1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/CaptureTracking.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/KnownBits.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Transforms/Utils/BuildLibCalls.h"
39 #include "llvm/Transforms/Utils/SizeOpts.h"
40 
41 using namespace llvm;
42 using namespace PatternMatch;
43 
44 static cl::opt<bool>
45     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
46                          cl::init(false),
47                          cl::desc("Enable unsafe double to float "
48                                   "shrinking for math lib calls"));
49 
50 //===----------------------------------------------------------------------===//
51 // Helper Functions
52 //===----------------------------------------------------------------------===//
53 
54 static bool ignoreCallingConv(LibFunc Func) {
55   return Func == LibFunc_abs || Func == LibFunc_labs ||
56          Func == LibFunc_llabs || Func == LibFunc_strlen;
57 }
58 
59 static bool isCallingConvCCompatible(CallInst *CI) {
60   switch(CI->getCallingConv()) {
61   default:
62     return false;
63   case llvm::CallingConv::C:
64     return true;
65   case llvm::CallingConv::ARM_APCS:
66   case llvm::CallingConv::ARM_AAPCS:
67   case llvm::CallingConv::ARM_AAPCS_VFP: {
68 
69     // The iOS ABI diverges from the standard in some cases, so for now don't
70     // try to simplify those calls.
71     if (Triple(CI->getModule()->getTargetTriple()).isiOS())
72       return false;
73 
74     auto *FuncTy = CI->getFunctionType();
75 
76     if (!FuncTy->getReturnType()->isPointerTy() &&
77         !FuncTy->getReturnType()->isIntegerTy() &&
78         !FuncTy->getReturnType()->isVoidTy())
79       return false;
80 
81     for (auto Param : FuncTy->params()) {
82       if (!Param->isPointerTy() && !Param->isIntegerTy())
83         return false;
84     }
85     return true;
86   }
87   }
88   return false;
89 }
90 
91 /// Return true if it is only used in equality comparisons with With.
92 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
93   for (User *U : V->users()) {
94     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
95       if (IC->isEquality() && IC->getOperand(1) == With)
96         continue;
97     // Unknown instruction.
98     return false;
99   }
100   return true;
101 }
102 
103 static bool callHasFloatingPointArgument(const CallInst *CI) {
104   return any_of(CI->operands(), [](const Use &OI) {
105     return OI->getType()->isFloatingPointTy();
106   });
107 }
108 
109 static bool callHasFP128Argument(const CallInst *CI) {
110   return any_of(CI->operands(), [](const Use &OI) {
111     return OI->getType()->isFP128Ty();
112   });
113 }
114 
115 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
116   if (Base < 2 || Base > 36)
117     // handle special zero base
118     if (Base != 0)
119       return nullptr;
120 
121   char *End;
122   std::string nptr = Str.str();
123   errno = 0;
124   long long int Result = strtoll(nptr.c_str(), &End, Base);
125   if (errno)
126     return nullptr;
127 
128   // if we assume all possible target locales are ASCII supersets,
129   // then if strtoll successfully parses a number on the host,
130   // it will also successfully parse the same way on the target
131   if (*End != '\0')
132     return nullptr;
133 
134   if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
135     return nullptr;
136 
137   return ConstantInt::get(CI->getType(), Result);
138 }
139 
140 static bool isOnlyUsedInComparisonWithZero(Value *V) {
141   for (User *U : V->users()) {
142     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
143       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
144         if (C->isNullValue())
145           continue;
146     // Unknown instruction.
147     return false;
148   }
149   return true;
150 }
151 
152 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
153                                  const DataLayout &DL) {
154   if (!isOnlyUsedInComparisonWithZero(CI))
155     return false;
156 
157   if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL))
158     return false;
159 
160   if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
161     return false;
162 
163   return true;
164 }
165 
166 static void annotateDereferenceableBytes(CallInst *CI,
167                                          ArrayRef<unsigned> ArgNos,
168                                          uint64_t DereferenceableBytes) {
169   const Function *F = CI->getCaller();
170   if (!F)
171     return;
172   for (unsigned ArgNo : ArgNos) {
173     uint64_t DerefBytes = DereferenceableBytes;
174     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
175     if (!llvm::NullPointerIsDefined(F, AS) ||
176         CI->paramHasAttr(ArgNo, Attribute::NonNull))
177       DerefBytes = std::max(CI->getDereferenceableOrNullBytes(
178                                 ArgNo + AttributeList::FirstArgIndex),
179                             DereferenceableBytes);
180 
181     if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) <
182         DerefBytes) {
183       CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
184       if (!llvm::NullPointerIsDefined(F, AS) ||
185           CI->paramHasAttr(ArgNo, Attribute::NonNull))
186         CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
187       CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
188                                   CI->getContext(), DerefBytes));
189     }
190   }
191 }
192 
193 static void annotateNonNullBasedOnAccess(CallInst *CI,
194                                          ArrayRef<unsigned> ArgNos) {
195   Function *F = CI->getCaller();
196   if (!F)
197     return;
198 
199   for (unsigned ArgNo : ArgNos) {
200     if (CI->paramHasAttr(ArgNo, Attribute::NonNull))
201       continue;
202     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
203     if (llvm::NullPointerIsDefined(F, AS))
204       continue;
205 
206     CI->addParamAttr(ArgNo, Attribute::NonNull);
207     annotateDereferenceableBytes(CI, ArgNo, 1);
208   }
209 }
210 
211 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
212                                Value *Size, const DataLayout &DL) {
213   if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
214     annotateNonNullBasedOnAccess(CI, ArgNos);
215     annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
216   } else if (isKnownNonZero(Size, DL)) {
217     annotateNonNullBasedOnAccess(CI, ArgNos);
218     const APInt *X, *Y;
219     uint64_t DerefMin = 1;
220     if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
221       DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
222       annotateDereferenceableBytes(CI, ArgNos, DerefMin);
223     }
224   }
225 }
226 
227 //===----------------------------------------------------------------------===//
228 // String and Memory Library Call Optimizations
229 //===----------------------------------------------------------------------===//
230 
231 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) {
232   // Extract some information from the instruction
233   Value *Dst = CI->getArgOperand(0);
234   Value *Src = CI->getArgOperand(1);
235   annotateNonNullBasedOnAccess(CI, {0, 1});
236 
237   // See if we can get the length of the input string.
238   uint64_t Len = GetStringLength(Src);
239   if (Len)
240     annotateDereferenceableBytes(CI, 1, Len);
241   else
242     return nullptr;
243   --Len; // Unbias length.
244 
245   // Handle the simple, do-nothing case: strcat(x, "") -> x
246   if (Len == 0)
247     return Dst;
248 
249   return emitStrLenMemCpy(Src, Dst, Len, B);
250 }
251 
252 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
253                                            IRBuilderBase &B) {
254   // We need to find the end of the destination string.  That's where the
255   // memory is to be moved to. We just generate a call to strlen.
256   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
257   if (!DstLen)
258     return nullptr;
259 
260   // Now that we have the destination's length, we must index into the
261   // destination's pointer to get the actual memcpy destination (end of
262   // the string .. we're concatenating).
263   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
264 
265   // We have enough information to now generate the memcpy call to do the
266   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
267   B.CreateMemCpy(
268       CpyDst, Align(1), Src, Align(1),
269       ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
270   return Dst;
271 }
272 
273 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) {
274   // Extract some information from the instruction.
275   Value *Dst = CI->getArgOperand(0);
276   Value *Src = CI->getArgOperand(1);
277   Value *Size = CI->getArgOperand(2);
278   uint64_t Len;
279   annotateNonNullBasedOnAccess(CI, 0);
280   if (isKnownNonZero(Size, DL))
281     annotateNonNullBasedOnAccess(CI, 1);
282 
283   // We don't do anything if length is not constant.
284   ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
285   if (LengthArg) {
286     Len = LengthArg->getZExtValue();
287     // strncat(x, c, 0) -> x
288     if (!Len)
289       return Dst;
290   } else {
291     return nullptr;
292   }
293 
294   // See if we can get the length of the input string.
295   uint64_t SrcLen = GetStringLength(Src);
296   if (SrcLen) {
297     annotateDereferenceableBytes(CI, 1, SrcLen);
298     --SrcLen; // Unbias length.
299   } else {
300     return nullptr;
301   }
302 
303   // strncat(x, "", c) -> x
304   if (SrcLen == 0)
305     return Dst;
306 
307   // We don't optimize this case.
308   if (Len < SrcLen)
309     return nullptr;
310 
311   // strncat(x, s, c) -> strcat(x, s)
312   // s is constant so the strcat can be optimized further.
313   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
314 }
315 
316 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) {
317   Function *Callee = CI->getCalledFunction();
318   FunctionType *FT = Callee->getFunctionType();
319   Value *SrcStr = CI->getArgOperand(0);
320   annotateNonNullBasedOnAccess(CI, 0);
321 
322   // If the second operand is non-constant, see if we can compute the length
323   // of the input string and turn this into memchr.
324   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
325   if (!CharC) {
326     uint64_t Len = GetStringLength(SrcStr);
327     if (Len)
328       annotateDereferenceableBytes(CI, 0, Len);
329     else
330       return nullptr;
331     if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
332       return nullptr;
333 
334     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
335                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
336                       B, DL, TLI);
337   }
338 
339   // Otherwise, the character is a constant, see if the first argument is
340   // a string literal.  If so, we can constant fold.
341   StringRef Str;
342   if (!getConstantStringInfo(SrcStr, Str)) {
343     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
344       if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
345         return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
346     return nullptr;
347   }
348 
349   // Compute the offset, make sure to handle the case when we're searching for
350   // zero (a weird way to spell strlen).
351   size_t I = (0xFF & CharC->getSExtValue()) == 0
352                  ? Str.size()
353                  : Str.find(CharC->getSExtValue());
354   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
355     return Constant::getNullValue(CI->getType());
356 
357   // strchr(s+n,c)  -> gep(s+n+i,c)
358   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
359 }
360 
361 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) {
362   Value *SrcStr = CI->getArgOperand(0);
363   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
364   annotateNonNullBasedOnAccess(CI, 0);
365 
366   // Cannot fold anything if we're not looking for a constant.
367   if (!CharC)
368     return nullptr;
369 
370   StringRef Str;
371   if (!getConstantStringInfo(SrcStr, Str)) {
372     // strrchr(s, 0) -> strchr(s, 0)
373     if (CharC->isZero())
374       return emitStrChr(SrcStr, '\0', B, TLI);
375     return nullptr;
376   }
377 
378   // Compute the offset.
379   size_t I = (0xFF & CharC->getSExtValue()) == 0
380                  ? Str.size()
381                  : Str.rfind(CharC->getSExtValue());
382   if (I == StringRef::npos) // Didn't find the char. Return null.
383     return Constant::getNullValue(CI->getType());
384 
385   // strrchr(s+n,c) -> gep(s+n+i,c)
386   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
387 }
388 
389 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) {
390   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
391   if (Str1P == Str2P) // strcmp(x,x)  -> 0
392     return ConstantInt::get(CI->getType(), 0);
393 
394   StringRef Str1, Str2;
395   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
396   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
397 
398   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
399   if (HasStr1 && HasStr2)
400     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
401 
402   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
403     return B.CreateNeg(B.CreateZExt(
404         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
405 
406   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
407     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
408                         CI->getType());
409 
410   // strcmp(P, "x") -> memcmp(P, "x", 2)
411   uint64_t Len1 = GetStringLength(Str1P);
412   if (Len1)
413     annotateDereferenceableBytes(CI, 0, Len1);
414   uint64_t Len2 = GetStringLength(Str2P);
415   if (Len2)
416     annotateDereferenceableBytes(CI, 1, Len2);
417 
418   if (Len1 && Len2) {
419     return emitMemCmp(Str1P, Str2P,
420                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
421                                        std::min(Len1, Len2)),
422                       B, DL, TLI);
423   }
424 
425   // strcmp to memcmp
426   if (!HasStr1 && HasStr2) {
427     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
428       return emitMemCmp(
429           Str1P, Str2P,
430           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
431           TLI);
432   } else if (HasStr1 && !HasStr2) {
433     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
434       return emitMemCmp(
435           Str1P, Str2P,
436           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
437           TLI);
438   }
439 
440   annotateNonNullBasedOnAccess(CI, {0, 1});
441   return nullptr;
442 }
443 
444 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) {
445   Value *Str1P = CI->getArgOperand(0);
446   Value *Str2P = CI->getArgOperand(1);
447   Value *Size = CI->getArgOperand(2);
448   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
449     return ConstantInt::get(CI->getType(), 0);
450 
451   if (isKnownNonZero(Size, DL))
452     annotateNonNullBasedOnAccess(CI, {0, 1});
453   // Get the length argument if it is constant.
454   uint64_t Length;
455   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
456     Length = LengthArg->getZExtValue();
457   else
458     return nullptr;
459 
460   if (Length == 0) // strncmp(x,y,0)   -> 0
461     return ConstantInt::get(CI->getType(), 0);
462 
463   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
464     return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI);
465 
466   StringRef Str1, Str2;
467   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
468   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
469 
470   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
471   if (HasStr1 && HasStr2) {
472     StringRef SubStr1 = Str1.substr(0, Length);
473     StringRef SubStr2 = Str2.substr(0, Length);
474     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
475   }
476 
477   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
478     return B.CreateNeg(B.CreateZExt(
479         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
480 
481   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
482     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
483                         CI->getType());
484 
485   uint64_t Len1 = GetStringLength(Str1P);
486   if (Len1)
487     annotateDereferenceableBytes(CI, 0, Len1);
488   uint64_t Len2 = GetStringLength(Str2P);
489   if (Len2)
490     annotateDereferenceableBytes(CI, 1, Len2);
491 
492   // strncmp to memcmp
493   if (!HasStr1 && HasStr2) {
494     Len2 = std::min(Len2, Length);
495     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
496       return emitMemCmp(
497           Str1P, Str2P,
498           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
499           TLI);
500   } else if (HasStr1 && !HasStr2) {
501     Len1 = std::min(Len1, Length);
502     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
503       return emitMemCmp(
504           Str1P, Str2P,
505           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
506           TLI);
507   }
508 
509   return nullptr;
510 }
511 
512 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) {
513   Value *Src = CI->getArgOperand(0);
514   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
515   uint64_t SrcLen = GetStringLength(Src);
516   if (SrcLen && Size) {
517     annotateDereferenceableBytes(CI, 0, SrcLen);
518     if (SrcLen <= Size->getZExtValue() + 1)
519       return emitStrDup(Src, B, TLI);
520   }
521 
522   return nullptr;
523 }
524 
525 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) {
526   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
527   if (Dst == Src) // strcpy(x,x)  -> x
528     return Src;
529 
530   annotateNonNullBasedOnAccess(CI, {0, 1});
531   // See if we can get the length of the input string.
532   uint64_t Len = GetStringLength(Src);
533   if (Len)
534     annotateDereferenceableBytes(CI, 1, Len);
535   else
536     return nullptr;
537 
538   // We have enough information to now generate the memcpy call to do the
539   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
540   CallInst *NewCI =
541       B.CreateMemCpy(Dst, Align(1), Src, Align(1),
542                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
543   NewCI->setAttributes(CI->getAttributes());
544   return Dst;
545 }
546 
547 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) {
548   Function *Callee = CI->getCalledFunction();
549   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
550   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
551     Value *StrLen = emitStrLen(Src, B, DL, TLI);
552     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
553   }
554 
555   // See if we can get the length of the input string.
556   uint64_t Len = GetStringLength(Src);
557   if (Len)
558     annotateDereferenceableBytes(CI, 1, Len);
559   else
560     return nullptr;
561 
562   Type *PT = Callee->getFunctionType()->getParamType(0);
563   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
564   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
565                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
566 
567   // We have enough information to now generate the memcpy call to do the
568   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
569   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV);
570   NewCI->setAttributes(CI->getAttributes());
571   return DstEnd;
572 }
573 
574 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) {
575   Function *Callee = CI->getCalledFunction();
576   Value *Dst = CI->getArgOperand(0);
577   Value *Src = CI->getArgOperand(1);
578   Value *Size = CI->getArgOperand(2);
579   annotateNonNullBasedOnAccess(CI, 0);
580   if (isKnownNonZero(Size, DL))
581     annotateNonNullBasedOnAccess(CI, 1);
582 
583   uint64_t Len;
584   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
585     Len = LengthArg->getZExtValue();
586   else
587     return nullptr;
588 
589   // strncpy(x, y, 0) -> x
590   if (Len == 0)
591     return Dst;
592 
593   // See if we can get the length of the input string.
594   uint64_t SrcLen = GetStringLength(Src);
595   if (SrcLen) {
596     annotateDereferenceableBytes(CI, 1, SrcLen);
597     --SrcLen; // Unbias length.
598   } else {
599     return nullptr;
600   }
601 
602   if (SrcLen == 0) {
603     // strncpy(x, "", y) -> memset(align 1 x, '\0', y)
604     CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, Align(1));
605     AttrBuilder ArgAttrs(CI->getAttributes().getParamAttributes(0));
606     NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
607         CI->getContext(), 0, ArgAttrs));
608     return Dst;
609   }
610 
611   // Let strncpy handle the zero padding
612   if (Len > SrcLen + 1)
613     return nullptr;
614 
615   Type *PT = Callee->getFunctionType()->getParamType(0);
616   // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
617   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
618                                    ConstantInt::get(DL.getIntPtrType(PT), Len));
619   NewCI->setAttributes(CI->getAttributes());
620   return Dst;
621 }
622 
623 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B,
624                                                unsigned CharSize) {
625   Value *Src = CI->getArgOperand(0);
626 
627   // Constant folding: strlen("xyz") -> 3
628   if (uint64_t Len = GetStringLength(Src, CharSize))
629     return ConstantInt::get(CI->getType(), Len - 1);
630 
631   // If s is a constant pointer pointing to a string literal, we can fold
632   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
633   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
634   // We only try to simplify strlen when the pointer s points to an array
635   // of i8. Otherwise, we would need to scale the offset x before doing the
636   // subtraction. This will make the optimization more complex, and it's not
637   // very useful because calling strlen for a pointer of other types is
638   // very uncommon.
639   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
640     if (!isGEPBasedOnPointerToString(GEP, CharSize))
641       return nullptr;
642 
643     ConstantDataArraySlice Slice;
644     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
645       uint64_t NullTermIdx;
646       if (Slice.Array == nullptr) {
647         NullTermIdx = 0;
648       } else {
649         NullTermIdx = ~((uint64_t)0);
650         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
651           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
652             NullTermIdx = I;
653             break;
654           }
655         }
656         // If the string does not have '\0', leave it to strlen to compute
657         // its length.
658         if (NullTermIdx == ~((uint64_t)0))
659           return nullptr;
660       }
661 
662       Value *Offset = GEP->getOperand(2);
663       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
664       Known.Zero.flipAllBits();
665       uint64_t ArrSize =
666              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
667 
668       // KnownZero's bits are flipped, so zeros in KnownZero now represent
669       // bits known to be zeros in Offset, and ones in KnowZero represent
670       // bits unknown in Offset. Therefore, Offset is known to be in range
671       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
672       // unsigned-less-than NullTermIdx.
673       //
674       // If Offset is not provably in the range [0, NullTermIdx], we can still
675       // optimize if we can prove that the program has undefined behavior when
676       // Offset is outside that range. That is the case when GEP->getOperand(0)
677       // is a pointer to an object whose memory extent is NullTermIdx+1.
678       if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
679           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
680            NullTermIdx == ArrSize - 1)) {
681         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
682         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
683                            Offset);
684       }
685     }
686 
687     return nullptr;
688   }
689 
690   // strlen(x?"foo":"bars") --> x ? 3 : 4
691   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
692     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
693     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
694     if (LenTrue && LenFalse) {
695       ORE.emit([&]() {
696         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
697                << "folded strlen(select) to select of constants";
698       });
699       return B.CreateSelect(SI->getCondition(),
700                             ConstantInt::get(CI->getType(), LenTrue - 1),
701                             ConstantInt::get(CI->getType(), LenFalse - 1));
702     }
703   }
704 
705   // strlen(x) != 0 --> *x != 0
706   // strlen(x) == 0 --> *x == 0
707   if (isOnlyUsedInZeroEqualityComparison(CI))
708     return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"),
709                         CI->getType());
710 
711   return nullptr;
712 }
713 
714 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) {
715   if (Value *V = optimizeStringLength(CI, B, 8))
716     return V;
717   annotateNonNullBasedOnAccess(CI, 0);
718   return nullptr;
719 }
720 
721 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) {
722   Module &M = *CI->getModule();
723   unsigned WCharSize = TLI->getWCharSize(M) * 8;
724   // We cannot perform this optimization without wchar_size metadata.
725   if (WCharSize == 0)
726     return nullptr;
727 
728   return optimizeStringLength(CI, B, WCharSize);
729 }
730 
731 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) {
732   StringRef S1, S2;
733   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
734   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
735 
736   // strpbrk(s, "") -> nullptr
737   // strpbrk("", s) -> nullptr
738   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
739     return Constant::getNullValue(CI->getType());
740 
741   // Constant folding.
742   if (HasS1 && HasS2) {
743     size_t I = S1.find_first_of(S2);
744     if (I == StringRef::npos) // No match.
745       return Constant::getNullValue(CI->getType());
746 
747     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
748                        "strpbrk");
749   }
750 
751   // strpbrk(s, "a") -> strchr(s, 'a')
752   if (HasS2 && S2.size() == 1)
753     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
754 
755   return nullptr;
756 }
757 
758 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) {
759   Value *EndPtr = CI->getArgOperand(1);
760   if (isa<ConstantPointerNull>(EndPtr)) {
761     // With a null EndPtr, this function won't capture the main argument.
762     // It would be readonly too, except that it still may write to errno.
763     CI->addParamAttr(0, Attribute::NoCapture);
764   }
765 
766   return nullptr;
767 }
768 
769 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) {
770   StringRef S1, S2;
771   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
772   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
773 
774   // strspn(s, "") -> 0
775   // strspn("", s) -> 0
776   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
777     return Constant::getNullValue(CI->getType());
778 
779   // Constant folding.
780   if (HasS1 && HasS2) {
781     size_t Pos = S1.find_first_not_of(S2);
782     if (Pos == StringRef::npos)
783       Pos = S1.size();
784     return ConstantInt::get(CI->getType(), Pos);
785   }
786 
787   return nullptr;
788 }
789 
790 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) {
791   StringRef S1, S2;
792   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
793   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
794 
795   // strcspn("", s) -> 0
796   if (HasS1 && S1.empty())
797     return Constant::getNullValue(CI->getType());
798 
799   // Constant folding.
800   if (HasS1 && HasS2) {
801     size_t Pos = S1.find_first_of(S2);
802     if (Pos == StringRef::npos)
803       Pos = S1.size();
804     return ConstantInt::get(CI->getType(), Pos);
805   }
806 
807   // strcspn(s, "") -> strlen(s)
808   if (HasS2 && S2.empty())
809     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
810 
811   return nullptr;
812 }
813 
814 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) {
815   // fold strstr(x, x) -> x.
816   if (CI->getArgOperand(0) == CI->getArgOperand(1))
817     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
818 
819   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
820   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
821     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
822     if (!StrLen)
823       return nullptr;
824     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
825                                  StrLen, B, DL, TLI);
826     if (!StrNCmp)
827       return nullptr;
828     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
829       ICmpInst *Old = cast<ICmpInst>(*UI++);
830       Value *Cmp =
831           B.CreateICmp(Old->getPredicate(), StrNCmp,
832                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
833       replaceAllUsesWith(Old, Cmp);
834     }
835     return CI;
836   }
837 
838   // See if either input string is a constant string.
839   StringRef SearchStr, ToFindStr;
840   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
841   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
842 
843   // fold strstr(x, "") -> x.
844   if (HasStr2 && ToFindStr.empty())
845     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
846 
847   // If both strings are known, constant fold it.
848   if (HasStr1 && HasStr2) {
849     size_t Offset = SearchStr.find(ToFindStr);
850 
851     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
852       return Constant::getNullValue(CI->getType());
853 
854     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
855     Value *Result = castToCStr(CI->getArgOperand(0), B);
856     Result =
857         B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
858     return B.CreateBitCast(Result, CI->getType());
859   }
860 
861   // fold strstr(x, "y") -> strchr(x, 'y').
862   if (HasStr2 && ToFindStr.size() == 1) {
863     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
864     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
865   }
866 
867   annotateNonNullBasedOnAccess(CI, {0, 1});
868   return nullptr;
869 }
870 
871 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) {
872   if (isKnownNonZero(CI->getOperand(2), DL))
873     annotateNonNullBasedOnAccess(CI, 0);
874   return nullptr;
875 }
876 
877 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) {
878   Value *SrcStr = CI->getArgOperand(0);
879   Value *Size = CI->getArgOperand(2);
880   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
881   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
882   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
883 
884   // memchr(x, y, 0) -> null
885   if (LenC) {
886     if (LenC->isZero())
887       return Constant::getNullValue(CI->getType());
888   } else {
889     // From now on we need at least constant length and string.
890     return nullptr;
891   }
892 
893   StringRef Str;
894   if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
895     return nullptr;
896 
897   // Truncate the string to LenC. If Str is smaller than LenC we will still only
898   // scan the string, as reading past the end of it is undefined and we can just
899   // return null if we don't find the char.
900   Str = Str.substr(0, LenC->getZExtValue());
901 
902   // If the char is variable but the input str and length are not we can turn
903   // this memchr call into a simple bit field test. Of course this only works
904   // when the return value is only checked against null.
905   //
906   // It would be really nice to reuse switch lowering here but we can't change
907   // the CFG at this point.
908   //
909   // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
910   // != 0
911   //   after bounds check.
912   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
913     unsigned char Max =
914         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
915                           reinterpret_cast<const unsigned char *>(Str.end()));
916 
917     // Make sure the bit field we're about to create fits in a register on the
918     // target.
919     // FIXME: On a 64 bit architecture this prevents us from using the
920     // interesting range of alpha ascii chars. We could do better by emitting
921     // two bitfields or shifting the range by 64 if no lower chars are used.
922     if (!DL.fitsInLegalInteger(Max + 1))
923       return nullptr;
924 
925     // For the bit field use a power-of-2 type with at least 8 bits to avoid
926     // creating unnecessary illegal types.
927     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
928 
929     // Now build the bit field.
930     APInt Bitfield(Width, 0);
931     for (char C : Str)
932       Bitfield.setBit((unsigned char)C);
933     Value *BitfieldC = B.getInt(Bitfield);
934 
935     // Adjust width of "C" to the bitfield width, then mask off the high bits.
936     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
937     C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
938 
939     // First check that the bit field access is within bounds.
940     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
941                                  "memchr.bounds");
942 
943     // Create code that checks if the given bit is set in the field.
944     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
945     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
946 
947     // Finally merge both checks and cast to pointer type. The inttoptr
948     // implicitly zexts the i1 to intptr type.
949     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
950   }
951 
952   // Check if all arguments are constants.  If so, we can constant fold.
953   if (!CharC)
954     return nullptr;
955 
956   // Compute the offset.
957   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
958   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
959     return Constant::getNullValue(CI->getType());
960 
961   // memchr(s+n,c,l) -> gep(s+n+i,c)
962   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
963 }
964 
965 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
966                                          uint64_t Len, IRBuilderBase &B,
967                                          const DataLayout &DL) {
968   if (Len == 0) // memcmp(s1,s2,0) -> 0
969     return Constant::getNullValue(CI->getType());
970 
971   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
972   if (Len == 1) {
973     Value *LHSV =
974         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
975                      CI->getType(), "lhsv");
976     Value *RHSV =
977         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
978                      CI->getType(), "rhsv");
979     return B.CreateSub(LHSV, RHSV, "chardiff");
980   }
981 
982   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
983   // TODO: The case where both inputs are constants does not need to be limited
984   // to legal integers or equality comparison. See block below this.
985   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
986     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
987     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
988 
989     // First, see if we can fold either argument to a constant.
990     Value *LHSV = nullptr;
991     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
992       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
993       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
994     }
995     Value *RHSV = nullptr;
996     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
997       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
998       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
999     }
1000 
1001     // Don't generate unaligned loads. If either source is constant data,
1002     // alignment doesn't matter for that source because there is no load.
1003     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
1004         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
1005       if (!LHSV) {
1006         Type *LHSPtrTy =
1007             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
1008         LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
1009       }
1010       if (!RHSV) {
1011         Type *RHSPtrTy =
1012             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
1013         RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
1014       }
1015       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1016     }
1017   }
1018 
1019   // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
1020   // TODO: This is limited to i8 arrays.
1021   StringRef LHSStr, RHSStr;
1022   if (getConstantStringInfo(LHS, LHSStr) &&
1023       getConstantStringInfo(RHS, RHSStr)) {
1024     // Make sure we're not reading out-of-bounds memory.
1025     if (Len > LHSStr.size() || Len > RHSStr.size())
1026       return nullptr;
1027     // Fold the memcmp and normalize the result.  This way we get consistent
1028     // results across multiple platforms.
1029     uint64_t Ret = 0;
1030     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
1031     if (Cmp < 0)
1032       Ret = -1;
1033     else if (Cmp > 0)
1034       Ret = 1;
1035     return ConstantInt::get(CI->getType(), Ret);
1036   }
1037 
1038   return nullptr;
1039 }
1040 
1041 // Most simplifications for memcmp also apply to bcmp.
1042 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1043                                                    IRBuilderBase &B) {
1044   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1045   Value *Size = CI->getArgOperand(2);
1046 
1047   if (LHS == RHS) // memcmp(s,s,x) -> 0
1048     return Constant::getNullValue(CI->getType());
1049 
1050   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1051   // Handle constant lengths.
1052   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1053   if (!LenC)
1054     return nullptr;
1055 
1056   // memcmp(d,s,0) -> 0
1057   if (LenC->getZExtValue() == 0)
1058     return Constant::getNullValue(CI->getType());
1059 
1060   if (Value *Res =
1061           optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL))
1062     return Res;
1063   return nullptr;
1064 }
1065 
1066 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
1067   if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1068     return V;
1069 
1070   // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1071   // bcmp can be more efficient than memcmp because it only has to know that
1072   // there is a difference, not how different one is to the other.
1073   if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) {
1074     Value *LHS = CI->getArgOperand(0);
1075     Value *RHS = CI->getArgOperand(1);
1076     Value *Size = CI->getArgOperand(2);
1077     return emitBCmp(LHS, RHS, Size, B, DL, TLI);
1078   }
1079 
1080   return nullptr;
1081 }
1082 
1083 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) {
1084   return optimizeMemCmpBCmpCommon(CI, B);
1085 }
1086 
1087 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) {
1088   Value *Size = CI->getArgOperand(2);
1089   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1090   if (isa<IntrinsicInst>(CI))
1091     return nullptr;
1092 
1093   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1094   CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1),
1095                                    CI->getArgOperand(1), Align(1), Size);
1096   NewCI->setAttributes(CI->getAttributes());
1097   return CI->getArgOperand(0);
1098 }
1099 
1100 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) {
1101   Value *Dst = CI->getArgOperand(0);
1102   Value *Src = CI->getArgOperand(1);
1103   ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1104   ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1105   StringRef SrcStr;
1106   if (CI->use_empty() && Dst == Src)
1107     return Dst;
1108   // memccpy(d, s, c, 0) -> nullptr
1109   if (N) {
1110     if (N->isNullValue())
1111       return Constant::getNullValue(CI->getType());
1112     if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0,
1113                                /*TrimAtNul=*/false) ||
1114         !StopChar)
1115       return nullptr;
1116   } else {
1117     return nullptr;
1118   }
1119 
1120   // Wrap arg 'c' of type int to char
1121   size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1122   if (Pos == StringRef::npos) {
1123     if (N->getZExtValue() <= SrcStr.size()) {
1124       B.CreateMemCpy(Dst, Align(1), Src, Align(1), CI->getArgOperand(3));
1125       return Constant::getNullValue(CI->getType());
1126     }
1127     return nullptr;
1128   }
1129 
1130   Value *NewN =
1131       ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1132   // memccpy -> llvm.memcpy
1133   B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN);
1134   return Pos + 1 <= N->getZExtValue()
1135              ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1136              : Constant::getNullValue(CI->getType());
1137 }
1138 
1139 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) {
1140   Value *Dst = CI->getArgOperand(0);
1141   Value *N = CI->getArgOperand(2);
1142   // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1143   CallInst *NewCI =
1144       B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N);
1145   NewCI->setAttributes(CI->getAttributes());
1146   return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1147 }
1148 
1149 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) {
1150   Value *Size = CI->getArgOperand(2);
1151   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1152   if (isa<IntrinsicInst>(CI))
1153     return nullptr;
1154 
1155   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1156   CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1),
1157                                     CI->getArgOperand(1), Align(1), Size);
1158   NewCI->setAttributes(CI->getAttributes());
1159   return CI->getArgOperand(0);
1160 }
1161 
1162 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
1163 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilderBase &B) {
1164   // This has to be a memset of zeros (bzero).
1165   auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
1166   if (!FillValue || FillValue->getZExtValue() != 0)
1167     return nullptr;
1168 
1169   // TODO: We should handle the case where the malloc has more than one use.
1170   // This is necessary to optimize common patterns such as when the result of
1171   // the malloc is checked against null or when a memset intrinsic is used in
1172   // place of a memset library call.
1173   auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
1174   if (!Malloc || !Malloc->hasOneUse())
1175     return nullptr;
1176 
1177   // Is the inner call really malloc()?
1178   Function *InnerCallee = Malloc->getCalledFunction();
1179   if (!InnerCallee)
1180     return nullptr;
1181 
1182   LibFunc Func;
1183   if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
1184       Func != LibFunc_malloc)
1185     return nullptr;
1186 
1187   // The memset must cover the same number of bytes that are malloc'd.
1188   if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
1189     return nullptr;
1190 
1191   // Replace the malloc with a calloc. We need the data layout to know what the
1192   // actual size of a 'size_t' parameter is.
1193   B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
1194   const DataLayout &DL = Malloc->getModule()->getDataLayout();
1195   IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
1196   if (Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
1197                                  Malloc->getArgOperand(0),
1198                                  Malloc->getAttributes(), B, *TLI)) {
1199     substituteInParent(Malloc, Calloc);
1200     return Calloc;
1201   }
1202 
1203   return nullptr;
1204 }
1205 
1206 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) {
1207   Value *Size = CI->getArgOperand(2);
1208   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1209   if (isa<IntrinsicInst>(CI))
1210     return nullptr;
1211 
1212   if (auto *Calloc = foldMallocMemset(CI, B))
1213     return Calloc;
1214 
1215   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1216   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1217   CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1));
1218   NewCI->setAttributes(CI->getAttributes());
1219   return CI->getArgOperand(0);
1220 }
1221 
1222 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) {
1223   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1224     return emitMalloc(CI->getArgOperand(1), B, DL, TLI);
1225 
1226   return nullptr;
1227 }
1228 
1229 //===----------------------------------------------------------------------===//
1230 // Math Library Optimizations
1231 //===----------------------------------------------------------------------===//
1232 
1233 // Replace a libcall \p CI with a call to intrinsic \p IID
1234 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B,
1235                                Intrinsic::ID IID) {
1236   // Propagate fast-math flags from the existing call to the new call.
1237   IRBuilderBase::FastMathFlagGuard Guard(B);
1238   B.setFastMathFlags(CI->getFastMathFlags());
1239 
1240   Module *M = CI->getModule();
1241   Value *V = CI->getArgOperand(0);
1242   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1243   CallInst *NewCall = B.CreateCall(F, V);
1244   NewCall->takeName(CI);
1245   return NewCall;
1246 }
1247 
1248 /// Return a variant of Val with float type.
1249 /// Currently this works in two cases: If Val is an FPExtension of a float
1250 /// value to something bigger, simply return the operand.
1251 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1252 /// loss of precision do so.
1253 static Value *valueHasFloatPrecision(Value *Val) {
1254   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1255     Value *Op = Cast->getOperand(0);
1256     if (Op->getType()->isFloatTy())
1257       return Op;
1258   }
1259   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1260     APFloat F = Const->getValueAPF();
1261     bool losesInfo;
1262     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1263                     &losesInfo);
1264     if (!losesInfo)
1265       return ConstantFP::get(Const->getContext(), F);
1266   }
1267   return nullptr;
1268 }
1269 
1270 /// Shrink double -> float functions.
1271 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
1272                                bool isBinary, bool isPrecise = false) {
1273   Function *CalleeFn = CI->getCalledFunction();
1274   if (!CI->getType()->isDoubleTy() || !CalleeFn)
1275     return nullptr;
1276 
1277   // If not all the uses of the function are converted to float, then bail out.
1278   // This matters if the precision of the result is more important than the
1279   // precision of the arguments.
1280   if (isPrecise)
1281     for (User *U : CI->users()) {
1282       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1283       if (!Cast || !Cast->getType()->isFloatTy())
1284         return nullptr;
1285     }
1286 
1287   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1288   Value *V[2];
1289   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1290   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1291   if (!V[0] || (isBinary && !V[1]))
1292     return nullptr;
1293 
1294   // If call isn't an intrinsic, check that it isn't within a function with the
1295   // same name as the float version of this call, otherwise the result is an
1296   // infinite loop.  For example, from MinGW-w64:
1297   //
1298   // float expf(float val) { return (float) exp((double) val); }
1299   StringRef CalleeName = CalleeFn->getName();
1300   bool IsIntrinsic = CalleeFn->isIntrinsic();
1301   if (!IsIntrinsic) {
1302     StringRef CallerName = CI->getFunction()->getName();
1303     if (!CallerName.empty() && CallerName.back() == 'f' &&
1304         CallerName.size() == (CalleeName.size() + 1) &&
1305         CallerName.startswith(CalleeName))
1306       return nullptr;
1307   }
1308 
1309   // Propagate the math semantics from the current function to the new function.
1310   IRBuilderBase::FastMathFlagGuard Guard(B);
1311   B.setFastMathFlags(CI->getFastMathFlags());
1312 
1313   // g((double) float) -> (double) gf(float)
1314   Value *R;
1315   if (IsIntrinsic) {
1316     Module *M = CI->getModule();
1317     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1318     Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1319     R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1320   } else {
1321     AttributeList CalleeAttrs = CalleeFn->getAttributes();
1322     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs)
1323                  : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs);
1324   }
1325   return B.CreateFPExt(R, B.getDoubleTy());
1326 }
1327 
1328 /// Shrink double -> float for unary functions.
1329 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1330                                     bool isPrecise = false) {
1331   return optimizeDoubleFP(CI, B, false, isPrecise);
1332 }
1333 
1334 /// Shrink double -> float for binary functions.
1335 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1336                                      bool isPrecise = false) {
1337   return optimizeDoubleFP(CI, B, true, isPrecise);
1338 }
1339 
1340 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1341 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) {
1342   if (!CI->isFast())
1343     return nullptr;
1344 
1345   // Propagate fast-math flags from the existing call to new instructions.
1346   IRBuilderBase::FastMathFlagGuard Guard(B);
1347   B.setFastMathFlags(CI->getFastMathFlags());
1348 
1349   Value *Real, *Imag;
1350   if (CI->getNumArgOperands() == 1) {
1351     Value *Op = CI->getArgOperand(0);
1352     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1353     Real = B.CreateExtractValue(Op, 0, "real");
1354     Imag = B.CreateExtractValue(Op, 1, "imag");
1355   } else {
1356     assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
1357     Real = CI->getArgOperand(0);
1358     Imag = CI->getArgOperand(1);
1359   }
1360 
1361   Value *RealReal = B.CreateFMul(Real, Real);
1362   Value *ImagImag = B.CreateFMul(Imag, Imag);
1363 
1364   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1365                                               CI->getType());
1366   return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
1367 }
1368 
1369 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1370                                       IRBuilderBase &B) {
1371   if (!isa<FPMathOperator>(Call))
1372     return nullptr;
1373 
1374   IRBuilderBase::FastMathFlagGuard Guard(B);
1375   B.setFastMathFlags(Call->getFastMathFlags());
1376 
1377   // TODO: Can this be shared to also handle LLVM intrinsics?
1378   Value *X;
1379   switch (Func) {
1380   case LibFunc_sin:
1381   case LibFunc_sinf:
1382   case LibFunc_sinl:
1383   case LibFunc_tan:
1384   case LibFunc_tanf:
1385   case LibFunc_tanl:
1386     // sin(-X) --> -sin(X)
1387     // tan(-X) --> -tan(X)
1388     if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1389       return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X));
1390     break;
1391   case LibFunc_cos:
1392   case LibFunc_cosf:
1393   case LibFunc_cosl:
1394     // cos(-X) --> cos(X)
1395     if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1396       return B.CreateCall(Call->getCalledFunction(), X, "cos");
1397     break;
1398   default:
1399     break;
1400   }
1401   return nullptr;
1402 }
1403 
1404 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) {
1405   // Multiplications calculated using Addition Chains.
1406   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1407 
1408   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1409 
1410   if (InnerChain[Exp])
1411     return InnerChain[Exp];
1412 
1413   static const unsigned AddChain[33][2] = {
1414       {0, 0}, // Unused.
1415       {0, 0}, // Unused (base case = pow1).
1416       {1, 1}, // Unused (pre-computed).
1417       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1418       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1419       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1420       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1421       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1422   };
1423 
1424   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1425                                  getPow(InnerChain, AddChain[Exp][1], B));
1426   return InnerChain[Exp];
1427 }
1428 
1429 // Return a properly extended 32-bit integer if the operation is an itofp.
1430 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B) {
1431   if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
1432     Value *Op = cast<Instruction>(I2F)->getOperand(0);
1433     // Make sure that the exponent fits inside an int32_t,
1434     // thus avoiding any range issues that FP has not.
1435     unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1436     if (BitWidth < 32 ||
1437         (BitWidth == 32 && isa<SIToFPInst>(I2F)))
1438       return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getInt32Ty())
1439                                   : B.CreateZExt(Op, B.getInt32Ty());
1440   }
1441 
1442   return nullptr;
1443 }
1444 
1445 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1446 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1447 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1448 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
1449   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1450   AttributeList Attrs; // Attributes are only meaningful on the original call
1451   Module *Mod = Pow->getModule();
1452   Type *Ty = Pow->getType();
1453   bool Ignored;
1454 
1455   // Evaluate special cases related to a nested function as the base.
1456 
1457   // pow(exp(x), y) -> exp(x * y)
1458   // pow(exp2(x), y) -> exp2(x * y)
1459   // If exp{,2}() is used only once, it is better to fold two transcendental
1460   // math functions into one.  If used again, exp{,2}() would still have to be
1461   // called with the original argument, then keep both original transcendental
1462   // functions.  However, this transformation is only safe with fully relaxed
1463   // math semantics, since, besides rounding differences, it changes overflow
1464   // and underflow behavior quite dramatically.  For example:
1465   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1466   // Whereas:
1467   //   exp(1000 * 0.001) = exp(1)
1468   // TODO: Loosen the requirement for fully relaxed math semantics.
1469   // TODO: Handle exp10() when more targets have it available.
1470   CallInst *BaseFn = dyn_cast<CallInst>(Base);
1471   if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1472     LibFunc LibFn;
1473 
1474     Function *CalleeFn = BaseFn->getCalledFunction();
1475     if (CalleeFn &&
1476         TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) {
1477       StringRef ExpName;
1478       Intrinsic::ID ID;
1479       Value *ExpFn;
1480       LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
1481 
1482       switch (LibFn) {
1483       default:
1484         return nullptr;
1485       case LibFunc_expf:  case LibFunc_exp:  case LibFunc_expl:
1486         ExpName = TLI->getName(LibFunc_exp);
1487         ID = Intrinsic::exp;
1488         LibFnFloat = LibFunc_expf;
1489         LibFnDouble = LibFunc_exp;
1490         LibFnLongDouble = LibFunc_expl;
1491         break;
1492       case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1493         ExpName = TLI->getName(LibFunc_exp2);
1494         ID = Intrinsic::exp2;
1495         LibFnFloat = LibFunc_exp2f;
1496         LibFnDouble = LibFunc_exp2;
1497         LibFnLongDouble = LibFunc_exp2l;
1498         break;
1499       }
1500 
1501       // Create new exp{,2}() with the product as its argument.
1502       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1503       ExpFn = BaseFn->doesNotAccessMemory()
1504               ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1505                              FMul, ExpName)
1506               : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1507                                      LibFnLongDouble, B,
1508                                      BaseFn->getAttributes());
1509 
1510       // Since the new exp{,2}() is different from the original one, dead code
1511       // elimination cannot be trusted to remove it, since it may have side
1512       // effects (e.g., errno).  When the only consumer for the original
1513       // exp{,2}() is pow(), then it has to be explicitly erased.
1514       substituteInParent(BaseFn, ExpFn);
1515       return ExpFn;
1516     }
1517   }
1518 
1519   // Evaluate special cases related to a constant base.
1520 
1521   const APFloat *BaseF;
1522   if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1523     return nullptr;
1524 
1525   // pow(2.0, itofp(x)) -> ldexp(1.0, x)
1526   if (match(Base, m_SpecificFP(2.0)) &&
1527       (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
1528       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1529     if (Value *ExpoI = getIntToFPVal(Expo, B))
1530       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI,
1531                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1532                                    B, Attrs);
1533   }
1534 
1535   // pow(2.0 ** n, x) -> exp2(n * x)
1536   if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1537     APFloat BaseR = APFloat(1.0);
1538     BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1539     BaseR = BaseR / *BaseF;
1540     bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
1541     const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1542     APSInt NI(64, false);
1543     if ((IsInteger || IsReciprocal) &&
1544         NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
1545             APFloat::opOK &&
1546         NI > 1 && NI.isPowerOf2()) {
1547       double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1548       Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1549       if (Pow->doesNotAccessMemory())
1550         return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1551                             FMul, "exp2");
1552       else
1553         return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1554                                     LibFunc_exp2l, B, Attrs);
1555     }
1556   }
1557 
1558   // pow(10.0, x) -> exp10(x)
1559   // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1560   if (match(Base, m_SpecificFP(10.0)) &&
1561       hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1562     return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f,
1563                                 LibFunc_exp10l, B, Attrs);
1564 
1565   // pow(x, y) -> exp2(log2(x) * y)
1566   if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() &&
1567       !BaseF->isNegative()) {
1568     // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
1569     // Luckily optimizePow has already handled the x == 1 case.
1570     assert(!match(Base, m_FPOne()) &&
1571            "pow(1.0, y) should have been simplified earlier!");
1572 
1573     Value *Log = nullptr;
1574     if (Ty->isFloatTy())
1575       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
1576     else if (Ty->isDoubleTy())
1577       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
1578 
1579     if (Log) {
1580       Value *FMul = B.CreateFMul(Log, Expo, "mul");
1581       if (Pow->doesNotAccessMemory())
1582         return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1583                             FMul, "exp2");
1584       else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l))
1585         return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1586                                     LibFunc_exp2l, B, Attrs);
1587     }
1588   }
1589 
1590   return nullptr;
1591 }
1592 
1593 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1594                           Module *M, IRBuilderBase &B,
1595                           const TargetLibraryInfo *TLI) {
1596   // If errno is never set, then use the intrinsic for sqrt().
1597   if (NoErrno) {
1598     Function *SqrtFn =
1599         Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1600     return B.CreateCall(SqrtFn, V, "sqrt");
1601   }
1602 
1603   // Otherwise, use the libcall for sqrt().
1604   if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl))
1605     // TODO: We also should check that the target can in fact lower the sqrt()
1606     // libcall. We currently have no way to ask this question, so we ask if
1607     // the target has a sqrt() libcall, which is not exactly the same.
1608     return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1609                                 LibFunc_sqrtl, B, Attrs);
1610 
1611   return nullptr;
1612 }
1613 
1614 /// Use square root in place of pow(x, +/-0.5).
1615 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) {
1616   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1617   AttributeList Attrs; // Attributes are only meaningful on the original call
1618   Module *Mod = Pow->getModule();
1619   Type *Ty = Pow->getType();
1620 
1621   const APFloat *ExpoF;
1622   if (!match(Expo, m_APFloat(ExpoF)) ||
1623       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1624     return nullptr;
1625 
1626   // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
1627   // so that requires fast-math-flags (afn or reassoc).
1628   if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
1629     return nullptr;
1630 
1631   Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1632   if (!Sqrt)
1633     return nullptr;
1634 
1635   // Handle signed zero base by expanding to fabs(sqrt(x)).
1636   if (!Pow->hasNoSignedZeros()) {
1637     Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1638     Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1639   }
1640 
1641   // Handle non finite base by expanding to
1642   // (x == -infinity ? +infinity : sqrt(x)).
1643   if (!Pow->hasNoInfs()) {
1644     Value *PosInf = ConstantFP::getInfinity(Ty),
1645           *NegInf = ConstantFP::getInfinity(Ty, true);
1646     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1647     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1648   }
1649 
1650   // If the exponent is negative, then get the reciprocal.
1651   if (ExpoF->isNegative())
1652     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1653 
1654   return Sqrt;
1655 }
1656 
1657 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
1658                                            IRBuilderBase &B) {
1659   Value *Args[] = {Base, Expo};
1660   Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType());
1661   return B.CreateCall(F, Args);
1662 }
1663 
1664 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
1665   Value *Base = Pow->getArgOperand(0);
1666   Value *Expo = Pow->getArgOperand(1);
1667   Function *Callee = Pow->getCalledFunction();
1668   StringRef Name = Callee->getName();
1669   Type *Ty = Pow->getType();
1670   Module *M = Pow->getModule();
1671   Value *Shrunk = nullptr;
1672   bool AllowApprox = Pow->hasApproxFunc();
1673   bool Ignored;
1674 
1675   // Propagate the math semantics from the call to any created instructions.
1676   IRBuilderBase::FastMathFlagGuard Guard(B);
1677   B.setFastMathFlags(Pow->getFastMathFlags());
1678 
1679   // Shrink pow() to powf() if the arguments are single precision,
1680   // unless the result is expected to be double precision.
1681   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
1682       hasFloatVersion(Name))
1683     Shrunk = optimizeBinaryDoubleFP(Pow, B, true);
1684 
1685   // Evaluate special cases related to the base.
1686 
1687   // pow(1.0, x) -> 1.0
1688   if (match(Base, m_FPOne()))
1689     return Base;
1690 
1691   if (Value *Exp = replacePowWithExp(Pow, B))
1692     return Exp;
1693 
1694   // Evaluate special cases related to the exponent.
1695 
1696   // pow(x, -1.0) -> 1.0 / x
1697   if (match(Expo, m_SpecificFP(-1.0)))
1698     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1699 
1700   // pow(x, +/-0.0) -> 1.0
1701   if (match(Expo, m_AnyZeroFP()))
1702     return ConstantFP::get(Ty, 1.0);
1703 
1704   // pow(x, 1.0) -> x
1705   if (match(Expo, m_FPOne()))
1706     return Base;
1707 
1708   // pow(x, 2.0) -> x * x
1709   if (match(Expo, m_SpecificFP(2.0)))
1710     return B.CreateFMul(Base, Base, "square");
1711 
1712   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1713     return Sqrt;
1714 
1715   // pow(x, n) -> x * x * x * ...
1716   const APFloat *ExpoF;
1717   if (AllowApprox && match(Expo, m_APFloat(ExpoF))) {
1718     // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1719     // If the exponent is an integer+0.5 we generate a call to sqrt and an
1720     // additional fmul.
1721     // TODO: This whole transformation should be backend specific (e.g. some
1722     //       backends might prefer libcalls or the limit for the exponent might
1723     //       be different) and it should also consider optimizing for size.
1724     APFloat LimF(ExpoF->getSemantics(), 33),
1725             ExpoA(abs(*ExpoF));
1726     if (ExpoA < LimF) {
1727       // This transformation applies to integer or integer+0.5 exponents only.
1728       // For integer+0.5, we create a sqrt(Base) call.
1729       Value *Sqrt = nullptr;
1730       if (!ExpoA.isInteger()) {
1731         APFloat Expo2 = ExpoA;
1732         // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1733         // is no floating point exception and the result is an integer, then
1734         // ExpoA == integer + 0.5
1735         if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
1736           return nullptr;
1737 
1738         if (!Expo2.isInteger())
1739           return nullptr;
1740 
1741         Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
1742                            Pow->doesNotAccessMemory(), M, B, TLI);
1743       }
1744 
1745       // We will memoize intermediate products of the Addition Chain.
1746       Value *InnerChain[33] = {nullptr};
1747       InnerChain[1] = Base;
1748       InnerChain[2] = B.CreateFMul(Base, Base, "square");
1749 
1750       // We cannot readily convert a non-double type (like float) to a double.
1751       // So we first convert it to something which could be converted to double.
1752       ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1753       Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1754 
1755       // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
1756       if (Sqrt)
1757         FMul = B.CreateFMul(FMul, Sqrt);
1758 
1759       // If the exponent is negative, then get the reciprocal.
1760       if (ExpoF->isNegative())
1761         FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1762 
1763       return FMul;
1764     }
1765 
1766     APSInt IntExpo(32, /*isUnsigned=*/false);
1767     // powf(x, n) -> powi(x, n) if n is a constant signed integer value
1768     if (ExpoF->isInteger() &&
1769         ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
1770             APFloat::opOK) {
1771       return createPowWithIntegerExponent(
1772           Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B);
1773     }
1774   }
1775 
1776   // powf(x, itofp(y)) -> powi(x, y)
1777   if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
1778     if (Value *ExpoI = getIntToFPVal(Expo, B))
1779       return createPowWithIntegerExponent(Base, ExpoI, M, B);
1780   }
1781 
1782   return Shrunk;
1783 }
1784 
1785 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
1786   Function *Callee = CI->getCalledFunction();
1787   AttributeList Attrs; // Attributes are only meaningful on the original call
1788   StringRef Name = Callee->getName();
1789   Value *Ret = nullptr;
1790   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
1791       hasFloatVersion(Name))
1792     Ret = optimizeUnaryDoubleFP(CI, B, true);
1793 
1794   Type *Ty = CI->getType();
1795   Value *Op = CI->getArgOperand(0);
1796 
1797   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1798   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1799   if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
1800       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1801     if (Value *Exp = getIntToFPVal(Op, B))
1802       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
1803                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1804                                    B, Attrs);
1805   }
1806 
1807   return Ret;
1808 }
1809 
1810 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
1811   // If we can shrink the call to a float function rather than a double
1812   // function, do that first.
1813   Function *Callee = CI->getCalledFunction();
1814   StringRef Name = Callee->getName();
1815   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1816     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1817       return Ret;
1818 
1819   // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
1820   // the intrinsics for improved optimization (for example, vectorization).
1821   // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
1822   // From the C standard draft WG14/N1256:
1823   // "Ideally, fmax would be sensitive to the sign of zero, for example
1824   // fmax(-0.0, +0.0) would return +0; however, implementation in software
1825   // might be impractical."
1826   IRBuilderBase::FastMathFlagGuard Guard(B);
1827   FastMathFlags FMF = CI->getFastMathFlags();
1828   FMF.setNoSignedZeros();
1829   B.setFastMathFlags(FMF);
1830 
1831   Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
1832                                                            : Intrinsic::maxnum;
1833   Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
1834   return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) });
1835 }
1836 
1837 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
1838   Function *LogFn = Log->getCalledFunction();
1839   AttributeList Attrs; // Attributes are only meaningful on the original call
1840   StringRef LogNm = LogFn->getName();
1841   Intrinsic::ID LogID = LogFn->getIntrinsicID();
1842   Module *Mod = Log->getModule();
1843   Type *Ty = Log->getType();
1844   Value *Ret = nullptr;
1845 
1846   if (UnsafeFPShrink && hasFloatVersion(LogNm))
1847     Ret = optimizeUnaryDoubleFP(Log, B, true);
1848 
1849   // The earlier call must also be 'fast' in order to do these transforms.
1850   CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
1851   if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
1852     return Ret;
1853 
1854   LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
1855 
1856   // This is only applicable to log(), log2(), log10().
1857   if (TLI->getLibFunc(LogNm, LogLb))
1858     switch (LogLb) {
1859     case LibFunc_logf:
1860       LogID = Intrinsic::log;
1861       ExpLb = LibFunc_expf;
1862       Exp2Lb = LibFunc_exp2f;
1863       Exp10Lb = LibFunc_exp10f;
1864       PowLb = LibFunc_powf;
1865       break;
1866     case LibFunc_log:
1867       LogID = Intrinsic::log;
1868       ExpLb = LibFunc_exp;
1869       Exp2Lb = LibFunc_exp2;
1870       Exp10Lb = LibFunc_exp10;
1871       PowLb = LibFunc_pow;
1872       break;
1873     case LibFunc_logl:
1874       LogID = Intrinsic::log;
1875       ExpLb = LibFunc_expl;
1876       Exp2Lb = LibFunc_exp2l;
1877       Exp10Lb = LibFunc_exp10l;
1878       PowLb = LibFunc_powl;
1879       break;
1880     case LibFunc_log2f:
1881       LogID = Intrinsic::log2;
1882       ExpLb = LibFunc_expf;
1883       Exp2Lb = LibFunc_exp2f;
1884       Exp10Lb = LibFunc_exp10f;
1885       PowLb = LibFunc_powf;
1886       break;
1887     case LibFunc_log2:
1888       LogID = Intrinsic::log2;
1889       ExpLb = LibFunc_exp;
1890       Exp2Lb = LibFunc_exp2;
1891       Exp10Lb = LibFunc_exp10;
1892       PowLb = LibFunc_pow;
1893       break;
1894     case LibFunc_log2l:
1895       LogID = Intrinsic::log2;
1896       ExpLb = LibFunc_expl;
1897       Exp2Lb = LibFunc_exp2l;
1898       Exp10Lb = LibFunc_exp10l;
1899       PowLb = LibFunc_powl;
1900       break;
1901     case LibFunc_log10f:
1902       LogID = Intrinsic::log10;
1903       ExpLb = LibFunc_expf;
1904       Exp2Lb = LibFunc_exp2f;
1905       Exp10Lb = LibFunc_exp10f;
1906       PowLb = LibFunc_powf;
1907       break;
1908     case LibFunc_log10:
1909       LogID = Intrinsic::log10;
1910       ExpLb = LibFunc_exp;
1911       Exp2Lb = LibFunc_exp2;
1912       Exp10Lb = LibFunc_exp10;
1913       PowLb = LibFunc_pow;
1914       break;
1915     case LibFunc_log10l:
1916       LogID = Intrinsic::log10;
1917       ExpLb = LibFunc_expl;
1918       Exp2Lb = LibFunc_exp2l;
1919       Exp10Lb = LibFunc_exp10l;
1920       PowLb = LibFunc_powl;
1921       break;
1922     default:
1923       return Ret;
1924     }
1925   else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
1926            LogID == Intrinsic::log10) {
1927     if (Ty->getScalarType()->isFloatTy()) {
1928       ExpLb = LibFunc_expf;
1929       Exp2Lb = LibFunc_exp2f;
1930       Exp10Lb = LibFunc_exp10f;
1931       PowLb = LibFunc_powf;
1932     } else if (Ty->getScalarType()->isDoubleTy()) {
1933       ExpLb = LibFunc_exp;
1934       Exp2Lb = LibFunc_exp2;
1935       Exp10Lb = LibFunc_exp10;
1936       PowLb = LibFunc_pow;
1937     } else
1938       return Ret;
1939   } else
1940     return Ret;
1941 
1942   IRBuilderBase::FastMathFlagGuard Guard(B);
1943   B.setFastMathFlags(FastMathFlags::getFast());
1944 
1945   Intrinsic::ID ArgID = Arg->getIntrinsicID();
1946   LibFunc ArgLb = NotLibFunc;
1947   TLI->getLibFunc(*Arg, ArgLb);
1948 
1949   // log(pow(x,y)) -> y*log(x)
1950   if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
1951     Value *LogX =
1952         Log->doesNotAccessMemory()
1953             ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1954                            Arg->getOperand(0), "log")
1955             : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs);
1956     Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
1957     // Since pow() may have side effects, e.g. errno,
1958     // dead code elimination may not be trusted to remove it.
1959     substituteInParent(Arg, MulY);
1960     return MulY;
1961   }
1962 
1963   // log(exp{,2,10}(y)) -> y*log({e,2,10})
1964   // TODO: There is no exp10() intrinsic yet.
1965   if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
1966            ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
1967     Constant *Eul;
1968     if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
1969       // FIXME: Add more precise value of e for long double.
1970       Eul = ConstantFP::get(Log->getType(), numbers::e);
1971     else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
1972       Eul = ConstantFP::get(Log->getType(), 2.0);
1973     else
1974       Eul = ConstantFP::get(Log->getType(), 10.0);
1975     Value *LogE = Log->doesNotAccessMemory()
1976                       ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1977                                      Eul, "log")
1978                       : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs);
1979     Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
1980     // Since exp() may have side effects, e.g. errno,
1981     // dead code elimination may not be trusted to remove it.
1982     substituteInParent(Arg, MulY);
1983     return MulY;
1984   }
1985 
1986   return Ret;
1987 }
1988 
1989 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
1990   Function *Callee = CI->getCalledFunction();
1991   Value *Ret = nullptr;
1992   // TODO: Once we have a way (other than checking for the existince of the
1993   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
1994   // condition below.
1995   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
1996                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
1997     Ret = optimizeUnaryDoubleFP(CI, B, true);
1998 
1999   if (!CI->isFast())
2000     return Ret;
2001 
2002   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
2003   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
2004     return Ret;
2005 
2006   // We're looking for a repeated factor in a multiplication tree,
2007   // so we can do this fold: sqrt(x * x) -> fabs(x);
2008   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2009   Value *Op0 = I->getOperand(0);
2010   Value *Op1 = I->getOperand(1);
2011   Value *RepeatOp = nullptr;
2012   Value *OtherOp = nullptr;
2013   if (Op0 == Op1) {
2014     // Simple match: the operands of the multiply are identical.
2015     RepeatOp = Op0;
2016   } else {
2017     // Look for a more complicated pattern: one of the operands is itself
2018     // a multiply, so search for a common factor in that multiply.
2019     // Note: We don't bother looking any deeper than this first level or for
2020     // variations of this pattern because instcombine's visitFMUL and/or the
2021     // reassociation pass should give us this form.
2022     Value *OtherMul0, *OtherMul1;
2023     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
2024       // Pattern: sqrt((x * y) * z)
2025       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
2026         // Matched: sqrt((x * x) * z)
2027         RepeatOp = OtherMul0;
2028         OtherOp = Op1;
2029       }
2030     }
2031   }
2032   if (!RepeatOp)
2033     return Ret;
2034 
2035   // Fast math flags for any created instructions should match the sqrt
2036   // and multiply.
2037   IRBuilderBase::FastMathFlagGuard Guard(B);
2038   B.setFastMathFlags(I->getFastMathFlags());
2039 
2040   // If we found a repeated factor, hoist it out of the square root and
2041   // replace it with the fabs of that factor.
2042   Module *M = Callee->getParent();
2043   Type *ArgType = I->getType();
2044   Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
2045   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
2046   if (OtherOp) {
2047     // If we found a non-repeated factor, we still need to get its square
2048     // root. We then multiply that by the value that was simplified out
2049     // of the square root calculation.
2050     Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
2051     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
2052     return B.CreateFMul(FabsCall, SqrtCall);
2053   }
2054   return FabsCall;
2055 }
2056 
2057 // TODO: Generalize to handle any trig function and its inverse.
2058 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) {
2059   Function *Callee = CI->getCalledFunction();
2060   Value *Ret = nullptr;
2061   StringRef Name = Callee->getName();
2062   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
2063     Ret = optimizeUnaryDoubleFP(CI, B, true);
2064 
2065   Value *Op1 = CI->getArgOperand(0);
2066   auto *OpC = dyn_cast<CallInst>(Op1);
2067   if (!OpC)
2068     return Ret;
2069 
2070   // Both calls must be 'fast' in order to remove them.
2071   if (!CI->isFast() || !OpC->isFast())
2072     return Ret;
2073 
2074   // tan(atan(x)) -> x
2075   // tanf(atanf(x)) -> x
2076   // tanl(atanl(x)) -> x
2077   LibFunc Func;
2078   Function *F = OpC->getCalledFunction();
2079   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
2080       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
2081        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
2082        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
2083     Ret = OpC->getArgOperand(0);
2084   return Ret;
2085 }
2086 
2087 static bool isTrigLibCall(CallInst *CI) {
2088   // We can only hope to do anything useful if we can ignore things like errno
2089   // and floating-point exceptions.
2090   // We already checked the prototype.
2091   return CI->hasFnAttr(Attribute::NoUnwind) &&
2092          CI->hasFnAttr(Attribute::ReadNone);
2093 }
2094 
2095 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
2096                              bool UseFloat, Value *&Sin, Value *&Cos,
2097                              Value *&SinCos) {
2098   Type *ArgTy = Arg->getType();
2099   Type *ResTy;
2100   StringRef Name;
2101 
2102   Triple T(OrigCallee->getParent()->getTargetTriple());
2103   if (UseFloat) {
2104     Name = "__sincospif_stret";
2105 
2106     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2107     // x86_64 can't use {float, float} since that would be returned in both
2108     // xmm0 and xmm1, which isn't what a real struct would do.
2109     ResTy = T.getArch() == Triple::x86_64
2110                 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2))
2111                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2112   } else {
2113     Name = "__sincospi_stret";
2114     ResTy = StructType::get(ArgTy, ArgTy);
2115   }
2116 
2117   Module *M = OrigCallee->getParent();
2118   FunctionCallee Callee =
2119       M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy);
2120 
2121   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2122     // If the argument is an instruction, it must dominate all uses so put our
2123     // sincos call there.
2124     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2125   } else {
2126     // Otherwise (e.g. for a constant) the beginning of the function is as
2127     // good a place as any.
2128     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2129     B.SetInsertPoint(&EntryBB, EntryBB.begin());
2130   }
2131 
2132   SinCos = B.CreateCall(Callee, Arg, "sincospi");
2133 
2134   if (SinCos->getType()->isStructTy()) {
2135     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2136     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2137   } else {
2138     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2139                                  "sinpi");
2140     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2141                                  "cospi");
2142   }
2143 }
2144 
2145 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) {
2146   // Make sure the prototype is as expected, otherwise the rest of the
2147   // function is probably invalid and likely to abort.
2148   if (!isTrigLibCall(CI))
2149     return nullptr;
2150 
2151   Value *Arg = CI->getArgOperand(0);
2152   SmallVector<CallInst *, 1> SinCalls;
2153   SmallVector<CallInst *, 1> CosCalls;
2154   SmallVector<CallInst *, 1> SinCosCalls;
2155 
2156   bool IsFloat = Arg->getType()->isFloatTy();
2157 
2158   // Look for all compatible sinpi, cospi and sincospi calls with the same
2159   // argument. If there are enough (in some sense) we can make the
2160   // substitution.
2161   Function *F = CI->getFunction();
2162   for (User *U : Arg->users())
2163     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2164 
2165   // It's only worthwhile if both sinpi and cospi are actually used.
2166   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
2167     return nullptr;
2168 
2169   Value *Sin, *Cos, *SinCos;
2170   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
2171 
2172   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2173                                  Value *Res) {
2174     for (CallInst *C : Calls)
2175       replaceAllUsesWith(C, Res);
2176   };
2177 
2178   replaceTrigInsts(SinCalls, Sin);
2179   replaceTrigInsts(CosCalls, Cos);
2180   replaceTrigInsts(SinCosCalls, SinCos);
2181 
2182   return nullptr;
2183 }
2184 
2185 void LibCallSimplifier::classifyArgUse(
2186     Value *Val, Function *F, bool IsFloat,
2187     SmallVectorImpl<CallInst *> &SinCalls,
2188     SmallVectorImpl<CallInst *> &CosCalls,
2189     SmallVectorImpl<CallInst *> &SinCosCalls) {
2190   CallInst *CI = dyn_cast<CallInst>(Val);
2191 
2192   if (!CI)
2193     return;
2194 
2195   // Don't consider calls in other functions.
2196   if (CI->getFunction() != F)
2197     return;
2198 
2199   Function *Callee = CI->getCalledFunction();
2200   LibFunc Func;
2201   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
2202       !isTrigLibCall(CI))
2203     return;
2204 
2205   if (IsFloat) {
2206     if (Func == LibFunc_sinpif)
2207       SinCalls.push_back(CI);
2208     else if (Func == LibFunc_cospif)
2209       CosCalls.push_back(CI);
2210     else if (Func == LibFunc_sincospif_stret)
2211       SinCosCalls.push_back(CI);
2212   } else {
2213     if (Func == LibFunc_sinpi)
2214       SinCalls.push_back(CI);
2215     else if (Func == LibFunc_cospi)
2216       CosCalls.push_back(CI);
2217     else if (Func == LibFunc_sincospi_stret)
2218       SinCosCalls.push_back(CI);
2219   }
2220 }
2221 
2222 //===----------------------------------------------------------------------===//
2223 // Integer Library Call Optimizations
2224 //===----------------------------------------------------------------------===//
2225 
2226 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) {
2227   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
2228   Value *Op = CI->getArgOperand(0);
2229   Type *ArgType = Op->getType();
2230   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2231                                           Intrinsic::cttz, ArgType);
2232   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
2233   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
2234   V = B.CreateIntCast(V, B.getInt32Ty(), false);
2235 
2236   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
2237   return B.CreateSelect(Cond, V, B.getInt32(0));
2238 }
2239 
2240 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) {
2241   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
2242   Value *Op = CI->getArgOperand(0);
2243   Type *ArgType = Op->getType();
2244   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2245                                           Intrinsic::ctlz, ArgType);
2246   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
2247   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
2248                   V);
2249   return B.CreateIntCast(V, CI->getType(), false);
2250 }
2251 
2252 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) {
2253   // abs(x) -> x <s 0 ? -x : x
2254   // The negation has 'nsw' because abs of INT_MIN is undefined.
2255   Value *X = CI->getArgOperand(0);
2256   Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
2257   Value *NegX = B.CreateNSWNeg(X, "neg");
2258   return B.CreateSelect(IsNeg, NegX, X);
2259 }
2260 
2261 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) {
2262   // isdigit(c) -> (c-'0') <u 10
2263   Value *Op = CI->getArgOperand(0);
2264   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
2265   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
2266   return B.CreateZExt(Op, CI->getType());
2267 }
2268 
2269 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) {
2270   // isascii(c) -> c <u 128
2271   Value *Op = CI->getArgOperand(0);
2272   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
2273   return B.CreateZExt(Op, CI->getType());
2274 }
2275 
2276 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) {
2277   // toascii(c) -> c & 0x7f
2278   return B.CreateAnd(CI->getArgOperand(0),
2279                      ConstantInt::get(CI->getType(), 0x7F));
2280 }
2281 
2282 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) {
2283   StringRef Str;
2284   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2285     return nullptr;
2286 
2287   return convertStrToNumber(CI, Str, 10);
2288 }
2289 
2290 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) {
2291   StringRef Str;
2292   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2293     return nullptr;
2294 
2295   if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
2296     return nullptr;
2297 
2298   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2299     return convertStrToNumber(CI, Str, CInt->getSExtValue());
2300   }
2301 
2302   return nullptr;
2303 }
2304 
2305 //===----------------------------------------------------------------------===//
2306 // Formatting and IO Library Call Optimizations
2307 //===----------------------------------------------------------------------===//
2308 
2309 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2310 
2311 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B,
2312                                                  int StreamArg) {
2313   Function *Callee = CI->getCalledFunction();
2314   // Error reporting calls should be cold, mark them as such.
2315   // This applies even to non-builtin calls: it is only a hint and applies to
2316   // functions that the frontend might not understand as builtins.
2317 
2318   // This heuristic was suggested in:
2319   // Improving Static Branch Prediction in a Compiler
2320   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2321   // Proceedings of PACT'98, Oct. 1998, IEEE
2322   if (!CI->hasFnAttr(Attribute::Cold) &&
2323       isReportingError(Callee, CI, StreamArg)) {
2324     CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
2325   }
2326 
2327   return nullptr;
2328 }
2329 
2330 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2331   if (!Callee || !Callee->isDeclaration())
2332     return false;
2333 
2334   if (StreamArg < 0)
2335     return true;
2336 
2337   // These functions might be considered cold, but only if their stream
2338   // argument is stderr.
2339 
2340   if (StreamArg >= (int)CI->getNumArgOperands())
2341     return false;
2342   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2343   if (!LI)
2344     return false;
2345   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
2346   if (!GV || !GV->isDeclaration())
2347     return false;
2348   return GV->getName() == "stderr";
2349 }
2350 
2351 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
2352   // Check for a fixed format string.
2353   StringRef FormatStr;
2354   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2355     return nullptr;
2356 
2357   // Empty format string -> noop.
2358   if (FormatStr.empty()) // Tolerate printf's declared void.
2359     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2360 
2361   // Do not do any of the following transformations if the printf return value
2362   // is used, in general the printf return value is not compatible with either
2363   // putchar() or puts().
2364   if (!CI->use_empty())
2365     return nullptr;
2366 
2367   // printf("x") -> putchar('x'), even for "%" and "%%".
2368   if (FormatStr.size() == 1 || FormatStr == "%%")
2369     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
2370 
2371   // printf("%s", "a") --> putchar('a')
2372   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
2373     StringRef ChrStr;
2374     if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
2375       return nullptr;
2376     if (ChrStr.size() != 1)
2377       return nullptr;
2378     return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
2379   }
2380 
2381   // printf("foo\n") --> puts("foo")
2382   if (FormatStr[FormatStr.size() - 1] == '\n' &&
2383       FormatStr.find('%') == StringRef::npos) { // No format characters.
2384     // Create a string literal with no \n on it.  We expect the constant merge
2385     // pass to be run after this pass, to merge duplicate strings.
2386     FormatStr = FormatStr.drop_back();
2387     Value *GV = B.CreateGlobalString(FormatStr, "str");
2388     return emitPutS(GV, B, TLI);
2389   }
2390 
2391   // Optimize specific format strings.
2392   // printf("%c", chr) --> putchar(chr)
2393   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
2394       CI->getArgOperand(1)->getType()->isIntegerTy())
2395     return emitPutChar(CI->getArgOperand(1), B, TLI);
2396 
2397   // printf("%s\n", str) --> puts(str)
2398   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
2399       CI->getArgOperand(1)->getType()->isPointerTy())
2400     return emitPutS(CI->getArgOperand(1), B, TLI);
2401   return nullptr;
2402 }
2403 
2404 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
2405 
2406   Function *Callee = CI->getCalledFunction();
2407   FunctionType *FT = Callee->getFunctionType();
2408   if (Value *V = optimizePrintFString(CI, B)) {
2409     return V;
2410   }
2411 
2412   // printf(format, ...) -> iprintf(format, ...) if no floating point
2413   // arguments.
2414   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
2415     Module *M = B.GetInsertBlock()->getParent()->getParent();
2416     FunctionCallee IPrintFFn =
2417         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
2418     CallInst *New = cast<CallInst>(CI->clone());
2419     New->setCalledFunction(IPrintFFn);
2420     B.Insert(New);
2421     return New;
2422   }
2423 
2424   // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2425   // arguments.
2426   if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) {
2427     Module *M = B.GetInsertBlock()->getParent()->getParent();
2428     auto SmallPrintFFn =
2429         M->getOrInsertFunction(TLI->getName(LibFunc_small_printf),
2430                                FT, Callee->getAttributes());
2431     CallInst *New = cast<CallInst>(CI->clone());
2432     New->setCalledFunction(SmallPrintFFn);
2433     B.Insert(New);
2434     return New;
2435   }
2436 
2437   annotateNonNullBasedOnAccess(CI, 0);
2438   return nullptr;
2439 }
2440 
2441 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
2442                                                 IRBuilderBase &B) {
2443   // Check for a fixed format string.
2444   StringRef FormatStr;
2445   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2446     return nullptr;
2447 
2448   // If we just have a format string (nothing else crazy) transform it.
2449   if (CI->getNumArgOperands() == 2) {
2450     // Make sure there's no % in the constant array.  We could try to handle
2451     // %% -> % in the future if we cared.
2452     if (FormatStr.find('%') != StringRef::npos)
2453       return nullptr; // we found a format specifier, bail out.
2454 
2455     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2456     B.CreateMemCpy(
2457         CI->getArgOperand(0), Align(1), CI->getArgOperand(1), Align(1),
2458         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2459                          FormatStr.size() + 1)); // Copy the null byte.
2460     return ConstantInt::get(CI->getType(), FormatStr.size());
2461   }
2462 
2463   // The remaining optimizations require the format string to be "%s" or "%c"
2464   // and have an extra operand.
2465   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2466       CI->getNumArgOperands() < 3)
2467     return nullptr;
2468 
2469   // Decode the second character of the format string.
2470   if (FormatStr[1] == 'c') {
2471     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2472     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2473       return nullptr;
2474     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2475     Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2476     B.CreateStore(V, Ptr);
2477     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2478     B.CreateStore(B.getInt8(0), Ptr);
2479 
2480     return ConstantInt::get(CI->getType(), 1);
2481   }
2482 
2483   if (FormatStr[1] == 's') {
2484     // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2485     // strlen(str)+1)
2486     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2487       return nullptr;
2488 
2489     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2490     if (!Len)
2491       return nullptr;
2492     Value *IncLen =
2493         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2494     B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(2),
2495                    Align(1), IncLen);
2496 
2497     // The sprintf result is the unincremented number of bytes in the string.
2498     return B.CreateIntCast(Len, CI->getType(), false);
2499   }
2500   return nullptr;
2501 }
2502 
2503 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
2504   Function *Callee = CI->getCalledFunction();
2505   FunctionType *FT = Callee->getFunctionType();
2506   if (Value *V = optimizeSPrintFString(CI, B)) {
2507     return V;
2508   }
2509 
2510   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2511   // point arguments.
2512   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
2513     Module *M = B.GetInsertBlock()->getParent()->getParent();
2514     FunctionCallee SIPrintFFn =
2515         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
2516     CallInst *New = cast<CallInst>(CI->clone());
2517     New->setCalledFunction(SIPrintFFn);
2518     B.Insert(New);
2519     return New;
2520   }
2521 
2522   // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
2523   // floating point arguments.
2524   if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) {
2525     Module *M = B.GetInsertBlock()->getParent()->getParent();
2526     auto SmallSPrintFFn =
2527         M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf),
2528                                FT, Callee->getAttributes());
2529     CallInst *New = cast<CallInst>(CI->clone());
2530     New->setCalledFunction(SmallSPrintFFn);
2531     B.Insert(New);
2532     return New;
2533   }
2534 
2535   annotateNonNullBasedOnAccess(CI, {0, 1});
2536   return nullptr;
2537 }
2538 
2539 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
2540                                                  IRBuilderBase &B) {
2541   // Check for size
2542   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2543   if (!Size)
2544     return nullptr;
2545 
2546   uint64_t N = Size->getZExtValue();
2547   // Check for a fixed format string.
2548   StringRef FormatStr;
2549   if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2550     return nullptr;
2551 
2552   // If we just have a format string (nothing else crazy) transform it.
2553   if (CI->getNumArgOperands() == 3) {
2554     // Make sure there's no % in the constant array.  We could try to handle
2555     // %% -> % in the future if we cared.
2556     if (FormatStr.find('%') != StringRef::npos)
2557       return nullptr; // we found a format specifier, bail out.
2558 
2559     if (N == 0)
2560       return ConstantInt::get(CI->getType(), FormatStr.size());
2561     else if (N < FormatStr.size() + 1)
2562       return nullptr;
2563 
2564     // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2565     // strlen(fmt)+1)
2566     B.CreateMemCpy(
2567         CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1),
2568         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2569                          FormatStr.size() + 1)); // Copy the null byte.
2570     return ConstantInt::get(CI->getType(), FormatStr.size());
2571   }
2572 
2573   // The remaining optimizations require the format string to be "%s" or "%c"
2574   // and have an extra operand.
2575   if (FormatStr.size() == 2 && FormatStr[0] == '%' &&
2576       CI->getNumArgOperands() == 4) {
2577 
2578     // Decode the second character of the format string.
2579     if (FormatStr[1] == 'c') {
2580       if (N == 0)
2581         return ConstantInt::get(CI->getType(), 1);
2582       else if (N == 1)
2583         return nullptr;
2584 
2585       // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2586       if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2587         return nullptr;
2588       Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2589       Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2590       B.CreateStore(V, Ptr);
2591       Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2592       B.CreateStore(B.getInt8(0), Ptr);
2593 
2594       return ConstantInt::get(CI->getType(), 1);
2595     }
2596 
2597     if (FormatStr[1] == 's') {
2598       // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2599       StringRef Str;
2600       if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2601         return nullptr;
2602 
2603       if (N == 0)
2604         return ConstantInt::get(CI->getType(), Str.size());
2605       else if (N < Str.size() + 1)
2606         return nullptr;
2607 
2608       B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(3),
2609                      Align(1), ConstantInt::get(CI->getType(), Str.size() + 1));
2610 
2611       // The snprintf result is the unincremented number of bytes in the string.
2612       return ConstantInt::get(CI->getType(), Str.size());
2613     }
2614   }
2615   return nullptr;
2616 }
2617 
2618 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) {
2619   if (Value *V = optimizeSnPrintFString(CI, B)) {
2620     return V;
2621   }
2622 
2623   if (isKnownNonZero(CI->getOperand(1), DL))
2624     annotateNonNullBasedOnAccess(CI, 0);
2625   return nullptr;
2626 }
2627 
2628 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
2629                                                 IRBuilderBase &B) {
2630   optimizeErrorReporting(CI, B, 0);
2631 
2632   // All the optimizations depend on the format string.
2633   StringRef FormatStr;
2634   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2635     return nullptr;
2636 
2637   // Do not do any of the following transformations if the fprintf return
2638   // value is used, in general the fprintf return value is not compatible
2639   // with fwrite(), fputc() or fputs().
2640   if (!CI->use_empty())
2641     return nullptr;
2642 
2643   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2644   if (CI->getNumArgOperands() == 2) {
2645     // Could handle %% -> % if we cared.
2646     if (FormatStr.find('%') != StringRef::npos)
2647       return nullptr; // We found a format specifier.
2648 
2649     return emitFWrite(
2650         CI->getArgOperand(1),
2651         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
2652         CI->getArgOperand(0), B, DL, TLI);
2653   }
2654 
2655   // The remaining optimizations require the format string to be "%s" or "%c"
2656   // and have an extra operand.
2657   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2658       CI->getNumArgOperands() < 3)
2659     return nullptr;
2660 
2661   // Decode the second character of the format string.
2662   if (FormatStr[1] == 'c') {
2663     // fprintf(F, "%c", chr) --> fputc(chr, F)
2664     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2665       return nullptr;
2666     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2667   }
2668 
2669   if (FormatStr[1] == 's') {
2670     // fprintf(F, "%s", str) --> fputs(str, F)
2671     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2672       return nullptr;
2673     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2674   }
2675   return nullptr;
2676 }
2677 
2678 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
2679   Function *Callee = CI->getCalledFunction();
2680   FunctionType *FT = Callee->getFunctionType();
2681   if (Value *V = optimizeFPrintFString(CI, B)) {
2682     return V;
2683   }
2684 
2685   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2686   // floating point arguments.
2687   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
2688     Module *M = B.GetInsertBlock()->getParent()->getParent();
2689     FunctionCallee FIPrintFFn =
2690         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2691     CallInst *New = cast<CallInst>(CI->clone());
2692     New->setCalledFunction(FIPrintFFn);
2693     B.Insert(New);
2694     return New;
2695   }
2696 
2697   // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
2698   // 128-bit floating point arguments.
2699   if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) {
2700     Module *M = B.GetInsertBlock()->getParent()->getParent();
2701     auto SmallFPrintFFn =
2702         M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf),
2703                                FT, Callee->getAttributes());
2704     CallInst *New = cast<CallInst>(CI->clone());
2705     New->setCalledFunction(SmallFPrintFFn);
2706     B.Insert(New);
2707     return New;
2708   }
2709 
2710   return nullptr;
2711 }
2712 
2713 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) {
2714   optimizeErrorReporting(CI, B, 3);
2715 
2716   // Get the element size and count.
2717   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2718   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2719   if (SizeC && CountC) {
2720     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2721 
2722     // If this is writing zero records, remove the call (it's a noop).
2723     if (Bytes == 0)
2724       return ConstantInt::get(CI->getType(), 0);
2725 
2726     // If this is writing one byte, turn it into fputc.
2727     // This optimisation is only valid, if the return value is unused.
2728     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2729       Value *Char = B.CreateLoad(B.getInt8Ty(),
2730                                  castToCStr(CI->getArgOperand(0), B), "char");
2731       Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2732       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2733     }
2734   }
2735 
2736   return nullptr;
2737 }
2738 
2739 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) {
2740   optimizeErrorReporting(CI, B, 1);
2741 
2742   // Don't rewrite fputs to fwrite when optimising for size because fwrite
2743   // requires more arguments and thus extra MOVs are required.
2744   bool OptForSize = CI->getFunction()->hasOptSize() ||
2745                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2746                                                 PGSOQueryType::IRPass);
2747   if (OptForSize)
2748     return nullptr;
2749 
2750   // We can't optimize if return value is used.
2751   if (!CI->use_empty())
2752     return nullptr;
2753 
2754   // fputs(s,F) --> fwrite(s,strlen(s),1,F)
2755   uint64_t Len = GetStringLength(CI->getArgOperand(0));
2756   if (!Len)
2757     return nullptr;
2758 
2759   // Known to have no uses (see above).
2760   return emitFWrite(
2761       CI->getArgOperand(0),
2762       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2763       CI->getArgOperand(1), B, DL, TLI);
2764 }
2765 
2766 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) {
2767   annotateNonNullBasedOnAccess(CI, 0);
2768   if (!CI->use_empty())
2769     return nullptr;
2770 
2771   // Check for a constant string.
2772   // puts("") -> putchar('\n')
2773   StringRef Str;
2774   if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
2775     return emitPutChar(B.getInt32('\n'), B, TLI);
2776 
2777   return nullptr;
2778 }
2779 
2780 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
2781   // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
2782   return B.CreateMemMove(CI->getArgOperand(1), Align(1), CI->getArgOperand(0),
2783                          Align(1), CI->getArgOperand(2));
2784 }
2785 
2786 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2787   LibFunc Func;
2788   SmallString<20> FloatFuncName = FuncName;
2789   FloatFuncName += 'f';
2790   if (TLI->getLibFunc(FloatFuncName, Func))
2791     return TLI->has(Func);
2792   return false;
2793 }
2794 
2795 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2796                                                       IRBuilderBase &Builder) {
2797   LibFunc Func;
2798   Function *Callee = CI->getCalledFunction();
2799   // Check for string/memory library functions.
2800   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2801     // Make sure we never change the calling convention.
2802     assert((ignoreCallingConv(Func) ||
2803             isCallingConvCCompatible(CI)) &&
2804       "Optimizing string/memory libcall would change the calling convention");
2805     switch (Func) {
2806     case LibFunc_strcat:
2807       return optimizeStrCat(CI, Builder);
2808     case LibFunc_strncat:
2809       return optimizeStrNCat(CI, Builder);
2810     case LibFunc_strchr:
2811       return optimizeStrChr(CI, Builder);
2812     case LibFunc_strrchr:
2813       return optimizeStrRChr(CI, Builder);
2814     case LibFunc_strcmp:
2815       return optimizeStrCmp(CI, Builder);
2816     case LibFunc_strncmp:
2817       return optimizeStrNCmp(CI, Builder);
2818     case LibFunc_strcpy:
2819       return optimizeStrCpy(CI, Builder);
2820     case LibFunc_stpcpy:
2821       return optimizeStpCpy(CI, Builder);
2822     case LibFunc_strncpy:
2823       return optimizeStrNCpy(CI, Builder);
2824     case LibFunc_strlen:
2825       return optimizeStrLen(CI, Builder);
2826     case LibFunc_strpbrk:
2827       return optimizeStrPBrk(CI, Builder);
2828     case LibFunc_strndup:
2829       return optimizeStrNDup(CI, Builder);
2830     case LibFunc_strtol:
2831     case LibFunc_strtod:
2832     case LibFunc_strtof:
2833     case LibFunc_strtoul:
2834     case LibFunc_strtoll:
2835     case LibFunc_strtold:
2836     case LibFunc_strtoull:
2837       return optimizeStrTo(CI, Builder);
2838     case LibFunc_strspn:
2839       return optimizeStrSpn(CI, Builder);
2840     case LibFunc_strcspn:
2841       return optimizeStrCSpn(CI, Builder);
2842     case LibFunc_strstr:
2843       return optimizeStrStr(CI, Builder);
2844     case LibFunc_memchr:
2845       return optimizeMemChr(CI, Builder);
2846     case LibFunc_memrchr:
2847       return optimizeMemRChr(CI, Builder);
2848     case LibFunc_bcmp:
2849       return optimizeBCmp(CI, Builder);
2850     case LibFunc_memcmp:
2851       return optimizeMemCmp(CI, Builder);
2852     case LibFunc_memcpy:
2853       return optimizeMemCpy(CI, Builder);
2854     case LibFunc_memccpy:
2855       return optimizeMemCCpy(CI, Builder);
2856     case LibFunc_mempcpy:
2857       return optimizeMemPCpy(CI, Builder);
2858     case LibFunc_memmove:
2859       return optimizeMemMove(CI, Builder);
2860     case LibFunc_memset:
2861       return optimizeMemSet(CI, Builder);
2862     case LibFunc_realloc:
2863       return optimizeRealloc(CI, Builder);
2864     case LibFunc_wcslen:
2865       return optimizeWcslen(CI, Builder);
2866     case LibFunc_bcopy:
2867       return optimizeBCopy(CI, Builder);
2868     default:
2869       break;
2870     }
2871   }
2872   return nullptr;
2873 }
2874 
2875 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2876                                                        LibFunc Func,
2877                                                        IRBuilderBase &Builder) {
2878   // Don't optimize calls that require strict floating point semantics.
2879   if (CI->isStrictFP())
2880     return nullptr;
2881 
2882   if (Value *V = optimizeTrigReflections(CI, Func, Builder))
2883     return V;
2884 
2885   switch (Func) {
2886   case LibFunc_sinpif:
2887   case LibFunc_sinpi:
2888   case LibFunc_cospif:
2889   case LibFunc_cospi:
2890     return optimizeSinCosPi(CI, Builder);
2891   case LibFunc_powf:
2892   case LibFunc_pow:
2893   case LibFunc_powl:
2894     return optimizePow(CI, Builder);
2895   case LibFunc_exp2l:
2896   case LibFunc_exp2:
2897   case LibFunc_exp2f:
2898     return optimizeExp2(CI, Builder);
2899   case LibFunc_fabsf:
2900   case LibFunc_fabs:
2901   case LibFunc_fabsl:
2902     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2903   case LibFunc_sqrtf:
2904   case LibFunc_sqrt:
2905   case LibFunc_sqrtl:
2906     return optimizeSqrt(CI, Builder);
2907   case LibFunc_logf:
2908   case LibFunc_log:
2909   case LibFunc_logl:
2910   case LibFunc_log10f:
2911   case LibFunc_log10:
2912   case LibFunc_log10l:
2913   case LibFunc_log1pf:
2914   case LibFunc_log1p:
2915   case LibFunc_log1pl:
2916   case LibFunc_log2f:
2917   case LibFunc_log2:
2918   case LibFunc_log2l:
2919   case LibFunc_logbf:
2920   case LibFunc_logb:
2921   case LibFunc_logbl:
2922     return optimizeLog(CI, Builder);
2923   case LibFunc_tan:
2924   case LibFunc_tanf:
2925   case LibFunc_tanl:
2926     return optimizeTan(CI, Builder);
2927   case LibFunc_ceil:
2928     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2929   case LibFunc_floor:
2930     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2931   case LibFunc_round:
2932     return replaceUnaryCall(CI, Builder, Intrinsic::round);
2933   case LibFunc_roundeven:
2934     return replaceUnaryCall(CI, Builder, Intrinsic::roundeven);
2935   case LibFunc_nearbyint:
2936     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2937   case LibFunc_rint:
2938     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2939   case LibFunc_trunc:
2940     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
2941   case LibFunc_acos:
2942   case LibFunc_acosh:
2943   case LibFunc_asin:
2944   case LibFunc_asinh:
2945   case LibFunc_atan:
2946   case LibFunc_atanh:
2947   case LibFunc_cbrt:
2948   case LibFunc_cosh:
2949   case LibFunc_exp:
2950   case LibFunc_exp10:
2951   case LibFunc_expm1:
2952   case LibFunc_cos:
2953   case LibFunc_sin:
2954   case LibFunc_sinh:
2955   case LibFunc_tanh:
2956     if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
2957       return optimizeUnaryDoubleFP(CI, Builder, true);
2958     return nullptr;
2959   case LibFunc_copysign:
2960     if (hasFloatVersion(CI->getCalledFunction()->getName()))
2961       return optimizeBinaryDoubleFP(CI, Builder);
2962     return nullptr;
2963   case LibFunc_fminf:
2964   case LibFunc_fmin:
2965   case LibFunc_fminl:
2966   case LibFunc_fmaxf:
2967   case LibFunc_fmax:
2968   case LibFunc_fmaxl:
2969     return optimizeFMinFMax(CI, Builder);
2970   case LibFunc_cabs:
2971   case LibFunc_cabsf:
2972   case LibFunc_cabsl:
2973     return optimizeCAbs(CI, Builder);
2974   default:
2975     return nullptr;
2976   }
2977 }
2978 
2979 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
2980   // TODO: Split out the code below that operates on FP calls so that
2981   //       we can all non-FP calls with the StrictFP attribute to be
2982   //       optimized.
2983   if (CI->isNoBuiltin())
2984     return nullptr;
2985 
2986   LibFunc Func;
2987   Function *Callee = CI->getCalledFunction();
2988   bool isCallingConvC = isCallingConvCCompatible(CI);
2989 
2990   SmallVector<OperandBundleDef, 2> OpBundles;
2991   CI->getOperandBundlesAsDefs(OpBundles);
2992 
2993   IRBuilderBase::OperandBundlesGuard Guard(Builder);
2994   Builder.setDefaultOperandBundles(OpBundles);
2995 
2996   // Command-line parameter overrides instruction attribute.
2997   // This can't be moved to optimizeFloatingPointLibCall() because it may be
2998   // used by the intrinsic optimizations.
2999   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
3000     UnsafeFPShrink = EnableUnsafeFPShrink;
3001   else if (isa<FPMathOperator>(CI) && CI->isFast())
3002     UnsafeFPShrink = true;
3003 
3004   // First, check for intrinsics.
3005   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
3006     if (!isCallingConvC)
3007       return nullptr;
3008     // The FP intrinsics have corresponding constrained versions so we don't
3009     // need to check for the StrictFP attribute here.
3010     switch (II->getIntrinsicID()) {
3011     case Intrinsic::pow:
3012       return optimizePow(CI, Builder);
3013     case Intrinsic::exp2:
3014       return optimizeExp2(CI, Builder);
3015     case Intrinsic::log:
3016     case Intrinsic::log2:
3017     case Intrinsic::log10:
3018       return optimizeLog(CI, Builder);
3019     case Intrinsic::sqrt:
3020       return optimizeSqrt(CI, Builder);
3021     // TODO: Use foldMallocMemset() with memset intrinsic.
3022     case Intrinsic::memset:
3023       return optimizeMemSet(CI, Builder);
3024     case Intrinsic::memcpy:
3025       return optimizeMemCpy(CI, Builder);
3026     case Intrinsic::memmove:
3027       return optimizeMemMove(CI, Builder);
3028     default:
3029       return nullptr;
3030     }
3031   }
3032 
3033   // Also try to simplify calls to fortified library functions.
3034   if (Value *SimplifiedFortifiedCI =
3035           FortifiedSimplifier.optimizeCall(CI, Builder)) {
3036     // Try to further simplify the result.
3037     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
3038     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
3039       // Ensure that SimplifiedCI's uses are complete, since some calls have
3040       // their uses analyzed.
3041       replaceAllUsesWith(CI, SimplifiedCI);
3042 
3043       // Set insertion point to SimplifiedCI to guarantee we reach all uses
3044       // we might replace later on.
3045       IRBuilderBase::InsertPointGuard Guard(Builder);
3046       Builder.SetInsertPoint(SimplifiedCI);
3047       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) {
3048         // If we were able to further simplify, remove the now redundant call.
3049         substituteInParent(SimplifiedCI, V);
3050         return V;
3051       }
3052     }
3053     return SimplifiedFortifiedCI;
3054   }
3055 
3056   // Then check for known library functions.
3057   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
3058     // We never change the calling convention.
3059     if (!ignoreCallingConv(Func) && !isCallingConvC)
3060       return nullptr;
3061     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3062       return V;
3063     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3064       return V;
3065     switch (Func) {
3066     case LibFunc_ffs:
3067     case LibFunc_ffsl:
3068     case LibFunc_ffsll:
3069       return optimizeFFS(CI, Builder);
3070     case LibFunc_fls:
3071     case LibFunc_flsl:
3072     case LibFunc_flsll:
3073       return optimizeFls(CI, Builder);
3074     case LibFunc_abs:
3075     case LibFunc_labs:
3076     case LibFunc_llabs:
3077       return optimizeAbs(CI, Builder);
3078     case LibFunc_isdigit:
3079       return optimizeIsDigit(CI, Builder);
3080     case LibFunc_isascii:
3081       return optimizeIsAscii(CI, Builder);
3082     case LibFunc_toascii:
3083       return optimizeToAscii(CI, Builder);
3084     case LibFunc_atoi:
3085     case LibFunc_atol:
3086     case LibFunc_atoll:
3087       return optimizeAtoi(CI, Builder);
3088     case LibFunc_strtol:
3089     case LibFunc_strtoll:
3090       return optimizeStrtol(CI, Builder);
3091     case LibFunc_printf:
3092       return optimizePrintF(CI, Builder);
3093     case LibFunc_sprintf:
3094       return optimizeSPrintF(CI, Builder);
3095     case LibFunc_snprintf:
3096       return optimizeSnPrintF(CI, Builder);
3097     case LibFunc_fprintf:
3098       return optimizeFPrintF(CI, Builder);
3099     case LibFunc_fwrite:
3100       return optimizeFWrite(CI, Builder);
3101     case LibFunc_fputs:
3102       return optimizeFPuts(CI, Builder);
3103     case LibFunc_puts:
3104       return optimizePuts(CI, Builder);
3105     case LibFunc_perror:
3106       return optimizeErrorReporting(CI, Builder);
3107     case LibFunc_vfprintf:
3108     case LibFunc_fiprintf:
3109       return optimizeErrorReporting(CI, Builder, 0);
3110     default:
3111       return nullptr;
3112     }
3113   }
3114   return nullptr;
3115 }
3116 
3117 LibCallSimplifier::LibCallSimplifier(
3118     const DataLayout &DL, const TargetLibraryInfo *TLI,
3119     OptimizationRemarkEmitter &ORE,
3120     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
3121     function_ref<void(Instruction *, Value *)> Replacer,
3122     function_ref<void(Instruction *)> Eraser)
3123     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
3124       UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {}
3125 
3126 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3127   // Indirect through the replacer used in this instance.
3128   Replacer(I, With);
3129 }
3130 
3131 void LibCallSimplifier::eraseFromParent(Instruction *I) {
3132   Eraser(I);
3133 }
3134 
3135 // TODO:
3136 //   Additional cases that we need to add to this file:
3137 //
3138 // cbrt:
3139 //   * cbrt(expN(X))  -> expN(x/3)
3140 //   * cbrt(sqrt(x))  -> pow(x,1/6)
3141 //   * cbrt(cbrt(x))  -> pow(x,1/9)
3142 //
3143 // exp, expf, expl:
3144 //   * exp(log(x))  -> x
3145 //
3146 // log, logf, logl:
3147 //   * log(exp(x))   -> x
3148 //   * log(exp(y))   -> y*log(e)
3149 //   * log(exp10(y)) -> y*log(10)
3150 //   * log(sqrt(x))  -> 0.5*log(x)
3151 //
3152 // pow, powf, powl:
3153 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
3154 //   * pow(pow(x,y),z)-> pow(x,y*z)
3155 //
3156 // signbit:
3157 //   * signbit(cnst) -> cnst'
3158 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3159 //
3160 // sqrt, sqrtf, sqrtl:
3161 //   * sqrt(expN(x))  -> expN(x*0.5)
3162 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3163 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3164 //
3165 
3166 //===----------------------------------------------------------------------===//
3167 // Fortified Library Call Optimizations
3168 //===----------------------------------------------------------------------===//
3169 
3170 bool
3171 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
3172                                                     unsigned ObjSizeOp,
3173                                                     Optional<unsigned> SizeOp,
3174                                                     Optional<unsigned> StrOp,
3175                                                     Optional<unsigned> FlagOp) {
3176   // If this function takes a flag argument, the implementation may use it to
3177   // perform extra checks. Don't fold into the non-checking variant.
3178   if (FlagOp) {
3179     ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
3180     if (!Flag || !Flag->isZero())
3181       return false;
3182   }
3183 
3184   if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
3185     return true;
3186 
3187   if (ConstantInt *ObjSizeCI =
3188           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
3189     if (ObjSizeCI->isMinusOne())
3190       return true;
3191     // If the object size wasn't -1 (unknown), bail out if we were asked to.
3192     if (OnlyLowerUnknownSize)
3193       return false;
3194     if (StrOp) {
3195       uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
3196       // If the length is 0 we don't know how long it is and so we can't
3197       // remove the check.
3198       if (Len)
3199         annotateDereferenceableBytes(CI, *StrOp, Len);
3200       else
3201         return false;
3202       return ObjSizeCI->getZExtValue() >= Len;
3203     }
3204 
3205     if (SizeOp) {
3206       if (ConstantInt *SizeCI =
3207               dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
3208         return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
3209     }
3210   }
3211   return false;
3212 }
3213 
3214 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
3215                                                      IRBuilderBase &B) {
3216   if (isFortifiedCallFoldable(CI, 3, 2)) {
3217     CallInst *NewCI =
3218         B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3219                        Align(1), CI->getArgOperand(2));
3220     NewCI->setAttributes(CI->getAttributes());
3221     return CI->getArgOperand(0);
3222   }
3223   return nullptr;
3224 }
3225 
3226 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
3227                                                       IRBuilderBase &B) {
3228   if (isFortifiedCallFoldable(CI, 3, 2)) {
3229     CallInst *NewCI =
3230         B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3231                         Align(1), CI->getArgOperand(2));
3232     NewCI->setAttributes(CI->getAttributes());
3233     return CI->getArgOperand(0);
3234   }
3235   return nullptr;
3236 }
3237 
3238 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
3239                                                      IRBuilderBase &B) {
3240   // TODO: Try foldMallocMemset() here.
3241 
3242   if (isFortifiedCallFoldable(CI, 3, 2)) {
3243     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
3244     CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
3245                                      CI->getArgOperand(2), Align(1));
3246     NewCI->setAttributes(CI->getAttributes());
3247     return CI->getArgOperand(0);
3248   }
3249   return nullptr;
3250 }
3251 
3252 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
3253                                                       IRBuilderBase &B,
3254                                                       LibFunc Func) {
3255   const DataLayout &DL = CI->getModule()->getDataLayout();
3256   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
3257         *ObjSize = CI->getArgOperand(2);
3258 
3259   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
3260   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
3261     Value *StrLen = emitStrLen(Src, B, DL, TLI);
3262     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
3263   }
3264 
3265   // If a) we don't have any length information, or b) we know this will
3266   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3267   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3268   // TODO: It might be nice to get a maximum length out of the possible
3269   // string lengths for varying.
3270   if (isFortifiedCallFoldable(CI, 2, None, 1)) {
3271     if (Func == LibFunc_strcpy_chk)
3272       return emitStrCpy(Dst, Src, B, TLI);
3273     else
3274       return emitStpCpy(Dst, Src, B, TLI);
3275   }
3276 
3277   if (OnlyLowerUnknownSize)
3278     return nullptr;
3279 
3280   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3281   uint64_t Len = GetStringLength(Src);
3282   if (Len)
3283     annotateDereferenceableBytes(CI, 1, Len);
3284   else
3285     return nullptr;
3286 
3287   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
3288   Value *LenV = ConstantInt::get(SizeTTy, Len);
3289   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
3290   // If the function was an __stpcpy_chk, and we were able to fold it into
3291   // a __memcpy_chk, we still need to return the correct end pointer.
3292   if (Ret && Func == LibFunc_stpcpy_chk)
3293     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
3294   return Ret;
3295 }
3296 
3297 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
3298                                                      IRBuilderBase &B) {
3299   if (isFortifiedCallFoldable(CI, 1, None, 0))
3300     return emitStrLen(CI->getArgOperand(0), B, CI->getModule()->getDataLayout(),
3301                       TLI);
3302   return nullptr;
3303 }
3304 
3305 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
3306                                                        IRBuilderBase &B,
3307                                                        LibFunc Func) {
3308   if (isFortifiedCallFoldable(CI, 3, 2)) {
3309     if (Func == LibFunc_strncpy_chk)
3310       return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3311                                CI->getArgOperand(2), B, TLI);
3312     else
3313       return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3314                          CI->getArgOperand(2), B, TLI);
3315   }
3316 
3317   return nullptr;
3318 }
3319 
3320 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
3321                                                       IRBuilderBase &B) {
3322   if (isFortifiedCallFoldable(CI, 4, 3))
3323     return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3324                        CI->getArgOperand(2), CI->getArgOperand(3), B, TLI);
3325 
3326   return nullptr;
3327 }
3328 
3329 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
3330                                                        IRBuilderBase &B) {
3331   if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
3332     SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 5, CI->arg_end());
3333     return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3334                         CI->getArgOperand(4), VariadicArgs, B, TLI);
3335   }
3336 
3337   return nullptr;
3338 }
3339 
3340 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
3341                                                       IRBuilderBase &B) {
3342   if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
3343     SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 4, CI->arg_end());
3344     return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs,
3345                        B, TLI);
3346   }
3347 
3348   return nullptr;
3349 }
3350 
3351 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
3352                                                      IRBuilderBase &B) {
3353   if (isFortifiedCallFoldable(CI, 2))
3354     return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI);
3355 
3356   return nullptr;
3357 }
3358 
3359 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
3360                                                    IRBuilderBase &B) {
3361   if (isFortifiedCallFoldable(CI, 3))
3362     return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
3363                        CI->getArgOperand(2), B, TLI);
3364 
3365   return nullptr;
3366 }
3367 
3368 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
3369                                                       IRBuilderBase &B) {
3370   if (isFortifiedCallFoldable(CI, 3))
3371     return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
3372                        CI->getArgOperand(2), B, TLI);
3373 
3374   return nullptr;
3375 }
3376 
3377 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
3378                                                       IRBuilderBase &B) {
3379   if (isFortifiedCallFoldable(CI, 3))
3380     return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3381                        CI->getArgOperand(2), B, TLI);
3382 
3383   return nullptr;
3384 }
3385 
3386 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
3387                                                         IRBuilderBase &B) {
3388   if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
3389     return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3390                          CI->getArgOperand(4), CI->getArgOperand(5), B, TLI);
3391 
3392   return nullptr;
3393 }
3394 
3395 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
3396                                                        IRBuilderBase &B) {
3397   if (isFortifiedCallFoldable(CI, 2, None, None, 1))
3398     return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3399                         CI->getArgOperand(4), B, TLI);
3400 
3401   return nullptr;
3402 }
3403 
3404 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI,
3405                                                 IRBuilderBase &Builder) {
3406   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
3407   // Some clang users checked for _chk libcall availability using:
3408   //   __has_builtin(__builtin___memcpy_chk)
3409   // When compiling with -fno-builtin, this is always true.
3410   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
3411   // end up with fortified libcalls, which isn't acceptable in a freestanding
3412   // environment which only provides their non-fortified counterparts.
3413   //
3414   // Until we change clang and/or teach external users to check for availability
3415   // differently, disregard the "nobuiltin" attribute and TLI::has.
3416   //
3417   // PR23093.
3418 
3419   LibFunc Func;
3420   Function *Callee = CI->getCalledFunction();
3421   bool isCallingConvC = isCallingConvCCompatible(CI);
3422 
3423   SmallVector<OperandBundleDef, 2> OpBundles;
3424   CI->getOperandBundlesAsDefs(OpBundles);
3425 
3426   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3427   Builder.setDefaultOperandBundles(OpBundles);
3428 
3429   // First, check that this is a known library functions and that the prototype
3430   // is correct.
3431   if (!TLI->getLibFunc(*Callee, Func))
3432     return nullptr;
3433 
3434   // We never change the calling convention.
3435   if (!ignoreCallingConv(Func) && !isCallingConvC)
3436     return nullptr;
3437 
3438   switch (Func) {
3439   case LibFunc_memcpy_chk:
3440     return optimizeMemCpyChk(CI, Builder);
3441   case LibFunc_memmove_chk:
3442     return optimizeMemMoveChk(CI, Builder);
3443   case LibFunc_memset_chk:
3444     return optimizeMemSetChk(CI, Builder);
3445   case LibFunc_stpcpy_chk:
3446   case LibFunc_strcpy_chk:
3447     return optimizeStrpCpyChk(CI, Builder, Func);
3448   case LibFunc_strlen_chk:
3449     return optimizeStrLenChk(CI, Builder);
3450   case LibFunc_stpncpy_chk:
3451   case LibFunc_strncpy_chk:
3452     return optimizeStrpNCpyChk(CI, Builder, Func);
3453   case LibFunc_memccpy_chk:
3454     return optimizeMemCCpyChk(CI, Builder);
3455   case LibFunc_snprintf_chk:
3456     return optimizeSNPrintfChk(CI, Builder);
3457   case LibFunc_sprintf_chk:
3458     return optimizeSPrintfChk(CI, Builder);
3459   case LibFunc_strcat_chk:
3460     return optimizeStrCatChk(CI, Builder);
3461   case LibFunc_strlcat_chk:
3462     return optimizeStrLCat(CI, Builder);
3463   case LibFunc_strncat_chk:
3464     return optimizeStrNCatChk(CI, Builder);
3465   case LibFunc_strlcpy_chk:
3466     return optimizeStrLCpyChk(CI, Builder);
3467   case LibFunc_vsnprintf_chk:
3468     return optimizeVSNPrintfChk(CI, Builder);
3469   case LibFunc_vsprintf_chk:
3470     return optimizeVSPrintfChk(CI, Builder);
3471   default:
3472     break;
3473   }
3474   return nullptr;
3475 }
3476 
3477 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
3478     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
3479     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
3480