1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/CaptureTracking.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/KnownBits.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Transforms/Utils/BuildLibCalls.h"
39 #include "llvm/Transforms/Utils/SizeOpts.h"
40 
41 using namespace llvm;
42 using namespace PatternMatch;
43 
44 static cl::opt<bool>
45     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
46                          cl::init(false),
47                          cl::desc("Enable unsafe double to float "
48                                   "shrinking for math lib calls"));
49 
50 //===----------------------------------------------------------------------===//
51 // Helper Functions
52 //===----------------------------------------------------------------------===//
53 
54 static bool ignoreCallingConv(LibFunc Func) {
55   return Func == LibFunc_abs || Func == LibFunc_labs ||
56          Func == LibFunc_llabs || Func == LibFunc_strlen;
57 }
58 
59 /// Return true if it is only used in equality comparisons with With.
60 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
61   for (User *U : V->users()) {
62     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
63       if (IC->isEquality() && IC->getOperand(1) == With)
64         continue;
65     // Unknown instruction.
66     return false;
67   }
68   return true;
69 }
70 
71 static bool callHasFloatingPointArgument(const CallInst *CI) {
72   return any_of(CI->operands(), [](const Use &OI) {
73     return OI->getType()->isFloatingPointTy();
74   });
75 }
76 
77 static bool callHasFP128Argument(const CallInst *CI) {
78   return any_of(CI->operands(), [](const Use &OI) {
79     return OI->getType()->isFP128Ty();
80   });
81 }
82 
83 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
84   if (Base < 2 || Base > 36)
85     // handle special zero base
86     if (Base != 0)
87       return nullptr;
88 
89   char *End;
90   std::string nptr = Str.str();
91   errno = 0;
92   long long int Result = strtoll(nptr.c_str(), &End, Base);
93   if (errno)
94     return nullptr;
95 
96   // if we assume all possible target locales are ASCII supersets,
97   // then if strtoll successfully parses a number on the host,
98   // it will also successfully parse the same way on the target
99   if (*End != '\0')
100     return nullptr;
101 
102   if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
103     return nullptr;
104 
105   return ConstantInt::get(CI->getType(), Result);
106 }
107 
108 static bool isOnlyUsedInComparisonWithZero(Value *V) {
109   for (User *U : V->users()) {
110     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
111       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
112         if (C->isNullValue())
113           continue;
114     // Unknown instruction.
115     return false;
116   }
117   return true;
118 }
119 
120 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
121                                  const DataLayout &DL) {
122   if (!isOnlyUsedInComparisonWithZero(CI))
123     return false;
124 
125   if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL))
126     return false;
127 
128   if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
129     return false;
130 
131   return true;
132 }
133 
134 static void annotateDereferenceableBytes(CallInst *CI,
135                                          ArrayRef<unsigned> ArgNos,
136                                          uint64_t DereferenceableBytes) {
137   const Function *F = CI->getCaller();
138   if (!F)
139     return;
140   for (unsigned ArgNo : ArgNos) {
141     uint64_t DerefBytes = DereferenceableBytes;
142     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
143     if (!llvm::NullPointerIsDefined(F, AS) ||
144         CI->paramHasAttr(ArgNo, Attribute::NonNull))
145       DerefBytes = std::max(CI->getDereferenceableOrNullBytes(
146                                 ArgNo + AttributeList::FirstArgIndex),
147                             DereferenceableBytes);
148 
149     if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) <
150         DerefBytes) {
151       CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
152       if (!llvm::NullPointerIsDefined(F, AS) ||
153           CI->paramHasAttr(ArgNo, Attribute::NonNull))
154         CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
155       CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
156                                   CI->getContext(), DerefBytes));
157     }
158   }
159 }
160 
161 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI,
162                                          ArrayRef<unsigned> ArgNos) {
163   Function *F = CI->getCaller();
164   if (!F)
165     return;
166 
167   for (unsigned ArgNo : ArgNos) {
168     if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef))
169       CI->addParamAttr(ArgNo, Attribute::NoUndef);
170 
171     if (CI->paramHasAttr(ArgNo, Attribute::NonNull))
172       continue;
173     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
174     if (llvm::NullPointerIsDefined(F, AS))
175       continue;
176 
177     CI->addParamAttr(ArgNo, Attribute::NonNull);
178     annotateDereferenceableBytes(CI, ArgNo, 1);
179   }
180 }
181 
182 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
183                                Value *Size, const DataLayout &DL) {
184   if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
185     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
186     annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
187   } else if (isKnownNonZero(Size, DL)) {
188     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
189     const APInt *X, *Y;
190     uint64_t DerefMin = 1;
191     if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
192       DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
193       annotateDereferenceableBytes(CI, ArgNos, DerefMin);
194     }
195   }
196 }
197 
198 //===----------------------------------------------------------------------===//
199 // String and Memory Library Call Optimizations
200 //===----------------------------------------------------------------------===//
201 
202 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) {
203   // Extract some information from the instruction
204   Value *Dst = CI->getArgOperand(0);
205   Value *Src = CI->getArgOperand(1);
206   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
207 
208   // See if we can get the length of the input string.
209   uint64_t Len = GetStringLength(Src);
210   if (Len)
211     annotateDereferenceableBytes(CI, 1, Len);
212   else
213     return nullptr;
214   --Len; // Unbias length.
215 
216   // Handle the simple, do-nothing case: strcat(x, "") -> x
217   if (Len == 0)
218     return Dst;
219 
220   return emitStrLenMemCpy(Src, Dst, Len, B);
221 }
222 
223 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
224                                            IRBuilderBase &B) {
225   // We need to find the end of the destination string.  That's where the
226   // memory is to be moved to. We just generate a call to strlen.
227   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
228   if (!DstLen)
229     return nullptr;
230 
231   // Now that we have the destination's length, we must index into the
232   // destination's pointer to get the actual memcpy destination (end of
233   // the string .. we're concatenating).
234   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
235 
236   // We have enough information to now generate the memcpy call to do the
237   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
238   B.CreateMemCpy(
239       CpyDst, Align(1), Src, Align(1),
240       ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
241   return Dst;
242 }
243 
244 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) {
245   // Extract some information from the instruction.
246   Value *Dst = CI->getArgOperand(0);
247   Value *Src = CI->getArgOperand(1);
248   Value *Size = CI->getArgOperand(2);
249   uint64_t Len;
250   annotateNonNullNoUndefBasedOnAccess(CI, 0);
251   if (isKnownNonZero(Size, DL))
252     annotateNonNullNoUndefBasedOnAccess(CI, 1);
253 
254   // We don't do anything if length is not constant.
255   ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
256   if (LengthArg) {
257     Len = LengthArg->getZExtValue();
258     // strncat(x, c, 0) -> x
259     if (!Len)
260       return Dst;
261   } else {
262     return nullptr;
263   }
264 
265   // See if we can get the length of the input string.
266   uint64_t SrcLen = GetStringLength(Src);
267   if (SrcLen) {
268     annotateDereferenceableBytes(CI, 1, SrcLen);
269     --SrcLen; // Unbias length.
270   } else {
271     return nullptr;
272   }
273 
274   // strncat(x, "", c) -> x
275   if (SrcLen == 0)
276     return Dst;
277 
278   // We don't optimize this case.
279   if (Len < SrcLen)
280     return nullptr;
281 
282   // strncat(x, s, c) -> strcat(x, s)
283   // s is constant so the strcat can be optimized further.
284   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
285 }
286 
287 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) {
288   Function *Callee = CI->getCalledFunction();
289   FunctionType *FT = Callee->getFunctionType();
290   Value *SrcStr = CI->getArgOperand(0);
291   annotateNonNullNoUndefBasedOnAccess(CI, 0);
292 
293   // If the second operand is non-constant, see if we can compute the length
294   // of the input string and turn this into memchr.
295   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
296   if (!CharC) {
297     uint64_t Len = GetStringLength(SrcStr);
298     if (Len)
299       annotateDereferenceableBytes(CI, 0, Len);
300     else
301       return nullptr;
302     if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
303       return nullptr;
304 
305     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
306                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
307                       B, DL, TLI);
308   }
309 
310   // Otherwise, the character is a constant, see if the first argument is
311   // a string literal.  If so, we can constant fold.
312   StringRef Str;
313   if (!getConstantStringInfo(SrcStr, Str)) {
314     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
315       if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
316         return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
317     return nullptr;
318   }
319 
320   // Compute the offset, make sure to handle the case when we're searching for
321   // zero (a weird way to spell strlen).
322   size_t I = (0xFF & CharC->getSExtValue()) == 0
323                  ? Str.size()
324                  : Str.find(CharC->getSExtValue());
325   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
326     return Constant::getNullValue(CI->getType());
327 
328   // strchr(s+n,c)  -> gep(s+n+i,c)
329   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
330 }
331 
332 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) {
333   Value *SrcStr = CI->getArgOperand(0);
334   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
335   annotateNonNullNoUndefBasedOnAccess(CI, 0);
336 
337   // Cannot fold anything if we're not looking for a constant.
338   if (!CharC)
339     return nullptr;
340 
341   StringRef Str;
342   if (!getConstantStringInfo(SrcStr, Str)) {
343     // strrchr(s, 0) -> strchr(s, 0)
344     if (CharC->isZero())
345       return emitStrChr(SrcStr, '\0', B, TLI);
346     return nullptr;
347   }
348 
349   // Compute the offset.
350   size_t I = (0xFF & CharC->getSExtValue()) == 0
351                  ? Str.size()
352                  : Str.rfind(CharC->getSExtValue());
353   if (I == StringRef::npos) // Didn't find the char. Return null.
354     return Constant::getNullValue(CI->getType());
355 
356   // strrchr(s+n,c) -> gep(s+n+i,c)
357   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
358 }
359 
360 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) {
361   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
362   if (Str1P == Str2P) // strcmp(x,x)  -> 0
363     return ConstantInt::get(CI->getType(), 0);
364 
365   StringRef Str1, Str2;
366   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
367   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
368 
369   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
370   if (HasStr1 && HasStr2)
371     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
372 
373   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
374     return B.CreateNeg(B.CreateZExt(
375         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
376 
377   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
378     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
379                         CI->getType());
380 
381   // strcmp(P, "x") -> memcmp(P, "x", 2)
382   uint64_t Len1 = GetStringLength(Str1P);
383   if (Len1)
384     annotateDereferenceableBytes(CI, 0, Len1);
385   uint64_t Len2 = GetStringLength(Str2P);
386   if (Len2)
387     annotateDereferenceableBytes(CI, 1, Len2);
388 
389   if (Len1 && Len2) {
390     return emitMemCmp(Str1P, Str2P,
391                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
392                                        std::min(Len1, Len2)),
393                       B, DL, TLI);
394   }
395 
396   // strcmp to memcmp
397   if (!HasStr1 && HasStr2) {
398     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
399       return emitMemCmp(
400           Str1P, Str2P,
401           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
402           TLI);
403   } else if (HasStr1 && !HasStr2) {
404     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
405       return emitMemCmp(
406           Str1P, Str2P,
407           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
408           TLI);
409   }
410 
411   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
412   return nullptr;
413 }
414 
415 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) {
416   Value *Str1P = CI->getArgOperand(0);
417   Value *Str2P = CI->getArgOperand(1);
418   Value *Size = CI->getArgOperand(2);
419   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
420     return ConstantInt::get(CI->getType(), 0);
421 
422   if (isKnownNonZero(Size, DL))
423     annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
424   // Get the length argument if it is constant.
425   uint64_t Length;
426   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
427     Length = LengthArg->getZExtValue();
428   else
429     return nullptr;
430 
431   if (Length == 0) // strncmp(x,y,0)   -> 0
432     return ConstantInt::get(CI->getType(), 0);
433 
434   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
435     return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI);
436 
437   StringRef Str1, Str2;
438   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
439   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
440 
441   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
442   if (HasStr1 && HasStr2) {
443     StringRef SubStr1 = Str1.substr(0, Length);
444     StringRef SubStr2 = Str2.substr(0, Length);
445     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
446   }
447 
448   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
449     return B.CreateNeg(B.CreateZExt(
450         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
451 
452   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
453     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
454                         CI->getType());
455 
456   uint64_t Len1 = GetStringLength(Str1P);
457   if (Len1)
458     annotateDereferenceableBytes(CI, 0, Len1);
459   uint64_t Len2 = GetStringLength(Str2P);
460   if (Len2)
461     annotateDereferenceableBytes(CI, 1, Len2);
462 
463   // strncmp to memcmp
464   if (!HasStr1 && HasStr2) {
465     Len2 = std::min(Len2, Length);
466     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
467       return emitMemCmp(
468           Str1P, Str2P,
469           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
470           TLI);
471   } else if (HasStr1 && !HasStr2) {
472     Len1 = std::min(Len1, Length);
473     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
474       return emitMemCmp(
475           Str1P, Str2P,
476           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
477           TLI);
478   }
479 
480   return nullptr;
481 }
482 
483 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) {
484   Value *Src = CI->getArgOperand(0);
485   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
486   uint64_t SrcLen = GetStringLength(Src);
487   if (SrcLen && Size) {
488     annotateDereferenceableBytes(CI, 0, SrcLen);
489     if (SrcLen <= Size->getZExtValue() + 1)
490       return emitStrDup(Src, B, TLI);
491   }
492 
493   return nullptr;
494 }
495 
496 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) {
497   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
498   if (Dst == Src) // strcpy(x,x)  -> x
499     return Src;
500 
501   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
502   // See if we can get the length of the input string.
503   uint64_t Len = GetStringLength(Src);
504   if (Len)
505     annotateDereferenceableBytes(CI, 1, Len);
506   else
507     return nullptr;
508 
509   // We have enough information to now generate the memcpy call to do the
510   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
511   CallInst *NewCI =
512       B.CreateMemCpy(Dst, Align(1), Src, Align(1),
513                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
514   NewCI->setAttributes(CI->getAttributes());
515   NewCI->removeAttributes(AttributeList::ReturnIndex,
516                           AttributeFuncs::typeIncompatible(NewCI->getType()));
517   return Dst;
518 }
519 
520 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) {
521   Function *Callee = CI->getCalledFunction();
522   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
523   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
524     Value *StrLen = emitStrLen(Src, B, DL, TLI);
525     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
526   }
527 
528   // See if we can get the length of the input string.
529   uint64_t Len = GetStringLength(Src);
530   if (Len)
531     annotateDereferenceableBytes(CI, 1, Len);
532   else
533     return nullptr;
534 
535   Type *PT = Callee->getFunctionType()->getParamType(0);
536   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
537   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
538                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
539 
540   // We have enough information to now generate the memcpy call to do the
541   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
542   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV);
543   NewCI->setAttributes(CI->getAttributes());
544   NewCI->removeAttributes(AttributeList::ReturnIndex,
545                           AttributeFuncs::typeIncompatible(NewCI->getType()));
546   return DstEnd;
547 }
548 
549 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) {
550   Function *Callee = CI->getCalledFunction();
551   Value *Dst = CI->getArgOperand(0);
552   Value *Src = CI->getArgOperand(1);
553   Value *Size = CI->getArgOperand(2);
554   annotateNonNullNoUndefBasedOnAccess(CI, 0);
555   if (isKnownNonZero(Size, DL))
556     annotateNonNullNoUndefBasedOnAccess(CI, 1);
557 
558   uint64_t Len;
559   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
560     Len = LengthArg->getZExtValue();
561   else
562     return nullptr;
563 
564   // strncpy(x, y, 0) -> x
565   if (Len == 0)
566     return Dst;
567 
568   // See if we can get the length of the input string.
569   uint64_t SrcLen = GetStringLength(Src);
570   if (SrcLen) {
571     annotateDereferenceableBytes(CI, 1, SrcLen);
572     --SrcLen; // Unbias length.
573   } else {
574     return nullptr;
575   }
576 
577   if (SrcLen == 0) {
578     // strncpy(x, "", y) -> memset(x, '\0', y)
579     Align MemSetAlign =
580         CI->getAttributes().getParamAttributes(0).getAlignment().valueOrOne();
581     CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign);
582     AttrBuilder ArgAttrs(CI->getAttributes().getParamAttributes(0));
583     NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
584         CI->getContext(), 0, ArgAttrs));
585     return Dst;
586   }
587 
588   // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4)
589   if (Len > SrcLen + 1) {
590     if (Len <= 128) {
591       StringRef Str;
592       if (!getConstantStringInfo(Src, Str))
593         return nullptr;
594       std::string SrcStr = Str.str();
595       SrcStr.resize(Len, '\0');
596       Src = B.CreateGlobalString(SrcStr, "str");
597     } else {
598       return nullptr;
599     }
600   }
601 
602   Type *PT = Callee->getFunctionType()->getParamType(0);
603   // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
604   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
605                                    ConstantInt::get(DL.getIntPtrType(PT), Len));
606   NewCI->setAttributes(CI->getAttributes());
607   NewCI->removeAttributes(AttributeList::ReturnIndex,
608                           AttributeFuncs::typeIncompatible(NewCI->getType()));
609   return Dst;
610 }
611 
612 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B,
613                                                unsigned CharSize) {
614   Value *Src = CI->getArgOperand(0);
615 
616   // Constant folding: strlen("xyz") -> 3
617   if (uint64_t Len = GetStringLength(Src, CharSize))
618     return ConstantInt::get(CI->getType(), Len - 1);
619 
620   // If s is a constant pointer pointing to a string literal, we can fold
621   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
622   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
623   // We only try to simplify strlen when the pointer s points to an array
624   // of i8. Otherwise, we would need to scale the offset x before doing the
625   // subtraction. This will make the optimization more complex, and it's not
626   // very useful because calling strlen for a pointer of other types is
627   // very uncommon.
628   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
629     if (!isGEPBasedOnPointerToString(GEP, CharSize))
630       return nullptr;
631 
632     ConstantDataArraySlice Slice;
633     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
634       uint64_t NullTermIdx;
635       if (Slice.Array == nullptr) {
636         NullTermIdx = 0;
637       } else {
638         NullTermIdx = ~((uint64_t)0);
639         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
640           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
641             NullTermIdx = I;
642             break;
643           }
644         }
645         // If the string does not have '\0', leave it to strlen to compute
646         // its length.
647         if (NullTermIdx == ~((uint64_t)0))
648           return nullptr;
649       }
650 
651       Value *Offset = GEP->getOperand(2);
652       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
653       Known.Zero.flipAllBits();
654       uint64_t ArrSize =
655              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
656 
657       // KnownZero's bits are flipped, so zeros in KnownZero now represent
658       // bits known to be zeros in Offset, and ones in KnowZero represent
659       // bits unknown in Offset. Therefore, Offset is known to be in range
660       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
661       // unsigned-less-than NullTermIdx.
662       //
663       // If Offset is not provably in the range [0, NullTermIdx], we can still
664       // optimize if we can prove that the program has undefined behavior when
665       // Offset is outside that range. That is the case when GEP->getOperand(0)
666       // is a pointer to an object whose memory extent is NullTermIdx+1.
667       if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
668           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
669            NullTermIdx == ArrSize - 1)) {
670         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
671         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
672                            Offset);
673       }
674     }
675   }
676 
677   // strlen(x?"foo":"bars") --> x ? 3 : 4
678   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
679     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
680     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
681     if (LenTrue && LenFalse) {
682       ORE.emit([&]() {
683         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
684                << "folded strlen(select) to select of constants";
685       });
686       return B.CreateSelect(SI->getCondition(),
687                             ConstantInt::get(CI->getType(), LenTrue - 1),
688                             ConstantInt::get(CI->getType(), LenFalse - 1));
689     }
690   }
691 
692   // strlen(x) != 0 --> *x != 0
693   // strlen(x) == 0 --> *x == 0
694   if (isOnlyUsedInZeroEqualityComparison(CI))
695     return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"),
696                         CI->getType());
697 
698   return nullptr;
699 }
700 
701 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) {
702   if (Value *V = optimizeStringLength(CI, B, 8))
703     return V;
704   annotateNonNullNoUndefBasedOnAccess(CI, 0);
705   return nullptr;
706 }
707 
708 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) {
709   Module &M = *CI->getModule();
710   unsigned WCharSize = TLI->getWCharSize(M) * 8;
711   // We cannot perform this optimization without wchar_size metadata.
712   if (WCharSize == 0)
713     return nullptr;
714 
715   return optimizeStringLength(CI, B, WCharSize);
716 }
717 
718 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) {
719   StringRef S1, S2;
720   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
721   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
722 
723   // strpbrk(s, "") -> nullptr
724   // strpbrk("", s) -> nullptr
725   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
726     return Constant::getNullValue(CI->getType());
727 
728   // Constant folding.
729   if (HasS1 && HasS2) {
730     size_t I = S1.find_first_of(S2);
731     if (I == StringRef::npos) // No match.
732       return Constant::getNullValue(CI->getType());
733 
734     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
735                        "strpbrk");
736   }
737 
738   // strpbrk(s, "a") -> strchr(s, 'a')
739   if (HasS2 && S2.size() == 1)
740     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
741 
742   return nullptr;
743 }
744 
745 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) {
746   Value *EndPtr = CI->getArgOperand(1);
747   if (isa<ConstantPointerNull>(EndPtr)) {
748     // With a null EndPtr, this function won't capture the main argument.
749     // It would be readonly too, except that it still may write to errno.
750     CI->addParamAttr(0, Attribute::NoCapture);
751   }
752 
753   return nullptr;
754 }
755 
756 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) {
757   StringRef S1, S2;
758   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
759   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
760 
761   // strspn(s, "") -> 0
762   // strspn("", s) -> 0
763   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
764     return Constant::getNullValue(CI->getType());
765 
766   // Constant folding.
767   if (HasS1 && HasS2) {
768     size_t Pos = S1.find_first_not_of(S2);
769     if (Pos == StringRef::npos)
770       Pos = S1.size();
771     return ConstantInt::get(CI->getType(), Pos);
772   }
773 
774   return nullptr;
775 }
776 
777 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) {
778   StringRef S1, S2;
779   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
780   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
781 
782   // strcspn("", s) -> 0
783   if (HasS1 && S1.empty())
784     return Constant::getNullValue(CI->getType());
785 
786   // Constant folding.
787   if (HasS1 && HasS2) {
788     size_t Pos = S1.find_first_of(S2);
789     if (Pos == StringRef::npos)
790       Pos = S1.size();
791     return ConstantInt::get(CI->getType(), Pos);
792   }
793 
794   // strcspn(s, "") -> strlen(s)
795   if (HasS2 && S2.empty())
796     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
797 
798   return nullptr;
799 }
800 
801 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) {
802   // fold strstr(x, x) -> x.
803   if (CI->getArgOperand(0) == CI->getArgOperand(1))
804     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
805 
806   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
807   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
808     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
809     if (!StrLen)
810       return nullptr;
811     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
812                                  StrLen, B, DL, TLI);
813     if (!StrNCmp)
814       return nullptr;
815     for (User *U : llvm::make_early_inc_range(CI->users())) {
816       ICmpInst *Old = cast<ICmpInst>(U);
817       Value *Cmp =
818           B.CreateICmp(Old->getPredicate(), StrNCmp,
819                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
820       replaceAllUsesWith(Old, Cmp);
821     }
822     return CI;
823   }
824 
825   // See if either input string is a constant string.
826   StringRef SearchStr, ToFindStr;
827   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
828   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
829 
830   // fold strstr(x, "") -> x.
831   if (HasStr2 && ToFindStr.empty())
832     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
833 
834   // If both strings are known, constant fold it.
835   if (HasStr1 && HasStr2) {
836     size_t Offset = SearchStr.find(ToFindStr);
837 
838     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
839       return Constant::getNullValue(CI->getType());
840 
841     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
842     Value *Result = castToCStr(CI->getArgOperand(0), B);
843     Result =
844         B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
845     return B.CreateBitCast(Result, CI->getType());
846   }
847 
848   // fold strstr(x, "y") -> strchr(x, 'y').
849   if (HasStr2 && ToFindStr.size() == 1) {
850     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
851     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
852   }
853 
854   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
855   return nullptr;
856 }
857 
858 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) {
859   if (isKnownNonZero(CI->getOperand(2), DL))
860     annotateNonNullNoUndefBasedOnAccess(CI, 0);
861   return nullptr;
862 }
863 
864 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) {
865   Value *SrcStr = CI->getArgOperand(0);
866   Value *Size = CI->getArgOperand(2);
867   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
868   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
869   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
870 
871   // memchr(x, y, 0) -> null
872   if (LenC) {
873     if (LenC->isZero())
874       return Constant::getNullValue(CI->getType());
875   } else {
876     // From now on we need at least constant length and string.
877     return nullptr;
878   }
879 
880   StringRef Str;
881   if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
882     return nullptr;
883 
884   // Truncate the string to LenC. If Str is smaller than LenC we will still only
885   // scan the string, as reading past the end of it is undefined and we can just
886   // return null if we don't find the char.
887   Str = Str.substr(0, LenC->getZExtValue());
888 
889   // If the char is variable but the input str and length are not we can turn
890   // this memchr call into a simple bit field test. Of course this only works
891   // when the return value is only checked against null.
892   //
893   // It would be really nice to reuse switch lowering here but we can't change
894   // the CFG at this point.
895   //
896   // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
897   // != 0
898   //   after bounds check.
899   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
900     unsigned char Max =
901         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
902                           reinterpret_cast<const unsigned char *>(Str.end()));
903 
904     // Make sure the bit field we're about to create fits in a register on the
905     // target.
906     // FIXME: On a 64 bit architecture this prevents us from using the
907     // interesting range of alpha ascii chars. We could do better by emitting
908     // two bitfields or shifting the range by 64 if no lower chars are used.
909     if (!DL.fitsInLegalInteger(Max + 1))
910       return nullptr;
911 
912     // For the bit field use a power-of-2 type with at least 8 bits to avoid
913     // creating unnecessary illegal types.
914     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
915 
916     // Now build the bit field.
917     APInt Bitfield(Width, 0);
918     for (char C : Str)
919       Bitfield.setBit((unsigned char)C);
920     Value *BitfieldC = B.getInt(Bitfield);
921 
922     // Adjust width of "C" to the bitfield width, then mask off the high bits.
923     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
924     C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
925 
926     // First check that the bit field access is within bounds.
927     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
928                                  "memchr.bounds");
929 
930     // Create code that checks if the given bit is set in the field.
931     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
932     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
933 
934     // Finally merge both checks and cast to pointer type. The inttoptr
935     // implicitly zexts the i1 to intptr type.
936     return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"),
937                             CI->getType());
938   }
939 
940   // Check if all arguments are constants.  If so, we can constant fold.
941   if (!CharC)
942     return nullptr;
943 
944   // Compute the offset.
945   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
946   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
947     return Constant::getNullValue(CI->getType());
948 
949   // memchr(s+n,c,l) -> gep(s+n+i,c)
950   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
951 }
952 
953 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
954                                          uint64_t Len, IRBuilderBase &B,
955                                          const DataLayout &DL) {
956   if (Len == 0) // memcmp(s1,s2,0) -> 0
957     return Constant::getNullValue(CI->getType());
958 
959   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
960   if (Len == 1) {
961     Value *LHSV =
962         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
963                      CI->getType(), "lhsv");
964     Value *RHSV =
965         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
966                      CI->getType(), "rhsv");
967     return B.CreateSub(LHSV, RHSV, "chardiff");
968   }
969 
970   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
971   // TODO: The case where both inputs are constants does not need to be limited
972   // to legal integers or equality comparison. See block below this.
973   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
974     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
975     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
976 
977     // First, see if we can fold either argument to a constant.
978     Value *LHSV = nullptr;
979     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
980       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
981       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
982     }
983     Value *RHSV = nullptr;
984     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
985       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
986       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
987     }
988 
989     // Don't generate unaligned loads. If either source is constant data,
990     // alignment doesn't matter for that source because there is no load.
991     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
992         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
993       if (!LHSV) {
994         Type *LHSPtrTy =
995             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
996         LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
997       }
998       if (!RHSV) {
999         Type *RHSPtrTy =
1000             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
1001         RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
1002       }
1003       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1004     }
1005   }
1006 
1007   // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
1008   // TODO: This is limited to i8 arrays.
1009   StringRef LHSStr, RHSStr;
1010   if (getConstantStringInfo(LHS, LHSStr) &&
1011       getConstantStringInfo(RHS, RHSStr)) {
1012     // Make sure we're not reading out-of-bounds memory.
1013     if (Len > LHSStr.size() || Len > RHSStr.size())
1014       return nullptr;
1015     // Fold the memcmp and normalize the result.  This way we get consistent
1016     // results across multiple platforms.
1017     uint64_t Ret = 0;
1018     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
1019     if (Cmp < 0)
1020       Ret = -1;
1021     else if (Cmp > 0)
1022       Ret = 1;
1023     return ConstantInt::get(CI->getType(), Ret);
1024   }
1025 
1026   return nullptr;
1027 }
1028 
1029 // Most simplifications for memcmp also apply to bcmp.
1030 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1031                                                    IRBuilderBase &B) {
1032   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1033   Value *Size = CI->getArgOperand(2);
1034 
1035   if (LHS == RHS) // memcmp(s,s,x) -> 0
1036     return Constant::getNullValue(CI->getType());
1037 
1038   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1039   // Handle constant lengths.
1040   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1041   if (!LenC)
1042     return nullptr;
1043 
1044   // memcmp(d,s,0) -> 0
1045   if (LenC->getZExtValue() == 0)
1046     return Constant::getNullValue(CI->getType());
1047 
1048   if (Value *Res =
1049           optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL))
1050     return Res;
1051   return nullptr;
1052 }
1053 
1054 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
1055   if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1056     return V;
1057 
1058   // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1059   // bcmp can be more efficient than memcmp because it only has to know that
1060   // there is a difference, not how different one is to the other.
1061   if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) {
1062     Value *LHS = CI->getArgOperand(0);
1063     Value *RHS = CI->getArgOperand(1);
1064     Value *Size = CI->getArgOperand(2);
1065     return emitBCmp(LHS, RHS, Size, B, DL, TLI);
1066   }
1067 
1068   return nullptr;
1069 }
1070 
1071 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) {
1072   return optimizeMemCmpBCmpCommon(CI, B);
1073 }
1074 
1075 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) {
1076   Value *Size = CI->getArgOperand(2);
1077   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1078   if (isa<IntrinsicInst>(CI))
1079     return nullptr;
1080 
1081   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1082   CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1),
1083                                    CI->getArgOperand(1), Align(1), Size);
1084   NewCI->setAttributes(CI->getAttributes());
1085   NewCI->removeAttributes(AttributeList::ReturnIndex,
1086                           AttributeFuncs::typeIncompatible(NewCI->getType()));
1087   return CI->getArgOperand(0);
1088 }
1089 
1090 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) {
1091   Value *Dst = CI->getArgOperand(0);
1092   Value *Src = CI->getArgOperand(1);
1093   ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1094   ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1095   StringRef SrcStr;
1096   if (CI->use_empty() && Dst == Src)
1097     return Dst;
1098   // memccpy(d, s, c, 0) -> nullptr
1099   if (N) {
1100     if (N->isNullValue())
1101       return Constant::getNullValue(CI->getType());
1102     if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0,
1103                                /*TrimAtNul=*/false) ||
1104         !StopChar)
1105       return nullptr;
1106   } else {
1107     return nullptr;
1108   }
1109 
1110   // Wrap arg 'c' of type int to char
1111   size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1112   if (Pos == StringRef::npos) {
1113     if (N->getZExtValue() <= SrcStr.size()) {
1114       B.CreateMemCpy(Dst, Align(1), Src, Align(1), CI->getArgOperand(3));
1115       return Constant::getNullValue(CI->getType());
1116     }
1117     return nullptr;
1118   }
1119 
1120   Value *NewN =
1121       ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1122   // memccpy -> llvm.memcpy
1123   B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN);
1124   return Pos + 1 <= N->getZExtValue()
1125              ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1126              : Constant::getNullValue(CI->getType());
1127 }
1128 
1129 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) {
1130   Value *Dst = CI->getArgOperand(0);
1131   Value *N = CI->getArgOperand(2);
1132   // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1133   CallInst *NewCI =
1134       B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N);
1135   // Propagate attributes, but memcpy has no return value, so make sure that
1136   // any return attributes are compliant.
1137   // TODO: Attach return value attributes to the 1st operand to preserve them?
1138   NewCI->setAttributes(CI->getAttributes());
1139   NewCI->removeAttributes(AttributeList::ReturnIndex,
1140                           AttributeFuncs::typeIncompatible(NewCI->getType()));
1141   return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1142 }
1143 
1144 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) {
1145   Value *Size = CI->getArgOperand(2);
1146   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1147   if (isa<IntrinsicInst>(CI))
1148     return nullptr;
1149 
1150   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1151   CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1),
1152                                     CI->getArgOperand(1), Align(1), Size);
1153   NewCI->setAttributes(CI->getAttributes());
1154   NewCI->removeAttributes(AttributeList::ReturnIndex,
1155                           AttributeFuncs::typeIncompatible(NewCI->getType()));
1156   return CI->getArgOperand(0);
1157 }
1158 
1159 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) {
1160   Value *Size = CI->getArgOperand(2);
1161   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1162   if (isa<IntrinsicInst>(CI))
1163     return nullptr;
1164 
1165   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1166   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1167   CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1));
1168   NewCI->setAttributes(CI->getAttributes());
1169   NewCI->removeAttributes(AttributeList::ReturnIndex,
1170                           AttributeFuncs::typeIncompatible(NewCI->getType()));
1171   return CI->getArgOperand(0);
1172 }
1173 
1174 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) {
1175   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1176     return emitMalloc(CI->getArgOperand(1), B, DL, TLI);
1177 
1178   return nullptr;
1179 }
1180 
1181 //===----------------------------------------------------------------------===//
1182 // Math Library Optimizations
1183 //===----------------------------------------------------------------------===//
1184 
1185 // Replace a libcall \p CI with a call to intrinsic \p IID
1186 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B,
1187                                Intrinsic::ID IID) {
1188   // Propagate fast-math flags from the existing call to the new call.
1189   IRBuilderBase::FastMathFlagGuard Guard(B);
1190   B.setFastMathFlags(CI->getFastMathFlags());
1191 
1192   Module *M = CI->getModule();
1193   Value *V = CI->getArgOperand(0);
1194   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1195   CallInst *NewCall = B.CreateCall(F, V);
1196   NewCall->takeName(CI);
1197   return NewCall;
1198 }
1199 
1200 /// Return a variant of Val with float type.
1201 /// Currently this works in two cases: If Val is an FPExtension of a float
1202 /// value to something bigger, simply return the operand.
1203 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1204 /// loss of precision do so.
1205 static Value *valueHasFloatPrecision(Value *Val) {
1206   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1207     Value *Op = Cast->getOperand(0);
1208     if (Op->getType()->isFloatTy())
1209       return Op;
1210   }
1211   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1212     APFloat F = Const->getValueAPF();
1213     bool losesInfo;
1214     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1215                     &losesInfo);
1216     if (!losesInfo)
1217       return ConstantFP::get(Const->getContext(), F);
1218   }
1219   return nullptr;
1220 }
1221 
1222 /// Shrink double -> float functions.
1223 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
1224                                bool isBinary, bool isPrecise = false) {
1225   Function *CalleeFn = CI->getCalledFunction();
1226   if (!CI->getType()->isDoubleTy() || !CalleeFn)
1227     return nullptr;
1228 
1229   // If not all the uses of the function are converted to float, then bail out.
1230   // This matters if the precision of the result is more important than the
1231   // precision of the arguments.
1232   if (isPrecise)
1233     for (User *U : CI->users()) {
1234       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1235       if (!Cast || !Cast->getType()->isFloatTy())
1236         return nullptr;
1237     }
1238 
1239   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1240   Value *V[2];
1241   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1242   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1243   if (!V[0] || (isBinary && !V[1]))
1244     return nullptr;
1245 
1246   // If call isn't an intrinsic, check that it isn't within a function with the
1247   // same name as the float version of this call, otherwise the result is an
1248   // infinite loop.  For example, from MinGW-w64:
1249   //
1250   // float expf(float val) { return (float) exp((double) val); }
1251   StringRef CalleeName = CalleeFn->getName();
1252   bool IsIntrinsic = CalleeFn->isIntrinsic();
1253   if (!IsIntrinsic) {
1254     StringRef CallerName = CI->getFunction()->getName();
1255     if (!CallerName.empty() && CallerName.back() == 'f' &&
1256         CallerName.size() == (CalleeName.size() + 1) &&
1257         CallerName.startswith(CalleeName))
1258       return nullptr;
1259   }
1260 
1261   // Propagate the math semantics from the current function to the new function.
1262   IRBuilderBase::FastMathFlagGuard Guard(B);
1263   B.setFastMathFlags(CI->getFastMathFlags());
1264 
1265   // g((double) float) -> (double) gf(float)
1266   Value *R;
1267   if (IsIntrinsic) {
1268     Module *M = CI->getModule();
1269     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1270     Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1271     R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1272   } else {
1273     AttributeList CalleeAttrs = CalleeFn->getAttributes();
1274     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs)
1275                  : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs);
1276   }
1277   return B.CreateFPExt(R, B.getDoubleTy());
1278 }
1279 
1280 /// Shrink double -> float for unary functions.
1281 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1282                                     bool isPrecise = false) {
1283   return optimizeDoubleFP(CI, B, false, isPrecise);
1284 }
1285 
1286 /// Shrink double -> float for binary functions.
1287 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1288                                      bool isPrecise = false) {
1289   return optimizeDoubleFP(CI, B, true, isPrecise);
1290 }
1291 
1292 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1293 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) {
1294   if (!CI->isFast())
1295     return nullptr;
1296 
1297   // Propagate fast-math flags from the existing call to new instructions.
1298   IRBuilderBase::FastMathFlagGuard Guard(B);
1299   B.setFastMathFlags(CI->getFastMathFlags());
1300 
1301   Value *Real, *Imag;
1302   if (CI->getNumArgOperands() == 1) {
1303     Value *Op = CI->getArgOperand(0);
1304     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1305     Real = B.CreateExtractValue(Op, 0, "real");
1306     Imag = B.CreateExtractValue(Op, 1, "imag");
1307   } else {
1308     assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
1309     Real = CI->getArgOperand(0);
1310     Imag = CI->getArgOperand(1);
1311   }
1312 
1313   Value *RealReal = B.CreateFMul(Real, Real);
1314   Value *ImagImag = B.CreateFMul(Imag, Imag);
1315 
1316   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1317                                               CI->getType());
1318   return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
1319 }
1320 
1321 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1322                                       IRBuilderBase &B) {
1323   if (!isa<FPMathOperator>(Call))
1324     return nullptr;
1325 
1326   IRBuilderBase::FastMathFlagGuard Guard(B);
1327   B.setFastMathFlags(Call->getFastMathFlags());
1328 
1329   // TODO: Can this be shared to also handle LLVM intrinsics?
1330   Value *X;
1331   switch (Func) {
1332   case LibFunc_sin:
1333   case LibFunc_sinf:
1334   case LibFunc_sinl:
1335   case LibFunc_tan:
1336   case LibFunc_tanf:
1337   case LibFunc_tanl:
1338     // sin(-X) --> -sin(X)
1339     // tan(-X) --> -tan(X)
1340     if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1341       return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X));
1342     break;
1343   case LibFunc_cos:
1344   case LibFunc_cosf:
1345   case LibFunc_cosl:
1346     // cos(-X) --> cos(X)
1347     if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1348       return B.CreateCall(Call->getCalledFunction(), X, "cos");
1349     break;
1350   default:
1351     break;
1352   }
1353   return nullptr;
1354 }
1355 
1356 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) {
1357   // Multiplications calculated using Addition Chains.
1358   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1359 
1360   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1361 
1362   if (InnerChain[Exp])
1363     return InnerChain[Exp];
1364 
1365   static const unsigned AddChain[33][2] = {
1366       {0, 0}, // Unused.
1367       {0, 0}, // Unused (base case = pow1).
1368       {1, 1}, // Unused (pre-computed).
1369       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1370       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1371       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1372       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1373       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1374   };
1375 
1376   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1377                                  getPow(InnerChain, AddChain[Exp][1], B));
1378   return InnerChain[Exp];
1379 }
1380 
1381 // Return a properly extended integer (DstWidth bits wide) if the operation is
1382 // an itofp.
1383 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) {
1384   if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
1385     Value *Op = cast<Instruction>(I2F)->getOperand(0);
1386     // Make sure that the exponent fits inside an "int" of size DstWidth,
1387     // thus avoiding any range issues that FP has not.
1388     unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1389     if (BitWidth < DstWidth ||
1390         (BitWidth == DstWidth && isa<SIToFPInst>(I2F)))
1391       return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth))
1392                                   : B.CreateZExt(Op, B.getIntNTy(DstWidth));
1393   }
1394 
1395   return nullptr;
1396 }
1397 
1398 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1399 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1400 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1401 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
1402   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1403   AttributeList Attrs; // Attributes are only meaningful on the original call
1404   Module *Mod = Pow->getModule();
1405   Type *Ty = Pow->getType();
1406   bool Ignored;
1407 
1408   // Evaluate special cases related to a nested function as the base.
1409 
1410   // pow(exp(x), y) -> exp(x * y)
1411   // pow(exp2(x), y) -> exp2(x * y)
1412   // If exp{,2}() is used only once, it is better to fold two transcendental
1413   // math functions into one.  If used again, exp{,2}() would still have to be
1414   // called with the original argument, then keep both original transcendental
1415   // functions.  However, this transformation is only safe with fully relaxed
1416   // math semantics, since, besides rounding differences, it changes overflow
1417   // and underflow behavior quite dramatically.  For example:
1418   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1419   // Whereas:
1420   //   exp(1000 * 0.001) = exp(1)
1421   // TODO: Loosen the requirement for fully relaxed math semantics.
1422   // TODO: Handle exp10() when more targets have it available.
1423   CallInst *BaseFn = dyn_cast<CallInst>(Base);
1424   if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1425     LibFunc LibFn;
1426 
1427     Function *CalleeFn = BaseFn->getCalledFunction();
1428     if (CalleeFn &&
1429         TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) {
1430       StringRef ExpName;
1431       Intrinsic::ID ID;
1432       Value *ExpFn;
1433       LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
1434 
1435       switch (LibFn) {
1436       default:
1437         return nullptr;
1438       case LibFunc_expf:  case LibFunc_exp:  case LibFunc_expl:
1439         ExpName = TLI->getName(LibFunc_exp);
1440         ID = Intrinsic::exp;
1441         LibFnFloat = LibFunc_expf;
1442         LibFnDouble = LibFunc_exp;
1443         LibFnLongDouble = LibFunc_expl;
1444         break;
1445       case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1446         ExpName = TLI->getName(LibFunc_exp2);
1447         ID = Intrinsic::exp2;
1448         LibFnFloat = LibFunc_exp2f;
1449         LibFnDouble = LibFunc_exp2;
1450         LibFnLongDouble = LibFunc_exp2l;
1451         break;
1452       }
1453 
1454       // Create new exp{,2}() with the product as its argument.
1455       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1456       ExpFn = BaseFn->doesNotAccessMemory()
1457               ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1458                              FMul, ExpName)
1459               : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1460                                      LibFnLongDouble, B,
1461                                      BaseFn->getAttributes());
1462 
1463       // Since the new exp{,2}() is different from the original one, dead code
1464       // elimination cannot be trusted to remove it, since it may have side
1465       // effects (e.g., errno).  When the only consumer for the original
1466       // exp{,2}() is pow(), then it has to be explicitly erased.
1467       substituteInParent(BaseFn, ExpFn);
1468       return ExpFn;
1469     }
1470   }
1471 
1472   // Evaluate special cases related to a constant base.
1473 
1474   const APFloat *BaseF;
1475   if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1476     return nullptr;
1477 
1478   // pow(2.0, itofp(x)) -> ldexp(1.0, x)
1479   if (match(Base, m_SpecificFP(2.0)) &&
1480       (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
1481       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1482     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
1483       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI,
1484                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1485                                    B, Attrs);
1486   }
1487 
1488   // pow(2.0 ** n, x) -> exp2(n * x)
1489   if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1490     APFloat BaseR = APFloat(1.0);
1491     BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1492     BaseR = BaseR / *BaseF;
1493     bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
1494     const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1495     APSInt NI(64, false);
1496     if ((IsInteger || IsReciprocal) &&
1497         NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
1498             APFloat::opOK &&
1499         NI > 1 && NI.isPowerOf2()) {
1500       double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1501       Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1502       if (Pow->doesNotAccessMemory())
1503         return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1504                             FMul, "exp2");
1505       else
1506         return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1507                                     LibFunc_exp2l, B, Attrs);
1508     }
1509   }
1510 
1511   // pow(10.0, x) -> exp10(x)
1512   // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1513   if (match(Base, m_SpecificFP(10.0)) &&
1514       hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1515     return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f,
1516                                 LibFunc_exp10l, B, Attrs);
1517 
1518   // pow(x, y) -> exp2(log2(x) * y)
1519   if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() &&
1520       !BaseF->isNegative()) {
1521     // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
1522     // Luckily optimizePow has already handled the x == 1 case.
1523     assert(!match(Base, m_FPOne()) &&
1524            "pow(1.0, y) should have been simplified earlier!");
1525 
1526     Value *Log = nullptr;
1527     if (Ty->isFloatTy())
1528       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
1529     else if (Ty->isDoubleTy())
1530       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
1531 
1532     if (Log) {
1533       Value *FMul = B.CreateFMul(Log, Expo, "mul");
1534       if (Pow->doesNotAccessMemory())
1535         return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1536                             FMul, "exp2");
1537       else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l))
1538         return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1539                                     LibFunc_exp2l, B, Attrs);
1540     }
1541   }
1542 
1543   return nullptr;
1544 }
1545 
1546 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1547                           Module *M, IRBuilderBase &B,
1548                           const TargetLibraryInfo *TLI) {
1549   // If errno is never set, then use the intrinsic for sqrt().
1550   if (NoErrno) {
1551     Function *SqrtFn =
1552         Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1553     return B.CreateCall(SqrtFn, V, "sqrt");
1554   }
1555 
1556   // Otherwise, use the libcall for sqrt().
1557   if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl))
1558     // TODO: We also should check that the target can in fact lower the sqrt()
1559     // libcall. We currently have no way to ask this question, so we ask if
1560     // the target has a sqrt() libcall, which is not exactly the same.
1561     return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1562                                 LibFunc_sqrtl, B, Attrs);
1563 
1564   return nullptr;
1565 }
1566 
1567 /// Use square root in place of pow(x, +/-0.5).
1568 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) {
1569   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1570   AttributeList Attrs; // Attributes are only meaningful on the original call
1571   Module *Mod = Pow->getModule();
1572   Type *Ty = Pow->getType();
1573 
1574   const APFloat *ExpoF;
1575   if (!match(Expo, m_APFloat(ExpoF)) ||
1576       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1577     return nullptr;
1578 
1579   // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
1580   // so that requires fast-math-flags (afn or reassoc).
1581   if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
1582     return nullptr;
1583 
1584   // If we have a pow() library call (accesses memory) and we can't guarantee
1585   // that the base is not an infinity, give up:
1586   // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting
1587   // errno), but sqrt(-Inf) is required by various standards to set errno.
1588   if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() &&
1589       !isKnownNeverInfinity(Base, TLI))
1590     return nullptr;
1591 
1592   Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1593   if (!Sqrt)
1594     return nullptr;
1595 
1596   // Handle signed zero base by expanding to fabs(sqrt(x)).
1597   if (!Pow->hasNoSignedZeros()) {
1598     Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1599     Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1600   }
1601 
1602   // Handle non finite base by expanding to
1603   // (x == -infinity ? +infinity : sqrt(x)).
1604   if (!Pow->hasNoInfs()) {
1605     Value *PosInf = ConstantFP::getInfinity(Ty),
1606           *NegInf = ConstantFP::getInfinity(Ty, true);
1607     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1608     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1609   }
1610 
1611   // If the exponent is negative, then get the reciprocal.
1612   if (ExpoF->isNegative())
1613     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1614 
1615   return Sqrt;
1616 }
1617 
1618 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
1619                                            IRBuilderBase &B) {
1620   Value *Args[] = {Base, Expo};
1621   Type *Types[] = {Base->getType(), Expo->getType()};
1622   Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types);
1623   return B.CreateCall(F, Args);
1624 }
1625 
1626 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
1627   Value *Base = Pow->getArgOperand(0);
1628   Value *Expo = Pow->getArgOperand(1);
1629   Function *Callee = Pow->getCalledFunction();
1630   StringRef Name = Callee->getName();
1631   Type *Ty = Pow->getType();
1632   Module *M = Pow->getModule();
1633   bool AllowApprox = Pow->hasApproxFunc();
1634   bool Ignored;
1635 
1636   // Propagate the math semantics from the call to any created instructions.
1637   IRBuilderBase::FastMathFlagGuard Guard(B);
1638   B.setFastMathFlags(Pow->getFastMathFlags());
1639   // Evaluate special cases related to the base.
1640 
1641   // pow(1.0, x) -> 1.0
1642   if (match(Base, m_FPOne()))
1643     return Base;
1644 
1645   if (Value *Exp = replacePowWithExp(Pow, B))
1646     return Exp;
1647 
1648   // Evaluate special cases related to the exponent.
1649 
1650   // pow(x, -1.0) -> 1.0 / x
1651   if (match(Expo, m_SpecificFP(-1.0)))
1652     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1653 
1654   // pow(x, +/-0.0) -> 1.0
1655   if (match(Expo, m_AnyZeroFP()))
1656     return ConstantFP::get(Ty, 1.0);
1657 
1658   // pow(x, 1.0) -> x
1659   if (match(Expo, m_FPOne()))
1660     return Base;
1661 
1662   // pow(x, 2.0) -> x * x
1663   if (match(Expo, m_SpecificFP(2.0)))
1664     return B.CreateFMul(Base, Base, "square");
1665 
1666   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1667     return Sqrt;
1668 
1669   // pow(x, n) -> x * x * x * ...
1670   const APFloat *ExpoF;
1671   if (AllowApprox && match(Expo, m_APFloat(ExpoF)) &&
1672       !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) {
1673     // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1674     // If the exponent is an integer+0.5 we generate a call to sqrt and an
1675     // additional fmul.
1676     // TODO: This whole transformation should be backend specific (e.g. some
1677     //       backends might prefer libcalls or the limit for the exponent might
1678     //       be different) and it should also consider optimizing for size.
1679     APFloat LimF(ExpoF->getSemantics(), 33),
1680             ExpoA(abs(*ExpoF));
1681     if (ExpoA < LimF) {
1682       // This transformation applies to integer or integer+0.5 exponents only.
1683       // For integer+0.5, we create a sqrt(Base) call.
1684       Value *Sqrt = nullptr;
1685       if (!ExpoA.isInteger()) {
1686         APFloat Expo2 = ExpoA;
1687         // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1688         // is no floating point exception and the result is an integer, then
1689         // ExpoA == integer + 0.5
1690         if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
1691           return nullptr;
1692 
1693         if (!Expo2.isInteger())
1694           return nullptr;
1695 
1696         Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
1697                            Pow->doesNotAccessMemory(), M, B, TLI);
1698         if (!Sqrt)
1699           return nullptr;
1700       }
1701 
1702       // We will memoize intermediate products of the Addition Chain.
1703       Value *InnerChain[33] = {nullptr};
1704       InnerChain[1] = Base;
1705       InnerChain[2] = B.CreateFMul(Base, Base, "square");
1706 
1707       // We cannot readily convert a non-double type (like float) to a double.
1708       // So we first convert it to something which could be converted to double.
1709       ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1710       Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1711 
1712       // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
1713       if (Sqrt)
1714         FMul = B.CreateFMul(FMul, Sqrt);
1715 
1716       // If the exponent is negative, then get the reciprocal.
1717       if (ExpoF->isNegative())
1718         FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1719 
1720       return FMul;
1721     }
1722 
1723     APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false);
1724     // powf(x, n) -> powi(x, n) if n is a constant signed integer value
1725     if (ExpoF->isInteger() &&
1726         ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
1727             APFloat::opOK) {
1728       return createPowWithIntegerExponent(
1729           Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo), M, B);
1730     }
1731   }
1732 
1733   // powf(x, itofp(y)) -> powi(x, y)
1734   if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
1735     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
1736       return createPowWithIntegerExponent(Base, ExpoI, M, B);
1737   }
1738 
1739   // Shrink pow() to powf() if the arguments are single precision,
1740   // unless the result is expected to be double precision.
1741   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
1742       hasFloatVersion(Name)) {
1743     if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, true))
1744       return Shrunk;
1745   }
1746 
1747   return nullptr;
1748 }
1749 
1750 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
1751   Function *Callee = CI->getCalledFunction();
1752   AttributeList Attrs; // Attributes are only meaningful on the original call
1753   StringRef Name = Callee->getName();
1754   Value *Ret = nullptr;
1755   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
1756       hasFloatVersion(Name))
1757     Ret = optimizeUnaryDoubleFP(CI, B, true);
1758 
1759   Type *Ty = CI->getType();
1760   Value *Op = CI->getArgOperand(0);
1761 
1762   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= IntSize
1763   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < IntSize
1764   if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
1765       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1766     if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize()))
1767       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
1768                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1769                                    B, Attrs);
1770   }
1771 
1772   return Ret;
1773 }
1774 
1775 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
1776   // If we can shrink the call to a float function rather than a double
1777   // function, do that first.
1778   Function *Callee = CI->getCalledFunction();
1779   StringRef Name = Callee->getName();
1780   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1781     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1782       return Ret;
1783 
1784   // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
1785   // the intrinsics for improved optimization (for example, vectorization).
1786   // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
1787   // From the C standard draft WG14/N1256:
1788   // "Ideally, fmax would be sensitive to the sign of zero, for example
1789   // fmax(-0.0, +0.0) would return +0; however, implementation in software
1790   // might be impractical."
1791   IRBuilderBase::FastMathFlagGuard Guard(B);
1792   FastMathFlags FMF = CI->getFastMathFlags();
1793   FMF.setNoSignedZeros();
1794   B.setFastMathFlags(FMF);
1795 
1796   Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
1797                                                            : Intrinsic::maxnum;
1798   Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
1799   return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) });
1800 }
1801 
1802 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
1803   Function *LogFn = Log->getCalledFunction();
1804   AttributeList Attrs; // Attributes are only meaningful on the original call
1805   StringRef LogNm = LogFn->getName();
1806   Intrinsic::ID LogID = LogFn->getIntrinsicID();
1807   Module *Mod = Log->getModule();
1808   Type *Ty = Log->getType();
1809   Value *Ret = nullptr;
1810 
1811   if (UnsafeFPShrink && hasFloatVersion(LogNm))
1812     Ret = optimizeUnaryDoubleFP(Log, B, true);
1813 
1814   // The earlier call must also be 'fast' in order to do these transforms.
1815   CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
1816   if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
1817     return Ret;
1818 
1819   LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
1820 
1821   // This is only applicable to log(), log2(), log10().
1822   if (TLI->getLibFunc(LogNm, LogLb))
1823     switch (LogLb) {
1824     case LibFunc_logf:
1825       LogID = Intrinsic::log;
1826       ExpLb = LibFunc_expf;
1827       Exp2Lb = LibFunc_exp2f;
1828       Exp10Lb = LibFunc_exp10f;
1829       PowLb = LibFunc_powf;
1830       break;
1831     case LibFunc_log:
1832       LogID = Intrinsic::log;
1833       ExpLb = LibFunc_exp;
1834       Exp2Lb = LibFunc_exp2;
1835       Exp10Lb = LibFunc_exp10;
1836       PowLb = LibFunc_pow;
1837       break;
1838     case LibFunc_logl:
1839       LogID = Intrinsic::log;
1840       ExpLb = LibFunc_expl;
1841       Exp2Lb = LibFunc_exp2l;
1842       Exp10Lb = LibFunc_exp10l;
1843       PowLb = LibFunc_powl;
1844       break;
1845     case LibFunc_log2f:
1846       LogID = Intrinsic::log2;
1847       ExpLb = LibFunc_expf;
1848       Exp2Lb = LibFunc_exp2f;
1849       Exp10Lb = LibFunc_exp10f;
1850       PowLb = LibFunc_powf;
1851       break;
1852     case LibFunc_log2:
1853       LogID = Intrinsic::log2;
1854       ExpLb = LibFunc_exp;
1855       Exp2Lb = LibFunc_exp2;
1856       Exp10Lb = LibFunc_exp10;
1857       PowLb = LibFunc_pow;
1858       break;
1859     case LibFunc_log2l:
1860       LogID = Intrinsic::log2;
1861       ExpLb = LibFunc_expl;
1862       Exp2Lb = LibFunc_exp2l;
1863       Exp10Lb = LibFunc_exp10l;
1864       PowLb = LibFunc_powl;
1865       break;
1866     case LibFunc_log10f:
1867       LogID = Intrinsic::log10;
1868       ExpLb = LibFunc_expf;
1869       Exp2Lb = LibFunc_exp2f;
1870       Exp10Lb = LibFunc_exp10f;
1871       PowLb = LibFunc_powf;
1872       break;
1873     case LibFunc_log10:
1874       LogID = Intrinsic::log10;
1875       ExpLb = LibFunc_exp;
1876       Exp2Lb = LibFunc_exp2;
1877       Exp10Lb = LibFunc_exp10;
1878       PowLb = LibFunc_pow;
1879       break;
1880     case LibFunc_log10l:
1881       LogID = Intrinsic::log10;
1882       ExpLb = LibFunc_expl;
1883       Exp2Lb = LibFunc_exp2l;
1884       Exp10Lb = LibFunc_exp10l;
1885       PowLb = LibFunc_powl;
1886       break;
1887     default:
1888       return Ret;
1889     }
1890   else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
1891            LogID == Intrinsic::log10) {
1892     if (Ty->getScalarType()->isFloatTy()) {
1893       ExpLb = LibFunc_expf;
1894       Exp2Lb = LibFunc_exp2f;
1895       Exp10Lb = LibFunc_exp10f;
1896       PowLb = LibFunc_powf;
1897     } else if (Ty->getScalarType()->isDoubleTy()) {
1898       ExpLb = LibFunc_exp;
1899       Exp2Lb = LibFunc_exp2;
1900       Exp10Lb = LibFunc_exp10;
1901       PowLb = LibFunc_pow;
1902     } else
1903       return Ret;
1904   } else
1905     return Ret;
1906 
1907   IRBuilderBase::FastMathFlagGuard Guard(B);
1908   B.setFastMathFlags(FastMathFlags::getFast());
1909 
1910   Intrinsic::ID ArgID = Arg->getIntrinsicID();
1911   LibFunc ArgLb = NotLibFunc;
1912   TLI->getLibFunc(*Arg, ArgLb);
1913 
1914   // log(pow(x,y)) -> y*log(x)
1915   if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
1916     Value *LogX =
1917         Log->doesNotAccessMemory()
1918             ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1919                            Arg->getOperand(0), "log")
1920             : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs);
1921     Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
1922     // Since pow() may have side effects, e.g. errno,
1923     // dead code elimination may not be trusted to remove it.
1924     substituteInParent(Arg, MulY);
1925     return MulY;
1926   }
1927 
1928   // log(exp{,2,10}(y)) -> y*log({e,2,10})
1929   // TODO: There is no exp10() intrinsic yet.
1930   if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
1931            ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
1932     Constant *Eul;
1933     if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
1934       // FIXME: Add more precise value of e for long double.
1935       Eul = ConstantFP::get(Log->getType(), numbers::e);
1936     else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
1937       Eul = ConstantFP::get(Log->getType(), 2.0);
1938     else
1939       Eul = ConstantFP::get(Log->getType(), 10.0);
1940     Value *LogE = Log->doesNotAccessMemory()
1941                       ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1942                                      Eul, "log")
1943                       : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs);
1944     Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
1945     // Since exp() may have side effects, e.g. errno,
1946     // dead code elimination may not be trusted to remove it.
1947     substituteInParent(Arg, MulY);
1948     return MulY;
1949   }
1950 
1951   return Ret;
1952 }
1953 
1954 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
1955   Function *Callee = CI->getCalledFunction();
1956   Value *Ret = nullptr;
1957   // TODO: Once we have a way (other than checking for the existince of the
1958   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
1959   // condition below.
1960   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
1961                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
1962     Ret = optimizeUnaryDoubleFP(CI, B, true);
1963 
1964   if (!CI->isFast())
1965     return Ret;
1966 
1967   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
1968   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
1969     return Ret;
1970 
1971   // We're looking for a repeated factor in a multiplication tree,
1972   // so we can do this fold: sqrt(x * x) -> fabs(x);
1973   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
1974   Value *Op0 = I->getOperand(0);
1975   Value *Op1 = I->getOperand(1);
1976   Value *RepeatOp = nullptr;
1977   Value *OtherOp = nullptr;
1978   if (Op0 == Op1) {
1979     // Simple match: the operands of the multiply are identical.
1980     RepeatOp = Op0;
1981   } else {
1982     // Look for a more complicated pattern: one of the operands is itself
1983     // a multiply, so search for a common factor in that multiply.
1984     // Note: We don't bother looking any deeper than this first level or for
1985     // variations of this pattern because instcombine's visitFMUL and/or the
1986     // reassociation pass should give us this form.
1987     Value *OtherMul0, *OtherMul1;
1988     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
1989       // Pattern: sqrt((x * y) * z)
1990       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
1991         // Matched: sqrt((x * x) * z)
1992         RepeatOp = OtherMul0;
1993         OtherOp = Op1;
1994       }
1995     }
1996   }
1997   if (!RepeatOp)
1998     return Ret;
1999 
2000   // Fast math flags for any created instructions should match the sqrt
2001   // and multiply.
2002   IRBuilderBase::FastMathFlagGuard Guard(B);
2003   B.setFastMathFlags(I->getFastMathFlags());
2004 
2005   // If we found a repeated factor, hoist it out of the square root and
2006   // replace it with the fabs of that factor.
2007   Module *M = Callee->getParent();
2008   Type *ArgType = I->getType();
2009   Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
2010   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
2011   if (OtherOp) {
2012     // If we found a non-repeated factor, we still need to get its square
2013     // root. We then multiply that by the value that was simplified out
2014     // of the square root calculation.
2015     Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
2016     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
2017     return B.CreateFMul(FabsCall, SqrtCall);
2018   }
2019   return FabsCall;
2020 }
2021 
2022 // TODO: Generalize to handle any trig function and its inverse.
2023 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) {
2024   Function *Callee = CI->getCalledFunction();
2025   Value *Ret = nullptr;
2026   StringRef Name = Callee->getName();
2027   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
2028     Ret = optimizeUnaryDoubleFP(CI, B, true);
2029 
2030   Value *Op1 = CI->getArgOperand(0);
2031   auto *OpC = dyn_cast<CallInst>(Op1);
2032   if (!OpC)
2033     return Ret;
2034 
2035   // Both calls must be 'fast' in order to remove them.
2036   if (!CI->isFast() || !OpC->isFast())
2037     return Ret;
2038 
2039   // tan(atan(x)) -> x
2040   // tanf(atanf(x)) -> x
2041   // tanl(atanl(x)) -> x
2042   LibFunc Func;
2043   Function *F = OpC->getCalledFunction();
2044   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
2045       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
2046        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
2047        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
2048     Ret = OpC->getArgOperand(0);
2049   return Ret;
2050 }
2051 
2052 static bool isTrigLibCall(CallInst *CI) {
2053   // We can only hope to do anything useful if we can ignore things like errno
2054   // and floating-point exceptions.
2055   // We already checked the prototype.
2056   return CI->hasFnAttr(Attribute::NoUnwind) &&
2057          CI->hasFnAttr(Attribute::ReadNone);
2058 }
2059 
2060 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
2061                              bool UseFloat, Value *&Sin, Value *&Cos,
2062                              Value *&SinCos) {
2063   Type *ArgTy = Arg->getType();
2064   Type *ResTy;
2065   StringRef Name;
2066 
2067   Triple T(OrigCallee->getParent()->getTargetTriple());
2068   if (UseFloat) {
2069     Name = "__sincospif_stret";
2070 
2071     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2072     // x86_64 can't use {float, float} since that would be returned in both
2073     // xmm0 and xmm1, which isn't what a real struct would do.
2074     ResTy = T.getArch() == Triple::x86_64
2075                 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2))
2076                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2077   } else {
2078     Name = "__sincospi_stret";
2079     ResTy = StructType::get(ArgTy, ArgTy);
2080   }
2081 
2082   Module *M = OrigCallee->getParent();
2083   FunctionCallee Callee =
2084       M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy);
2085 
2086   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2087     // If the argument is an instruction, it must dominate all uses so put our
2088     // sincos call there.
2089     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2090   } else {
2091     // Otherwise (e.g. for a constant) the beginning of the function is as
2092     // good a place as any.
2093     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2094     B.SetInsertPoint(&EntryBB, EntryBB.begin());
2095   }
2096 
2097   SinCos = B.CreateCall(Callee, Arg, "sincospi");
2098 
2099   if (SinCos->getType()->isStructTy()) {
2100     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2101     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2102   } else {
2103     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2104                                  "sinpi");
2105     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2106                                  "cospi");
2107   }
2108 }
2109 
2110 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) {
2111   // Make sure the prototype is as expected, otherwise the rest of the
2112   // function is probably invalid and likely to abort.
2113   if (!isTrigLibCall(CI))
2114     return nullptr;
2115 
2116   Value *Arg = CI->getArgOperand(0);
2117   SmallVector<CallInst *, 1> SinCalls;
2118   SmallVector<CallInst *, 1> CosCalls;
2119   SmallVector<CallInst *, 1> SinCosCalls;
2120 
2121   bool IsFloat = Arg->getType()->isFloatTy();
2122 
2123   // Look for all compatible sinpi, cospi and sincospi calls with the same
2124   // argument. If there are enough (in some sense) we can make the
2125   // substitution.
2126   Function *F = CI->getFunction();
2127   for (User *U : Arg->users())
2128     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2129 
2130   // It's only worthwhile if both sinpi and cospi are actually used.
2131   if (SinCalls.empty() || CosCalls.empty())
2132     return nullptr;
2133 
2134   Value *Sin, *Cos, *SinCos;
2135   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
2136 
2137   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2138                                  Value *Res) {
2139     for (CallInst *C : Calls)
2140       replaceAllUsesWith(C, Res);
2141   };
2142 
2143   replaceTrigInsts(SinCalls, Sin);
2144   replaceTrigInsts(CosCalls, Cos);
2145   replaceTrigInsts(SinCosCalls, SinCos);
2146 
2147   return nullptr;
2148 }
2149 
2150 void LibCallSimplifier::classifyArgUse(
2151     Value *Val, Function *F, bool IsFloat,
2152     SmallVectorImpl<CallInst *> &SinCalls,
2153     SmallVectorImpl<CallInst *> &CosCalls,
2154     SmallVectorImpl<CallInst *> &SinCosCalls) {
2155   CallInst *CI = dyn_cast<CallInst>(Val);
2156 
2157   if (!CI || CI->use_empty())
2158     return;
2159 
2160   // Don't consider calls in other functions.
2161   if (CI->getFunction() != F)
2162     return;
2163 
2164   Function *Callee = CI->getCalledFunction();
2165   LibFunc Func;
2166   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
2167       !isTrigLibCall(CI))
2168     return;
2169 
2170   if (IsFloat) {
2171     if (Func == LibFunc_sinpif)
2172       SinCalls.push_back(CI);
2173     else if (Func == LibFunc_cospif)
2174       CosCalls.push_back(CI);
2175     else if (Func == LibFunc_sincospif_stret)
2176       SinCosCalls.push_back(CI);
2177   } else {
2178     if (Func == LibFunc_sinpi)
2179       SinCalls.push_back(CI);
2180     else if (Func == LibFunc_cospi)
2181       CosCalls.push_back(CI);
2182     else if (Func == LibFunc_sincospi_stret)
2183       SinCosCalls.push_back(CI);
2184   }
2185 }
2186 
2187 //===----------------------------------------------------------------------===//
2188 // Integer Library Call Optimizations
2189 //===----------------------------------------------------------------------===//
2190 
2191 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) {
2192   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
2193   Value *Op = CI->getArgOperand(0);
2194   Type *ArgType = Op->getType();
2195   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2196                                           Intrinsic::cttz, ArgType);
2197   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
2198   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
2199   V = B.CreateIntCast(V, B.getInt32Ty(), false);
2200 
2201   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
2202   return B.CreateSelect(Cond, V, B.getInt32(0));
2203 }
2204 
2205 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) {
2206   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
2207   Value *Op = CI->getArgOperand(0);
2208   Type *ArgType = Op->getType();
2209   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2210                                           Intrinsic::ctlz, ArgType);
2211   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
2212   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
2213                   V);
2214   return B.CreateIntCast(V, CI->getType(), false);
2215 }
2216 
2217 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) {
2218   // abs(x) -> x <s 0 ? -x : x
2219   // The negation has 'nsw' because abs of INT_MIN is undefined.
2220   Value *X = CI->getArgOperand(0);
2221   Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
2222   Value *NegX = B.CreateNSWNeg(X, "neg");
2223   return B.CreateSelect(IsNeg, NegX, X);
2224 }
2225 
2226 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) {
2227   // isdigit(c) -> (c-'0') <u 10
2228   Value *Op = CI->getArgOperand(0);
2229   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
2230   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
2231   return B.CreateZExt(Op, CI->getType());
2232 }
2233 
2234 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) {
2235   // isascii(c) -> c <u 128
2236   Value *Op = CI->getArgOperand(0);
2237   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
2238   return B.CreateZExt(Op, CI->getType());
2239 }
2240 
2241 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) {
2242   // toascii(c) -> c & 0x7f
2243   return B.CreateAnd(CI->getArgOperand(0),
2244                      ConstantInt::get(CI->getType(), 0x7F));
2245 }
2246 
2247 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) {
2248   StringRef Str;
2249   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2250     return nullptr;
2251 
2252   return convertStrToNumber(CI, Str, 10);
2253 }
2254 
2255 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) {
2256   StringRef Str;
2257   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2258     return nullptr;
2259 
2260   if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
2261     return nullptr;
2262 
2263   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2264     return convertStrToNumber(CI, Str, CInt->getSExtValue());
2265   }
2266 
2267   return nullptr;
2268 }
2269 
2270 //===----------------------------------------------------------------------===//
2271 // Formatting and IO Library Call Optimizations
2272 //===----------------------------------------------------------------------===//
2273 
2274 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2275 
2276 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B,
2277                                                  int StreamArg) {
2278   Function *Callee = CI->getCalledFunction();
2279   // Error reporting calls should be cold, mark them as such.
2280   // This applies even to non-builtin calls: it is only a hint and applies to
2281   // functions that the frontend might not understand as builtins.
2282 
2283   // This heuristic was suggested in:
2284   // Improving Static Branch Prediction in a Compiler
2285   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2286   // Proceedings of PACT'98, Oct. 1998, IEEE
2287   if (!CI->hasFnAttr(Attribute::Cold) &&
2288       isReportingError(Callee, CI, StreamArg)) {
2289     CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
2290   }
2291 
2292   return nullptr;
2293 }
2294 
2295 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2296   if (!Callee || !Callee->isDeclaration())
2297     return false;
2298 
2299   if (StreamArg < 0)
2300     return true;
2301 
2302   // These functions might be considered cold, but only if their stream
2303   // argument is stderr.
2304 
2305   if (StreamArg >= (int)CI->getNumArgOperands())
2306     return false;
2307   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2308   if (!LI)
2309     return false;
2310   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
2311   if (!GV || !GV->isDeclaration())
2312     return false;
2313   return GV->getName() == "stderr";
2314 }
2315 
2316 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
2317   // Check for a fixed format string.
2318   StringRef FormatStr;
2319   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2320     return nullptr;
2321 
2322   // Empty format string -> noop.
2323   if (FormatStr.empty()) // Tolerate printf's declared void.
2324     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2325 
2326   // Do not do any of the following transformations if the printf return value
2327   // is used, in general the printf return value is not compatible with either
2328   // putchar() or puts().
2329   if (!CI->use_empty())
2330     return nullptr;
2331 
2332   // printf("x") -> putchar('x'), even for "%" and "%%".
2333   if (FormatStr.size() == 1 || FormatStr == "%%")
2334     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
2335 
2336   // Try to remove call or emit putchar/puts.
2337   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
2338     StringRef OperandStr;
2339     if (!getConstantStringInfo(CI->getOperand(1), OperandStr))
2340       return nullptr;
2341     // printf("%s", "") --> NOP
2342     if (OperandStr.empty())
2343       return (Value *)CI;
2344     // printf("%s", "a") --> putchar('a')
2345     if (OperandStr.size() == 1)
2346       return emitPutChar(B.getInt32(OperandStr[0]), B, TLI);
2347     // printf("%s", str"\n") --> puts(str)
2348     if (OperandStr.back() == '\n') {
2349       OperandStr = OperandStr.drop_back();
2350       Value *GV = B.CreateGlobalString(OperandStr, "str");
2351       return emitPutS(GV, B, TLI);
2352     }
2353     return nullptr;
2354   }
2355 
2356   // printf("foo\n") --> puts("foo")
2357   if (FormatStr.back() == '\n' &&
2358       FormatStr.find('%') == StringRef::npos) { // No format characters.
2359     // Create a string literal with no \n on it.  We expect the constant merge
2360     // pass to be run after this pass, to merge duplicate strings.
2361     FormatStr = FormatStr.drop_back();
2362     Value *GV = B.CreateGlobalString(FormatStr, "str");
2363     return emitPutS(GV, B, TLI);
2364   }
2365 
2366   // Optimize specific format strings.
2367   // printf("%c", chr) --> putchar(chr)
2368   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
2369       CI->getArgOperand(1)->getType()->isIntegerTy())
2370     return emitPutChar(CI->getArgOperand(1), B, TLI);
2371 
2372   // printf("%s\n", str) --> puts(str)
2373   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
2374       CI->getArgOperand(1)->getType()->isPointerTy())
2375     return emitPutS(CI->getArgOperand(1), B, TLI);
2376   return nullptr;
2377 }
2378 
2379 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
2380 
2381   Function *Callee = CI->getCalledFunction();
2382   FunctionType *FT = Callee->getFunctionType();
2383   if (Value *V = optimizePrintFString(CI, B)) {
2384     return V;
2385   }
2386 
2387   // printf(format, ...) -> iprintf(format, ...) if no floating point
2388   // arguments.
2389   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
2390     Module *M = B.GetInsertBlock()->getParent()->getParent();
2391     FunctionCallee IPrintFFn =
2392         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
2393     CallInst *New = cast<CallInst>(CI->clone());
2394     New->setCalledFunction(IPrintFFn);
2395     B.Insert(New);
2396     return New;
2397   }
2398 
2399   // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2400   // arguments.
2401   if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) {
2402     Module *M = B.GetInsertBlock()->getParent()->getParent();
2403     auto SmallPrintFFn =
2404         M->getOrInsertFunction(TLI->getName(LibFunc_small_printf),
2405                                FT, Callee->getAttributes());
2406     CallInst *New = cast<CallInst>(CI->clone());
2407     New->setCalledFunction(SmallPrintFFn);
2408     B.Insert(New);
2409     return New;
2410   }
2411 
2412   annotateNonNullNoUndefBasedOnAccess(CI, 0);
2413   return nullptr;
2414 }
2415 
2416 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
2417                                                 IRBuilderBase &B) {
2418   // Check for a fixed format string.
2419   StringRef FormatStr;
2420   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2421     return nullptr;
2422 
2423   // If we just have a format string (nothing else crazy) transform it.
2424   Value *Dest = CI->getArgOperand(0);
2425   if (CI->getNumArgOperands() == 2) {
2426     // Make sure there's no % in the constant array.  We could try to handle
2427     // %% -> % in the future if we cared.
2428     if (FormatStr.find('%') != StringRef::npos)
2429       return nullptr; // we found a format specifier, bail out.
2430 
2431     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2432     B.CreateMemCpy(
2433         Dest, Align(1), CI->getArgOperand(1), Align(1),
2434         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2435                          FormatStr.size() + 1)); // Copy the null byte.
2436     return ConstantInt::get(CI->getType(), FormatStr.size());
2437   }
2438 
2439   // The remaining optimizations require the format string to be "%s" or "%c"
2440   // and have an extra operand.
2441   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2442       CI->getNumArgOperands() < 3)
2443     return nullptr;
2444 
2445   // Decode the second character of the format string.
2446   if (FormatStr[1] == 'c') {
2447     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2448     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2449       return nullptr;
2450     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2451     Value *Ptr = castToCStr(Dest, B);
2452     B.CreateStore(V, Ptr);
2453     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2454     B.CreateStore(B.getInt8(0), Ptr);
2455 
2456     return ConstantInt::get(CI->getType(), 1);
2457   }
2458 
2459   if (FormatStr[1] == 's') {
2460     // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2461     // strlen(str)+1)
2462     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2463       return nullptr;
2464 
2465     if (CI->use_empty())
2466       // sprintf(dest, "%s", str) -> strcpy(dest, str)
2467       return emitStrCpy(Dest, CI->getArgOperand(2), B, TLI);
2468 
2469     uint64_t SrcLen = GetStringLength(CI->getArgOperand(2));
2470     if (SrcLen) {
2471       B.CreateMemCpy(
2472           Dest, Align(1), CI->getArgOperand(2), Align(1),
2473           ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen));
2474       // Returns total number of characters written without null-character.
2475       return ConstantInt::get(CI->getType(), SrcLen - 1);
2476     } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) {
2477       // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest
2478       // Handle mismatched pointer types (goes away with typeless pointers?).
2479       V = B.CreatePointerCast(V, Dest->getType());
2480       Value *PtrDiff = B.CreatePtrDiff(V, Dest);
2481       return B.CreateIntCast(PtrDiff, CI->getType(), false);
2482     }
2483 
2484     bool OptForSize = CI->getFunction()->hasOptSize() ||
2485                       llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2486                                                   PGSOQueryType::IRPass);
2487     if (OptForSize)
2488       return nullptr;
2489 
2490     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2491     if (!Len)
2492       return nullptr;
2493     Value *IncLen =
2494         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2495     B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen);
2496 
2497     // The sprintf result is the unincremented number of bytes in the string.
2498     return B.CreateIntCast(Len, CI->getType(), false);
2499   }
2500   return nullptr;
2501 }
2502 
2503 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
2504   Function *Callee = CI->getCalledFunction();
2505   FunctionType *FT = Callee->getFunctionType();
2506   if (Value *V = optimizeSPrintFString(CI, B)) {
2507     return V;
2508   }
2509 
2510   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2511   // point arguments.
2512   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
2513     Module *M = B.GetInsertBlock()->getParent()->getParent();
2514     FunctionCallee SIPrintFFn =
2515         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
2516     CallInst *New = cast<CallInst>(CI->clone());
2517     New->setCalledFunction(SIPrintFFn);
2518     B.Insert(New);
2519     return New;
2520   }
2521 
2522   // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
2523   // floating point arguments.
2524   if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) {
2525     Module *M = B.GetInsertBlock()->getParent()->getParent();
2526     auto SmallSPrintFFn =
2527         M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf),
2528                                FT, Callee->getAttributes());
2529     CallInst *New = cast<CallInst>(CI->clone());
2530     New->setCalledFunction(SmallSPrintFFn);
2531     B.Insert(New);
2532     return New;
2533   }
2534 
2535   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
2536   return nullptr;
2537 }
2538 
2539 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
2540                                                  IRBuilderBase &B) {
2541   // Check for size
2542   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2543   if (!Size)
2544     return nullptr;
2545 
2546   uint64_t N = Size->getZExtValue();
2547   // Check for a fixed format string.
2548   StringRef FormatStr;
2549   if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2550     return nullptr;
2551 
2552   // If we just have a format string (nothing else crazy) transform it.
2553   if (CI->getNumArgOperands() == 3) {
2554     // Make sure there's no % in the constant array.  We could try to handle
2555     // %% -> % in the future if we cared.
2556     if (FormatStr.find('%') != StringRef::npos)
2557       return nullptr; // we found a format specifier, bail out.
2558 
2559     if (N == 0)
2560       return ConstantInt::get(CI->getType(), FormatStr.size());
2561     else if (N < FormatStr.size() + 1)
2562       return nullptr;
2563 
2564     // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2565     // strlen(fmt)+1)
2566     B.CreateMemCpy(
2567         CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1),
2568         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2569                          FormatStr.size() + 1)); // Copy the null byte.
2570     return ConstantInt::get(CI->getType(), FormatStr.size());
2571   }
2572 
2573   // The remaining optimizations require the format string to be "%s" or "%c"
2574   // and have an extra operand.
2575   if (FormatStr.size() == 2 && FormatStr[0] == '%' &&
2576       CI->getNumArgOperands() == 4) {
2577 
2578     // Decode the second character of the format string.
2579     if (FormatStr[1] == 'c') {
2580       if (N == 0)
2581         return ConstantInt::get(CI->getType(), 1);
2582       else if (N == 1)
2583         return nullptr;
2584 
2585       // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2586       if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2587         return nullptr;
2588       Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2589       Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2590       B.CreateStore(V, Ptr);
2591       Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2592       B.CreateStore(B.getInt8(0), Ptr);
2593 
2594       return ConstantInt::get(CI->getType(), 1);
2595     }
2596 
2597     if (FormatStr[1] == 's') {
2598       // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2599       StringRef Str;
2600       if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2601         return nullptr;
2602 
2603       if (N == 0)
2604         return ConstantInt::get(CI->getType(), Str.size());
2605       else if (N < Str.size() + 1)
2606         return nullptr;
2607 
2608       B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(3),
2609                      Align(1), ConstantInt::get(CI->getType(), Str.size() + 1));
2610 
2611       // The snprintf result is the unincremented number of bytes in the string.
2612       return ConstantInt::get(CI->getType(), Str.size());
2613     }
2614   }
2615   return nullptr;
2616 }
2617 
2618 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) {
2619   if (Value *V = optimizeSnPrintFString(CI, B)) {
2620     return V;
2621   }
2622 
2623   if (isKnownNonZero(CI->getOperand(1), DL))
2624     annotateNonNullNoUndefBasedOnAccess(CI, 0);
2625   return nullptr;
2626 }
2627 
2628 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
2629                                                 IRBuilderBase &B) {
2630   optimizeErrorReporting(CI, B, 0);
2631 
2632   // All the optimizations depend on the format string.
2633   StringRef FormatStr;
2634   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2635     return nullptr;
2636 
2637   // Do not do any of the following transformations if the fprintf return
2638   // value is used, in general the fprintf return value is not compatible
2639   // with fwrite(), fputc() or fputs().
2640   if (!CI->use_empty())
2641     return nullptr;
2642 
2643   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2644   if (CI->getNumArgOperands() == 2) {
2645     // Could handle %% -> % if we cared.
2646     if (FormatStr.find('%') != StringRef::npos)
2647       return nullptr; // We found a format specifier.
2648 
2649     return emitFWrite(
2650         CI->getArgOperand(1),
2651         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
2652         CI->getArgOperand(0), B, DL, TLI);
2653   }
2654 
2655   // The remaining optimizations require the format string to be "%s" or "%c"
2656   // and have an extra operand.
2657   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2658       CI->getNumArgOperands() < 3)
2659     return nullptr;
2660 
2661   // Decode the second character of the format string.
2662   if (FormatStr[1] == 'c') {
2663     // fprintf(F, "%c", chr) --> fputc(chr, F)
2664     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2665       return nullptr;
2666     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2667   }
2668 
2669   if (FormatStr[1] == 's') {
2670     // fprintf(F, "%s", str) --> fputs(str, F)
2671     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2672       return nullptr;
2673     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2674   }
2675   return nullptr;
2676 }
2677 
2678 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
2679   Function *Callee = CI->getCalledFunction();
2680   FunctionType *FT = Callee->getFunctionType();
2681   if (Value *V = optimizeFPrintFString(CI, B)) {
2682     return V;
2683   }
2684 
2685   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2686   // floating point arguments.
2687   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
2688     Module *M = B.GetInsertBlock()->getParent()->getParent();
2689     FunctionCallee FIPrintFFn =
2690         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2691     CallInst *New = cast<CallInst>(CI->clone());
2692     New->setCalledFunction(FIPrintFFn);
2693     B.Insert(New);
2694     return New;
2695   }
2696 
2697   // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
2698   // 128-bit floating point arguments.
2699   if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) {
2700     Module *M = B.GetInsertBlock()->getParent()->getParent();
2701     auto SmallFPrintFFn =
2702         M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf),
2703                                FT, Callee->getAttributes());
2704     CallInst *New = cast<CallInst>(CI->clone());
2705     New->setCalledFunction(SmallFPrintFFn);
2706     B.Insert(New);
2707     return New;
2708   }
2709 
2710   return nullptr;
2711 }
2712 
2713 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) {
2714   optimizeErrorReporting(CI, B, 3);
2715 
2716   // Get the element size and count.
2717   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2718   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2719   if (SizeC && CountC) {
2720     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2721 
2722     // If this is writing zero records, remove the call (it's a noop).
2723     if (Bytes == 0)
2724       return ConstantInt::get(CI->getType(), 0);
2725 
2726     // If this is writing one byte, turn it into fputc.
2727     // This optimisation is only valid, if the return value is unused.
2728     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2729       Value *Char = B.CreateLoad(B.getInt8Ty(),
2730                                  castToCStr(CI->getArgOperand(0), B), "char");
2731       Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2732       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2733     }
2734   }
2735 
2736   return nullptr;
2737 }
2738 
2739 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) {
2740   optimizeErrorReporting(CI, B, 1);
2741 
2742   // Don't rewrite fputs to fwrite when optimising for size because fwrite
2743   // requires more arguments and thus extra MOVs are required.
2744   bool OptForSize = CI->getFunction()->hasOptSize() ||
2745                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2746                                                 PGSOQueryType::IRPass);
2747   if (OptForSize)
2748     return nullptr;
2749 
2750   // We can't optimize if return value is used.
2751   if (!CI->use_empty())
2752     return nullptr;
2753 
2754   // fputs(s,F) --> fwrite(s,strlen(s),1,F)
2755   uint64_t Len = GetStringLength(CI->getArgOperand(0));
2756   if (!Len)
2757     return nullptr;
2758 
2759   // Known to have no uses (see above).
2760   return emitFWrite(
2761       CI->getArgOperand(0),
2762       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2763       CI->getArgOperand(1), B, DL, TLI);
2764 }
2765 
2766 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) {
2767   annotateNonNullNoUndefBasedOnAccess(CI, 0);
2768   if (!CI->use_empty())
2769     return nullptr;
2770 
2771   // Check for a constant string.
2772   // puts("") -> putchar('\n')
2773   StringRef Str;
2774   if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
2775     return emitPutChar(B.getInt32('\n'), B, TLI);
2776 
2777   return nullptr;
2778 }
2779 
2780 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
2781   // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
2782   return B.CreateMemMove(CI->getArgOperand(1), Align(1), CI->getArgOperand(0),
2783                          Align(1), CI->getArgOperand(2));
2784 }
2785 
2786 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2787   LibFunc Func;
2788   SmallString<20> FloatFuncName = FuncName;
2789   FloatFuncName += 'f';
2790   if (TLI->getLibFunc(FloatFuncName, Func))
2791     return TLI->has(Func);
2792   return false;
2793 }
2794 
2795 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2796                                                       IRBuilderBase &Builder) {
2797   LibFunc Func;
2798   Function *Callee = CI->getCalledFunction();
2799   // Check for string/memory library functions.
2800   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2801     // Make sure we never change the calling convention.
2802     assert(
2803         (ignoreCallingConv(Func) ||
2804          TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) &&
2805         "Optimizing string/memory libcall would change the calling convention");
2806     switch (Func) {
2807     case LibFunc_strcat:
2808       return optimizeStrCat(CI, Builder);
2809     case LibFunc_strncat:
2810       return optimizeStrNCat(CI, Builder);
2811     case LibFunc_strchr:
2812       return optimizeStrChr(CI, Builder);
2813     case LibFunc_strrchr:
2814       return optimizeStrRChr(CI, Builder);
2815     case LibFunc_strcmp:
2816       return optimizeStrCmp(CI, Builder);
2817     case LibFunc_strncmp:
2818       return optimizeStrNCmp(CI, Builder);
2819     case LibFunc_strcpy:
2820       return optimizeStrCpy(CI, Builder);
2821     case LibFunc_stpcpy:
2822       return optimizeStpCpy(CI, Builder);
2823     case LibFunc_strncpy:
2824       return optimizeStrNCpy(CI, Builder);
2825     case LibFunc_strlen:
2826       return optimizeStrLen(CI, Builder);
2827     case LibFunc_strpbrk:
2828       return optimizeStrPBrk(CI, Builder);
2829     case LibFunc_strndup:
2830       return optimizeStrNDup(CI, Builder);
2831     case LibFunc_strtol:
2832     case LibFunc_strtod:
2833     case LibFunc_strtof:
2834     case LibFunc_strtoul:
2835     case LibFunc_strtoll:
2836     case LibFunc_strtold:
2837     case LibFunc_strtoull:
2838       return optimizeStrTo(CI, Builder);
2839     case LibFunc_strspn:
2840       return optimizeStrSpn(CI, Builder);
2841     case LibFunc_strcspn:
2842       return optimizeStrCSpn(CI, Builder);
2843     case LibFunc_strstr:
2844       return optimizeStrStr(CI, Builder);
2845     case LibFunc_memchr:
2846       return optimizeMemChr(CI, Builder);
2847     case LibFunc_memrchr:
2848       return optimizeMemRChr(CI, Builder);
2849     case LibFunc_bcmp:
2850       return optimizeBCmp(CI, Builder);
2851     case LibFunc_memcmp:
2852       return optimizeMemCmp(CI, Builder);
2853     case LibFunc_memcpy:
2854       return optimizeMemCpy(CI, Builder);
2855     case LibFunc_memccpy:
2856       return optimizeMemCCpy(CI, Builder);
2857     case LibFunc_mempcpy:
2858       return optimizeMemPCpy(CI, Builder);
2859     case LibFunc_memmove:
2860       return optimizeMemMove(CI, Builder);
2861     case LibFunc_memset:
2862       return optimizeMemSet(CI, Builder);
2863     case LibFunc_realloc:
2864       return optimizeRealloc(CI, Builder);
2865     case LibFunc_wcslen:
2866       return optimizeWcslen(CI, Builder);
2867     case LibFunc_bcopy:
2868       return optimizeBCopy(CI, Builder);
2869     default:
2870       break;
2871     }
2872   }
2873   return nullptr;
2874 }
2875 
2876 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2877                                                        LibFunc Func,
2878                                                        IRBuilderBase &Builder) {
2879   // Don't optimize calls that require strict floating point semantics.
2880   if (CI->isStrictFP())
2881     return nullptr;
2882 
2883   if (Value *V = optimizeTrigReflections(CI, Func, Builder))
2884     return V;
2885 
2886   switch (Func) {
2887   case LibFunc_sinpif:
2888   case LibFunc_sinpi:
2889   case LibFunc_cospif:
2890   case LibFunc_cospi:
2891     return optimizeSinCosPi(CI, Builder);
2892   case LibFunc_powf:
2893   case LibFunc_pow:
2894   case LibFunc_powl:
2895     return optimizePow(CI, Builder);
2896   case LibFunc_exp2l:
2897   case LibFunc_exp2:
2898   case LibFunc_exp2f:
2899     return optimizeExp2(CI, Builder);
2900   case LibFunc_fabsf:
2901   case LibFunc_fabs:
2902   case LibFunc_fabsl:
2903     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2904   case LibFunc_sqrtf:
2905   case LibFunc_sqrt:
2906   case LibFunc_sqrtl:
2907     return optimizeSqrt(CI, Builder);
2908   case LibFunc_logf:
2909   case LibFunc_log:
2910   case LibFunc_logl:
2911   case LibFunc_log10f:
2912   case LibFunc_log10:
2913   case LibFunc_log10l:
2914   case LibFunc_log1pf:
2915   case LibFunc_log1p:
2916   case LibFunc_log1pl:
2917   case LibFunc_log2f:
2918   case LibFunc_log2:
2919   case LibFunc_log2l:
2920   case LibFunc_logbf:
2921   case LibFunc_logb:
2922   case LibFunc_logbl:
2923     return optimizeLog(CI, Builder);
2924   case LibFunc_tan:
2925   case LibFunc_tanf:
2926   case LibFunc_tanl:
2927     return optimizeTan(CI, Builder);
2928   case LibFunc_ceil:
2929     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2930   case LibFunc_floor:
2931     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2932   case LibFunc_round:
2933     return replaceUnaryCall(CI, Builder, Intrinsic::round);
2934   case LibFunc_roundeven:
2935     return replaceUnaryCall(CI, Builder, Intrinsic::roundeven);
2936   case LibFunc_nearbyint:
2937     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2938   case LibFunc_rint:
2939     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2940   case LibFunc_trunc:
2941     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
2942   case LibFunc_acos:
2943   case LibFunc_acosh:
2944   case LibFunc_asin:
2945   case LibFunc_asinh:
2946   case LibFunc_atan:
2947   case LibFunc_atanh:
2948   case LibFunc_cbrt:
2949   case LibFunc_cosh:
2950   case LibFunc_exp:
2951   case LibFunc_exp10:
2952   case LibFunc_expm1:
2953   case LibFunc_cos:
2954   case LibFunc_sin:
2955   case LibFunc_sinh:
2956   case LibFunc_tanh:
2957     if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
2958       return optimizeUnaryDoubleFP(CI, Builder, true);
2959     return nullptr;
2960   case LibFunc_copysign:
2961     if (hasFloatVersion(CI->getCalledFunction()->getName()))
2962       return optimizeBinaryDoubleFP(CI, Builder);
2963     return nullptr;
2964   case LibFunc_fminf:
2965   case LibFunc_fmin:
2966   case LibFunc_fminl:
2967   case LibFunc_fmaxf:
2968   case LibFunc_fmax:
2969   case LibFunc_fmaxl:
2970     return optimizeFMinFMax(CI, Builder);
2971   case LibFunc_cabs:
2972   case LibFunc_cabsf:
2973   case LibFunc_cabsl:
2974     return optimizeCAbs(CI, Builder);
2975   default:
2976     return nullptr;
2977   }
2978 }
2979 
2980 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
2981   // TODO: Split out the code below that operates on FP calls so that
2982   //       we can all non-FP calls with the StrictFP attribute to be
2983   //       optimized.
2984   if (CI->isNoBuiltin())
2985     return nullptr;
2986 
2987   LibFunc Func;
2988   Function *Callee = CI->getCalledFunction();
2989   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
2990 
2991   SmallVector<OperandBundleDef, 2> OpBundles;
2992   CI->getOperandBundlesAsDefs(OpBundles);
2993 
2994   IRBuilderBase::OperandBundlesGuard Guard(Builder);
2995   Builder.setDefaultOperandBundles(OpBundles);
2996 
2997   // Command-line parameter overrides instruction attribute.
2998   // This can't be moved to optimizeFloatingPointLibCall() because it may be
2999   // used by the intrinsic optimizations.
3000   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
3001     UnsafeFPShrink = EnableUnsafeFPShrink;
3002   else if (isa<FPMathOperator>(CI) && CI->isFast())
3003     UnsafeFPShrink = true;
3004 
3005   // First, check for intrinsics.
3006   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
3007     if (!IsCallingConvC)
3008       return nullptr;
3009     // The FP intrinsics have corresponding constrained versions so we don't
3010     // need to check for the StrictFP attribute here.
3011     switch (II->getIntrinsicID()) {
3012     case Intrinsic::pow:
3013       return optimizePow(CI, Builder);
3014     case Intrinsic::exp2:
3015       return optimizeExp2(CI, Builder);
3016     case Intrinsic::log:
3017     case Intrinsic::log2:
3018     case Intrinsic::log10:
3019       return optimizeLog(CI, Builder);
3020     case Intrinsic::sqrt:
3021       return optimizeSqrt(CI, Builder);
3022     case Intrinsic::memset:
3023       return optimizeMemSet(CI, Builder);
3024     case Intrinsic::memcpy:
3025       return optimizeMemCpy(CI, Builder);
3026     case Intrinsic::memmove:
3027       return optimizeMemMove(CI, Builder);
3028     default:
3029       return nullptr;
3030     }
3031   }
3032 
3033   // Also try to simplify calls to fortified library functions.
3034   if (Value *SimplifiedFortifiedCI =
3035           FortifiedSimplifier.optimizeCall(CI, Builder)) {
3036     // Try to further simplify the result.
3037     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
3038     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
3039       // Ensure that SimplifiedCI's uses are complete, since some calls have
3040       // their uses analyzed.
3041       replaceAllUsesWith(CI, SimplifiedCI);
3042 
3043       // Set insertion point to SimplifiedCI to guarantee we reach all uses
3044       // we might replace later on.
3045       IRBuilderBase::InsertPointGuard Guard(Builder);
3046       Builder.SetInsertPoint(SimplifiedCI);
3047       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) {
3048         // If we were able to further simplify, remove the now redundant call.
3049         substituteInParent(SimplifiedCI, V);
3050         return V;
3051       }
3052     }
3053     return SimplifiedFortifiedCI;
3054   }
3055 
3056   // Then check for known library functions.
3057   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
3058     // We never change the calling convention.
3059     if (!ignoreCallingConv(Func) && !IsCallingConvC)
3060       return nullptr;
3061     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3062       return V;
3063     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3064       return V;
3065     switch (Func) {
3066     case LibFunc_ffs:
3067     case LibFunc_ffsl:
3068     case LibFunc_ffsll:
3069       return optimizeFFS(CI, Builder);
3070     case LibFunc_fls:
3071     case LibFunc_flsl:
3072     case LibFunc_flsll:
3073       return optimizeFls(CI, Builder);
3074     case LibFunc_abs:
3075     case LibFunc_labs:
3076     case LibFunc_llabs:
3077       return optimizeAbs(CI, Builder);
3078     case LibFunc_isdigit:
3079       return optimizeIsDigit(CI, Builder);
3080     case LibFunc_isascii:
3081       return optimizeIsAscii(CI, Builder);
3082     case LibFunc_toascii:
3083       return optimizeToAscii(CI, Builder);
3084     case LibFunc_atoi:
3085     case LibFunc_atol:
3086     case LibFunc_atoll:
3087       return optimizeAtoi(CI, Builder);
3088     case LibFunc_strtol:
3089     case LibFunc_strtoll:
3090       return optimizeStrtol(CI, Builder);
3091     case LibFunc_printf:
3092       return optimizePrintF(CI, Builder);
3093     case LibFunc_sprintf:
3094       return optimizeSPrintF(CI, Builder);
3095     case LibFunc_snprintf:
3096       return optimizeSnPrintF(CI, Builder);
3097     case LibFunc_fprintf:
3098       return optimizeFPrintF(CI, Builder);
3099     case LibFunc_fwrite:
3100       return optimizeFWrite(CI, Builder);
3101     case LibFunc_fputs:
3102       return optimizeFPuts(CI, Builder);
3103     case LibFunc_puts:
3104       return optimizePuts(CI, Builder);
3105     case LibFunc_perror:
3106       return optimizeErrorReporting(CI, Builder);
3107     case LibFunc_vfprintf:
3108     case LibFunc_fiprintf:
3109       return optimizeErrorReporting(CI, Builder, 0);
3110     default:
3111       return nullptr;
3112     }
3113   }
3114   return nullptr;
3115 }
3116 
3117 LibCallSimplifier::LibCallSimplifier(
3118     const DataLayout &DL, const TargetLibraryInfo *TLI,
3119     OptimizationRemarkEmitter &ORE,
3120     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
3121     function_ref<void(Instruction *, Value *)> Replacer,
3122     function_ref<void(Instruction *)> Eraser)
3123     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
3124       UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {}
3125 
3126 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3127   // Indirect through the replacer used in this instance.
3128   Replacer(I, With);
3129 }
3130 
3131 void LibCallSimplifier::eraseFromParent(Instruction *I) {
3132   Eraser(I);
3133 }
3134 
3135 // TODO:
3136 //   Additional cases that we need to add to this file:
3137 //
3138 // cbrt:
3139 //   * cbrt(expN(X))  -> expN(x/3)
3140 //   * cbrt(sqrt(x))  -> pow(x,1/6)
3141 //   * cbrt(cbrt(x))  -> pow(x,1/9)
3142 //
3143 // exp, expf, expl:
3144 //   * exp(log(x))  -> x
3145 //
3146 // log, logf, logl:
3147 //   * log(exp(x))   -> x
3148 //   * log(exp(y))   -> y*log(e)
3149 //   * log(exp10(y)) -> y*log(10)
3150 //   * log(sqrt(x))  -> 0.5*log(x)
3151 //
3152 // pow, powf, powl:
3153 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
3154 //   * pow(pow(x,y),z)-> pow(x,y*z)
3155 //
3156 // signbit:
3157 //   * signbit(cnst) -> cnst'
3158 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3159 //
3160 // sqrt, sqrtf, sqrtl:
3161 //   * sqrt(expN(x))  -> expN(x*0.5)
3162 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3163 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3164 //
3165 
3166 //===----------------------------------------------------------------------===//
3167 // Fortified Library Call Optimizations
3168 //===----------------------------------------------------------------------===//
3169 
3170 bool
3171 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
3172                                                     unsigned ObjSizeOp,
3173                                                     Optional<unsigned> SizeOp,
3174                                                     Optional<unsigned> StrOp,
3175                                                     Optional<unsigned> FlagOp) {
3176   // If this function takes a flag argument, the implementation may use it to
3177   // perform extra checks. Don't fold into the non-checking variant.
3178   if (FlagOp) {
3179     ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
3180     if (!Flag || !Flag->isZero())
3181       return false;
3182   }
3183 
3184   if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
3185     return true;
3186 
3187   if (ConstantInt *ObjSizeCI =
3188           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
3189     if (ObjSizeCI->isMinusOne())
3190       return true;
3191     // If the object size wasn't -1 (unknown), bail out if we were asked to.
3192     if (OnlyLowerUnknownSize)
3193       return false;
3194     if (StrOp) {
3195       uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
3196       // If the length is 0 we don't know how long it is and so we can't
3197       // remove the check.
3198       if (Len)
3199         annotateDereferenceableBytes(CI, *StrOp, Len);
3200       else
3201         return false;
3202       return ObjSizeCI->getZExtValue() >= Len;
3203     }
3204 
3205     if (SizeOp) {
3206       if (ConstantInt *SizeCI =
3207               dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
3208         return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
3209     }
3210   }
3211   return false;
3212 }
3213 
3214 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
3215                                                      IRBuilderBase &B) {
3216   if (isFortifiedCallFoldable(CI, 3, 2)) {
3217     CallInst *NewCI =
3218         B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3219                        Align(1), CI->getArgOperand(2));
3220     NewCI->setAttributes(CI->getAttributes());
3221     NewCI->removeAttributes(AttributeList::ReturnIndex,
3222                             AttributeFuncs::typeIncompatible(NewCI->getType()));
3223     return CI->getArgOperand(0);
3224   }
3225   return nullptr;
3226 }
3227 
3228 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
3229                                                       IRBuilderBase &B) {
3230   if (isFortifiedCallFoldable(CI, 3, 2)) {
3231     CallInst *NewCI =
3232         B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3233                         Align(1), CI->getArgOperand(2));
3234     NewCI->setAttributes(CI->getAttributes());
3235     NewCI->removeAttributes(AttributeList::ReturnIndex,
3236                             AttributeFuncs::typeIncompatible(NewCI->getType()));
3237     return CI->getArgOperand(0);
3238   }
3239   return nullptr;
3240 }
3241 
3242 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
3243                                                      IRBuilderBase &B) {
3244   if (isFortifiedCallFoldable(CI, 3, 2)) {
3245     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
3246     CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
3247                                      CI->getArgOperand(2), Align(1));
3248     NewCI->setAttributes(CI->getAttributes());
3249     NewCI->removeAttributes(AttributeList::ReturnIndex,
3250                             AttributeFuncs::typeIncompatible(NewCI->getType()));
3251     return CI->getArgOperand(0);
3252   }
3253   return nullptr;
3254 }
3255 
3256 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI,
3257                                                       IRBuilderBase &B) {
3258   const DataLayout &DL = CI->getModule()->getDataLayout();
3259   if (isFortifiedCallFoldable(CI, 3, 2))
3260     if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3261                                   CI->getArgOperand(2), B, DL, TLI)) {
3262       CallInst *NewCI = cast<CallInst>(Call);
3263       NewCI->setAttributes(CI->getAttributes());
3264       NewCI->removeAttributes(
3265           AttributeList::ReturnIndex,
3266           AttributeFuncs::typeIncompatible(NewCI->getType()));
3267       return NewCI;
3268     }
3269   return nullptr;
3270 }
3271 
3272 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
3273                                                       IRBuilderBase &B,
3274                                                       LibFunc Func) {
3275   const DataLayout &DL = CI->getModule()->getDataLayout();
3276   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
3277         *ObjSize = CI->getArgOperand(2);
3278 
3279   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
3280   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
3281     Value *StrLen = emitStrLen(Src, B, DL, TLI);
3282     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
3283   }
3284 
3285   // If a) we don't have any length information, or b) we know this will
3286   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3287   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3288   // TODO: It might be nice to get a maximum length out of the possible
3289   // string lengths for varying.
3290   if (isFortifiedCallFoldable(CI, 2, None, 1)) {
3291     if (Func == LibFunc_strcpy_chk)
3292       return emitStrCpy(Dst, Src, B, TLI);
3293     else
3294       return emitStpCpy(Dst, Src, B, TLI);
3295   }
3296 
3297   if (OnlyLowerUnknownSize)
3298     return nullptr;
3299 
3300   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3301   uint64_t Len = GetStringLength(Src);
3302   if (Len)
3303     annotateDereferenceableBytes(CI, 1, Len);
3304   else
3305     return nullptr;
3306 
3307   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
3308   Value *LenV = ConstantInt::get(SizeTTy, Len);
3309   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
3310   // If the function was an __stpcpy_chk, and we were able to fold it into
3311   // a __memcpy_chk, we still need to return the correct end pointer.
3312   if (Ret && Func == LibFunc_stpcpy_chk)
3313     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
3314   return Ret;
3315 }
3316 
3317 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
3318                                                      IRBuilderBase &B) {
3319   if (isFortifiedCallFoldable(CI, 1, None, 0))
3320     return emitStrLen(CI->getArgOperand(0), B, CI->getModule()->getDataLayout(),
3321                       TLI);
3322   return nullptr;
3323 }
3324 
3325 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
3326                                                        IRBuilderBase &B,
3327                                                        LibFunc Func) {
3328   if (isFortifiedCallFoldable(CI, 3, 2)) {
3329     if (Func == LibFunc_strncpy_chk)
3330       return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3331                                CI->getArgOperand(2), B, TLI);
3332     else
3333       return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3334                          CI->getArgOperand(2), B, TLI);
3335   }
3336 
3337   return nullptr;
3338 }
3339 
3340 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
3341                                                       IRBuilderBase &B) {
3342   if (isFortifiedCallFoldable(CI, 4, 3))
3343     return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3344                        CI->getArgOperand(2), CI->getArgOperand(3), B, TLI);
3345 
3346   return nullptr;
3347 }
3348 
3349 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
3350                                                        IRBuilderBase &B) {
3351   if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
3352     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5));
3353     return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3354                         CI->getArgOperand(4), VariadicArgs, B, TLI);
3355   }
3356 
3357   return nullptr;
3358 }
3359 
3360 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
3361                                                       IRBuilderBase &B) {
3362   if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
3363     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4));
3364     return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs,
3365                        B, TLI);
3366   }
3367 
3368   return nullptr;
3369 }
3370 
3371 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
3372                                                      IRBuilderBase &B) {
3373   if (isFortifiedCallFoldable(CI, 2))
3374     return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI);
3375 
3376   return nullptr;
3377 }
3378 
3379 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
3380                                                    IRBuilderBase &B) {
3381   if (isFortifiedCallFoldable(CI, 3))
3382     return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
3383                        CI->getArgOperand(2), B, TLI);
3384 
3385   return nullptr;
3386 }
3387 
3388 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
3389                                                       IRBuilderBase &B) {
3390   if (isFortifiedCallFoldable(CI, 3))
3391     return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
3392                        CI->getArgOperand(2), B, TLI);
3393 
3394   return nullptr;
3395 }
3396 
3397 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
3398                                                       IRBuilderBase &B) {
3399   if (isFortifiedCallFoldable(CI, 3))
3400     return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3401                        CI->getArgOperand(2), B, TLI);
3402 
3403   return nullptr;
3404 }
3405 
3406 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
3407                                                         IRBuilderBase &B) {
3408   if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
3409     return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3410                          CI->getArgOperand(4), CI->getArgOperand(5), B, TLI);
3411 
3412   return nullptr;
3413 }
3414 
3415 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
3416                                                        IRBuilderBase &B) {
3417   if (isFortifiedCallFoldable(CI, 2, None, None, 1))
3418     return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3419                         CI->getArgOperand(4), B, TLI);
3420 
3421   return nullptr;
3422 }
3423 
3424 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI,
3425                                                 IRBuilderBase &Builder) {
3426   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
3427   // Some clang users checked for _chk libcall availability using:
3428   //   __has_builtin(__builtin___memcpy_chk)
3429   // When compiling with -fno-builtin, this is always true.
3430   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
3431   // end up with fortified libcalls, which isn't acceptable in a freestanding
3432   // environment which only provides their non-fortified counterparts.
3433   //
3434   // Until we change clang and/or teach external users to check for availability
3435   // differently, disregard the "nobuiltin" attribute and TLI::has.
3436   //
3437   // PR23093.
3438 
3439   LibFunc Func;
3440   Function *Callee = CI->getCalledFunction();
3441   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
3442 
3443   SmallVector<OperandBundleDef, 2> OpBundles;
3444   CI->getOperandBundlesAsDefs(OpBundles);
3445 
3446   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3447   Builder.setDefaultOperandBundles(OpBundles);
3448 
3449   // First, check that this is a known library functions and that the prototype
3450   // is correct.
3451   if (!TLI->getLibFunc(*Callee, Func))
3452     return nullptr;
3453 
3454   // We never change the calling convention.
3455   if (!ignoreCallingConv(Func) && !IsCallingConvC)
3456     return nullptr;
3457 
3458   switch (Func) {
3459   case LibFunc_memcpy_chk:
3460     return optimizeMemCpyChk(CI, Builder);
3461   case LibFunc_mempcpy_chk:
3462     return optimizeMemPCpyChk(CI, Builder);
3463   case LibFunc_memmove_chk:
3464     return optimizeMemMoveChk(CI, Builder);
3465   case LibFunc_memset_chk:
3466     return optimizeMemSetChk(CI, Builder);
3467   case LibFunc_stpcpy_chk:
3468   case LibFunc_strcpy_chk:
3469     return optimizeStrpCpyChk(CI, Builder, Func);
3470   case LibFunc_strlen_chk:
3471     return optimizeStrLenChk(CI, Builder);
3472   case LibFunc_stpncpy_chk:
3473   case LibFunc_strncpy_chk:
3474     return optimizeStrpNCpyChk(CI, Builder, Func);
3475   case LibFunc_memccpy_chk:
3476     return optimizeMemCCpyChk(CI, Builder);
3477   case LibFunc_snprintf_chk:
3478     return optimizeSNPrintfChk(CI, Builder);
3479   case LibFunc_sprintf_chk:
3480     return optimizeSPrintfChk(CI, Builder);
3481   case LibFunc_strcat_chk:
3482     return optimizeStrCatChk(CI, Builder);
3483   case LibFunc_strlcat_chk:
3484     return optimizeStrLCat(CI, Builder);
3485   case LibFunc_strncat_chk:
3486     return optimizeStrNCatChk(CI, Builder);
3487   case LibFunc_strlcpy_chk:
3488     return optimizeStrLCpyChk(CI, Builder);
3489   case LibFunc_vsnprintf_chk:
3490     return optimizeVSNPrintfChk(CI, Builder);
3491   case LibFunc_vsprintf_chk:
3492     return optimizeVSPrintfChk(CI, Builder);
3493   default:
3494     break;
3495   }
3496   return nullptr;
3497 }
3498 
3499 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
3500     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
3501     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
3502