1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Transforms/Utils/BuildLibCalls.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Transforms/Utils/SizeOpts.h"
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 static cl::opt<bool>
40     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
41                          cl::init(false),
42                          cl::desc("Enable unsafe double to float "
43                                   "shrinking for math lib calls"));
44 
45 //===----------------------------------------------------------------------===//
46 // Helper Functions
47 //===----------------------------------------------------------------------===//
48 
49 static bool ignoreCallingConv(LibFunc Func) {
50   return Func == LibFunc_abs || Func == LibFunc_labs ||
51          Func == LibFunc_llabs || Func == LibFunc_strlen;
52 }
53 
54 /// Return true if it is only used in equality comparisons with With.
55 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
56   for (User *U : V->users()) {
57     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
58       if (IC->isEquality() && IC->getOperand(1) == With)
59         continue;
60     // Unknown instruction.
61     return false;
62   }
63   return true;
64 }
65 
66 static bool callHasFloatingPointArgument(const CallInst *CI) {
67   return any_of(CI->operands(), [](const Use &OI) {
68     return OI->getType()->isFloatingPointTy();
69   });
70 }
71 
72 static bool callHasFP128Argument(const CallInst *CI) {
73   return any_of(CI->operands(), [](const Use &OI) {
74     return OI->getType()->isFP128Ty();
75   });
76 }
77 
78 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
79   if (Base < 2 || Base > 36)
80     // handle special zero base
81     if (Base != 0)
82       return nullptr;
83 
84   char *End;
85   std::string nptr = Str.str();
86   errno = 0;
87   long long int Result = strtoll(nptr.c_str(), &End, Base);
88   if (errno)
89     return nullptr;
90 
91   // if we assume all possible target locales are ASCII supersets,
92   // then if strtoll successfully parses a number on the host,
93   // it will also successfully parse the same way on the target
94   if (*End != '\0')
95     return nullptr;
96 
97   if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
98     return nullptr;
99 
100   return ConstantInt::get(CI->getType(), Result);
101 }
102 
103 static bool isOnlyUsedInComparisonWithZero(Value *V) {
104   for (User *U : V->users()) {
105     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
106       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
107         if (C->isNullValue())
108           continue;
109     // Unknown instruction.
110     return false;
111   }
112   return true;
113 }
114 
115 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
116                                  const DataLayout &DL) {
117   if (!isOnlyUsedInComparisonWithZero(CI))
118     return false;
119 
120   if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL))
121     return false;
122 
123   if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
124     return false;
125 
126   return true;
127 }
128 
129 static void annotateDereferenceableBytes(CallInst *CI,
130                                          ArrayRef<unsigned> ArgNos,
131                                          uint64_t DereferenceableBytes) {
132   const Function *F = CI->getCaller();
133   if (!F)
134     return;
135   for (unsigned ArgNo : ArgNos) {
136     uint64_t DerefBytes = DereferenceableBytes;
137     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
138     if (!llvm::NullPointerIsDefined(F, AS) ||
139         CI->paramHasAttr(ArgNo, Attribute::NonNull))
140       DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo),
141                             DereferenceableBytes);
142 
143     if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) {
144       CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
145       if (!llvm::NullPointerIsDefined(F, AS) ||
146           CI->paramHasAttr(ArgNo, Attribute::NonNull))
147         CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
148       CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
149                                   CI->getContext(), DerefBytes));
150     }
151   }
152 }
153 
154 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI,
155                                          ArrayRef<unsigned> ArgNos) {
156   Function *F = CI->getCaller();
157   if (!F)
158     return;
159 
160   for (unsigned ArgNo : ArgNos) {
161     if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef))
162       CI->addParamAttr(ArgNo, Attribute::NoUndef);
163 
164     if (CI->paramHasAttr(ArgNo, Attribute::NonNull))
165       continue;
166     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
167     if (llvm::NullPointerIsDefined(F, AS))
168       continue;
169 
170     CI->addParamAttr(ArgNo, Attribute::NonNull);
171     annotateDereferenceableBytes(CI, ArgNo, 1);
172   }
173 }
174 
175 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
176                                Value *Size, const DataLayout &DL) {
177   if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
178     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
179     annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
180   } else if (isKnownNonZero(Size, DL)) {
181     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
182     const APInt *X, *Y;
183     uint64_t DerefMin = 1;
184     if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
185       DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
186       annotateDereferenceableBytes(CI, ArgNos, DerefMin);
187     }
188   }
189 }
190 
191 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for
192 // easier chaining. Calls to emit* and B.createCall should probably be wrapped
193 // in this function when New is created to replace Old. Callers should take
194 // care to check Old.isMustTailCall() if they aren't replacing Old directly
195 // with New.
196 static Value *copyFlags(const CallInst &Old, Value *New) {
197   assert(!Old.isMustTailCall() && "do not copy musttail call flags");
198   assert(!Old.isNoTailCall() && "do not copy notail call flags");
199   if (auto *NewCI = dyn_cast_or_null<CallInst>(New))
200     NewCI->setTailCallKind(Old.getTailCallKind());
201   return New;
202 }
203 
204 // Helper to avoid truncating the length if size_t is 32-bits.
205 static StringRef substr(StringRef Str, uint64_t Len) {
206   return Len >= Str.size() ? Str : Str.substr(0, Len);
207 }
208 
209 //===----------------------------------------------------------------------===//
210 // String and Memory Library Call Optimizations
211 //===----------------------------------------------------------------------===//
212 
213 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) {
214   // Extract some information from the instruction
215   Value *Dst = CI->getArgOperand(0);
216   Value *Src = CI->getArgOperand(1);
217   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
218 
219   // See if we can get the length of the input string.
220   uint64_t Len = GetStringLength(Src);
221   if (Len)
222     annotateDereferenceableBytes(CI, 1, Len);
223   else
224     return nullptr;
225   --Len; // Unbias length.
226 
227   // Handle the simple, do-nothing case: strcat(x, "") -> x
228   if (Len == 0)
229     return Dst;
230 
231   return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B));
232 }
233 
234 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
235                                            IRBuilderBase &B) {
236   // We need to find the end of the destination string.  That's where the
237   // memory is to be moved to. We just generate a call to strlen.
238   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
239   if (!DstLen)
240     return nullptr;
241 
242   // Now that we have the destination's length, we must index into the
243   // destination's pointer to get the actual memcpy destination (end of
244   // the string .. we're concatenating).
245   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
246 
247   // We have enough information to now generate the memcpy call to do the
248   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
249   B.CreateMemCpy(
250       CpyDst, Align(1), Src, Align(1),
251       ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
252   return Dst;
253 }
254 
255 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) {
256   // Extract some information from the instruction.
257   Value *Dst = CI->getArgOperand(0);
258   Value *Src = CI->getArgOperand(1);
259   Value *Size = CI->getArgOperand(2);
260   uint64_t Len;
261   annotateNonNullNoUndefBasedOnAccess(CI, 0);
262   if (isKnownNonZero(Size, DL))
263     annotateNonNullNoUndefBasedOnAccess(CI, 1);
264 
265   // We don't do anything if length is not constant.
266   ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
267   if (LengthArg) {
268     Len = LengthArg->getZExtValue();
269     // strncat(x, c, 0) -> x
270     if (!Len)
271       return Dst;
272   } else {
273     return nullptr;
274   }
275 
276   // See if we can get the length of the input string.
277   uint64_t SrcLen = GetStringLength(Src);
278   if (SrcLen) {
279     annotateDereferenceableBytes(CI, 1, SrcLen);
280     --SrcLen; // Unbias length.
281   } else {
282     return nullptr;
283   }
284 
285   // strncat(x, "", c) -> x
286   if (SrcLen == 0)
287     return Dst;
288 
289   // We don't optimize this case.
290   if (Len < SrcLen)
291     return nullptr;
292 
293   // strncat(x, s, c) -> strcat(x, s)
294   // s is constant so the strcat can be optimized further.
295   return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B));
296 }
297 
298 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) {
299   Function *Callee = CI->getCalledFunction();
300   FunctionType *FT = Callee->getFunctionType();
301   Value *SrcStr = CI->getArgOperand(0);
302   annotateNonNullNoUndefBasedOnAccess(CI, 0);
303 
304   // If the second operand is non-constant, see if we can compute the length
305   // of the input string and turn this into memchr.
306   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
307   if (!CharC) {
308     uint64_t Len = GetStringLength(SrcStr);
309     if (Len)
310       annotateDereferenceableBytes(CI, 0, Len);
311     else
312       return nullptr;
313     if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
314       return nullptr;
315 
316     return copyFlags(
317         *CI,
318         emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
319                    ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), B,
320                    DL, TLI));
321   }
322 
323   // Otherwise, the character is a constant, see if the first argument is
324   // a string literal.  If so, we can constant fold.
325   StringRef Str;
326   if (!getConstantStringInfo(SrcStr, Str)) {
327     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
328       if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
329         return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
330     return nullptr;
331   }
332 
333   // Compute the offset, make sure to handle the case when we're searching for
334   // zero (a weird way to spell strlen).
335   size_t I = (0xFF & CharC->getSExtValue()) == 0
336                  ? Str.size()
337                  : Str.find(CharC->getSExtValue());
338   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
339     return Constant::getNullValue(CI->getType());
340 
341   // strchr(s+n,c)  -> gep(s+n+i,c)
342   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
343 }
344 
345 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) {
346   Value *SrcStr = CI->getArgOperand(0);
347   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
348   annotateNonNullNoUndefBasedOnAccess(CI, 0);
349 
350   // Cannot fold anything if we're not looking for a constant.
351   if (!CharC)
352     return nullptr;
353 
354   StringRef Str;
355   if (!getConstantStringInfo(SrcStr, Str)) {
356     // strrchr(s, 0) -> strchr(s, 0)
357     if (CharC->isZero())
358       return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI));
359     return nullptr;
360   }
361 
362   // Compute the offset.
363   size_t I = (0xFF & CharC->getSExtValue()) == 0
364                  ? Str.size()
365                  : Str.rfind(CharC->getSExtValue());
366   if (I == StringRef::npos) // Didn't find the char. Return null.
367     return Constant::getNullValue(CI->getType());
368 
369   // strrchr(s+n,c) -> gep(s+n+i,c)
370   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
371 }
372 
373 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) {
374   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
375   if (Str1P == Str2P) // strcmp(x,x)  -> 0
376     return ConstantInt::get(CI->getType(), 0);
377 
378   StringRef Str1, Str2;
379   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
380   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
381 
382   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
383   if (HasStr1 && HasStr2)
384     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
385 
386   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
387     return B.CreateNeg(B.CreateZExt(
388         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
389 
390   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
391     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
392                         CI->getType());
393 
394   // strcmp(P, "x") -> memcmp(P, "x", 2)
395   uint64_t Len1 = GetStringLength(Str1P);
396   if (Len1)
397     annotateDereferenceableBytes(CI, 0, Len1);
398   uint64_t Len2 = GetStringLength(Str2P);
399   if (Len2)
400     annotateDereferenceableBytes(CI, 1, Len2);
401 
402   if (Len1 && Len2) {
403     return copyFlags(
404         *CI, emitMemCmp(Str1P, Str2P,
405                         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
406                                          std::min(Len1, Len2)),
407                         B, DL, TLI));
408   }
409 
410   // strcmp to memcmp
411   if (!HasStr1 && HasStr2) {
412     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
413       return copyFlags(
414           *CI,
415           emitMemCmp(Str1P, Str2P,
416                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
417                      B, DL, TLI));
418   } else if (HasStr1 && !HasStr2) {
419     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
420       return copyFlags(
421           *CI,
422           emitMemCmp(Str1P, Str2P,
423                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
424                      B, DL, TLI));
425   }
426 
427   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
428   return nullptr;
429 }
430 
431 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
432 // arrays LHS and RHS and nonconstant Size.
433 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS,
434                                     Value *Size, bool StrNCmp,
435                                     IRBuilderBase &B, const DataLayout &DL);
436 
437 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) {
438   Value *Str1P = CI->getArgOperand(0);
439   Value *Str2P = CI->getArgOperand(1);
440   Value *Size = CI->getArgOperand(2);
441   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
442     return ConstantInt::get(CI->getType(), 0);
443 
444   if (isKnownNonZero(Size, DL))
445     annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
446   // Get the length argument if it is constant.
447   uint64_t Length;
448   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
449     Length = LengthArg->getZExtValue();
450   else
451     return optimizeMemCmpVarSize(CI, Str1P, Str2P, Size, true, B, DL);
452 
453   if (Length == 0) // strncmp(x,y,0)   -> 0
454     return ConstantInt::get(CI->getType(), 0);
455 
456   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
457     return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI));
458 
459   StringRef Str1, Str2;
460   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
461   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
462 
463   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
464   if (HasStr1 && HasStr2) {
465     // Avoid truncating the 64-bit Length to 32 bits in ILP32.
466     StringRef SubStr1 = substr(Str1, Length);
467     StringRef SubStr2 = substr(Str2, Length);
468     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
469   }
470 
471   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
472     return B.CreateNeg(B.CreateZExt(
473         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
474 
475   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
476     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
477                         CI->getType());
478 
479   uint64_t Len1 = GetStringLength(Str1P);
480   if (Len1)
481     annotateDereferenceableBytes(CI, 0, Len1);
482   uint64_t Len2 = GetStringLength(Str2P);
483   if (Len2)
484     annotateDereferenceableBytes(CI, 1, Len2);
485 
486   // strncmp to memcmp
487   if (!HasStr1 && HasStr2) {
488     Len2 = std::min(Len2, Length);
489     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
490       return copyFlags(
491           *CI,
492           emitMemCmp(Str1P, Str2P,
493                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
494                      B, DL, TLI));
495   } else if (HasStr1 && !HasStr2) {
496     Len1 = std::min(Len1, Length);
497     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
498       return copyFlags(
499           *CI,
500           emitMemCmp(Str1P, Str2P,
501                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
502                      B, DL, TLI));
503   }
504 
505   return nullptr;
506 }
507 
508 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) {
509   Value *Src = CI->getArgOperand(0);
510   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
511   uint64_t SrcLen = GetStringLength(Src);
512   if (SrcLen && Size) {
513     annotateDereferenceableBytes(CI, 0, SrcLen);
514     if (SrcLen <= Size->getZExtValue() + 1)
515       return copyFlags(*CI, emitStrDup(Src, B, TLI));
516   }
517 
518   return nullptr;
519 }
520 
521 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) {
522   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
523   if (Dst == Src) // strcpy(x,x)  -> x
524     return Src;
525 
526   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
527   // See if we can get the length of the input string.
528   uint64_t Len = GetStringLength(Src);
529   if (Len)
530     annotateDereferenceableBytes(CI, 1, Len);
531   else
532     return nullptr;
533 
534   // We have enough information to now generate the memcpy call to do the
535   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
536   CallInst *NewCI =
537       B.CreateMemCpy(Dst, Align(1), Src, Align(1),
538                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
539   NewCI->setAttributes(CI->getAttributes());
540   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
541   copyFlags(*CI, NewCI);
542   return Dst;
543 }
544 
545 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) {
546   Function *Callee = CI->getCalledFunction();
547   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
548 
549   // stpcpy(d,s) -> strcpy(d,s) if the result is not used.
550   if (CI->use_empty())
551     return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
552 
553   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
554     Value *StrLen = emitStrLen(Src, B, DL, TLI);
555     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
556   }
557 
558   // See if we can get the length of the input string.
559   uint64_t Len = GetStringLength(Src);
560   if (Len)
561     annotateDereferenceableBytes(CI, 1, Len);
562   else
563     return nullptr;
564 
565   Type *PT = Callee->getFunctionType()->getParamType(0);
566   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
567   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
568                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
569 
570   // We have enough information to now generate the memcpy call to do the
571   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
572   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV);
573   NewCI->setAttributes(CI->getAttributes());
574   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
575   copyFlags(*CI, NewCI);
576   return DstEnd;
577 }
578 
579 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) {
580   Function *Callee = CI->getCalledFunction();
581   Value *Dst = CI->getArgOperand(0);
582   Value *Src = CI->getArgOperand(1);
583   Value *Size = CI->getArgOperand(2);
584   annotateNonNullNoUndefBasedOnAccess(CI, 0);
585   if (isKnownNonZero(Size, DL))
586     annotateNonNullNoUndefBasedOnAccess(CI, 1);
587 
588   uint64_t Len;
589   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
590     Len = LengthArg->getZExtValue();
591   else
592     return nullptr;
593 
594   // strncpy(x, y, 0) -> x
595   if (Len == 0)
596     return Dst;
597 
598   // See if we can get the length of the input string.
599   uint64_t SrcLen = GetStringLength(Src);
600   if (SrcLen) {
601     annotateDereferenceableBytes(CI, 1, SrcLen);
602     --SrcLen; // Unbias length.
603   } else {
604     return nullptr;
605   }
606 
607   if (SrcLen == 0) {
608     // strncpy(x, "", y) -> memset(x, '\0', y)
609     Align MemSetAlign =
610         CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne();
611     CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign);
612     AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0));
613     NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
614         CI->getContext(), 0, ArgAttrs));
615     copyFlags(*CI, NewCI);
616     return Dst;
617   }
618 
619   // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4)
620   if (Len > SrcLen + 1) {
621     if (Len <= 128) {
622       StringRef Str;
623       if (!getConstantStringInfo(Src, Str))
624         return nullptr;
625       std::string SrcStr = Str.str();
626       SrcStr.resize(Len, '\0');
627       Src = B.CreateGlobalString(SrcStr, "str");
628     } else {
629       return nullptr;
630     }
631   }
632 
633   Type *PT = Callee->getFunctionType()->getParamType(0);
634   // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
635   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
636                                    ConstantInt::get(DL.getIntPtrType(PT), Len));
637   NewCI->setAttributes(CI->getAttributes());
638   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
639   copyFlags(*CI, NewCI);
640   return Dst;
641 }
642 
643 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B,
644                                                unsigned CharSize,
645                                                Value *Bound) {
646   Value *Src = CI->getArgOperand(0);
647   Type *CharTy = B.getIntNTy(CharSize);
648 
649   if (isOnlyUsedInZeroEqualityComparison(CI) &&
650       (!Bound || isKnownNonZero(Bound, DL))) {
651     // Fold strlen:
652     //   strlen(x) != 0 --> *x != 0
653     //   strlen(x) == 0 --> *x == 0
654     // and likewise strnlen with constant N > 0:
655     //   strnlen(x, N) != 0 --> *x != 0
656     //   strnlen(x, N) == 0 --> *x == 0
657     return B.CreateZExt(B.CreateLoad(CharTy, Src, "char0"),
658                         CI->getType());
659   }
660 
661   if (Bound) {
662     if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) {
663       if (BoundCst->isZero())
664         // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise.
665         return ConstantInt::get(CI->getType(), 0);
666 
667       if (BoundCst->isOne()) {
668         // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s.
669         Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0");
670         Value *ZeroChar = ConstantInt::get(CharTy, 0);
671         Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp");
672         return B.CreateZExt(Cmp, CI->getType());
673       }
674     }
675   }
676 
677   if (uint64_t Len = GetStringLength(Src, CharSize)) {
678     Value *LenC = ConstantInt::get(CI->getType(), Len - 1);
679     // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2
680     // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound.
681     if (Bound)
682       return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound);
683     return LenC;
684   }
685 
686   if (Bound)
687     // Punt for strnlen for now.
688     return nullptr;
689 
690   // If s is a constant pointer pointing to a string literal, we can fold
691   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
692   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
693   // We only try to simplify strlen when the pointer s points to an array
694   // of i8. Otherwise, we would need to scale the offset x before doing the
695   // subtraction. This will make the optimization more complex, and it's not
696   // very useful because calling strlen for a pointer of other types is
697   // very uncommon.
698   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
699     // TODO: Handle subobjects.
700     if (!isGEPBasedOnPointerToString(GEP, CharSize))
701       return nullptr;
702 
703     ConstantDataArraySlice Slice;
704     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
705       uint64_t NullTermIdx;
706       if (Slice.Array == nullptr) {
707         NullTermIdx = 0;
708       } else {
709         NullTermIdx = ~((uint64_t)0);
710         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
711           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
712             NullTermIdx = I;
713             break;
714           }
715         }
716         // If the string does not have '\0', leave it to strlen to compute
717         // its length.
718         if (NullTermIdx == ~((uint64_t)0))
719           return nullptr;
720       }
721 
722       Value *Offset = GEP->getOperand(2);
723       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
724       uint64_t ArrSize =
725              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
726 
727       // If Offset is not provably in the range [0, NullTermIdx], we can still
728       // optimize if we can prove that the program has undefined behavior when
729       // Offset is outside that range. That is the case when GEP->getOperand(0)
730       // is a pointer to an object whose memory extent is NullTermIdx+1.
731       if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) ||
732           (isa<GlobalVariable>(GEP->getOperand(0)) &&
733            NullTermIdx == ArrSize - 1)) {
734         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
735         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
736                            Offset);
737       }
738     }
739   }
740 
741   // strlen(x?"foo":"bars") --> x ? 3 : 4
742   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
743     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
744     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
745     if (LenTrue && LenFalse) {
746       ORE.emit([&]() {
747         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
748                << "folded strlen(select) to select of constants";
749       });
750       return B.CreateSelect(SI->getCondition(),
751                             ConstantInt::get(CI->getType(), LenTrue - 1),
752                             ConstantInt::get(CI->getType(), LenFalse - 1));
753     }
754   }
755 
756   return nullptr;
757 }
758 
759 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) {
760   if (Value *V = optimizeStringLength(CI, B, 8))
761     return V;
762   annotateNonNullNoUndefBasedOnAccess(CI, 0);
763   return nullptr;
764 }
765 
766 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) {
767   Value *Bound = CI->getArgOperand(1);
768   if (Value *V = optimizeStringLength(CI, B, 8, Bound))
769     return V;
770 
771   if (isKnownNonZero(Bound, DL))
772     annotateNonNullNoUndefBasedOnAccess(CI, 0);
773   return nullptr;
774 }
775 
776 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) {
777   Module &M = *CI->getModule();
778   unsigned WCharSize = TLI->getWCharSize(M) * 8;
779   // We cannot perform this optimization without wchar_size metadata.
780   if (WCharSize == 0)
781     return nullptr;
782 
783   return optimizeStringLength(CI, B, WCharSize);
784 }
785 
786 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) {
787   StringRef S1, S2;
788   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
789   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
790 
791   // strpbrk(s, "") -> nullptr
792   // strpbrk("", s) -> nullptr
793   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
794     return Constant::getNullValue(CI->getType());
795 
796   // Constant folding.
797   if (HasS1 && HasS2) {
798     size_t I = S1.find_first_of(S2);
799     if (I == StringRef::npos) // No match.
800       return Constant::getNullValue(CI->getType());
801 
802     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
803                        "strpbrk");
804   }
805 
806   // strpbrk(s, "a") -> strchr(s, 'a')
807   if (HasS2 && S2.size() == 1)
808     return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI));
809 
810   return nullptr;
811 }
812 
813 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) {
814   Value *EndPtr = CI->getArgOperand(1);
815   if (isa<ConstantPointerNull>(EndPtr)) {
816     // With a null EndPtr, this function won't capture the main argument.
817     // It would be readonly too, except that it still may write to errno.
818     CI->addParamAttr(0, Attribute::NoCapture);
819   }
820 
821   return nullptr;
822 }
823 
824 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) {
825   StringRef S1, S2;
826   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
827   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
828 
829   // strspn(s, "") -> 0
830   // strspn("", s) -> 0
831   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
832     return Constant::getNullValue(CI->getType());
833 
834   // Constant folding.
835   if (HasS1 && HasS2) {
836     size_t Pos = S1.find_first_not_of(S2);
837     if (Pos == StringRef::npos)
838       Pos = S1.size();
839     return ConstantInt::get(CI->getType(), Pos);
840   }
841 
842   return nullptr;
843 }
844 
845 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) {
846   StringRef S1, S2;
847   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
848   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
849 
850   // strcspn("", s) -> 0
851   if (HasS1 && S1.empty())
852     return Constant::getNullValue(CI->getType());
853 
854   // Constant folding.
855   if (HasS1 && HasS2) {
856     size_t Pos = S1.find_first_of(S2);
857     if (Pos == StringRef::npos)
858       Pos = S1.size();
859     return ConstantInt::get(CI->getType(), Pos);
860   }
861 
862   // strcspn(s, "") -> strlen(s)
863   if (HasS2 && S2.empty())
864     return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI));
865 
866   return nullptr;
867 }
868 
869 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) {
870   // fold strstr(x, x) -> x.
871   if (CI->getArgOperand(0) == CI->getArgOperand(1))
872     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
873 
874   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
875   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
876     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
877     if (!StrLen)
878       return nullptr;
879     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
880                                  StrLen, B, DL, TLI);
881     if (!StrNCmp)
882       return nullptr;
883     for (User *U : llvm::make_early_inc_range(CI->users())) {
884       ICmpInst *Old = cast<ICmpInst>(U);
885       Value *Cmp =
886           B.CreateICmp(Old->getPredicate(), StrNCmp,
887                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
888       replaceAllUsesWith(Old, Cmp);
889     }
890     return CI;
891   }
892 
893   // See if either input string is a constant string.
894   StringRef SearchStr, ToFindStr;
895   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
896   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
897 
898   // fold strstr(x, "") -> x.
899   if (HasStr2 && ToFindStr.empty())
900     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
901 
902   // If both strings are known, constant fold it.
903   if (HasStr1 && HasStr2) {
904     size_t Offset = SearchStr.find(ToFindStr);
905 
906     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
907       return Constant::getNullValue(CI->getType());
908 
909     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
910     Value *Result = castToCStr(CI->getArgOperand(0), B);
911     Result =
912         B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
913     return B.CreateBitCast(Result, CI->getType());
914   }
915 
916   // fold strstr(x, "y") -> strchr(x, 'y').
917   if (HasStr2 && ToFindStr.size() == 1) {
918     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
919     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
920   }
921 
922   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
923   return nullptr;
924 }
925 
926 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) {
927   Value *SrcStr = CI->getArgOperand(0);
928   Value *Size = CI->getArgOperand(2);
929   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
930   Value *CharVal = CI->getArgOperand(1);
931   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
932   Value *NullPtr = Constant::getNullValue(CI->getType());
933 
934   if (LenC) {
935     if (LenC->isZero())
936       // Fold memrchr(x, y, 0) --> null.
937       return NullPtr;
938 
939     if (LenC->isOne()) {
940       // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y,
941       // constant or otherwise.
942       Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0");
943       // Slice off the character's high end bits.
944       CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
945       Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp");
946       return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel");
947     }
948   }
949 
950   StringRef Str;
951   if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
952     return nullptr;
953 
954   if (Str.size() == 0)
955     // If the array is empty fold memrchr(A, C, N) to null for any value
956     // of C and N on the basis that the only valid value of N is zero
957     // (otherwise the call is undefined).
958     return NullPtr;
959 
960   uint64_t EndOff = UINT64_MAX;
961   if (LenC) {
962     EndOff = LenC->getZExtValue();
963     if (Str.size() < EndOff)
964       // Punt out-of-bounds accesses to sanitizers and/or libc.
965       return nullptr;
966   }
967 
968   if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) {
969     // Fold memrchr(S, C, N) for a constant C.
970     size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff);
971     if (Pos == StringRef::npos)
972       // When the character is not in the source array fold the result
973       // to null regardless of Size.
974       return NullPtr;
975 
976     if (LenC)
977       // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos.
978       return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos));
979 
980     if (Str.find(CharC->getZExtValue(), Pos) == StringRef::npos) {
981       // When there is just a single occurrence of C in S, fold
982       //   memrchr(s, c, N) --> N <= Pos ? null : s + Pos
983       // for nonconstant N.
984       Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(),
985 							  Pos),
986 				   "memrchr.cmp");
987       Value *SrcPlus = B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos),
988 				   "memrchr.ptr_plus");
989       return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel");
990     }
991   }
992 
993   // Truncate the string to search at most EndOff characters.
994   Str = Str.substr(0, EndOff);
995   if (Str.find_first_not_of(Str[0]) != StringRef::npos)
996     return nullptr;
997 
998   // If the source array consists of all equal characters, then for any
999   // C and N (whether in bounds or not), fold memrchr(S, C, N) to
1000   //   N != 0 && *S == C ? S + N - 1 : null
1001   Type *SizeTy = Size->getType();
1002   Type *Int8Ty = B.getInt8Ty();
1003   Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
1004   // Slice off the sought character's high end bits.
1005   CharVal = B.CreateTrunc(CharVal, Int8Ty);
1006   Value *CEqS0 = B.CreateICmpEQ(ConstantInt::get(Int8Ty, Str[0]), CharVal);
1007   Value *And = B.CreateLogicalAnd(NNeZ, CEqS0);
1008   Value *SizeM1 = B.CreateSub(Size, ConstantInt::get(SizeTy, 1));
1009   Value *SrcPlus = B.CreateGEP(Int8Ty, SrcStr, SizeM1, "memrchr.ptr_plus");
1010   return B.CreateSelect(And, SrcPlus, NullPtr, "memrchr.sel");
1011 }
1012 
1013 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) {
1014   Value *SrcStr = CI->getArgOperand(0);
1015   Value *Size = CI->getArgOperand(2);
1016   if (isKnownNonZero(Size, DL))
1017     annotateNonNullNoUndefBasedOnAccess(CI, 0);
1018 
1019   Value *CharVal = CI->getArgOperand(1);
1020   ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
1021   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1022   Value *NullPtr = Constant::getNullValue(CI->getType());
1023 
1024   // memchr(x, y, 0) -> null
1025   if (LenC) {
1026     if (LenC->isZero())
1027       return NullPtr;
1028 
1029     if (LenC->isOne()) {
1030       // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y,
1031       // constant or otherwise.
1032       Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0");
1033       // Slice off the character's high end bits.
1034       CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
1035       Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp");
1036       return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel");
1037     }
1038   }
1039 
1040   StringRef Str;
1041   if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
1042     return nullptr;
1043 
1044   if (CharC) {
1045     size_t Pos = Str.find(CharC->getZExtValue());
1046     if (Pos == StringRef::npos)
1047       // When the character is not in the source array fold the result
1048       // to null regardless of Size.
1049       return NullPtr;
1050 
1051     // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos
1052     // When the constant Size is less than or equal to the character
1053     // position also fold the result to null.
1054     Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
1055                                  "memchr.cmp");
1056     Value *SrcPlus =
1057         B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), "memchr.ptr");
1058     return B.CreateSelect(Cmp, NullPtr, SrcPlus);
1059   }
1060 
1061   if (Str.size() == 0)
1062     // If the array is empty fold memchr(A, C, N) to null for any value
1063     // of C and N on the basis that the only valid value of N is zero
1064     // (otherwise the call is undefined).
1065     return NullPtr;
1066 
1067   if (LenC)
1068     Str = substr(Str, LenC->getZExtValue());
1069 
1070   size_t Pos = Str.find_first_not_of(Str[0]);
1071   if (Pos == StringRef::npos
1072       || Str.find_first_not_of(Str[Pos], Pos) == StringRef::npos) {
1073     // If the source array consists of at most two consecutive sequences
1074     // of the same characters, then for any C and N (whether in bounds or
1075     // not), fold memchr(S, C, N) to
1076     //   N != 0 && *S == C ? S : null
1077     // or for the two sequences to:
1078     //   N != 0 && *S == C ? S : (N > Pos && S[Pos] == C ? S + Pos : null)
1079     //   ^Sel2                   ^Sel1 are denoted above.
1080     // The latter makes it also possible to fold strchr() calls with strings
1081     // of the same characters.
1082     Type *SizeTy = Size->getType();
1083     Type *Int8Ty = B.getInt8Ty();
1084 
1085     // Slice off the sought character's high end bits.
1086     CharVal = B.CreateTrunc(CharVal, Int8Ty);
1087 
1088     Value *Sel1 = NullPtr;
1089     if (Pos != StringRef::npos) {
1090       // Handle two consecutive sequences of the same characters.
1091       Value *PosVal = ConstantInt::get(SizeTy, Pos);
1092       Value *StrPos = ConstantInt::get(Int8Ty, Str[Pos]);
1093       Value *CEqSPos = B.CreateICmpEQ(CharVal, StrPos);
1094       Value *NGtPos = B.CreateICmp(ICmpInst::ICMP_UGT, Size, PosVal);
1095       Value *And = B.CreateAnd(CEqSPos, NGtPos);
1096       Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, PosVal);
1097       Sel1 = B.CreateSelect(And, SrcPlus, NullPtr, "memchr.sel1");
1098     }
1099 
1100     Value *Str0 = ConstantInt::get(Int8Ty, Str[0]);
1101     Value *CEqS0 = B.CreateICmpEQ(Str0, CharVal);
1102     Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
1103     Value *And = B.CreateAnd(NNeZ, CEqS0);
1104     return B.CreateSelect(And, SrcStr, Sel1, "memchr.sel2");
1105   }
1106 
1107   if (!LenC)
1108     // From now on we need a constant length and constant array.
1109     return nullptr;
1110 
1111   // If the char is variable but the input str and length are not we can turn
1112   // this memchr call into a simple bit field test. Of course this only works
1113   // when the return value is only checked against null.
1114   //
1115   // It would be really nice to reuse switch lowering here but we can't change
1116   // the CFG at this point.
1117   //
1118   // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
1119   // != 0
1120   //   after bounds check.
1121   if (Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI))
1122     return nullptr;
1123 
1124   unsigned char Max =
1125       *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
1126                         reinterpret_cast<const unsigned char *>(Str.end()));
1127 
1128   // Make sure the bit field we're about to create fits in a register on the
1129   // target.
1130   // FIXME: On a 64 bit architecture this prevents us from using the
1131   // interesting range of alpha ascii chars. We could do better by emitting
1132   // two bitfields or shifting the range by 64 if no lower chars are used.
1133   if (!DL.fitsInLegalInteger(Max + 1))
1134     return nullptr;
1135 
1136   // For the bit field use a power-of-2 type with at least 8 bits to avoid
1137   // creating unnecessary illegal types.
1138   unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
1139 
1140   // Now build the bit field.
1141   APInt Bitfield(Width, 0);
1142   for (char C : Str)
1143     Bitfield.setBit((unsigned char)C);
1144   Value *BitfieldC = B.getInt(Bitfield);
1145 
1146   // Adjust width of "C" to the bitfield width, then mask off the high bits.
1147   Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType());
1148   C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
1149 
1150   // First check that the bit field access is within bounds.
1151   Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
1152                                "memchr.bounds");
1153 
1154   // Create code that checks if the given bit is set in the field.
1155   Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
1156   Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
1157 
1158   // Finally merge both checks and cast to pointer type. The inttoptr
1159   // implicitly zexts the i1 to intptr type.
1160   return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"),
1161                           CI->getType());
1162 }
1163 
1164 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
1165 // arrays LHS and RHS and nonconstant Size.
1166 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS,
1167                                     Value *Size, bool StrNCmp,
1168                                     IRBuilderBase &B, const DataLayout &DL) {
1169   if (LHS == RHS) // memcmp(s,s,x) -> 0
1170     return Constant::getNullValue(CI->getType());
1171 
1172   StringRef LStr, RStr;
1173   if (!getConstantStringInfo(LHS, LStr, 0, /*TrimAtNul=*/false) ||
1174       !getConstantStringInfo(RHS, RStr, 0, /*TrimAtNul=*/false))
1175     return nullptr;
1176 
1177   // If the contents of both constant arrays are known, fold a call to
1178   // memcmp(A, B, N) to
1179   //   N <= Pos ? 0 : (A < B ? -1 : B < A ? +1 : 0)
1180   // where Pos is the first mismatch between A and B, determined below.
1181 
1182   uint64_t Pos = 0;
1183   Value *Zero = ConstantInt::get(CI->getType(), 0);
1184   for (uint64_t MinSize = std::min(LStr.size(), RStr.size()); ; ++Pos) {
1185     if (Pos == MinSize ||
1186         (StrNCmp && (LStr[Pos] == '\0' && RStr[Pos] == '\0'))) {
1187       // One array is a leading part of the other of equal or greater
1188       // size, or for strncmp, the arrays are equal strings.
1189       // Fold the result to zero.  Size is assumed to be in bounds, since
1190       // otherwise the call would be undefined.
1191       return Zero;
1192     }
1193 
1194     if (LStr[Pos] != RStr[Pos])
1195       break;
1196   }
1197 
1198   // Normalize the result.
1199   typedef unsigned char UChar;
1200   int IRes = UChar(LStr[Pos]) < UChar(RStr[Pos]) ? -1 : 1;
1201   Value *MaxSize = ConstantInt::get(Size->getType(), Pos);
1202   Value *Cmp = B.CreateICmp(ICmpInst::ICMP_ULE, Size, MaxSize);
1203   Value *Res = ConstantInt::get(CI->getType(), IRes);
1204   return B.CreateSelect(Cmp, Zero, Res);
1205 }
1206 
1207 // Optimize a memcmp call CI with constant size Len.
1208 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
1209                                          uint64_t Len, IRBuilderBase &B,
1210                                          const DataLayout &DL) {
1211   if (Len == 0) // memcmp(s1,s2,0) -> 0
1212     return Constant::getNullValue(CI->getType());
1213 
1214   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
1215   if (Len == 1) {
1216     Value *LHSV =
1217         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
1218                      CI->getType(), "lhsv");
1219     Value *RHSV =
1220         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
1221                      CI->getType(), "rhsv");
1222     return B.CreateSub(LHSV, RHSV, "chardiff");
1223   }
1224 
1225   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
1226   // TODO: The case where both inputs are constants does not need to be limited
1227   // to legal integers or equality comparison. See block below this.
1228   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
1229     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
1230     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
1231 
1232     // First, see if we can fold either argument to a constant.
1233     Value *LHSV = nullptr;
1234     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
1235       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
1236       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
1237     }
1238     Value *RHSV = nullptr;
1239     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
1240       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
1241       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
1242     }
1243 
1244     // Don't generate unaligned loads. If either source is constant data,
1245     // alignment doesn't matter for that source because there is no load.
1246     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
1247         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
1248       if (!LHSV) {
1249         Type *LHSPtrTy =
1250             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
1251         LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
1252       }
1253       if (!RHSV) {
1254         Type *RHSPtrTy =
1255             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
1256         RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
1257       }
1258       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1259     }
1260   }
1261 
1262   return nullptr;
1263 }
1264 
1265 // Most simplifications for memcmp also apply to bcmp.
1266 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1267                                                    IRBuilderBase &B) {
1268   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1269   Value *Size = CI->getArgOperand(2);
1270 
1271   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1272 
1273   if (Value *Res = optimizeMemCmpVarSize(CI, LHS, RHS, Size, false, B, DL))
1274     return Res;
1275 
1276   // Handle constant Size.
1277   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1278   if (!LenC)
1279     return nullptr;
1280 
1281   return optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL);
1282 }
1283 
1284 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
1285   Module *M = CI->getModule();
1286   if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1287     return V;
1288 
1289   // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1290   // bcmp can be more efficient than memcmp because it only has to know that
1291   // there is a difference, not how different one is to the other.
1292   if (isLibFuncEmittable(M, TLI, LibFunc_bcmp) &&
1293       isOnlyUsedInZeroEqualityComparison(CI)) {
1294     Value *LHS = CI->getArgOperand(0);
1295     Value *RHS = CI->getArgOperand(1);
1296     Value *Size = CI->getArgOperand(2);
1297     return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI));
1298   }
1299 
1300   return nullptr;
1301 }
1302 
1303 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) {
1304   return optimizeMemCmpBCmpCommon(CI, B);
1305 }
1306 
1307 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) {
1308   Value *Size = CI->getArgOperand(2);
1309   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1310   if (isa<IntrinsicInst>(CI))
1311     return nullptr;
1312 
1313   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1314   CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1),
1315                                    CI->getArgOperand(1), Align(1), Size);
1316   NewCI->setAttributes(CI->getAttributes());
1317   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1318   copyFlags(*CI, NewCI);
1319   return CI->getArgOperand(0);
1320 }
1321 
1322 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) {
1323   Value *Dst = CI->getArgOperand(0);
1324   Value *Src = CI->getArgOperand(1);
1325   ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1326   ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1327   StringRef SrcStr;
1328   if (CI->use_empty() && Dst == Src)
1329     return Dst;
1330   // memccpy(d, s, c, 0) -> nullptr
1331   if (N) {
1332     if (N->isNullValue())
1333       return Constant::getNullValue(CI->getType());
1334     if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0,
1335                                /*TrimAtNul=*/false) ||
1336         // TODO: Handle zeroinitializer.
1337         !StopChar)
1338       return nullptr;
1339   } else {
1340     return nullptr;
1341   }
1342 
1343   // Wrap arg 'c' of type int to char
1344   size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1345   if (Pos == StringRef::npos) {
1346     if (N->getZExtValue() <= SrcStr.size()) {
1347       copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1),
1348                                     CI->getArgOperand(3)));
1349       return Constant::getNullValue(CI->getType());
1350     }
1351     return nullptr;
1352   }
1353 
1354   Value *NewN =
1355       ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1356   // memccpy -> llvm.memcpy
1357   copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN));
1358   return Pos + 1 <= N->getZExtValue()
1359              ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1360              : Constant::getNullValue(CI->getType());
1361 }
1362 
1363 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) {
1364   Value *Dst = CI->getArgOperand(0);
1365   Value *N = CI->getArgOperand(2);
1366   // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1367   CallInst *NewCI =
1368       B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N);
1369   // Propagate attributes, but memcpy has no return value, so make sure that
1370   // any return attributes are compliant.
1371   // TODO: Attach return value attributes to the 1st operand to preserve them?
1372   NewCI->setAttributes(CI->getAttributes());
1373   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1374   copyFlags(*CI, NewCI);
1375   return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1376 }
1377 
1378 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) {
1379   Value *Size = CI->getArgOperand(2);
1380   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1381   if (isa<IntrinsicInst>(CI))
1382     return nullptr;
1383 
1384   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1385   CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1),
1386                                     CI->getArgOperand(1), Align(1), Size);
1387   NewCI->setAttributes(CI->getAttributes());
1388   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1389   copyFlags(*CI, NewCI);
1390   return CI->getArgOperand(0);
1391 }
1392 
1393 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) {
1394   Value *Size = CI->getArgOperand(2);
1395   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1396   if (isa<IntrinsicInst>(CI))
1397     return nullptr;
1398 
1399   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1400   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1401   CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1));
1402   NewCI->setAttributes(CI->getAttributes());
1403   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1404   copyFlags(*CI, NewCI);
1405   return CI->getArgOperand(0);
1406 }
1407 
1408 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) {
1409   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1410     return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI));
1411 
1412   return nullptr;
1413 }
1414 
1415 //===----------------------------------------------------------------------===//
1416 // Math Library Optimizations
1417 //===----------------------------------------------------------------------===//
1418 
1419 // Replace a libcall \p CI with a call to intrinsic \p IID
1420 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B,
1421                                Intrinsic::ID IID) {
1422   // Propagate fast-math flags from the existing call to the new call.
1423   IRBuilderBase::FastMathFlagGuard Guard(B);
1424   B.setFastMathFlags(CI->getFastMathFlags());
1425 
1426   Module *M = CI->getModule();
1427   Value *V = CI->getArgOperand(0);
1428   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1429   CallInst *NewCall = B.CreateCall(F, V);
1430   NewCall->takeName(CI);
1431   return copyFlags(*CI, NewCall);
1432 }
1433 
1434 /// Return a variant of Val with float type.
1435 /// Currently this works in two cases: If Val is an FPExtension of a float
1436 /// value to something bigger, simply return the operand.
1437 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1438 /// loss of precision do so.
1439 static Value *valueHasFloatPrecision(Value *Val) {
1440   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1441     Value *Op = Cast->getOperand(0);
1442     if (Op->getType()->isFloatTy())
1443       return Op;
1444   }
1445   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1446     APFloat F = Const->getValueAPF();
1447     bool losesInfo;
1448     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1449                     &losesInfo);
1450     if (!losesInfo)
1451       return ConstantFP::get(Const->getContext(), F);
1452   }
1453   return nullptr;
1454 }
1455 
1456 /// Shrink double -> float functions.
1457 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
1458                                bool isBinary, const TargetLibraryInfo *TLI,
1459                                bool isPrecise = false) {
1460   Function *CalleeFn = CI->getCalledFunction();
1461   if (!CI->getType()->isDoubleTy() || !CalleeFn)
1462     return nullptr;
1463 
1464   // If not all the uses of the function are converted to float, then bail out.
1465   // This matters if the precision of the result is more important than the
1466   // precision of the arguments.
1467   if (isPrecise)
1468     for (User *U : CI->users()) {
1469       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1470       if (!Cast || !Cast->getType()->isFloatTy())
1471         return nullptr;
1472     }
1473 
1474   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1475   Value *V[2];
1476   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1477   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1478   if (!V[0] || (isBinary && !V[1]))
1479     return nullptr;
1480 
1481   // If call isn't an intrinsic, check that it isn't within a function with the
1482   // same name as the float version of this call, otherwise the result is an
1483   // infinite loop.  For example, from MinGW-w64:
1484   //
1485   // float expf(float val) { return (float) exp((double) val); }
1486   StringRef CalleeName = CalleeFn->getName();
1487   bool IsIntrinsic = CalleeFn->isIntrinsic();
1488   if (!IsIntrinsic) {
1489     StringRef CallerName = CI->getFunction()->getName();
1490     if (!CallerName.empty() && CallerName.back() == 'f' &&
1491         CallerName.size() == (CalleeName.size() + 1) &&
1492         CallerName.startswith(CalleeName))
1493       return nullptr;
1494   }
1495 
1496   // Propagate the math semantics from the current function to the new function.
1497   IRBuilderBase::FastMathFlagGuard Guard(B);
1498   B.setFastMathFlags(CI->getFastMathFlags());
1499 
1500   // g((double) float) -> (double) gf(float)
1501   Value *R;
1502   if (IsIntrinsic) {
1503     Module *M = CI->getModule();
1504     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1505     Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1506     R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1507   } else {
1508     AttributeList CalleeAttrs = CalleeFn->getAttributes();
1509     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B,
1510                                          CalleeAttrs)
1511                  : emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs);
1512   }
1513   return B.CreateFPExt(R, B.getDoubleTy());
1514 }
1515 
1516 /// Shrink double -> float for unary functions.
1517 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1518                                     const TargetLibraryInfo *TLI,
1519                                     bool isPrecise = false) {
1520   return optimizeDoubleFP(CI, B, false, TLI, isPrecise);
1521 }
1522 
1523 /// Shrink double -> float for binary functions.
1524 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1525                                      const TargetLibraryInfo *TLI,
1526                                      bool isPrecise = false) {
1527   return optimizeDoubleFP(CI, B, true, TLI, isPrecise);
1528 }
1529 
1530 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1531 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) {
1532   if (!CI->isFast())
1533     return nullptr;
1534 
1535   // Propagate fast-math flags from the existing call to new instructions.
1536   IRBuilderBase::FastMathFlagGuard Guard(B);
1537   B.setFastMathFlags(CI->getFastMathFlags());
1538 
1539   Value *Real, *Imag;
1540   if (CI->arg_size() == 1) {
1541     Value *Op = CI->getArgOperand(0);
1542     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1543     Real = B.CreateExtractValue(Op, 0, "real");
1544     Imag = B.CreateExtractValue(Op, 1, "imag");
1545   } else {
1546     assert(CI->arg_size() == 2 && "Unexpected signature for cabs!");
1547     Real = CI->getArgOperand(0);
1548     Imag = CI->getArgOperand(1);
1549   }
1550 
1551   Value *RealReal = B.CreateFMul(Real, Real);
1552   Value *ImagImag = B.CreateFMul(Imag, Imag);
1553 
1554   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1555                                               CI->getType());
1556   return copyFlags(
1557       *CI, B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"));
1558 }
1559 
1560 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1561                                       IRBuilderBase &B) {
1562   if (!isa<FPMathOperator>(Call))
1563     return nullptr;
1564 
1565   IRBuilderBase::FastMathFlagGuard Guard(B);
1566   B.setFastMathFlags(Call->getFastMathFlags());
1567 
1568   // TODO: Can this be shared to also handle LLVM intrinsics?
1569   Value *X;
1570   switch (Func) {
1571   case LibFunc_sin:
1572   case LibFunc_sinf:
1573   case LibFunc_sinl:
1574   case LibFunc_tan:
1575   case LibFunc_tanf:
1576   case LibFunc_tanl:
1577     // sin(-X) --> -sin(X)
1578     // tan(-X) --> -tan(X)
1579     if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1580       return B.CreateFNeg(
1581           copyFlags(*Call, B.CreateCall(Call->getCalledFunction(), X)));
1582     break;
1583   case LibFunc_cos:
1584   case LibFunc_cosf:
1585   case LibFunc_cosl:
1586     // cos(-X) --> cos(X)
1587     if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1588       return copyFlags(*Call,
1589                        B.CreateCall(Call->getCalledFunction(), X, "cos"));
1590     break;
1591   default:
1592     break;
1593   }
1594   return nullptr;
1595 }
1596 
1597 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) {
1598   // Multiplications calculated using Addition Chains.
1599   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1600 
1601   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1602 
1603   if (InnerChain[Exp])
1604     return InnerChain[Exp];
1605 
1606   static const unsigned AddChain[33][2] = {
1607       {0, 0}, // Unused.
1608       {0, 0}, // Unused (base case = pow1).
1609       {1, 1}, // Unused (pre-computed).
1610       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1611       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1612       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1613       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1614       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1615   };
1616 
1617   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1618                                  getPow(InnerChain, AddChain[Exp][1], B));
1619   return InnerChain[Exp];
1620 }
1621 
1622 // Return a properly extended integer (DstWidth bits wide) if the operation is
1623 // an itofp.
1624 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) {
1625   if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
1626     Value *Op = cast<Instruction>(I2F)->getOperand(0);
1627     // Make sure that the exponent fits inside an "int" of size DstWidth,
1628     // thus avoiding any range issues that FP has not.
1629     unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1630     if (BitWidth < DstWidth ||
1631         (BitWidth == DstWidth && isa<SIToFPInst>(I2F)))
1632       return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth))
1633                                   : B.CreateZExt(Op, B.getIntNTy(DstWidth));
1634   }
1635 
1636   return nullptr;
1637 }
1638 
1639 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1640 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1641 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1642 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
1643   Module *M = Pow->getModule();
1644   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1645   AttributeList Attrs; // Attributes are only meaningful on the original call
1646   Module *Mod = Pow->getModule();
1647   Type *Ty = Pow->getType();
1648   bool Ignored;
1649 
1650   // Evaluate special cases related to a nested function as the base.
1651 
1652   // pow(exp(x), y) -> exp(x * y)
1653   // pow(exp2(x), y) -> exp2(x * y)
1654   // If exp{,2}() is used only once, it is better to fold two transcendental
1655   // math functions into one.  If used again, exp{,2}() would still have to be
1656   // called with the original argument, then keep both original transcendental
1657   // functions.  However, this transformation is only safe with fully relaxed
1658   // math semantics, since, besides rounding differences, it changes overflow
1659   // and underflow behavior quite dramatically.  For example:
1660   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1661   // Whereas:
1662   //   exp(1000 * 0.001) = exp(1)
1663   // TODO: Loosen the requirement for fully relaxed math semantics.
1664   // TODO: Handle exp10() when more targets have it available.
1665   CallInst *BaseFn = dyn_cast<CallInst>(Base);
1666   if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1667     LibFunc LibFn;
1668 
1669     Function *CalleeFn = BaseFn->getCalledFunction();
1670     if (CalleeFn &&
1671         TLI->getLibFunc(CalleeFn->getName(), LibFn) &&
1672         isLibFuncEmittable(M, TLI, LibFn)) {
1673       StringRef ExpName;
1674       Intrinsic::ID ID;
1675       Value *ExpFn;
1676       LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
1677 
1678       switch (LibFn) {
1679       default:
1680         return nullptr;
1681       case LibFunc_expf:  case LibFunc_exp:  case LibFunc_expl:
1682         ExpName = TLI->getName(LibFunc_exp);
1683         ID = Intrinsic::exp;
1684         LibFnFloat = LibFunc_expf;
1685         LibFnDouble = LibFunc_exp;
1686         LibFnLongDouble = LibFunc_expl;
1687         break;
1688       case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1689         ExpName = TLI->getName(LibFunc_exp2);
1690         ID = Intrinsic::exp2;
1691         LibFnFloat = LibFunc_exp2f;
1692         LibFnDouble = LibFunc_exp2;
1693         LibFnLongDouble = LibFunc_exp2l;
1694         break;
1695       }
1696 
1697       // Create new exp{,2}() with the product as its argument.
1698       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1699       ExpFn = BaseFn->doesNotAccessMemory()
1700               ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1701                              FMul, ExpName)
1702               : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1703                                      LibFnLongDouble, B,
1704                                      BaseFn->getAttributes());
1705 
1706       // Since the new exp{,2}() is different from the original one, dead code
1707       // elimination cannot be trusted to remove it, since it may have side
1708       // effects (e.g., errno).  When the only consumer for the original
1709       // exp{,2}() is pow(), then it has to be explicitly erased.
1710       substituteInParent(BaseFn, ExpFn);
1711       return ExpFn;
1712     }
1713   }
1714 
1715   // Evaluate special cases related to a constant base.
1716 
1717   const APFloat *BaseF;
1718   if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1719     return nullptr;
1720 
1721   // pow(2.0, itofp(x)) -> ldexp(1.0, x)
1722   if (match(Base, m_SpecificFP(2.0)) &&
1723       (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
1724       hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1725     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
1726       return copyFlags(*Pow,
1727                        emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI,
1728                                              TLI, LibFunc_ldexp, LibFunc_ldexpf,
1729                                              LibFunc_ldexpl, B, Attrs));
1730   }
1731 
1732   // pow(2.0 ** n, x) -> exp2(n * x)
1733   if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1734     APFloat BaseR = APFloat(1.0);
1735     BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1736     BaseR = BaseR / *BaseF;
1737     bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
1738     const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1739     APSInt NI(64, false);
1740     if ((IsInteger || IsReciprocal) &&
1741         NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
1742             APFloat::opOK &&
1743         NI > 1 && NI.isPowerOf2()) {
1744       double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1745       Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1746       if (Pow->doesNotAccessMemory())
1747         return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
1748                                                 Mod, Intrinsic::exp2, Ty),
1749                                             FMul, "exp2"));
1750       else
1751         return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
1752                                                     LibFunc_exp2f,
1753                                                     LibFunc_exp2l, B, Attrs));
1754     }
1755   }
1756 
1757   // pow(10.0, x) -> exp10(x)
1758   // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1759   if (match(Base, m_SpecificFP(10.0)) &&
1760       hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1761     return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10,
1762                                                 LibFunc_exp10f, LibFunc_exp10l,
1763                                                 B, Attrs));
1764 
1765   // pow(x, y) -> exp2(log2(x) * y)
1766   if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() &&
1767       !BaseF->isNegative()) {
1768     // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
1769     // Luckily optimizePow has already handled the x == 1 case.
1770     assert(!match(Base, m_FPOne()) &&
1771            "pow(1.0, y) should have been simplified earlier!");
1772 
1773     Value *Log = nullptr;
1774     if (Ty->isFloatTy())
1775       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
1776     else if (Ty->isDoubleTy())
1777       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
1778 
1779     if (Log) {
1780       Value *FMul = B.CreateFMul(Log, Expo, "mul");
1781       if (Pow->doesNotAccessMemory())
1782         return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
1783                                                 Mod, Intrinsic::exp2, Ty),
1784                                             FMul, "exp2"));
1785       else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f,
1786                           LibFunc_exp2l))
1787         return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
1788                                                     LibFunc_exp2f,
1789                                                     LibFunc_exp2l, B, Attrs));
1790     }
1791   }
1792 
1793   return nullptr;
1794 }
1795 
1796 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1797                           Module *M, IRBuilderBase &B,
1798                           const TargetLibraryInfo *TLI) {
1799   // If errno is never set, then use the intrinsic for sqrt().
1800   if (NoErrno) {
1801     Function *SqrtFn =
1802         Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1803     return B.CreateCall(SqrtFn, V, "sqrt");
1804   }
1805 
1806   // Otherwise, use the libcall for sqrt().
1807   if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf,
1808                  LibFunc_sqrtl))
1809     // TODO: We also should check that the target can in fact lower the sqrt()
1810     // libcall. We currently have no way to ask this question, so we ask if
1811     // the target has a sqrt() libcall, which is not exactly the same.
1812     return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1813                                 LibFunc_sqrtl, B, Attrs);
1814 
1815   return nullptr;
1816 }
1817 
1818 /// Use square root in place of pow(x, +/-0.5).
1819 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) {
1820   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1821   AttributeList Attrs; // Attributes are only meaningful on the original call
1822   Module *Mod = Pow->getModule();
1823   Type *Ty = Pow->getType();
1824 
1825   const APFloat *ExpoF;
1826   if (!match(Expo, m_APFloat(ExpoF)) ||
1827       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1828     return nullptr;
1829 
1830   // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
1831   // so that requires fast-math-flags (afn or reassoc).
1832   if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
1833     return nullptr;
1834 
1835   // If we have a pow() library call (accesses memory) and we can't guarantee
1836   // that the base is not an infinity, give up:
1837   // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting
1838   // errno), but sqrt(-Inf) is required by various standards to set errno.
1839   if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() &&
1840       !isKnownNeverInfinity(Base, TLI))
1841     return nullptr;
1842 
1843   Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1844   if (!Sqrt)
1845     return nullptr;
1846 
1847   // Handle signed zero base by expanding to fabs(sqrt(x)).
1848   if (!Pow->hasNoSignedZeros()) {
1849     Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1850     Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1851   }
1852 
1853   Sqrt = copyFlags(*Pow, Sqrt);
1854 
1855   // Handle non finite base by expanding to
1856   // (x == -infinity ? +infinity : sqrt(x)).
1857   if (!Pow->hasNoInfs()) {
1858     Value *PosInf = ConstantFP::getInfinity(Ty),
1859           *NegInf = ConstantFP::getInfinity(Ty, true);
1860     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1861     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1862   }
1863 
1864   // If the exponent is negative, then get the reciprocal.
1865   if (ExpoF->isNegative())
1866     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1867 
1868   return Sqrt;
1869 }
1870 
1871 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
1872                                            IRBuilderBase &B) {
1873   Value *Args[] = {Base, Expo};
1874   Type *Types[] = {Base->getType(), Expo->getType()};
1875   Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types);
1876   return B.CreateCall(F, Args);
1877 }
1878 
1879 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
1880   Value *Base = Pow->getArgOperand(0);
1881   Value *Expo = Pow->getArgOperand(1);
1882   Function *Callee = Pow->getCalledFunction();
1883   StringRef Name = Callee->getName();
1884   Type *Ty = Pow->getType();
1885   Module *M = Pow->getModule();
1886   bool AllowApprox = Pow->hasApproxFunc();
1887   bool Ignored;
1888 
1889   // Propagate the math semantics from the call to any created instructions.
1890   IRBuilderBase::FastMathFlagGuard Guard(B);
1891   B.setFastMathFlags(Pow->getFastMathFlags());
1892   // Evaluate special cases related to the base.
1893 
1894   // pow(1.0, x) -> 1.0
1895   if (match(Base, m_FPOne()))
1896     return Base;
1897 
1898   if (Value *Exp = replacePowWithExp(Pow, B))
1899     return Exp;
1900 
1901   // Evaluate special cases related to the exponent.
1902 
1903   // pow(x, -1.0) -> 1.0 / x
1904   if (match(Expo, m_SpecificFP(-1.0)))
1905     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1906 
1907   // pow(x, +/-0.0) -> 1.0
1908   if (match(Expo, m_AnyZeroFP()))
1909     return ConstantFP::get(Ty, 1.0);
1910 
1911   // pow(x, 1.0) -> x
1912   if (match(Expo, m_FPOne()))
1913     return Base;
1914 
1915   // pow(x, 2.0) -> x * x
1916   if (match(Expo, m_SpecificFP(2.0)))
1917     return B.CreateFMul(Base, Base, "square");
1918 
1919   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1920     return Sqrt;
1921 
1922   // pow(x, n) -> x * x * x * ...
1923   const APFloat *ExpoF;
1924   if (AllowApprox && match(Expo, m_APFloat(ExpoF)) &&
1925       !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) {
1926     // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1927     // If the exponent is an integer+0.5 we generate a call to sqrt and an
1928     // additional fmul.
1929     // TODO: This whole transformation should be backend specific (e.g. some
1930     //       backends might prefer libcalls or the limit for the exponent might
1931     //       be different) and it should also consider optimizing for size.
1932     APFloat LimF(ExpoF->getSemantics(), 33),
1933             ExpoA(abs(*ExpoF));
1934     if (ExpoA < LimF) {
1935       // This transformation applies to integer or integer+0.5 exponents only.
1936       // For integer+0.5, we create a sqrt(Base) call.
1937       Value *Sqrt = nullptr;
1938       if (!ExpoA.isInteger()) {
1939         APFloat Expo2 = ExpoA;
1940         // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1941         // is no floating point exception and the result is an integer, then
1942         // ExpoA == integer + 0.5
1943         if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
1944           return nullptr;
1945 
1946         if (!Expo2.isInteger())
1947           return nullptr;
1948 
1949         Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
1950                            Pow->doesNotAccessMemory(), M, B, TLI);
1951         if (!Sqrt)
1952           return nullptr;
1953       }
1954 
1955       // We will memoize intermediate products of the Addition Chain.
1956       Value *InnerChain[33] = {nullptr};
1957       InnerChain[1] = Base;
1958       InnerChain[2] = B.CreateFMul(Base, Base, "square");
1959 
1960       // We cannot readily convert a non-double type (like float) to a double.
1961       // So we first convert it to something which could be converted to double.
1962       ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1963       Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1964 
1965       // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
1966       if (Sqrt)
1967         FMul = B.CreateFMul(FMul, Sqrt);
1968 
1969       // If the exponent is negative, then get the reciprocal.
1970       if (ExpoF->isNegative())
1971         FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1972 
1973       return FMul;
1974     }
1975 
1976     APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false);
1977     // powf(x, n) -> powi(x, n) if n is a constant signed integer value
1978     if (ExpoF->isInteger() &&
1979         ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
1980             APFloat::opOK) {
1981       return copyFlags(
1982           *Pow,
1983           createPowWithIntegerExponent(
1984               Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo),
1985               M, B));
1986     }
1987   }
1988 
1989   // powf(x, itofp(y)) -> powi(x, y)
1990   if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
1991     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
1992       return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B));
1993   }
1994 
1995   // Shrink pow() to powf() if the arguments are single precision,
1996   // unless the result is expected to be double precision.
1997   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
1998       hasFloatVersion(M, Name)) {
1999     if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true))
2000       return Shrunk;
2001   }
2002 
2003   return nullptr;
2004 }
2005 
2006 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
2007   Module *M = CI->getModule();
2008   Function *Callee = CI->getCalledFunction();
2009   AttributeList Attrs; // Attributes are only meaningful on the original call
2010   StringRef Name = Callee->getName();
2011   Value *Ret = nullptr;
2012   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
2013       hasFloatVersion(M, Name))
2014     Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2015 
2016   Type *Ty = CI->getType();
2017   Value *Op = CI->getArgOperand(0);
2018 
2019   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= IntSize
2020   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < IntSize
2021   if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
2022       hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
2023     if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize()))
2024       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
2025                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
2026                                    B, Attrs);
2027   }
2028 
2029   return Ret;
2030 }
2031 
2032 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
2033   Module *M = CI->getModule();
2034 
2035   // If we can shrink the call to a float function rather than a double
2036   // function, do that first.
2037   Function *Callee = CI->getCalledFunction();
2038   StringRef Name = Callee->getName();
2039   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name))
2040     if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI))
2041       return Ret;
2042 
2043   // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
2044   // the intrinsics for improved optimization (for example, vectorization).
2045   // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
2046   // From the C standard draft WG14/N1256:
2047   // "Ideally, fmax would be sensitive to the sign of zero, for example
2048   // fmax(-0.0, +0.0) would return +0; however, implementation in software
2049   // might be impractical."
2050   IRBuilderBase::FastMathFlagGuard Guard(B);
2051   FastMathFlags FMF = CI->getFastMathFlags();
2052   FMF.setNoSignedZeros();
2053   B.setFastMathFlags(FMF);
2054 
2055   Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
2056                                                            : Intrinsic::maxnum;
2057   Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
2058   return copyFlags(
2059       *CI, B.CreateCall(F, {CI->getArgOperand(0), CI->getArgOperand(1)}));
2060 }
2061 
2062 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
2063   Function *LogFn = Log->getCalledFunction();
2064   AttributeList Attrs; // Attributes are only meaningful on the original call
2065   StringRef LogNm = LogFn->getName();
2066   Intrinsic::ID LogID = LogFn->getIntrinsicID();
2067   Module *Mod = Log->getModule();
2068   Type *Ty = Log->getType();
2069   Value *Ret = nullptr;
2070 
2071   if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm))
2072     Ret = optimizeUnaryDoubleFP(Log, B, TLI, true);
2073 
2074   // The earlier call must also be 'fast' in order to do these transforms.
2075   CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
2076   if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
2077     return Ret;
2078 
2079   LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
2080 
2081   // This is only applicable to log(), log2(), log10().
2082   if (TLI->getLibFunc(LogNm, LogLb))
2083     switch (LogLb) {
2084     case LibFunc_logf:
2085       LogID = Intrinsic::log;
2086       ExpLb = LibFunc_expf;
2087       Exp2Lb = LibFunc_exp2f;
2088       Exp10Lb = LibFunc_exp10f;
2089       PowLb = LibFunc_powf;
2090       break;
2091     case LibFunc_log:
2092       LogID = Intrinsic::log;
2093       ExpLb = LibFunc_exp;
2094       Exp2Lb = LibFunc_exp2;
2095       Exp10Lb = LibFunc_exp10;
2096       PowLb = LibFunc_pow;
2097       break;
2098     case LibFunc_logl:
2099       LogID = Intrinsic::log;
2100       ExpLb = LibFunc_expl;
2101       Exp2Lb = LibFunc_exp2l;
2102       Exp10Lb = LibFunc_exp10l;
2103       PowLb = LibFunc_powl;
2104       break;
2105     case LibFunc_log2f:
2106       LogID = Intrinsic::log2;
2107       ExpLb = LibFunc_expf;
2108       Exp2Lb = LibFunc_exp2f;
2109       Exp10Lb = LibFunc_exp10f;
2110       PowLb = LibFunc_powf;
2111       break;
2112     case LibFunc_log2:
2113       LogID = Intrinsic::log2;
2114       ExpLb = LibFunc_exp;
2115       Exp2Lb = LibFunc_exp2;
2116       Exp10Lb = LibFunc_exp10;
2117       PowLb = LibFunc_pow;
2118       break;
2119     case LibFunc_log2l:
2120       LogID = Intrinsic::log2;
2121       ExpLb = LibFunc_expl;
2122       Exp2Lb = LibFunc_exp2l;
2123       Exp10Lb = LibFunc_exp10l;
2124       PowLb = LibFunc_powl;
2125       break;
2126     case LibFunc_log10f:
2127       LogID = Intrinsic::log10;
2128       ExpLb = LibFunc_expf;
2129       Exp2Lb = LibFunc_exp2f;
2130       Exp10Lb = LibFunc_exp10f;
2131       PowLb = LibFunc_powf;
2132       break;
2133     case LibFunc_log10:
2134       LogID = Intrinsic::log10;
2135       ExpLb = LibFunc_exp;
2136       Exp2Lb = LibFunc_exp2;
2137       Exp10Lb = LibFunc_exp10;
2138       PowLb = LibFunc_pow;
2139       break;
2140     case LibFunc_log10l:
2141       LogID = Intrinsic::log10;
2142       ExpLb = LibFunc_expl;
2143       Exp2Lb = LibFunc_exp2l;
2144       Exp10Lb = LibFunc_exp10l;
2145       PowLb = LibFunc_powl;
2146       break;
2147     default:
2148       return Ret;
2149     }
2150   else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
2151            LogID == Intrinsic::log10) {
2152     if (Ty->getScalarType()->isFloatTy()) {
2153       ExpLb = LibFunc_expf;
2154       Exp2Lb = LibFunc_exp2f;
2155       Exp10Lb = LibFunc_exp10f;
2156       PowLb = LibFunc_powf;
2157     } else if (Ty->getScalarType()->isDoubleTy()) {
2158       ExpLb = LibFunc_exp;
2159       Exp2Lb = LibFunc_exp2;
2160       Exp10Lb = LibFunc_exp10;
2161       PowLb = LibFunc_pow;
2162     } else
2163       return Ret;
2164   } else
2165     return Ret;
2166 
2167   IRBuilderBase::FastMathFlagGuard Guard(B);
2168   B.setFastMathFlags(FastMathFlags::getFast());
2169 
2170   Intrinsic::ID ArgID = Arg->getIntrinsicID();
2171   LibFunc ArgLb = NotLibFunc;
2172   TLI->getLibFunc(*Arg, ArgLb);
2173 
2174   // log(pow(x,y)) -> y*log(x)
2175   if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
2176     Value *LogX =
2177         Log->doesNotAccessMemory()
2178             ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
2179                            Arg->getOperand(0), "log")
2180             : emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, Attrs);
2181     Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
2182     // Since pow() may have side effects, e.g. errno,
2183     // dead code elimination may not be trusted to remove it.
2184     substituteInParent(Arg, MulY);
2185     return MulY;
2186   }
2187 
2188   // log(exp{,2,10}(y)) -> y*log({e,2,10})
2189   // TODO: There is no exp10() intrinsic yet.
2190   if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
2191            ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
2192     Constant *Eul;
2193     if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
2194       // FIXME: Add more precise value of e for long double.
2195       Eul = ConstantFP::get(Log->getType(), numbers::e);
2196     else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
2197       Eul = ConstantFP::get(Log->getType(), 2.0);
2198     else
2199       Eul = ConstantFP::get(Log->getType(), 10.0);
2200     Value *LogE = Log->doesNotAccessMemory()
2201                       ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
2202                                      Eul, "log")
2203                       : emitUnaryFloatFnCall(Eul, TLI, LogNm, B, Attrs);
2204     Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
2205     // Since exp() may have side effects, e.g. errno,
2206     // dead code elimination may not be trusted to remove it.
2207     substituteInParent(Arg, MulY);
2208     return MulY;
2209   }
2210 
2211   return Ret;
2212 }
2213 
2214 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
2215   Module *M = CI->getModule();
2216   Function *Callee = CI->getCalledFunction();
2217   Value *Ret = nullptr;
2218   // TODO: Once we have a way (other than checking for the existince of the
2219   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
2220   // condition below.
2221   if (isLibFuncEmittable(M, TLI, LibFunc_sqrtf) &&
2222       (Callee->getName() == "sqrt" ||
2223        Callee->getIntrinsicID() == Intrinsic::sqrt))
2224     Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2225 
2226   if (!CI->isFast())
2227     return Ret;
2228 
2229   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
2230   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
2231     return Ret;
2232 
2233   // We're looking for a repeated factor in a multiplication tree,
2234   // so we can do this fold: sqrt(x * x) -> fabs(x);
2235   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2236   Value *Op0 = I->getOperand(0);
2237   Value *Op1 = I->getOperand(1);
2238   Value *RepeatOp = nullptr;
2239   Value *OtherOp = nullptr;
2240   if (Op0 == Op1) {
2241     // Simple match: the operands of the multiply are identical.
2242     RepeatOp = Op0;
2243   } else {
2244     // Look for a more complicated pattern: one of the operands is itself
2245     // a multiply, so search for a common factor in that multiply.
2246     // Note: We don't bother looking any deeper than this first level or for
2247     // variations of this pattern because instcombine's visitFMUL and/or the
2248     // reassociation pass should give us this form.
2249     Value *OtherMul0, *OtherMul1;
2250     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
2251       // Pattern: sqrt((x * y) * z)
2252       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
2253         // Matched: sqrt((x * x) * z)
2254         RepeatOp = OtherMul0;
2255         OtherOp = Op1;
2256       }
2257     }
2258   }
2259   if (!RepeatOp)
2260     return Ret;
2261 
2262   // Fast math flags for any created instructions should match the sqrt
2263   // and multiply.
2264   IRBuilderBase::FastMathFlagGuard Guard(B);
2265   B.setFastMathFlags(I->getFastMathFlags());
2266 
2267   // If we found a repeated factor, hoist it out of the square root and
2268   // replace it with the fabs of that factor.
2269   Type *ArgType = I->getType();
2270   Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
2271   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
2272   if (OtherOp) {
2273     // If we found a non-repeated factor, we still need to get its square
2274     // root. We then multiply that by the value that was simplified out
2275     // of the square root calculation.
2276     Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
2277     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
2278     return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall));
2279   }
2280   return copyFlags(*CI, FabsCall);
2281 }
2282 
2283 // TODO: Generalize to handle any trig function and its inverse.
2284 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) {
2285   Module *M = CI->getModule();
2286   Function *Callee = CI->getCalledFunction();
2287   Value *Ret = nullptr;
2288   StringRef Name = Callee->getName();
2289   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(M, Name))
2290     Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2291 
2292   Value *Op1 = CI->getArgOperand(0);
2293   auto *OpC = dyn_cast<CallInst>(Op1);
2294   if (!OpC)
2295     return Ret;
2296 
2297   // Both calls must be 'fast' in order to remove them.
2298   if (!CI->isFast() || !OpC->isFast())
2299     return Ret;
2300 
2301   // tan(atan(x)) -> x
2302   // tanf(atanf(x)) -> x
2303   // tanl(atanl(x)) -> x
2304   LibFunc Func;
2305   Function *F = OpC->getCalledFunction();
2306   if (F && TLI->getLibFunc(F->getName(), Func) &&
2307       isLibFuncEmittable(M, TLI, Func) &&
2308       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
2309        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
2310        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
2311     Ret = OpC->getArgOperand(0);
2312   return Ret;
2313 }
2314 
2315 static bool isTrigLibCall(CallInst *CI) {
2316   // We can only hope to do anything useful if we can ignore things like errno
2317   // and floating-point exceptions.
2318   // We already checked the prototype.
2319   return CI->hasFnAttr(Attribute::NoUnwind) &&
2320          CI->hasFnAttr(Attribute::ReadNone);
2321 }
2322 
2323 static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
2324                              bool UseFloat, Value *&Sin, Value *&Cos,
2325                              Value *&SinCos, const TargetLibraryInfo *TLI) {
2326   Module *M = OrigCallee->getParent();
2327   Type *ArgTy = Arg->getType();
2328   Type *ResTy;
2329   StringRef Name;
2330 
2331   Triple T(OrigCallee->getParent()->getTargetTriple());
2332   if (UseFloat) {
2333     Name = "__sincospif_stret";
2334 
2335     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2336     // x86_64 can't use {float, float} since that would be returned in both
2337     // xmm0 and xmm1, which isn't what a real struct would do.
2338     ResTy = T.getArch() == Triple::x86_64
2339                 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2))
2340                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2341   } else {
2342     Name = "__sincospi_stret";
2343     ResTy = StructType::get(ArgTy, ArgTy);
2344   }
2345 
2346   if (!isLibFuncEmittable(M, TLI, Name))
2347     return false;
2348   LibFunc TheLibFunc;
2349   TLI->getLibFunc(Name, TheLibFunc);
2350   FunctionCallee Callee = getOrInsertLibFunc(
2351       M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy);
2352 
2353   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2354     // If the argument is an instruction, it must dominate all uses so put our
2355     // sincos call there.
2356     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2357   } else {
2358     // Otherwise (e.g. for a constant) the beginning of the function is as
2359     // good a place as any.
2360     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2361     B.SetInsertPoint(&EntryBB, EntryBB.begin());
2362   }
2363 
2364   SinCos = B.CreateCall(Callee, Arg, "sincospi");
2365 
2366   if (SinCos->getType()->isStructTy()) {
2367     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2368     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2369   } else {
2370     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2371                                  "sinpi");
2372     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2373                                  "cospi");
2374   }
2375 
2376   return true;
2377 }
2378 
2379 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) {
2380   // Make sure the prototype is as expected, otherwise the rest of the
2381   // function is probably invalid and likely to abort.
2382   if (!isTrigLibCall(CI))
2383     return nullptr;
2384 
2385   Value *Arg = CI->getArgOperand(0);
2386   SmallVector<CallInst *, 1> SinCalls;
2387   SmallVector<CallInst *, 1> CosCalls;
2388   SmallVector<CallInst *, 1> SinCosCalls;
2389 
2390   bool IsFloat = Arg->getType()->isFloatTy();
2391 
2392   // Look for all compatible sinpi, cospi and sincospi calls with the same
2393   // argument. If there are enough (in some sense) we can make the
2394   // substitution.
2395   Function *F = CI->getFunction();
2396   for (User *U : Arg->users())
2397     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2398 
2399   // It's only worthwhile if both sinpi and cospi are actually used.
2400   if (SinCalls.empty() || CosCalls.empty())
2401     return nullptr;
2402 
2403   Value *Sin, *Cos, *SinCos;
2404   if (!insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos,
2405                         SinCos, TLI))
2406     return nullptr;
2407 
2408   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2409                                  Value *Res) {
2410     for (CallInst *C : Calls)
2411       replaceAllUsesWith(C, Res);
2412   };
2413 
2414   replaceTrigInsts(SinCalls, Sin);
2415   replaceTrigInsts(CosCalls, Cos);
2416   replaceTrigInsts(SinCosCalls, SinCos);
2417 
2418   return nullptr;
2419 }
2420 
2421 void LibCallSimplifier::classifyArgUse(
2422     Value *Val, Function *F, bool IsFloat,
2423     SmallVectorImpl<CallInst *> &SinCalls,
2424     SmallVectorImpl<CallInst *> &CosCalls,
2425     SmallVectorImpl<CallInst *> &SinCosCalls) {
2426   CallInst *CI = dyn_cast<CallInst>(Val);
2427   Module *M = CI->getModule();
2428 
2429   if (!CI || CI->use_empty())
2430     return;
2431 
2432   // Don't consider calls in other functions.
2433   if (CI->getFunction() != F)
2434     return;
2435 
2436   Function *Callee = CI->getCalledFunction();
2437   LibFunc Func;
2438   if (!Callee || !TLI->getLibFunc(*Callee, Func) ||
2439       !isLibFuncEmittable(M, TLI, Func) ||
2440       !isTrigLibCall(CI))
2441     return;
2442 
2443   if (IsFloat) {
2444     if (Func == LibFunc_sinpif)
2445       SinCalls.push_back(CI);
2446     else if (Func == LibFunc_cospif)
2447       CosCalls.push_back(CI);
2448     else if (Func == LibFunc_sincospif_stret)
2449       SinCosCalls.push_back(CI);
2450   } else {
2451     if (Func == LibFunc_sinpi)
2452       SinCalls.push_back(CI);
2453     else if (Func == LibFunc_cospi)
2454       CosCalls.push_back(CI);
2455     else if (Func == LibFunc_sincospi_stret)
2456       SinCosCalls.push_back(CI);
2457   }
2458 }
2459 
2460 //===----------------------------------------------------------------------===//
2461 // Integer Library Call Optimizations
2462 //===----------------------------------------------------------------------===//
2463 
2464 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) {
2465   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
2466   Value *Op = CI->getArgOperand(0);
2467   Type *ArgType = Op->getType();
2468   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2469                                           Intrinsic::cttz, ArgType);
2470   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
2471   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
2472   V = B.CreateIntCast(V, B.getInt32Ty(), false);
2473 
2474   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
2475   return B.CreateSelect(Cond, V, B.getInt32(0));
2476 }
2477 
2478 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) {
2479   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
2480   Value *Op = CI->getArgOperand(0);
2481   Type *ArgType = Op->getType();
2482   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2483                                           Intrinsic::ctlz, ArgType);
2484   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
2485   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
2486                   V);
2487   return B.CreateIntCast(V, CI->getType(), false);
2488 }
2489 
2490 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) {
2491   // abs(x) -> x <s 0 ? -x : x
2492   // The negation has 'nsw' because abs of INT_MIN is undefined.
2493   Value *X = CI->getArgOperand(0);
2494   Value *IsNeg = B.CreateIsNeg(X);
2495   Value *NegX = B.CreateNSWNeg(X, "neg");
2496   return B.CreateSelect(IsNeg, NegX, X);
2497 }
2498 
2499 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) {
2500   // isdigit(c) -> (c-'0') <u 10
2501   Value *Op = CI->getArgOperand(0);
2502   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
2503   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
2504   return B.CreateZExt(Op, CI->getType());
2505 }
2506 
2507 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) {
2508   // isascii(c) -> c <u 128
2509   Value *Op = CI->getArgOperand(0);
2510   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
2511   return B.CreateZExt(Op, CI->getType());
2512 }
2513 
2514 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) {
2515   // toascii(c) -> c & 0x7f
2516   return B.CreateAnd(CI->getArgOperand(0),
2517                      ConstantInt::get(CI->getType(), 0x7F));
2518 }
2519 
2520 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) {
2521   StringRef Str;
2522   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2523     return nullptr;
2524 
2525   return convertStrToNumber(CI, Str, 10);
2526 }
2527 
2528 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) {
2529   StringRef Str;
2530   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2531     return nullptr;
2532 
2533   if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
2534     return nullptr;
2535 
2536   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2537     return convertStrToNumber(CI, Str, CInt->getSExtValue());
2538   }
2539 
2540   return nullptr;
2541 }
2542 
2543 //===----------------------------------------------------------------------===//
2544 // Formatting and IO Library Call Optimizations
2545 //===----------------------------------------------------------------------===//
2546 
2547 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2548 
2549 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B,
2550                                                  int StreamArg) {
2551   Function *Callee = CI->getCalledFunction();
2552   // Error reporting calls should be cold, mark them as such.
2553   // This applies even to non-builtin calls: it is only a hint and applies to
2554   // functions that the frontend might not understand as builtins.
2555 
2556   // This heuristic was suggested in:
2557   // Improving Static Branch Prediction in a Compiler
2558   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2559   // Proceedings of PACT'98, Oct. 1998, IEEE
2560   if (!CI->hasFnAttr(Attribute::Cold) &&
2561       isReportingError(Callee, CI, StreamArg)) {
2562     CI->addFnAttr(Attribute::Cold);
2563   }
2564 
2565   return nullptr;
2566 }
2567 
2568 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2569   if (!Callee || !Callee->isDeclaration())
2570     return false;
2571 
2572   if (StreamArg < 0)
2573     return true;
2574 
2575   // These functions might be considered cold, but only if their stream
2576   // argument is stderr.
2577 
2578   if (StreamArg >= (int)CI->arg_size())
2579     return false;
2580   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2581   if (!LI)
2582     return false;
2583   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
2584   if (!GV || !GV->isDeclaration())
2585     return false;
2586   return GV->getName() == "stderr";
2587 }
2588 
2589 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
2590   // Check for a fixed format string.
2591   StringRef FormatStr;
2592   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2593     return nullptr;
2594 
2595   // Empty format string -> noop.
2596   if (FormatStr.empty()) // Tolerate printf's declared void.
2597     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2598 
2599   // Do not do any of the following transformations if the printf return value
2600   // is used, in general the printf return value is not compatible with either
2601   // putchar() or puts().
2602   if (!CI->use_empty())
2603     return nullptr;
2604 
2605   // printf("x") -> putchar('x'), even for "%" and "%%".
2606   if (FormatStr.size() == 1 || FormatStr == "%%")
2607     return copyFlags(*CI, emitPutChar(B.getInt32(FormatStr[0]), B, TLI));
2608 
2609   // Try to remove call or emit putchar/puts.
2610   if (FormatStr == "%s" && CI->arg_size() > 1) {
2611     StringRef OperandStr;
2612     if (!getConstantStringInfo(CI->getOperand(1), OperandStr))
2613       return nullptr;
2614     // printf("%s", "") --> NOP
2615     if (OperandStr.empty())
2616       return (Value *)CI;
2617     // printf("%s", "a") --> putchar('a')
2618     if (OperandStr.size() == 1)
2619       return copyFlags(*CI, emitPutChar(B.getInt32(OperandStr[0]), B, TLI));
2620     // printf("%s", str"\n") --> puts(str)
2621     if (OperandStr.back() == '\n') {
2622       OperandStr = OperandStr.drop_back();
2623       Value *GV = B.CreateGlobalString(OperandStr, "str");
2624       return copyFlags(*CI, emitPutS(GV, B, TLI));
2625     }
2626     return nullptr;
2627   }
2628 
2629   // printf("foo\n") --> puts("foo")
2630   if (FormatStr.back() == '\n' &&
2631       !FormatStr.contains('%')) { // No format characters.
2632     // Create a string literal with no \n on it.  We expect the constant merge
2633     // pass to be run after this pass, to merge duplicate strings.
2634     FormatStr = FormatStr.drop_back();
2635     Value *GV = B.CreateGlobalString(FormatStr, "str");
2636     return copyFlags(*CI, emitPutS(GV, B, TLI));
2637   }
2638 
2639   // Optimize specific format strings.
2640   // printf("%c", chr) --> putchar(chr)
2641   if (FormatStr == "%c" && CI->arg_size() > 1 &&
2642       CI->getArgOperand(1)->getType()->isIntegerTy())
2643     return copyFlags(*CI, emitPutChar(CI->getArgOperand(1), B, TLI));
2644 
2645   // printf("%s\n", str) --> puts(str)
2646   if (FormatStr == "%s\n" && CI->arg_size() > 1 &&
2647       CI->getArgOperand(1)->getType()->isPointerTy())
2648     return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI));
2649   return nullptr;
2650 }
2651 
2652 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
2653 
2654   Module *M = CI->getModule();
2655   Function *Callee = CI->getCalledFunction();
2656   FunctionType *FT = Callee->getFunctionType();
2657   if (Value *V = optimizePrintFString(CI, B)) {
2658     return V;
2659   }
2660 
2661   // printf(format, ...) -> iprintf(format, ...) if no floating point
2662   // arguments.
2663   if (isLibFuncEmittable(M, TLI, LibFunc_iprintf) &&
2664       !callHasFloatingPointArgument(CI)) {
2665     FunctionCallee IPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_iprintf, FT,
2666                                                   Callee->getAttributes());
2667     CallInst *New = cast<CallInst>(CI->clone());
2668     New->setCalledFunction(IPrintFFn);
2669     B.Insert(New);
2670     return New;
2671   }
2672 
2673   // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2674   // arguments.
2675   if (isLibFuncEmittable(M, TLI, LibFunc_small_printf) &&
2676       !callHasFP128Argument(CI)) {
2677     auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT,
2678                                             Callee->getAttributes());
2679     CallInst *New = cast<CallInst>(CI->clone());
2680     New->setCalledFunction(SmallPrintFFn);
2681     B.Insert(New);
2682     return New;
2683   }
2684 
2685   annotateNonNullNoUndefBasedOnAccess(CI, 0);
2686   return nullptr;
2687 }
2688 
2689 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
2690                                                 IRBuilderBase &B) {
2691   // Check for a fixed format string.
2692   StringRef FormatStr;
2693   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2694     return nullptr;
2695 
2696   // If we just have a format string (nothing else crazy) transform it.
2697   Value *Dest = CI->getArgOperand(0);
2698   if (CI->arg_size() == 2) {
2699     // Make sure there's no % in the constant array.  We could try to handle
2700     // %% -> % in the future if we cared.
2701     if (FormatStr.contains('%'))
2702       return nullptr; // we found a format specifier, bail out.
2703 
2704     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2705     B.CreateMemCpy(
2706         Dest, Align(1), CI->getArgOperand(1), Align(1),
2707         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2708                          FormatStr.size() + 1)); // Copy the null byte.
2709     return ConstantInt::get(CI->getType(), FormatStr.size());
2710   }
2711 
2712   // The remaining optimizations require the format string to be "%s" or "%c"
2713   // and have an extra operand.
2714   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
2715     return nullptr;
2716 
2717   // Decode the second character of the format string.
2718   if (FormatStr[1] == 'c') {
2719     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2720     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2721       return nullptr;
2722     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2723     Value *Ptr = castToCStr(Dest, B);
2724     B.CreateStore(V, Ptr);
2725     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2726     B.CreateStore(B.getInt8(0), Ptr);
2727 
2728     return ConstantInt::get(CI->getType(), 1);
2729   }
2730 
2731   if (FormatStr[1] == 's') {
2732     // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2733     // strlen(str)+1)
2734     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2735       return nullptr;
2736 
2737     if (CI->use_empty())
2738       // sprintf(dest, "%s", str) -> strcpy(dest, str)
2739       return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI));
2740 
2741     uint64_t SrcLen = GetStringLength(CI->getArgOperand(2));
2742     if (SrcLen) {
2743       B.CreateMemCpy(
2744           Dest, Align(1), CI->getArgOperand(2), Align(1),
2745           ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen));
2746       // Returns total number of characters written without null-character.
2747       return ConstantInt::get(CI->getType(), SrcLen - 1);
2748     } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) {
2749       // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest
2750       // Handle mismatched pointer types (goes away with typeless pointers?).
2751       V = B.CreatePointerCast(V, B.getInt8PtrTy());
2752       Dest = B.CreatePointerCast(Dest, B.getInt8PtrTy());
2753       Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest);
2754       return B.CreateIntCast(PtrDiff, CI->getType(), false);
2755     }
2756 
2757     bool OptForSize = CI->getFunction()->hasOptSize() ||
2758                       llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2759                                                   PGSOQueryType::IRPass);
2760     if (OptForSize)
2761       return nullptr;
2762 
2763     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2764     if (!Len)
2765       return nullptr;
2766     Value *IncLen =
2767         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2768     B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen);
2769 
2770     // The sprintf result is the unincremented number of bytes in the string.
2771     return B.CreateIntCast(Len, CI->getType(), false);
2772   }
2773   return nullptr;
2774 }
2775 
2776 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
2777   Module *M = CI->getModule();
2778   Function *Callee = CI->getCalledFunction();
2779   FunctionType *FT = Callee->getFunctionType();
2780   if (Value *V = optimizeSPrintFString(CI, B)) {
2781     return V;
2782   }
2783 
2784   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2785   // point arguments.
2786   if (isLibFuncEmittable(M, TLI, LibFunc_siprintf) &&
2787       !callHasFloatingPointArgument(CI)) {
2788     FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_siprintf,
2789                                                    FT, Callee->getAttributes());
2790     CallInst *New = cast<CallInst>(CI->clone());
2791     New->setCalledFunction(SIPrintFFn);
2792     B.Insert(New);
2793     return New;
2794   }
2795 
2796   // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
2797   // floating point arguments.
2798   if (isLibFuncEmittable(M, TLI, LibFunc_small_sprintf) &&
2799       !callHasFP128Argument(CI)) {
2800     auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT,
2801                                              Callee->getAttributes());
2802     CallInst *New = cast<CallInst>(CI->clone());
2803     New->setCalledFunction(SmallSPrintFFn);
2804     B.Insert(New);
2805     return New;
2806   }
2807 
2808   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
2809   return nullptr;
2810 }
2811 
2812 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
2813                                                  IRBuilderBase &B) {
2814   // Check for size
2815   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2816   if (!Size)
2817     return nullptr;
2818 
2819   uint64_t N = Size->getZExtValue();
2820   // Check for a fixed format string.
2821   StringRef FormatStr;
2822   if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2823     return nullptr;
2824 
2825   // If we just have a format string (nothing else crazy) transform it.
2826   if (CI->arg_size() == 3) {
2827     // Make sure there's no % in the constant array.  We could try to handle
2828     // %% -> % in the future if we cared.
2829     if (FormatStr.contains('%'))
2830       return nullptr; // we found a format specifier, bail out.
2831 
2832     if (N == 0)
2833       return ConstantInt::get(CI->getType(), FormatStr.size());
2834     else if (N < FormatStr.size() + 1)
2835       return nullptr;
2836 
2837     // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2838     // strlen(fmt)+1)
2839     copyFlags(
2840         *CI,
2841         B.CreateMemCpy(
2842             CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1),
2843             ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2844                              FormatStr.size() + 1))); // Copy the null byte.
2845     return ConstantInt::get(CI->getType(), FormatStr.size());
2846   }
2847 
2848   // The remaining optimizations require the format string to be "%s" or "%c"
2849   // and have an extra operand.
2850   if (FormatStr.size() == 2 && FormatStr[0] == '%' && CI->arg_size() == 4) {
2851 
2852     // Decode the second character of the format string.
2853     if (FormatStr[1] == 'c') {
2854       if (N == 0)
2855         return ConstantInt::get(CI->getType(), 1);
2856       else if (N == 1)
2857         return nullptr;
2858 
2859       // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2860       if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2861         return nullptr;
2862       Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2863       Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2864       B.CreateStore(V, Ptr);
2865       Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2866       B.CreateStore(B.getInt8(0), Ptr);
2867 
2868       return ConstantInt::get(CI->getType(), 1);
2869     }
2870 
2871     if (FormatStr[1] == 's') {
2872       // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2873       StringRef Str;
2874       if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2875         return nullptr;
2876 
2877       if (N == 0)
2878         return ConstantInt::get(CI->getType(), Str.size());
2879       else if (N < Str.size() + 1)
2880         return nullptr;
2881 
2882       copyFlags(
2883           *CI, B.CreateMemCpy(CI->getArgOperand(0), Align(1),
2884                               CI->getArgOperand(3), Align(1),
2885                               ConstantInt::get(CI->getType(), Str.size() + 1)));
2886 
2887       // The snprintf result is the unincremented number of bytes in the string.
2888       return ConstantInt::get(CI->getType(), Str.size());
2889     }
2890   }
2891   return nullptr;
2892 }
2893 
2894 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) {
2895   if (Value *V = optimizeSnPrintFString(CI, B)) {
2896     return V;
2897   }
2898 
2899   if (isKnownNonZero(CI->getOperand(1), DL))
2900     annotateNonNullNoUndefBasedOnAccess(CI, 0);
2901   return nullptr;
2902 }
2903 
2904 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
2905                                                 IRBuilderBase &B) {
2906   optimizeErrorReporting(CI, B, 0);
2907 
2908   // All the optimizations depend on the format string.
2909   StringRef FormatStr;
2910   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2911     return nullptr;
2912 
2913   // Do not do any of the following transformations if the fprintf return
2914   // value is used, in general the fprintf return value is not compatible
2915   // with fwrite(), fputc() or fputs().
2916   if (!CI->use_empty())
2917     return nullptr;
2918 
2919   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2920   if (CI->arg_size() == 2) {
2921     // Could handle %% -> % if we cared.
2922     if (FormatStr.contains('%'))
2923       return nullptr; // We found a format specifier.
2924 
2925     return copyFlags(
2926         *CI, emitFWrite(CI->getArgOperand(1),
2927                         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2928                                          FormatStr.size()),
2929                         CI->getArgOperand(0), B, DL, TLI));
2930   }
2931 
2932   // The remaining optimizations require the format string to be "%s" or "%c"
2933   // and have an extra operand.
2934   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
2935     return nullptr;
2936 
2937   // Decode the second character of the format string.
2938   if (FormatStr[1] == 'c') {
2939     // fprintf(F, "%c", chr) --> fputc(chr, F)
2940     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2941       return nullptr;
2942     return copyFlags(
2943         *CI, emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI));
2944   }
2945 
2946   if (FormatStr[1] == 's') {
2947     // fprintf(F, "%s", str) --> fputs(str, F)
2948     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2949       return nullptr;
2950     return copyFlags(
2951         *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI));
2952   }
2953   return nullptr;
2954 }
2955 
2956 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
2957   Module *M = CI->getModule();
2958   Function *Callee = CI->getCalledFunction();
2959   FunctionType *FT = Callee->getFunctionType();
2960   if (Value *V = optimizeFPrintFString(CI, B)) {
2961     return V;
2962   }
2963 
2964   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2965   // floating point arguments.
2966   if (isLibFuncEmittable(M, TLI, LibFunc_fiprintf) &&
2967       !callHasFloatingPointArgument(CI)) {
2968     FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_fiprintf,
2969                                                    FT, Callee->getAttributes());
2970     CallInst *New = cast<CallInst>(CI->clone());
2971     New->setCalledFunction(FIPrintFFn);
2972     B.Insert(New);
2973     return New;
2974   }
2975 
2976   // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
2977   // 128-bit floating point arguments.
2978   if (isLibFuncEmittable(M, TLI, LibFunc_small_fprintf) &&
2979       !callHasFP128Argument(CI)) {
2980     auto SmallFPrintFFn =
2981         getOrInsertLibFunc(M, *TLI, LibFunc_small_fprintf, FT,
2982                            Callee->getAttributes());
2983     CallInst *New = cast<CallInst>(CI->clone());
2984     New->setCalledFunction(SmallFPrintFFn);
2985     B.Insert(New);
2986     return New;
2987   }
2988 
2989   return nullptr;
2990 }
2991 
2992 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) {
2993   optimizeErrorReporting(CI, B, 3);
2994 
2995   // Get the element size and count.
2996   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2997   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2998   if (SizeC && CountC) {
2999     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
3000 
3001     // If this is writing zero records, remove the call (it's a noop).
3002     if (Bytes == 0)
3003       return ConstantInt::get(CI->getType(), 0);
3004 
3005     // If this is writing one byte, turn it into fputc.
3006     // This optimisation is only valid, if the return value is unused.
3007     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
3008       Value *Char = B.CreateLoad(B.getInt8Ty(),
3009                                  castToCStr(CI->getArgOperand(0), B), "char");
3010       Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
3011       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
3012     }
3013   }
3014 
3015   return nullptr;
3016 }
3017 
3018 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) {
3019   optimizeErrorReporting(CI, B, 1);
3020 
3021   // Don't rewrite fputs to fwrite when optimising for size because fwrite
3022   // requires more arguments and thus extra MOVs are required.
3023   bool OptForSize = CI->getFunction()->hasOptSize() ||
3024                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
3025                                                 PGSOQueryType::IRPass);
3026   if (OptForSize)
3027     return nullptr;
3028 
3029   // We can't optimize if return value is used.
3030   if (!CI->use_empty())
3031     return nullptr;
3032 
3033   // fputs(s,F) --> fwrite(s,strlen(s),1,F)
3034   uint64_t Len = GetStringLength(CI->getArgOperand(0));
3035   if (!Len)
3036     return nullptr;
3037 
3038   // Known to have no uses (see above).
3039   return copyFlags(
3040       *CI,
3041       emitFWrite(CI->getArgOperand(0),
3042                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
3043                  CI->getArgOperand(1), B, DL, TLI));
3044 }
3045 
3046 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) {
3047   annotateNonNullNoUndefBasedOnAccess(CI, 0);
3048   if (!CI->use_empty())
3049     return nullptr;
3050 
3051   // Check for a constant string.
3052   // puts("") -> putchar('\n')
3053   StringRef Str;
3054   if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
3055     return copyFlags(*CI, emitPutChar(B.getInt32('\n'), B, TLI));
3056 
3057   return nullptr;
3058 }
3059 
3060 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
3061   // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
3062   return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1),
3063                                         CI->getArgOperand(0), Align(1),
3064                                         CI->getArgOperand(2)));
3065 }
3066 
3067 bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) {
3068   SmallString<20> FloatFuncName = FuncName;
3069   FloatFuncName += 'f';
3070   return isLibFuncEmittable(M, TLI, FloatFuncName);
3071 }
3072 
3073 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
3074                                                       IRBuilderBase &Builder) {
3075   Module *M = CI->getModule();
3076   LibFunc Func;
3077   Function *Callee = CI->getCalledFunction();
3078   // Check for string/memory library functions.
3079   if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
3080     // Make sure we never change the calling convention.
3081     assert(
3082         (ignoreCallingConv(Func) ||
3083          TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) &&
3084         "Optimizing string/memory libcall would change the calling convention");
3085     switch (Func) {
3086     case LibFunc_strcat:
3087       return optimizeStrCat(CI, Builder);
3088     case LibFunc_strncat:
3089       return optimizeStrNCat(CI, Builder);
3090     case LibFunc_strchr:
3091       return optimizeStrChr(CI, Builder);
3092     case LibFunc_strrchr:
3093       return optimizeStrRChr(CI, Builder);
3094     case LibFunc_strcmp:
3095       return optimizeStrCmp(CI, Builder);
3096     case LibFunc_strncmp:
3097       return optimizeStrNCmp(CI, Builder);
3098     case LibFunc_strcpy:
3099       return optimizeStrCpy(CI, Builder);
3100     case LibFunc_stpcpy:
3101       return optimizeStpCpy(CI, Builder);
3102     case LibFunc_strncpy:
3103       return optimizeStrNCpy(CI, Builder);
3104     case LibFunc_strlen:
3105       return optimizeStrLen(CI, Builder);
3106     case LibFunc_strnlen:
3107       return optimizeStrNLen(CI, Builder);
3108     case LibFunc_strpbrk:
3109       return optimizeStrPBrk(CI, Builder);
3110     case LibFunc_strndup:
3111       return optimizeStrNDup(CI, Builder);
3112     case LibFunc_strtol:
3113     case LibFunc_strtod:
3114     case LibFunc_strtof:
3115     case LibFunc_strtoul:
3116     case LibFunc_strtoll:
3117     case LibFunc_strtold:
3118     case LibFunc_strtoull:
3119       return optimizeStrTo(CI, Builder);
3120     case LibFunc_strspn:
3121       return optimizeStrSpn(CI, Builder);
3122     case LibFunc_strcspn:
3123       return optimizeStrCSpn(CI, Builder);
3124     case LibFunc_strstr:
3125       return optimizeStrStr(CI, Builder);
3126     case LibFunc_memchr:
3127       return optimizeMemChr(CI, Builder);
3128     case LibFunc_memrchr:
3129       return optimizeMemRChr(CI, Builder);
3130     case LibFunc_bcmp:
3131       return optimizeBCmp(CI, Builder);
3132     case LibFunc_memcmp:
3133       return optimizeMemCmp(CI, Builder);
3134     case LibFunc_memcpy:
3135       return optimizeMemCpy(CI, Builder);
3136     case LibFunc_memccpy:
3137       return optimizeMemCCpy(CI, Builder);
3138     case LibFunc_mempcpy:
3139       return optimizeMemPCpy(CI, Builder);
3140     case LibFunc_memmove:
3141       return optimizeMemMove(CI, Builder);
3142     case LibFunc_memset:
3143       return optimizeMemSet(CI, Builder);
3144     case LibFunc_realloc:
3145       return optimizeRealloc(CI, Builder);
3146     case LibFunc_wcslen:
3147       return optimizeWcslen(CI, Builder);
3148     case LibFunc_bcopy:
3149       return optimizeBCopy(CI, Builder);
3150     default:
3151       break;
3152     }
3153   }
3154   return nullptr;
3155 }
3156 
3157 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
3158                                                        LibFunc Func,
3159                                                        IRBuilderBase &Builder) {
3160   const Module *M = CI->getModule();
3161 
3162   // Don't optimize calls that require strict floating point semantics.
3163   if (CI->isStrictFP())
3164     return nullptr;
3165 
3166   if (Value *V = optimizeTrigReflections(CI, Func, Builder))
3167     return V;
3168 
3169   switch (Func) {
3170   case LibFunc_sinpif:
3171   case LibFunc_sinpi:
3172   case LibFunc_cospif:
3173   case LibFunc_cospi:
3174     return optimizeSinCosPi(CI, Builder);
3175   case LibFunc_powf:
3176   case LibFunc_pow:
3177   case LibFunc_powl:
3178     return optimizePow(CI, Builder);
3179   case LibFunc_exp2l:
3180   case LibFunc_exp2:
3181   case LibFunc_exp2f:
3182     return optimizeExp2(CI, Builder);
3183   case LibFunc_fabsf:
3184   case LibFunc_fabs:
3185   case LibFunc_fabsl:
3186     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
3187   case LibFunc_sqrtf:
3188   case LibFunc_sqrt:
3189   case LibFunc_sqrtl:
3190     return optimizeSqrt(CI, Builder);
3191   case LibFunc_logf:
3192   case LibFunc_log:
3193   case LibFunc_logl:
3194   case LibFunc_log10f:
3195   case LibFunc_log10:
3196   case LibFunc_log10l:
3197   case LibFunc_log1pf:
3198   case LibFunc_log1p:
3199   case LibFunc_log1pl:
3200   case LibFunc_log2f:
3201   case LibFunc_log2:
3202   case LibFunc_log2l:
3203   case LibFunc_logbf:
3204   case LibFunc_logb:
3205   case LibFunc_logbl:
3206     return optimizeLog(CI, Builder);
3207   case LibFunc_tan:
3208   case LibFunc_tanf:
3209   case LibFunc_tanl:
3210     return optimizeTan(CI, Builder);
3211   case LibFunc_ceil:
3212     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
3213   case LibFunc_floor:
3214     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
3215   case LibFunc_round:
3216     return replaceUnaryCall(CI, Builder, Intrinsic::round);
3217   case LibFunc_roundeven:
3218     return replaceUnaryCall(CI, Builder, Intrinsic::roundeven);
3219   case LibFunc_nearbyint:
3220     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
3221   case LibFunc_rint:
3222     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
3223   case LibFunc_trunc:
3224     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
3225   case LibFunc_acos:
3226   case LibFunc_acosh:
3227   case LibFunc_asin:
3228   case LibFunc_asinh:
3229   case LibFunc_atan:
3230   case LibFunc_atanh:
3231   case LibFunc_cbrt:
3232   case LibFunc_cosh:
3233   case LibFunc_exp:
3234   case LibFunc_exp10:
3235   case LibFunc_expm1:
3236   case LibFunc_cos:
3237   case LibFunc_sin:
3238   case LibFunc_sinh:
3239   case LibFunc_tanh:
3240     if (UnsafeFPShrink && hasFloatVersion(M, CI->getCalledFunction()->getName()))
3241       return optimizeUnaryDoubleFP(CI, Builder, TLI, true);
3242     return nullptr;
3243   case LibFunc_copysign:
3244     if (hasFloatVersion(M, CI->getCalledFunction()->getName()))
3245       return optimizeBinaryDoubleFP(CI, Builder, TLI);
3246     return nullptr;
3247   case LibFunc_fminf:
3248   case LibFunc_fmin:
3249   case LibFunc_fminl:
3250   case LibFunc_fmaxf:
3251   case LibFunc_fmax:
3252   case LibFunc_fmaxl:
3253     return optimizeFMinFMax(CI, Builder);
3254   case LibFunc_cabs:
3255   case LibFunc_cabsf:
3256   case LibFunc_cabsl:
3257     return optimizeCAbs(CI, Builder);
3258   default:
3259     return nullptr;
3260   }
3261 }
3262 
3263 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
3264   Module *M = CI->getModule();
3265   assert(!CI->isMustTailCall() && "These transforms aren't musttail safe.");
3266 
3267   // TODO: Split out the code below that operates on FP calls so that
3268   //       we can all non-FP calls with the StrictFP attribute to be
3269   //       optimized.
3270   if (CI->isNoBuiltin())
3271     return nullptr;
3272 
3273   LibFunc Func;
3274   Function *Callee = CI->getCalledFunction();
3275   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
3276 
3277   SmallVector<OperandBundleDef, 2> OpBundles;
3278   CI->getOperandBundlesAsDefs(OpBundles);
3279 
3280   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3281   Builder.setDefaultOperandBundles(OpBundles);
3282 
3283   // Command-line parameter overrides instruction attribute.
3284   // This can't be moved to optimizeFloatingPointLibCall() because it may be
3285   // used by the intrinsic optimizations.
3286   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
3287     UnsafeFPShrink = EnableUnsafeFPShrink;
3288   else if (isa<FPMathOperator>(CI) && CI->isFast())
3289     UnsafeFPShrink = true;
3290 
3291   // First, check for intrinsics.
3292   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
3293     if (!IsCallingConvC)
3294       return nullptr;
3295     // The FP intrinsics have corresponding constrained versions so we don't
3296     // need to check for the StrictFP attribute here.
3297     switch (II->getIntrinsicID()) {
3298     case Intrinsic::pow:
3299       return optimizePow(CI, Builder);
3300     case Intrinsic::exp2:
3301       return optimizeExp2(CI, Builder);
3302     case Intrinsic::log:
3303     case Intrinsic::log2:
3304     case Intrinsic::log10:
3305       return optimizeLog(CI, Builder);
3306     case Intrinsic::sqrt:
3307       return optimizeSqrt(CI, Builder);
3308     case Intrinsic::memset:
3309       return optimizeMemSet(CI, Builder);
3310     case Intrinsic::memcpy:
3311       return optimizeMemCpy(CI, Builder);
3312     case Intrinsic::memmove:
3313       return optimizeMemMove(CI, Builder);
3314     default:
3315       return nullptr;
3316     }
3317   }
3318 
3319   // Also try to simplify calls to fortified library functions.
3320   if (Value *SimplifiedFortifiedCI =
3321           FortifiedSimplifier.optimizeCall(CI, Builder)) {
3322     // Try to further simplify the result.
3323     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
3324     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
3325       // Ensure that SimplifiedCI's uses are complete, since some calls have
3326       // their uses analyzed.
3327       replaceAllUsesWith(CI, SimplifiedCI);
3328 
3329       // Set insertion point to SimplifiedCI to guarantee we reach all uses
3330       // we might replace later on.
3331       IRBuilderBase::InsertPointGuard Guard(Builder);
3332       Builder.SetInsertPoint(SimplifiedCI);
3333       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) {
3334         // If we were able to further simplify, remove the now redundant call.
3335         substituteInParent(SimplifiedCI, V);
3336         return V;
3337       }
3338     }
3339     return SimplifiedFortifiedCI;
3340   }
3341 
3342   // Then check for known library functions.
3343   if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
3344     // We never change the calling convention.
3345     if (!ignoreCallingConv(Func) && !IsCallingConvC)
3346       return nullptr;
3347     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3348       return V;
3349     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3350       return V;
3351     switch (Func) {
3352     case LibFunc_ffs:
3353     case LibFunc_ffsl:
3354     case LibFunc_ffsll:
3355       return optimizeFFS(CI, Builder);
3356     case LibFunc_fls:
3357     case LibFunc_flsl:
3358     case LibFunc_flsll:
3359       return optimizeFls(CI, Builder);
3360     case LibFunc_abs:
3361     case LibFunc_labs:
3362     case LibFunc_llabs:
3363       return optimizeAbs(CI, Builder);
3364     case LibFunc_isdigit:
3365       return optimizeIsDigit(CI, Builder);
3366     case LibFunc_isascii:
3367       return optimizeIsAscii(CI, Builder);
3368     case LibFunc_toascii:
3369       return optimizeToAscii(CI, Builder);
3370     case LibFunc_atoi:
3371     case LibFunc_atol:
3372     case LibFunc_atoll:
3373       return optimizeAtoi(CI, Builder);
3374     case LibFunc_strtol:
3375     case LibFunc_strtoll:
3376       return optimizeStrtol(CI, Builder);
3377     case LibFunc_printf:
3378       return optimizePrintF(CI, Builder);
3379     case LibFunc_sprintf:
3380       return optimizeSPrintF(CI, Builder);
3381     case LibFunc_snprintf:
3382       return optimizeSnPrintF(CI, Builder);
3383     case LibFunc_fprintf:
3384       return optimizeFPrintF(CI, Builder);
3385     case LibFunc_fwrite:
3386       return optimizeFWrite(CI, Builder);
3387     case LibFunc_fputs:
3388       return optimizeFPuts(CI, Builder);
3389     case LibFunc_puts:
3390       return optimizePuts(CI, Builder);
3391     case LibFunc_perror:
3392       return optimizeErrorReporting(CI, Builder);
3393     case LibFunc_vfprintf:
3394     case LibFunc_fiprintf:
3395       return optimizeErrorReporting(CI, Builder, 0);
3396     default:
3397       return nullptr;
3398     }
3399   }
3400   return nullptr;
3401 }
3402 
3403 LibCallSimplifier::LibCallSimplifier(
3404     const DataLayout &DL, const TargetLibraryInfo *TLI,
3405     OptimizationRemarkEmitter &ORE,
3406     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
3407     function_ref<void(Instruction *, Value *)> Replacer,
3408     function_ref<void(Instruction *)> Eraser)
3409     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
3410       Replacer(Replacer), Eraser(Eraser) {}
3411 
3412 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3413   // Indirect through the replacer used in this instance.
3414   Replacer(I, With);
3415 }
3416 
3417 void LibCallSimplifier::eraseFromParent(Instruction *I) {
3418   Eraser(I);
3419 }
3420 
3421 // TODO:
3422 //   Additional cases that we need to add to this file:
3423 //
3424 // cbrt:
3425 //   * cbrt(expN(X))  -> expN(x/3)
3426 //   * cbrt(sqrt(x))  -> pow(x,1/6)
3427 //   * cbrt(cbrt(x))  -> pow(x,1/9)
3428 //
3429 // exp, expf, expl:
3430 //   * exp(log(x))  -> x
3431 //
3432 // log, logf, logl:
3433 //   * log(exp(x))   -> x
3434 //   * log(exp(y))   -> y*log(e)
3435 //   * log(exp10(y)) -> y*log(10)
3436 //   * log(sqrt(x))  -> 0.5*log(x)
3437 //
3438 // pow, powf, powl:
3439 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
3440 //   * pow(pow(x,y),z)-> pow(x,y*z)
3441 //
3442 // signbit:
3443 //   * signbit(cnst) -> cnst'
3444 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3445 //
3446 // sqrt, sqrtf, sqrtl:
3447 //   * sqrt(expN(x))  -> expN(x*0.5)
3448 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3449 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3450 //
3451 
3452 //===----------------------------------------------------------------------===//
3453 // Fortified Library Call Optimizations
3454 //===----------------------------------------------------------------------===//
3455 
3456 bool
3457 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
3458                                                     unsigned ObjSizeOp,
3459                                                     Optional<unsigned> SizeOp,
3460                                                     Optional<unsigned> StrOp,
3461                                                     Optional<unsigned> FlagOp) {
3462   // If this function takes a flag argument, the implementation may use it to
3463   // perform extra checks. Don't fold into the non-checking variant.
3464   if (FlagOp) {
3465     ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
3466     if (!Flag || !Flag->isZero())
3467       return false;
3468   }
3469 
3470   if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
3471     return true;
3472 
3473   if (ConstantInt *ObjSizeCI =
3474           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
3475     if (ObjSizeCI->isMinusOne())
3476       return true;
3477     // If the object size wasn't -1 (unknown), bail out if we were asked to.
3478     if (OnlyLowerUnknownSize)
3479       return false;
3480     if (StrOp) {
3481       uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
3482       // If the length is 0 we don't know how long it is and so we can't
3483       // remove the check.
3484       if (Len)
3485         annotateDereferenceableBytes(CI, *StrOp, Len);
3486       else
3487         return false;
3488       return ObjSizeCI->getZExtValue() >= Len;
3489     }
3490 
3491     if (SizeOp) {
3492       if (ConstantInt *SizeCI =
3493               dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
3494         return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
3495     }
3496   }
3497   return false;
3498 }
3499 
3500 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
3501                                                      IRBuilderBase &B) {
3502   if (isFortifiedCallFoldable(CI, 3, 2)) {
3503     CallInst *NewCI =
3504         B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3505                        Align(1), CI->getArgOperand(2));
3506     NewCI->setAttributes(CI->getAttributes());
3507     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3508     copyFlags(*CI, NewCI);
3509     return CI->getArgOperand(0);
3510   }
3511   return nullptr;
3512 }
3513 
3514 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
3515                                                       IRBuilderBase &B) {
3516   if (isFortifiedCallFoldable(CI, 3, 2)) {
3517     CallInst *NewCI =
3518         B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3519                         Align(1), CI->getArgOperand(2));
3520     NewCI->setAttributes(CI->getAttributes());
3521     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3522     copyFlags(*CI, NewCI);
3523     return CI->getArgOperand(0);
3524   }
3525   return nullptr;
3526 }
3527 
3528 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
3529                                                      IRBuilderBase &B) {
3530   if (isFortifiedCallFoldable(CI, 3, 2)) {
3531     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
3532     CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
3533                                      CI->getArgOperand(2), Align(1));
3534     NewCI->setAttributes(CI->getAttributes());
3535     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3536     copyFlags(*CI, NewCI);
3537     return CI->getArgOperand(0);
3538   }
3539   return nullptr;
3540 }
3541 
3542 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI,
3543                                                       IRBuilderBase &B) {
3544   const DataLayout &DL = CI->getModule()->getDataLayout();
3545   if (isFortifiedCallFoldable(CI, 3, 2))
3546     if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3547                                   CI->getArgOperand(2), B, DL, TLI)) {
3548       CallInst *NewCI = cast<CallInst>(Call);
3549       NewCI->setAttributes(CI->getAttributes());
3550       NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3551       return copyFlags(*CI, NewCI);
3552     }
3553   return nullptr;
3554 }
3555 
3556 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
3557                                                       IRBuilderBase &B,
3558                                                       LibFunc Func) {
3559   const DataLayout &DL = CI->getModule()->getDataLayout();
3560   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
3561         *ObjSize = CI->getArgOperand(2);
3562 
3563   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
3564   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
3565     Value *StrLen = emitStrLen(Src, B, DL, TLI);
3566     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
3567   }
3568 
3569   // If a) we don't have any length information, or b) we know this will
3570   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3571   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3572   // TODO: It might be nice to get a maximum length out of the possible
3573   // string lengths for varying.
3574   if (isFortifiedCallFoldable(CI, 2, None, 1)) {
3575     if (Func == LibFunc_strcpy_chk)
3576       return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
3577     else
3578       return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI));
3579   }
3580 
3581   if (OnlyLowerUnknownSize)
3582     return nullptr;
3583 
3584   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3585   uint64_t Len = GetStringLength(Src);
3586   if (Len)
3587     annotateDereferenceableBytes(CI, 1, Len);
3588   else
3589     return nullptr;
3590 
3591   // FIXME: There is really no guarantee that sizeof(size_t) is equal to
3592   // sizeof(int*) for every target. So the assumption used here to derive the
3593   // SizeTBits based on the size of an integer pointer in address space zero
3594   // isn't always valid.
3595   Type *SizeTTy = DL.getIntPtrType(CI->getContext(), /*AddressSpace=*/0);
3596   Value *LenV = ConstantInt::get(SizeTTy, Len);
3597   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
3598   // If the function was an __stpcpy_chk, and we were able to fold it into
3599   // a __memcpy_chk, we still need to return the correct end pointer.
3600   if (Ret && Func == LibFunc_stpcpy_chk)
3601     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
3602   return copyFlags(*CI, cast<CallInst>(Ret));
3603 }
3604 
3605 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
3606                                                      IRBuilderBase &B) {
3607   if (isFortifiedCallFoldable(CI, 1, None, 0))
3608     return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B,
3609                                      CI->getModule()->getDataLayout(), TLI));
3610   return nullptr;
3611 }
3612 
3613 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
3614                                                        IRBuilderBase &B,
3615                                                        LibFunc Func) {
3616   if (isFortifiedCallFoldable(CI, 3, 2)) {
3617     if (Func == LibFunc_strncpy_chk)
3618       return copyFlags(*CI,
3619                        emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3620                                    CI->getArgOperand(2), B, TLI));
3621     else
3622       return copyFlags(*CI,
3623                        emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3624                                    CI->getArgOperand(2), B, TLI));
3625   }
3626 
3627   return nullptr;
3628 }
3629 
3630 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
3631                                                       IRBuilderBase &B) {
3632   if (isFortifiedCallFoldable(CI, 4, 3))
3633     return copyFlags(
3634         *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3635                          CI->getArgOperand(2), CI->getArgOperand(3), B, TLI));
3636 
3637   return nullptr;
3638 }
3639 
3640 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
3641                                                        IRBuilderBase &B) {
3642   if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
3643     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5));
3644     return copyFlags(*CI,
3645                      emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3646                                   CI->getArgOperand(4), VariadicArgs, B, TLI));
3647   }
3648 
3649   return nullptr;
3650 }
3651 
3652 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
3653                                                       IRBuilderBase &B) {
3654   if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
3655     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4));
3656     return copyFlags(*CI,
3657                      emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3658                                  VariadicArgs, B, TLI));
3659   }
3660 
3661   return nullptr;
3662 }
3663 
3664 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
3665                                                      IRBuilderBase &B) {
3666   if (isFortifiedCallFoldable(CI, 2))
3667     return copyFlags(
3668         *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI));
3669 
3670   return nullptr;
3671 }
3672 
3673 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
3674                                                    IRBuilderBase &B) {
3675   if (isFortifiedCallFoldable(CI, 3))
3676     return copyFlags(*CI,
3677                      emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
3678                                  CI->getArgOperand(2), B, TLI));
3679 
3680   return nullptr;
3681 }
3682 
3683 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
3684                                                       IRBuilderBase &B) {
3685   if (isFortifiedCallFoldable(CI, 3))
3686     return copyFlags(*CI,
3687                      emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
3688                                  CI->getArgOperand(2), B, TLI));
3689 
3690   return nullptr;
3691 }
3692 
3693 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
3694                                                       IRBuilderBase &B) {
3695   if (isFortifiedCallFoldable(CI, 3))
3696     return copyFlags(*CI,
3697                      emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3698                                  CI->getArgOperand(2), B, TLI));
3699 
3700   return nullptr;
3701 }
3702 
3703 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
3704                                                         IRBuilderBase &B) {
3705   if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
3706     return copyFlags(
3707         *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3708                            CI->getArgOperand(4), CI->getArgOperand(5), B, TLI));
3709 
3710   return nullptr;
3711 }
3712 
3713 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
3714                                                        IRBuilderBase &B) {
3715   if (isFortifiedCallFoldable(CI, 2, None, None, 1))
3716     return copyFlags(*CI,
3717                      emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3718                                   CI->getArgOperand(4), B, TLI));
3719 
3720   return nullptr;
3721 }
3722 
3723 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI,
3724                                                 IRBuilderBase &Builder) {
3725   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
3726   // Some clang users checked for _chk libcall availability using:
3727   //   __has_builtin(__builtin___memcpy_chk)
3728   // When compiling with -fno-builtin, this is always true.
3729   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
3730   // end up with fortified libcalls, which isn't acceptable in a freestanding
3731   // environment which only provides their non-fortified counterparts.
3732   //
3733   // Until we change clang and/or teach external users to check for availability
3734   // differently, disregard the "nobuiltin" attribute and TLI::has.
3735   //
3736   // PR23093.
3737 
3738   LibFunc Func;
3739   Function *Callee = CI->getCalledFunction();
3740   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
3741 
3742   SmallVector<OperandBundleDef, 2> OpBundles;
3743   CI->getOperandBundlesAsDefs(OpBundles);
3744 
3745   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3746   Builder.setDefaultOperandBundles(OpBundles);
3747 
3748   // First, check that this is a known library functions and that the prototype
3749   // is correct.
3750   if (!TLI->getLibFunc(*Callee, Func))
3751     return nullptr;
3752 
3753   // We never change the calling convention.
3754   if (!ignoreCallingConv(Func) && !IsCallingConvC)
3755     return nullptr;
3756 
3757   switch (Func) {
3758   case LibFunc_memcpy_chk:
3759     return optimizeMemCpyChk(CI, Builder);
3760   case LibFunc_mempcpy_chk:
3761     return optimizeMemPCpyChk(CI, Builder);
3762   case LibFunc_memmove_chk:
3763     return optimizeMemMoveChk(CI, Builder);
3764   case LibFunc_memset_chk:
3765     return optimizeMemSetChk(CI, Builder);
3766   case LibFunc_stpcpy_chk:
3767   case LibFunc_strcpy_chk:
3768     return optimizeStrpCpyChk(CI, Builder, Func);
3769   case LibFunc_strlen_chk:
3770     return optimizeStrLenChk(CI, Builder);
3771   case LibFunc_stpncpy_chk:
3772   case LibFunc_strncpy_chk:
3773     return optimizeStrpNCpyChk(CI, Builder, Func);
3774   case LibFunc_memccpy_chk:
3775     return optimizeMemCCpyChk(CI, Builder);
3776   case LibFunc_snprintf_chk:
3777     return optimizeSNPrintfChk(CI, Builder);
3778   case LibFunc_sprintf_chk:
3779     return optimizeSPrintfChk(CI, Builder);
3780   case LibFunc_strcat_chk:
3781     return optimizeStrCatChk(CI, Builder);
3782   case LibFunc_strlcat_chk:
3783     return optimizeStrLCat(CI, Builder);
3784   case LibFunc_strncat_chk:
3785     return optimizeStrNCatChk(CI, Builder);
3786   case LibFunc_strlcpy_chk:
3787     return optimizeStrLCpyChk(CI, Builder);
3788   case LibFunc_vsnprintf_chk:
3789     return optimizeVSNPrintfChk(CI, Builder);
3790   case LibFunc_vsprintf_chk:
3791     return optimizeVSPrintfChk(CI, Builder);
3792   default:
3793     break;
3794   }
3795   return nullptr;
3796 }
3797 
3798 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
3799     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
3800     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
3801