1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is a utility pass used for testing the InstructionSimplify analysis.
11 // The analysis is applied to every instruction, and if it simplifies then the
12 // instruction is replaced by the simplification.  If you are looking for a pass
13 // that performs serious instruction folding, use the instcombine pass instead.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/KnownBits.h"
35 #include "llvm/Transforms/Utils/BuildLibCalls.h"
36 #include "llvm/Transforms/Utils/Local.h"
37 
38 using namespace llvm;
39 using namespace PatternMatch;
40 
41 static cl::opt<bool>
42     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
43                          cl::init(false),
44                          cl::desc("Enable unsafe double to float "
45                                   "shrinking for math lib calls"));
46 
47 
48 //===----------------------------------------------------------------------===//
49 // Helper Functions
50 //===----------------------------------------------------------------------===//
51 
52 static bool ignoreCallingConv(LibFunc Func) {
53   return Func == LibFunc_abs || Func == LibFunc_labs ||
54          Func == LibFunc_llabs || Func == LibFunc_strlen;
55 }
56 
57 static bool isCallingConvCCompatible(CallInst *CI) {
58   switch(CI->getCallingConv()) {
59   default:
60     return false;
61   case llvm::CallingConv::C:
62     return true;
63   case llvm::CallingConv::ARM_APCS:
64   case llvm::CallingConv::ARM_AAPCS:
65   case llvm::CallingConv::ARM_AAPCS_VFP: {
66 
67     // The iOS ABI diverges from the standard in some cases, so for now don't
68     // try to simplify those calls.
69     if (Triple(CI->getModule()->getTargetTriple()).isiOS())
70       return false;
71 
72     auto *FuncTy = CI->getFunctionType();
73 
74     if (!FuncTy->getReturnType()->isPointerTy() &&
75         !FuncTy->getReturnType()->isIntegerTy() &&
76         !FuncTy->getReturnType()->isVoidTy())
77       return false;
78 
79     for (auto Param : FuncTy->params()) {
80       if (!Param->isPointerTy() && !Param->isIntegerTy())
81         return false;
82     }
83     return true;
84   }
85   }
86   return false;
87 }
88 
89 /// Return true if it is only used in equality comparisons with With.
90 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
91   for (User *U : V->users()) {
92     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
93       if (IC->isEquality() && IC->getOperand(1) == With)
94         continue;
95     // Unknown instruction.
96     return false;
97   }
98   return true;
99 }
100 
101 static bool callHasFloatingPointArgument(const CallInst *CI) {
102   return any_of(CI->operands(), [](const Use &OI) {
103     return OI->getType()->isFloatingPointTy();
104   });
105 }
106 
107 /// \brief Check whether the overloaded unary floating point function
108 /// corresponding to \a Ty is available.
109 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
110                             LibFunc DoubleFn, LibFunc FloatFn,
111                             LibFunc LongDoubleFn) {
112   switch (Ty->getTypeID()) {
113   case Type::FloatTyID:
114     return TLI->has(FloatFn);
115   case Type::DoubleTyID:
116     return TLI->has(DoubleFn);
117   default:
118     return TLI->has(LongDoubleFn);
119   }
120 }
121 
122 //===----------------------------------------------------------------------===//
123 // String and Memory Library Call Optimizations
124 //===----------------------------------------------------------------------===//
125 
126 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
127   // Extract some information from the instruction
128   Value *Dst = CI->getArgOperand(0);
129   Value *Src = CI->getArgOperand(1);
130 
131   // See if we can get the length of the input string.
132   uint64_t Len = GetStringLength(Src);
133   if (Len == 0)
134     return nullptr;
135   --Len; // Unbias length.
136 
137   // Handle the simple, do-nothing case: strcat(x, "") -> x
138   if (Len == 0)
139     return Dst;
140 
141   return emitStrLenMemCpy(Src, Dst, Len, B);
142 }
143 
144 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
145                                            IRBuilder<> &B) {
146   // We need to find the end of the destination string.  That's where the
147   // memory is to be moved to. We just generate a call to strlen.
148   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
149   if (!DstLen)
150     return nullptr;
151 
152   // Now that we have the destination's length, we must index into the
153   // destination's pointer to get the actual memcpy destination (end of
154   // the string .. we're concatenating).
155   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
156 
157   // We have enough information to now generate the memcpy call to do the
158   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
159   B.CreateMemCpy(CpyDst, Src,
160                  ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1),
161                  1);
162   return Dst;
163 }
164 
165 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
166   // Extract some information from the instruction.
167   Value *Dst = CI->getArgOperand(0);
168   Value *Src = CI->getArgOperand(1);
169   uint64_t Len;
170 
171   // We don't do anything if length is not constant.
172   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
173     Len = LengthArg->getZExtValue();
174   else
175     return nullptr;
176 
177   // See if we can get the length of the input string.
178   uint64_t SrcLen = GetStringLength(Src);
179   if (SrcLen == 0)
180     return nullptr;
181   --SrcLen; // Unbias length.
182 
183   // Handle the simple, do-nothing cases:
184   // strncat(x, "", c) -> x
185   // strncat(x,  c, 0) -> x
186   if (SrcLen == 0 || Len == 0)
187     return Dst;
188 
189   // We don't optimize this case.
190   if (Len < SrcLen)
191     return nullptr;
192 
193   // strncat(x, s, c) -> strcat(x, s)
194   // s is constant so the strcat can be optimized further.
195   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
196 }
197 
198 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
199   Function *Callee = CI->getCalledFunction();
200   FunctionType *FT = Callee->getFunctionType();
201   Value *SrcStr = CI->getArgOperand(0);
202 
203   // If the second operand is non-constant, see if we can compute the length
204   // of the input string and turn this into memchr.
205   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
206   if (!CharC) {
207     uint64_t Len = GetStringLength(SrcStr);
208     if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
209       return nullptr;
210 
211     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
212                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
213                       B, DL, TLI);
214   }
215 
216   // Otherwise, the character is a constant, see if the first argument is
217   // a string literal.  If so, we can constant fold.
218   StringRef Str;
219   if (!getConstantStringInfo(SrcStr, Str)) {
220     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
221       return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI),
222                          "strchr");
223     return nullptr;
224   }
225 
226   // Compute the offset, make sure to handle the case when we're searching for
227   // zero (a weird way to spell strlen).
228   size_t I = (0xFF & CharC->getSExtValue()) == 0
229                  ? Str.size()
230                  : Str.find(CharC->getSExtValue());
231   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
232     return Constant::getNullValue(CI->getType());
233 
234   // strchr(s+n,c)  -> gep(s+n+i,c)
235   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
236 }
237 
238 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
239   Value *SrcStr = CI->getArgOperand(0);
240   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
241 
242   // Cannot fold anything if we're not looking for a constant.
243   if (!CharC)
244     return nullptr;
245 
246   StringRef Str;
247   if (!getConstantStringInfo(SrcStr, Str)) {
248     // strrchr(s, 0) -> strchr(s, 0)
249     if (CharC->isZero())
250       return emitStrChr(SrcStr, '\0', B, TLI);
251     return nullptr;
252   }
253 
254   // Compute the offset.
255   size_t I = (0xFF & CharC->getSExtValue()) == 0
256                  ? Str.size()
257                  : Str.rfind(CharC->getSExtValue());
258   if (I == StringRef::npos) // Didn't find the char. Return null.
259     return Constant::getNullValue(CI->getType());
260 
261   // strrchr(s+n,c) -> gep(s+n+i,c)
262   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
263 }
264 
265 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
266   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
267   if (Str1P == Str2P) // strcmp(x,x)  -> 0
268     return ConstantInt::get(CI->getType(), 0);
269 
270   StringRef Str1, Str2;
271   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
272   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
273 
274   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
275   if (HasStr1 && HasStr2)
276     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
277 
278   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
279     return B.CreateNeg(
280         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
281 
282   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
283     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
284 
285   // strcmp(P, "x") -> memcmp(P, "x", 2)
286   uint64_t Len1 = GetStringLength(Str1P);
287   uint64_t Len2 = GetStringLength(Str2P);
288   if (Len1 && Len2) {
289     return emitMemCmp(Str1P, Str2P,
290                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
291                                        std::min(Len1, Len2)),
292                       B, DL, TLI);
293   }
294 
295   return nullptr;
296 }
297 
298 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
299   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
300   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
301     return ConstantInt::get(CI->getType(), 0);
302 
303   // Get the length argument if it is constant.
304   uint64_t Length;
305   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
306     Length = LengthArg->getZExtValue();
307   else
308     return nullptr;
309 
310   if (Length == 0) // strncmp(x,y,0)   -> 0
311     return ConstantInt::get(CI->getType(), 0);
312 
313   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
314     return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
315 
316   StringRef Str1, Str2;
317   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
318   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
319 
320   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
321   if (HasStr1 && HasStr2) {
322     StringRef SubStr1 = Str1.substr(0, Length);
323     StringRef SubStr2 = Str2.substr(0, Length);
324     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
325   }
326 
327   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
328     return B.CreateNeg(
329         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
330 
331   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
332     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
333 
334   return nullptr;
335 }
336 
337 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
338   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
339   if (Dst == Src) // strcpy(x,x)  -> x
340     return Src;
341 
342   // See if we can get the length of the input string.
343   uint64_t Len = GetStringLength(Src);
344   if (Len == 0)
345     return nullptr;
346 
347   // We have enough information to now generate the memcpy call to do the
348   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
349   B.CreateMemCpy(Dst, Src,
350                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1);
351   return Dst;
352 }
353 
354 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
355   Function *Callee = CI->getCalledFunction();
356   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
357   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
358     Value *StrLen = emitStrLen(Src, B, DL, TLI);
359     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
360   }
361 
362   // See if we can get the length of the input string.
363   uint64_t Len = GetStringLength(Src);
364   if (Len == 0)
365     return nullptr;
366 
367   Type *PT = Callee->getFunctionType()->getParamType(0);
368   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
369   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
370                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
371 
372   // We have enough information to now generate the memcpy call to do the
373   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
374   B.CreateMemCpy(Dst, Src, LenV, 1);
375   return DstEnd;
376 }
377 
378 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
379   Function *Callee = CI->getCalledFunction();
380   Value *Dst = CI->getArgOperand(0);
381   Value *Src = CI->getArgOperand(1);
382   Value *LenOp = CI->getArgOperand(2);
383 
384   // See if we can get the length of the input string.
385   uint64_t SrcLen = GetStringLength(Src);
386   if (SrcLen == 0)
387     return nullptr;
388   --SrcLen;
389 
390   if (SrcLen == 0) {
391     // strncpy(x, "", y) -> memset(x, '\0', y, 1)
392     B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
393     return Dst;
394   }
395 
396   uint64_t Len;
397   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
398     Len = LengthArg->getZExtValue();
399   else
400     return nullptr;
401 
402   if (Len == 0)
403     return Dst; // strncpy(x, y, 0) -> x
404 
405   // Let strncpy handle the zero padding
406   if (Len > SrcLen + 1)
407     return nullptr;
408 
409   Type *PT = Callee->getFunctionType()->getParamType(0);
410   // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
411   B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1);
412 
413   return Dst;
414 }
415 
416 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B,
417                                                unsigned CharSize) {
418   Value *Src = CI->getArgOperand(0);
419 
420   // Constant folding: strlen("xyz") -> 3
421   if (uint64_t Len = GetStringLength(Src, CharSize))
422     return ConstantInt::get(CI->getType(), Len - 1);
423 
424   // If s is a constant pointer pointing to a string literal, we can fold
425   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
426   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
427   // We only try to simplify strlen when the pointer s points to an array
428   // of i8. Otherwise, we would need to scale the offset x before doing the
429   // subtraction. This will make the optimization more complex, and it's not
430   // very useful because calling strlen for a pointer of other types is
431   // very uncommon.
432   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
433     if (!isGEPBasedOnPointerToString(GEP, CharSize))
434       return nullptr;
435 
436     ConstantDataArraySlice Slice;
437     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
438       uint64_t NullTermIdx;
439       if (Slice.Array == nullptr) {
440         NullTermIdx = 0;
441       } else {
442         NullTermIdx = ~((uint64_t)0);
443         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
444           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
445             NullTermIdx = I;
446             break;
447           }
448         }
449         // If the string does not have '\0', leave it to strlen to compute
450         // its length.
451         if (NullTermIdx == ~((uint64_t)0))
452           return nullptr;
453       }
454 
455       Value *Offset = GEP->getOperand(2);
456       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
457       Known.Zero.flipAllBits();
458       uint64_t ArrSize =
459              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
460 
461       // KnownZero's bits are flipped, so zeros in KnownZero now represent
462       // bits known to be zeros in Offset, and ones in KnowZero represent
463       // bits unknown in Offset. Therefore, Offset is known to be in range
464       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
465       // unsigned-less-than NullTermIdx.
466       //
467       // If Offset is not provably in the range [0, NullTermIdx], we can still
468       // optimize if we can prove that the program has undefined behavior when
469       // Offset is outside that range. That is the case when GEP->getOperand(0)
470       // is a pointer to an object whose memory extent is NullTermIdx+1.
471       if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
472           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
473            NullTermIdx == ArrSize - 1)) {
474         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
475         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
476                            Offset);
477       }
478     }
479 
480     return nullptr;
481   }
482 
483   // strlen(x?"foo":"bars") --> x ? 3 : 4
484   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
485     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
486     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
487     if (LenTrue && LenFalse) {
488       ORE.emit([&]() {
489         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
490                << "folded strlen(select) to select of constants";
491       });
492       return B.CreateSelect(SI->getCondition(),
493                             ConstantInt::get(CI->getType(), LenTrue - 1),
494                             ConstantInt::get(CI->getType(), LenFalse - 1));
495     }
496   }
497 
498   // strlen(x) != 0 --> *x != 0
499   // strlen(x) == 0 --> *x == 0
500   if (isOnlyUsedInZeroEqualityComparison(CI))
501     return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
502 
503   return nullptr;
504 }
505 
506 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
507   return optimizeStringLength(CI, B, 8);
508 }
509 
510 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) {
511   Module &M = *CI->getParent()->getParent()->getParent();
512   unsigned WCharSize = TLI->getWCharSize(M) * 8;
513   // We cannot perform this optimization without wchar_size metadata.
514   if (WCharSize == 0)
515     return nullptr;
516 
517   return optimizeStringLength(CI, B, WCharSize);
518 }
519 
520 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
521   StringRef S1, S2;
522   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
523   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
524 
525   // strpbrk(s, "") -> nullptr
526   // strpbrk("", s) -> nullptr
527   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
528     return Constant::getNullValue(CI->getType());
529 
530   // Constant folding.
531   if (HasS1 && HasS2) {
532     size_t I = S1.find_first_of(S2);
533     if (I == StringRef::npos) // No match.
534       return Constant::getNullValue(CI->getType());
535 
536     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
537                        "strpbrk");
538   }
539 
540   // strpbrk(s, "a") -> strchr(s, 'a')
541   if (HasS2 && S2.size() == 1)
542     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
543 
544   return nullptr;
545 }
546 
547 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
548   Value *EndPtr = CI->getArgOperand(1);
549   if (isa<ConstantPointerNull>(EndPtr)) {
550     // With a null EndPtr, this function won't capture the main argument.
551     // It would be readonly too, except that it still may write to errno.
552     CI->addParamAttr(0, Attribute::NoCapture);
553   }
554 
555   return nullptr;
556 }
557 
558 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
559   StringRef S1, S2;
560   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
561   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
562 
563   // strspn(s, "") -> 0
564   // strspn("", s) -> 0
565   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
566     return Constant::getNullValue(CI->getType());
567 
568   // Constant folding.
569   if (HasS1 && HasS2) {
570     size_t Pos = S1.find_first_not_of(S2);
571     if (Pos == StringRef::npos)
572       Pos = S1.size();
573     return ConstantInt::get(CI->getType(), Pos);
574   }
575 
576   return nullptr;
577 }
578 
579 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
580   StringRef S1, S2;
581   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
582   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
583 
584   // strcspn("", s) -> 0
585   if (HasS1 && S1.empty())
586     return Constant::getNullValue(CI->getType());
587 
588   // Constant folding.
589   if (HasS1 && HasS2) {
590     size_t Pos = S1.find_first_of(S2);
591     if (Pos == StringRef::npos)
592       Pos = S1.size();
593     return ConstantInt::get(CI->getType(), Pos);
594   }
595 
596   // strcspn(s, "") -> strlen(s)
597   if (HasS2 && S2.empty())
598     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
599 
600   return nullptr;
601 }
602 
603 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
604   // fold strstr(x, x) -> x.
605   if (CI->getArgOperand(0) == CI->getArgOperand(1))
606     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
607 
608   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
609   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
610     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
611     if (!StrLen)
612       return nullptr;
613     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
614                                  StrLen, B, DL, TLI);
615     if (!StrNCmp)
616       return nullptr;
617     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
618       ICmpInst *Old = cast<ICmpInst>(*UI++);
619       Value *Cmp =
620           B.CreateICmp(Old->getPredicate(), StrNCmp,
621                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
622       replaceAllUsesWith(Old, Cmp);
623     }
624     return CI;
625   }
626 
627   // See if either input string is a constant string.
628   StringRef SearchStr, ToFindStr;
629   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
630   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
631 
632   // fold strstr(x, "") -> x.
633   if (HasStr2 && ToFindStr.empty())
634     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
635 
636   // If both strings are known, constant fold it.
637   if (HasStr1 && HasStr2) {
638     size_t Offset = SearchStr.find(ToFindStr);
639 
640     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
641       return Constant::getNullValue(CI->getType());
642 
643     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
644     Value *Result = castToCStr(CI->getArgOperand(0), B);
645     Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
646     return B.CreateBitCast(Result, CI->getType());
647   }
648 
649   // fold strstr(x, "y") -> strchr(x, 'y').
650   if (HasStr2 && ToFindStr.size() == 1) {
651     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
652     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
653   }
654   return nullptr;
655 }
656 
657 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
658   Value *SrcStr = CI->getArgOperand(0);
659   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
660   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
661 
662   // memchr(x, y, 0) -> null
663   if (LenC && LenC->isZero())
664     return Constant::getNullValue(CI->getType());
665 
666   // From now on we need at least constant length and string.
667   StringRef Str;
668   if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
669     return nullptr;
670 
671   // Truncate the string to LenC. If Str is smaller than LenC we will still only
672   // scan the string, as reading past the end of it is undefined and we can just
673   // return null if we don't find the char.
674   Str = Str.substr(0, LenC->getZExtValue());
675 
676   // If the char is variable but the input str and length are not we can turn
677   // this memchr call into a simple bit field test. Of course this only works
678   // when the return value is only checked against null.
679   //
680   // It would be really nice to reuse switch lowering here but we can't change
681   // the CFG at this point.
682   //
683   // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
684   //   after bounds check.
685   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
686     unsigned char Max =
687         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
688                           reinterpret_cast<const unsigned char *>(Str.end()));
689 
690     // Make sure the bit field we're about to create fits in a register on the
691     // target.
692     // FIXME: On a 64 bit architecture this prevents us from using the
693     // interesting range of alpha ascii chars. We could do better by emitting
694     // two bitfields or shifting the range by 64 if no lower chars are used.
695     if (!DL.fitsInLegalInteger(Max + 1))
696       return nullptr;
697 
698     // For the bit field use a power-of-2 type with at least 8 bits to avoid
699     // creating unnecessary illegal types.
700     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
701 
702     // Now build the bit field.
703     APInt Bitfield(Width, 0);
704     for (char C : Str)
705       Bitfield.setBit((unsigned char)C);
706     Value *BitfieldC = B.getInt(Bitfield);
707 
708     // First check that the bit field access is within bounds.
709     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
710     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
711                                  "memchr.bounds");
712 
713     // Create code that checks if the given bit is set in the field.
714     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
715     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
716 
717     // Finally merge both checks and cast to pointer type. The inttoptr
718     // implicitly zexts the i1 to intptr type.
719     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
720   }
721 
722   // Check if all arguments are constants.  If so, we can constant fold.
723   if (!CharC)
724     return nullptr;
725 
726   // Compute the offset.
727   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
728   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
729     return Constant::getNullValue(CI->getType());
730 
731   // memchr(s+n,c,l) -> gep(s+n+i,c)
732   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
733 }
734 
735 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
736   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
737 
738   if (LHS == RHS) // memcmp(s,s,x) -> 0
739     return Constant::getNullValue(CI->getType());
740 
741   // Make sure we have a constant length.
742   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
743   if (!LenC)
744     return nullptr;
745 
746   uint64_t Len = LenC->getZExtValue();
747   if (Len == 0) // memcmp(s1,s2,0) -> 0
748     return Constant::getNullValue(CI->getType());
749 
750   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
751   if (Len == 1) {
752     Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"),
753                                CI->getType(), "lhsv");
754     Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"),
755                                CI->getType(), "rhsv");
756     return B.CreateSub(LHSV, RHSV, "chardiff");
757   }
758 
759   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
760   // TODO: The case where both inputs are constants does not need to be limited
761   // to legal integers or equality comparison. See block below this.
762   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
763     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
764     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
765 
766     // First, see if we can fold either argument to a constant.
767     Value *LHSV = nullptr;
768     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
769       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
770       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
771     }
772     Value *RHSV = nullptr;
773     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
774       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
775       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
776     }
777 
778     // Don't generate unaligned loads. If either source is constant data,
779     // alignment doesn't matter for that source because there is no load.
780     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
781         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
782       if (!LHSV) {
783         Type *LHSPtrTy =
784             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
785         LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
786       }
787       if (!RHSV) {
788         Type *RHSPtrTy =
789             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
790         RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
791       }
792       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
793     }
794   }
795 
796   // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
797   // TODO: This is limited to i8 arrays.
798   StringRef LHSStr, RHSStr;
799   if (getConstantStringInfo(LHS, LHSStr) &&
800       getConstantStringInfo(RHS, RHSStr)) {
801     // Make sure we're not reading out-of-bounds memory.
802     if (Len > LHSStr.size() || Len > RHSStr.size())
803       return nullptr;
804     // Fold the memcmp and normalize the result.  This way we get consistent
805     // results across multiple platforms.
806     uint64_t Ret = 0;
807     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
808     if (Cmp < 0)
809       Ret = -1;
810     else if (Cmp > 0)
811       Ret = 1;
812     return ConstantInt::get(CI->getType(), Ret);
813   }
814 
815   return nullptr;
816 }
817 
818 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
819   // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
820   B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
821                  CI->getArgOperand(2), 1);
822   return CI->getArgOperand(0);
823 }
824 
825 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
826   // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
827   B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
828                   CI->getArgOperand(2), 1);
829   return CI->getArgOperand(0);
830 }
831 
832 // TODO: Does this belong in BuildLibCalls or should all of those similar
833 // functions be moved here?
834 static Value *emitCalloc(Value *Num, Value *Size, const AttributeList &Attrs,
835                          IRBuilder<> &B, const TargetLibraryInfo &TLI) {
836   LibFunc Func;
837   if (!TLI.getLibFunc("calloc", Func) || !TLI.has(Func))
838     return nullptr;
839 
840   Module *M = B.GetInsertBlock()->getModule();
841   const DataLayout &DL = M->getDataLayout();
842   IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext()));
843   Value *Calloc = M->getOrInsertFunction("calloc", Attrs, B.getInt8PtrTy(),
844                                          PtrType, PtrType);
845   CallInst *CI = B.CreateCall(Calloc, { Num, Size }, "calloc");
846 
847   if (const auto *F = dyn_cast<Function>(Calloc->stripPointerCasts()))
848     CI->setCallingConv(F->getCallingConv());
849 
850   return CI;
851 }
852 
853 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
854 static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B,
855                                const TargetLibraryInfo &TLI) {
856   // This has to be a memset of zeros (bzero).
857   auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
858   if (!FillValue || FillValue->getZExtValue() != 0)
859     return nullptr;
860 
861   // TODO: We should handle the case where the malloc has more than one use.
862   // This is necessary to optimize common patterns such as when the result of
863   // the malloc is checked against null or when a memset intrinsic is used in
864   // place of a memset library call.
865   auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
866   if (!Malloc || !Malloc->hasOneUse())
867     return nullptr;
868 
869   // Is the inner call really malloc()?
870   Function *InnerCallee = Malloc->getCalledFunction();
871   if (!InnerCallee)
872     return nullptr;
873 
874   LibFunc Func;
875   if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
876       Func != LibFunc_malloc)
877     return nullptr;
878 
879   // The memset must cover the same number of bytes that are malloc'd.
880   if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
881     return nullptr;
882 
883   // Replace the malloc with a calloc. We need the data layout to know what the
884   // actual size of a 'size_t' parameter is.
885   B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
886   const DataLayout &DL = Malloc->getModule()->getDataLayout();
887   IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
888   Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
889                              Malloc->getArgOperand(0), Malloc->getAttributes(),
890                              B, TLI);
891   if (!Calloc)
892     return nullptr;
893 
894   Malloc->replaceAllUsesWith(Calloc);
895   Malloc->eraseFromParent();
896 
897   return Calloc;
898 }
899 
900 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
901   if (auto *Calloc = foldMallocMemset(CI, B, *TLI))
902     return Calloc;
903 
904   // memset(p, v, n) -> llvm.memset(p, v, n, 1)
905   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
906   B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
907   return CI->getArgOperand(0);
908 }
909 
910 //===----------------------------------------------------------------------===//
911 // Math Library Optimizations
912 //===----------------------------------------------------------------------===//
913 
914 /// Return a variant of Val with float type.
915 /// Currently this works in two cases: If Val is an FPExtension of a float
916 /// value to something bigger, simply return the operand.
917 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
918 /// loss of precision do so.
919 static Value *valueHasFloatPrecision(Value *Val) {
920   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
921     Value *Op = Cast->getOperand(0);
922     if (Op->getType()->isFloatTy())
923       return Op;
924   }
925   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
926     APFloat F = Const->getValueAPF();
927     bool losesInfo;
928     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
929                     &losesInfo);
930     if (!losesInfo)
931       return ConstantFP::get(Const->getContext(), F);
932   }
933   return nullptr;
934 }
935 
936 /// Shrink double -> float for unary functions like 'floor'.
937 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
938                                     bool CheckRetType) {
939   Function *Callee = CI->getCalledFunction();
940   // We know this libcall has a valid prototype, but we don't know which.
941   if (!CI->getType()->isDoubleTy())
942     return nullptr;
943 
944   if (CheckRetType) {
945     // Check if all the uses for function like 'sin' are converted to float.
946     for (User *U : CI->users()) {
947       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
948       if (!Cast || !Cast->getType()->isFloatTy())
949         return nullptr;
950     }
951   }
952 
953   // If this is something like 'floor((double)floatval)', convert to floorf.
954   Value *V = valueHasFloatPrecision(CI->getArgOperand(0));
955   if (V == nullptr)
956     return nullptr;
957 
958   // If call isn't an intrinsic, check that it isn't within a function with the
959   // same name as the float version of this call.
960   //
961   // e.g. inline float expf(float val) { return (float) exp((double) val); }
962   //
963   // A similar such definition exists in the MinGW-w64 math.h header file which
964   // when compiled with -O2 -ffast-math causes the generation of infinite loops
965   // where expf is called.
966   if (!Callee->isIntrinsic()) {
967     const Function *F = CI->getFunction();
968     StringRef FName = F->getName();
969     StringRef CalleeName = Callee->getName();
970     if ((FName.size() == (CalleeName.size() + 1)) &&
971         (FName.back() == 'f') &&
972         FName.startswith(CalleeName))
973       return nullptr;
974   }
975 
976   // Propagate fast-math flags from the existing call to the new call.
977   IRBuilder<>::FastMathFlagGuard Guard(B);
978   B.setFastMathFlags(CI->getFastMathFlags());
979 
980   // floor((double)floatval) -> (double)floorf(floatval)
981   if (Callee->isIntrinsic()) {
982     Module *M = CI->getModule();
983     Intrinsic::ID IID = Callee->getIntrinsicID();
984     Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
985     V = B.CreateCall(F, V);
986   } else {
987     // The call is a library call rather than an intrinsic.
988     V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
989   }
990 
991   return B.CreateFPExt(V, B.getDoubleTy());
992 }
993 
994 // Replace a libcall \p CI with a call to intrinsic \p IID
995 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) {
996   // Propagate fast-math flags from the existing call to the new call.
997   IRBuilder<>::FastMathFlagGuard Guard(B);
998   B.setFastMathFlags(CI->getFastMathFlags());
999 
1000   Module *M = CI->getModule();
1001   Value *V = CI->getArgOperand(0);
1002   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1003   CallInst *NewCall = B.CreateCall(F, V);
1004   NewCall->takeName(CI);
1005   return NewCall;
1006 }
1007 
1008 /// Shrink double -> float for binary functions like 'fmin/fmax'.
1009 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
1010   Function *Callee = CI->getCalledFunction();
1011   // We know this libcall has a valid prototype, but we don't know which.
1012   if (!CI->getType()->isDoubleTy())
1013     return nullptr;
1014 
1015   // If this is something like 'fmin((double)floatval1, (double)floatval2)',
1016   // or fmin(1.0, (double)floatval), then we convert it to fminf.
1017   Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0));
1018   if (V1 == nullptr)
1019     return nullptr;
1020   Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1));
1021   if (V2 == nullptr)
1022     return nullptr;
1023 
1024   // Propagate fast-math flags from the existing call to the new call.
1025   IRBuilder<>::FastMathFlagGuard Guard(B);
1026   B.setFastMathFlags(CI->getFastMathFlags());
1027 
1028   // fmin((double)floatval1, (double)floatval2)
1029   //                      -> (double)fminf(floatval1, floatval2)
1030   // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP().
1031   Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
1032                                    Callee->getAttributes());
1033   return B.CreateFPExt(V, B.getDoubleTy());
1034 }
1035 
1036 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
1037   Function *Callee = CI->getCalledFunction();
1038   Value *Ret = nullptr;
1039   StringRef Name = Callee->getName();
1040   if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name))
1041     Ret = optimizeUnaryDoubleFP(CI, B, true);
1042 
1043   // cos(-x) -> cos(x)
1044   Value *Op1 = CI->getArgOperand(0);
1045   if (BinaryOperator::isFNeg(Op1)) {
1046     BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
1047     return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
1048   }
1049   return Ret;
1050 }
1051 
1052 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
1053   // Multiplications calculated using Addition Chains.
1054   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1055 
1056   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1057 
1058   if (InnerChain[Exp])
1059     return InnerChain[Exp];
1060 
1061   static const unsigned AddChain[33][2] = {
1062       {0, 0}, // Unused.
1063       {0, 0}, // Unused (base case = pow1).
1064       {1, 1}, // Unused (pre-computed).
1065       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1066       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1067       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1068       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1069       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1070   };
1071 
1072   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1073                                  getPow(InnerChain, AddChain[Exp][1], B));
1074   return InnerChain[Exp];
1075 }
1076 
1077 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
1078   Function *Callee = CI->getCalledFunction();
1079   Value *Ret = nullptr;
1080   StringRef Name = Callee->getName();
1081   if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name))
1082     Ret = optimizeUnaryDoubleFP(CI, B, true);
1083 
1084   Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
1085 
1086   // pow(1.0, x) -> 1.0
1087   if (match(Op1, m_SpecificFP(1.0)))
1088     return Op1;
1089   // pow(2.0, x) -> llvm.exp2(x)
1090   if (match(Op1, m_SpecificFP(2.0))) {
1091     Value *Exp2 = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::exp2,
1092                                             CI->getType());
1093     return B.CreateCall(Exp2, Op2, "exp2");
1094   }
1095 
1096   // There's no llvm.exp10 intrinsic yet, but, maybe, some day there will
1097   // be one.
1098   if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
1099     // pow(10.0, x) -> exp10(x)
1100     if (Op1C->isExactlyValue(10.0) &&
1101         hasUnaryFloatFn(TLI, Op1->getType(), LibFunc_exp10, LibFunc_exp10f,
1102                         LibFunc_exp10l))
1103       return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc_exp10), B,
1104                                   Callee->getAttributes());
1105   }
1106 
1107   // pow(exp(x), y) -> exp(x * y)
1108   // pow(exp2(x), y) -> exp2(x * y)
1109   // We enable these only with fast-math. Besides rounding differences, the
1110   // transformation changes overflow and underflow behavior quite dramatically.
1111   // Example: x = 1000, y = 0.001.
1112   // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1).
1113   auto *OpC = dyn_cast<CallInst>(Op1);
1114   if (OpC && OpC->hasUnsafeAlgebra() && CI->hasUnsafeAlgebra()) {
1115     LibFunc Func;
1116     Function *OpCCallee = OpC->getCalledFunction();
1117     if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) &&
1118         TLI->has(Func) && (Func == LibFunc_exp || Func == LibFunc_exp2)) {
1119       IRBuilder<>::FastMathFlagGuard Guard(B);
1120       B.setFastMathFlags(CI->getFastMathFlags());
1121       Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul");
1122       return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B,
1123                                   OpCCallee->getAttributes());
1124     }
1125   }
1126 
1127   ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
1128   if (!Op2C)
1129     return Ret;
1130 
1131   if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
1132     return ConstantFP::get(CI->getType(), 1.0);
1133 
1134   if (Op2C->isExactlyValue(-0.5) &&
1135       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf,
1136                       LibFunc_sqrtl)) {
1137     // If -ffast-math:
1138     // pow(x, -0.5) -> 1.0 / sqrt(x)
1139     if (CI->hasUnsafeAlgebra()) {
1140       IRBuilder<>::FastMathFlagGuard Guard(B);
1141       B.setFastMathFlags(CI->getFastMathFlags());
1142 
1143       // TODO: If the pow call is an intrinsic, we should lower to the sqrt
1144       // intrinsic, so we match errno semantics.  We also should check that the
1145       // target can in fact lower the sqrt intrinsic -- we currently have no way
1146       // to ask this question other than asking whether the target has a sqrt
1147       // libcall, which is a sufficient but not necessary condition.
1148       Value *Sqrt = emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc_sqrt), B,
1149                                          Callee->getAttributes());
1150 
1151       return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Sqrt, "sqrtrecip");
1152     }
1153   }
1154 
1155   if (Op2C->isExactlyValue(0.5) &&
1156       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf,
1157                       LibFunc_sqrtl)) {
1158 
1159     // In -ffast-math, pow(x, 0.5) -> sqrt(x).
1160     if (CI->hasUnsafeAlgebra()) {
1161       IRBuilder<>::FastMathFlagGuard Guard(B);
1162       B.setFastMathFlags(CI->getFastMathFlags());
1163 
1164       // TODO: As above, we should lower to the sqrt intrinsic if the pow is an
1165       // intrinsic, to match errno semantics.
1166       return emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc_sqrt), B,
1167                                   Callee->getAttributes());
1168     }
1169 
1170     // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
1171     // This is faster than calling pow, and still handles negative zero
1172     // and negative infinity correctly.
1173     // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
1174     Value *Inf = ConstantFP::getInfinity(CI->getType());
1175     Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
1176 
1177     // TODO: As above, we should lower to the sqrt intrinsic if the pow is an
1178     // intrinsic, to match errno semantics.
1179     Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes());
1180 
1181     Module *M = Callee->getParent();
1182     Function *FabsF = Intrinsic::getDeclaration(M, Intrinsic::fabs,
1183                                                 CI->getType());
1184     Value *FAbs = B.CreateCall(FabsF, Sqrt);
1185 
1186     Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
1187     Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
1188     return Sel;
1189   }
1190 
1191   if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
1192     return Op1;
1193   if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
1194     return B.CreateFMul(Op1, Op1, "pow2");
1195   if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
1196     return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
1197 
1198   // In -ffast-math, generate repeated fmul instead of generating pow(x, n).
1199   if (CI->hasUnsafeAlgebra()) {
1200     APFloat V = abs(Op2C->getValueAPF());
1201     // We limit to a max of 7 fmul(s). Thus max exponent is 32.
1202     // This transformation applies to integer exponents only.
1203     if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan ||
1204         !V.isInteger())
1205       return nullptr;
1206 
1207     // Propagate fast math flags.
1208     IRBuilder<>::FastMathFlagGuard Guard(B);
1209     B.setFastMathFlags(CI->getFastMathFlags());
1210 
1211     // We will memoize intermediate products of the Addition Chain.
1212     Value *InnerChain[33] = {nullptr};
1213     InnerChain[1] = Op1;
1214     InnerChain[2] = B.CreateFMul(Op1, Op1);
1215 
1216     // We cannot readily convert a non-double type (like float) to a double.
1217     // So we first convert V to something which could be converted to double.
1218     bool ignored;
1219     V.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &ignored);
1220 
1221     Value *FMul = getPow(InnerChain, V.convertToDouble(), B);
1222     // For negative exponents simply compute the reciprocal.
1223     if (Op2C->isNegative())
1224       FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul);
1225     return FMul;
1226   }
1227 
1228   return nullptr;
1229 }
1230 
1231 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1232   Function *Callee = CI->getCalledFunction();
1233   Value *Ret = nullptr;
1234   StringRef Name = Callee->getName();
1235   if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name))
1236     Ret = optimizeUnaryDoubleFP(CI, B, true);
1237 
1238   Value *Op = CI->getArgOperand(0);
1239   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1240   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1241   LibFunc LdExp = LibFunc_ldexpl;
1242   if (Op->getType()->isFloatTy())
1243     LdExp = LibFunc_ldexpf;
1244   else if (Op->getType()->isDoubleTy())
1245     LdExp = LibFunc_ldexp;
1246 
1247   if (TLI->has(LdExp)) {
1248     Value *LdExpArg = nullptr;
1249     if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
1250       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
1251         LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
1252     } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
1253       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
1254         LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
1255     }
1256 
1257     if (LdExpArg) {
1258       Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
1259       if (!Op->getType()->isFloatTy())
1260         One = ConstantExpr::getFPExtend(One, Op->getType());
1261 
1262       Module *M = CI->getModule();
1263       Value *NewCallee =
1264           M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
1265                                  Op->getType(), B.getInt32Ty());
1266       CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg});
1267       if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
1268         CI->setCallingConv(F->getCallingConv());
1269 
1270       return CI;
1271     }
1272   }
1273   return Ret;
1274 }
1275 
1276 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1277   Function *Callee = CI->getCalledFunction();
1278   // If we can shrink the call to a float function rather than a double
1279   // function, do that first.
1280   StringRef Name = Callee->getName();
1281   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1282     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1283       return Ret;
1284 
1285   IRBuilder<>::FastMathFlagGuard Guard(B);
1286   FastMathFlags FMF;
1287   if (CI->hasUnsafeAlgebra()) {
1288     // Unsafe algebra sets all fast-math-flags to true.
1289     FMF.setUnsafeAlgebra();
1290   } else {
1291     // At a minimum, no-nans-fp-math must be true.
1292     if (!CI->hasNoNaNs())
1293       return nullptr;
1294     // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
1295     // "Ideally, fmax would be sensitive to the sign of zero, for example
1296     // fmax(-0. 0, +0. 0) would return +0; however, implementation in software
1297     // might be impractical."
1298     FMF.setNoSignedZeros();
1299     FMF.setNoNaNs();
1300   }
1301   B.setFastMathFlags(FMF);
1302 
1303   // We have a relaxed floating-point environment. We can ignore NaN-handling
1304   // and transform to a compare and select. We do not have to consider errno or
1305   // exceptions, because fmin/fmax do not have those.
1306   Value *Op0 = CI->getArgOperand(0);
1307   Value *Op1 = CI->getArgOperand(1);
1308   Value *Cmp = Callee->getName().startswith("fmin") ?
1309     B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
1310   return B.CreateSelect(Cmp, Op0, Op1);
1311 }
1312 
1313 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
1314   Function *Callee = CI->getCalledFunction();
1315   Value *Ret = nullptr;
1316   StringRef Name = Callee->getName();
1317   if (UnsafeFPShrink && hasFloatVersion(Name))
1318     Ret = optimizeUnaryDoubleFP(CI, B, true);
1319 
1320   if (!CI->hasUnsafeAlgebra())
1321     return Ret;
1322   Value *Op1 = CI->getArgOperand(0);
1323   auto *OpC = dyn_cast<CallInst>(Op1);
1324 
1325   // The earlier call must also be unsafe in order to do these transforms.
1326   if (!OpC || !OpC->hasUnsafeAlgebra())
1327     return Ret;
1328 
1329   // log(pow(x,y)) -> y*log(x)
1330   // This is only applicable to log, log2, log10.
1331   if (Name != "log" && Name != "log2" && Name != "log10")
1332     return Ret;
1333 
1334   IRBuilder<>::FastMathFlagGuard Guard(B);
1335   FastMathFlags FMF;
1336   FMF.setUnsafeAlgebra();
1337   B.setFastMathFlags(FMF);
1338 
1339   LibFunc Func;
1340   Function *F = OpC->getCalledFunction();
1341   if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1342       Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow))
1343     return B.CreateFMul(OpC->getArgOperand(1),
1344       emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B,
1345                            Callee->getAttributes()), "mul");
1346 
1347   // log(exp2(y)) -> y*log(2)
1348   if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) &&
1349       TLI->has(Func) && Func == LibFunc_exp2)
1350     return B.CreateFMul(
1351         OpC->getArgOperand(0),
1352         emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0),
1353                              Callee->getName(), B, Callee->getAttributes()),
1354         "logmul");
1355   return Ret;
1356 }
1357 
1358 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
1359   Function *Callee = CI->getCalledFunction();
1360   Value *Ret = nullptr;
1361   // TODO: Once we have a way (other than checking for the existince of the
1362   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
1363   // condition below.
1364   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
1365                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
1366     Ret = optimizeUnaryDoubleFP(CI, B, true);
1367 
1368   if (!CI->hasUnsafeAlgebra())
1369     return Ret;
1370 
1371   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
1372   if (!I || I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
1373     return Ret;
1374 
1375   // We're looking for a repeated factor in a multiplication tree,
1376   // so we can do this fold: sqrt(x * x) -> fabs(x);
1377   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
1378   Value *Op0 = I->getOperand(0);
1379   Value *Op1 = I->getOperand(1);
1380   Value *RepeatOp = nullptr;
1381   Value *OtherOp = nullptr;
1382   if (Op0 == Op1) {
1383     // Simple match: the operands of the multiply are identical.
1384     RepeatOp = Op0;
1385   } else {
1386     // Look for a more complicated pattern: one of the operands is itself
1387     // a multiply, so search for a common factor in that multiply.
1388     // Note: We don't bother looking any deeper than this first level or for
1389     // variations of this pattern because instcombine's visitFMUL and/or the
1390     // reassociation pass should give us this form.
1391     Value *OtherMul0, *OtherMul1;
1392     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
1393       // Pattern: sqrt((x * y) * z)
1394       if (OtherMul0 == OtherMul1 &&
1395           cast<Instruction>(Op0)->hasUnsafeAlgebra()) {
1396         // Matched: sqrt((x * x) * z)
1397         RepeatOp = OtherMul0;
1398         OtherOp = Op1;
1399       }
1400     }
1401   }
1402   if (!RepeatOp)
1403     return Ret;
1404 
1405   // Fast math flags for any created instructions should match the sqrt
1406   // and multiply.
1407   IRBuilder<>::FastMathFlagGuard Guard(B);
1408   B.setFastMathFlags(I->getFastMathFlags());
1409 
1410   // If we found a repeated factor, hoist it out of the square root and
1411   // replace it with the fabs of that factor.
1412   Module *M = Callee->getParent();
1413   Type *ArgType = I->getType();
1414   Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
1415   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
1416   if (OtherOp) {
1417     // If we found a non-repeated factor, we still need to get its square
1418     // root. We then multiply that by the value that was simplified out
1419     // of the square root calculation.
1420     Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
1421     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
1422     return B.CreateFMul(FabsCall, SqrtCall);
1423   }
1424   return FabsCall;
1425 }
1426 
1427 // TODO: Generalize to handle any trig function and its inverse.
1428 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
1429   Function *Callee = CI->getCalledFunction();
1430   Value *Ret = nullptr;
1431   StringRef Name = Callee->getName();
1432   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
1433     Ret = optimizeUnaryDoubleFP(CI, B, true);
1434 
1435   Value *Op1 = CI->getArgOperand(0);
1436   auto *OpC = dyn_cast<CallInst>(Op1);
1437   if (!OpC)
1438     return Ret;
1439 
1440   // Both calls must allow unsafe optimizations in order to remove them.
1441   if (!CI->hasUnsafeAlgebra() || !OpC->hasUnsafeAlgebra())
1442     return Ret;
1443 
1444   // tan(atan(x)) -> x
1445   // tanf(atanf(x)) -> x
1446   // tanl(atanl(x)) -> x
1447   LibFunc Func;
1448   Function *F = OpC->getCalledFunction();
1449   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1450       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
1451        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
1452        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
1453     Ret = OpC->getArgOperand(0);
1454   return Ret;
1455 }
1456 
1457 static bool isTrigLibCall(CallInst *CI) {
1458   // We can only hope to do anything useful if we can ignore things like errno
1459   // and floating-point exceptions.
1460   // We already checked the prototype.
1461   return CI->hasFnAttr(Attribute::NoUnwind) &&
1462          CI->hasFnAttr(Attribute::ReadNone);
1463 }
1464 
1465 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
1466                              bool UseFloat, Value *&Sin, Value *&Cos,
1467                              Value *&SinCos) {
1468   Type *ArgTy = Arg->getType();
1469   Type *ResTy;
1470   StringRef Name;
1471 
1472   Triple T(OrigCallee->getParent()->getTargetTriple());
1473   if (UseFloat) {
1474     Name = "__sincospif_stret";
1475 
1476     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
1477     // x86_64 can't use {float, float} since that would be returned in both
1478     // xmm0 and xmm1, which isn't what a real struct would do.
1479     ResTy = T.getArch() == Triple::x86_64
1480                 ? static_cast<Type *>(VectorType::get(ArgTy, 2))
1481                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
1482   } else {
1483     Name = "__sincospi_stret";
1484     ResTy = StructType::get(ArgTy, ArgTy);
1485   }
1486 
1487   Module *M = OrigCallee->getParent();
1488   Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
1489                                          ResTy, ArgTy);
1490 
1491   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
1492     // If the argument is an instruction, it must dominate all uses so put our
1493     // sincos call there.
1494     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
1495   } else {
1496     // Otherwise (e.g. for a constant) the beginning of the function is as
1497     // good a place as any.
1498     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
1499     B.SetInsertPoint(&EntryBB, EntryBB.begin());
1500   }
1501 
1502   SinCos = B.CreateCall(Callee, Arg, "sincospi");
1503 
1504   if (SinCos->getType()->isStructTy()) {
1505     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
1506     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
1507   } else {
1508     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
1509                                  "sinpi");
1510     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
1511                                  "cospi");
1512   }
1513 }
1514 
1515 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
1516   // Make sure the prototype is as expected, otherwise the rest of the
1517   // function is probably invalid and likely to abort.
1518   if (!isTrigLibCall(CI))
1519     return nullptr;
1520 
1521   Value *Arg = CI->getArgOperand(0);
1522   SmallVector<CallInst *, 1> SinCalls;
1523   SmallVector<CallInst *, 1> CosCalls;
1524   SmallVector<CallInst *, 1> SinCosCalls;
1525 
1526   bool IsFloat = Arg->getType()->isFloatTy();
1527 
1528   // Look for all compatible sinpi, cospi and sincospi calls with the same
1529   // argument. If there are enough (in some sense) we can make the
1530   // substitution.
1531   Function *F = CI->getFunction();
1532   for (User *U : Arg->users())
1533     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
1534 
1535   // It's only worthwhile if both sinpi and cospi are actually used.
1536   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
1537     return nullptr;
1538 
1539   Value *Sin, *Cos, *SinCos;
1540   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
1541 
1542   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
1543                                  Value *Res) {
1544     for (CallInst *C : Calls)
1545       replaceAllUsesWith(C, Res);
1546   };
1547 
1548   replaceTrigInsts(SinCalls, Sin);
1549   replaceTrigInsts(CosCalls, Cos);
1550   replaceTrigInsts(SinCosCalls, SinCos);
1551 
1552   return nullptr;
1553 }
1554 
1555 void LibCallSimplifier::classifyArgUse(
1556     Value *Val, Function *F, bool IsFloat,
1557     SmallVectorImpl<CallInst *> &SinCalls,
1558     SmallVectorImpl<CallInst *> &CosCalls,
1559     SmallVectorImpl<CallInst *> &SinCosCalls) {
1560   CallInst *CI = dyn_cast<CallInst>(Val);
1561 
1562   if (!CI)
1563     return;
1564 
1565   // Don't consider calls in other functions.
1566   if (CI->getFunction() != F)
1567     return;
1568 
1569   Function *Callee = CI->getCalledFunction();
1570   LibFunc Func;
1571   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
1572       !isTrigLibCall(CI))
1573     return;
1574 
1575   if (IsFloat) {
1576     if (Func == LibFunc_sinpif)
1577       SinCalls.push_back(CI);
1578     else if (Func == LibFunc_cospif)
1579       CosCalls.push_back(CI);
1580     else if (Func == LibFunc_sincospif_stret)
1581       SinCosCalls.push_back(CI);
1582   } else {
1583     if (Func == LibFunc_sinpi)
1584       SinCalls.push_back(CI);
1585     else if (Func == LibFunc_cospi)
1586       CosCalls.push_back(CI);
1587     else if (Func == LibFunc_sincospi_stret)
1588       SinCosCalls.push_back(CI);
1589   }
1590 }
1591 
1592 //===----------------------------------------------------------------------===//
1593 // Integer Library Call Optimizations
1594 //===----------------------------------------------------------------------===//
1595 
1596 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
1597   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
1598   Value *Op = CI->getArgOperand(0);
1599   Type *ArgType = Op->getType();
1600   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1601                                        Intrinsic::cttz, ArgType);
1602   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
1603   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
1604   V = B.CreateIntCast(V, B.getInt32Ty(), false);
1605 
1606   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
1607   return B.CreateSelect(Cond, V, B.getInt32(0));
1608 }
1609 
1610 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
1611   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
1612   Value *Op = CI->getArgOperand(0);
1613   Type *ArgType = Op->getType();
1614   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1615                                        Intrinsic::ctlz, ArgType);
1616   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
1617   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
1618                   V);
1619   return B.CreateIntCast(V, CI->getType(), false);
1620 }
1621 
1622 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
1623   // abs(x) -> x >s -1 ? x : -x
1624   Value *Op = CI->getArgOperand(0);
1625   Value *Pos =
1626       B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos");
1627   Value *Neg = B.CreateNeg(Op, "neg");
1628   return B.CreateSelect(Pos, Op, Neg);
1629 }
1630 
1631 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
1632   // isdigit(c) -> (c-'0') <u 10
1633   Value *Op = CI->getArgOperand(0);
1634   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
1635   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
1636   return B.CreateZExt(Op, CI->getType());
1637 }
1638 
1639 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
1640   // isascii(c) -> c <u 128
1641   Value *Op = CI->getArgOperand(0);
1642   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
1643   return B.CreateZExt(Op, CI->getType());
1644 }
1645 
1646 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
1647   // toascii(c) -> c & 0x7f
1648   return B.CreateAnd(CI->getArgOperand(0),
1649                      ConstantInt::get(CI->getType(), 0x7F));
1650 }
1651 
1652 //===----------------------------------------------------------------------===//
1653 // Formatting and IO Library Call Optimizations
1654 //===----------------------------------------------------------------------===//
1655 
1656 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
1657 
1658 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
1659                                                  int StreamArg) {
1660   Function *Callee = CI->getCalledFunction();
1661   // Error reporting calls should be cold, mark them as such.
1662   // This applies even to non-builtin calls: it is only a hint and applies to
1663   // functions that the frontend might not understand as builtins.
1664 
1665   // This heuristic was suggested in:
1666   // Improving Static Branch Prediction in a Compiler
1667   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
1668   // Proceedings of PACT'98, Oct. 1998, IEEE
1669   if (!CI->hasFnAttr(Attribute::Cold) &&
1670       isReportingError(Callee, CI, StreamArg)) {
1671     CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
1672   }
1673 
1674   return nullptr;
1675 }
1676 
1677 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
1678   if (!Callee || !Callee->isDeclaration())
1679     return false;
1680 
1681   if (StreamArg < 0)
1682     return true;
1683 
1684   // These functions might be considered cold, but only if their stream
1685   // argument is stderr.
1686 
1687   if (StreamArg >= (int)CI->getNumArgOperands())
1688     return false;
1689   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
1690   if (!LI)
1691     return false;
1692   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
1693   if (!GV || !GV->isDeclaration())
1694     return false;
1695   return GV->getName() == "stderr";
1696 }
1697 
1698 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
1699   // Check for a fixed format string.
1700   StringRef FormatStr;
1701   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
1702     return nullptr;
1703 
1704   // Empty format string -> noop.
1705   if (FormatStr.empty()) // Tolerate printf's declared void.
1706     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
1707 
1708   // Do not do any of the following transformations if the printf return value
1709   // is used, in general the printf return value is not compatible with either
1710   // putchar() or puts().
1711   if (!CI->use_empty())
1712     return nullptr;
1713 
1714   // printf("x") -> putchar('x'), even for "%" and "%%".
1715   if (FormatStr.size() == 1 || FormatStr == "%%")
1716     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
1717 
1718   // printf("%s", "a") --> putchar('a')
1719   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
1720     StringRef ChrStr;
1721     if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
1722       return nullptr;
1723     if (ChrStr.size() != 1)
1724       return nullptr;
1725     return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
1726   }
1727 
1728   // printf("foo\n") --> puts("foo")
1729   if (FormatStr[FormatStr.size() - 1] == '\n' &&
1730       FormatStr.find('%') == StringRef::npos) { // No format characters.
1731     // Create a string literal with no \n on it.  We expect the constant merge
1732     // pass to be run after this pass, to merge duplicate strings.
1733     FormatStr = FormatStr.drop_back();
1734     Value *GV = B.CreateGlobalString(FormatStr, "str");
1735     return emitPutS(GV, B, TLI);
1736   }
1737 
1738   // Optimize specific format strings.
1739   // printf("%c", chr) --> putchar(chr)
1740   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
1741       CI->getArgOperand(1)->getType()->isIntegerTy())
1742     return emitPutChar(CI->getArgOperand(1), B, TLI);
1743 
1744   // printf("%s\n", str) --> puts(str)
1745   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
1746       CI->getArgOperand(1)->getType()->isPointerTy())
1747     return emitPutS(CI->getArgOperand(1), B, TLI);
1748   return nullptr;
1749 }
1750 
1751 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
1752 
1753   Function *Callee = CI->getCalledFunction();
1754   FunctionType *FT = Callee->getFunctionType();
1755   if (Value *V = optimizePrintFString(CI, B)) {
1756     return V;
1757   }
1758 
1759   // printf(format, ...) -> iprintf(format, ...) if no floating point
1760   // arguments.
1761   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
1762     Module *M = B.GetInsertBlock()->getParent()->getParent();
1763     Constant *IPrintFFn =
1764         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
1765     CallInst *New = cast<CallInst>(CI->clone());
1766     New->setCalledFunction(IPrintFFn);
1767     B.Insert(New);
1768     return New;
1769   }
1770   return nullptr;
1771 }
1772 
1773 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
1774   // Check for a fixed format string.
1775   StringRef FormatStr;
1776   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1777     return nullptr;
1778 
1779   // If we just have a format string (nothing else crazy) transform it.
1780   if (CI->getNumArgOperands() == 2) {
1781     // Make sure there's no % in the constant array.  We could try to handle
1782     // %% -> % in the future if we cared.
1783     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1784       if (FormatStr[i] == '%')
1785         return nullptr; // we found a format specifier, bail out.
1786 
1787     // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
1788     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
1789                    ConstantInt::get(DL.getIntPtrType(CI->getContext()),
1790                                     FormatStr.size() + 1),
1791                    1); // Copy the null byte.
1792     return ConstantInt::get(CI->getType(), FormatStr.size());
1793   }
1794 
1795   // The remaining optimizations require the format string to be "%s" or "%c"
1796   // and have an extra operand.
1797   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1798       CI->getNumArgOperands() < 3)
1799     return nullptr;
1800 
1801   // Decode the second character of the format string.
1802   if (FormatStr[1] == 'c') {
1803     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
1804     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1805       return nullptr;
1806     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
1807     Value *Ptr = castToCStr(CI->getArgOperand(0), B);
1808     B.CreateStore(V, Ptr);
1809     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
1810     B.CreateStore(B.getInt8(0), Ptr);
1811 
1812     return ConstantInt::get(CI->getType(), 1);
1813   }
1814 
1815   if (FormatStr[1] == 's') {
1816     // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1817     if (!CI->getArgOperand(2)->getType()->isPointerTy())
1818       return nullptr;
1819 
1820     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
1821     if (!Len)
1822       return nullptr;
1823     Value *IncLen =
1824         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
1825     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
1826 
1827     // The sprintf result is the unincremented number of bytes in the string.
1828     return B.CreateIntCast(Len, CI->getType(), false);
1829   }
1830   return nullptr;
1831 }
1832 
1833 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
1834   Function *Callee = CI->getCalledFunction();
1835   FunctionType *FT = Callee->getFunctionType();
1836   if (Value *V = optimizeSPrintFString(CI, B)) {
1837     return V;
1838   }
1839 
1840   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
1841   // point arguments.
1842   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
1843     Module *M = B.GetInsertBlock()->getParent()->getParent();
1844     Constant *SIPrintFFn =
1845         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
1846     CallInst *New = cast<CallInst>(CI->clone());
1847     New->setCalledFunction(SIPrintFFn);
1848     B.Insert(New);
1849     return New;
1850   }
1851   return nullptr;
1852 }
1853 
1854 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
1855   optimizeErrorReporting(CI, B, 0);
1856 
1857   // All the optimizations depend on the format string.
1858   StringRef FormatStr;
1859   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1860     return nullptr;
1861 
1862   // Do not do any of the following transformations if the fprintf return
1863   // value is used, in general the fprintf return value is not compatible
1864   // with fwrite(), fputc() or fputs().
1865   if (!CI->use_empty())
1866     return nullptr;
1867 
1868   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
1869   if (CI->getNumArgOperands() == 2) {
1870     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1871       if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
1872         return nullptr;        // We found a format specifier.
1873 
1874     return emitFWrite(
1875         CI->getArgOperand(1),
1876         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
1877         CI->getArgOperand(0), B, DL, TLI);
1878   }
1879 
1880   // The remaining optimizations require the format string to be "%s" or "%c"
1881   // and have an extra operand.
1882   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1883       CI->getNumArgOperands() < 3)
1884     return nullptr;
1885 
1886   // Decode the second character of the format string.
1887   if (FormatStr[1] == 'c') {
1888     // fprintf(F, "%c", chr) --> fputc(chr, F)
1889     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1890       return nullptr;
1891     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1892   }
1893 
1894   if (FormatStr[1] == 's') {
1895     // fprintf(F, "%s", str) --> fputs(str, F)
1896     if (!CI->getArgOperand(2)->getType()->isPointerTy())
1897       return nullptr;
1898     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1899   }
1900   return nullptr;
1901 }
1902 
1903 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
1904   Function *Callee = CI->getCalledFunction();
1905   FunctionType *FT = Callee->getFunctionType();
1906   if (Value *V = optimizeFPrintFString(CI, B)) {
1907     return V;
1908   }
1909 
1910   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
1911   // floating point arguments.
1912   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
1913     Module *M = B.GetInsertBlock()->getParent()->getParent();
1914     Constant *FIPrintFFn =
1915         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
1916     CallInst *New = cast<CallInst>(CI->clone());
1917     New->setCalledFunction(FIPrintFFn);
1918     B.Insert(New);
1919     return New;
1920   }
1921   return nullptr;
1922 }
1923 
1924 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
1925   optimizeErrorReporting(CI, B, 3);
1926 
1927   // Get the element size and count.
1928   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
1929   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1930   if (!SizeC || !CountC)
1931     return nullptr;
1932   uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
1933 
1934   // If this is writing zero records, remove the call (it's a noop).
1935   if (Bytes == 0)
1936     return ConstantInt::get(CI->getType(), 0);
1937 
1938   // If this is writing one byte, turn it into fputc.
1939   // This optimisation is only valid, if the return value is unused.
1940   if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
1941     Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char");
1942     Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
1943     return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
1944   }
1945 
1946   return nullptr;
1947 }
1948 
1949 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
1950   optimizeErrorReporting(CI, B, 1);
1951 
1952   // Don't rewrite fputs to fwrite when optimising for size because fwrite
1953   // requires more arguments and thus extra MOVs are required.
1954   if (CI->getParent()->getParent()->optForSize())
1955     return nullptr;
1956 
1957   // We can't optimize if return value is used.
1958   if (!CI->use_empty())
1959     return nullptr;
1960 
1961   // fputs(s,F) --> fwrite(s,1,strlen(s),F)
1962   uint64_t Len = GetStringLength(CI->getArgOperand(0));
1963   if (!Len)
1964     return nullptr;
1965 
1966   // Known to have no uses (see above).
1967   return emitFWrite(
1968       CI->getArgOperand(0),
1969       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
1970       CI->getArgOperand(1), B, DL, TLI);
1971 }
1972 
1973 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
1974   // Check for a constant string.
1975   StringRef Str;
1976   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
1977     return nullptr;
1978 
1979   if (Str.empty() && CI->use_empty()) {
1980     // puts("") -> putchar('\n')
1981     Value *Res = emitPutChar(B.getInt32('\n'), B, TLI);
1982     if (CI->use_empty() || !Res)
1983       return Res;
1984     return B.CreateIntCast(Res, CI->getType(), true);
1985   }
1986 
1987   return nullptr;
1988 }
1989 
1990 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
1991   LibFunc Func;
1992   SmallString<20> FloatFuncName = FuncName;
1993   FloatFuncName += 'f';
1994   if (TLI->getLibFunc(FloatFuncName, Func))
1995     return TLI->has(Func);
1996   return false;
1997 }
1998 
1999 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2000                                                       IRBuilder<> &Builder) {
2001   LibFunc Func;
2002   Function *Callee = CI->getCalledFunction();
2003   // Check for string/memory library functions.
2004   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2005     // Make sure we never change the calling convention.
2006     assert((ignoreCallingConv(Func) ||
2007             isCallingConvCCompatible(CI)) &&
2008       "Optimizing string/memory libcall would change the calling convention");
2009     switch (Func) {
2010     case LibFunc_strcat:
2011       return optimizeStrCat(CI, Builder);
2012     case LibFunc_strncat:
2013       return optimizeStrNCat(CI, Builder);
2014     case LibFunc_strchr:
2015       return optimizeStrChr(CI, Builder);
2016     case LibFunc_strrchr:
2017       return optimizeStrRChr(CI, Builder);
2018     case LibFunc_strcmp:
2019       return optimizeStrCmp(CI, Builder);
2020     case LibFunc_strncmp:
2021       return optimizeStrNCmp(CI, Builder);
2022     case LibFunc_strcpy:
2023       return optimizeStrCpy(CI, Builder);
2024     case LibFunc_stpcpy:
2025       return optimizeStpCpy(CI, Builder);
2026     case LibFunc_strncpy:
2027       return optimizeStrNCpy(CI, Builder);
2028     case LibFunc_strlen:
2029       return optimizeStrLen(CI, Builder);
2030     case LibFunc_strpbrk:
2031       return optimizeStrPBrk(CI, Builder);
2032     case LibFunc_strtol:
2033     case LibFunc_strtod:
2034     case LibFunc_strtof:
2035     case LibFunc_strtoul:
2036     case LibFunc_strtoll:
2037     case LibFunc_strtold:
2038     case LibFunc_strtoull:
2039       return optimizeStrTo(CI, Builder);
2040     case LibFunc_strspn:
2041       return optimizeStrSpn(CI, Builder);
2042     case LibFunc_strcspn:
2043       return optimizeStrCSpn(CI, Builder);
2044     case LibFunc_strstr:
2045       return optimizeStrStr(CI, Builder);
2046     case LibFunc_memchr:
2047       return optimizeMemChr(CI, Builder);
2048     case LibFunc_memcmp:
2049       return optimizeMemCmp(CI, Builder);
2050     case LibFunc_memcpy:
2051       return optimizeMemCpy(CI, Builder);
2052     case LibFunc_memmove:
2053       return optimizeMemMove(CI, Builder);
2054     case LibFunc_memset:
2055       return optimizeMemSet(CI, Builder);
2056     case LibFunc_wcslen:
2057       return optimizeWcslen(CI, Builder);
2058     default:
2059       break;
2060     }
2061   }
2062   return nullptr;
2063 }
2064 
2065 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2066                                                        LibFunc Func,
2067                                                        IRBuilder<> &Builder) {
2068   // Don't optimize calls that require strict floating point semantics.
2069   if (CI->isStrictFP())
2070     return nullptr;
2071 
2072   switch (Func) {
2073   case LibFunc_cosf:
2074   case LibFunc_cos:
2075   case LibFunc_cosl:
2076     return optimizeCos(CI, Builder);
2077   case LibFunc_sinpif:
2078   case LibFunc_sinpi:
2079   case LibFunc_cospif:
2080   case LibFunc_cospi:
2081     return optimizeSinCosPi(CI, Builder);
2082   case LibFunc_powf:
2083   case LibFunc_pow:
2084   case LibFunc_powl:
2085     return optimizePow(CI, Builder);
2086   case LibFunc_exp2l:
2087   case LibFunc_exp2:
2088   case LibFunc_exp2f:
2089     return optimizeExp2(CI, Builder);
2090   case LibFunc_fabsf:
2091   case LibFunc_fabs:
2092   case LibFunc_fabsl:
2093     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2094   case LibFunc_sqrtf:
2095   case LibFunc_sqrt:
2096   case LibFunc_sqrtl:
2097     return optimizeSqrt(CI, Builder);
2098   case LibFunc_log:
2099   case LibFunc_log10:
2100   case LibFunc_log1p:
2101   case LibFunc_log2:
2102   case LibFunc_logb:
2103     return optimizeLog(CI, Builder);
2104   case LibFunc_tan:
2105   case LibFunc_tanf:
2106   case LibFunc_tanl:
2107     return optimizeTan(CI, Builder);
2108   case LibFunc_ceil:
2109     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2110   case LibFunc_floor:
2111     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2112   case LibFunc_round:
2113     return replaceUnaryCall(CI, Builder, Intrinsic::round);
2114   case LibFunc_nearbyint:
2115     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2116   case LibFunc_rint:
2117     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2118   case LibFunc_trunc:
2119     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
2120   case LibFunc_acos:
2121   case LibFunc_acosh:
2122   case LibFunc_asin:
2123   case LibFunc_asinh:
2124   case LibFunc_atan:
2125   case LibFunc_atanh:
2126   case LibFunc_cbrt:
2127   case LibFunc_cosh:
2128   case LibFunc_exp:
2129   case LibFunc_exp10:
2130   case LibFunc_expm1:
2131   case LibFunc_sin:
2132   case LibFunc_sinh:
2133   case LibFunc_tanh:
2134     if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
2135       return optimizeUnaryDoubleFP(CI, Builder, true);
2136     return nullptr;
2137   case LibFunc_copysign:
2138     if (hasFloatVersion(CI->getCalledFunction()->getName()))
2139       return optimizeBinaryDoubleFP(CI, Builder);
2140     return nullptr;
2141   case LibFunc_fminf:
2142   case LibFunc_fmin:
2143   case LibFunc_fminl:
2144   case LibFunc_fmaxf:
2145   case LibFunc_fmax:
2146   case LibFunc_fmaxl:
2147     return optimizeFMinFMax(CI, Builder);
2148   default:
2149     return nullptr;
2150   }
2151 }
2152 
2153 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
2154   // TODO: Split out the code below that operates on FP calls so that
2155   //       we can all non-FP calls with the StrictFP attribute to be
2156   //       optimized.
2157   if (CI->isNoBuiltin())
2158     return nullptr;
2159 
2160   LibFunc Func;
2161   Function *Callee = CI->getCalledFunction();
2162 
2163   SmallVector<OperandBundleDef, 2> OpBundles;
2164   CI->getOperandBundlesAsDefs(OpBundles);
2165   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2166   bool isCallingConvC = isCallingConvCCompatible(CI);
2167 
2168   // Command-line parameter overrides instruction attribute.
2169   // This can't be moved to optimizeFloatingPointLibCall() because it may be
2170   // used by the intrinsic optimizations.
2171   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
2172     UnsafeFPShrink = EnableUnsafeFPShrink;
2173   else if (isa<FPMathOperator>(CI) && CI->hasUnsafeAlgebra())
2174     UnsafeFPShrink = true;
2175 
2176   // First, check for intrinsics.
2177   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
2178     if (!isCallingConvC)
2179       return nullptr;
2180     // The FP intrinsics have corresponding constrained versions so we don't
2181     // need to check for the StrictFP attribute here.
2182     switch (II->getIntrinsicID()) {
2183     case Intrinsic::pow:
2184       return optimizePow(CI, Builder);
2185     case Intrinsic::exp2:
2186       return optimizeExp2(CI, Builder);
2187     case Intrinsic::log:
2188       return optimizeLog(CI, Builder);
2189     case Intrinsic::sqrt:
2190       return optimizeSqrt(CI, Builder);
2191     // TODO: Use foldMallocMemset() with memset intrinsic.
2192     default:
2193       return nullptr;
2194     }
2195   }
2196 
2197   // Also try to simplify calls to fortified library functions.
2198   if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
2199     // Try to further simplify the result.
2200     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
2201     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
2202       // Use an IR Builder from SimplifiedCI if available instead of CI
2203       // to guarantee we reach all uses we might replace later on.
2204       IRBuilder<> TmpBuilder(SimplifiedCI);
2205       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
2206         // If we were able to further simplify, remove the now redundant call.
2207         SimplifiedCI->replaceAllUsesWith(V);
2208         SimplifiedCI->eraseFromParent();
2209         return V;
2210       }
2211     }
2212     return SimplifiedFortifiedCI;
2213   }
2214 
2215   // Then check for known library functions.
2216   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2217     // We never change the calling convention.
2218     if (!ignoreCallingConv(Func) && !isCallingConvC)
2219       return nullptr;
2220     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
2221       return V;
2222     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
2223       return V;
2224     switch (Func) {
2225     case LibFunc_ffs:
2226     case LibFunc_ffsl:
2227     case LibFunc_ffsll:
2228       return optimizeFFS(CI, Builder);
2229     case LibFunc_fls:
2230     case LibFunc_flsl:
2231     case LibFunc_flsll:
2232       return optimizeFls(CI, Builder);
2233     case LibFunc_abs:
2234     case LibFunc_labs:
2235     case LibFunc_llabs:
2236       return optimizeAbs(CI, Builder);
2237     case LibFunc_isdigit:
2238       return optimizeIsDigit(CI, Builder);
2239     case LibFunc_isascii:
2240       return optimizeIsAscii(CI, Builder);
2241     case LibFunc_toascii:
2242       return optimizeToAscii(CI, Builder);
2243     case LibFunc_printf:
2244       return optimizePrintF(CI, Builder);
2245     case LibFunc_sprintf:
2246       return optimizeSPrintF(CI, Builder);
2247     case LibFunc_fprintf:
2248       return optimizeFPrintF(CI, Builder);
2249     case LibFunc_fwrite:
2250       return optimizeFWrite(CI, Builder);
2251     case LibFunc_fputs:
2252       return optimizeFPuts(CI, Builder);
2253     case LibFunc_puts:
2254       return optimizePuts(CI, Builder);
2255     case LibFunc_perror:
2256       return optimizeErrorReporting(CI, Builder);
2257     case LibFunc_vfprintf:
2258     case LibFunc_fiprintf:
2259       return optimizeErrorReporting(CI, Builder, 0);
2260     case LibFunc_fputc:
2261       return optimizeErrorReporting(CI, Builder, 1);
2262     default:
2263       return nullptr;
2264     }
2265   }
2266   return nullptr;
2267 }
2268 
2269 LibCallSimplifier::LibCallSimplifier(
2270     const DataLayout &DL, const TargetLibraryInfo *TLI,
2271     OptimizationRemarkEmitter &ORE,
2272     function_ref<void(Instruction *, Value *)> Replacer)
2273     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE),
2274       UnsafeFPShrink(false), Replacer(Replacer) {}
2275 
2276 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
2277   // Indirect through the replacer used in this instance.
2278   Replacer(I, With);
2279 }
2280 
2281 // TODO:
2282 //   Additional cases that we need to add to this file:
2283 //
2284 // cbrt:
2285 //   * cbrt(expN(X))  -> expN(x/3)
2286 //   * cbrt(sqrt(x))  -> pow(x,1/6)
2287 //   * cbrt(cbrt(x))  -> pow(x,1/9)
2288 //
2289 // exp, expf, expl:
2290 //   * exp(log(x))  -> x
2291 //
2292 // log, logf, logl:
2293 //   * log(exp(x))   -> x
2294 //   * log(exp(y))   -> y*log(e)
2295 //   * log(exp10(y)) -> y*log(10)
2296 //   * log(sqrt(x))  -> 0.5*log(x)
2297 //
2298 // pow, powf, powl:
2299 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
2300 //   * pow(pow(x,y),z)-> pow(x,y*z)
2301 //
2302 // signbit:
2303 //   * signbit(cnst) -> cnst'
2304 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2305 //
2306 // sqrt, sqrtf, sqrtl:
2307 //   * sqrt(expN(x))  -> expN(x*0.5)
2308 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2309 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2310 //
2311 
2312 //===----------------------------------------------------------------------===//
2313 // Fortified Library Call Optimizations
2314 //===----------------------------------------------------------------------===//
2315 
2316 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
2317                                                          unsigned ObjSizeOp,
2318                                                          unsigned SizeOp,
2319                                                          bool isString) {
2320   if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
2321     return true;
2322   if (ConstantInt *ObjSizeCI =
2323           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
2324     if (ObjSizeCI->isMinusOne())
2325       return true;
2326     // If the object size wasn't -1 (unknown), bail out if we were asked to.
2327     if (OnlyLowerUnknownSize)
2328       return false;
2329     if (isString) {
2330       uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
2331       // If the length is 0 we don't know how long it is and so we can't
2332       // remove the check.
2333       if (Len == 0)
2334         return false;
2335       return ObjSizeCI->getZExtValue() >= Len;
2336     }
2337     if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
2338       return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
2339   }
2340   return false;
2341 }
2342 
2343 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
2344                                                      IRBuilder<> &B) {
2345   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2346     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2347                    CI->getArgOperand(2), 1);
2348     return CI->getArgOperand(0);
2349   }
2350   return nullptr;
2351 }
2352 
2353 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
2354                                                       IRBuilder<> &B) {
2355   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2356     B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
2357                     CI->getArgOperand(2), 1);
2358     return CI->getArgOperand(0);
2359   }
2360   return nullptr;
2361 }
2362 
2363 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
2364                                                      IRBuilder<> &B) {
2365   // TODO: Try foldMallocMemset() here.
2366 
2367   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2368     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
2369     B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
2370     return CI->getArgOperand(0);
2371   }
2372   return nullptr;
2373 }
2374 
2375 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
2376                                                       IRBuilder<> &B,
2377                                                       LibFunc Func) {
2378   Function *Callee = CI->getCalledFunction();
2379   StringRef Name = Callee->getName();
2380   const DataLayout &DL = CI->getModule()->getDataLayout();
2381   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
2382         *ObjSize = CI->getArgOperand(2);
2383 
2384   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
2385   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
2386     Value *StrLen = emitStrLen(Src, B, DL, TLI);
2387     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
2388   }
2389 
2390   // If a) we don't have any length information, or b) we know this will
2391   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
2392   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
2393   // TODO: It might be nice to get a maximum length out of the possible
2394   // string lengths for varying.
2395   if (isFortifiedCallFoldable(CI, 2, 1, true))
2396     return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
2397 
2398   if (OnlyLowerUnknownSize)
2399     return nullptr;
2400 
2401   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
2402   uint64_t Len = GetStringLength(Src);
2403   if (Len == 0)
2404     return nullptr;
2405 
2406   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
2407   Value *LenV = ConstantInt::get(SizeTTy, Len);
2408   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
2409   // If the function was an __stpcpy_chk, and we were able to fold it into
2410   // a __memcpy_chk, we still need to return the correct end pointer.
2411   if (Ret && Func == LibFunc_stpcpy_chk)
2412     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
2413   return Ret;
2414 }
2415 
2416 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
2417                                                        IRBuilder<> &B,
2418                                                        LibFunc Func) {
2419   Function *Callee = CI->getCalledFunction();
2420   StringRef Name = Callee->getName();
2421   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2422     Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2423                              CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
2424     return Ret;
2425   }
2426   return nullptr;
2427 }
2428 
2429 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
2430   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
2431   // Some clang users checked for _chk libcall availability using:
2432   //   __has_builtin(__builtin___memcpy_chk)
2433   // When compiling with -fno-builtin, this is always true.
2434   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
2435   // end up with fortified libcalls, which isn't acceptable in a freestanding
2436   // environment which only provides their non-fortified counterparts.
2437   //
2438   // Until we change clang and/or teach external users to check for availability
2439   // differently, disregard the "nobuiltin" attribute and TLI::has.
2440   //
2441   // PR23093.
2442 
2443   LibFunc Func;
2444   Function *Callee = CI->getCalledFunction();
2445 
2446   SmallVector<OperandBundleDef, 2> OpBundles;
2447   CI->getOperandBundlesAsDefs(OpBundles);
2448   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2449   bool isCallingConvC = isCallingConvCCompatible(CI);
2450 
2451   // First, check that this is a known library functions and that the prototype
2452   // is correct.
2453   if (!TLI->getLibFunc(*Callee, Func))
2454     return nullptr;
2455 
2456   // We never change the calling convention.
2457   if (!ignoreCallingConv(Func) && !isCallingConvC)
2458     return nullptr;
2459 
2460   switch (Func) {
2461   case LibFunc_memcpy_chk:
2462     return optimizeMemCpyChk(CI, Builder);
2463   case LibFunc_memmove_chk:
2464     return optimizeMemMoveChk(CI, Builder);
2465   case LibFunc_memset_chk:
2466     return optimizeMemSetChk(CI, Builder);
2467   case LibFunc_stpcpy_chk:
2468   case LibFunc_strcpy_chk:
2469     return optimizeStrpCpyChk(CI, Builder, Func);
2470   case LibFunc_stpncpy_chk:
2471   case LibFunc_strncpy_chk:
2472     return optimizeStrpNCpyChk(CI, Builder, Func);
2473   default:
2474     break;
2475   }
2476   return nullptr;
2477 }
2478 
2479 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
2480     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
2481     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
2482