 1106 ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2); 1107 if (!Op2C) 1108 return Ret; 1109 1110 if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 1111 return ConstantFP::get(CI->getType(), 1.0); 1112 1113 if (Op2C->isExactlyValue(-0.5) && 1114 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf, 1115 LibFunc_sqrtl)) { 1116 // If -ffast-math: 1117 // pow(x, -0.5) -> 1.0 / sqrt(x) 1118 if (CI->hasUnsafeAlgebra()) { 1119 IRBuilder<>::FastMathFlagGuard Guard(B); 1120 B.setFastMathFlags(CI->getFastMathFlags()); 1121 1122 // TODO: If the pow call is an intrinsic, we should lower to the sqrt 1123 // intrinsic, so we match errno semantics. We also should check that the 1124 // target can in fact lower the sqrt intrinsic -- we currently have no way 1125 // to ask this question other than asking whether the target has a sqrt 1126 // libcall, which is a sufficient but not necessary condition. 1127 Value *Sqrt = emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc_sqrt), B, 1128 Callee->getAttributes()); 1129 1130 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Sqrt, "sqrtrecip"); 1131 } 1132 } 1133 1134 if (Op2C->isExactlyValue(0.5) && 1135 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf, 1136 LibFunc_sqrtl)) { 1137 1138 // In -ffast-math, pow(x, 0.5) -> sqrt(x). 1139 if (CI->hasUnsafeAlgebra()) { 1140 IRBuilder<>::FastMathFlagGuard Guard(B); 1141 B.setFastMathFlags(CI->getFastMathFlags()); 1142 1143 // TODO: As above, we should lower to the sqrt intrinsic if the pow is an 1144 // intrinsic, to match errno semantics. 1145 return emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc_sqrt), B, 1146 Callee->getAttributes()); 1147 } 1148 1149 // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). 1150 // This is faster than calling pow, and still handles negative zero 1151 // and negative infinity correctly. 1152 // TODO: In finite-only mode, this could be just fabs(sqrt(x)). 1153 Value *Inf = ConstantFP::getInfinity(CI->getType()); 1154 Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); 1155 1156 // TODO: As above, we should lower to the sqrt intrinsic if the pow is an 1157 // intrinsic, to match errno semantics. 1158 Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes()); 1159 1160 Module *M = Callee->getParent(); 1161 Function *FabsF = Intrinsic::getDeclaration(M, Intrinsic::fabs, 1162 CI->getType()); 1163 Value *FAbs = B.CreateCall(FabsF, Sqrt); 1164 1165 Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf); 1166 Value *Sel = B.CreateSelect(FCmp, Inf, FAbs); 1167 return Sel; 1168 } 1169 1170 if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x 1171 return Op1; 1172 if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x 1173 return B.CreateFMul(Op1, Op1, "pow2"); 1174 if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x 1175 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip"); 1176 1177 // In -ffast-math, generate repeated fmul instead of generating pow(x, n). 1178 if (CI->hasUnsafeAlgebra()) { 1179 APFloat V = abs(Op2C->getValueAPF()); 1180 // We limit to a max of 7 fmul(s). Thus max exponent is 32. 1181 // This transformation applies to integer exponents only. 1182 if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan || 1183 !V.isInteger()) 1184 return nullptr; 1185 1186 // Propagate fast math flags. 1187 IRBuilder<>::FastMathFlagGuard Guard(B); 1188 B.setFastMathFlags(CI->getFastMathFlags()); 1189 1190 // We will memoize intermediate products of the Addition Chain. 1191 Value *InnerChain[33] = {nullptr}; 1192 InnerChain[1] = Op1; 1193 InnerChain[2] = B.CreateFMul(Op1, Op1); 1194 1195 // We cannot readily convert a non-double type (like float) to a double. 1196 // So we first convert V to something which could be converted to double. 1197 bool ignored; 1198 V.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &ignored); 1199 1200 Value *FMul = getPow(InnerChain, V.convertToDouble(), B); 1201 // For negative exponents simply compute the reciprocal. 1202 if (Op2C->isNegative()) 1203 FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul); 1204 return FMul; 1205 } 1206 1207 return nullptr; 1208 } 1209 1210 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1211 Function *Callee = CI->getCalledFunction(); 1212 Value *Ret = nullptr; 1213 StringRef Name = Callee->getName(); 1214 if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name)) 1215 Ret = optimizeUnaryDoubleFP(CI, B, true); 1216 1217 Value *Op = CI->getArgOperand(0); 1218 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1219 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1220 LibFunc LdExp = LibFunc_ldexpl; 1221 if (Op->getType()->isFloatTy()) 1222 LdExp = LibFunc_ldexpf; 1223 else if (Op->getType()->isDoubleTy()) 1224 LdExp = LibFunc_ldexp; 1225 1226 if (TLI->has(LdExp)) { 1227 Value *LdExpArg = nullptr; 1228 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 1229 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 1230 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 1231 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 1232 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 1233 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 1234 } 1235 1236 if (LdExpArg) { 1237 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); 1238 if (!Op->getType()->isFloatTy()) 1239 One = ConstantExpr::getFPExtend(One, Op->getType()); 1240 1241 Module *M = CI->getModule(); 1242 Value *NewCallee = 1243 M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), 1244 Op->getType(), B.getInt32Ty()); 1245 CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg}); 1246 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 1247 CI->setCallingConv(F->getCallingConv()); 1248 1249 return CI; 1250 } 1251 } 1252 return Ret; 1253 } 1254 1255 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { 1256 Function *Callee = CI->getCalledFunction(); 1257 // If we can shrink the call to a float function rather than a double 1258 // function, do that first. 1259 StringRef Name = Callee->getName(); 1260 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1261 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1262 return Ret; 1263 1264 IRBuilder<>::FastMathFlagGuard Guard(B); 1265 FastMathFlags FMF; 1266 if (CI->hasUnsafeAlgebra()) { 1267 // Unsafe algebra sets all fast-math-flags to true. 1268 FMF.setUnsafeAlgebra(); 1269 } else { 1270 // At a minimum, no-nans-fp-math must be true. 1271 if (!CI->hasNoNaNs()) 1272 return nullptr; 1273 // No-signed-zeros is implied by the definitions of fmax/fmin themselves: 1274 // "Ideally, fmax would be sensitive to the sign of zero, for example 1275 // fmax(-0. 0, +0. 0) would return +0; however, implementation in software 1276 // might be impractical." 1277 FMF.setNoSignedZeros(); 1278 FMF.setNoNaNs(); 1279 } 1280 B.setFastMathFlags(FMF); 1281 1282 // We have a relaxed floating-point environment. We can ignore NaN-handling 1283 // and transform to a compare and select. We do not have to consider errno or 1284 // exceptions, because fmin/fmax do not have those. 1285 Value *Op0 = CI->getArgOperand(0); 1286 Value *Op1 = CI->getArgOperand(1); 1287 Value *Cmp = Callee->getName().startswith("fmin") ? 1288 B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1); 1289 return B.CreateSelect(Cmp, Op0, Op1); 1290 } 1291 1292 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { 1293 Function *Callee = CI->getCalledFunction(); 1294 Value *Ret = nullptr; 1295 StringRef Name = Callee->getName(); 1296 if (UnsafeFPShrink && hasFloatVersion(Name)) 1297 Ret = optimizeUnaryDoubleFP(CI, B, true); 1298 1299 if (!CI->hasUnsafeAlgebra()) 1300 return Ret; 1301 Value *Op1 = CI->getArgOperand(0); 1302 auto *OpC = dyn_cast<CallInst>(Op1); 1303 1304 // The earlier call must also be unsafe in order to do these transforms. 1305 if (!OpC || !OpC->hasUnsafeAlgebra()) 1306 return Ret; 1307 1308 // log(pow(x,y)) -> y*log(x) 1309 // This is only applicable to log, log2, log10. 1310 if (Name != "log" && Name != "log2" && Name != "log10") 1311 return Ret; 1312 1313 IRBuilder<>::FastMathFlagGuard Guard(B); 1314 FastMathFlags FMF; 1315 FMF.setUnsafeAlgebra(); 1316 B.setFastMathFlags(FMF); 1317 1318 LibFunc Func; 1319 Function *F = OpC->getCalledFunction(); 1320 if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1321 Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow)) 1322 return B.CreateFMul(OpC->getArgOperand(1), 1323 emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, 1324 Callee->getAttributes()), "mul"); 1325 1326 // log(exp2(y)) -> y*log(2) 1327 if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && 1328 TLI->has(Func) && Func == LibFunc_exp2) 1329 return B.CreateFMul( 1330 OpC->getArgOperand(0), 1331 emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), 1332 Callee->getName(), B, Callee->getAttributes()), 1333 "logmul"); 1334 return Ret; 1335 } 1336 1337 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1338 Function *Callee = CI->getCalledFunction(); 1339 Value *Ret = nullptr; 1340 // TODO: Once we have a way (other than checking for the existince of the 1341 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 1342 // condition below. 1343 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 1344 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1345 Ret = optimizeUnaryDoubleFP(CI, B, true); 1346 1347 if (!CI->hasUnsafeAlgebra()) 1348 return Ret; 1349 1350 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1351 if (!I || I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra()) 1352 return Ret; 1353 1354 // We're looking for a repeated factor in a multiplication tree, 1355 // so we can do this fold: sqrt(x * x) -> fabs(x); 1356 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 1357 Value *Op0 = I->getOperand(0); 1358 Value *Op1 = I->getOperand(1); 1359 Value *RepeatOp = nullptr; 1360 Value *OtherOp = nullptr; 1361 if (Op0 == Op1) { 1362 // Simple match: the operands of the multiply are identical. 1363 RepeatOp = Op0; 1364 } else { 1365 // Look for a more complicated pattern: one of the operands is itself 1366 // a multiply, so search for a common factor in that multiply. 1367 // Note: We don't bother looking any deeper than this first level or for 1368 // variations of this pattern because instcombine's visitFMUL and/or the 1369 // reassociation pass should give us this form. 1370 Value *OtherMul0, *OtherMul1; 1371 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1372 // Pattern: sqrt((x * y) * z) 1373 if (OtherMul0 == OtherMul1 && 1374 cast<Instruction>(Op0)->hasUnsafeAlgebra()) { 1375 // Matched: sqrt((x * x) * z) 1376 RepeatOp = OtherMul0; 1377 OtherOp = Op1; 1378 } 1379 } 1380 } 1381 if (!RepeatOp) 1382 return Ret; 1383 1384 // Fast math flags for any created instructions should match the sqrt 1385 // and multiply. 1386 IRBuilder<>::FastMathFlagGuard Guard(B); 1387 B.setFastMathFlags(I->getFastMathFlags()); 1388 1389 // If we found a repeated factor, hoist it out of the square root and 1390 // replace it with the fabs of that factor. 1391 Module *M = Callee->getParent(); 1392 Type *ArgType = I->getType(); 1393 Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1394 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1395 if (OtherOp) { 1396 // If we found a non-repeated factor, we still need to get its square 1397 // root. We then multiply that by the value that was simplified out 1398 // of the square root calculation. 1399 Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1400 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1401 return B.CreateFMul(FabsCall, SqrtCall); 1402 } 1403 return FabsCall; 1404 } 1405 1406 // TODO: Generalize to handle any trig function and its inverse. 1407 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { 1408 Function *Callee = CI->getCalledFunction(); 1409 Value *Ret = nullptr; 1410 StringRef Name = Callee->getName(); 1411 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 1412 Ret = optimizeUnaryDoubleFP(CI, B, true); 1413 1414 Value *Op1 = CI->getArgOperand(0); 1415 auto *OpC = dyn_cast<CallInst>(Op1); 1416 if (!OpC) 1417 return Ret; 1418 1419 // Both calls must allow unsafe optimizations in order to remove them. 1420 if (!CI->hasUnsafeAlgebra() || !OpC->hasUnsafeAlgebra()) 1421 return Ret; 1422 1423 // tan(atan(x)) -> x 1424 // tanf(atanf(x)) -> x 1425 // tanl(atanl(x)) -> x 1426 LibFunc Func; 1427 Function *F = OpC->getCalledFunction(); 1428 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1429 ((Func == LibFunc_atan && Callee->getName() == "tan") || 1430 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 1431 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 1432 Ret = OpC->getArgOperand(0); 1433 return Ret; 1434 } 1435 1436 static bool isTrigLibCall(CallInst *CI) { 1437 // We can only hope to do anything useful if we can ignore things like errno 1438 // and floating-point exceptions. 1439 // We already checked the prototype. 1440 return CI->hasFnAttr(Attribute::NoUnwind) && 1441 CI->hasFnAttr(Attribute::ReadNone); 1442 } 1443 1444 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1445 bool UseFloat, Value *&Sin, Value *&Cos, 1446 Value *&SinCos) { 1447 Type *ArgTy = Arg->getType(); 1448 Type *ResTy; 1449 StringRef Name; 1450 1451 Triple T(OrigCallee->getParent()->getTargetTriple()); 1452 if (UseFloat) { 1453 Name = "__sincospif_stret"; 1454 1455 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1456 // x86_64 can't use {float, float} since that would be returned in both 1457 // xmm0 and xmm1, which isn't what a real struct would do. 1458 ResTy = T.getArch() == Triple::x86_64 1459 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1460 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 1461 } else { 1462 Name = "__sincospi_stret"; 1463 ResTy = StructType::get(ArgTy, ArgTy); 1464 } 1465 1466 Module *M = OrigCallee->getParent(); 1467 Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), 1468 ResTy, ArgTy); 1469 1470 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1471 // If the argument is an instruction, it must dominate all uses so put our 1472 // sincos call there. 1473 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1474 } else { 1475 // Otherwise (e.g. for a constant) the beginning of the function is as 1476 // good a place as any. 1477 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1478 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1479 } 1480 1481 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1482 1483 if (SinCos->getType()->isStructTy()) { 1484 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1485 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1486 } else { 1487 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1488 "sinpi"); 1489 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1490 "cospi"); 1491 } 1492 } 1493 1494 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1495 // Make sure the prototype is as expected, otherwise the rest of the 1496 // function is probably invalid and likely to abort. 1497 if (!isTrigLibCall(CI)) 1498 return nullptr; 1499 1500 Value *Arg = CI->getArgOperand(0); 1501 SmallVector<CallInst *, 1> SinCalls; 1502 SmallVector<CallInst *, 1> CosCalls; 1503 SmallVector<CallInst *, 1> SinCosCalls; 1504 1505 bool IsFloat = Arg->getType()->isFloatTy(); 1506 1507 // Look for all compatible sinpi, cospi and sincospi calls with the same 1508 // argument. If there are enough (in some sense) we can make the 1509 // substitution. 1510 Function *F = CI->getFunction(); 1511 for (User *U : Arg->users()) 1512 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 1513 1514 // It's only worthwhile if both sinpi and cospi are actually used. 1515 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1516 return nullptr; 1517 1518 Value *Sin, *Cos, *SinCos; 1519 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1520 1521 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 1522 Value *Res) { 1523 for (CallInst *C : Calls) 1524 replaceAllUsesWith(C, Res); 1525 }; 1526 1527 replaceTrigInsts(SinCalls, Sin); 1528 replaceTrigInsts(CosCalls, Cos); 1529 replaceTrigInsts(SinCosCalls, SinCos); 1530 1531 return nullptr; 1532 } 1533 1534 void LibCallSimplifier::classifyArgUse( 1535 Value *Val, Function *F, bool IsFloat, 1536 SmallVectorImpl<CallInst *> &SinCalls, 1537 SmallVectorImpl<CallInst *> &CosCalls, 1538 SmallVectorImpl<CallInst *> &SinCosCalls) { 1539 CallInst *CI = dyn_cast<CallInst>(Val); 1540 1541 if (!CI) 1542 return; 1543 1544 // Don't consider calls in other functions. 1545 if (CI->getFunction() != F) 1546 return; 1547 1548 Function *Callee = CI->getCalledFunction(); 1549 LibFunc Func; 1550 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 1551 !isTrigLibCall(CI)) 1552 return; 1553 1554 if (IsFloat) { 1555 if (Func == LibFunc_sinpif) 1556 SinCalls.push_back(CI); 1557 else if (Func == LibFunc_cospif) 1558 CosCalls.push_back(CI); 1559 else if (Func == LibFunc_sincospif_stret) 1560 SinCosCalls.push_back(CI); 1561 } else { 1562 if (Func == LibFunc_sinpi) 1563 SinCalls.push_back(CI); 1564 else if (Func == LibFunc_cospi) 1565 CosCalls.push_back(CI); 1566 else if (Func == LibFunc_sincospi_stret) 1567 SinCosCalls.push_back(CI); 1568 } 1569 } 1570 1571 //===----------------------------------------------------------------------===// 1572 // Integer Library Call Optimizations 1573 //===----------------------------------------------------------------------===// 1574 1575 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1576 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1577 Value *Op = CI->getArgOperand(0); 1578 Type *ArgType = Op->getType(); 1579 Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1580 Intrinsic::cttz, ArgType); 1581 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 1582 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1583 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1584 1585 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1586 return B.CreateSelect(Cond, V, B.getInt32(0)); 1587 } 1588 1589 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) { 1590 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 1591 Value *Op = CI->getArgOperand(0); 1592 Type *ArgType = Op->getType(); 1593 Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1594 Intrinsic::ctlz, ArgType); 1595 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 1596 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 1597 V); 1598 return B.CreateIntCast(V, CI->getType(), false); 1599 } 1600 1601 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1602 // abs(x) -> x >s -1 ? x : -x 1603 Value *Op = CI->getArgOperand(0); 1604 Value *Pos = 1605 B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos"); 1606 Value *Neg = B.CreateNeg(Op, "neg"); 1607 return B.CreateSelect(Pos, Op, Neg); 1608 } 1609 1610 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 1611 // isdigit(c) -> (c-'0') <u 10 1612 Value *Op = CI->getArgOperand(0); 1613 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1614 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1615 return B.CreateZExt(Op, CI->getType()); 1616 } 1617 1618 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 1619 // isascii(c) -> c <u 128 1620 Value *Op = CI->getArgOperand(0); 1621 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1622 return B.CreateZExt(Op, CI->getType()); 1623 } 1624 1625 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 1626 // toascii(c) -> c & 0x7f 1627 return B.CreateAnd(CI->getArgOperand(0), 1628 ConstantInt::get(CI->getType(), 0x7F)); 1629 } 1630 1631 //===----------------------------------------------------------------------===// 1632 // Formatting and IO Library Call Optimizations 1633 //===----------------------------------------------------------------------===// 1634 1635 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 1636 1637 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 1638 int StreamArg) { 1639 Function *Callee = CI->getCalledFunction(); 1640 // Error reporting calls should be cold, mark them as such. 1641 // This applies even to non-builtin calls: it is only a hint and applies to 1642 // functions that the frontend might not understand as builtins. 1643 1644 // This heuristic was suggested in: 1645 // Improving Static Branch Prediction in a Compiler 1646 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 1647 // Proceedings of PACT'98, Oct. 1998, IEEE 1648 if (!CI->hasFnAttr(Attribute::Cold) && 1649 isReportingError(Callee, CI, StreamArg)) { 1650 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 1651 } 1652 1653 return nullptr; 1654 } 1655 1656 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 1657 if (!Callee || !Callee->isDeclaration()) 1658 return false; 1659 1660 if (StreamArg < 0) 1661 return true; 1662 1663 // These functions might be considered cold, but only if their stream 1664 // argument is stderr. 1665 1666 if (StreamArg >= (int)CI->getNumArgOperands()) 1667 return false; 1668 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 1669 if (!LI) 1670 return false; 1671 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 1672 if (!GV || !GV->isDeclaration()) 1673 return false; 1674 return GV->getName() == "stderr"; 1675 } 1676 1677 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 1678 // Check for a fixed format string. 1679 StringRef FormatStr; 1680 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 1681 return nullptr; 1682 1683 // Empty format string -> noop. 1684 if (FormatStr.empty()) // Tolerate printf's declared void. 1685 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 1686 1687 // Do not do any of the following transformations if the printf return value 1688 // is used, in general the printf return value is not compatible with either 1689 // putchar() or puts(). 1690 if (!CI->use_empty()) 1691 return nullptr; 1692 1693 // printf("x") -> putchar('x'), even for "%" and "%%". 1694 if (FormatStr.size() == 1 || FormatStr == "%%") 1695 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 1696 1697 // printf("%s", "a") --> putchar('a') 1698 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 1699 StringRef ChrStr; 1700 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 1701 return nullptr; 1702 if (ChrStr.size() != 1) 1703 return nullptr; 1704 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 1705 } 1706 1707 // printf("foo\n") --> puts("foo") 1708 if (FormatStr[FormatStr.size() - 1] == '\n' && 1709 FormatStr.find('%') == StringRef::npos) { // No format characters. 1710 // Create a string literal with no \n on it. We expect the constant merge 1711 // pass to be run after this pass, to merge duplicate strings. 1712 FormatStr = FormatStr.drop_back(); 1713 Value *GV = B.CreateGlobalString(FormatStr, "str"); 1714 return emitPutS(GV, B, TLI); 1715 } 1716 1717 // Optimize specific format strings. 1718 // printf("%c", chr) --> putchar(chr) 1719 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 1720 CI->getArgOperand(1)->getType()->isIntegerTy()) 1721 return emitPutChar(CI->getArgOperand(1), B, TLI); 1722 1723 // printf("%s\n", str) --> puts(str) 1724 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 1725 CI->getArgOperand(1)->getType()->isPointerTy()) 1726 return emitPutS(CI->getArgOperand(1), B, TLI); 1727 return nullptr; 1728 } 1729 1730 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 1731 1732 Function *Callee = CI->getCalledFunction(); 1733 FunctionType *FT = Callee->getFunctionType(); 1734 if (Value *V = optimizePrintFString(CI, B)) { 1735 return V; 1736 } 1737 1738 // printf(format, ...) -> iprintf(format, ...) if no floating point 1739 // arguments. 1740 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 1741 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1742 Constant *IPrintFFn = 1743 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 1744 CallInst *New = cast<CallInst>(CI->clone()); 1745 New->setCalledFunction(IPrintFFn); 1746 B.Insert(New); 1747 return New; 1748 } 1749 return nullptr; 1750 } 1751 1752 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 1753 // Check for a fixed format string. 1754 StringRef FormatStr; 1755 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1756 return nullptr; 1757 1758 // If we just have a format string (nothing else crazy) transform it. 1759 if (CI->getNumArgOperands() == 2) { 1760 // Make sure there's no % in the constant array. We could try to handle 1761 // %% -> % in the future if we cared. 1762 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1763 if (FormatStr[i] == '%') 1764 return nullptr; // we found a format specifier, bail out. 1765 1766 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) 1767 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 1768 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 1769 FormatStr.size() + 1), 1770 1); // Copy the null byte. 1771 return ConstantInt::get(CI->getType(), FormatStr.size()); 1772 } 1773 1774 // The remaining optimizations require the format string to be "%s" or "%c" 1775 // and have an extra operand. 1776 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1777 CI->getNumArgOperands() < 3) 1778 return nullptr; 1779 1780 // Decode the second character of the format string. 1781 if (FormatStr[1] == 'c') { 1782 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 1783 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1784 return nullptr; 1785 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 1786 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 1787 B.CreateStore(V, Ptr); 1788 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 1789 B.CreateStore(B.getInt8(0), Ptr); 1790 1791 return ConstantInt::get(CI->getType(), 1); 1792 } 1793 1794 if (FormatStr[1] == 's') { 1795 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) 1796 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1797 return nullptr; 1798 1799 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 1800 if (!Len) 1801 return nullptr; 1802 Value *IncLen = 1803 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 1804 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1); 1805 1806 // The sprintf result is the unincremented number of bytes in the string. 1807 return B.CreateIntCast(Len, CI->getType(), false); 1808 } 1809 return nullptr; 1810 } 1811 1812 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 1813 Function *Callee = CI->getCalledFunction(); 1814 FunctionType *FT = Callee->getFunctionType(); 1815 if (Value *V = optimizeSPrintFString(CI, B)) { 1816 return V; 1817 } 1818 1819 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 1820 // point arguments. 1821 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 1822 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1823 Constant *SIPrintFFn = 1824 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 1825 CallInst *New = cast<CallInst>(CI->clone()); 1826 New->setCalledFunction(SIPrintFFn); 1827 B.Insert(New); 1828 return New; 1829 } 1830 return nullptr; 1831 } 1832 1833 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 1834 optimizeErrorReporting(CI, B, 0); 1835 1836 // All the optimizations depend on the format string. 1837 StringRef FormatStr; 1838 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1839 return nullptr; 1840 1841 // Do not do any of the following transformations if the fprintf return 1842 // value is used, in general the fprintf return value is not compatible 1843 // with fwrite(), fputc() or fputs(). 1844 if (!CI->use_empty()) 1845 return nullptr; 1846 1847 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 1848 if (CI->getNumArgOperands() == 2) { 1849 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1850 if (FormatStr[i] == '%') // Could handle %% -> % if we cared. 1851 return nullptr; // We found a format specifier. 1852 1853 return emitFWrite( 1854 CI->getArgOperand(1), 1855 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 1856 CI->getArgOperand(0), B, DL, TLI); 1857 } 1858 1859 // The remaining optimizations require the format string to be "%s" or "%c" 1860 // and have an extra operand. 1861 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1862 CI->getNumArgOperands() < 3) 1863 return nullptr; 1864 1865 // Decode the second character of the format string. 1866 if (FormatStr[1] == 'c') { 1867 // fprintf(F, "%c", chr) --> fputc(chr, F) 1868 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1869 return nullptr; 1870 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 1871 } 1872 1873 if (FormatStr[1] == 's') { 1874 // fprintf(F, "%s", str) --> fputs(str, F) 1875 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1876 return nullptr; 1877 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 1878 } 1879 return nullptr; 1880 } 1881 1882 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 1883 Function *Callee = CI->getCalledFunction(); 1884 FunctionType *FT = Callee->getFunctionType(); 1885 if (Value *V = optimizeFPrintFString(CI, B)) { 1886 return V; 1887 } 1888 1889 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 1890 // floating point arguments. 1891 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 1892 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1893 Constant *FIPrintFFn = 1894 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 1895 CallInst *New = cast<CallInst>(CI->clone()); 1896 New->setCalledFunction(FIPrintFFn); 1897 B.Insert(New); 1898 return New; 1899 } 1900 return nullptr; 1901 } 1902 1903 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 1904 optimizeErrorReporting(CI, B, 3); 1905 1906 // Get the element size and count. 1907 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 1908 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1909 if (!SizeC || !CountC) 1910 return nullptr; 1911 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 1912 1913 // If this is writing zero records, remove the call (it's a noop). 1914 if (Bytes == 0) 1915 return ConstantInt::get(CI->getType(), 0); 1916 1917 // If this is writing one byte, turn it into fputc. 1918 // This optimisation is only valid, if the return value is unused. 1919 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 1920 Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char"); 1921 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 1922 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 1923 } 1924 1925 return nullptr; 1926 } 1927 1928 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 1929 optimizeErrorReporting(CI, B, 1); 1930 1931 // Don't rewrite fputs to fwrite when optimising for size because fwrite 1932 // requires more arguments and thus extra MOVs are required. 1933 if (CI->getParent()->getParent()->optForSize()) 1934 return nullptr; 1935 1936 // We can't optimize if return value is used. 1937 if (!CI->use_empty()) 1938 return nullptr; 1939 1940 // fputs(s,F) --> fwrite(s,1,strlen(s),F) 1941 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 1942 if (!Len) 1943 return nullptr; 1944 1945 // Known to have no uses (see above). 1946 return emitFWrite( 1947 CI->getArgOperand(0), 1948 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 1949 CI->getArgOperand(1), B, DL, TLI); 1950 } 1951 1952 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 1953 // Check for a constant string. 1954 StringRef Str; 1955 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1956 return nullptr; 1957 1958 if (Str.empty() && CI->use_empty()) { 1959 // puts("") -> putchar('\n') 1960 Value *Res = emitPutChar(B.getInt32('\n'), B, TLI); 1961 if (CI->use_empty() || !Res) 1962 return Res; 1963 return B.CreateIntCast(Res, CI->getType(), true); 1964 } 1965 1966 return nullptr; 1967 } 1968 1969 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 1970 LibFunc Func; 1971 SmallString<20> FloatFuncName = FuncName; 1972 FloatFuncName += 'f'; 1973 if (TLI->getLibFunc(FloatFuncName, Func)) 1974 return TLI->has(Func); 1975 return false; 1976 } 1977 1978 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 1979 IRBuilder<> &Builder) { 1980 LibFunc Func; 1981 Function *Callee = CI->getCalledFunction(); 1982 // Check for string/memory library functions. 1983 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 1984 // Make sure we never change the calling convention. 1985 assert((ignoreCallingConv(Func) || 1986 isCallingConvCCompatible(CI)) && 1987 "Optimizing string/memory libcall would change the calling convention"); 1988 switch (Func) { 1989 case LibFunc_strcat: 1990 return optimizeStrCat(CI, Builder); 1991 case LibFunc_strncat: 1992 return optimizeStrNCat(CI, Builder); 1993 case LibFunc_strchr: 1994 return optimizeStrChr(CI, Builder); 1995 case LibFunc_strrchr: 1996 return optimizeStrRChr(CI, Builder); 1997 case LibFunc_strcmp: 1998 return optimizeStrCmp(CI, Builder); 1999 case LibFunc_strncmp: 2000 return optimizeStrNCmp(CI, Builder); 2001 case LibFunc_strcpy: 2002 return optimizeStrCpy(CI, Builder); 2003 case LibFunc_stpcpy: 2004 return optimizeStpCpy(CI, Builder); 2005 case LibFunc_strncpy: 2006 return optimizeStrNCpy(CI, Builder); 2007 case LibFunc_strlen: 2008 return optimizeStrLen(CI, Builder); 2009 case LibFunc_strpbrk: 2010 return optimizeStrPBrk(CI, Builder); 2011 case LibFunc_strtol: 2012 case LibFunc_strtod: 2013 case LibFunc_strtof: 2014 case LibFunc_strtoul: 2015 case LibFunc_strtoll: 2016 case LibFunc_strtold: 2017 case LibFunc_strtoull: 2018 return optimizeStrTo(CI, Builder); 2019 case LibFunc_strspn: 2020 return optimizeStrSpn(CI, Builder); 2021 case LibFunc_strcspn: 2022 return optimizeStrCSpn(CI, Builder); 2023 case LibFunc_strstr: 2024 return optimizeStrStr(CI, Builder); 2025 case LibFunc_memchr: 2026 return optimizeMemChr(CI, Builder); 2027 case LibFunc_memcmp: 2028 return optimizeMemCmp(CI, Builder); 2029 case LibFunc_memcpy: 2030 return optimizeMemCpy(CI, Builder); 2031 case LibFunc_memmove: 2032 return optimizeMemMove(CI, Builder); 2033 case LibFunc_memset: 2034 return optimizeMemSet(CI, Builder); 2035 case LibFunc_wcslen: 2036 return optimizeWcslen(CI, Builder); 2037 default: 2038 break; 2039 } 2040 } 2041 return nullptr; 2042 } 2043 2044 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 2045 if (CI->isNoBuiltin()) 2046 return nullptr; 2047 2048 LibFunc Func; 2049 Function *Callee = CI->getCalledFunction(); 2050 StringRef FuncName = Callee->getName(); 2051 2052 SmallVector<OperandBundleDef, 2> OpBundles; 2053 CI->getOperandBundlesAsDefs(OpBundles); 2054 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2055 bool isCallingConvC = isCallingConvCCompatible(CI); 2056 2057 // Command-line parameter overrides instruction attribute. 2058 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2059 UnsafeFPShrink = EnableUnsafeFPShrink; 2060 else if (isa<FPMathOperator>(CI) && CI->hasUnsafeAlgebra()) 2061 UnsafeFPShrink = true; 2062 2063 // First, check for intrinsics. 2064 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2065 if (!isCallingConvC) 2066 return nullptr; 2067 switch (II->getIntrinsicID()) { 2068 case Intrinsic::pow: 2069 return optimizePow(CI, Builder); 2070 case Intrinsic::exp2: 2071 return optimizeExp2(CI, Builder); 2072 case Intrinsic::log: 2073 return optimizeLog(CI, Builder); 2074 case Intrinsic::sqrt: 2075 return optimizeSqrt(CI, Builder); 2076 // TODO: Use foldMallocMemset() with memset intrinsic. 2077 default: 2078 return nullptr; 2079 } 2080 } 2081 2082 // Also try to simplify calls to fortified library functions. 2083 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 2084 // Try to further simplify the result. 2085 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 2086 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 2087 // Use an IR Builder from SimplifiedCI if available instead of CI 2088 // to guarantee we reach all uses we might replace later on. 2089 IRBuilder<> TmpBuilder(SimplifiedCI); 2090 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { 2091 // If we were able to further simplify, remove the now redundant call. 2092 SimplifiedCI->replaceAllUsesWith(V); 2093 SimplifiedCI->eraseFromParent(); 2094 return V; 2095 } 2096 } 2097 return SimplifiedFortifiedCI; 2098 } 2099 2100 // Then check for known library functions. 2101 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2102 // We never change the calling convention. 2103 if (!ignoreCallingConv(Func) && !isCallingConvC) 2104 return nullptr; 2105 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 2106 return V; 2107 switch (Func) { 2108 case LibFunc_cosf: 2109 case LibFunc_cos: 2110 case LibFunc_cosl: 2111 return optimizeCos(CI, Builder); 2112 case LibFunc_sinpif: 2113 case LibFunc_sinpi: 2114 case LibFunc_cospif: 2115 case LibFunc_cospi: 2116 return optimizeSinCosPi(CI, Builder); 2117 case LibFunc_powf: 2118 case LibFunc_pow: 2119 case LibFunc_powl: 2120 return optimizePow(CI, Builder); 2121 case LibFunc_exp2l: 2122 case LibFunc_exp2: 2123 case LibFunc_exp2f: 2124 return optimizeExp2(CI, Builder); 2125 case LibFunc_fabsf: 2126 case LibFunc_fabs: 2127 case LibFunc_fabsl: 2128 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2129 case LibFunc_sqrtf: 2130 case LibFunc_sqrt: 2131 case LibFunc_sqrtl: 2132 return optimizeSqrt(CI, Builder); 2133 case LibFunc_ffs: 2134 case LibFunc_ffsl: 2135 case LibFunc_ffsll: 2136 return optimizeFFS(CI, Builder); 2137 case LibFunc_fls: 2138 case LibFunc_flsl: 2139 case LibFunc_flsll: 2140 return optimizeFls(CI, Builder); 2141 case LibFunc_abs: 2142 case LibFunc_labs: 2143 case LibFunc_llabs: 2144 return optimizeAbs(CI, Builder); 2145 case LibFunc_isdigit: 2146 return optimizeIsDigit(CI, Builder); 2147 case LibFunc_isascii: 2148 return optimizeIsAscii(CI, Builder); 2149 case LibFunc_toascii: 2150 return optimizeToAscii(CI, Builder); 2151 case LibFunc_printf: 2152 return optimizePrintF(CI, Builder); 2153 case LibFunc_sprintf: 2154 return optimizeSPrintF(CI, Builder); 2155 case LibFunc_fprintf: 2156 return optimizeFPrintF(CI, Builder); 2157 case LibFunc_fwrite: 2158 return optimizeFWrite(CI, Builder); 2159 case LibFunc_fputs: 2160 return optimizeFPuts(CI, Builder); 2161 case LibFunc_log: 2162 case LibFunc_log10: 2163 case LibFunc_log1p: 2164 case LibFunc_log2: 2165 case LibFunc_logb: 2166 return optimizeLog(CI, Builder); 2167 case LibFunc_puts: 2168 return optimizePuts(CI, Builder); 2169 case LibFunc_tan: 2170 case LibFunc_tanf: 2171 case LibFunc_tanl: 2172 return optimizeTan(CI, Builder); 2173 case LibFunc_perror: 2174 return optimizeErrorReporting(CI, Builder); 2175 case LibFunc_vfprintf: 2176 case LibFunc_fiprintf: 2177 return optimizeErrorReporting(CI, Builder, 0); 2178 case LibFunc_fputc: 2179 return optimizeErrorReporting(CI, Builder, 1); 2180 case LibFunc_ceil: 2181 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2182 case LibFunc_floor: 2183 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2184 case LibFunc_round: 2185 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2186 case LibFunc_nearbyint: 2187 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2188 case LibFunc_rint: 2189 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2190 case LibFunc_trunc: 2191 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2192 case LibFunc_acos: 2193 case LibFunc_acosh: 2194 case LibFunc_asin: 2195 case LibFunc_asinh: 2196 case LibFunc_atan: 2197 case LibFunc_atanh: 2198 case LibFunc_cbrt: 2199 case LibFunc_cosh: 2200 case LibFunc_exp: 2201 case LibFunc_exp10: 2202 case LibFunc_expm1: 2203 case LibFunc_sin: 2204 case LibFunc_sinh: 2205 case LibFunc_tanh: 2206 if (UnsafeFPShrink && hasFloatVersion(FuncName)) 2207 return optimizeUnaryDoubleFP(CI, Builder, true); 2208 return nullptr; 2209 case LibFunc_copysign: 2210 if (hasFloatVersion(FuncName)) 2211 return optimizeBinaryDoubleFP(CI, Builder); 2212 return nullptr; 2213 case LibFunc_fminf: 2214 case LibFunc_fmin: 2215 case LibFunc_fminl: 2216 case LibFunc_fmaxf: 2217 case LibFunc_fmax: 2218 case LibFunc_fmaxl: 2219 return optimizeFMinFMax(CI, Builder); 2220 default: 2221 return nullptr; 2222 } 2223 } 2224 return nullptr; 2225 } 2226 2227 LibCallSimplifier::LibCallSimplifier( 2228 const DataLayout &DL, const TargetLibraryInfo *TLI, 2229 OptimizationRemarkEmitter &ORE, 2230 function_ref<void(Instruction *, Value *)> Replacer) 2231 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), 2232 UnsafeFPShrink(false), Replacer(Replacer) {} 2233 2234 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 2235 // Indirect through the replacer used in this instance. 2236 Replacer(I, With); 2237 } 2238 2239 // TODO: 2240 // Additional cases that we need to add to this file: 2241 // 2242 // cbrt: 2243 // * cbrt(expN(X)) -> expN(x/3) 2244 // * cbrt(sqrt(x)) -> pow(x,1/6) 2245 // * cbrt(cbrt(x)) -> pow(x,1/9) 2246 // 2247 // exp, expf, expl: 2248 // * exp(log(x)) -> x 2249 // 2250 // log, logf, logl: 2251 // * log(exp(x)) -> x 2252 // * log(exp(y)) -> y*log(e) 2253 // * log(exp10(y)) -> y*log(10) 2254 // * log(sqrt(x)) -> 0.5*log(x) 2255 // 2256 // pow, powf, powl: 2257 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2258 // * pow(pow(x,y),z)-> pow(x,y*z) 2259 // 2260 // signbit: 2261 // * signbit(cnst) -> cnst' 2262 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2263 // 2264 // sqrt, sqrtf, sqrtl: 2265 // * sqrt(expN(x)) -> expN(x*0.5) 2266 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2267 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2268 // 2269 2270 //===----------------------------------------------------------------------===// 2271 // Fortified Library Call Optimizations 2272 //===----------------------------------------------------------------------===// 2273 2274 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2275 unsigned ObjSizeOp, 2276 unsigned SizeOp, 2277 bool isString) { 2278 if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp)) 2279 return true; 2280 if (ConstantInt *ObjSizeCI = 2281 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2282 if (ObjSizeCI->isMinusOne()) 2283 return true; 2284 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2285 if (OnlyLowerUnknownSize) 2286 return false; 2287 if (isString) { 2288 uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp)); 2289 // If the length is 0 we don't know how long it is and so we can't 2290 // remove the check. 2291 if (Len == 0) 2292 return false; 2293 return ObjSizeCI->getZExtValue() >= Len; 2294 } 2295 if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp))) 2296 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2297 } 2298 return false; 2299 } 2300 2301 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 2302 IRBuilder<> &B) { 2303 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2304 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2305 CI->getArgOperand(2), 1); 2306 return CI->getArgOperand(0); 2307 } 2308 return nullptr; 2309 } 2310 2311 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 2312 IRBuilder<> &B) { 2313 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2314 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 2315 CI->getArgOperand(2), 1); 2316 return CI->getArgOperand(0); 2317 } 2318 return nullptr; 2319 } 2320 2321 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 2322 IRBuilder<> &B) { 2323 // TODO: Try foldMallocMemset() here. 2324 2325 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2326 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2327 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2328 return CI->getArgOperand(0); 2329 } 2330 return nullptr; 2331 } 2332 2333 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 2334 IRBuilder<> &B, 2335 LibFunc Func) { 2336 Function *Callee = CI->getCalledFunction(); 2337 StringRef Name = Callee->getName(); 2338 const DataLayout &DL = CI->getModule()->getDataLayout(); 2339 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 2340 *ObjSize = CI->getArgOperand(2); 2341 2342 // __stpcpy_chk(x,x,...) -> x+strlen(x) 2343 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 2344 Value *StrLen = emitStrLen(Src, B, DL, TLI); 2345 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 2346 } 2347 2348 // If a) we don't have any length information, or b) we know this will 2349 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 2350 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 2351 // TODO: It might be nice to get a maximum length out of the possible 2352 // string lengths for varying. 2353 if (isFortifiedCallFoldable(CI, 2, 1, true)) 2354 return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6)); 2355 2356 if (OnlyLowerUnknownSize) 2357 return nullptr; 2358 2359 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 2360 uint64_t Len = GetStringLength(Src); 2361 if (Len == 0) 2362 return nullptr; 2363 2364 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 2365 Value *LenV = ConstantInt::get(SizeTTy, Len); 2366 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 2367 // If the function was an __stpcpy_chk, and we were able to fold it into 2368 // a __memcpy_chk, we still need to return the correct end pointer. 2369 if (Ret && Func == LibFunc_stpcpy_chk) 2370 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 2371 return Ret; 2372 } 2373 2374 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 2375 IRBuilder<> &B, 2376 LibFunc Func) { 2377 Function *Callee = CI->getCalledFunction(); 2378 StringRef Name = Callee->getName(); 2379 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2380 Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2381 CI->getArgOperand(2), B, TLI, Name.substr(2, 7)); 2382 return Ret; 2383 } 2384 return nullptr; 2385 } 2386 2387 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 2388 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 2389 // Some clang users checked for _chk libcall availability using: 2390 // __has_builtin(__builtin___memcpy_chk) 2391 // When compiling with -fno-builtin, this is always true. 2392 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 2393 // end up with fortified libcalls, which isn't acceptable in a freestanding 2394 // environment which only provides their non-fortified counterparts. 2395 // 2396 // Until we change clang and/or teach external users to check for availability 2397 // differently, disregard the "nobuiltin" attribute and TLI::has. 2398 // 2399 // PR23093. 2400 2401 LibFunc Func; 2402 Function *Callee = CI->getCalledFunction(); 2403 2404 SmallVector<OperandBundleDef, 2> OpBundles; 2405 CI->getOperandBundlesAsDefs(OpBundles); 2406 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2407 bool isCallingConvC = isCallingConvCCompatible(CI); 2408 2409 // First, check that this is a known library functions and that the prototype 2410 // is correct. 2411 if (!TLI->getLibFunc(*Callee, Func)) 2412 return nullptr; 2413 2414 // We never change the calling convention. 2415 if (!ignoreCallingConv(Func) && !isCallingConvC) 2416 return nullptr; 2417 2418 switch (Func) { 2419 case LibFunc_memcpy_chk: 2420 return optimizeMemCpyChk(CI, Builder); 2421 case LibFunc_memmove_chk: 2422 return optimizeMemMoveChk(CI, Builder); 2423 case LibFunc_memset_chk: 2424 return optimizeMemSetChk(CI, Builder); 2425 case LibFunc_stpcpy_chk: 2426 case LibFunc_strcpy_chk: 2427 return optimizeStrpCpyChk(CI, Builder, Func); 2428 case LibFunc_stpncpy_chk: 2429 case LibFunc_strncpy_chk: 2430 return optimizeStrpNCpyChk(CI, Builder, Func); 2431 default: 2432 break; 2433 } 2434 return nullptr; 2435 } 2436 2437 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 2438 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 2439 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 2440