1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is a utility pass used for testing the InstructionSimplify analysis. 11 // The analysis is applied to every instruction, and if it simplifies then the 12 // instruction is replaced by the simplification. If you are looking for a pass 13 // that performs serious instruction folding, use the instcombine pass instead. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/KnownBits.h" 35 #include "llvm/Transforms/Utils/BuildLibCalls.h" 36 #include "llvm/Transforms/Utils/Local.h" 37 38 using namespace llvm; 39 using namespace PatternMatch; 40 41 static cl::opt<bool> 42 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 43 cl::init(false), 44 cl::desc("Enable unsafe double to float " 45 "shrinking for math lib calls")); 46 47 48 //===----------------------------------------------------------------------===// 49 // Helper Functions 50 //===----------------------------------------------------------------------===// 51 52 static bool ignoreCallingConv(LibFunc Func) { 53 return Func == LibFunc_abs || Func == LibFunc_labs || 54 Func == LibFunc_llabs || Func == LibFunc_strlen; 55 } 56 57 static bool isCallingConvCCompatible(CallInst *CI) { 58 switch(CI->getCallingConv()) { 59 default: 60 return false; 61 case llvm::CallingConv::C: 62 return true; 63 case llvm::CallingConv::ARM_APCS: 64 case llvm::CallingConv::ARM_AAPCS: 65 case llvm::CallingConv::ARM_AAPCS_VFP: { 66 67 // The iOS ABI diverges from the standard in some cases, so for now don't 68 // try to simplify those calls. 69 if (Triple(CI->getModule()->getTargetTriple()).isiOS()) 70 return false; 71 72 auto *FuncTy = CI->getFunctionType(); 73 74 if (!FuncTy->getReturnType()->isPointerTy() && 75 !FuncTy->getReturnType()->isIntegerTy() && 76 !FuncTy->getReturnType()->isVoidTy()) 77 return false; 78 79 for (auto Param : FuncTy->params()) { 80 if (!Param->isPointerTy() && !Param->isIntegerTy()) 81 return false; 82 } 83 return true; 84 } 85 } 86 return false; 87 } 88 89 /// Return true if it is only used in equality comparisons with With. 90 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 91 for (User *U : V->users()) { 92 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 93 if (IC->isEquality() && IC->getOperand(1) == With) 94 continue; 95 // Unknown instruction. 96 return false; 97 } 98 return true; 99 } 100 101 static bool callHasFloatingPointArgument(const CallInst *CI) { 102 return any_of(CI->operands(), [](const Use &OI) { 103 return OI->getType()->isFloatingPointTy(); 104 }); 105 } 106 107 /// \brief Check whether the overloaded unary floating point function 108 /// corresponding to \a Ty is available. 109 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty, 110 LibFunc DoubleFn, LibFunc FloatFn, 111 LibFunc LongDoubleFn) { 112 switch (Ty->getTypeID()) { 113 case Type::FloatTyID: 114 return TLI->has(FloatFn); 115 case Type::DoubleTyID: 116 return TLI->has(DoubleFn); 117 default: 118 return TLI->has(LongDoubleFn); 119 } 120 } 121 122 //===----------------------------------------------------------------------===// 123 // String and Memory Library Call Optimizations 124 //===----------------------------------------------------------------------===// 125 126 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 127 // Extract some information from the instruction 128 Value *Dst = CI->getArgOperand(0); 129 Value *Src = CI->getArgOperand(1); 130 131 // See if we can get the length of the input string. 132 uint64_t Len = GetStringLength(Src); 133 if (Len == 0) 134 return nullptr; 135 --Len; // Unbias length. 136 137 // Handle the simple, do-nothing case: strcat(x, "") -> x 138 if (Len == 0) 139 return Dst; 140 141 return emitStrLenMemCpy(Src, Dst, Len, B); 142 } 143 144 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 145 IRBuilder<> &B) { 146 // We need to find the end of the destination string. That's where the 147 // memory is to be moved to. We just generate a call to strlen. 148 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 149 if (!DstLen) 150 return nullptr; 151 152 // Now that we have the destination's length, we must index into the 153 // destination's pointer to get the actual memcpy destination (end of 154 // the string .. we're concatenating). 155 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 156 157 // We have enough information to now generate the memcpy call to do the 158 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 159 B.CreateMemCpy(CpyDst, Src, 160 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1), 161 1); 162 return Dst; 163 } 164 165 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 166 // Extract some information from the instruction. 167 Value *Dst = CI->getArgOperand(0); 168 Value *Src = CI->getArgOperand(1); 169 uint64_t Len; 170 171 // We don't do anything if length is not constant. 172 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 173 Len = LengthArg->getZExtValue(); 174 else 175 return nullptr; 176 177 // See if we can get the length of the input string. 178 uint64_t SrcLen = GetStringLength(Src); 179 if (SrcLen == 0) 180 return nullptr; 181 --SrcLen; // Unbias length. 182 183 // Handle the simple, do-nothing cases: 184 // strncat(x, "", c) -> x 185 // strncat(x, c, 0) -> x 186 if (SrcLen == 0 || Len == 0) 187 return Dst; 188 189 // We don't optimize this case. 190 if (Len < SrcLen) 191 return nullptr; 192 193 // strncat(x, s, c) -> strcat(x, s) 194 // s is constant so the strcat can be optimized further. 195 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 196 } 197 198 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 199 Function *Callee = CI->getCalledFunction(); 200 FunctionType *FT = Callee->getFunctionType(); 201 Value *SrcStr = CI->getArgOperand(0); 202 203 // If the second operand is non-constant, see if we can compute the length 204 // of the input string and turn this into memchr. 205 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 206 if (!CharC) { 207 uint64_t Len = GetStringLength(SrcStr); 208 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 209 return nullptr; 210 211 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 212 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 213 B, DL, TLI); 214 } 215 216 // Otherwise, the character is a constant, see if the first argument is 217 // a string literal. If so, we can constant fold. 218 StringRef Str; 219 if (!getConstantStringInfo(SrcStr, Str)) { 220 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 221 return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI), 222 "strchr"); 223 return nullptr; 224 } 225 226 // Compute the offset, make sure to handle the case when we're searching for 227 // zero (a weird way to spell strlen). 228 size_t I = (0xFF & CharC->getSExtValue()) == 0 229 ? Str.size() 230 : Str.find(CharC->getSExtValue()); 231 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 232 return Constant::getNullValue(CI->getType()); 233 234 // strchr(s+n,c) -> gep(s+n+i,c) 235 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 236 } 237 238 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 239 Value *SrcStr = CI->getArgOperand(0); 240 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 241 242 // Cannot fold anything if we're not looking for a constant. 243 if (!CharC) 244 return nullptr; 245 246 StringRef Str; 247 if (!getConstantStringInfo(SrcStr, Str)) { 248 // strrchr(s, 0) -> strchr(s, 0) 249 if (CharC->isZero()) 250 return emitStrChr(SrcStr, '\0', B, TLI); 251 return nullptr; 252 } 253 254 // Compute the offset. 255 size_t I = (0xFF & CharC->getSExtValue()) == 0 256 ? Str.size() 257 : Str.rfind(CharC->getSExtValue()); 258 if (I == StringRef::npos) // Didn't find the char. Return null. 259 return Constant::getNullValue(CI->getType()); 260 261 // strrchr(s+n,c) -> gep(s+n+i,c) 262 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 263 } 264 265 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 266 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 267 if (Str1P == Str2P) // strcmp(x,x) -> 0 268 return ConstantInt::get(CI->getType(), 0); 269 270 StringRef Str1, Str2; 271 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 272 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 273 274 // strcmp(x, y) -> cnst (if both x and y are constant strings) 275 if (HasStr1 && HasStr2) 276 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 277 278 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 279 return B.CreateNeg( 280 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 281 282 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 283 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 284 285 // strcmp(P, "x") -> memcmp(P, "x", 2) 286 uint64_t Len1 = GetStringLength(Str1P); 287 uint64_t Len2 = GetStringLength(Str2P); 288 if (Len1 && Len2) { 289 return emitMemCmp(Str1P, Str2P, 290 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 291 std::min(Len1, Len2)), 292 B, DL, TLI); 293 } 294 295 return nullptr; 296 } 297 298 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 299 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 300 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 301 return ConstantInt::get(CI->getType(), 0); 302 303 // Get the length argument if it is constant. 304 uint64_t Length; 305 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 306 Length = LengthArg->getZExtValue(); 307 else 308 return nullptr; 309 310 if (Length == 0) // strncmp(x,y,0) -> 0 311 return ConstantInt::get(CI->getType(), 0); 312 313 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 314 return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 315 316 StringRef Str1, Str2; 317 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 318 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 319 320 // strncmp(x, y) -> cnst (if both x and y are constant strings) 321 if (HasStr1 && HasStr2) { 322 StringRef SubStr1 = Str1.substr(0, Length); 323 StringRef SubStr2 = Str2.substr(0, Length); 324 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 325 } 326 327 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 328 return B.CreateNeg( 329 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 330 331 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 332 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 333 334 return nullptr; 335 } 336 337 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 338 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 339 if (Dst == Src) // strcpy(x,x) -> x 340 return Src; 341 342 // See if we can get the length of the input string. 343 uint64_t Len = GetStringLength(Src); 344 if (Len == 0) 345 return nullptr; 346 347 // We have enough information to now generate the memcpy call to do the 348 // copy for us. Make a memcpy to copy the nul byte with align = 1. 349 B.CreateMemCpy(Dst, Src, 350 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1); 351 return Dst; 352 } 353 354 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 355 Function *Callee = CI->getCalledFunction(); 356 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 357 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 358 Value *StrLen = emitStrLen(Src, B, DL, TLI); 359 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 360 } 361 362 // See if we can get the length of the input string. 363 uint64_t Len = GetStringLength(Src); 364 if (Len == 0) 365 return nullptr; 366 367 Type *PT = Callee->getFunctionType()->getParamType(0); 368 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 369 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 370 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 371 372 // We have enough information to now generate the memcpy call to do the 373 // copy for us. Make a memcpy to copy the nul byte with align = 1. 374 B.CreateMemCpy(Dst, Src, LenV, 1); 375 return DstEnd; 376 } 377 378 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 379 Function *Callee = CI->getCalledFunction(); 380 Value *Dst = CI->getArgOperand(0); 381 Value *Src = CI->getArgOperand(1); 382 Value *LenOp = CI->getArgOperand(2); 383 384 // See if we can get the length of the input string. 385 uint64_t SrcLen = GetStringLength(Src); 386 if (SrcLen == 0) 387 return nullptr; 388 --SrcLen; 389 390 if (SrcLen == 0) { 391 // strncpy(x, "", y) -> memset(x, '\0', y, 1) 392 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 393 return Dst; 394 } 395 396 uint64_t Len; 397 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 398 Len = LengthArg->getZExtValue(); 399 else 400 return nullptr; 401 402 if (Len == 0) 403 return Dst; // strncpy(x, y, 0) -> x 404 405 // Let strncpy handle the zero padding 406 if (Len > SrcLen + 1) 407 return nullptr; 408 409 Type *PT = Callee->getFunctionType()->getParamType(0); 410 // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] 411 B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1); 412 413 return Dst; 414 } 415 416 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B, 417 unsigned CharSize) { 418 Value *Src = CI->getArgOperand(0); 419 420 // Constant folding: strlen("xyz") -> 3 421 if (uint64_t Len = GetStringLength(Src, CharSize)) 422 return ConstantInt::get(CI->getType(), Len - 1); 423 424 // If s is a constant pointer pointing to a string literal, we can fold 425 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 426 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 427 // We only try to simplify strlen when the pointer s points to an array 428 // of i8. Otherwise, we would need to scale the offset x before doing the 429 // subtraction. This will make the optimization more complex, and it's not 430 // very useful because calling strlen for a pointer of other types is 431 // very uncommon. 432 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 433 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 434 return nullptr; 435 436 ConstantDataArraySlice Slice; 437 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 438 uint64_t NullTermIdx; 439 if (Slice.Array == nullptr) { 440 NullTermIdx = 0; 441 } else { 442 NullTermIdx = ~((uint64_t)0); 443 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 444 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 445 NullTermIdx = I; 446 break; 447 } 448 } 449 // If the string does not have '\0', leave it to strlen to compute 450 // its length. 451 if (NullTermIdx == ~((uint64_t)0)) 452 return nullptr; 453 } 454 455 Value *Offset = GEP->getOperand(2); 456 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 457 Known.Zero.flipAllBits(); 458 uint64_t ArrSize = 459 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 460 461 // KnownZero's bits are flipped, so zeros in KnownZero now represent 462 // bits known to be zeros in Offset, and ones in KnowZero represent 463 // bits unknown in Offset. Therefore, Offset is known to be in range 464 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 465 // unsigned-less-than NullTermIdx. 466 // 467 // If Offset is not provably in the range [0, NullTermIdx], we can still 468 // optimize if we can prove that the program has undefined behavior when 469 // Offset is outside that range. That is the case when GEP->getOperand(0) 470 // is a pointer to an object whose memory extent is NullTermIdx+1. 471 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 472 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 473 NullTermIdx == ArrSize - 1)) { 474 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 475 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 476 Offset); 477 } 478 } 479 480 return nullptr; 481 } 482 483 // strlen(x?"foo":"bars") --> x ? 3 : 4 484 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 485 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 486 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 487 if (LenTrue && LenFalse) { 488 ORE.emit([&]() { 489 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 490 << "folded strlen(select) to select of constants"; 491 }); 492 return B.CreateSelect(SI->getCondition(), 493 ConstantInt::get(CI->getType(), LenTrue - 1), 494 ConstantInt::get(CI->getType(), LenFalse - 1)); 495 } 496 } 497 498 // strlen(x) != 0 --> *x != 0 499 // strlen(x) == 0 --> *x == 0 500 if (isOnlyUsedInZeroEqualityComparison(CI)) 501 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); 502 503 return nullptr; 504 } 505 506 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 507 return optimizeStringLength(CI, B, 8); 508 } 509 510 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) { 511 Module &M = *CI->getParent()->getParent()->getParent(); 512 unsigned WCharSize = TLI->getWCharSize(M) * 8; 513 // We cannot perform this optimization without wchar_size metadata. 514 if (WCharSize == 0) 515 return nullptr; 516 517 return optimizeStringLength(CI, B, WCharSize); 518 } 519 520 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 521 StringRef S1, S2; 522 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 523 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 524 525 // strpbrk(s, "") -> nullptr 526 // strpbrk("", s) -> nullptr 527 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 528 return Constant::getNullValue(CI->getType()); 529 530 // Constant folding. 531 if (HasS1 && HasS2) { 532 size_t I = S1.find_first_of(S2); 533 if (I == StringRef::npos) // No match. 534 return Constant::getNullValue(CI->getType()); 535 536 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 537 "strpbrk"); 538 } 539 540 // strpbrk(s, "a") -> strchr(s, 'a') 541 if (HasS2 && S2.size() == 1) 542 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 543 544 return nullptr; 545 } 546 547 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 548 Value *EndPtr = CI->getArgOperand(1); 549 if (isa<ConstantPointerNull>(EndPtr)) { 550 // With a null EndPtr, this function won't capture the main argument. 551 // It would be readonly too, except that it still may write to errno. 552 CI->addParamAttr(0, Attribute::NoCapture); 553 } 554 555 return nullptr; 556 } 557 558 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 559 StringRef S1, S2; 560 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 561 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 562 563 // strspn(s, "") -> 0 564 // strspn("", s) -> 0 565 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 566 return Constant::getNullValue(CI->getType()); 567 568 // Constant folding. 569 if (HasS1 && HasS2) { 570 size_t Pos = S1.find_first_not_of(S2); 571 if (Pos == StringRef::npos) 572 Pos = S1.size(); 573 return ConstantInt::get(CI->getType(), Pos); 574 } 575 576 return nullptr; 577 } 578 579 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 580 StringRef S1, S2; 581 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 582 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 583 584 // strcspn("", s) -> 0 585 if (HasS1 && S1.empty()) 586 return Constant::getNullValue(CI->getType()); 587 588 // Constant folding. 589 if (HasS1 && HasS2) { 590 size_t Pos = S1.find_first_of(S2); 591 if (Pos == StringRef::npos) 592 Pos = S1.size(); 593 return ConstantInt::get(CI->getType(), Pos); 594 } 595 596 // strcspn(s, "") -> strlen(s) 597 if (HasS2 && S2.empty()) 598 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 599 600 return nullptr; 601 } 602 603 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 604 // fold strstr(x, x) -> x. 605 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 606 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 607 608 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 609 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 610 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 611 if (!StrLen) 612 return nullptr; 613 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 614 StrLen, B, DL, TLI); 615 if (!StrNCmp) 616 return nullptr; 617 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 618 ICmpInst *Old = cast<ICmpInst>(*UI++); 619 Value *Cmp = 620 B.CreateICmp(Old->getPredicate(), StrNCmp, 621 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 622 replaceAllUsesWith(Old, Cmp); 623 } 624 return CI; 625 } 626 627 // See if either input string is a constant string. 628 StringRef SearchStr, ToFindStr; 629 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 630 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 631 632 // fold strstr(x, "") -> x. 633 if (HasStr2 && ToFindStr.empty()) 634 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 635 636 // If both strings are known, constant fold it. 637 if (HasStr1 && HasStr2) { 638 size_t Offset = SearchStr.find(ToFindStr); 639 640 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 641 return Constant::getNullValue(CI->getType()); 642 643 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 644 Value *Result = castToCStr(CI->getArgOperand(0), B); 645 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); 646 return B.CreateBitCast(Result, CI->getType()); 647 } 648 649 // fold strstr(x, "y") -> strchr(x, 'y'). 650 if (HasStr2 && ToFindStr.size() == 1) { 651 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 652 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 653 } 654 return nullptr; 655 } 656 657 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { 658 Value *SrcStr = CI->getArgOperand(0); 659 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 660 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 661 662 // memchr(x, y, 0) -> null 663 if (LenC && LenC->isZero()) 664 return Constant::getNullValue(CI->getType()); 665 666 // From now on we need at least constant length and string. 667 StringRef Str; 668 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 669 return nullptr; 670 671 // Truncate the string to LenC. If Str is smaller than LenC we will still only 672 // scan the string, as reading past the end of it is undefined and we can just 673 // return null if we don't find the char. 674 Str = Str.substr(0, LenC->getZExtValue()); 675 676 // If the char is variable but the input str and length are not we can turn 677 // this memchr call into a simple bit field test. Of course this only works 678 // when the return value is only checked against null. 679 // 680 // It would be really nice to reuse switch lowering here but we can't change 681 // the CFG at this point. 682 // 683 // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0 684 // after bounds check. 685 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 686 unsigned char Max = 687 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 688 reinterpret_cast<const unsigned char *>(Str.end())); 689 690 // Make sure the bit field we're about to create fits in a register on the 691 // target. 692 // FIXME: On a 64 bit architecture this prevents us from using the 693 // interesting range of alpha ascii chars. We could do better by emitting 694 // two bitfields or shifting the range by 64 if no lower chars are used. 695 if (!DL.fitsInLegalInteger(Max + 1)) 696 return nullptr; 697 698 // For the bit field use a power-of-2 type with at least 8 bits to avoid 699 // creating unnecessary illegal types. 700 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 701 702 // Now build the bit field. 703 APInt Bitfield(Width, 0); 704 for (char C : Str) 705 Bitfield.setBit((unsigned char)C); 706 Value *BitfieldC = B.getInt(Bitfield); 707 708 // First check that the bit field access is within bounds. 709 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 710 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 711 "memchr.bounds"); 712 713 // Create code that checks if the given bit is set in the field. 714 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 715 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 716 717 // Finally merge both checks and cast to pointer type. The inttoptr 718 // implicitly zexts the i1 to intptr type. 719 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 720 } 721 722 // Check if all arguments are constants. If so, we can constant fold. 723 if (!CharC) 724 return nullptr; 725 726 // Compute the offset. 727 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 728 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 729 return Constant::getNullValue(CI->getType()); 730 731 // memchr(s+n,c,l) -> gep(s+n+i,c) 732 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 733 } 734 735 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 736 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 737 738 if (LHS == RHS) // memcmp(s,s,x) -> 0 739 return Constant::getNullValue(CI->getType()); 740 741 // Make sure we have a constant length. 742 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 743 if (!LenC) 744 return nullptr; 745 746 uint64_t Len = LenC->getZExtValue(); 747 if (Len == 0) // memcmp(s1,s2,0) -> 0 748 return Constant::getNullValue(CI->getType()); 749 750 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 751 if (Len == 1) { 752 Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"), 753 CI->getType(), "lhsv"); 754 Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"), 755 CI->getType(), "rhsv"); 756 return B.CreateSub(LHSV, RHSV, "chardiff"); 757 } 758 759 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 760 // TODO: The case where both inputs are constants does not need to be limited 761 // to legal integers or equality comparison. See block below this. 762 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 763 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 764 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 765 766 // First, see if we can fold either argument to a constant. 767 Value *LHSV = nullptr; 768 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 769 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 770 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 771 } 772 Value *RHSV = nullptr; 773 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 774 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 775 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 776 } 777 778 // Don't generate unaligned loads. If either source is constant data, 779 // alignment doesn't matter for that source because there is no load. 780 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 781 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 782 if (!LHSV) { 783 Type *LHSPtrTy = 784 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 785 LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 786 } 787 if (!RHSV) { 788 Type *RHSPtrTy = 789 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 790 RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 791 } 792 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 793 } 794 } 795 796 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 797 // TODO: This is limited to i8 arrays. 798 StringRef LHSStr, RHSStr; 799 if (getConstantStringInfo(LHS, LHSStr) && 800 getConstantStringInfo(RHS, RHSStr)) { 801 // Make sure we're not reading out-of-bounds memory. 802 if (Len > LHSStr.size() || Len > RHSStr.size()) 803 return nullptr; 804 // Fold the memcmp and normalize the result. This way we get consistent 805 // results across multiple platforms. 806 uint64_t Ret = 0; 807 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 808 if (Cmp < 0) 809 Ret = -1; 810 else if (Cmp > 0) 811 Ret = 1; 812 return ConstantInt::get(CI->getType(), Ret); 813 } 814 815 return nullptr; 816 } 817 818 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { 819 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) 820 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 821 CI->getArgOperand(2), 1); 822 return CI->getArgOperand(0); 823 } 824 825 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { 826 // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) 827 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 828 CI->getArgOperand(2), 1); 829 return CI->getArgOperand(0); 830 } 831 832 // TODO: Does this belong in BuildLibCalls or should all of those similar 833 // functions be moved here? 834 static Value *emitCalloc(Value *Num, Value *Size, const AttributeList &Attrs, 835 IRBuilder<> &B, const TargetLibraryInfo &TLI) { 836 LibFunc Func; 837 if (!TLI.getLibFunc("calloc", Func) || !TLI.has(Func)) 838 return nullptr; 839 840 Module *M = B.GetInsertBlock()->getModule(); 841 const DataLayout &DL = M->getDataLayout(); 842 IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext())); 843 Value *Calloc = M->getOrInsertFunction("calloc", Attrs, B.getInt8PtrTy(), 844 PtrType, PtrType); 845 CallInst *CI = B.CreateCall(Calloc, { Num, Size }, "calloc"); 846 847 if (const auto *F = dyn_cast<Function>(Calloc->stripPointerCasts())) 848 CI->setCallingConv(F->getCallingConv()); 849 850 return CI; 851 } 852 853 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 854 static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B, 855 const TargetLibraryInfo &TLI) { 856 // This has to be a memset of zeros (bzero). 857 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 858 if (!FillValue || FillValue->getZExtValue() != 0) 859 return nullptr; 860 861 // TODO: We should handle the case where the malloc has more than one use. 862 // This is necessary to optimize common patterns such as when the result of 863 // the malloc is checked against null or when a memset intrinsic is used in 864 // place of a memset library call. 865 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 866 if (!Malloc || !Malloc->hasOneUse()) 867 return nullptr; 868 869 // Is the inner call really malloc()? 870 Function *InnerCallee = Malloc->getCalledFunction(); 871 if (!InnerCallee) 872 return nullptr; 873 874 LibFunc Func; 875 if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) || 876 Func != LibFunc_malloc) 877 return nullptr; 878 879 // The memset must cover the same number of bytes that are malloc'd. 880 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 881 return nullptr; 882 883 // Replace the malloc with a calloc. We need the data layout to know what the 884 // actual size of a 'size_t' parameter is. 885 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 886 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 887 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 888 Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 889 Malloc->getArgOperand(0), Malloc->getAttributes(), 890 B, TLI); 891 if (!Calloc) 892 return nullptr; 893 894 Malloc->replaceAllUsesWith(Calloc); 895 Malloc->eraseFromParent(); 896 897 return Calloc; 898 } 899 900 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { 901 if (auto *Calloc = foldMallocMemset(CI, B, *TLI)) 902 return Calloc; 903 904 // memset(p, v, n) -> llvm.memset(p, v, n, 1) 905 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 906 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 907 return CI->getArgOperand(0); 908 } 909 910 //===----------------------------------------------------------------------===// 911 // Math Library Optimizations 912 //===----------------------------------------------------------------------===// 913 914 /// Return a variant of Val with float type. 915 /// Currently this works in two cases: If Val is an FPExtension of a float 916 /// value to something bigger, simply return the operand. 917 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 918 /// loss of precision do so. 919 static Value *valueHasFloatPrecision(Value *Val) { 920 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 921 Value *Op = Cast->getOperand(0); 922 if (Op->getType()->isFloatTy()) 923 return Op; 924 } 925 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 926 APFloat F = Const->getValueAPF(); 927 bool losesInfo; 928 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 929 &losesInfo); 930 if (!losesInfo) 931 return ConstantFP::get(Const->getContext(), F); 932 } 933 return nullptr; 934 } 935 936 /// Shrink double -> float for unary functions like 'floor'. 937 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 938 bool CheckRetType) { 939 Function *Callee = CI->getCalledFunction(); 940 // We know this libcall has a valid prototype, but we don't know which. 941 if (!CI->getType()->isDoubleTy()) 942 return nullptr; 943 944 if (CheckRetType) { 945 // Check if all the uses for function like 'sin' are converted to float. 946 for (User *U : CI->users()) { 947 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 948 if (!Cast || !Cast->getType()->isFloatTy()) 949 return nullptr; 950 } 951 } 952 953 // If this is something like 'floor((double)floatval)', convert to floorf. 954 Value *V = valueHasFloatPrecision(CI->getArgOperand(0)); 955 if (V == nullptr) 956 return nullptr; 957 958 // If call isn't an intrinsic, check that it isn't within a function with the 959 // same name as the float version of this call. 960 // 961 // e.g. inline float expf(float val) { return (float) exp((double) val); } 962 // 963 // A similar such definition exists in the MinGW-w64 math.h header file which 964 // when compiled with -O2 -ffast-math causes the generation of infinite loops 965 // where expf is called. 966 if (!Callee->isIntrinsic()) { 967 const Function *F = CI->getFunction(); 968 StringRef FName = F->getName(); 969 StringRef CalleeName = Callee->getName(); 970 if ((FName.size() == (CalleeName.size() + 1)) && 971 (FName.back() == 'f') && 972 FName.startswith(CalleeName)) 973 return nullptr; 974 } 975 976 // Propagate fast-math flags from the existing call to the new call. 977 IRBuilder<>::FastMathFlagGuard Guard(B); 978 B.setFastMathFlags(CI->getFastMathFlags()); 979 980 // floor((double)floatval) -> (double)floorf(floatval) 981 if (Callee->isIntrinsic()) { 982 Module *M = CI->getModule(); 983 Intrinsic::ID IID = Callee->getIntrinsicID(); 984 Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 985 V = B.CreateCall(F, V); 986 } else { 987 // The call is a library call rather than an intrinsic. 988 V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes()); 989 } 990 991 return B.CreateFPExt(V, B.getDoubleTy()); 992 } 993 994 // Replace a libcall \p CI with a call to intrinsic \p IID 995 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) { 996 // Propagate fast-math flags from the existing call to the new call. 997 IRBuilder<>::FastMathFlagGuard Guard(B); 998 B.setFastMathFlags(CI->getFastMathFlags()); 999 1000 Module *M = CI->getModule(); 1001 Value *V = CI->getArgOperand(0); 1002 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1003 CallInst *NewCall = B.CreateCall(F, V); 1004 NewCall->takeName(CI); 1005 return NewCall; 1006 } 1007 1008 /// Shrink double -> float for binary functions like 'fmin/fmax'. 1009 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) { 1010 Function *Callee = CI->getCalledFunction(); 1011 // We know this libcall has a valid prototype, but we don't know which. 1012 if (!CI->getType()->isDoubleTy()) 1013 return nullptr; 1014 1015 // If this is something like 'fmin((double)floatval1, (double)floatval2)', 1016 // or fmin(1.0, (double)floatval), then we convert it to fminf. 1017 Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0)); 1018 if (V1 == nullptr) 1019 return nullptr; 1020 Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1)); 1021 if (V2 == nullptr) 1022 return nullptr; 1023 1024 // Propagate fast-math flags from the existing call to the new call. 1025 IRBuilder<>::FastMathFlagGuard Guard(B); 1026 B.setFastMathFlags(CI->getFastMathFlags()); 1027 1028 // fmin((double)floatval1, (double)floatval2) 1029 // -> (double)fminf(floatval1, floatval2) 1030 // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP(). 1031 Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B, 1032 Callee->getAttributes()); 1033 return B.CreateFPExt(V, B.getDoubleTy()); 1034 } 1035 1036 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) { 1037 Function *Callee = CI->getCalledFunction(); 1038 Value *Ret = nullptr; 1039 StringRef Name = Callee->getName(); 1040 if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name)) 1041 Ret = optimizeUnaryDoubleFP(CI, B, true); 1042 1043 // cos(-x) -> cos(x) 1044 Value *Op1 = CI->getArgOperand(0); 1045 if (BinaryOperator::isFNeg(Op1)) { 1046 BinaryOperator *BinExpr = cast<BinaryOperator>(Op1); 1047 return B.CreateCall(Callee, BinExpr->getOperand(1), "cos"); 1048 } 1049 return Ret; 1050 } 1051 1052 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) { 1053 // Multiplications calculated using Addition Chains. 1054 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1055 1056 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1057 1058 if (InnerChain[Exp]) 1059 return InnerChain[Exp]; 1060 1061 static const unsigned AddChain[33][2] = { 1062 {0, 0}, // Unused. 1063 {0, 0}, // Unused (base case = pow1). 1064 {1, 1}, // Unused (pre-computed). 1065 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1066 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1067 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1068 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1069 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1070 }; 1071 1072 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1073 getPow(InnerChain, AddChain[Exp][1], B)); 1074 return InnerChain[Exp]; 1075 } 1076 1077 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) { 1078 Function *Callee = CI->getCalledFunction(); 1079 Value *Ret = nullptr; 1080 StringRef Name = Callee->getName(); 1081 if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name)) 1082 Ret = optimizeUnaryDoubleFP(CI, B, true); 1083 1084 Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1); 1085 1086 // pow(1.0, x) -> 1.0 1087 if (match(Op1, m_SpecificFP(1.0))) 1088 return Op1; 1089 // pow(2.0, x) -> llvm.exp2(x) 1090 if (match(Op1, m_SpecificFP(2.0))) { 1091 Value *Exp2 = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::exp2, 1092 CI->getType()); 1093 return B.CreateCall(Exp2, Op2, "exp2"); 1094 } 1095 1096 // There's no llvm.exp10 intrinsic yet, but, maybe, some day there will 1097 // be one. 1098 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { 1099 // pow(10.0, x) -> exp10(x) 1100 if (Op1C->isExactlyValue(10.0) && 1101 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc_exp10, LibFunc_exp10f, 1102 LibFunc_exp10l)) 1103 return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc_exp10), B, 1104 Callee->getAttributes()); 1105 } 1106 1107 // pow(exp(x), y) -> exp(x * y) 1108 // pow(exp2(x), y) -> exp2(x * y) 1109 // We enable these only with fast-math. Besides rounding differences, the 1110 // transformation changes overflow and underflow behavior quite dramatically. 1111 // Example: x = 1000, y = 0.001. 1112 // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1). 1113 auto *OpC = dyn_cast<CallInst>(Op1); 1114 if (OpC && OpC->hasUnsafeAlgebra() && CI->hasUnsafeAlgebra()) { 1115 LibFunc Func; 1116 Function *OpCCallee = OpC->getCalledFunction(); 1117 if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) && 1118 TLI->has(Func) && (Func == LibFunc_exp || Func == LibFunc_exp2)) { 1119 IRBuilder<>::FastMathFlagGuard Guard(B); 1120 B.setFastMathFlags(CI->getFastMathFlags()); 1121 Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul"); 1122 return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B, 1123 OpCCallee->getAttributes()); 1124 } 1125 } 1126 1127 ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2); 1128 if (!Op2C) 1129 return Ret; 1130 1131 if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 1132 return ConstantFP::get(CI->getType(), 1.0); 1133 1134 if (Op2C->isExactlyValue(-0.5) && 1135 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf, 1136 LibFunc_sqrtl)) { 1137 // If -ffast-math: 1138 // pow(x, -0.5) -> 1.0 / sqrt(x) 1139 if (CI->hasUnsafeAlgebra()) { 1140 IRBuilder<>::FastMathFlagGuard Guard(B); 1141 B.setFastMathFlags(CI->getFastMathFlags()); 1142 1143 // TODO: If the pow call is an intrinsic, we should lower to the sqrt 1144 // intrinsic, so we match errno semantics. We also should check that the 1145 // target can in fact lower the sqrt intrinsic -- we currently have no way 1146 // to ask this question other than asking whether the target has a sqrt 1147 // libcall, which is a sufficient but not necessary condition. 1148 Value *Sqrt = emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc_sqrt), B, 1149 Callee->getAttributes()); 1150 1151 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Sqrt, "sqrtrecip"); 1152 } 1153 } 1154 1155 if (Op2C->isExactlyValue(0.5) && 1156 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf, 1157 LibFunc_sqrtl)) { 1158 1159 // In -ffast-math, pow(x, 0.5) -> sqrt(x). 1160 if (CI->hasUnsafeAlgebra()) { 1161 IRBuilder<>::FastMathFlagGuard Guard(B); 1162 B.setFastMathFlags(CI->getFastMathFlags()); 1163 1164 // TODO: As above, we should lower to the sqrt intrinsic if the pow is an 1165 // intrinsic, to match errno semantics. 1166 return emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc_sqrt), B, 1167 Callee->getAttributes()); 1168 } 1169 1170 // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). 1171 // This is faster than calling pow, and still handles negative zero 1172 // and negative infinity correctly. 1173 // TODO: In finite-only mode, this could be just fabs(sqrt(x)). 1174 Value *Inf = ConstantFP::getInfinity(CI->getType()); 1175 Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); 1176 1177 // TODO: As above, we should lower to the sqrt intrinsic if the pow is an 1178 // intrinsic, to match errno semantics. 1179 Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes()); 1180 1181 Module *M = Callee->getParent(); 1182 Function *FabsF = Intrinsic::getDeclaration(M, Intrinsic::fabs, 1183 CI->getType()); 1184 Value *FAbs = B.CreateCall(FabsF, Sqrt); 1185 1186 Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf); 1187 Value *Sel = B.CreateSelect(FCmp, Inf, FAbs); 1188 return Sel; 1189 } 1190 1191 if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x 1192 return Op1; 1193 if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x 1194 return B.CreateFMul(Op1, Op1, "pow2"); 1195 if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x 1196 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip"); 1197 1198 // In -ffast-math, generate repeated fmul instead of generating pow(x, n). 1199 if (CI->hasUnsafeAlgebra()) { 1200 APFloat V = abs(Op2C->getValueAPF()); 1201 // We limit to a max of 7 fmul(s). Thus max exponent is 32. 1202 // This transformation applies to integer exponents only. 1203 if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan || 1204 !V.isInteger()) 1205 return nullptr; 1206 1207 // Propagate fast math flags. 1208 IRBuilder<>::FastMathFlagGuard Guard(B); 1209 B.setFastMathFlags(CI->getFastMathFlags()); 1210 1211 // We will memoize intermediate products of the Addition Chain. 1212 Value *InnerChain[33] = {nullptr}; 1213 InnerChain[1] = Op1; 1214 InnerChain[2] = B.CreateFMul(Op1, Op1); 1215 1216 // We cannot readily convert a non-double type (like float) to a double. 1217 // So we first convert V to something which could be converted to double. 1218 bool ignored; 1219 V.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &ignored); 1220 1221 Value *FMul = getPow(InnerChain, V.convertToDouble(), B); 1222 // For negative exponents simply compute the reciprocal. 1223 if (Op2C->isNegative()) 1224 FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul); 1225 return FMul; 1226 } 1227 1228 return nullptr; 1229 } 1230 1231 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1232 Function *Callee = CI->getCalledFunction(); 1233 Value *Ret = nullptr; 1234 StringRef Name = Callee->getName(); 1235 if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name)) 1236 Ret = optimizeUnaryDoubleFP(CI, B, true); 1237 1238 Value *Op = CI->getArgOperand(0); 1239 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1240 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1241 LibFunc LdExp = LibFunc_ldexpl; 1242 if (Op->getType()->isFloatTy()) 1243 LdExp = LibFunc_ldexpf; 1244 else if (Op->getType()->isDoubleTy()) 1245 LdExp = LibFunc_ldexp; 1246 1247 if (TLI->has(LdExp)) { 1248 Value *LdExpArg = nullptr; 1249 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 1250 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 1251 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 1252 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 1253 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 1254 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 1255 } 1256 1257 if (LdExpArg) { 1258 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); 1259 if (!Op->getType()->isFloatTy()) 1260 One = ConstantExpr::getFPExtend(One, Op->getType()); 1261 1262 Module *M = CI->getModule(); 1263 Value *NewCallee = 1264 M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), 1265 Op->getType(), B.getInt32Ty()); 1266 CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg}); 1267 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 1268 CI->setCallingConv(F->getCallingConv()); 1269 1270 return CI; 1271 } 1272 } 1273 return Ret; 1274 } 1275 1276 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { 1277 Function *Callee = CI->getCalledFunction(); 1278 // If we can shrink the call to a float function rather than a double 1279 // function, do that first. 1280 StringRef Name = Callee->getName(); 1281 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1282 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1283 return Ret; 1284 1285 IRBuilder<>::FastMathFlagGuard Guard(B); 1286 FastMathFlags FMF; 1287 if (CI->hasUnsafeAlgebra()) { 1288 // Unsafe algebra sets all fast-math-flags to true. 1289 FMF.setUnsafeAlgebra(); 1290 } else { 1291 // At a minimum, no-nans-fp-math must be true. 1292 if (!CI->hasNoNaNs()) 1293 return nullptr; 1294 // No-signed-zeros is implied by the definitions of fmax/fmin themselves: 1295 // "Ideally, fmax would be sensitive to the sign of zero, for example 1296 // fmax(-0. 0, +0. 0) would return +0; however, implementation in software 1297 // might be impractical." 1298 FMF.setNoSignedZeros(); 1299 FMF.setNoNaNs(); 1300 } 1301 B.setFastMathFlags(FMF); 1302 1303 // We have a relaxed floating-point environment. We can ignore NaN-handling 1304 // and transform to a compare and select. We do not have to consider errno or 1305 // exceptions, because fmin/fmax do not have those. 1306 Value *Op0 = CI->getArgOperand(0); 1307 Value *Op1 = CI->getArgOperand(1); 1308 Value *Cmp = Callee->getName().startswith("fmin") ? 1309 B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1); 1310 return B.CreateSelect(Cmp, Op0, Op1); 1311 } 1312 1313 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { 1314 Function *Callee = CI->getCalledFunction(); 1315 Value *Ret = nullptr; 1316 StringRef Name = Callee->getName(); 1317 if (UnsafeFPShrink && hasFloatVersion(Name)) 1318 Ret = optimizeUnaryDoubleFP(CI, B, true); 1319 1320 if (!CI->hasUnsafeAlgebra()) 1321 return Ret; 1322 Value *Op1 = CI->getArgOperand(0); 1323 auto *OpC = dyn_cast<CallInst>(Op1); 1324 1325 // The earlier call must also be unsafe in order to do these transforms. 1326 if (!OpC || !OpC->hasUnsafeAlgebra()) 1327 return Ret; 1328 1329 // log(pow(x,y)) -> y*log(x) 1330 // This is only applicable to log, log2, log10. 1331 if (Name != "log" && Name != "log2" && Name != "log10") 1332 return Ret; 1333 1334 IRBuilder<>::FastMathFlagGuard Guard(B); 1335 FastMathFlags FMF; 1336 FMF.setUnsafeAlgebra(); 1337 B.setFastMathFlags(FMF); 1338 1339 LibFunc Func; 1340 Function *F = OpC->getCalledFunction(); 1341 if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1342 Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow)) 1343 return B.CreateFMul(OpC->getArgOperand(1), 1344 emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, 1345 Callee->getAttributes()), "mul"); 1346 1347 // log(exp2(y)) -> y*log(2) 1348 if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && 1349 TLI->has(Func) && Func == LibFunc_exp2) 1350 return B.CreateFMul( 1351 OpC->getArgOperand(0), 1352 emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), 1353 Callee->getName(), B, Callee->getAttributes()), 1354 "logmul"); 1355 return Ret; 1356 } 1357 1358 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1359 Function *Callee = CI->getCalledFunction(); 1360 Value *Ret = nullptr; 1361 // TODO: Once we have a way (other than checking for the existince of the 1362 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 1363 // condition below. 1364 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 1365 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1366 Ret = optimizeUnaryDoubleFP(CI, B, true); 1367 1368 if (!CI->hasUnsafeAlgebra()) 1369 return Ret; 1370 1371 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1372 if (!I || I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra()) 1373 return Ret; 1374 1375 // We're looking for a repeated factor in a multiplication tree, 1376 // so we can do this fold: sqrt(x * x) -> fabs(x); 1377 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 1378 Value *Op0 = I->getOperand(0); 1379 Value *Op1 = I->getOperand(1); 1380 Value *RepeatOp = nullptr; 1381 Value *OtherOp = nullptr; 1382 if (Op0 == Op1) { 1383 // Simple match: the operands of the multiply are identical. 1384 RepeatOp = Op0; 1385 } else { 1386 // Look for a more complicated pattern: one of the operands is itself 1387 // a multiply, so search for a common factor in that multiply. 1388 // Note: We don't bother looking any deeper than this first level or for 1389 // variations of this pattern because instcombine's visitFMUL and/or the 1390 // reassociation pass should give us this form. 1391 Value *OtherMul0, *OtherMul1; 1392 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1393 // Pattern: sqrt((x * y) * z) 1394 if (OtherMul0 == OtherMul1 && 1395 cast<Instruction>(Op0)->hasUnsafeAlgebra()) { 1396 // Matched: sqrt((x * x) * z) 1397 RepeatOp = OtherMul0; 1398 OtherOp = Op1; 1399 } 1400 } 1401 } 1402 if (!RepeatOp) 1403 return Ret; 1404 1405 // Fast math flags for any created instructions should match the sqrt 1406 // and multiply. 1407 IRBuilder<>::FastMathFlagGuard Guard(B); 1408 B.setFastMathFlags(I->getFastMathFlags()); 1409 1410 // If we found a repeated factor, hoist it out of the square root and 1411 // replace it with the fabs of that factor. 1412 Module *M = Callee->getParent(); 1413 Type *ArgType = I->getType(); 1414 Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1415 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1416 if (OtherOp) { 1417 // If we found a non-repeated factor, we still need to get its square 1418 // root. We then multiply that by the value that was simplified out 1419 // of the square root calculation. 1420 Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1421 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1422 return B.CreateFMul(FabsCall, SqrtCall); 1423 } 1424 return FabsCall; 1425 } 1426 1427 // TODO: Generalize to handle any trig function and its inverse. 1428 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { 1429 Function *Callee = CI->getCalledFunction(); 1430 Value *Ret = nullptr; 1431 StringRef Name = Callee->getName(); 1432 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 1433 Ret = optimizeUnaryDoubleFP(CI, B, true); 1434 1435 Value *Op1 = CI->getArgOperand(0); 1436 auto *OpC = dyn_cast<CallInst>(Op1); 1437 if (!OpC) 1438 return Ret; 1439 1440 // Both calls must allow unsafe optimizations in order to remove them. 1441 if (!CI->hasUnsafeAlgebra() || !OpC->hasUnsafeAlgebra()) 1442 return Ret; 1443 1444 // tan(atan(x)) -> x 1445 // tanf(atanf(x)) -> x 1446 // tanl(atanl(x)) -> x 1447 LibFunc Func; 1448 Function *F = OpC->getCalledFunction(); 1449 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1450 ((Func == LibFunc_atan && Callee->getName() == "tan") || 1451 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 1452 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 1453 Ret = OpC->getArgOperand(0); 1454 return Ret; 1455 } 1456 1457 static bool isTrigLibCall(CallInst *CI) { 1458 // We can only hope to do anything useful if we can ignore things like errno 1459 // and floating-point exceptions. 1460 // We already checked the prototype. 1461 return CI->hasFnAttr(Attribute::NoUnwind) && 1462 CI->hasFnAttr(Attribute::ReadNone); 1463 } 1464 1465 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1466 bool UseFloat, Value *&Sin, Value *&Cos, 1467 Value *&SinCos) { 1468 Type *ArgTy = Arg->getType(); 1469 Type *ResTy; 1470 StringRef Name; 1471 1472 Triple T(OrigCallee->getParent()->getTargetTriple()); 1473 if (UseFloat) { 1474 Name = "__sincospif_stret"; 1475 1476 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1477 // x86_64 can't use {float, float} since that would be returned in both 1478 // xmm0 and xmm1, which isn't what a real struct would do. 1479 ResTy = T.getArch() == Triple::x86_64 1480 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1481 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 1482 } else { 1483 Name = "__sincospi_stret"; 1484 ResTy = StructType::get(ArgTy, ArgTy); 1485 } 1486 1487 Module *M = OrigCallee->getParent(); 1488 Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), 1489 ResTy, ArgTy); 1490 1491 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1492 // If the argument is an instruction, it must dominate all uses so put our 1493 // sincos call there. 1494 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1495 } else { 1496 // Otherwise (e.g. for a constant) the beginning of the function is as 1497 // good a place as any. 1498 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1499 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1500 } 1501 1502 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1503 1504 if (SinCos->getType()->isStructTy()) { 1505 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1506 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1507 } else { 1508 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1509 "sinpi"); 1510 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1511 "cospi"); 1512 } 1513 } 1514 1515 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1516 // Make sure the prototype is as expected, otherwise the rest of the 1517 // function is probably invalid and likely to abort. 1518 if (!isTrigLibCall(CI)) 1519 return nullptr; 1520 1521 Value *Arg = CI->getArgOperand(0); 1522 SmallVector<CallInst *, 1> SinCalls; 1523 SmallVector<CallInst *, 1> CosCalls; 1524 SmallVector<CallInst *, 1> SinCosCalls; 1525 1526 bool IsFloat = Arg->getType()->isFloatTy(); 1527 1528 // Look for all compatible sinpi, cospi and sincospi calls with the same 1529 // argument. If there are enough (in some sense) we can make the 1530 // substitution. 1531 Function *F = CI->getFunction(); 1532 for (User *U : Arg->users()) 1533 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 1534 1535 // It's only worthwhile if both sinpi and cospi are actually used. 1536 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1537 return nullptr; 1538 1539 Value *Sin, *Cos, *SinCos; 1540 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1541 1542 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 1543 Value *Res) { 1544 for (CallInst *C : Calls) 1545 replaceAllUsesWith(C, Res); 1546 }; 1547 1548 replaceTrigInsts(SinCalls, Sin); 1549 replaceTrigInsts(CosCalls, Cos); 1550 replaceTrigInsts(SinCosCalls, SinCos); 1551 1552 return nullptr; 1553 } 1554 1555 void LibCallSimplifier::classifyArgUse( 1556 Value *Val, Function *F, bool IsFloat, 1557 SmallVectorImpl<CallInst *> &SinCalls, 1558 SmallVectorImpl<CallInst *> &CosCalls, 1559 SmallVectorImpl<CallInst *> &SinCosCalls) { 1560 CallInst *CI = dyn_cast<CallInst>(Val); 1561 1562 if (!CI) 1563 return; 1564 1565 // Don't consider calls in other functions. 1566 if (CI->getFunction() != F) 1567 return; 1568 1569 Function *Callee = CI->getCalledFunction(); 1570 LibFunc Func; 1571 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 1572 !isTrigLibCall(CI)) 1573 return; 1574 1575 if (IsFloat) { 1576 if (Func == LibFunc_sinpif) 1577 SinCalls.push_back(CI); 1578 else if (Func == LibFunc_cospif) 1579 CosCalls.push_back(CI); 1580 else if (Func == LibFunc_sincospif_stret) 1581 SinCosCalls.push_back(CI); 1582 } else { 1583 if (Func == LibFunc_sinpi) 1584 SinCalls.push_back(CI); 1585 else if (Func == LibFunc_cospi) 1586 CosCalls.push_back(CI); 1587 else if (Func == LibFunc_sincospi_stret) 1588 SinCosCalls.push_back(CI); 1589 } 1590 } 1591 1592 //===----------------------------------------------------------------------===// 1593 // Integer Library Call Optimizations 1594 //===----------------------------------------------------------------------===// 1595 1596 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1597 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1598 Value *Op = CI->getArgOperand(0); 1599 Type *ArgType = Op->getType(); 1600 Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1601 Intrinsic::cttz, ArgType); 1602 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 1603 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1604 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1605 1606 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1607 return B.CreateSelect(Cond, V, B.getInt32(0)); 1608 } 1609 1610 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) { 1611 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 1612 Value *Op = CI->getArgOperand(0); 1613 Type *ArgType = Op->getType(); 1614 Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1615 Intrinsic::ctlz, ArgType); 1616 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 1617 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 1618 V); 1619 return B.CreateIntCast(V, CI->getType(), false); 1620 } 1621 1622 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1623 // abs(x) -> x >s -1 ? x : -x 1624 Value *Op = CI->getArgOperand(0); 1625 Value *Pos = 1626 B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos"); 1627 Value *Neg = B.CreateNeg(Op, "neg"); 1628 return B.CreateSelect(Pos, Op, Neg); 1629 } 1630 1631 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 1632 // isdigit(c) -> (c-'0') <u 10 1633 Value *Op = CI->getArgOperand(0); 1634 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1635 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1636 return B.CreateZExt(Op, CI->getType()); 1637 } 1638 1639 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 1640 // isascii(c) -> c <u 128 1641 Value *Op = CI->getArgOperand(0); 1642 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1643 return B.CreateZExt(Op, CI->getType()); 1644 } 1645 1646 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 1647 // toascii(c) -> c & 0x7f 1648 return B.CreateAnd(CI->getArgOperand(0), 1649 ConstantInt::get(CI->getType(), 0x7F)); 1650 } 1651 1652 //===----------------------------------------------------------------------===// 1653 // Formatting and IO Library Call Optimizations 1654 //===----------------------------------------------------------------------===// 1655 1656 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 1657 1658 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 1659 int StreamArg) { 1660 Function *Callee = CI->getCalledFunction(); 1661 // Error reporting calls should be cold, mark them as such. 1662 // This applies even to non-builtin calls: it is only a hint and applies to 1663 // functions that the frontend might not understand as builtins. 1664 1665 // This heuristic was suggested in: 1666 // Improving Static Branch Prediction in a Compiler 1667 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 1668 // Proceedings of PACT'98, Oct. 1998, IEEE 1669 if (!CI->hasFnAttr(Attribute::Cold) && 1670 isReportingError(Callee, CI, StreamArg)) { 1671 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 1672 } 1673 1674 return nullptr; 1675 } 1676 1677 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 1678 if (!Callee || !Callee->isDeclaration()) 1679 return false; 1680 1681 if (StreamArg < 0) 1682 return true; 1683 1684 // These functions might be considered cold, but only if their stream 1685 // argument is stderr. 1686 1687 if (StreamArg >= (int)CI->getNumArgOperands()) 1688 return false; 1689 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 1690 if (!LI) 1691 return false; 1692 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 1693 if (!GV || !GV->isDeclaration()) 1694 return false; 1695 return GV->getName() == "stderr"; 1696 } 1697 1698 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 1699 // Check for a fixed format string. 1700 StringRef FormatStr; 1701 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 1702 return nullptr; 1703 1704 // Empty format string -> noop. 1705 if (FormatStr.empty()) // Tolerate printf's declared void. 1706 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 1707 1708 // Do not do any of the following transformations if the printf return value 1709 // is used, in general the printf return value is not compatible with either 1710 // putchar() or puts(). 1711 if (!CI->use_empty()) 1712 return nullptr; 1713 1714 // printf("x") -> putchar('x'), even for "%" and "%%". 1715 if (FormatStr.size() == 1 || FormatStr == "%%") 1716 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 1717 1718 // printf("%s", "a") --> putchar('a') 1719 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 1720 StringRef ChrStr; 1721 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 1722 return nullptr; 1723 if (ChrStr.size() != 1) 1724 return nullptr; 1725 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 1726 } 1727 1728 // printf("foo\n") --> puts("foo") 1729 if (FormatStr[FormatStr.size() - 1] == '\n' && 1730 FormatStr.find('%') == StringRef::npos) { // No format characters. 1731 // Create a string literal with no \n on it. We expect the constant merge 1732 // pass to be run after this pass, to merge duplicate strings. 1733 FormatStr = FormatStr.drop_back(); 1734 Value *GV = B.CreateGlobalString(FormatStr, "str"); 1735 return emitPutS(GV, B, TLI); 1736 } 1737 1738 // Optimize specific format strings. 1739 // printf("%c", chr) --> putchar(chr) 1740 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 1741 CI->getArgOperand(1)->getType()->isIntegerTy()) 1742 return emitPutChar(CI->getArgOperand(1), B, TLI); 1743 1744 // printf("%s\n", str) --> puts(str) 1745 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 1746 CI->getArgOperand(1)->getType()->isPointerTy()) 1747 return emitPutS(CI->getArgOperand(1), B, TLI); 1748 return nullptr; 1749 } 1750 1751 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 1752 1753 Function *Callee = CI->getCalledFunction(); 1754 FunctionType *FT = Callee->getFunctionType(); 1755 if (Value *V = optimizePrintFString(CI, B)) { 1756 return V; 1757 } 1758 1759 // printf(format, ...) -> iprintf(format, ...) if no floating point 1760 // arguments. 1761 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 1762 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1763 Constant *IPrintFFn = 1764 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 1765 CallInst *New = cast<CallInst>(CI->clone()); 1766 New->setCalledFunction(IPrintFFn); 1767 B.Insert(New); 1768 return New; 1769 } 1770 return nullptr; 1771 } 1772 1773 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 1774 // Check for a fixed format string. 1775 StringRef FormatStr; 1776 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1777 return nullptr; 1778 1779 // If we just have a format string (nothing else crazy) transform it. 1780 if (CI->getNumArgOperands() == 2) { 1781 // Make sure there's no % in the constant array. We could try to handle 1782 // %% -> % in the future if we cared. 1783 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1784 if (FormatStr[i] == '%') 1785 return nullptr; // we found a format specifier, bail out. 1786 1787 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) 1788 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 1789 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 1790 FormatStr.size() + 1), 1791 1); // Copy the null byte. 1792 return ConstantInt::get(CI->getType(), FormatStr.size()); 1793 } 1794 1795 // The remaining optimizations require the format string to be "%s" or "%c" 1796 // and have an extra operand. 1797 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1798 CI->getNumArgOperands() < 3) 1799 return nullptr; 1800 1801 // Decode the second character of the format string. 1802 if (FormatStr[1] == 'c') { 1803 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 1804 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1805 return nullptr; 1806 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 1807 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 1808 B.CreateStore(V, Ptr); 1809 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 1810 B.CreateStore(B.getInt8(0), Ptr); 1811 1812 return ConstantInt::get(CI->getType(), 1); 1813 } 1814 1815 if (FormatStr[1] == 's') { 1816 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) 1817 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1818 return nullptr; 1819 1820 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 1821 if (!Len) 1822 return nullptr; 1823 Value *IncLen = 1824 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 1825 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1); 1826 1827 // The sprintf result is the unincremented number of bytes in the string. 1828 return B.CreateIntCast(Len, CI->getType(), false); 1829 } 1830 return nullptr; 1831 } 1832 1833 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 1834 Function *Callee = CI->getCalledFunction(); 1835 FunctionType *FT = Callee->getFunctionType(); 1836 if (Value *V = optimizeSPrintFString(CI, B)) { 1837 return V; 1838 } 1839 1840 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 1841 // point arguments. 1842 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 1843 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1844 Constant *SIPrintFFn = 1845 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 1846 CallInst *New = cast<CallInst>(CI->clone()); 1847 New->setCalledFunction(SIPrintFFn); 1848 B.Insert(New); 1849 return New; 1850 } 1851 return nullptr; 1852 } 1853 1854 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 1855 optimizeErrorReporting(CI, B, 0); 1856 1857 // All the optimizations depend on the format string. 1858 StringRef FormatStr; 1859 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1860 return nullptr; 1861 1862 // Do not do any of the following transformations if the fprintf return 1863 // value is used, in general the fprintf return value is not compatible 1864 // with fwrite(), fputc() or fputs(). 1865 if (!CI->use_empty()) 1866 return nullptr; 1867 1868 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 1869 if (CI->getNumArgOperands() == 2) { 1870 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1871 if (FormatStr[i] == '%') // Could handle %% -> % if we cared. 1872 return nullptr; // We found a format specifier. 1873 1874 return emitFWrite( 1875 CI->getArgOperand(1), 1876 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 1877 CI->getArgOperand(0), B, DL, TLI); 1878 } 1879 1880 // The remaining optimizations require the format string to be "%s" or "%c" 1881 // and have an extra operand. 1882 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1883 CI->getNumArgOperands() < 3) 1884 return nullptr; 1885 1886 // Decode the second character of the format string. 1887 if (FormatStr[1] == 'c') { 1888 // fprintf(F, "%c", chr) --> fputc(chr, F) 1889 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1890 return nullptr; 1891 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 1892 } 1893 1894 if (FormatStr[1] == 's') { 1895 // fprintf(F, "%s", str) --> fputs(str, F) 1896 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1897 return nullptr; 1898 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 1899 } 1900 return nullptr; 1901 } 1902 1903 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 1904 Function *Callee = CI->getCalledFunction(); 1905 FunctionType *FT = Callee->getFunctionType(); 1906 if (Value *V = optimizeFPrintFString(CI, B)) { 1907 return V; 1908 } 1909 1910 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 1911 // floating point arguments. 1912 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 1913 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1914 Constant *FIPrintFFn = 1915 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 1916 CallInst *New = cast<CallInst>(CI->clone()); 1917 New->setCalledFunction(FIPrintFFn); 1918 B.Insert(New); 1919 return New; 1920 } 1921 return nullptr; 1922 } 1923 1924 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 1925 optimizeErrorReporting(CI, B, 3); 1926 1927 // Get the element size and count. 1928 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 1929 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1930 if (!SizeC || !CountC) 1931 return nullptr; 1932 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 1933 1934 // If this is writing zero records, remove the call (it's a noop). 1935 if (Bytes == 0) 1936 return ConstantInt::get(CI->getType(), 0); 1937 1938 // If this is writing one byte, turn it into fputc. 1939 // This optimisation is only valid, if the return value is unused. 1940 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 1941 Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char"); 1942 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 1943 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 1944 } 1945 1946 return nullptr; 1947 } 1948 1949 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 1950 optimizeErrorReporting(CI, B, 1); 1951 1952 // Don't rewrite fputs to fwrite when optimising for size because fwrite 1953 // requires more arguments and thus extra MOVs are required. 1954 if (CI->getParent()->getParent()->optForSize()) 1955 return nullptr; 1956 1957 // We can't optimize if return value is used. 1958 if (!CI->use_empty()) 1959 return nullptr; 1960 1961 // fputs(s,F) --> fwrite(s,1,strlen(s),F) 1962 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 1963 if (!Len) 1964 return nullptr; 1965 1966 // Known to have no uses (see above). 1967 return emitFWrite( 1968 CI->getArgOperand(0), 1969 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 1970 CI->getArgOperand(1), B, DL, TLI); 1971 } 1972 1973 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 1974 // Check for a constant string. 1975 StringRef Str; 1976 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1977 return nullptr; 1978 1979 if (Str.empty() && CI->use_empty()) { 1980 // puts("") -> putchar('\n') 1981 Value *Res = emitPutChar(B.getInt32('\n'), B, TLI); 1982 if (CI->use_empty() || !Res) 1983 return Res; 1984 return B.CreateIntCast(Res, CI->getType(), true); 1985 } 1986 1987 return nullptr; 1988 } 1989 1990 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 1991 LibFunc Func; 1992 SmallString<20> FloatFuncName = FuncName; 1993 FloatFuncName += 'f'; 1994 if (TLI->getLibFunc(FloatFuncName, Func)) 1995 return TLI->has(Func); 1996 return false; 1997 } 1998 1999 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2000 IRBuilder<> &Builder) { 2001 LibFunc Func; 2002 Function *Callee = CI->getCalledFunction(); 2003 // Check for string/memory library functions. 2004 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2005 // Make sure we never change the calling convention. 2006 assert((ignoreCallingConv(Func) || 2007 isCallingConvCCompatible(CI)) && 2008 "Optimizing string/memory libcall would change the calling convention"); 2009 switch (Func) { 2010 case LibFunc_strcat: 2011 return optimizeStrCat(CI, Builder); 2012 case LibFunc_strncat: 2013 return optimizeStrNCat(CI, Builder); 2014 case LibFunc_strchr: 2015 return optimizeStrChr(CI, Builder); 2016 case LibFunc_strrchr: 2017 return optimizeStrRChr(CI, Builder); 2018 case LibFunc_strcmp: 2019 return optimizeStrCmp(CI, Builder); 2020 case LibFunc_strncmp: 2021 return optimizeStrNCmp(CI, Builder); 2022 case LibFunc_strcpy: 2023 return optimizeStrCpy(CI, Builder); 2024 case LibFunc_stpcpy: 2025 return optimizeStpCpy(CI, Builder); 2026 case LibFunc_strncpy: 2027 return optimizeStrNCpy(CI, Builder); 2028 case LibFunc_strlen: 2029 return optimizeStrLen(CI, Builder); 2030 case LibFunc_strpbrk: 2031 return optimizeStrPBrk(CI, Builder); 2032 case LibFunc_strtol: 2033 case LibFunc_strtod: 2034 case LibFunc_strtof: 2035 case LibFunc_strtoul: 2036 case LibFunc_strtoll: 2037 case LibFunc_strtold: 2038 case LibFunc_strtoull: 2039 return optimizeStrTo(CI, Builder); 2040 case LibFunc_strspn: 2041 return optimizeStrSpn(CI, Builder); 2042 case LibFunc_strcspn: 2043 return optimizeStrCSpn(CI, Builder); 2044 case LibFunc_strstr: 2045 return optimizeStrStr(CI, Builder); 2046 case LibFunc_memchr: 2047 return optimizeMemChr(CI, Builder); 2048 case LibFunc_memcmp: 2049 return optimizeMemCmp(CI, Builder); 2050 case LibFunc_memcpy: 2051 return optimizeMemCpy(CI, Builder); 2052 case LibFunc_memmove: 2053 return optimizeMemMove(CI, Builder); 2054 case LibFunc_memset: 2055 return optimizeMemSet(CI, Builder); 2056 case LibFunc_wcslen: 2057 return optimizeWcslen(CI, Builder); 2058 default: 2059 break; 2060 } 2061 } 2062 return nullptr; 2063 } 2064 2065 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2066 LibFunc Func, 2067 IRBuilder<> &Builder) { 2068 // Don't optimize calls that require strict floating point semantics. 2069 if (CI->isStrictFP()) 2070 return nullptr; 2071 2072 switch (Func) { 2073 case LibFunc_cosf: 2074 case LibFunc_cos: 2075 case LibFunc_cosl: 2076 return optimizeCos(CI, Builder); 2077 case LibFunc_sinpif: 2078 case LibFunc_sinpi: 2079 case LibFunc_cospif: 2080 case LibFunc_cospi: 2081 return optimizeSinCosPi(CI, Builder); 2082 case LibFunc_powf: 2083 case LibFunc_pow: 2084 case LibFunc_powl: 2085 return optimizePow(CI, Builder); 2086 case LibFunc_exp2l: 2087 case LibFunc_exp2: 2088 case LibFunc_exp2f: 2089 return optimizeExp2(CI, Builder); 2090 case LibFunc_fabsf: 2091 case LibFunc_fabs: 2092 case LibFunc_fabsl: 2093 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2094 case LibFunc_sqrtf: 2095 case LibFunc_sqrt: 2096 case LibFunc_sqrtl: 2097 return optimizeSqrt(CI, Builder); 2098 case LibFunc_log: 2099 case LibFunc_log10: 2100 case LibFunc_log1p: 2101 case LibFunc_log2: 2102 case LibFunc_logb: 2103 return optimizeLog(CI, Builder); 2104 case LibFunc_tan: 2105 case LibFunc_tanf: 2106 case LibFunc_tanl: 2107 return optimizeTan(CI, Builder); 2108 case LibFunc_ceil: 2109 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2110 case LibFunc_floor: 2111 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2112 case LibFunc_round: 2113 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2114 case LibFunc_nearbyint: 2115 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2116 case LibFunc_rint: 2117 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2118 case LibFunc_trunc: 2119 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2120 case LibFunc_acos: 2121 case LibFunc_acosh: 2122 case LibFunc_asin: 2123 case LibFunc_asinh: 2124 case LibFunc_atan: 2125 case LibFunc_atanh: 2126 case LibFunc_cbrt: 2127 case LibFunc_cosh: 2128 case LibFunc_exp: 2129 case LibFunc_exp10: 2130 case LibFunc_expm1: 2131 case LibFunc_sin: 2132 case LibFunc_sinh: 2133 case LibFunc_tanh: 2134 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 2135 return optimizeUnaryDoubleFP(CI, Builder, true); 2136 return nullptr; 2137 case LibFunc_copysign: 2138 if (hasFloatVersion(CI->getCalledFunction()->getName())) 2139 return optimizeBinaryDoubleFP(CI, Builder); 2140 return nullptr; 2141 case LibFunc_fminf: 2142 case LibFunc_fmin: 2143 case LibFunc_fminl: 2144 case LibFunc_fmaxf: 2145 case LibFunc_fmax: 2146 case LibFunc_fmaxl: 2147 return optimizeFMinFMax(CI, Builder); 2148 default: 2149 return nullptr; 2150 } 2151 } 2152 2153 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 2154 // TODO: Split out the code below that operates on FP calls so that 2155 // we can all non-FP calls with the StrictFP attribute to be 2156 // optimized. 2157 if (CI->isNoBuiltin()) 2158 return nullptr; 2159 2160 LibFunc Func; 2161 Function *Callee = CI->getCalledFunction(); 2162 2163 SmallVector<OperandBundleDef, 2> OpBundles; 2164 CI->getOperandBundlesAsDefs(OpBundles); 2165 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2166 bool isCallingConvC = isCallingConvCCompatible(CI); 2167 2168 // Command-line parameter overrides instruction attribute. 2169 // This can't be moved to optimizeFloatingPointLibCall() because it may be 2170 // used by the intrinsic optimizations. 2171 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2172 UnsafeFPShrink = EnableUnsafeFPShrink; 2173 else if (isa<FPMathOperator>(CI) && CI->hasUnsafeAlgebra()) 2174 UnsafeFPShrink = true; 2175 2176 // First, check for intrinsics. 2177 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2178 if (!isCallingConvC) 2179 return nullptr; 2180 // The FP intrinsics have corresponding constrained versions so we don't 2181 // need to check for the StrictFP attribute here. 2182 switch (II->getIntrinsicID()) { 2183 case Intrinsic::pow: 2184 return optimizePow(CI, Builder); 2185 case Intrinsic::exp2: 2186 return optimizeExp2(CI, Builder); 2187 case Intrinsic::log: 2188 return optimizeLog(CI, Builder); 2189 case Intrinsic::sqrt: 2190 return optimizeSqrt(CI, Builder); 2191 // TODO: Use foldMallocMemset() with memset intrinsic. 2192 default: 2193 return nullptr; 2194 } 2195 } 2196 2197 // Also try to simplify calls to fortified library functions. 2198 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 2199 // Try to further simplify the result. 2200 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 2201 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 2202 // Use an IR Builder from SimplifiedCI if available instead of CI 2203 // to guarantee we reach all uses we might replace later on. 2204 IRBuilder<> TmpBuilder(SimplifiedCI); 2205 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { 2206 // If we were able to further simplify, remove the now redundant call. 2207 SimplifiedCI->replaceAllUsesWith(V); 2208 SimplifiedCI->eraseFromParent(); 2209 return V; 2210 } 2211 } 2212 return SimplifiedFortifiedCI; 2213 } 2214 2215 // Then check for known library functions. 2216 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2217 // We never change the calling convention. 2218 if (!ignoreCallingConv(Func) && !isCallingConvC) 2219 return nullptr; 2220 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 2221 return V; 2222 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 2223 return V; 2224 switch (Func) { 2225 case LibFunc_ffs: 2226 case LibFunc_ffsl: 2227 case LibFunc_ffsll: 2228 return optimizeFFS(CI, Builder); 2229 case LibFunc_fls: 2230 case LibFunc_flsl: 2231 case LibFunc_flsll: 2232 return optimizeFls(CI, Builder); 2233 case LibFunc_abs: 2234 case LibFunc_labs: 2235 case LibFunc_llabs: 2236 return optimizeAbs(CI, Builder); 2237 case LibFunc_isdigit: 2238 return optimizeIsDigit(CI, Builder); 2239 case LibFunc_isascii: 2240 return optimizeIsAscii(CI, Builder); 2241 case LibFunc_toascii: 2242 return optimizeToAscii(CI, Builder); 2243 case LibFunc_printf: 2244 return optimizePrintF(CI, Builder); 2245 case LibFunc_sprintf: 2246 return optimizeSPrintF(CI, Builder); 2247 case LibFunc_fprintf: 2248 return optimizeFPrintF(CI, Builder); 2249 case LibFunc_fwrite: 2250 return optimizeFWrite(CI, Builder); 2251 case LibFunc_fputs: 2252 return optimizeFPuts(CI, Builder); 2253 case LibFunc_puts: 2254 return optimizePuts(CI, Builder); 2255 case LibFunc_perror: 2256 return optimizeErrorReporting(CI, Builder); 2257 case LibFunc_vfprintf: 2258 case LibFunc_fiprintf: 2259 return optimizeErrorReporting(CI, Builder, 0); 2260 case LibFunc_fputc: 2261 return optimizeErrorReporting(CI, Builder, 1); 2262 default: 2263 return nullptr; 2264 } 2265 } 2266 return nullptr; 2267 } 2268 2269 LibCallSimplifier::LibCallSimplifier( 2270 const DataLayout &DL, const TargetLibraryInfo *TLI, 2271 OptimizationRemarkEmitter &ORE, 2272 function_ref<void(Instruction *, Value *)> Replacer) 2273 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), 2274 UnsafeFPShrink(false), Replacer(Replacer) {} 2275 2276 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 2277 // Indirect through the replacer used in this instance. 2278 Replacer(I, With); 2279 } 2280 2281 // TODO: 2282 // Additional cases that we need to add to this file: 2283 // 2284 // cbrt: 2285 // * cbrt(expN(X)) -> expN(x/3) 2286 // * cbrt(sqrt(x)) -> pow(x,1/6) 2287 // * cbrt(cbrt(x)) -> pow(x,1/9) 2288 // 2289 // exp, expf, expl: 2290 // * exp(log(x)) -> x 2291 // 2292 // log, logf, logl: 2293 // * log(exp(x)) -> x 2294 // * log(exp(y)) -> y*log(e) 2295 // * log(exp10(y)) -> y*log(10) 2296 // * log(sqrt(x)) -> 0.5*log(x) 2297 // 2298 // pow, powf, powl: 2299 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2300 // * pow(pow(x,y),z)-> pow(x,y*z) 2301 // 2302 // signbit: 2303 // * signbit(cnst) -> cnst' 2304 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2305 // 2306 // sqrt, sqrtf, sqrtl: 2307 // * sqrt(expN(x)) -> expN(x*0.5) 2308 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2309 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2310 // 2311 2312 //===----------------------------------------------------------------------===// 2313 // Fortified Library Call Optimizations 2314 //===----------------------------------------------------------------------===// 2315 2316 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2317 unsigned ObjSizeOp, 2318 unsigned SizeOp, 2319 bool isString) { 2320 if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp)) 2321 return true; 2322 if (ConstantInt *ObjSizeCI = 2323 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2324 if (ObjSizeCI->isMinusOne()) 2325 return true; 2326 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2327 if (OnlyLowerUnknownSize) 2328 return false; 2329 if (isString) { 2330 uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp)); 2331 // If the length is 0 we don't know how long it is and so we can't 2332 // remove the check. 2333 if (Len == 0) 2334 return false; 2335 return ObjSizeCI->getZExtValue() >= Len; 2336 } 2337 if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp))) 2338 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2339 } 2340 return false; 2341 } 2342 2343 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 2344 IRBuilder<> &B) { 2345 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2346 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2347 CI->getArgOperand(2), 1); 2348 return CI->getArgOperand(0); 2349 } 2350 return nullptr; 2351 } 2352 2353 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 2354 IRBuilder<> &B) { 2355 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2356 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 2357 CI->getArgOperand(2), 1); 2358 return CI->getArgOperand(0); 2359 } 2360 return nullptr; 2361 } 2362 2363 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 2364 IRBuilder<> &B) { 2365 // TODO: Try foldMallocMemset() here. 2366 2367 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2368 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2369 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2370 return CI->getArgOperand(0); 2371 } 2372 return nullptr; 2373 } 2374 2375 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 2376 IRBuilder<> &B, 2377 LibFunc Func) { 2378 Function *Callee = CI->getCalledFunction(); 2379 StringRef Name = Callee->getName(); 2380 const DataLayout &DL = CI->getModule()->getDataLayout(); 2381 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 2382 *ObjSize = CI->getArgOperand(2); 2383 2384 // __stpcpy_chk(x,x,...) -> x+strlen(x) 2385 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 2386 Value *StrLen = emitStrLen(Src, B, DL, TLI); 2387 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 2388 } 2389 2390 // If a) we don't have any length information, or b) we know this will 2391 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 2392 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 2393 // TODO: It might be nice to get a maximum length out of the possible 2394 // string lengths for varying. 2395 if (isFortifiedCallFoldable(CI, 2, 1, true)) 2396 return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6)); 2397 2398 if (OnlyLowerUnknownSize) 2399 return nullptr; 2400 2401 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 2402 uint64_t Len = GetStringLength(Src); 2403 if (Len == 0) 2404 return nullptr; 2405 2406 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 2407 Value *LenV = ConstantInt::get(SizeTTy, Len); 2408 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 2409 // If the function was an __stpcpy_chk, and we were able to fold it into 2410 // a __memcpy_chk, we still need to return the correct end pointer. 2411 if (Ret && Func == LibFunc_stpcpy_chk) 2412 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 2413 return Ret; 2414 } 2415 2416 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 2417 IRBuilder<> &B, 2418 LibFunc Func) { 2419 Function *Callee = CI->getCalledFunction(); 2420 StringRef Name = Callee->getName(); 2421 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2422 Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2423 CI->getArgOperand(2), B, TLI, Name.substr(2, 7)); 2424 return Ret; 2425 } 2426 return nullptr; 2427 } 2428 2429 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 2430 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 2431 // Some clang users checked for _chk libcall availability using: 2432 // __has_builtin(__builtin___memcpy_chk) 2433 // When compiling with -fno-builtin, this is always true. 2434 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 2435 // end up with fortified libcalls, which isn't acceptable in a freestanding 2436 // environment which only provides their non-fortified counterparts. 2437 // 2438 // Until we change clang and/or teach external users to check for availability 2439 // differently, disregard the "nobuiltin" attribute and TLI::has. 2440 // 2441 // PR23093. 2442 2443 LibFunc Func; 2444 Function *Callee = CI->getCalledFunction(); 2445 2446 SmallVector<OperandBundleDef, 2> OpBundles; 2447 CI->getOperandBundlesAsDefs(OpBundles); 2448 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2449 bool isCallingConvC = isCallingConvCCompatible(CI); 2450 2451 // First, check that this is a known library functions and that the prototype 2452 // is correct. 2453 if (!TLI->getLibFunc(*Callee, Func)) 2454 return nullptr; 2455 2456 // We never change the calling convention. 2457 if (!ignoreCallingConv(Func) && !isCallingConvC) 2458 return nullptr; 2459 2460 switch (Func) { 2461 case LibFunc_memcpy_chk: 2462 return optimizeMemCpyChk(CI, Builder); 2463 case LibFunc_memmove_chk: 2464 return optimizeMemMoveChk(CI, Builder); 2465 case LibFunc_memset_chk: 2466 return optimizeMemSetChk(CI, Builder); 2467 case LibFunc_stpcpy_chk: 2468 case LibFunc_strcpy_chk: 2469 return optimizeStrpCpyChk(CI, Builder, Func); 2470 case LibFunc_stpncpy_chk: 2471 case LibFunc_strncpy_chk: 2472 return optimizeStrpNCpyChk(CI, Builder, Func); 2473 default: 2474 break; 2475 } 2476 return nullptr; 2477 } 2478 2479 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 2480 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 2481 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 2482