1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is a utility pass used for testing the InstructionSimplify analysis. 11 // The analysis is applied to every instruction, and if it simplifies then the 12 // instruction is replaced by the simplification. If you are looking for a pass 13 // that performs serious instruction folding, use the instcombine pass instead. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DiagnosticInfo.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/PatternMatch.h" 31 #include "llvm/Support/Allocator.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/Transforms/Utils/BuildLibCalls.h" 35 #include "llvm/Transforms/Utils/Local.h" 36 37 using namespace llvm; 38 using namespace PatternMatch; 39 40 static cl::opt<bool> 41 ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden, 42 cl::desc("Treat error-reporting calls as cold")); 43 44 static cl::opt<bool> 45 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 46 cl::init(false), 47 cl::desc("Enable unsafe double to float " 48 "shrinking for math lib calls")); 49 50 51 //===----------------------------------------------------------------------===// 52 // Helper Functions 53 //===----------------------------------------------------------------------===// 54 55 static bool ignoreCallingConv(LibFunc::Func Func) { 56 return Func == LibFunc::abs || Func == LibFunc::labs || 57 Func == LibFunc::llabs || Func == LibFunc::strlen; 58 } 59 60 /// isOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 61 /// value is equal or not-equal to zero. 62 static bool isOnlyUsedInZeroEqualityComparison(Value *V) { 63 for (User *U : V->users()) { 64 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 65 if (IC->isEquality()) 66 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 67 if (C->isNullValue()) 68 continue; 69 // Unknown instruction. 70 return false; 71 } 72 return true; 73 } 74 75 /// isOnlyUsedInEqualityComparison - Return true if it is only used in equality 76 /// comparisons with With. 77 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 78 for (User *U : V->users()) { 79 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 80 if (IC->isEquality() && IC->getOperand(1) == With) 81 continue; 82 // Unknown instruction. 83 return false; 84 } 85 return true; 86 } 87 88 static bool callHasFloatingPointArgument(const CallInst *CI) { 89 for (CallInst::const_op_iterator it = CI->op_begin(), e = CI->op_end(); 90 it != e; ++it) { 91 if ((*it)->getType()->isFloatingPointTy()) 92 return true; 93 } 94 return false; 95 } 96 97 /// \brief Check whether the overloaded unary floating point function 98 /// corresponding to \a Ty is available. 99 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty, 100 LibFunc::Func DoubleFn, LibFunc::Func FloatFn, 101 LibFunc::Func LongDoubleFn) { 102 switch (Ty->getTypeID()) { 103 case Type::FloatTyID: 104 return TLI->has(FloatFn); 105 case Type::DoubleTyID: 106 return TLI->has(DoubleFn); 107 default: 108 return TLI->has(LongDoubleFn); 109 } 110 } 111 112 /// \brief Check whether we can use unsafe floating point math for 113 /// the function passed as input. 114 static bool canUseUnsafeFPMath(Function *F) { 115 116 // FIXME: For finer-grain optimization, we need intrinsics to have the same 117 // fast-math flag decorations that are applied to FP instructions. For now, 118 // we have to rely on the function-level unsafe-fp-math attribute to do this 119 // optimization because there's no other way to express that the call can be 120 // relaxed. 121 if (F->hasFnAttribute("unsafe-fp-math")) { 122 Attribute Attr = F->getFnAttribute("unsafe-fp-math"); 123 if (Attr.getValueAsString() == "true") 124 return true; 125 } 126 return false; 127 } 128 129 /// \brief Returns whether \p F matches the signature expected for the 130 /// string/memory copying library function \p Func. 131 /// Acceptable functions are st[rp][n]?cpy, memove, memcpy, and memset. 132 /// Their fortified (_chk) counterparts are also accepted. 133 static bool checkStringCopyLibFuncSignature(Function *F, LibFunc::Func Func) { 134 const DataLayout &DL = F->getParent()->getDataLayout(); 135 FunctionType *FT = F->getFunctionType(); 136 LLVMContext &Context = F->getContext(); 137 Type *PCharTy = Type::getInt8PtrTy(Context); 138 Type *SizeTTy = DL.getIntPtrType(Context); 139 unsigned NumParams = FT->getNumParams(); 140 141 // All string libfuncs return the same type as the first parameter. 142 if (FT->getReturnType() != FT->getParamType(0)) 143 return false; 144 145 switch (Func) { 146 default: 147 llvm_unreachable("Can't check signature for non-string-copy libfunc."); 148 case LibFunc::stpncpy_chk: 149 case LibFunc::strncpy_chk: 150 --NumParams; // fallthrough 151 case LibFunc::stpncpy: 152 case LibFunc::strncpy: { 153 if (NumParams != 3 || FT->getParamType(0) != FT->getParamType(1) || 154 FT->getParamType(0) != PCharTy || !FT->getParamType(2)->isIntegerTy()) 155 return false; 156 break; 157 } 158 case LibFunc::strcpy_chk: 159 case LibFunc::stpcpy_chk: 160 --NumParams; // fallthrough 161 case LibFunc::stpcpy: 162 case LibFunc::strcpy: { 163 if (NumParams != 2 || FT->getParamType(0) != FT->getParamType(1) || 164 FT->getParamType(0) != PCharTy) 165 return false; 166 break; 167 } 168 case LibFunc::memmove_chk: 169 case LibFunc::memcpy_chk: 170 --NumParams; // fallthrough 171 case LibFunc::memmove: 172 case LibFunc::memcpy: { 173 if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() || 174 !FT->getParamType(1)->isPointerTy() || FT->getParamType(2) != SizeTTy) 175 return false; 176 break; 177 } 178 case LibFunc::memset_chk: 179 --NumParams; // fallthrough 180 case LibFunc::memset: { 181 if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() || 182 !FT->getParamType(1)->isIntegerTy() || FT->getParamType(2) != SizeTTy) 183 return false; 184 break; 185 } 186 } 187 // If this is a fortified libcall, the last parameter is a size_t. 188 if (NumParams == FT->getNumParams() - 1) 189 return FT->getParamType(FT->getNumParams() - 1) == SizeTTy; 190 return true; 191 } 192 193 //===----------------------------------------------------------------------===// 194 // String and Memory Library Call Optimizations 195 //===----------------------------------------------------------------------===// 196 197 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 198 Function *Callee = CI->getCalledFunction(); 199 // Verify the "strcat" function prototype. 200 FunctionType *FT = Callee->getFunctionType(); 201 if (FT->getNumParams() != 2|| 202 FT->getReturnType() != B.getInt8PtrTy() || 203 FT->getParamType(0) != FT->getReturnType() || 204 FT->getParamType(1) != FT->getReturnType()) 205 return nullptr; 206 207 // Extract some information from the instruction 208 Value *Dst = CI->getArgOperand(0); 209 Value *Src = CI->getArgOperand(1); 210 211 // See if we can get the length of the input string. 212 uint64_t Len = GetStringLength(Src); 213 if (Len == 0) 214 return nullptr; 215 --Len; // Unbias length. 216 217 // Handle the simple, do-nothing case: strcat(x, "") -> x 218 if (Len == 0) 219 return Dst; 220 221 return emitStrLenMemCpy(Src, Dst, Len, B); 222 } 223 224 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 225 IRBuilder<> &B) { 226 // We need to find the end of the destination string. That's where the 227 // memory is to be moved to. We just generate a call to strlen. 228 Value *DstLen = EmitStrLen(Dst, B, DL, TLI); 229 if (!DstLen) 230 return nullptr; 231 232 // Now that we have the destination's length, we must index into the 233 // destination's pointer to get the actual memcpy destination (end of 234 // the string .. we're concatenating). 235 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 236 237 // We have enough information to now generate the memcpy call to do the 238 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 239 B.CreateMemCpy(CpyDst, Src, 240 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1), 241 1); 242 return Dst; 243 } 244 245 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 246 Function *Callee = CI->getCalledFunction(); 247 // Verify the "strncat" function prototype. 248 FunctionType *FT = Callee->getFunctionType(); 249 if (FT->getNumParams() != 3 || FT->getReturnType() != B.getInt8PtrTy() || 250 FT->getParamType(0) != FT->getReturnType() || 251 FT->getParamType(1) != FT->getReturnType() || 252 !FT->getParamType(2)->isIntegerTy()) 253 return nullptr; 254 255 // Extract some information from the instruction 256 Value *Dst = CI->getArgOperand(0); 257 Value *Src = CI->getArgOperand(1); 258 uint64_t Len; 259 260 // We don't do anything if length is not constant 261 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 262 Len = LengthArg->getZExtValue(); 263 else 264 return nullptr; 265 266 // See if we can get the length of the input string. 267 uint64_t SrcLen = GetStringLength(Src); 268 if (SrcLen == 0) 269 return nullptr; 270 --SrcLen; // Unbias length. 271 272 // Handle the simple, do-nothing cases: 273 // strncat(x, "", c) -> x 274 // strncat(x, c, 0) -> x 275 if (SrcLen == 0 || Len == 0) 276 return Dst; 277 278 // We don't optimize this case 279 if (Len < SrcLen) 280 return nullptr; 281 282 // strncat(x, s, c) -> strcat(x, s) 283 // s is constant so the strcat can be optimized further 284 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 285 } 286 287 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 288 Function *Callee = CI->getCalledFunction(); 289 // Verify the "strchr" function prototype. 290 FunctionType *FT = Callee->getFunctionType(); 291 if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() || 292 FT->getParamType(0) != FT->getReturnType() || 293 !FT->getParamType(1)->isIntegerTy(32)) 294 return nullptr; 295 296 Value *SrcStr = CI->getArgOperand(0); 297 298 // If the second operand is non-constant, see if we can compute the length 299 // of the input string and turn this into memchr. 300 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 301 if (!CharC) { 302 uint64_t Len = GetStringLength(SrcStr); 303 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 304 return nullptr; 305 306 return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 307 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 308 B, DL, TLI); 309 } 310 311 // Otherwise, the character is a constant, see if the first argument is 312 // a string literal. If so, we can constant fold. 313 StringRef Str; 314 if (!getConstantStringInfo(SrcStr, Str)) { 315 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 316 return B.CreateGEP(B.getInt8Ty(), SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr"); 317 return nullptr; 318 } 319 320 // Compute the offset, make sure to handle the case when we're searching for 321 // zero (a weird way to spell strlen). 322 size_t I = (0xFF & CharC->getSExtValue()) == 0 323 ? Str.size() 324 : Str.find(CharC->getSExtValue()); 325 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 326 return Constant::getNullValue(CI->getType()); 327 328 // strchr(s+n,c) -> gep(s+n+i,c) 329 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 330 } 331 332 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 333 Function *Callee = CI->getCalledFunction(); 334 // Verify the "strrchr" function prototype. 335 FunctionType *FT = Callee->getFunctionType(); 336 if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() || 337 FT->getParamType(0) != FT->getReturnType() || 338 !FT->getParamType(1)->isIntegerTy(32)) 339 return nullptr; 340 341 Value *SrcStr = CI->getArgOperand(0); 342 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 343 344 // Cannot fold anything if we're not looking for a constant. 345 if (!CharC) 346 return nullptr; 347 348 StringRef Str; 349 if (!getConstantStringInfo(SrcStr, Str)) { 350 // strrchr(s, 0) -> strchr(s, 0) 351 if (CharC->isZero()) 352 return EmitStrChr(SrcStr, '\0', B, TLI); 353 return nullptr; 354 } 355 356 // Compute the offset. 357 size_t I = (0xFF & CharC->getSExtValue()) == 0 358 ? Str.size() 359 : Str.rfind(CharC->getSExtValue()); 360 if (I == StringRef::npos) // Didn't find the char. Return null. 361 return Constant::getNullValue(CI->getType()); 362 363 // strrchr(s+n,c) -> gep(s+n+i,c) 364 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 365 } 366 367 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 368 Function *Callee = CI->getCalledFunction(); 369 // Verify the "strcmp" function prototype. 370 FunctionType *FT = Callee->getFunctionType(); 371 if (FT->getNumParams() != 2 || !FT->getReturnType()->isIntegerTy(32) || 372 FT->getParamType(0) != FT->getParamType(1) || 373 FT->getParamType(0) != B.getInt8PtrTy()) 374 return nullptr; 375 376 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 377 if (Str1P == Str2P) // strcmp(x,x) -> 0 378 return ConstantInt::get(CI->getType(), 0); 379 380 StringRef Str1, Str2; 381 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 382 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 383 384 // strcmp(x, y) -> cnst (if both x and y are constant strings) 385 if (HasStr1 && HasStr2) 386 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 387 388 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 389 return B.CreateNeg( 390 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 391 392 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 393 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 394 395 // strcmp(P, "x") -> memcmp(P, "x", 2) 396 uint64_t Len1 = GetStringLength(Str1P); 397 uint64_t Len2 = GetStringLength(Str2P); 398 if (Len1 && Len2) { 399 return EmitMemCmp(Str1P, Str2P, 400 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 401 std::min(Len1, Len2)), 402 B, DL, TLI); 403 } 404 405 return nullptr; 406 } 407 408 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 409 Function *Callee = CI->getCalledFunction(); 410 // Verify the "strncmp" function prototype. 411 FunctionType *FT = Callee->getFunctionType(); 412 if (FT->getNumParams() != 3 || !FT->getReturnType()->isIntegerTy(32) || 413 FT->getParamType(0) != FT->getParamType(1) || 414 FT->getParamType(0) != B.getInt8PtrTy() || 415 !FT->getParamType(2)->isIntegerTy()) 416 return nullptr; 417 418 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 419 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 420 return ConstantInt::get(CI->getType(), 0); 421 422 // Get the length argument if it is constant. 423 uint64_t Length; 424 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 425 Length = LengthArg->getZExtValue(); 426 else 427 return nullptr; 428 429 if (Length == 0) // strncmp(x,y,0) -> 0 430 return ConstantInt::get(CI->getType(), 0); 431 432 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 433 return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 434 435 StringRef Str1, Str2; 436 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 437 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 438 439 // strncmp(x, y) -> cnst (if both x and y are constant strings) 440 if (HasStr1 && HasStr2) { 441 StringRef SubStr1 = Str1.substr(0, Length); 442 StringRef SubStr2 = Str2.substr(0, Length); 443 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 444 } 445 446 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 447 return B.CreateNeg( 448 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 449 450 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 451 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 452 453 return nullptr; 454 } 455 456 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 457 Function *Callee = CI->getCalledFunction(); 458 459 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strcpy)) 460 return nullptr; 461 462 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 463 if (Dst == Src) // strcpy(x,x) -> x 464 return Src; 465 466 // See if we can get the length of the input string. 467 uint64_t Len = GetStringLength(Src); 468 if (Len == 0) 469 return nullptr; 470 471 // We have enough information to now generate the memcpy call to do the 472 // copy for us. Make a memcpy to copy the nul byte with align = 1. 473 B.CreateMemCpy(Dst, Src, 474 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1); 475 return Dst; 476 } 477 478 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 479 Function *Callee = CI->getCalledFunction(); 480 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::stpcpy)) 481 return nullptr; 482 483 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 484 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 485 Value *StrLen = EmitStrLen(Src, B, DL, TLI); 486 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 487 } 488 489 // See if we can get the length of the input string. 490 uint64_t Len = GetStringLength(Src); 491 if (Len == 0) 492 return nullptr; 493 494 Type *PT = Callee->getFunctionType()->getParamType(0); 495 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 496 Value *DstEnd = 497 B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 498 499 // We have enough information to now generate the memcpy call to do the 500 // copy for us. Make a memcpy to copy the nul byte with align = 1. 501 B.CreateMemCpy(Dst, Src, LenV, 1); 502 return DstEnd; 503 } 504 505 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 506 Function *Callee = CI->getCalledFunction(); 507 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strncpy)) 508 return nullptr; 509 510 Value *Dst = CI->getArgOperand(0); 511 Value *Src = CI->getArgOperand(1); 512 Value *LenOp = CI->getArgOperand(2); 513 514 // See if we can get the length of the input string. 515 uint64_t SrcLen = GetStringLength(Src); 516 if (SrcLen == 0) 517 return nullptr; 518 --SrcLen; 519 520 if (SrcLen == 0) { 521 // strncpy(x, "", y) -> memset(x, '\0', y, 1) 522 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 523 return Dst; 524 } 525 526 uint64_t Len; 527 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 528 Len = LengthArg->getZExtValue(); 529 else 530 return nullptr; 531 532 if (Len == 0) 533 return Dst; // strncpy(x, y, 0) -> x 534 535 // Let strncpy handle the zero padding 536 if (Len > SrcLen + 1) 537 return nullptr; 538 539 Type *PT = Callee->getFunctionType()->getParamType(0); 540 // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] 541 B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1); 542 543 return Dst; 544 } 545 546 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 547 Function *Callee = CI->getCalledFunction(); 548 FunctionType *FT = Callee->getFunctionType(); 549 if (FT->getNumParams() != 1 || FT->getParamType(0) != B.getInt8PtrTy() || 550 !FT->getReturnType()->isIntegerTy()) 551 return nullptr; 552 553 Value *Src = CI->getArgOperand(0); 554 555 // Constant folding: strlen("xyz") -> 3 556 if (uint64_t Len = GetStringLength(Src)) 557 return ConstantInt::get(CI->getType(), Len - 1); 558 559 // strlen(x?"foo":"bars") --> x ? 3 : 4 560 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 561 uint64_t LenTrue = GetStringLength(SI->getTrueValue()); 562 uint64_t LenFalse = GetStringLength(SI->getFalseValue()); 563 if (LenTrue && LenFalse) { 564 Function *Caller = CI->getParent()->getParent(); 565 emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller, 566 SI->getDebugLoc(), 567 "folded strlen(select) to select of constants"); 568 return B.CreateSelect(SI->getCondition(), 569 ConstantInt::get(CI->getType(), LenTrue - 1), 570 ConstantInt::get(CI->getType(), LenFalse - 1)); 571 } 572 } 573 574 // strlen(x) != 0 --> *x != 0 575 // strlen(x) == 0 --> *x == 0 576 if (isOnlyUsedInZeroEqualityComparison(CI)) 577 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); 578 579 return nullptr; 580 } 581 582 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 583 Function *Callee = CI->getCalledFunction(); 584 FunctionType *FT = Callee->getFunctionType(); 585 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || 586 FT->getParamType(1) != FT->getParamType(0) || 587 FT->getReturnType() != FT->getParamType(0)) 588 return nullptr; 589 590 StringRef S1, S2; 591 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 592 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 593 594 // strpbrk(s, "") -> nullptr 595 // strpbrk("", s) -> nullptr 596 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 597 return Constant::getNullValue(CI->getType()); 598 599 // Constant folding. 600 if (HasS1 && HasS2) { 601 size_t I = S1.find_first_of(S2); 602 if (I == StringRef::npos) // No match. 603 return Constant::getNullValue(CI->getType()); 604 605 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), "strpbrk"); 606 } 607 608 // strpbrk(s, "a") -> strchr(s, 'a') 609 if (HasS2 && S2.size() == 1) 610 return EmitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 611 612 return nullptr; 613 } 614 615 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 616 Function *Callee = CI->getCalledFunction(); 617 FunctionType *FT = Callee->getFunctionType(); 618 if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) || 619 !FT->getParamType(0)->isPointerTy() || 620 !FT->getParamType(1)->isPointerTy()) 621 return nullptr; 622 623 Value *EndPtr = CI->getArgOperand(1); 624 if (isa<ConstantPointerNull>(EndPtr)) { 625 // With a null EndPtr, this function won't capture the main argument. 626 // It would be readonly too, except that it still may write to errno. 627 CI->addAttribute(1, Attribute::NoCapture); 628 } 629 630 return nullptr; 631 } 632 633 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 634 Function *Callee = CI->getCalledFunction(); 635 FunctionType *FT = Callee->getFunctionType(); 636 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || 637 FT->getParamType(1) != FT->getParamType(0) || 638 !FT->getReturnType()->isIntegerTy()) 639 return nullptr; 640 641 StringRef S1, S2; 642 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 643 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 644 645 // strspn(s, "") -> 0 646 // strspn("", s) -> 0 647 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 648 return Constant::getNullValue(CI->getType()); 649 650 // Constant folding. 651 if (HasS1 && HasS2) { 652 size_t Pos = S1.find_first_not_of(S2); 653 if (Pos == StringRef::npos) 654 Pos = S1.size(); 655 return ConstantInt::get(CI->getType(), Pos); 656 } 657 658 return nullptr; 659 } 660 661 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 662 Function *Callee = CI->getCalledFunction(); 663 FunctionType *FT = Callee->getFunctionType(); 664 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || 665 FT->getParamType(1) != FT->getParamType(0) || 666 !FT->getReturnType()->isIntegerTy()) 667 return nullptr; 668 669 StringRef S1, S2; 670 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 671 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 672 673 // strcspn("", s) -> 0 674 if (HasS1 && S1.empty()) 675 return Constant::getNullValue(CI->getType()); 676 677 // Constant folding. 678 if (HasS1 && HasS2) { 679 size_t Pos = S1.find_first_of(S2); 680 if (Pos == StringRef::npos) 681 Pos = S1.size(); 682 return ConstantInt::get(CI->getType(), Pos); 683 } 684 685 // strcspn(s, "") -> strlen(s) 686 if (HasS2 && S2.empty()) 687 return EmitStrLen(CI->getArgOperand(0), B, DL, TLI); 688 689 return nullptr; 690 } 691 692 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 693 Function *Callee = CI->getCalledFunction(); 694 FunctionType *FT = Callee->getFunctionType(); 695 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 696 !FT->getParamType(1)->isPointerTy() || 697 !FT->getReturnType()->isPointerTy()) 698 return nullptr; 699 700 // fold strstr(x, x) -> x. 701 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 702 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 703 704 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 705 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 706 Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI); 707 if (!StrLen) 708 return nullptr; 709 Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 710 StrLen, B, DL, TLI); 711 if (!StrNCmp) 712 return nullptr; 713 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 714 ICmpInst *Old = cast<ICmpInst>(*UI++); 715 Value *Cmp = 716 B.CreateICmp(Old->getPredicate(), StrNCmp, 717 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 718 replaceAllUsesWith(Old, Cmp); 719 } 720 return CI; 721 } 722 723 // See if either input string is a constant string. 724 StringRef SearchStr, ToFindStr; 725 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 726 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 727 728 // fold strstr(x, "") -> x. 729 if (HasStr2 && ToFindStr.empty()) 730 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 731 732 // If both strings are known, constant fold it. 733 if (HasStr1 && HasStr2) { 734 size_t Offset = SearchStr.find(ToFindStr); 735 736 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 737 return Constant::getNullValue(CI->getType()); 738 739 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 740 Value *Result = CastToCStr(CI->getArgOperand(0), B); 741 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); 742 return B.CreateBitCast(Result, CI->getType()); 743 } 744 745 // fold strstr(x, "y") -> strchr(x, 'y'). 746 if (HasStr2 && ToFindStr.size() == 1) { 747 Value *StrChr = EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 748 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 749 } 750 return nullptr; 751 } 752 753 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { 754 Function *Callee = CI->getCalledFunction(); 755 FunctionType *FT = Callee->getFunctionType(); 756 if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() || 757 !FT->getParamType(1)->isIntegerTy(32) || 758 !FT->getParamType(2)->isIntegerTy() || 759 !FT->getReturnType()->isPointerTy()) 760 return nullptr; 761 762 Value *SrcStr = CI->getArgOperand(0); 763 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 764 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 765 766 // memchr(x, y, 0) -> null 767 if (LenC && LenC->isNullValue()) 768 return Constant::getNullValue(CI->getType()); 769 770 // From now on we need at least constant length and string. 771 StringRef Str; 772 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 773 return nullptr; 774 775 // Truncate the string to LenC. If Str is smaller than LenC we will still only 776 // scan the string, as reading past the end of it is undefined and we can just 777 // return null if we don't find the char. 778 Str = Str.substr(0, LenC->getZExtValue()); 779 780 // If the char is variable but the input str and length are not we can turn 781 // this memchr call into a simple bit field test. Of course this only works 782 // when the return value is only checked against null. 783 // 784 // It would be really nice to reuse switch lowering here but we can't change 785 // the CFG at this point. 786 // 787 // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0 788 // after bounds check. 789 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 790 unsigned char Max = 791 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 792 reinterpret_cast<const unsigned char *>(Str.end())); 793 794 // Make sure the bit field we're about to create fits in a register on the 795 // target. 796 // FIXME: On a 64 bit architecture this prevents us from using the 797 // interesting range of alpha ascii chars. We could do better by emitting 798 // two bitfields or shifting the range by 64 if no lower chars are used. 799 if (!DL.fitsInLegalInteger(Max + 1)) 800 return nullptr; 801 802 // For the bit field use a power-of-2 type with at least 8 bits to avoid 803 // creating unnecessary illegal types. 804 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 805 806 // Now build the bit field. 807 APInt Bitfield(Width, 0); 808 for (char C : Str) 809 Bitfield.setBit((unsigned char)C); 810 Value *BitfieldC = B.getInt(Bitfield); 811 812 // First check that the bit field access is within bounds. 813 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 814 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 815 "memchr.bounds"); 816 817 // Create code that checks if the given bit is set in the field. 818 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 819 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 820 821 // Finally merge both checks and cast to pointer type. The inttoptr 822 // implicitly zexts the i1 to intptr type. 823 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 824 } 825 826 // Check if all arguments are constants. If so, we can constant fold. 827 if (!CharC) 828 return nullptr; 829 830 // Compute the offset. 831 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 832 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 833 return Constant::getNullValue(CI->getType()); 834 835 // memchr(s+n,c,l) -> gep(s+n+i,c) 836 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 837 } 838 839 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 840 Function *Callee = CI->getCalledFunction(); 841 FunctionType *FT = Callee->getFunctionType(); 842 if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() || 843 !FT->getParamType(1)->isPointerTy() || 844 !FT->getReturnType()->isIntegerTy(32)) 845 return nullptr; 846 847 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 848 849 if (LHS == RHS) // memcmp(s,s,x) -> 0 850 return Constant::getNullValue(CI->getType()); 851 852 // Make sure we have a constant length. 853 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 854 if (!LenC) 855 return nullptr; 856 uint64_t Len = LenC->getZExtValue(); 857 858 if (Len == 0) // memcmp(s1,s2,0) -> 0 859 return Constant::getNullValue(CI->getType()); 860 861 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 862 if (Len == 1) { 863 Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"), 864 CI->getType(), "lhsv"); 865 Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"), 866 CI->getType(), "rhsv"); 867 return B.CreateSub(LHSV, RHSV, "chardiff"); 868 } 869 870 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 871 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 872 873 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 874 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 875 876 if (getKnownAlignment(LHS, DL, CI) >= PrefAlignment && 877 getKnownAlignment(RHS, DL, CI) >= PrefAlignment) { 878 879 Type *LHSPtrTy = 880 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 881 Type *RHSPtrTy = 882 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 883 884 Value *LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy, "lhsc"), "lhsv"); 885 Value *RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy, "rhsc"), "rhsv"); 886 887 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 888 } 889 } 890 891 // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant) 892 StringRef LHSStr, RHSStr; 893 if (getConstantStringInfo(LHS, LHSStr) && 894 getConstantStringInfo(RHS, RHSStr)) { 895 // Make sure we're not reading out-of-bounds memory. 896 if (Len > LHSStr.size() || Len > RHSStr.size()) 897 return nullptr; 898 // Fold the memcmp and normalize the result. This way we get consistent 899 // results across multiple platforms. 900 uint64_t Ret = 0; 901 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 902 if (Cmp < 0) 903 Ret = -1; 904 else if (Cmp > 0) 905 Ret = 1; 906 return ConstantInt::get(CI->getType(), Ret); 907 } 908 909 return nullptr; 910 } 911 912 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { 913 Function *Callee = CI->getCalledFunction(); 914 915 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy)) 916 return nullptr; 917 918 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) 919 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 920 CI->getArgOperand(2), 1); 921 return CI->getArgOperand(0); 922 } 923 924 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { 925 Function *Callee = CI->getCalledFunction(); 926 927 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove)) 928 return nullptr; 929 930 // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) 931 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 932 CI->getArgOperand(2), 1); 933 return CI->getArgOperand(0); 934 } 935 936 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { 937 Function *Callee = CI->getCalledFunction(); 938 939 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset)) 940 return nullptr; 941 942 // memset(p, v, n) -> llvm.memset(p, v, n, 1) 943 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 944 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 945 return CI->getArgOperand(0); 946 } 947 948 //===----------------------------------------------------------------------===// 949 // Math Library Optimizations 950 //===----------------------------------------------------------------------===// 951 952 /// Return a variant of Val with float type. 953 /// Currently this works in two cases: If Val is an FPExtension of a float 954 /// value to something bigger, simply return the operand. 955 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 956 /// loss of precision do so. 957 static Value *valueHasFloatPrecision(Value *Val) { 958 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 959 Value *Op = Cast->getOperand(0); 960 if (Op->getType()->isFloatTy()) 961 return Op; 962 } 963 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 964 APFloat F = Const->getValueAPF(); 965 bool losesInfo; 966 (void)F.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 967 &losesInfo); 968 if (!losesInfo) 969 return ConstantFP::get(Const->getContext(), F); 970 } 971 return nullptr; 972 } 973 974 //===----------------------------------------------------------------------===// 975 // Double -> Float Shrinking Optimizations for Unary Functions like 'floor' 976 977 Value *LibCallSimplifier::optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 978 bool CheckRetType) { 979 Function *Callee = CI->getCalledFunction(); 980 FunctionType *FT = Callee->getFunctionType(); 981 if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() || 982 !FT->getParamType(0)->isDoubleTy()) 983 return nullptr; 984 985 if (CheckRetType) { 986 // Check if all the uses for function like 'sin' are converted to float. 987 for (User *U : CI->users()) { 988 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 989 if (!Cast || !Cast->getType()->isFloatTy()) 990 return nullptr; 991 } 992 } 993 994 // If this is something like 'floor((double)floatval)', convert to floorf. 995 Value *V = valueHasFloatPrecision(CI->getArgOperand(0)); 996 if (V == nullptr) 997 return nullptr; 998 999 // floor((double)floatval) -> (double)floorf(floatval) 1000 if (Callee->isIntrinsic()) { 1001 Module *M = CI->getParent()->getParent()->getParent(); 1002 Intrinsic::ID IID = Callee->getIntrinsicID(); 1003 Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1004 V = B.CreateCall(F, V); 1005 } else { 1006 // The call is a library call rather than an intrinsic. 1007 V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes()); 1008 } 1009 1010 return B.CreateFPExt(V, B.getDoubleTy()); 1011 } 1012 1013 // Double -> Float Shrinking Optimizations for Binary Functions like 'fmin/fmax' 1014 Value *LibCallSimplifier::optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) { 1015 Function *Callee = CI->getCalledFunction(); 1016 FunctionType *FT = Callee->getFunctionType(); 1017 // Just make sure this has 2 arguments of the same FP type, which match the 1018 // result type. 1019 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || 1020 FT->getParamType(0) != FT->getParamType(1) || 1021 !FT->getParamType(0)->isFloatingPointTy()) 1022 return nullptr; 1023 1024 // If this is something like 'fmin((double)floatval1, (double)floatval2)', 1025 // or fmin(1.0, (double)floatval), then we convert it to fminf. 1026 Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0)); 1027 if (V1 == nullptr) 1028 return nullptr; 1029 Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1)); 1030 if (V2 == nullptr) 1031 return nullptr; 1032 1033 // fmin((double)floatval1, (double)floatval2) 1034 // -> (double)fminf(floatval1, floatval2) 1035 // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP(). 1036 Value *V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B, 1037 Callee->getAttributes()); 1038 return B.CreateFPExt(V, B.getDoubleTy()); 1039 } 1040 1041 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) { 1042 Function *Callee = CI->getCalledFunction(); 1043 Value *Ret = nullptr; 1044 StringRef Name = Callee->getName(); 1045 if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name)) 1046 Ret = optimizeUnaryDoubleFP(CI, B, true); 1047 1048 FunctionType *FT = Callee->getFunctionType(); 1049 // Just make sure this has 1 argument of FP type, which matches the 1050 // result type. 1051 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1052 !FT->getParamType(0)->isFloatingPointTy()) 1053 return Ret; 1054 1055 // cos(-x) -> cos(x) 1056 Value *Op1 = CI->getArgOperand(0); 1057 if (BinaryOperator::isFNeg(Op1)) { 1058 BinaryOperator *BinExpr = cast<BinaryOperator>(Op1); 1059 return B.CreateCall(Callee, BinExpr->getOperand(1), "cos"); 1060 } 1061 return Ret; 1062 } 1063 1064 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) { 1065 Function *Callee = CI->getCalledFunction(); 1066 Value *Ret = nullptr; 1067 StringRef Name = Callee->getName(); 1068 if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name)) 1069 Ret = optimizeUnaryDoubleFP(CI, B, true); 1070 1071 FunctionType *FT = Callee->getFunctionType(); 1072 // Just make sure this has 2 arguments of the same FP type, which match the 1073 // result type. 1074 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || 1075 FT->getParamType(0) != FT->getParamType(1) || 1076 !FT->getParamType(0)->isFloatingPointTy()) 1077 return Ret; 1078 1079 Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1); 1080 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { 1081 // pow(1.0, x) -> 1.0 1082 if (Op1C->isExactlyValue(1.0)) 1083 return Op1C; 1084 // pow(2.0, x) -> exp2(x) 1085 if (Op1C->isExactlyValue(2.0) && 1086 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f, 1087 LibFunc::exp2l)) 1088 return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp2), B, 1089 Callee->getAttributes()); 1090 // pow(10.0, x) -> exp10(x) 1091 if (Op1C->isExactlyValue(10.0) && 1092 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f, 1093 LibFunc::exp10l)) 1094 return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B, 1095 Callee->getAttributes()); 1096 } 1097 1098 bool unsafeFPMath = canUseUnsafeFPMath(CI->getParent()->getParent()); 1099 1100 // pow(exp(x), y) -> exp(x*y) 1101 // pow(exp2(x), y) -> exp2(x * y) 1102 // We enable these only under fast-math. Besides rounding 1103 // differences the transformation changes overflow and 1104 // underflow behavior quite dramatically. 1105 // Example: x = 1000, y = 0.001. 1106 // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1). 1107 if (unsafeFPMath) { 1108 if (auto *OpC = dyn_cast<CallInst>(Op1)) { 1109 IRBuilder<>::FastMathFlagGuard Guard(B); 1110 FastMathFlags FMF; 1111 FMF.setUnsafeAlgebra(); 1112 B.SetFastMathFlags(FMF); 1113 1114 LibFunc::Func Func; 1115 Function *Callee = OpC->getCalledFunction(); 1116 StringRef FuncName = Callee->getName(); 1117 1118 if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func) && 1119 (Func == LibFunc::exp || Func == LibFunc::exp2)) 1120 return EmitUnaryFloatFnCall( 1121 B.CreateFMul(OpC->getArgOperand(0), Op2, "mul"), FuncName, B, 1122 Callee->getAttributes()); 1123 } 1124 } 1125 1126 ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2); 1127 if (!Op2C) 1128 return Ret; 1129 1130 if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 1131 return ConstantFP::get(CI->getType(), 1.0); 1132 1133 if (Op2C->isExactlyValue(0.5) && 1134 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf, 1135 LibFunc::sqrtl) && 1136 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf, 1137 LibFunc::fabsl)) { 1138 1139 // In -ffast-math, pow(x, 0.5) -> sqrt(x). 1140 if (unsafeFPMath) 1141 return EmitUnaryFloatFnCall(Op1, TLI->getName(LibFunc::sqrt), B, 1142 Callee->getAttributes()); 1143 1144 // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). 1145 // This is faster than calling pow, and still handles negative zero 1146 // and negative infinity correctly. 1147 // TODO: In finite-only mode, this could be just fabs(sqrt(x)). 1148 Value *Inf = ConstantFP::getInfinity(CI->getType()); 1149 Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); 1150 Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes()); 1151 Value *FAbs = 1152 EmitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes()); 1153 Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf); 1154 Value *Sel = B.CreateSelect(FCmp, Inf, FAbs); 1155 return Sel; 1156 } 1157 1158 if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x 1159 return Op1; 1160 if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x 1161 return B.CreateFMul(Op1, Op1, "pow2"); 1162 if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x 1163 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip"); 1164 return nullptr; 1165 } 1166 1167 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1168 Function *Callee = CI->getCalledFunction(); 1169 Function *Caller = CI->getParent()->getParent(); 1170 Value *Ret = nullptr; 1171 StringRef Name = Callee->getName(); 1172 if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name)) 1173 Ret = optimizeUnaryDoubleFP(CI, B, true); 1174 1175 FunctionType *FT = Callee->getFunctionType(); 1176 // Just make sure this has 1 argument of FP type, which matches the 1177 // result type. 1178 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1179 !FT->getParamType(0)->isFloatingPointTy()) 1180 return Ret; 1181 1182 Value *Op = CI->getArgOperand(0); 1183 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1184 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1185 LibFunc::Func LdExp = LibFunc::ldexpl; 1186 if (Op->getType()->isFloatTy()) 1187 LdExp = LibFunc::ldexpf; 1188 else if (Op->getType()->isDoubleTy()) 1189 LdExp = LibFunc::ldexp; 1190 1191 if (TLI->has(LdExp)) { 1192 Value *LdExpArg = nullptr; 1193 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 1194 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 1195 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 1196 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 1197 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 1198 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 1199 } 1200 1201 if (LdExpArg) { 1202 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); 1203 if (!Op->getType()->isFloatTy()) 1204 One = ConstantExpr::getFPExtend(One, Op->getType()); 1205 1206 Module *M = Caller->getParent(); 1207 Value *Callee = 1208 M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), 1209 Op->getType(), B.getInt32Ty(), nullptr); 1210 CallInst *CI = B.CreateCall(Callee, {One, LdExpArg}); 1211 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 1212 CI->setCallingConv(F->getCallingConv()); 1213 1214 return CI; 1215 } 1216 } 1217 return Ret; 1218 } 1219 1220 Value *LibCallSimplifier::optimizeFabs(CallInst *CI, IRBuilder<> &B) { 1221 Function *Callee = CI->getCalledFunction(); 1222 Value *Ret = nullptr; 1223 StringRef Name = Callee->getName(); 1224 if (Name == "fabs" && hasFloatVersion(Name)) 1225 Ret = optimizeUnaryDoubleFP(CI, B, false); 1226 1227 FunctionType *FT = Callee->getFunctionType(); 1228 // Make sure this has 1 argument of FP type which matches the result type. 1229 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1230 !FT->getParamType(0)->isFloatingPointTy()) 1231 return Ret; 1232 1233 Value *Op = CI->getArgOperand(0); 1234 if (Instruction *I = dyn_cast<Instruction>(Op)) { 1235 // Fold fabs(x * x) -> x * x; any squared FP value must already be positive. 1236 if (I->getOpcode() == Instruction::FMul) 1237 if (I->getOperand(0) == I->getOperand(1)) 1238 return Op; 1239 } 1240 return Ret; 1241 } 1242 1243 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { 1244 // If we can shrink the call to a float function rather than a double 1245 // function, do that first. 1246 Function *Callee = CI->getCalledFunction(); 1247 StringRef Name = Callee->getName(); 1248 if ((Name == "fmin" && hasFloatVersion(Name)) || 1249 (Name == "fmax" && hasFloatVersion(Name))) { 1250 Value *Ret = optimizeBinaryDoubleFP(CI, B); 1251 if (Ret) 1252 return Ret; 1253 } 1254 1255 // Make sure this has 2 arguments of FP type which match the result type. 1256 FunctionType *FT = Callee->getFunctionType(); 1257 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || 1258 FT->getParamType(0) != FT->getParamType(1) || 1259 !FT->getParamType(0)->isFloatingPointTy()) 1260 return nullptr; 1261 1262 IRBuilder<>::FastMathFlagGuard Guard(B); 1263 FastMathFlags FMF; 1264 Function *F = CI->getParent()->getParent(); 1265 if (canUseUnsafeFPMath(F)) { 1266 // Unsafe algebra sets all fast-math-flags to true. 1267 FMF.setUnsafeAlgebra(); 1268 } else { 1269 // At a minimum, no-nans-fp-math must be true. 1270 Attribute Attr = F->getFnAttribute("no-nans-fp-math"); 1271 if (Attr.getValueAsString() != "true") 1272 return nullptr; 1273 // No-signed-zeros is implied by the definitions of fmax/fmin themselves: 1274 // "Ideally, fmax would be sensitive to the sign of zero, for example 1275 // fmax(-0. 0, +0. 0) would return +0; however, implementation in software 1276 // might be impractical." 1277 FMF.setNoSignedZeros(); 1278 FMF.setNoNaNs(); 1279 } 1280 B.SetFastMathFlags(FMF); 1281 1282 // We have a relaxed floating-point environment. We can ignore NaN-handling 1283 // and transform to a compare and select. We do not have to consider errno or 1284 // exceptions, because fmin/fmax do not have those. 1285 Value *Op0 = CI->getArgOperand(0); 1286 Value *Op1 = CI->getArgOperand(1); 1287 Value *Cmp = Callee->getName().startswith("fmin") ? 1288 B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1); 1289 return B.CreateSelect(Cmp, Op0, Op1); 1290 } 1291 1292 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1293 Function *Callee = CI->getCalledFunction(); 1294 1295 Value *Ret = nullptr; 1296 if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" || 1297 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1298 Ret = optimizeUnaryDoubleFP(CI, B, true); 1299 if (!canUseUnsafeFPMath(CI->getParent()->getParent())) 1300 return Ret; 1301 1302 Value *Op = CI->getArgOperand(0); 1303 if (Instruction *I = dyn_cast<Instruction>(Op)) { 1304 if (I->getOpcode() == Instruction::FMul && I->hasUnsafeAlgebra()) { 1305 // We're looking for a repeated factor in a multiplication tree, 1306 // so we can do this fold: sqrt(x * x) -> fabs(x); 1307 // or this fold: sqrt(x * x * y) -> fabs(x) * sqrt(y). 1308 Value *Op0 = I->getOperand(0); 1309 Value *Op1 = I->getOperand(1); 1310 Value *RepeatOp = nullptr; 1311 Value *OtherOp = nullptr; 1312 if (Op0 == Op1) { 1313 // Simple match: the operands of the multiply are identical. 1314 RepeatOp = Op0; 1315 } else { 1316 // Look for a more complicated pattern: one of the operands is itself 1317 // a multiply, so search for a common factor in that multiply. 1318 // Note: We don't bother looking any deeper than this first level or for 1319 // variations of this pattern because instcombine's visitFMUL and/or the 1320 // reassociation pass should give us this form. 1321 Value *OtherMul0, *OtherMul1; 1322 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1323 // Pattern: sqrt((x * y) * z) 1324 if (OtherMul0 == OtherMul1) { 1325 // Matched: sqrt((x * x) * z) 1326 RepeatOp = OtherMul0; 1327 OtherOp = Op1; 1328 } 1329 } 1330 } 1331 if (RepeatOp) { 1332 // Fast math flags for any created instructions should match the sqrt 1333 // and multiply. 1334 // FIXME: We're not checking the sqrt because it doesn't have 1335 // fast-math-flags (see earlier comment). 1336 IRBuilder<>::FastMathFlagGuard Guard(B); 1337 B.SetFastMathFlags(I->getFastMathFlags()); 1338 // If we found a repeated factor, hoist it out of the square root and 1339 // replace it with the fabs of that factor. 1340 Module *M = Callee->getParent(); 1341 Type *ArgType = Op->getType(); 1342 Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1343 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1344 if (OtherOp) { 1345 // If we found a non-repeated factor, we still need to get its square 1346 // root. We then multiply that by the value that was simplified out 1347 // of the square root calculation. 1348 Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1349 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1350 return B.CreateFMul(FabsCall, SqrtCall); 1351 } 1352 return FabsCall; 1353 } 1354 } 1355 } 1356 return Ret; 1357 } 1358 1359 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { 1360 Function *Callee = CI->getCalledFunction(); 1361 Value *Ret = nullptr; 1362 StringRef Name = Callee->getName(); 1363 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 1364 Ret = optimizeUnaryDoubleFP(CI, B, true); 1365 FunctionType *FT = Callee->getFunctionType(); 1366 1367 // Just make sure this has 1 argument of FP type, which matches the 1368 // result type. 1369 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1370 !FT->getParamType(0)->isFloatingPointTy()) 1371 return Ret; 1372 1373 if (!canUseUnsafeFPMath(CI->getParent()->getParent())) 1374 return Ret; 1375 Value *Op1 = CI->getArgOperand(0); 1376 auto *OpC = dyn_cast<CallInst>(Op1); 1377 if (!OpC) 1378 return Ret; 1379 1380 // tan(atan(x)) -> x 1381 // tanf(atanf(x)) -> x 1382 // tanl(atanl(x)) -> x 1383 LibFunc::Func Func; 1384 Function *F = OpC->getCalledFunction(); 1385 StringRef FuncName = F->getName(); 1386 if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func) && 1387 ((Func == LibFunc::atan && Callee->getName() == "tan") || 1388 (Func == LibFunc::atanf && Callee->getName() == "tanf") || 1389 (Func == LibFunc::atanl && Callee->getName() == "tanl"))) 1390 Ret = OpC->getArgOperand(0); 1391 return Ret; 1392 } 1393 1394 static bool isTrigLibCall(CallInst *CI); 1395 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1396 bool UseFloat, Value *&Sin, Value *&Cos, 1397 Value *&SinCos); 1398 1399 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1400 1401 // Make sure the prototype is as expected, otherwise the rest of the 1402 // function is probably invalid and likely to abort. 1403 if (!isTrigLibCall(CI)) 1404 return nullptr; 1405 1406 Value *Arg = CI->getArgOperand(0); 1407 SmallVector<CallInst *, 1> SinCalls; 1408 SmallVector<CallInst *, 1> CosCalls; 1409 SmallVector<CallInst *, 1> SinCosCalls; 1410 1411 bool IsFloat = Arg->getType()->isFloatTy(); 1412 1413 // Look for all compatible sinpi, cospi and sincospi calls with the same 1414 // argument. If there are enough (in some sense) we can make the 1415 // substitution. 1416 for (User *U : Arg->users()) 1417 classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls, 1418 SinCosCalls); 1419 1420 // It's only worthwhile if both sinpi and cospi are actually used. 1421 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1422 return nullptr; 1423 1424 Value *Sin, *Cos, *SinCos; 1425 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1426 1427 replaceTrigInsts(SinCalls, Sin); 1428 replaceTrigInsts(CosCalls, Cos); 1429 replaceTrigInsts(SinCosCalls, SinCos); 1430 1431 return nullptr; 1432 } 1433 1434 static bool isTrigLibCall(CallInst *CI) { 1435 Function *Callee = CI->getCalledFunction(); 1436 FunctionType *FT = Callee->getFunctionType(); 1437 1438 // We can only hope to do anything useful if we can ignore things like errno 1439 // and floating-point exceptions. 1440 bool AttributesSafe = 1441 CI->hasFnAttr(Attribute::NoUnwind) && CI->hasFnAttr(Attribute::ReadNone); 1442 1443 // Other than that we need float(float) or double(double) 1444 return AttributesSafe && FT->getNumParams() == 1 && 1445 FT->getReturnType() == FT->getParamType(0) && 1446 (FT->getParamType(0)->isFloatTy() || 1447 FT->getParamType(0)->isDoubleTy()); 1448 } 1449 1450 void 1451 LibCallSimplifier::classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat, 1452 SmallVectorImpl<CallInst *> &SinCalls, 1453 SmallVectorImpl<CallInst *> &CosCalls, 1454 SmallVectorImpl<CallInst *> &SinCosCalls) { 1455 CallInst *CI = dyn_cast<CallInst>(Val); 1456 1457 if (!CI) 1458 return; 1459 1460 Function *Callee = CI->getCalledFunction(); 1461 StringRef FuncName = Callee->getName(); 1462 LibFunc::Func Func; 1463 if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) || !isTrigLibCall(CI)) 1464 return; 1465 1466 if (IsFloat) { 1467 if (Func == LibFunc::sinpif) 1468 SinCalls.push_back(CI); 1469 else if (Func == LibFunc::cospif) 1470 CosCalls.push_back(CI); 1471 else if (Func == LibFunc::sincospif_stret) 1472 SinCosCalls.push_back(CI); 1473 } else { 1474 if (Func == LibFunc::sinpi) 1475 SinCalls.push_back(CI); 1476 else if (Func == LibFunc::cospi) 1477 CosCalls.push_back(CI); 1478 else if (Func == LibFunc::sincospi_stret) 1479 SinCosCalls.push_back(CI); 1480 } 1481 } 1482 1483 void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls, 1484 Value *Res) { 1485 for (CallInst *C : Calls) 1486 replaceAllUsesWith(C, Res); 1487 } 1488 1489 void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1490 bool UseFloat, Value *&Sin, Value *&Cos, Value *&SinCos) { 1491 Type *ArgTy = Arg->getType(); 1492 Type *ResTy; 1493 StringRef Name; 1494 1495 Triple T(OrigCallee->getParent()->getTargetTriple()); 1496 if (UseFloat) { 1497 Name = "__sincospif_stret"; 1498 1499 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1500 // x86_64 can't use {float, float} since that would be returned in both 1501 // xmm0 and xmm1, which isn't what a real struct would do. 1502 ResTy = T.getArch() == Triple::x86_64 1503 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1504 : static_cast<Type *>(StructType::get(ArgTy, ArgTy, nullptr)); 1505 } else { 1506 Name = "__sincospi_stret"; 1507 ResTy = StructType::get(ArgTy, ArgTy, nullptr); 1508 } 1509 1510 Module *M = OrigCallee->getParent(); 1511 Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), 1512 ResTy, ArgTy, nullptr); 1513 1514 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1515 // If the argument is an instruction, it must dominate all uses so put our 1516 // sincos call there. 1517 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1518 } else { 1519 // Otherwise (e.g. for a constant) the beginning of the function is as 1520 // good a place as any. 1521 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1522 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1523 } 1524 1525 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1526 1527 if (SinCos->getType()->isStructTy()) { 1528 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1529 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1530 } else { 1531 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1532 "sinpi"); 1533 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1534 "cospi"); 1535 } 1536 } 1537 1538 //===----------------------------------------------------------------------===// 1539 // Integer Library Call Optimizations 1540 //===----------------------------------------------------------------------===// 1541 1542 static bool checkIntUnaryReturnAndParam(Function *Callee) { 1543 FunctionType *FT = Callee->getFunctionType(); 1544 return FT->getNumParams() == 1 && FT->getReturnType()->isIntegerTy(32) && 1545 FT->getParamType(0)->isIntegerTy(); 1546 } 1547 1548 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1549 Function *Callee = CI->getCalledFunction(); 1550 if (!checkIntUnaryReturnAndParam(Callee)) 1551 return nullptr; 1552 Value *Op = CI->getArgOperand(0); 1553 1554 // Constant fold. 1555 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1556 if (CI->isZero()) // ffs(0) -> 0. 1557 return B.getInt32(0); 1558 // ffs(c) -> cttz(c)+1 1559 return B.getInt32(CI->getValue().countTrailingZeros() + 1); 1560 } 1561 1562 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1563 Type *ArgType = Op->getType(); 1564 Value *F = 1565 Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType); 1566 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 1567 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1568 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1569 1570 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1571 return B.CreateSelect(Cond, V, B.getInt32(0)); 1572 } 1573 1574 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1575 Function *Callee = CI->getCalledFunction(); 1576 FunctionType *FT = Callee->getFunctionType(); 1577 // We require integer(integer) where the types agree. 1578 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || 1579 FT->getParamType(0) != FT->getReturnType()) 1580 return nullptr; 1581 1582 // abs(x) -> x >s -1 ? x : -x 1583 Value *Op = CI->getArgOperand(0); 1584 Value *Pos = 1585 B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos"); 1586 Value *Neg = B.CreateNeg(Op, "neg"); 1587 return B.CreateSelect(Pos, Op, Neg); 1588 } 1589 1590 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 1591 if (!checkIntUnaryReturnAndParam(CI->getCalledFunction())) 1592 return nullptr; 1593 1594 // isdigit(c) -> (c-'0') <u 10 1595 Value *Op = CI->getArgOperand(0); 1596 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1597 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1598 return B.CreateZExt(Op, CI->getType()); 1599 } 1600 1601 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 1602 if (!checkIntUnaryReturnAndParam(CI->getCalledFunction())) 1603 return nullptr; 1604 1605 // isascii(c) -> c <u 128 1606 Value *Op = CI->getArgOperand(0); 1607 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1608 return B.CreateZExt(Op, CI->getType()); 1609 } 1610 1611 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 1612 if (!checkIntUnaryReturnAndParam(CI->getCalledFunction())) 1613 return nullptr; 1614 1615 // toascii(c) -> c & 0x7f 1616 return B.CreateAnd(CI->getArgOperand(0), 1617 ConstantInt::get(CI->getType(), 0x7F)); 1618 } 1619 1620 //===----------------------------------------------------------------------===// 1621 // Formatting and IO Library Call Optimizations 1622 //===----------------------------------------------------------------------===// 1623 1624 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 1625 1626 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 1627 int StreamArg) { 1628 // Error reporting calls should be cold, mark them as such. 1629 // This applies even to non-builtin calls: it is only a hint and applies to 1630 // functions that the frontend might not understand as builtins. 1631 1632 // This heuristic was suggested in: 1633 // Improving Static Branch Prediction in a Compiler 1634 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 1635 // Proceedings of PACT'98, Oct. 1998, IEEE 1636 Function *Callee = CI->getCalledFunction(); 1637 1638 if (!CI->hasFnAttr(Attribute::Cold) && 1639 isReportingError(Callee, CI, StreamArg)) { 1640 CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold); 1641 } 1642 1643 return nullptr; 1644 } 1645 1646 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 1647 if (!ColdErrorCalls || !Callee || !Callee->isDeclaration()) 1648 return false; 1649 1650 if (StreamArg < 0) 1651 return true; 1652 1653 // These functions might be considered cold, but only if their stream 1654 // argument is stderr. 1655 1656 if (StreamArg >= (int)CI->getNumArgOperands()) 1657 return false; 1658 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 1659 if (!LI) 1660 return false; 1661 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 1662 if (!GV || !GV->isDeclaration()) 1663 return false; 1664 return GV->getName() == "stderr"; 1665 } 1666 1667 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 1668 // Check for a fixed format string. 1669 StringRef FormatStr; 1670 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 1671 return nullptr; 1672 1673 // Empty format string -> noop. 1674 if (FormatStr.empty()) // Tolerate printf's declared void. 1675 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 1676 1677 // Do not do any of the following transformations if the printf return value 1678 // is used, in general the printf return value is not compatible with either 1679 // putchar() or puts(). 1680 if (!CI->use_empty()) 1681 return nullptr; 1682 1683 // printf("x") -> putchar('x'), even for '%'. 1684 if (FormatStr.size() == 1) { 1685 Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, TLI); 1686 if (CI->use_empty() || !Res) 1687 return Res; 1688 return B.CreateIntCast(Res, CI->getType(), true); 1689 } 1690 1691 // printf("foo\n") --> puts("foo") 1692 if (FormatStr[FormatStr.size() - 1] == '\n' && 1693 FormatStr.find('%') == StringRef::npos) { // No format characters. 1694 // Create a string literal with no \n on it. We expect the constant merge 1695 // pass to be run after this pass, to merge duplicate strings. 1696 FormatStr = FormatStr.drop_back(); 1697 Value *GV = B.CreateGlobalString(FormatStr, "str"); 1698 Value *NewCI = EmitPutS(GV, B, TLI); 1699 return (CI->use_empty() || !NewCI) 1700 ? NewCI 1701 : ConstantInt::get(CI->getType(), FormatStr.size() + 1); 1702 } 1703 1704 // Optimize specific format strings. 1705 // printf("%c", chr) --> putchar(chr) 1706 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 1707 CI->getArgOperand(1)->getType()->isIntegerTy()) { 1708 Value *Res = EmitPutChar(CI->getArgOperand(1), B, TLI); 1709 1710 if (CI->use_empty() || !Res) 1711 return Res; 1712 return B.CreateIntCast(Res, CI->getType(), true); 1713 } 1714 1715 // printf("%s\n", str) --> puts(str) 1716 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 1717 CI->getArgOperand(1)->getType()->isPointerTy()) { 1718 return EmitPutS(CI->getArgOperand(1), B, TLI); 1719 } 1720 return nullptr; 1721 } 1722 1723 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 1724 1725 Function *Callee = CI->getCalledFunction(); 1726 // Require one fixed pointer argument and an integer/void result. 1727 FunctionType *FT = Callee->getFunctionType(); 1728 if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || 1729 !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy())) 1730 return nullptr; 1731 1732 if (Value *V = optimizePrintFString(CI, B)) { 1733 return V; 1734 } 1735 1736 // printf(format, ...) -> iprintf(format, ...) if no floating point 1737 // arguments. 1738 if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) { 1739 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1740 Constant *IPrintFFn = 1741 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 1742 CallInst *New = cast<CallInst>(CI->clone()); 1743 New->setCalledFunction(IPrintFFn); 1744 B.Insert(New); 1745 return New; 1746 } 1747 return nullptr; 1748 } 1749 1750 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 1751 // Check for a fixed format string. 1752 StringRef FormatStr; 1753 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1754 return nullptr; 1755 1756 // If we just have a format string (nothing else crazy) transform it. 1757 if (CI->getNumArgOperands() == 2) { 1758 // Make sure there's no % in the constant array. We could try to handle 1759 // %% -> % in the future if we cared. 1760 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1761 if (FormatStr[i] == '%') 1762 return nullptr; // we found a format specifier, bail out. 1763 1764 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) 1765 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 1766 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 1767 FormatStr.size() + 1), 1768 1); // Copy the null byte. 1769 return ConstantInt::get(CI->getType(), FormatStr.size()); 1770 } 1771 1772 // The remaining optimizations require the format string to be "%s" or "%c" 1773 // and have an extra operand. 1774 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1775 CI->getNumArgOperands() < 3) 1776 return nullptr; 1777 1778 // Decode the second character of the format string. 1779 if (FormatStr[1] == 'c') { 1780 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 1781 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1782 return nullptr; 1783 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 1784 Value *Ptr = CastToCStr(CI->getArgOperand(0), B); 1785 B.CreateStore(V, Ptr); 1786 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 1787 B.CreateStore(B.getInt8(0), Ptr); 1788 1789 return ConstantInt::get(CI->getType(), 1); 1790 } 1791 1792 if (FormatStr[1] == 's') { 1793 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) 1794 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1795 return nullptr; 1796 1797 Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI); 1798 if (!Len) 1799 return nullptr; 1800 Value *IncLen = 1801 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 1802 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1); 1803 1804 // The sprintf result is the unincremented number of bytes in the string. 1805 return B.CreateIntCast(Len, CI->getType(), false); 1806 } 1807 return nullptr; 1808 } 1809 1810 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 1811 Function *Callee = CI->getCalledFunction(); 1812 // Require two fixed pointer arguments and an integer result. 1813 FunctionType *FT = Callee->getFunctionType(); 1814 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 1815 !FT->getParamType(1)->isPointerTy() || 1816 !FT->getReturnType()->isIntegerTy()) 1817 return nullptr; 1818 1819 if (Value *V = optimizeSPrintFString(CI, B)) { 1820 return V; 1821 } 1822 1823 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 1824 // point arguments. 1825 if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) { 1826 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1827 Constant *SIPrintFFn = 1828 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 1829 CallInst *New = cast<CallInst>(CI->clone()); 1830 New->setCalledFunction(SIPrintFFn); 1831 B.Insert(New); 1832 return New; 1833 } 1834 return nullptr; 1835 } 1836 1837 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 1838 optimizeErrorReporting(CI, B, 0); 1839 1840 // All the optimizations depend on the format string. 1841 StringRef FormatStr; 1842 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1843 return nullptr; 1844 1845 // Do not do any of the following transformations if the fprintf return 1846 // value is used, in general the fprintf return value is not compatible 1847 // with fwrite(), fputc() or fputs(). 1848 if (!CI->use_empty()) 1849 return nullptr; 1850 1851 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 1852 if (CI->getNumArgOperands() == 2) { 1853 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1854 if (FormatStr[i] == '%') // Could handle %% -> % if we cared. 1855 return nullptr; // We found a format specifier. 1856 1857 return EmitFWrite( 1858 CI->getArgOperand(1), 1859 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 1860 CI->getArgOperand(0), B, DL, TLI); 1861 } 1862 1863 // The remaining optimizations require the format string to be "%s" or "%c" 1864 // and have an extra operand. 1865 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1866 CI->getNumArgOperands() < 3) 1867 return nullptr; 1868 1869 // Decode the second character of the format string. 1870 if (FormatStr[1] == 'c') { 1871 // fprintf(F, "%c", chr) --> fputc(chr, F) 1872 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1873 return nullptr; 1874 return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 1875 } 1876 1877 if (FormatStr[1] == 's') { 1878 // fprintf(F, "%s", str) --> fputs(str, F) 1879 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1880 return nullptr; 1881 return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 1882 } 1883 return nullptr; 1884 } 1885 1886 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 1887 Function *Callee = CI->getCalledFunction(); 1888 // Require two fixed paramters as pointers and integer result. 1889 FunctionType *FT = Callee->getFunctionType(); 1890 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 1891 !FT->getParamType(1)->isPointerTy() || 1892 !FT->getReturnType()->isIntegerTy()) 1893 return nullptr; 1894 1895 if (Value *V = optimizeFPrintFString(CI, B)) { 1896 return V; 1897 } 1898 1899 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 1900 // floating point arguments. 1901 if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) { 1902 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1903 Constant *FIPrintFFn = 1904 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 1905 CallInst *New = cast<CallInst>(CI->clone()); 1906 New->setCalledFunction(FIPrintFFn); 1907 B.Insert(New); 1908 return New; 1909 } 1910 return nullptr; 1911 } 1912 1913 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 1914 optimizeErrorReporting(CI, B, 3); 1915 1916 Function *Callee = CI->getCalledFunction(); 1917 // Require a pointer, an integer, an integer, a pointer, returning integer. 1918 FunctionType *FT = Callee->getFunctionType(); 1919 if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() || 1920 !FT->getParamType(1)->isIntegerTy() || 1921 !FT->getParamType(2)->isIntegerTy() || 1922 !FT->getParamType(3)->isPointerTy() || 1923 !FT->getReturnType()->isIntegerTy()) 1924 return nullptr; 1925 1926 // Get the element size and count. 1927 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 1928 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1929 if (!SizeC || !CountC) 1930 return nullptr; 1931 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 1932 1933 // If this is writing zero records, remove the call (it's a noop). 1934 if (Bytes == 0) 1935 return ConstantInt::get(CI->getType(), 0); 1936 1937 // If this is writing one byte, turn it into fputc. 1938 // This optimisation is only valid, if the return value is unused. 1939 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 1940 Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char"); 1941 Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, TLI); 1942 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 1943 } 1944 1945 return nullptr; 1946 } 1947 1948 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 1949 optimizeErrorReporting(CI, B, 1); 1950 1951 Function *Callee = CI->getCalledFunction(); 1952 1953 // Require two pointers. Also, we can't optimize if return value is used. 1954 FunctionType *FT = Callee->getFunctionType(); 1955 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 1956 !FT->getParamType(1)->isPointerTy() || !CI->use_empty()) 1957 return nullptr; 1958 1959 // fputs(s,F) --> fwrite(s,1,strlen(s),F) 1960 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 1961 if (!Len) 1962 return nullptr; 1963 1964 // Known to have no uses (see above). 1965 return EmitFWrite( 1966 CI->getArgOperand(0), 1967 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 1968 CI->getArgOperand(1), B, DL, TLI); 1969 } 1970 1971 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 1972 Function *Callee = CI->getCalledFunction(); 1973 // Require one fixed pointer argument and an integer/void result. 1974 FunctionType *FT = Callee->getFunctionType(); 1975 if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || 1976 !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy())) 1977 return nullptr; 1978 1979 // Check for a constant string. 1980 StringRef Str; 1981 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1982 return nullptr; 1983 1984 if (Str.empty() && CI->use_empty()) { 1985 // puts("") -> putchar('\n') 1986 Value *Res = EmitPutChar(B.getInt32('\n'), B, TLI); 1987 if (CI->use_empty() || !Res) 1988 return Res; 1989 return B.CreateIntCast(Res, CI->getType(), true); 1990 } 1991 1992 return nullptr; 1993 } 1994 1995 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 1996 LibFunc::Func Func; 1997 SmallString<20> FloatFuncName = FuncName; 1998 FloatFuncName += 'f'; 1999 if (TLI->getLibFunc(FloatFuncName, Func)) 2000 return TLI->has(Func); 2001 return false; 2002 } 2003 2004 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2005 IRBuilder<> &Builder) { 2006 LibFunc::Func Func; 2007 Function *Callee = CI->getCalledFunction(); 2008 StringRef FuncName = Callee->getName(); 2009 2010 // Check for string/memory library functions. 2011 if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) { 2012 // Make sure we never change the calling convention. 2013 assert((ignoreCallingConv(Func) || 2014 CI->getCallingConv() == llvm::CallingConv::C) && 2015 "Optimizing string/memory libcall would change the calling convention"); 2016 switch (Func) { 2017 case LibFunc::strcat: 2018 return optimizeStrCat(CI, Builder); 2019 case LibFunc::strncat: 2020 return optimizeStrNCat(CI, Builder); 2021 case LibFunc::strchr: 2022 return optimizeStrChr(CI, Builder); 2023 case LibFunc::strrchr: 2024 return optimizeStrRChr(CI, Builder); 2025 case LibFunc::strcmp: 2026 return optimizeStrCmp(CI, Builder); 2027 case LibFunc::strncmp: 2028 return optimizeStrNCmp(CI, Builder); 2029 case LibFunc::strcpy: 2030 return optimizeStrCpy(CI, Builder); 2031 case LibFunc::stpcpy: 2032 return optimizeStpCpy(CI, Builder); 2033 case LibFunc::strncpy: 2034 return optimizeStrNCpy(CI, Builder); 2035 case LibFunc::strlen: 2036 return optimizeStrLen(CI, Builder); 2037 case LibFunc::strpbrk: 2038 return optimizeStrPBrk(CI, Builder); 2039 case LibFunc::strtol: 2040 case LibFunc::strtod: 2041 case LibFunc::strtof: 2042 case LibFunc::strtoul: 2043 case LibFunc::strtoll: 2044 case LibFunc::strtold: 2045 case LibFunc::strtoull: 2046 return optimizeStrTo(CI, Builder); 2047 case LibFunc::strspn: 2048 return optimizeStrSpn(CI, Builder); 2049 case LibFunc::strcspn: 2050 return optimizeStrCSpn(CI, Builder); 2051 case LibFunc::strstr: 2052 return optimizeStrStr(CI, Builder); 2053 case LibFunc::memchr: 2054 return optimizeMemChr(CI, Builder); 2055 case LibFunc::memcmp: 2056 return optimizeMemCmp(CI, Builder); 2057 case LibFunc::memcpy: 2058 return optimizeMemCpy(CI, Builder); 2059 case LibFunc::memmove: 2060 return optimizeMemMove(CI, Builder); 2061 case LibFunc::memset: 2062 return optimizeMemSet(CI, Builder); 2063 default: 2064 break; 2065 } 2066 } 2067 return nullptr; 2068 } 2069 2070 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 2071 if (CI->isNoBuiltin()) 2072 return nullptr; 2073 2074 LibFunc::Func Func; 2075 Function *Callee = CI->getCalledFunction(); 2076 StringRef FuncName = Callee->getName(); 2077 IRBuilder<> Builder(CI); 2078 bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C; 2079 2080 // Command-line parameter overrides function attribute. 2081 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2082 UnsafeFPShrink = EnableUnsafeFPShrink; 2083 else if (canUseUnsafeFPMath(Callee)) 2084 UnsafeFPShrink = true; 2085 2086 // First, check for intrinsics. 2087 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2088 if (!isCallingConvC) 2089 return nullptr; 2090 switch (II->getIntrinsicID()) { 2091 case Intrinsic::pow: 2092 return optimizePow(CI, Builder); 2093 case Intrinsic::exp2: 2094 return optimizeExp2(CI, Builder); 2095 case Intrinsic::fabs: 2096 return optimizeFabs(CI, Builder); 2097 case Intrinsic::sqrt: 2098 return optimizeSqrt(CI, Builder); 2099 default: 2100 return nullptr; 2101 } 2102 } 2103 2104 // Also try to simplify calls to fortified library functions. 2105 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 2106 // Try to further simplify the result. 2107 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 2108 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 2109 // Use an IR Builder from SimplifiedCI if available instead of CI 2110 // to guarantee we reach all uses we might replace later on. 2111 IRBuilder<> TmpBuilder(SimplifiedCI); 2112 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { 2113 // If we were able to further simplify, remove the now redundant call. 2114 SimplifiedCI->replaceAllUsesWith(V); 2115 SimplifiedCI->eraseFromParent(); 2116 return V; 2117 } 2118 } 2119 return SimplifiedFortifiedCI; 2120 } 2121 2122 // Then check for known library functions. 2123 if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) { 2124 // We never change the calling convention. 2125 if (!ignoreCallingConv(Func) && !isCallingConvC) 2126 return nullptr; 2127 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 2128 return V; 2129 switch (Func) { 2130 case LibFunc::cosf: 2131 case LibFunc::cos: 2132 case LibFunc::cosl: 2133 return optimizeCos(CI, Builder); 2134 case LibFunc::sinpif: 2135 case LibFunc::sinpi: 2136 case LibFunc::cospif: 2137 case LibFunc::cospi: 2138 return optimizeSinCosPi(CI, Builder); 2139 case LibFunc::powf: 2140 case LibFunc::pow: 2141 case LibFunc::powl: 2142 return optimizePow(CI, Builder); 2143 case LibFunc::exp2l: 2144 case LibFunc::exp2: 2145 case LibFunc::exp2f: 2146 return optimizeExp2(CI, Builder); 2147 case LibFunc::fabsf: 2148 case LibFunc::fabs: 2149 case LibFunc::fabsl: 2150 return optimizeFabs(CI, Builder); 2151 case LibFunc::sqrtf: 2152 case LibFunc::sqrt: 2153 case LibFunc::sqrtl: 2154 return optimizeSqrt(CI, Builder); 2155 case LibFunc::ffs: 2156 case LibFunc::ffsl: 2157 case LibFunc::ffsll: 2158 return optimizeFFS(CI, Builder); 2159 case LibFunc::abs: 2160 case LibFunc::labs: 2161 case LibFunc::llabs: 2162 return optimizeAbs(CI, Builder); 2163 case LibFunc::isdigit: 2164 return optimizeIsDigit(CI, Builder); 2165 case LibFunc::isascii: 2166 return optimizeIsAscii(CI, Builder); 2167 case LibFunc::toascii: 2168 return optimizeToAscii(CI, Builder); 2169 case LibFunc::printf: 2170 return optimizePrintF(CI, Builder); 2171 case LibFunc::sprintf: 2172 return optimizeSPrintF(CI, Builder); 2173 case LibFunc::fprintf: 2174 return optimizeFPrintF(CI, Builder); 2175 case LibFunc::fwrite: 2176 return optimizeFWrite(CI, Builder); 2177 case LibFunc::fputs: 2178 return optimizeFPuts(CI, Builder); 2179 case LibFunc::puts: 2180 return optimizePuts(CI, Builder); 2181 case LibFunc::tan: 2182 case LibFunc::tanf: 2183 case LibFunc::tanl: 2184 return optimizeTan(CI, Builder); 2185 case LibFunc::perror: 2186 return optimizeErrorReporting(CI, Builder); 2187 case LibFunc::vfprintf: 2188 case LibFunc::fiprintf: 2189 return optimizeErrorReporting(CI, Builder, 0); 2190 case LibFunc::fputc: 2191 return optimizeErrorReporting(CI, Builder, 1); 2192 case LibFunc::ceil: 2193 case LibFunc::floor: 2194 case LibFunc::rint: 2195 case LibFunc::round: 2196 case LibFunc::nearbyint: 2197 case LibFunc::trunc: 2198 if (hasFloatVersion(FuncName)) 2199 return optimizeUnaryDoubleFP(CI, Builder, false); 2200 return nullptr; 2201 case LibFunc::acos: 2202 case LibFunc::acosh: 2203 case LibFunc::asin: 2204 case LibFunc::asinh: 2205 case LibFunc::atan: 2206 case LibFunc::atanh: 2207 case LibFunc::cbrt: 2208 case LibFunc::cosh: 2209 case LibFunc::exp: 2210 case LibFunc::exp10: 2211 case LibFunc::expm1: 2212 case LibFunc::log: 2213 case LibFunc::log10: 2214 case LibFunc::log1p: 2215 case LibFunc::log2: 2216 case LibFunc::logb: 2217 case LibFunc::sin: 2218 case LibFunc::sinh: 2219 case LibFunc::tanh: 2220 if (UnsafeFPShrink && hasFloatVersion(FuncName)) 2221 return optimizeUnaryDoubleFP(CI, Builder, true); 2222 return nullptr; 2223 case LibFunc::copysign: 2224 if (hasFloatVersion(FuncName)) 2225 return optimizeBinaryDoubleFP(CI, Builder); 2226 return nullptr; 2227 case LibFunc::fminf: 2228 case LibFunc::fmin: 2229 case LibFunc::fminl: 2230 case LibFunc::fmaxf: 2231 case LibFunc::fmax: 2232 case LibFunc::fmaxl: 2233 return optimizeFMinFMax(CI, Builder); 2234 default: 2235 return nullptr; 2236 } 2237 } 2238 return nullptr; 2239 } 2240 2241 LibCallSimplifier::LibCallSimplifier( 2242 const DataLayout &DL, const TargetLibraryInfo *TLI, 2243 function_ref<void(Instruction *, Value *)> Replacer) 2244 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), UnsafeFPShrink(false), 2245 Replacer(Replacer) {} 2246 2247 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 2248 // Indirect through the replacer used in this instance. 2249 Replacer(I, With); 2250 } 2251 2252 // TODO: 2253 // Additional cases that we need to add to this file: 2254 // 2255 // cbrt: 2256 // * cbrt(expN(X)) -> expN(x/3) 2257 // * cbrt(sqrt(x)) -> pow(x,1/6) 2258 // * cbrt(cbrt(x)) -> pow(x,1/9) 2259 // 2260 // exp, expf, expl: 2261 // * exp(log(x)) -> x 2262 // 2263 // log, logf, logl: 2264 // * log(exp(x)) -> x 2265 // * log(x**y) -> y*log(x) 2266 // * log(exp(y)) -> y*log(e) 2267 // * log(exp2(y)) -> y*log(2) 2268 // * log(exp10(y)) -> y*log(10) 2269 // * log(sqrt(x)) -> 0.5*log(x) 2270 // * log(pow(x,y)) -> y*log(x) 2271 // 2272 // lround, lroundf, lroundl: 2273 // * lround(cnst) -> cnst' 2274 // 2275 // pow, powf, powl: 2276 // * pow(exp(x),y) -> exp(x*y) 2277 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2278 // * pow(pow(x,y),z)-> pow(x,y*z) 2279 // 2280 // round, roundf, roundl: 2281 // * round(cnst) -> cnst' 2282 // 2283 // signbit: 2284 // * signbit(cnst) -> cnst' 2285 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2286 // 2287 // sqrt, sqrtf, sqrtl: 2288 // * sqrt(expN(x)) -> expN(x*0.5) 2289 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2290 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2291 // 2292 // tan, tanf, tanl: 2293 // * tan(atan(x)) -> x 2294 // 2295 // trunc, truncf, truncl: 2296 // * trunc(cnst) -> cnst' 2297 // 2298 // 2299 2300 //===----------------------------------------------------------------------===// 2301 // Fortified Library Call Optimizations 2302 //===----------------------------------------------------------------------===// 2303 2304 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2305 unsigned ObjSizeOp, 2306 unsigned SizeOp, 2307 bool isString) { 2308 if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp)) 2309 return true; 2310 if (ConstantInt *ObjSizeCI = 2311 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2312 if (ObjSizeCI->isAllOnesValue()) 2313 return true; 2314 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2315 if (OnlyLowerUnknownSize) 2316 return false; 2317 if (isString) { 2318 uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp)); 2319 // If the length is 0 we don't know how long it is and so we can't 2320 // remove the check. 2321 if (Len == 0) 2322 return false; 2323 return ObjSizeCI->getZExtValue() >= Len; 2324 } 2325 if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp))) 2326 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2327 } 2328 return false; 2329 } 2330 2331 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, IRBuilder<> &B) { 2332 Function *Callee = CI->getCalledFunction(); 2333 2334 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy_chk)) 2335 return nullptr; 2336 2337 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2338 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2339 CI->getArgOperand(2), 1); 2340 return CI->getArgOperand(0); 2341 } 2342 return nullptr; 2343 } 2344 2345 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, IRBuilder<> &B) { 2346 Function *Callee = CI->getCalledFunction(); 2347 2348 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove_chk)) 2349 return nullptr; 2350 2351 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2352 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 2353 CI->getArgOperand(2), 1); 2354 return CI->getArgOperand(0); 2355 } 2356 return nullptr; 2357 } 2358 2359 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, IRBuilder<> &B) { 2360 Function *Callee = CI->getCalledFunction(); 2361 2362 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset_chk)) 2363 return nullptr; 2364 2365 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2366 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2367 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2368 return CI->getArgOperand(0); 2369 } 2370 return nullptr; 2371 } 2372 2373 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 2374 IRBuilder<> &B, 2375 LibFunc::Func Func) { 2376 Function *Callee = CI->getCalledFunction(); 2377 StringRef Name = Callee->getName(); 2378 const DataLayout &DL = CI->getModule()->getDataLayout(); 2379 2380 if (!checkStringCopyLibFuncSignature(Callee, Func)) 2381 return nullptr; 2382 2383 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 2384 *ObjSize = CI->getArgOperand(2); 2385 2386 // __stpcpy_chk(x,x,...) -> x+strlen(x) 2387 if (Func == LibFunc::stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 2388 Value *StrLen = EmitStrLen(Src, B, DL, TLI); 2389 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 2390 } 2391 2392 // If a) we don't have any length information, or b) we know this will 2393 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 2394 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 2395 // TODO: It might be nice to get a maximum length out of the possible 2396 // string lengths for varying. 2397 if (isFortifiedCallFoldable(CI, 2, 1, true)) 2398 return EmitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6)); 2399 2400 if (OnlyLowerUnknownSize) 2401 return nullptr; 2402 2403 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 2404 uint64_t Len = GetStringLength(Src); 2405 if (Len == 0) 2406 return nullptr; 2407 2408 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 2409 Value *LenV = ConstantInt::get(SizeTTy, Len); 2410 Value *Ret = EmitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 2411 // If the function was an __stpcpy_chk, and we were able to fold it into 2412 // a __memcpy_chk, we still need to return the correct end pointer. 2413 if (Ret && Func == LibFunc::stpcpy_chk) 2414 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 2415 return Ret; 2416 } 2417 2418 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 2419 IRBuilder<> &B, 2420 LibFunc::Func Func) { 2421 Function *Callee = CI->getCalledFunction(); 2422 StringRef Name = Callee->getName(); 2423 2424 if (!checkStringCopyLibFuncSignature(Callee, Func)) 2425 return nullptr; 2426 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2427 Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2428 CI->getArgOperand(2), B, TLI, Name.substr(2, 7)); 2429 return Ret; 2430 } 2431 return nullptr; 2432 } 2433 2434 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 2435 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 2436 // Some clang users checked for _chk libcall availability using: 2437 // __has_builtin(__builtin___memcpy_chk) 2438 // When compiling with -fno-builtin, this is always true. 2439 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 2440 // end up with fortified libcalls, which isn't acceptable in a freestanding 2441 // environment which only provides their non-fortified counterparts. 2442 // 2443 // Until we change clang and/or teach external users to check for availability 2444 // differently, disregard the "nobuiltin" attribute and TLI::has. 2445 // 2446 // PR23093. 2447 2448 LibFunc::Func Func; 2449 Function *Callee = CI->getCalledFunction(); 2450 StringRef FuncName = Callee->getName(); 2451 IRBuilder<> Builder(CI); 2452 bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C; 2453 2454 // First, check that this is a known library functions. 2455 if (!TLI->getLibFunc(FuncName, Func)) 2456 return nullptr; 2457 2458 // We never change the calling convention. 2459 if (!ignoreCallingConv(Func) && !isCallingConvC) 2460 return nullptr; 2461 2462 switch (Func) { 2463 case LibFunc::memcpy_chk: 2464 return optimizeMemCpyChk(CI, Builder); 2465 case LibFunc::memmove_chk: 2466 return optimizeMemMoveChk(CI, Builder); 2467 case LibFunc::memset_chk: 2468 return optimizeMemSetChk(CI, Builder); 2469 case LibFunc::stpcpy_chk: 2470 case LibFunc::strcpy_chk: 2471 return optimizeStrpCpyChk(CI, Builder, Func); 2472 case LibFunc::stpncpy_chk: 2473 case LibFunc::strncpy_chk: 2474 return optimizeStrpNCpyChk(CI, Builder, Func); 2475 default: 2476 break; 2477 } 2478 return nullptr; 2479 } 2480 2481 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 2482 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 2483 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 2484