1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is a utility pass used for testing the InstructionSimplify analysis.
11 // The analysis is applied to every instruction, and if it simplifies then the
12 // instruction is replaced by the simplification.  If you are looking for a pass
13 // that performs serious instruction folding, use the instcombine pass instead.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DiagnosticInfo.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Transforms/Utils/BuildLibCalls.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 static cl::opt<bool>
40     ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden,
41                    cl::desc("Treat error-reporting calls as cold"));
42 
43 static cl::opt<bool>
44     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
45                          cl::init(false),
46                          cl::desc("Enable unsafe double to float "
47                                   "shrinking for math lib calls"));
48 
49 
50 //===----------------------------------------------------------------------===//
51 // Helper Functions
52 //===----------------------------------------------------------------------===//
53 
54 static bool ignoreCallingConv(LibFunc::Func Func) {
55   return Func == LibFunc::abs || Func == LibFunc::labs ||
56          Func == LibFunc::llabs || Func == LibFunc::strlen;
57 }
58 
59 static bool isCallingConvCCompatible(CallInst *CI) {
60   switch(CI->getCallingConv()) {
61   default:
62     return false;
63   case llvm::CallingConv::C:
64     return true;
65   case llvm::CallingConv::ARM_APCS:
66   case llvm::CallingConv::ARM_AAPCS:
67   case llvm::CallingConv::ARM_AAPCS_VFP: {
68 
69     // The iOS ABI diverges from the standard in some cases, so for now don't
70     // try to simplify those calls.
71     if (Triple(CI->getModule()->getTargetTriple()).isiOS())
72       return false;
73 
74     auto *FuncTy = CI->getFunctionType();
75 
76     if (!FuncTy->getReturnType()->isPointerTy() &&
77         !FuncTy->getReturnType()->isIntegerTy() &&
78         !FuncTy->getReturnType()->isVoidTy())
79       return false;
80 
81     for (auto Param : FuncTy->params()) {
82       if (!Param->isPointerTy() && !Param->isIntegerTy())
83         return false;
84     }
85     return true;
86   }
87   }
88   return false;
89 }
90 
91 /// Return true if it only matters that the value is equal or not-equal to zero.
92 static bool isOnlyUsedInZeroEqualityComparison(Value *V) {
93   for (User *U : V->users()) {
94     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
95       if (IC->isEquality())
96         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
97           if (C->isNullValue())
98             continue;
99     // Unknown instruction.
100     return false;
101   }
102   return true;
103 }
104 
105 /// Return true if it is only used in equality comparisons with With.
106 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
107   for (User *U : V->users()) {
108     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
109       if (IC->isEquality() && IC->getOperand(1) == With)
110         continue;
111     // Unknown instruction.
112     return false;
113   }
114   return true;
115 }
116 
117 static bool callHasFloatingPointArgument(const CallInst *CI) {
118   return any_of(CI->operands(), [](const Use &OI) {
119     return OI->getType()->isFloatingPointTy();
120   });
121 }
122 
123 /// \brief Check whether the overloaded unary floating point function
124 /// corresponding to \a Ty is available.
125 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
126                             LibFunc::Func DoubleFn, LibFunc::Func FloatFn,
127                             LibFunc::Func LongDoubleFn) {
128   switch (Ty->getTypeID()) {
129   case Type::FloatTyID:
130     return TLI->has(FloatFn);
131   case Type::DoubleTyID:
132     return TLI->has(DoubleFn);
133   default:
134     return TLI->has(LongDoubleFn);
135   }
136 }
137 
138 //===----------------------------------------------------------------------===//
139 // String and Memory Library Call Optimizations
140 //===----------------------------------------------------------------------===//
141 
142 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
143   // Extract some information from the instruction
144   Value *Dst = CI->getArgOperand(0);
145   Value *Src = CI->getArgOperand(1);
146 
147   // See if we can get the length of the input string.
148   uint64_t Len = GetStringLength(Src);
149   if (Len == 0)
150     return nullptr;
151   --Len; // Unbias length.
152 
153   // Handle the simple, do-nothing case: strcat(x, "") -> x
154   if (Len == 0)
155     return Dst;
156 
157   return emitStrLenMemCpy(Src, Dst, Len, B);
158 }
159 
160 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
161                                            IRBuilder<> &B) {
162   // We need to find the end of the destination string.  That's where the
163   // memory is to be moved to. We just generate a call to strlen.
164   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
165   if (!DstLen)
166     return nullptr;
167 
168   // Now that we have the destination's length, we must index into the
169   // destination's pointer to get the actual memcpy destination (end of
170   // the string .. we're concatenating).
171   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
172 
173   // We have enough information to now generate the memcpy call to do the
174   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
175   B.CreateMemCpy(CpyDst, Src,
176                  ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1),
177                  1);
178   return Dst;
179 }
180 
181 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
182   // Extract some information from the instruction.
183   Value *Dst = CI->getArgOperand(0);
184   Value *Src = CI->getArgOperand(1);
185   uint64_t Len;
186 
187   // We don't do anything if length is not constant.
188   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
189     Len = LengthArg->getZExtValue();
190   else
191     return nullptr;
192 
193   // See if we can get the length of the input string.
194   uint64_t SrcLen = GetStringLength(Src);
195   if (SrcLen == 0)
196     return nullptr;
197   --SrcLen; // Unbias length.
198 
199   // Handle the simple, do-nothing cases:
200   // strncat(x, "", c) -> x
201   // strncat(x,  c, 0) -> x
202   if (SrcLen == 0 || Len == 0)
203     return Dst;
204 
205   // We don't optimize this case.
206   if (Len < SrcLen)
207     return nullptr;
208 
209   // strncat(x, s, c) -> strcat(x, s)
210   // s is constant so the strcat can be optimized further.
211   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
212 }
213 
214 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
215   Function *Callee = CI->getCalledFunction();
216   FunctionType *FT = Callee->getFunctionType();
217   Value *SrcStr = CI->getArgOperand(0);
218 
219   // If the second operand is non-constant, see if we can compute the length
220   // of the input string and turn this into memchr.
221   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
222   if (!CharC) {
223     uint64_t Len = GetStringLength(SrcStr);
224     if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
225       return nullptr;
226 
227     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
228                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
229                       B, DL, TLI);
230   }
231 
232   // Otherwise, the character is a constant, see if the first argument is
233   // a string literal.  If so, we can constant fold.
234   StringRef Str;
235   if (!getConstantStringInfo(SrcStr, Str)) {
236     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
237       return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI),
238                          "strchr");
239     return nullptr;
240   }
241 
242   // Compute the offset, make sure to handle the case when we're searching for
243   // zero (a weird way to spell strlen).
244   size_t I = (0xFF & CharC->getSExtValue()) == 0
245                  ? Str.size()
246                  : Str.find(CharC->getSExtValue());
247   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
248     return Constant::getNullValue(CI->getType());
249 
250   // strchr(s+n,c)  -> gep(s+n+i,c)
251   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
252 }
253 
254 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
255   Value *SrcStr = CI->getArgOperand(0);
256   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
257 
258   // Cannot fold anything if we're not looking for a constant.
259   if (!CharC)
260     return nullptr;
261 
262   StringRef Str;
263   if (!getConstantStringInfo(SrcStr, Str)) {
264     // strrchr(s, 0) -> strchr(s, 0)
265     if (CharC->isZero())
266       return emitStrChr(SrcStr, '\0', B, TLI);
267     return nullptr;
268   }
269 
270   // Compute the offset.
271   size_t I = (0xFF & CharC->getSExtValue()) == 0
272                  ? Str.size()
273                  : Str.rfind(CharC->getSExtValue());
274   if (I == StringRef::npos) // Didn't find the char. Return null.
275     return Constant::getNullValue(CI->getType());
276 
277   // strrchr(s+n,c) -> gep(s+n+i,c)
278   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
279 }
280 
281 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
282   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
283   if (Str1P == Str2P) // strcmp(x,x)  -> 0
284     return ConstantInt::get(CI->getType(), 0);
285 
286   StringRef Str1, Str2;
287   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
288   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
289 
290   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
291   if (HasStr1 && HasStr2)
292     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
293 
294   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
295     return B.CreateNeg(
296         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
297 
298   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
299     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
300 
301   // strcmp(P, "x") -> memcmp(P, "x", 2)
302   uint64_t Len1 = GetStringLength(Str1P);
303   uint64_t Len2 = GetStringLength(Str2P);
304   if (Len1 && Len2) {
305     return emitMemCmp(Str1P, Str2P,
306                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
307                                        std::min(Len1, Len2)),
308                       B, DL, TLI);
309   }
310 
311   return nullptr;
312 }
313 
314 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
315   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
316   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
317     return ConstantInt::get(CI->getType(), 0);
318 
319   // Get the length argument if it is constant.
320   uint64_t Length;
321   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
322     Length = LengthArg->getZExtValue();
323   else
324     return nullptr;
325 
326   if (Length == 0) // strncmp(x,y,0)   -> 0
327     return ConstantInt::get(CI->getType(), 0);
328 
329   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
330     return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
331 
332   StringRef Str1, Str2;
333   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
334   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
335 
336   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
337   if (HasStr1 && HasStr2) {
338     StringRef SubStr1 = Str1.substr(0, Length);
339     StringRef SubStr2 = Str2.substr(0, Length);
340     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
341   }
342 
343   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
344     return B.CreateNeg(
345         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
346 
347   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
348     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
349 
350   return nullptr;
351 }
352 
353 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
354   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
355   if (Dst == Src) // strcpy(x,x)  -> x
356     return Src;
357 
358   // See if we can get the length of the input string.
359   uint64_t Len = GetStringLength(Src);
360   if (Len == 0)
361     return nullptr;
362 
363   // We have enough information to now generate the memcpy call to do the
364   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
365   B.CreateMemCpy(Dst, Src,
366                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1);
367   return Dst;
368 }
369 
370 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
371   Function *Callee = CI->getCalledFunction();
372   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
373   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
374     Value *StrLen = emitStrLen(Src, B, DL, TLI);
375     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
376   }
377 
378   // See if we can get the length of the input string.
379   uint64_t Len = GetStringLength(Src);
380   if (Len == 0)
381     return nullptr;
382 
383   Type *PT = Callee->getFunctionType()->getParamType(0);
384   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
385   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
386                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
387 
388   // We have enough information to now generate the memcpy call to do the
389   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
390   B.CreateMemCpy(Dst, Src, LenV, 1);
391   return DstEnd;
392 }
393 
394 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
395   Function *Callee = CI->getCalledFunction();
396   Value *Dst = CI->getArgOperand(0);
397   Value *Src = CI->getArgOperand(1);
398   Value *LenOp = CI->getArgOperand(2);
399 
400   // See if we can get the length of the input string.
401   uint64_t SrcLen = GetStringLength(Src);
402   if (SrcLen == 0)
403     return nullptr;
404   --SrcLen;
405 
406   if (SrcLen == 0) {
407     // strncpy(x, "", y) -> memset(x, '\0', y, 1)
408     B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
409     return Dst;
410   }
411 
412   uint64_t Len;
413   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
414     Len = LengthArg->getZExtValue();
415   else
416     return nullptr;
417 
418   if (Len == 0)
419     return Dst; // strncpy(x, y, 0) -> x
420 
421   // Let strncpy handle the zero padding
422   if (Len > SrcLen + 1)
423     return nullptr;
424 
425   Type *PT = Callee->getFunctionType()->getParamType(0);
426   // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
427   B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1);
428 
429   return Dst;
430 }
431 
432 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
433   Value *Src = CI->getArgOperand(0);
434 
435   // Constant folding: strlen("xyz") -> 3
436   if (uint64_t Len = GetStringLength(Src))
437     return ConstantInt::get(CI->getType(), Len - 1);
438 
439   // If s is a constant pointer pointing to a string literal, we can fold
440   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
441   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
442   // We only try to simplify strlen when the pointer s points to an array
443   // of i8. Otherwise, we would need to scale the offset x before doing the
444   // subtraction. This will make the optimization more complex, and it's not
445   // very useful because calling strlen for a pointer of other types is
446   // very uncommon.
447   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
448     if (!isGEPBasedOnPointerToString(GEP))
449       return nullptr;
450 
451     StringRef Str;
452     if (getConstantStringInfo(GEP->getOperand(0), Str, 0, false)) {
453       size_t NullTermIdx = Str.find('\0');
454 
455       // If the string does not have '\0', leave it to strlen to compute
456       // its length.
457       if (NullTermIdx == StringRef::npos)
458         return nullptr;
459 
460       Value *Offset = GEP->getOperand(2);
461       unsigned BitWidth = Offset->getType()->getIntegerBitWidth();
462       APInt KnownZero(BitWidth, 0);
463       APInt KnownOne(BitWidth, 0);
464       computeKnownBits(Offset, KnownZero, KnownOne, DL, 0, nullptr, CI,
465                        nullptr);
466       KnownZero.flipAllBits();
467       size_t ArrSize =
468              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
469 
470       // KnownZero's bits are flipped, so zeros in KnownZero now represent
471       // bits known to be zeros in Offset, and ones in KnowZero represent
472       // bits unknown in Offset. Therefore, Offset is known to be in range
473       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
474       // unsigned-less-than NullTermIdx.
475       //
476       // If Offset is not provably in the range [0, NullTermIdx], we can still
477       // optimize if we can prove that the program has undefined behavior when
478       // Offset is outside that range. That is the case when GEP->getOperand(0)
479       // is a pointer to an object whose memory extent is NullTermIdx+1.
480       if ((KnownZero.isNonNegative() && KnownZero.ule(NullTermIdx)) ||
481           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
482            NullTermIdx == ArrSize - 1))
483         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
484                            Offset);
485     }
486 
487     return nullptr;
488   }
489 
490   // strlen(x?"foo":"bars") --> x ? 3 : 4
491   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
492     uint64_t LenTrue = GetStringLength(SI->getTrueValue());
493     uint64_t LenFalse = GetStringLength(SI->getFalseValue());
494     if (LenTrue && LenFalse) {
495       Function *Caller = CI->getParent()->getParent();
496       emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller,
497                              SI->getDebugLoc(),
498                              "folded strlen(select) to select of constants");
499       return B.CreateSelect(SI->getCondition(),
500                             ConstantInt::get(CI->getType(), LenTrue - 1),
501                             ConstantInt::get(CI->getType(), LenFalse - 1));
502     }
503   }
504 
505   // strlen(x) != 0 --> *x != 0
506   // strlen(x) == 0 --> *x == 0
507   if (isOnlyUsedInZeroEqualityComparison(CI))
508     return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
509 
510   return nullptr;
511 }
512 
513 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
514   StringRef S1, S2;
515   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
516   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
517 
518   // strpbrk(s, "") -> nullptr
519   // strpbrk("", s) -> nullptr
520   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
521     return Constant::getNullValue(CI->getType());
522 
523   // Constant folding.
524   if (HasS1 && HasS2) {
525     size_t I = S1.find_first_of(S2);
526     if (I == StringRef::npos) // No match.
527       return Constant::getNullValue(CI->getType());
528 
529     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
530                        "strpbrk");
531   }
532 
533   // strpbrk(s, "a") -> strchr(s, 'a')
534   if (HasS2 && S2.size() == 1)
535     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
536 
537   return nullptr;
538 }
539 
540 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
541   Value *EndPtr = CI->getArgOperand(1);
542   if (isa<ConstantPointerNull>(EndPtr)) {
543     // With a null EndPtr, this function won't capture the main argument.
544     // It would be readonly too, except that it still may write to errno.
545     CI->addAttribute(1, Attribute::NoCapture);
546   }
547 
548   return nullptr;
549 }
550 
551 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
552   StringRef S1, S2;
553   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
554   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
555 
556   // strspn(s, "") -> 0
557   // strspn("", s) -> 0
558   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
559     return Constant::getNullValue(CI->getType());
560 
561   // Constant folding.
562   if (HasS1 && HasS2) {
563     size_t Pos = S1.find_first_not_of(S2);
564     if (Pos == StringRef::npos)
565       Pos = S1.size();
566     return ConstantInt::get(CI->getType(), Pos);
567   }
568 
569   return nullptr;
570 }
571 
572 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
573   StringRef S1, S2;
574   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
575   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
576 
577   // strcspn("", s) -> 0
578   if (HasS1 && S1.empty())
579     return Constant::getNullValue(CI->getType());
580 
581   // Constant folding.
582   if (HasS1 && HasS2) {
583     size_t Pos = S1.find_first_of(S2);
584     if (Pos == StringRef::npos)
585       Pos = S1.size();
586     return ConstantInt::get(CI->getType(), Pos);
587   }
588 
589   // strcspn(s, "") -> strlen(s)
590   if (HasS2 && S2.empty())
591     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
592 
593   return nullptr;
594 }
595 
596 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
597   // fold strstr(x, x) -> x.
598   if (CI->getArgOperand(0) == CI->getArgOperand(1))
599     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
600 
601   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
602   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
603     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
604     if (!StrLen)
605       return nullptr;
606     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
607                                  StrLen, B, DL, TLI);
608     if (!StrNCmp)
609       return nullptr;
610     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
611       ICmpInst *Old = cast<ICmpInst>(*UI++);
612       Value *Cmp =
613           B.CreateICmp(Old->getPredicate(), StrNCmp,
614                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
615       replaceAllUsesWith(Old, Cmp);
616     }
617     return CI;
618   }
619 
620   // See if either input string is a constant string.
621   StringRef SearchStr, ToFindStr;
622   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
623   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
624 
625   // fold strstr(x, "") -> x.
626   if (HasStr2 && ToFindStr.empty())
627     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
628 
629   // If both strings are known, constant fold it.
630   if (HasStr1 && HasStr2) {
631     size_t Offset = SearchStr.find(ToFindStr);
632 
633     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
634       return Constant::getNullValue(CI->getType());
635 
636     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
637     Value *Result = castToCStr(CI->getArgOperand(0), B);
638     Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
639     return B.CreateBitCast(Result, CI->getType());
640   }
641 
642   // fold strstr(x, "y") -> strchr(x, 'y').
643   if (HasStr2 && ToFindStr.size() == 1) {
644     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
645     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
646   }
647   return nullptr;
648 }
649 
650 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
651   Value *SrcStr = CI->getArgOperand(0);
652   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
653   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
654 
655   // memchr(x, y, 0) -> null
656   if (LenC && LenC->isNullValue())
657     return Constant::getNullValue(CI->getType());
658 
659   // From now on we need at least constant length and string.
660   StringRef Str;
661   if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
662     return nullptr;
663 
664   // Truncate the string to LenC. If Str is smaller than LenC we will still only
665   // scan the string, as reading past the end of it is undefined and we can just
666   // return null if we don't find the char.
667   Str = Str.substr(0, LenC->getZExtValue());
668 
669   // If the char is variable but the input str and length are not we can turn
670   // this memchr call into a simple bit field test. Of course this only works
671   // when the return value is only checked against null.
672   //
673   // It would be really nice to reuse switch lowering here but we can't change
674   // the CFG at this point.
675   //
676   // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
677   //   after bounds check.
678   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
679     unsigned char Max =
680         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
681                           reinterpret_cast<const unsigned char *>(Str.end()));
682 
683     // Make sure the bit field we're about to create fits in a register on the
684     // target.
685     // FIXME: On a 64 bit architecture this prevents us from using the
686     // interesting range of alpha ascii chars. We could do better by emitting
687     // two bitfields or shifting the range by 64 if no lower chars are used.
688     if (!DL.fitsInLegalInteger(Max + 1))
689       return nullptr;
690 
691     // For the bit field use a power-of-2 type with at least 8 bits to avoid
692     // creating unnecessary illegal types.
693     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
694 
695     // Now build the bit field.
696     APInt Bitfield(Width, 0);
697     for (char C : Str)
698       Bitfield.setBit((unsigned char)C);
699     Value *BitfieldC = B.getInt(Bitfield);
700 
701     // First check that the bit field access is within bounds.
702     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
703     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
704                                  "memchr.bounds");
705 
706     // Create code that checks if the given bit is set in the field.
707     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
708     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
709 
710     // Finally merge both checks and cast to pointer type. The inttoptr
711     // implicitly zexts the i1 to intptr type.
712     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
713   }
714 
715   // Check if all arguments are constants.  If so, we can constant fold.
716   if (!CharC)
717     return nullptr;
718 
719   // Compute the offset.
720   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
721   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
722     return Constant::getNullValue(CI->getType());
723 
724   // memchr(s+n,c,l) -> gep(s+n+i,c)
725   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
726 }
727 
728 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
729   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
730 
731   if (LHS == RHS) // memcmp(s,s,x) -> 0
732     return Constant::getNullValue(CI->getType());
733 
734   // Make sure we have a constant length.
735   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
736   if (!LenC)
737     return nullptr;
738   uint64_t Len = LenC->getZExtValue();
739 
740   if (Len == 0) // memcmp(s1,s2,0) -> 0
741     return Constant::getNullValue(CI->getType());
742 
743   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
744   if (Len == 1) {
745     Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"),
746                                CI->getType(), "lhsv");
747     Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"),
748                                CI->getType(), "rhsv");
749     return B.CreateSub(LHSV, RHSV, "chardiff");
750   }
751 
752   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
753   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
754 
755     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
756     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
757 
758     if (getKnownAlignment(LHS, DL, CI) >= PrefAlignment &&
759         getKnownAlignment(RHS, DL, CI) >= PrefAlignment) {
760 
761       Type *LHSPtrTy =
762           IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
763       Type *RHSPtrTy =
764           IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
765 
766       Value *LHSV =
767           B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy, "lhsc"), "lhsv");
768       Value *RHSV =
769           B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy, "rhsc"), "rhsv");
770 
771       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
772     }
773   }
774 
775   // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
776   StringRef LHSStr, RHSStr;
777   if (getConstantStringInfo(LHS, LHSStr) &&
778       getConstantStringInfo(RHS, RHSStr)) {
779     // Make sure we're not reading out-of-bounds memory.
780     if (Len > LHSStr.size() || Len > RHSStr.size())
781       return nullptr;
782     // Fold the memcmp and normalize the result.  This way we get consistent
783     // results across multiple platforms.
784     uint64_t Ret = 0;
785     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
786     if (Cmp < 0)
787       Ret = -1;
788     else if (Cmp > 0)
789       Ret = 1;
790     return ConstantInt::get(CI->getType(), Ret);
791   }
792 
793   return nullptr;
794 }
795 
796 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
797   // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
798   B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
799                  CI->getArgOperand(2), 1);
800   return CI->getArgOperand(0);
801 }
802 
803 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
804   // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
805   B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
806                   CI->getArgOperand(2), 1);
807   return CI->getArgOperand(0);
808 }
809 
810 // TODO: Does this belong in BuildLibCalls or should all of those similar
811 // functions be moved here?
812 static Value *emitCalloc(Value *Num, Value *Size, const AttributeSet &Attrs,
813                          IRBuilder<> &B, const TargetLibraryInfo &TLI) {
814   LibFunc::Func Func;
815   if (!TLI.getLibFunc("calloc", Func) || !TLI.has(Func))
816     return nullptr;
817 
818   Module *M = B.GetInsertBlock()->getModule();
819   const DataLayout &DL = M->getDataLayout();
820   IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext()));
821   Value *Calloc = M->getOrInsertFunction("calloc", Attrs, B.getInt8PtrTy(),
822                                          PtrType, PtrType, nullptr);
823   CallInst *CI = B.CreateCall(Calloc, { Num, Size }, "calloc");
824 
825   if (const auto *F = dyn_cast<Function>(Calloc->stripPointerCasts()))
826     CI->setCallingConv(F->getCallingConv());
827 
828   return CI;
829 }
830 
831 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
832 static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B,
833                                const TargetLibraryInfo &TLI) {
834   // This has to be a memset of zeros (bzero).
835   auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
836   if (!FillValue || FillValue->getZExtValue() != 0)
837     return nullptr;
838 
839   // TODO: We should handle the case where the malloc has more than one use.
840   // This is necessary to optimize common patterns such as when the result of
841   // the malloc is checked against null or when a memset intrinsic is used in
842   // place of a memset library call.
843   auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
844   if (!Malloc || !Malloc->hasOneUse())
845     return nullptr;
846 
847   // Is the inner call really malloc()?
848   Function *InnerCallee = Malloc->getCalledFunction();
849   LibFunc::Func Func;
850   if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
851       Func != LibFunc::malloc)
852     return nullptr;
853 
854   // The memset must cover the same number of bytes that are malloc'd.
855   if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
856     return nullptr;
857 
858   // Replace the malloc with a calloc. We need the data layout to know what the
859   // actual size of a 'size_t' parameter is.
860   B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
861   const DataLayout &DL = Malloc->getModule()->getDataLayout();
862   IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
863   Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
864                              Malloc->getArgOperand(0), Malloc->getAttributes(),
865                              B, TLI);
866   if (!Calloc)
867     return nullptr;
868 
869   Malloc->replaceAllUsesWith(Calloc);
870   Malloc->eraseFromParent();
871 
872   return Calloc;
873 }
874 
875 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
876   if (auto *Calloc = foldMallocMemset(CI, B, *TLI))
877     return Calloc;
878 
879   // memset(p, v, n) -> llvm.memset(p, v, n, 1)
880   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
881   B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
882   return CI->getArgOperand(0);
883 }
884 
885 //===----------------------------------------------------------------------===//
886 // Math Library Optimizations
887 //===----------------------------------------------------------------------===//
888 
889 /// Return a variant of Val with float type.
890 /// Currently this works in two cases: If Val is an FPExtension of a float
891 /// value to something bigger, simply return the operand.
892 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
893 /// loss of precision do so.
894 static Value *valueHasFloatPrecision(Value *Val) {
895   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
896     Value *Op = Cast->getOperand(0);
897     if (Op->getType()->isFloatTy())
898       return Op;
899   }
900   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
901     APFloat F = Const->getValueAPF();
902     bool losesInfo;
903     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
904                     &losesInfo);
905     if (!losesInfo)
906       return ConstantFP::get(Const->getContext(), F);
907   }
908   return nullptr;
909 }
910 
911 /// Shrink double -> float for unary functions like 'floor'.
912 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
913                                     bool CheckRetType) {
914   Function *Callee = CI->getCalledFunction();
915   // We know this libcall has a valid prototype, but we don't know which.
916   if (!CI->getType()->isDoubleTy())
917     return nullptr;
918 
919   if (CheckRetType) {
920     // Check if all the uses for function like 'sin' are converted to float.
921     for (User *U : CI->users()) {
922       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
923       if (!Cast || !Cast->getType()->isFloatTy())
924         return nullptr;
925     }
926   }
927 
928   // If this is something like 'floor((double)floatval)', convert to floorf.
929   Value *V = valueHasFloatPrecision(CI->getArgOperand(0));
930   if (V == nullptr)
931     return nullptr;
932 
933   // Propagate fast-math flags from the existing call to the new call.
934   IRBuilder<>::FastMathFlagGuard Guard(B);
935   B.setFastMathFlags(CI->getFastMathFlags());
936 
937   // floor((double)floatval) -> (double)floorf(floatval)
938   if (Callee->isIntrinsic()) {
939     Module *M = CI->getModule();
940     Intrinsic::ID IID = Callee->getIntrinsicID();
941     Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
942     V = B.CreateCall(F, V);
943   } else {
944     // The call is a library call rather than an intrinsic.
945     V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
946   }
947 
948   return B.CreateFPExt(V, B.getDoubleTy());
949 }
950 
951 /// Shrink double -> float for binary functions like 'fmin/fmax'.
952 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
953   Function *Callee = CI->getCalledFunction();
954   // We know this libcall has a valid prototype, but we don't know which.
955   if (!CI->getType()->isDoubleTy())
956     return nullptr;
957 
958   // If this is something like 'fmin((double)floatval1, (double)floatval2)',
959   // or fmin(1.0, (double)floatval), then we convert it to fminf.
960   Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0));
961   if (V1 == nullptr)
962     return nullptr;
963   Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1));
964   if (V2 == nullptr)
965     return nullptr;
966 
967   // Propagate fast-math flags from the existing call to the new call.
968   IRBuilder<>::FastMathFlagGuard Guard(B);
969   B.setFastMathFlags(CI->getFastMathFlags());
970 
971   // fmin((double)floatval1, (double)floatval2)
972   //                      -> (double)fminf(floatval1, floatval2)
973   // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP().
974   Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
975                                    Callee->getAttributes());
976   return B.CreateFPExt(V, B.getDoubleTy());
977 }
978 
979 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
980   Function *Callee = CI->getCalledFunction();
981   Value *Ret = nullptr;
982   StringRef Name = Callee->getName();
983   if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name))
984     Ret = optimizeUnaryDoubleFP(CI, B, true);
985 
986   // cos(-x) -> cos(x)
987   Value *Op1 = CI->getArgOperand(0);
988   if (BinaryOperator::isFNeg(Op1)) {
989     BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
990     return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
991   }
992   return Ret;
993 }
994 
995 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
996   // Multiplications calculated using Addition Chains.
997   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
998 
999   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1000 
1001   if (InnerChain[Exp])
1002     return InnerChain[Exp];
1003 
1004   static const unsigned AddChain[33][2] = {
1005       {0, 0}, // Unused.
1006       {0, 0}, // Unused (base case = pow1).
1007       {1, 1}, // Unused (pre-computed).
1008       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1009       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1010       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1011       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1012       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1013   };
1014 
1015   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1016                                  getPow(InnerChain, AddChain[Exp][1], B));
1017   return InnerChain[Exp];
1018 }
1019 
1020 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
1021   Function *Callee = CI->getCalledFunction();
1022   Value *Ret = nullptr;
1023   StringRef Name = Callee->getName();
1024   if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name))
1025     Ret = optimizeUnaryDoubleFP(CI, B, true);
1026 
1027   Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
1028 
1029   // pow(1.0, x) -> 1.0
1030   if (match(Op1, m_SpecificFP(1.0)))
1031     return Op1;
1032   // pow(2.0, x) -> llvm.exp2(x)
1033   if (match(Op1, m_SpecificFP(2.0))) {
1034     Value *Exp2 = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::exp2,
1035                                             CI->getType());
1036     return B.CreateCall(Exp2, Op2, "exp2");
1037   }
1038 
1039   // There's no llvm.exp10 intrinsic yet, but, maybe, some day there will
1040   // be one.
1041   if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
1042     // pow(10.0, x) -> exp10(x)
1043     if (Op1C->isExactlyValue(10.0) &&
1044         hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f,
1045                         LibFunc::exp10l))
1046       return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B,
1047                                   Callee->getAttributes());
1048   }
1049 
1050   // pow(exp(x), y) -> exp(x * y)
1051   // pow(exp2(x), y) -> exp2(x * y)
1052   // We enable these only with fast-math. Besides rounding differences, the
1053   // transformation changes overflow and underflow behavior quite dramatically.
1054   // Example: x = 1000, y = 0.001.
1055   // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1).
1056   auto *OpC = dyn_cast<CallInst>(Op1);
1057   if (OpC && OpC->hasUnsafeAlgebra() && CI->hasUnsafeAlgebra()) {
1058     LibFunc::Func Func;
1059     Function *OpCCallee = OpC->getCalledFunction();
1060     if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) &&
1061         TLI->has(Func) && (Func == LibFunc::exp || Func == LibFunc::exp2)) {
1062       IRBuilder<>::FastMathFlagGuard Guard(B);
1063       B.setFastMathFlags(CI->getFastMathFlags());
1064       Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul");
1065       return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B,
1066                                   OpCCallee->getAttributes());
1067     }
1068   }
1069 
1070   ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
1071   if (!Op2C)
1072     return Ret;
1073 
1074   if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
1075     return ConstantFP::get(CI->getType(), 1.0);
1076 
1077   if (Op2C->isExactlyValue(-0.5) &&
1078       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf,
1079                       LibFunc::sqrtl)) {
1080     // If -ffast-math:
1081     // pow(x, -0.5) -> 1.0 / sqrt(x)
1082     if (CI->hasUnsafeAlgebra()) {
1083       IRBuilder<>::FastMathFlagGuard Guard(B);
1084       B.setFastMathFlags(CI->getFastMathFlags());
1085 
1086       // Here we cannot lower to an intrinsic because C99 sqrt() and llvm.sqrt
1087       // are not guaranteed to have the same semantics.
1088       Value *Sqrt = emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc::sqrt), B,
1089                                          Callee->getAttributes());
1090 
1091       return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Sqrt, "sqrtrecip");
1092     }
1093   }
1094 
1095   if (Op2C->isExactlyValue(0.5) &&
1096       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf,
1097                       LibFunc::sqrtl)) {
1098 
1099     // In -ffast-math, pow(x, 0.5) -> sqrt(x).
1100     if (CI->hasUnsafeAlgebra()) {
1101       IRBuilder<>::FastMathFlagGuard Guard(B);
1102       B.setFastMathFlags(CI->getFastMathFlags());
1103 
1104       // Unlike other math intrinsics, sqrt has differerent semantics
1105       // from the libc function. See LangRef for details.
1106       return emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc::sqrt), B,
1107                                   Callee->getAttributes());
1108     }
1109 
1110     // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
1111     // This is faster than calling pow, and still handles negative zero
1112     // and negative infinity correctly.
1113     // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
1114     Value *Inf = ConstantFP::getInfinity(CI->getType());
1115     Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
1116     Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes());
1117 
1118     Module *M = Callee->getParent();
1119     Function *FabsF = Intrinsic::getDeclaration(M, Intrinsic::fabs,
1120                                                 CI->getType());
1121     Value *FAbs = B.CreateCall(FabsF, Sqrt);
1122 
1123     Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
1124     Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
1125     return Sel;
1126   }
1127 
1128   if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
1129     return Op1;
1130   if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
1131     return B.CreateFMul(Op1, Op1, "pow2");
1132   if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
1133     return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
1134 
1135   // In -ffast-math, generate repeated fmul instead of generating pow(x, n).
1136   if (CI->hasUnsafeAlgebra()) {
1137     APFloat V = abs(Op2C->getValueAPF());
1138     // We limit to a max of 7 fmul(s). Thus max exponent is 32.
1139     // This transformation applies to integer exponents only.
1140     if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan ||
1141         !V.isInteger())
1142       return nullptr;
1143 
1144     // Propagate fast math flags.
1145     IRBuilder<>::FastMathFlagGuard Guard(B);
1146     B.setFastMathFlags(CI->getFastMathFlags());
1147 
1148     // We will memoize intermediate products of the Addition Chain.
1149     Value *InnerChain[33] = {nullptr};
1150     InnerChain[1] = Op1;
1151     InnerChain[2] = B.CreateFMul(Op1, Op1);
1152 
1153     // We cannot readily convert a non-double type (like float) to a double.
1154     // So we first convert V to something which could be converted to double.
1155     bool ignored;
1156     V.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &ignored);
1157 
1158     Value *FMul = getPow(InnerChain, V.convertToDouble(), B);
1159     // For negative exponents simply compute the reciprocal.
1160     if (Op2C->isNegative())
1161       FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul);
1162     return FMul;
1163   }
1164 
1165   return nullptr;
1166 }
1167 
1168 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1169   Function *Callee = CI->getCalledFunction();
1170   Value *Ret = nullptr;
1171   StringRef Name = Callee->getName();
1172   if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name))
1173     Ret = optimizeUnaryDoubleFP(CI, B, true);
1174 
1175   Value *Op = CI->getArgOperand(0);
1176   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1177   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1178   LibFunc::Func LdExp = LibFunc::ldexpl;
1179   if (Op->getType()->isFloatTy())
1180     LdExp = LibFunc::ldexpf;
1181   else if (Op->getType()->isDoubleTy())
1182     LdExp = LibFunc::ldexp;
1183 
1184   if (TLI->has(LdExp)) {
1185     Value *LdExpArg = nullptr;
1186     if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
1187       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
1188         LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
1189     } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
1190       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
1191         LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
1192     }
1193 
1194     if (LdExpArg) {
1195       Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
1196       if (!Op->getType()->isFloatTy())
1197         One = ConstantExpr::getFPExtend(One, Op->getType());
1198 
1199       Module *M = CI->getModule();
1200       Value *NewCallee =
1201           M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
1202                                  Op->getType(), B.getInt32Ty(), nullptr);
1203       CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg});
1204       if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
1205         CI->setCallingConv(F->getCallingConv());
1206 
1207       return CI;
1208     }
1209   }
1210   return Ret;
1211 }
1212 
1213 Value *LibCallSimplifier::optimizeFabs(CallInst *CI, IRBuilder<> &B) {
1214   Function *Callee = CI->getCalledFunction();
1215   IRBuilder<>::FastMathFlagGuard Guard(B);
1216   B.setFastMathFlags(CI->getFastMathFlags());
1217 
1218   // fabs/fabsf -> llvm.fabs.*
1219   Value *F = Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::fabs,
1220                                        CI->getType());
1221   Value *NewCall = B.CreateCall(F, { CI->getArgOperand(0) });
1222   NewCall->takeName(CI);
1223   return NewCall;
1224 }
1225 
1226 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1227   Function *Callee = CI->getCalledFunction();
1228   // If we can shrink the call to a float function rather than a double
1229   // function, do that first.
1230   StringRef Name = Callee->getName();
1231   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1232     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1233       return Ret;
1234 
1235   IRBuilder<>::FastMathFlagGuard Guard(B);
1236   FastMathFlags FMF;
1237   if (CI->hasUnsafeAlgebra()) {
1238     // Unsafe algebra sets all fast-math-flags to true.
1239     FMF.setUnsafeAlgebra();
1240   } else {
1241     // At a minimum, no-nans-fp-math must be true.
1242     if (!CI->hasNoNaNs())
1243       return nullptr;
1244     // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
1245     // "Ideally, fmax would be sensitive to the sign of zero, for example
1246     // fmax(-0. 0, +0. 0) would return +0; however, implementation in software
1247     // might be impractical."
1248     FMF.setNoSignedZeros();
1249     FMF.setNoNaNs();
1250   }
1251   B.setFastMathFlags(FMF);
1252 
1253   // We have a relaxed floating-point environment. We can ignore NaN-handling
1254   // and transform to a compare and select. We do not have to consider errno or
1255   // exceptions, because fmin/fmax do not have those.
1256   Value *Op0 = CI->getArgOperand(0);
1257   Value *Op1 = CI->getArgOperand(1);
1258   Value *Cmp = Callee->getName().startswith("fmin") ?
1259     B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
1260   return B.CreateSelect(Cmp, Op0, Op1);
1261 }
1262 
1263 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
1264   Function *Callee = CI->getCalledFunction();
1265   Value *Ret = nullptr;
1266   StringRef Name = Callee->getName();
1267   if (UnsafeFPShrink && hasFloatVersion(Name))
1268     Ret = optimizeUnaryDoubleFP(CI, B, true);
1269 
1270   if (!CI->hasUnsafeAlgebra())
1271     return Ret;
1272   Value *Op1 = CI->getArgOperand(0);
1273   auto *OpC = dyn_cast<CallInst>(Op1);
1274 
1275   // The earlier call must also be unsafe in order to do these transforms.
1276   if (!OpC || !OpC->hasUnsafeAlgebra())
1277     return Ret;
1278 
1279   // log(pow(x,y)) -> y*log(x)
1280   // This is only applicable to log, log2, log10.
1281   if (Name != "log" && Name != "log2" && Name != "log10")
1282     return Ret;
1283 
1284   IRBuilder<>::FastMathFlagGuard Guard(B);
1285   FastMathFlags FMF;
1286   FMF.setUnsafeAlgebra();
1287   B.setFastMathFlags(FMF);
1288 
1289   LibFunc::Func Func;
1290   Function *F = OpC->getCalledFunction();
1291   if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1292       Func == LibFunc::pow) || F->getIntrinsicID() == Intrinsic::pow))
1293     return B.CreateFMul(OpC->getArgOperand(1),
1294       emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B,
1295                            Callee->getAttributes()), "mul");
1296 
1297   // log(exp2(y)) -> y*log(2)
1298   if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) &&
1299       TLI->has(Func) && Func == LibFunc::exp2)
1300     return B.CreateFMul(
1301         OpC->getArgOperand(0),
1302         emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0),
1303                              Callee->getName(), B, Callee->getAttributes()),
1304         "logmul");
1305   return Ret;
1306 }
1307 
1308 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
1309   Function *Callee = CI->getCalledFunction();
1310   Value *Ret = nullptr;
1311   if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" ||
1312                                    Callee->getIntrinsicID() == Intrinsic::sqrt))
1313     Ret = optimizeUnaryDoubleFP(CI, B, true);
1314 
1315   if (!CI->hasUnsafeAlgebra())
1316     return Ret;
1317 
1318   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
1319   if (!I || I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
1320     return Ret;
1321 
1322   // We're looking for a repeated factor in a multiplication tree,
1323   // so we can do this fold: sqrt(x * x) -> fabs(x);
1324   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
1325   Value *Op0 = I->getOperand(0);
1326   Value *Op1 = I->getOperand(1);
1327   Value *RepeatOp = nullptr;
1328   Value *OtherOp = nullptr;
1329   if (Op0 == Op1) {
1330     // Simple match: the operands of the multiply are identical.
1331     RepeatOp = Op0;
1332   } else {
1333     // Look for a more complicated pattern: one of the operands is itself
1334     // a multiply, so search for a common factor in that multiply.
1335     // Note: We don't bother looking any deeper than this first level or for
1336     // variations of this pattern because instcombine's visitFMUL and/or the
1337     // reassociation pass should give us this form.
1338     Value *OtherMul0, *OtherMul1;
1339     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
1340       // Pattern: sqrt((x * y) * z)
1341       if (OtherMul0 == OtherMul1 &&
1342           cast<Instruction>(Op0)->hasUnsafeAlgebra()) {
1343         // Matched: sqrt((x * x) * z)
1344         RepeatOp = OtherMul0;
1345         OtherOp = Op1;
1346       }
1347     }
1348   }
1349   if (!RepeatOp)
1350     return Ret;
1351 
1352   // Fast math flags for any created instructions should match the sqrt
1353   // and multiply.
1354   IRBuilder<>::FastMathFlagGuard Guard(B);
1355   B.setFastMathFlags(I->getFastMathFlags());
1356 
1357   // If we found a repeated factor, hoist it out of the square root and
1358   // replace it with the fabs of that factor.
1359   Module *M = Callee->getParent();
1360   Type *ArgType = I->getType();
1361   Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
1362   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
1363   if (OtherOp) {
1364     // If we found a non-repeated factor, we still need to get its square
1365     // root. We then multiply that by the value that was simplified out
1366     // of the square root calculation.
1367     Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
1368     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
1369     return B.CreateFMul(FabsCall, SqrtCall);
1370   }
1371   return FabsCall;
1372 }
1373 
1374 // TODO: Generalize to handle any trig function and its inverse.
1375 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
1376   Function *Callee = CI->getCalledFunction();
1377   Value *Ret = nullptr;
1378   StringRef Name = Callee->getName();
1379   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
1380     Ret = optimizeUnaryDoubleFP(CI, B, true);
1381 
1382   Value *Op1 = CI->getArgOperand(0);
1383   auto *OpC = dyn_cast<CallInst>(Op1);
1384   if (!OpC)
1385     return Ret;
1386 
1387   // Both calls must allow unsafe optimizations in order to remove them.
1388   if (!CI->hasUnsafeAlgebra() || !OpC->hasUnsafeAlgebra())
1389     return Ret;
1390 
1391   // tan(atan(x)) -> x
1392   // tanf(atanf(x)) -> x
1393   // tanl(atanl(x)) -> x
1394   LibFunc::Func Func;
1395   Function *F = OpC->getCalledFunction();
1396   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1397       ((Func == LibFunc::atan && Callee->getName() == "tan") ||
1398        (Func == LibFunc::atanf && Callee->getName() == "tanf") ||
1399        (Func == LibFunc::atanl && Callee->getName() == "tanl")))
1400     Ret = OpC->getArgOperand(0);
1401   return Ret;
1402 }
1403 
1404 static bool isTrigLibCall(CallInst *CI) {
1405   // We can only hope to do anything useful if we can ignore things like errno
1406   // and floating-point exceptions.
1407   // We already checked the prototype.
1408   return CI->hasFnAttr(Attribute::NoUnwind) &&
1409          CI->hasFnAttr(Attribute::ReadNone);
1410 }
1411 
1412 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
1413                              bool UseFloat, Value *&Sin, Value *&Cos,
1414                              Value *&SinCos) {
1415   Type *ArgTy = Arg->getType();
1416   Type *ResTy;
1417   StringRef Name;
1418 
1419   Triple T(OrigCallee->getParent()->getTargetTriple());
1420   if (UseFloat) {
1421     Name = "__sincospif_stret";
1422 
1423     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
1424     // x86_64 can't use {float, float} since that would be returned in both
1425     // xmm0 and xmm1, which isn't what a real struct would do.
1426     ResTy = T.getArch() == Triple::x86_64
1427     ? static_cast<Type *>(VectorType::get(ArgTy, 2))
1428     : static_cast<Type *>(StructType::get(ArgTy, ArgTy, nullptr));
1429   } else {
1430     Name = "__sincospi_stret";
1431     ResTy = StructType::get(ArgTy, ArgTy, nullptr);
1432   }
1433 
1434   Module *M = OrigCallee->getParent();
1435   Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
1436                                          ResTy, ArgTy, nullptr);
1437 
1438   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
1439     // If the argument is an instruction, it must dominate all uses so put our
1440     // sincos call there.
1441     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
1442   } else {
1443     // Otherwise (e.g. for a constant) the beginning of the function is as
1444     // good a place as any.
1445     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
1446     B.SetInsertPoint(&EntryBB, EntryBB.begin());
1447   }
1448 
1449   SinCos = B.CreateCall(Callee, Arg, "sincospi");
1450 
1451   if (SinCos->getType()->isStructTy()) {
1452     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
1453     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
1454   } else {
1455     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
1456                                  "sinpi");
1457     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
1458                                  "cospi");
1459   }
1460 }
1461 
1462 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
1463   // Make sure the prototype is as expected, otherwise the rest of the
1464   // function is probably invalid and likely to abort.
1465   if (!isTrigLibCall(CI))
1466     return nullptr;
1467 
1468   Value *Arg = CI->getArgOperand(0);
1469   SmallVector<CallInst *, 1> SinCalls;
1470   SmallVector<CallInst *, 1> CosCalls;
1471   SmallVector<CallInst *, 1> SinCosCalls;
1472 
1473   bool IsFloat = Arg->getType()->isFloatTy();
1474 
1475   // Look for all compatible sinpi, cospi and sincospi calls with the same
1476   // argument. If there are enough (in some sense) we can make the
1477   // substitution.
1478   Function *F = CI->getFunction();
1479   for (User *U : Arg->users())
1480     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
1481 
1482   // It's only worthwhile if both sinpi and cospi are actually used.
1483   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
1484     return nullptr;
1485 
1486   Value *Sin, *Cos, *SinCos;
1487   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
1488 
1489   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
1490                                  Value *Res) {
1491     for (CallInst *C : Calls)
1492       replaceAllUsesWith(C, Res);
1493   };
1494 
1495   replaceTrigInsts(SinCalls, Sin);
1496   replaceTrigInsts(CosCalls, Cos);
1497   replaceTrigInsts(SinCosCalls, SinCos);
1498 
1499   return nullptr;
1500 }
1501 
1502 void LibCallSimplifier::classifyArgUse(
1503     Value *Val, Function *F, bool IsFloat,
1504     SmallVectorImpl<CallInst *> &SinCalls,
1505     SmallVectorImpl<CallInst *> &CosCalls,
1506     SmallVectorImpl<CallInst *> &SinCosCalls) {
1507   CallInst *CI = dyn_cast<CallInst>(Val);
1508 
1509   if (!CI)
1510     return;
1511 
1512   // Don't consider calls in other functions.
1513   if (CI->getFunction() != F)
1514     return;
1515 
1516   Function *Callee = CI->getCalledFunction();
1517   LibFunc::Func Func;
1518   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
1519       !isTrigLibCall(CI))
1520     return;
1521 
1522   if (IsFloat) {
1523     if (Func == LibFunc::sinpif)
1524       SinCalls.push_back(CI);
1525     else if (Func == LibFunc::cospif)
1526       CosCalls.push_back(CI);
1527     else if (Func == LibFunc::sincospif_stret)
1528       SinCosCalls.push_back(CI);
1529   } else {
1530     if (Func == LibFunc::sinpi)
1531       SinCalls.push_back(CI);
1532     else if (Func == LibFunc::cospi)
1533       CosCalls.push_back(CI);
1534     else if (Func == LibFunc::sincospi_stret)
1535       SinCosCalls.push_back(CI);
1536   }
1537 }
1538 
1539 //===----------------------------------------------------------------------===//
1540 // Integer Library Call Optimizations
1541 //===----------------------------------------------------------------------===//
1542 
1543 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
1544   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
1545   Value *Op = CI->getArgOperand(0);
1546   Type *ArgType = Op->getType();
1547   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1548                                        Intrinsic::cttz, ArgType);
1549   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
1550   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
1551   V = B.CreateIntCast(V, B.getInt32Ty(), false);
1552 
1553   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
1554   return B.CreateSelect(Cond, V, B.getInt32(0));
1555 }
1556 
1557 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
1558   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
1559   Value *Op = CI->getArgOperand(0);
1560   Type *ArgType = Op->getType();
1561   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1562                                        Intrinsic::ctlz, ArgType);
1563   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
1564   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
1565                   V);
1566   return B.CreateIntCast(V, CI->getType(), false);
1567 }
1568 
1569 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
1570   // abs(x) -> x >s -1 ? x : -x
1571   Value *Op = CI->getArgOperand(0);
1572   Value *Pos =
1573       B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos");
1574   Value *Neg = B.CreateNeg(Op, "neg");
1575   return B.CreateSelect(Pos, Op, Neg);
1576 }
1577 
1578 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
1579   // isdigit(c) -> (c-'0') <u 10
1580   Value *Op = CI->getArgOperand(0);
1581   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
1582   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
1583   return B.CreateZExt(Op, CI->getType());
1584 }
1585 
1586 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
1587   // isascii(c) -> c <u 128
1588   Value *Op = CI->getArgOperand(0);
1589   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
1590   return B.CreateZExt(Op, CI->getType());
1591 }
1592 
1593 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
1594   // toascii(c) -> c & 0x7f
1595   return B.CreateAnd(CI->getArgOperand(0),
1596                      ConstantInt::get(CI->getType(), 0x7F));
1597 }
1598 
1599 //===----------------------------------------------------------------------===//
1600 // Formatting and IO Library Call Optimizations
1601 //===----------------------------------------------------------------------===//
1602 
1603 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
1604 
1605 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
1606                                                  int StreamArg) {
1607   Function *Callee = CI->getCalledFunction();
1608   // Error reporting calls should be cold, mark them as such.
1609   // This applies even to non-builtin calls: it is only a hint and applies to
1610   // functions that the frontend might not understand as builtins.
1611 
1612   // This heuristic was suggested in:
1613   // Improving Static Branch Prediction in a Compiler
1614   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
1615   // Proceedings of PACT'98, Oct. 1998, IEEE
1616   if (!CI->hasFnAttr(Attribute::Cold) &&
1617       isReportingError(Callee, CI, StreamArg)) {
1618     CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
1619   }
1620 
1621   return nullptr;
1622 }
1623 
1624 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
1625   if (!ColdErrorCalls || !Callee || !Callee->isDeclaration())
1626     return false;
1627 
1628   if (StreamArg < 0)
1629     return true;
1630 
1631   // These functions might be considered cold, but only if their stream
1632   // argument is stderr.
1633 
1634   if (StreamArg >= (int)CI->getNumArgOperands())
1635     return false;
1636   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
1637   if (!LI)
1638     return false;
1639   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
1640   if (!GV || !GV->isDeclaration())
1641     return false;
1642   return GV->getName() == "stderr";
1643 }
1644 
1645 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
1646   // Check for a fixed format string.
1647   StringRef FormatStr;
1648   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
1649     return nullptr;
1650 
1651   // Empty format string -> noop.
1652   if (FormatStr.empty()) // Tolerate printf's declared void.
1653     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
1654 
1655   // Do not do any of the following transformations if the printf return value
1656   // is used, in general the printf return value is not compatible with either
1657   // putchar() or puts().
1658   if (!CI->use_empty())
1659     return nullptr;
1660 
1661   // printf("x") -> putchar('x'), even for "%" and "%%".
1662   if (FormatStr.size() == 1 || FormatStr == "%%")
1663     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
1664 
1665   // printf("%s", "a") --> putchar('a')
1666   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
1667     StringRef ChrStr;
1668     if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
1669       return nullptr;
1670     if (ChrStr.size() != 1)
1671       return nullptr;
1672     return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
1673   }
1674 
1675   // printf("foo\n") --> puts("foo")
1676   if (FormatStr[FormatStr.size() - 1] == '\n' &&
1677       FormatStr.find('%') == StringRef::npos) { // No format characters.
1678     // Create a string literal with no \n on it.  We expect the constant merge
1679     // pass to be run after this pass, to merge duplicate strings.
1680     FormatStr = FormatStr.drop_back();
1681     Value *GV = B.CreateGlobalString(FormatStr, "str");
1682     return emitPutS(GV, B, TLI);
1683   }
1684 
1685   // Optimize specific format strings.
1686   // printf("%c", chr) --> putchar(chr)
1687   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
1688       CI->getArgOperand(1)->getType()->isIntegerTy())
1689     return emitPutChar(CI->getArgOperand(1), B, TLI);
1690 
1691   // printf("%s\n", str) --> puts(str)
1692   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
1693       CI->getArgOperand(1)->getType()->isPointerTy())
1694     return emitPutS(CI->getArgOperand(1), B, TLI);
1695   return nullptr;
1696 }
1697 
1698 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
1699 
1700   Function *Callee = CI->getCalledFunction();
1701   FunctionType *FT = Callee->getFunctionType();
1702   if (Value *V = optimizePrintFString(CI, B)) {
1703     return V;
1704   }
1705 
1706   // printf(format, ...) -> iprintf(format, ...) if no floating point
1707   // arguments.
1708   if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
1709     Module *M = B.GetInsertBlock()->getParent()->getParent();
1710     Constant *IPrintFFn =
1711         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
1712     CallInst *New = cast<CallInst>(CI->clone());
1713     New->setCalledFunction(IPrintFFn);
1714     B.Insert(New);
1715     return New;
1716   }
1717   return nullptr;
1718 }
1719 
1720 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
1721   // Check for a fixed format string.
1722   StringRef FormatStr;
1723   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1724     return nullptr;
1725 
1726   // If we just have a format string (nothing else crazy) transform it.
1727   if (CI->getNumArgOperands() == 2) {
1728     // Make sure there's no % in the constant array.  We could try to handle
1729     // %% -> % in the future if we cared.
1730     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1731       if (FormatStr[i] == '%')
1732         return nullptr; // we found a format specifier, bail out.
1733 
1734     // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
1735     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
1736                    ConstantInt::get(DL.getIntPtrType(CI->getContext()),
1737                                     FormatStr.size() + 1),
1738                    1); // Copy the null byte.
1739     return ConstantInt::get(CI->getType(), FormatStr.size());
1740   }
1741 
1742   // The remaining optimizations require the format string to be "%s" or "%c"
1743   // and have an extra operand.
1744   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1745       CI->getNumArgOperands() < 3)
1746     return nullptr;
1747 
1748   // Decode the second character of the format string.
1749   if (FormatStr[1] == 'c') {
1750     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
1751     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1752       return nullptr;
1753     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
1754     Value *Ptr = castToCStr(CI->getArgOperand(0), B);
1755     B.CreateStore(V, Ptr);
1756     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
1757     B.CreateStore(B.getInt8(0), Ptr);
1758 
1759     return ConstantInt::get(CI->getType(), 1);
1760   }
1761 
1762   if (FormatStr[1] == 's') {
1763     // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1764     if (!CI->getArgOperand(2)->getType()->isPointerTy())
1765       return nullptr;
1766 
1767     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
1768     if (!Len)
1769       return nullptr;
1770     Value *IncLen =
1771         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
1772     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
1773 
1774     // The sprintf result is the unincremented number of bytes in the string.
1775     return B.CreateIntCast(Len, CI->getType(), false);
1776   }
1777   return nullptr;
1778 }
1779 
1780 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
1781   Function *Callee = CI->getCalledFunction();
1782   FunctionType *FT = Callee->getFunctionType();
1783   if (Value *V = optimizeSPrintFString(CI, B)) {
1784     return V;
1785   }
1786 
1787   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
1788   // point arguments.
1789   if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) {
1790     Module *M = B.GetInsertBlock()->getParent()->getParent();
1791     Constant *SIPrintFFn =
1792         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
1793     CallInst *New = cast<CallInst>(CI->clone());
1794     New->setCalledFunction(SIPrintFFn);
1795     B.Insert(New);
1796     return New;
1797   }
1798   return nullptr;
1799 }
1800 
1801 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
1802   optimizeErrorReporting(CI, B, 0);
1803 
1804   // All the optimizations depend on the format string.
1805   StringRef FormatStr;
1806   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1807     return nullptr;
1808 
1809   // Do not do any of the following transformations if the fprintf return
1810   // value is used, in general the fprintf return value is not compatible
1811   // with fwrite(), fputc() or fputs().
1812   if (!CI->use_empty())
1813     return nullptr;
1814 
1815   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
1816   if (CI->getNumArgOperands() == 2) {
1817     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1818       if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
1819         return nullptr;        // We found a format specifier.
1820 
1821     return emitFWrite(
1822         CI->getArgOperand(1),
1823         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
1824         CI->getArgOperand(0), B, DL, TLI);
1825   }
1826 
1827   // The remaining optimizations require the format string to be "%s" or "%c"
1828   // and have an extra operand.
1829   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1830       CI->getNumArgOperands() < 3)
1831     return nullptr;
1832 
1833   // Decode the second character of the format string.
1834   if (FormatStr[1] == 'c') {
1835     // fprintf(F, "%c", chr) --> fputc(chr, F)
1836     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1837       return nullptr;
1838     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1839   }
1840 
1841   if (FormatStr[1] == 's') {
1842     // fprintf(F, "%s", str) --> fputs(str, F)
1843     if (!CI->getArgOperand(2)->getType()->isPointerTy())
1844       return nullptr;
1845     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1846   }
1847   return nullptr;
1848 }
1849 
1850 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
1851   Function *Callee = CI->getCalledFunction();
1852   FunctionType *FT = Callee->getFunctionType();
1853   if (Value *V = optimizeFPrintFString(CI, B)) {
1854     return V;
1855   }
1856 
1857   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
1858   // floating point arguments.
1859   if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) {
1860     Module *M = B.GetInsertBlock()->getParent()->getParent();
1861     Constant *FIPrintFFn =
1862         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
1863     CallInst *New = cast<CallInst>(CI->clone());
1864     New->setCalledFunction(FIPrintFFn);
1865     B.Insert(New);
1866     return New;
1867   }
1868   return nullptr;
1869 }
1870 
1871 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
1872   optimizeErrorReporting(CI, B, 3);
1873 
1874   // Get the element size and count.
1875   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
1876   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1877   if (!SizeC || !CountC)
1878     return nullptr;
1879   uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
1880 
1881   // If this is writing zero records, remove the call (it's a noop).
1882   if (Bytes == 0)
1883     return ConstantInt::get(CI->getType(), 0);
1884 
1885   // If this is writing one byte, turn it into fputc.
1886   // This optimisation is only valid, if the return value is unused.
1887   if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
1888     Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char");
1889     Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
1890     return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
1891   }
1892 
1893   return nullptr;
1894 }
1895 
1896 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
1897   optimizeErrorReporting(CI, B, 1);
1898 
1899   // Don't rewrite fputs to fwrite when optimising for size because fwrite
1900   // requires more arguments and thus extra MOVs are required.
1901   if (CI->getParent()->getParent()->optForSize())
1902     return nullptr;
1903 
1904   // We can't optimize if return value is used.
1905   if (!CI->use_empty())
1906     return nullptr;
1907 
1908   // fputs(s,F) --> fwrite(s,1,strlen(s),F)
1909   uint64_t Len = GetStringLength(CI->getArgOperand(0));
1910   if (!Len)
1911     return nullptr;
1912 
1913   // Known to have no uses (see above).
1914   return emitFWrite(
1915       CI->getArgOperand(0),
1916       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
1917       CI->getArgOperand(1), B, DL, TLI);
1918 }
1919 
1920 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
1921   // Check for a constant string.
1922   StringRef Str;
1923   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
1924     return nullptr;
1925 
1926   if (Str.empty() && CI->use_empty()) {
1927     // puts("") -> putchar('\n')
1928     Value *Res = emitPutChar(B.getInt32('\n'), B, TLI);
1929     if (CI->use_empty() || !Res)
1930       return Res;
1931     return B.CreateIntCast(Res, CI->getType(), true);
1932   }
1933 
1934   return nullptr;
1935 }
1936 
1937 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
1938   LibFunc::Func Func;
1939   SmallString<20> FloatFuncName = FuncName;
1940   FloatFuncName += 'f';
1941   if (TLI->getLibFunc(FloatFuncName, Func))
1942     return TLI->has(Func);
1943   return false;
1944 }
1945 
1946 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
1947                                                       IRBuilder<> &Builder) {
1948   LibFunc::Func Func;
1949   Function *Callee = CI->getCalledFunction();
1950   // Check for string/memory library functions.
1951   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
1952     // Make sure we never change the calling convention.
1953     assert((ignoreCallingConv(Func) ||
1954             isCallingConvCCompatible(CI)) &&
1955       "Optimizing string/memory libcall would change the calling convention");
1956     switch (Func) {
1957     case LibFunc::strcat:
1958       return optimizeStrCat(CI, Builder);
1959     case LibFunc::strncat:
1960       return optimizeStrNCat(CI, Builder);
1961     case LibFunc::strchr:
1962       return optimizeStrChr(CI, Builder);
1963     case LibFunc::strrchr:
1964       return optimizeStrRChr(CI, Builder);
1965     case LibFunc::strcmp:
1966       return optimizeStrCmp(CI, Builder);
1967     case LibFunc::strncmp:
1968       return optimizeStrNCmp(CI, Builder);
1969     case LibFunc::strcpy:
1970       return optimizeStrCpy(CI, Builder);
1971     case LibFunc::stpcpy:
1972       return optimizeStpCpy(CI, Builder);
1973     case LibFunc::strncpy:
1974       return optimizeStrNCpy(CI, Builder);
1975     case LibFunc::strlen:
1976       return optimizeStrLen(CI, Builder);
1977     case LibFunc::strpbrk:
1978       return optimizeStrPBrk(CI, Builder);
1979     case LibFunc::strtol:
1980     case LibFunc::strtod:
1981     case LibFunc::strtof:
1982     case LibFunc::strtoul:
1983     case LibFunc::strtoll:
1984     case LibFunc::strtold:
1985     case LibFunc::strtoull:
1986       return optimizeStrTo(CI, Builder);
1987     case LibFunc::strspn:
1988       return optimizeStrSpn(CI, Builder);
1989     case LibFunc::strcspn:
1990       return optimizeStrCSpn(CI, Builder);
1991     case LibFunc::strstr:
1992       return optimizeStrStr(CI, Builder);
1993     case LibFunc::memchr:
1994       return optimizeMemChr(CI, Builder);
1995     case LibFunc::memcmp:
1996       return optimizeMemCmp(CI, Builder);
1997     case LibFunc::memcpy:
1998       return optimizeMemCpy(CI, Builder);
1999     case LibFunc::memmove:
2000       return optimizeMemMove(CI, Builder);
2001     case LibFunc::memset:
2002       return optimizeMemSet(CI, Builder);
2003     default:
2004       break;
2005     }
2006   }
2007   return nullptr;
2008 }
2009 
2010 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
2011   if (CI->isNoBuiltin())
2012     return nullptr;
2013 
2014   LibFunc::Func Func;
2015   Function *Callee = CI->getCalledFunction();
2016   StringRef FuncName = Callee->getName();
2017 
2018   SmallVector<OperandBundleDef, 2> OpBundles;
2019   CI->getOperandBundlesAsDefs(OpBundles);
2020   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2021   bool isCallingConvC = isCallingConvCCompatible(CI);
2022 
2023   // Command-line parameter overrides instruction attribute.
2024   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
2025     UnsafeFPShrink = EnableUnsafeFPShrink;
2026   else if (isa<FPMathOperator>(CI) && CI->hasUnsafeAlgebra())
2027     UnsafeFPShrink = true;
2028 
2029   // First, check for intrinsics.
2030   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
2031     if (!isCallingConvC)
2032       return nullptr;
2033     switch (II->getIntrinsicID()) {
2034     case Intrinsic::pow:
2035       return optimizePow(CI, Builder);
2036     case Intrinsic::exp2:
2037       return optimizeExp2(CI, Builder);
2038     case Intrinsic::log:
2039       return optimizeLog(CI, Builder);
2040     case Intrinsic::sqrt:
2041       return optimizeSqrt(CI, Builder);
2042     // TODO: Use foldMallocMemset() with memset intrinsic.
2043     default:
2044       return nullptr;
2045     }
2046   }
2047 
2048   // Also try to simplify calls to fortified library functions.
2049   if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
2050     // Try to further simplify the result.
2051     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
2052     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
2053       // Use an IR Builder from SimplifiedCI if available instead of CI
2054       // to guarantee we reach all uses we might replace later on.
2055       IRBuilder<> TmpBuilder(SimplifiedCI);
2056       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
2057         // If we were able to further simplify, remove the now redundant call.
2058         SimplifiedCI->replaceAllUsesWith(V);
2059         SimplifiedCI->eraseFromParent();
2060         return V;
2061       }
2062     }
2063     return SimplifiedFortifiedCI;
2064   }
2065 
2066   // Then check for known library functions.
2067   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2068     // We never change the calling convention.
2069     if (!ignoreCallingConv(Func) && !isCallingConvC)
2070       return nullptr;
2071     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
2072       return V;
2073     switch (Func) {
2074     case LibFunc::cosf:
2075     case LibFunc::cos:
2076     case LibFunc::cosl:
2077       return optimizeCos(CI, Builder);
2078     case LibFunc::sinpif:
2079     case LibFunc::sinpi:
2080     case LibFunc::cospif:
2081     case LibFunc::cospi:
2082       return optimizeSinCosPi(CI, Builder);
2083     case LibFunc::powf:
2084     case LibFunc::pow:
2085     case LibFunc::powl:
2086       return optimizePow(CI, Builder);
2087     case LibFunc::exp2l:
2088     case LibFunc::exp2:
2089     case LibFunc::exp2f:
2090       return optimizeExp2(CI, Builder);
2091     case LibFunc::fabsf:
2092     case LibFunc::fabs:
2093     case LibFunc::fabsl:
2094       return optimizeFabs(CI, Builder);
2095     case LibFunc::sqrtf:
2096     case LibFunc::sqrt:
2097     case LibFunc::sqrtl:
2098       return optimizeSqrt(CI, Builder);
2099     case LibFunc::ffs:
2100     case LibFunc::ffsl:
2101     case LibFunc::ffsll:
2102       return optimizeFFS(CI, Builder);
2103     case LibFunc::fls:
2104     case LibFunc::flsl:
2105     case LibFunc::flsll:
2106       return optimizeFls(CI, Builder);
2107     case LibFunc::abs:
2108     case LibFunc::labs:
2109     case LibFunc::llabs:
2110       return optimizeAbs(CI, Builder);
2111     case LibFunc::isdigit:
2112       return optimizeIsDigit(CI, Builder);
2113     case LibFunc::isascii:
2114       return optimizeIsAscii(CI, Builder);
2115     case LibFunc::toascii:
2116       return optimizeToAscii(CI, Builder);
2117     case LibFunc::printf:
2118       return optimizePrintF(CI, Builder);
2119     case LibFunc::sprintf:
2120       return optimizeSPrintF(CI, Builder);
2121     case LibFunc::fprintf:
2122       return optimizeFPrintF(CI, Builder);
2123     case LibFunc::fwrite:
2124       return optimizeFWrite(CI, Builder);
2125     case LibFunc::fputs:
2126       return optimizeFPuts(CI, Builder);
2127     case LibFunc::log:
2128     case LibFunc::log10:
2129     case LibFunc::log1p:
2130     case LibFunc::log2:
2131     case LibFunc::logb:
2132       return optimizeLog(CI, Builder);
2133     case LibFunc::puts:
2134       return optimizePuts(CI, Builder);
2135     case LibFunc::tan:
2136     case LibFunc::tanf:
2137     case LibFunc::tanl:
2138       return optimizeTan(CI, Builder);
2139     case LibFunc::perror:
2140       return optimizeErrorReporting(CI, Builder);
2141     case LibFunc::vfprintf:
2142     case LibFunc::fiprintf:
2143       return optimizeErrorReporting(CI, Builder, 0);
2144     case LibFunc::fputc:
2145       return optimizeErrorReporting(CI, Builder, 1);
2146     case LibFunc::ceil:
2147     case LibFunc::floor:
2148     case LibFunc::rint:
2149     case LibFunc::round:
2150     case LibFunc::nearbyint:
2151     case LibFunc::trunc:
2152       if (hasFloatVersion(FuncName))
2153         return optimizeUnaryDoubleFP(CI, Builder, false);
2154       return nullptr;
2155     case LibFunc::acos:
2156     case LibFunc::acosh:
2157     case LibFunc::asin:
2158     case LibFunc::asinh:
2159     case LibFunc::atan:
2160     case LibFunc::atanh:
2161     case LibFunc::cbrt:
2162     case LibFunc::cosh:
2163     case LibFunc::exp:
2164     case LibFunc::exp10:
2165     case LibFunc::expm1:
2166     case LibFunc::sin:
2167     case LibFunc::sinh:
2168     case LibFunc::tanh:
2169       if (UnsafeFPShrink && hasFloatVersion(FuncName))
2170         return optimizeUnaryDoubleFP(CI, Builder, true);
2171       return nullptr;
2172     case LibFunc::copysign:
2173       if (hasFloatVersion(FuncName))
2174         return optimizeBinaryDoubleFP(CI, Builder);
2175       return nullptr;
2176     case LibFunc::fminf:
2177     case LibFunc::fmin:
2178     case LibFunc::fminl:
2179     case LibFunc::fmaxf:
2180     case LibFunc::fmax:
2181     case LibFunc::fmaxl:
2182       return optimizeFMinFMax(CI, Builder);
2183     default:
2184       return nullptr;
2185     }
2186   }
2187   return nullptr;
2188 }
2189 
2190 LibCallSimplifier::LibCallSimplifier(
2191     const DataLayout &DL, const TargetLibraryInfo *TLI,
2192     function_ref<void(Instruction *, Value *)> Replacer)
2193     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), UnsafeFPShrink(false),
2194       Replacer(Replacer) {}
2195 
2196 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
2197   // Indirect through the replacer used in this instance.
2198   Replacer(I, With);
2199 }
2200 
2201 // TODO:
2202 //   Additional cases that we need to add to this file:
2203 //
2204 // cbrt:
2205 //   * cbrt(expN(X))  -> expN(x/3)
2206 //   * cbrt(sqrt(x))  -> pow(x,1/6)
2207 //   * cbrt(cbrt(x))  -> pow(x,1/9)
2208 //
2209 // exp, expf, expl:
2210 //   * exp(log(x))  -> x
2211 //
2212 // log, logf, logl:
2213 //   * log(exp(x))   -> x
2214 //   * log(exp(y))   -> y*log(e)
2215 //   * log(exp10(y)) -> y*log(10)
2216 //   * log(sqrt(x))  -> 0.5*log(x)
2217 //
2218 // lround, lroundf, lroundl:
2219 //   * lround(cnst) -> cnst'
2220 //
2221 // pow, powf, powl:
2222 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
2223 //   * pow(pow(x,y),z)-> pow(x,y*z)
2224 //
2225 // round, roundf, roundl:
2226 //   * round(cnst) -> cnst'
2227 //
2228 // signbit:
2229 //   * signbit(cnst) -> cnst'
2230 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2231 //
2232 // sqrt, sqrtf, sqrtl:
2233 //   * sqrt(expN(x))  -> expN(x*0.5)
2234 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2235 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2236 //
2237 // trunc, truncf, truncl:
2238 //   * trunc(cnst) -> cnst'
2239 //
2240 //
2241 
2242 //===----------------------------------------------------------------------===//
2243 // Fortified Library Call Optimizations
2244 //===----------------------------------------------------------------------===//
2245 
2246 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
2247                                                          unsigned ObjSizeOp,
2248                                                          unsigned SizeOp,
2249                                                          bool isString) {
2250   if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
2251     return true;
2252   if (ConstantInt *ObjSizeCI =
2253           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
2254     if (ObjSizeCI->isAllOnesValue())
2255       return true;
2256     // If the object size wasn't -1 (unknown), bail out if we were asked to.
2257     if (OnlyLowerUnknownSize)
2258       return false;
2259     if (isString) {
2260       uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
2261       // If the length is 0 we don't know how long it is and so we can't
2262       // remove the check.
2263       if (Len == 0)
2264         return false;
2265       return ObjSizeCI->getZExtValue() >= Len;
2266     }
2267     if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
2268       return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
2269   }
2270   return false;
2271 }
2272 
2273 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
2274                                                      IRBuilder<> &B) {
2275   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2276     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2277                    CI->getArgOperand(2), 1);
2278     return CI->getArgOperand(0);
2279   }
2280   return nullptr;
2281 }
2282 
2283 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
2284                                                       IRBuilder<> &B) {
2285   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2286     B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
2287                     CI->getArgOperand(2), 1);
2288     return CI->getArgOperand(0);
2289   }
2290   return nullptr;
2291 }
2292 
2293 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
2294                                                      IRBuilder<> &B) {
2295   // TODO: Try foldMallocMemset() here.
2296 
2297   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2298     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
2299     B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
2300     return CI->getArgOperand(0);
2301   }
2302   return nullptr;
2303 }
2304 
2305 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
2306                                                       IRBuilder<> &B,
2307                                                       LibFunc::Func Func) {
2308   Function *Callee = CI->getCalledFunction();
2309   StringRef Name = Callee->getName();
2310   const DataLayout &DL = CI->getModule()->getDataLayout();
2311   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
2312         *ObjSize = CI->getArgOperand(2);
2313 
2314   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
2315   if (Func == LibFunc::stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
2316     Value *StrLen = emitStrLen(Src, B, DL, TLI);
2317     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
2318   }
2319 
2320   // If a) we don't have any length information, or b) we know this will
2321   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
2322   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
2323   // TODO: It might be nice to get a maximum length out of the possible
2324   // string lengths for varying.
2325   if (isFortifiedCallFoldable(CI, 2, 1, true))
2326     return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
2327 
2328   if (OnlyLowerUnknownSize)
2329     return nullptr;
2330 
2331   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
2332   uint64_t Len = GetStringLength(Src);
2333   if (Len == 0)
2334     return nullptr;
2335 
2336   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
2337   Value *LenV = ConstantInt::get(SizeTTy, Len);
2338   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
2339   // If the function was an __stpcpy_chk, and we were able to fold it into
2340   // a __memcpy_chk, we still need to return the correct end pointer.
2341   if (Ret && Func == LibFunc::stpcpy_chk)
2342     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
2343   return Ret;
2344 }
2345 
2346 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
2347                                                        IRBuilder<> &B,
2348                                                        LibFunc::Func Func) {
2349   Function *Callee = CI->getCalledFunction();
2350   StringRef Name = Callee->getName();
2351   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2352     Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2353                              CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
2354     return Ret;
2355   }
2356   return nullptr;
2357 }
2358 
2359 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
2360   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
2361   // Some clang users checked for _chk libcall availability using:
2362   //   __has_builtin(__builtin___memcpy_chk)
2363   // When compiling with -fno-builtin, this is always true.
2364   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
2365   // end up with fortified libcalls, which isn't acceptable in a freestanding
2366   // environment which only provides their non-fortified counterparts.
2367   //
2368   // Until we change clang and/or teach external users to check for availability
2369   // differently, disregard the "nobuiltin" attribute and TLI::has.
2370   //
2371   // PR23093.
2372 
2373   LibFunc::Func Func;
2374   Function *Callee = CI->getCalledFunction();
2375 
2376   SmallVector<OperandBundleDef, 2> OpBundles;
2377   CI->getOperandBundlesAsDefs(OpBundles);
2378   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2379   bool isCallingConvC = isCallingConvCCompatible(CI);
2380 
2381   // First, check that this is a known library functions and that the prototype
2382   // is correct.
2383   if (!TLI->getLibFunc(*Callee, Func))
2384     return nullptr;
2385 
2386   // We never change the calling convention.
2387   if (!ignoreCallingConv(Func) && !isCallingConvC)
2388     return nullptr;
2389 
2390   switch (Func) {
2391   case LibFunc::memcpy_chk:
2392     return optimizeMemCpyChk(CI, Builder);
2393   case LibFunc::memmove_chk:
2394     return optimizeMemMoveChk(CI, Builder);
2395   case LibFunc::memset_chk:
2396     return optimizeMemSetChk(CI, Builder);
2397   case LibFunc::stpcpy_chk:
2398   case LibFunc::strcpy_chk:
2399     return optimizeStrpCpyChk(CI, Builder, Func);
2400   case LibFunc::stpncpy_chk:
2401   case LibFunc::strncpy_chk:
2402     return optimizeStrpNCpyChk(CI, Builder, Func);
2403   default:
2404     break;
2405   }
2406   return nullptr;
2407 }
2408 
2409 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
2410     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
2411     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
2412