1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Analysis/BlockFrequencyInfo.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ProfileSummaryInfo.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Transforms/Utils/Local.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/CaptureTracking.h" 27 #include "llvm/Analysis/Loads.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Transforms/Utils/BuildLibCalls.h" 39 #include "llvm/Transforms/Utils/SizeOpts.h" 40 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 static cl::opt<bool> 45 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 46 cl::init(false), 47 cl::desc("Enable unsafe double to float " 48 "shrinking for math lib calls")); 49 50 51 //===----------------------------------------------------------------------===// 52 // Helper Functions 53 //===----------------------------------------------------------------------===// 54 55 static bool ignoreCallingConv(LibFunc Func) { 56 return Func == LibFunc_abs || Func == LibFunc_labs || 57 Func == LibFunc_llabs || Func == LibFunc_strlen; 58 } 59 60 static bool isCallingConvCCompatible(CallInst *CI) { 61 switch(CI->getCallingConv()) { 62 default: 63 return false; 64 case llvm::CallingConv::C: 65 return true; 66 case llvm::CallingConv::ARM_APCS: 67 case llvm::CallingConv::ARM_AAPCS: 68 case llvm::CallingConv::ARM_AAPCS_VFP: { 69 70 // The iOS ABI diverges from the standard in some cases, so for now don't 71 // try to simplify those calls. 72 if (Triple(CI->getModule()->getTargetTriple()).isiOS()) 73 return false; 74 75 auto *FuncTy = CI->getFunctionType(); 76 77 if (!FuncTy->getReturnType()->isPointerTy() && 78 !FuncTy->getReturnType()->isIntegerTy() && 79 !FuncTy->getReturnType()->isVoidTy()) 80 return false; 81 82 for (auto Param : FuncTy->params()) { 83 if (!Param->isPointerTy() && !Param->isIntegerTy()) 84 return false; 85 } 86 return true; 87 } 88 } 89 return false; 90 } 91 92 /// Return true if it is only used in equality comparisons with With. 93 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 94 for (User *U : V->users()) { 95 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 96 if (IC->isEquality() && IC->getOperand(1) == With) 97 continue; 98 // Unknown instruction. 99 return false; 100 } 101 return true; 102 } 103 104 static bool callHasFloatingPointArgument(const CallInst *CI) { 105 return any_of(CI->operands(), [](const Use &OI) { 106 return OI->getType()->isFloatingPointTy(); 107 }); 108 } 109 110 static bool callHasFP128Argument(const CallInst *CI) { 111 return any_of(CI->operands(), [](const Use &OI) { 112 return OI->getType()->isFP128Ty(); 113 }); 114 } 115 116 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 117 if (Base < 2 || Base > 36) 118 // handle special zero base 119 if (Base != 0) 120 return nullptr; 121 122 char *End; 123 std::string nptr = Str.str(); 124 errno = 0; 125 long long int Result = strtoll(nptr.c_str(), &End, Base); 126 if (errno) 127 return nullptr; 128 129 // if we assume all possible target locales are ASCII supersets, 130 // then if strtoll successfully parses a number on the host, 131 // it will also successfully parse the same way on the target 132 if (*End != '\0') 133 return nullptr; 134 135 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 136 return nullptr; 137 138 return ConstantInt::get(CI->getType(), Result); 139 } 140 141 static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B, 142 const TargetLibraryInfo *TLI) { 143 CallInst *FOpen = dyn_cast<CallInst>(File); 144 if (!FOpen) 145 return false; 146 147 Function *InnerCallee = FOpen->getCalledFunction(); 148 if (!InnerCallee) 149 return false; 150 151 LibFunc Func; 152 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 153 Func != LibFunc_fopen) 154 return false; 155 156 inferLibFuncAttributes(*CI->getCalledFunction(), *TLI); 157 if (PointerMayBeCaptured(File, true, true)) 158 return false; 159 160 return true; 161 } 162 163 static bool isOnlyUsedInComparisonWithZero(Value *V) { 164 for (User *U : V->users()) { 165 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 166 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 167 if (C->isNullValue()) 168 continue; 169 // Unknown instruction. 170 return false; 171 } 172 return true; 173 } 174 175 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 176 const DataLayout &DL) { 177 if (!isOnlyUsedInComparisonWithZero(CI)) 178 return false; 179 180 if (!isDereferenceableAndAlignedPointer(Str, 1, APInt(64, Len), DL)) 181 return false; 182 183 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 184 return false; 185 186 return true; 187 } 188 189 //===----------------------------------------------------------------------===// 190 // String and Memory Library Call Optimizations 191 //===----------------------------------------------------------------------===// 192 193 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 194 // Extract some information from the instruction 195 Value *Dst = CI->getArgOperand(0); 196 Value *Src = CI->getArgOperand(1); 197 198 // See if we can get the length of the input string. 199 uint64_t Len = GetStringLength(Src); 200 if (Len == 0) 201 return nullptr; 202 --Len; // Unbias length. 203 204 // Handle the simple, do-nothing case: strcat(x, "") -> x 205 if (Len == 0) 206 return Dst; 207 208 return emitStrLenMemCpy(Src, Dst, Len, B); 209 } 210 211 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 212 IRBuilder<> &B) { 213 // We need to find the end of the destination string. That's where the 214 // memory is to be moved to. We just generate a call to strlen. 215 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 216 if (!DstLen) 217 return nullptr; 218 219 // Now that we have the destination's length, we must index into the 220 // destination's pointer to get the actual memcpy destination (end of 221 // the string .. we're concatenating). 222 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 223 224 // We have enough information to now generate the memcpy call to do the 225 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 226 B.CreateMemCpy(CpyDst, 1, Src, 1, 227 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 228 return Dst; 229 } 230 231 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 232 // Extract some information from the instruction. 233 Value *Dst = CI->getArgOperand(0); 234 Value *Src = CI->getArgOperand(1); 235 uint64_t Len; 236 237 // We don't do anything if length is not constant. 238 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 239 Len = LengthArg->getZExtValue(); 240 else 241 return nullptr; 242 243 // See if we can get the length of the input string. 244 uint64_t SrcLen = GetStringLength(Src); 245 if (SrcLen == 0) 246 return nullptr; 247 --SrcLen; // Unbias length. 248 249 // Handle the simple, do-nothing cases: 250 // strncat(x, "", c) -> x 251 // strncat(x, c, 0) -> x 252 if (SrcLen == 0 || Len == 0) 253 return Dst; 254 255 // We don't optimize this case. 256 if (Len < SrcLen) 257 return nullptr; 258 259 // strncat(x, s, c) -> strcat(x, s) 260 // s is constant so the strcat can be optimized further. 261 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 262 } 263 264 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 265 Function *Callee = CI->getCalledFunction(); 266 FunctionType *FT = Callee->getFunctionType(); 267 Value *SrcStr = CI->getArgOperand(0); 268 269 // If the second operand is non-constant, see if we can compute the length 270 // of the input string and turn this into memchr. 271 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 272 if (!CharC) { 273 uint64_t Len = GetStringLength(SrcStr); 274 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 275 return nullptr; 276 277 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 278 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 279 B, DL, TLI); 280 } 281 282 // Otherwise, the character is a constant, see if the first argument is 283 // a string literal. If so, we can constant fold. 284 StringRef Str; 285 if (!getConstantStringInfo(SrcStr, Str)) { 286 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 287 return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI), 288 "strchr"); 289 return nullptr; 290 } 291 292 // Compute the offset, make sure to handle the case when we're searching for 293 // zero (a weird way to spell strlen). 294 size_t I = (0xFF & CharC->getSExtValue()) == 0 295 ? Str.size() 296 : Str.find(CharC->getSExtValue()); 297 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 298 return Constant::getNullValue(CI->getType()); 299 300 // strchr(s+n,c) -> gep(s+n+i,c) 301 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 302 } 303 304 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 305 Value *SrcStr = CI->getArgOperand(0); 306 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 307 308 // Cannot fold anything if we're not looking for a constant. 309 if (!CharC) 310 return nullptr; 311 312 StringRef Str; 313 if (!getConstantStringInfo(SrcStr, Str)) { 314 // strrchr(s, 0) -> strchr(s, 0) 315 if (CharC->isZero()) 316 return emitStrChr(SrcStr, '\0', B, TLI); 317 return nullptr; 318 } 319 320 // Compute the offset. 321 size_t I = (0xFF & CharC->getSExtValue()) == 0 322 ? Str.size() 323 : Str.rfind(CharC->getSExtValue()); 324 if (I == StringRef::npos) // Didn't find the char. Return null. 325 return Constant::getNullValue(CI->getType()); 326 327 // strrchr(s+n,c) -> gep(s+n+i,c) 328 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 329 } 330 331 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 332 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 333 if (Str1P == Str2P) // strcmp(x,x) -> 0 334 return ConstantInt::get(CI->getType(), 0); 335 336 StringRef Str1, Str2; 337 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 338 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 339 340 // strcmp(x, y) -> cnst (if both x and y are constant strings) 341 if (HasStr1 && HasStr2) 342 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 343 344 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 345 return B.CreateNeg(B.CreateZExt( 346 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 347 348 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 349 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 350 CI->getType()); 351 352 // strcmp(P, "x") -> memcmp(P, "x", 2) 353 uint64_t Len1 = GetStringLength(Str1P); 354 uint64_t Len2 = GetStringLength(Str2P); 355 if (Len1 && Len2) { 356 return emitMemCmp(Str1P, Str2P, 357 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 358 std::min(Len1, Len2)), 359 B, DL, TLI); 360 } 361 362 // strcmp to memcmp 363 if (!HasStr1 && HasStr2) { 364 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 365 return emitMemCmp( 366 Str1P, Str2P, 367 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 368 TLI); 369 } else if (HasStr1 && !HasStr2) { 370 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 371 return emitMemCmp( 372 Str1P, Str2P, 373 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 374 TLI); 375 } 376 377 return nullptr; 378 } 379 380 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 381 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 382 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 383 return ConstantInt::get(CI->getType(), 0); 384 385 // Get the length argument if it is constant. 386 uint64_t Length; 387 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 388 Length = LengthArg->getZExtValue(); 389 else 390 return nullptr; 391 392 if (Length == 0) // strncmp(x,y,0) -> 0 393 return ConstantInt::get(CI->getType(), 0); 394 395 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 396 return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 397 398 StringRef Str1, Str2; 399 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 400 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 401 402 // strncmp(x, y) -> cnst (if both x and y are constant strings) 403 if (HasStr1 && HasStr2) { 404 StringRef SubStr1 = Str1.substr(0, Length); 405 StringRef SubStr2 = Str2.substr(0, Length); 406 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 407 } 408 409 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 410 return B.CreateNeg(B.CreateZExt( 411 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 412 413 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 414 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 415 CI->getType()); 416 417 uint64_t Len1 = GetStringLength(Str1P); 418 uint64_t Len2 = GetStringLength(Str2P); 419 420 // strncmp to memcmp 421 if (!HasStr1 && HasStr2) { 422 Len2 = std::min(Len2, Length); 423 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 424 return emitMemCmp( 425 Str1P, Str2P, 426 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 427 TLI); 428 } else if (HasStr1 && !HasStr2) { 429 Len1 = std::min(Len1, Length); 430 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 431 return emitMemCmp( 432 Str1P, Str2P, 433 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 434 TLI); 435 } 436 437 return nullptr; 438 } 439 440 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 441 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 442 if (Dst == Src) // strcpy(x,x) -> x 443 return Src; 444 445 // See if we can get the length of the input string. 446 uint64_t Len = GetStringLength(Src); 447 if (Len == 0) 448 return nullptr; 449 450 // We have enough information to now generate the memcpy call to do the 451 // copy for us. Make a memcpy to copy the nul byte with align = 1. 452 B.CreateMemCpy(Dst, 1, Src, 1, 453 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 454 return Dst; 455 } 456 457 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 458 Function *Callee = CI->getCalledFunction(); 459 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 460 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 461 Value *StrLen = emitStrLen(Src, B, DL, TLI); 462 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 463 } 464 465 // See if we can get the length of the input string. 466 uint64_t Len = GetStringLength(Src); 467 if (Len == 0) 468 return nullptr; 469 470 Type *PT = Callee->getFunctionType()->getParamType(0); 471 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 472 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 473 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 474 475 // We have enough information to now generate the memcpy call to do the 476 // copy for us. Make a memcpy to copy the nul byte with align = 1. 477 B.CreateMemCpy(Dst, 1, Src, 1, LenV); 478 return DstEnd; 479 } 480 481 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 482 Function *Callee = CI->getCalledFunction(); 483 Value *Dst = CI->getArgOperand(0); 484 Value *Src = CI->getArgOperand(1); 485 Value *LenOp = CI->getArgOperand(2); 486 487 // See if we can get the length of the input string. 488 uint64_t SrcLen = GetStringLength(Src); 489 if (SrcLen == 0) 490 return nullptr; 491 --SrcLen; 492 493 if (SrcLen == 0) { 494 // strncpy(x, "", y) -> memset(align 1 x, '\0', y) 495 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 496 return Dst; 497 } 498 499 uint64_t Len; 500 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 501 Len = LengthArg->getZExtValue(); 502 else 503 return nullptr; 504 505 if (Len == 0) 506 return Dst; // strncpy(x, y, 0) -> x 507 508 // Let strncpy handle the zero padding 509 if (Len > SrcLen + 1) 510 return nullptr; 511 512 Type *PT = Callee->getFunctionType()->getParamType(0); 513 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 514 B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len)); 515 516 return Dst; 517 } 518 519 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B, 520 unsigned CharSize) { 521 Value *Src = CI->getArgOperand(0); 522 523 // Constant folding: strlen("xyz") -> 3 524 if (uint64_t Len = GetStringLength(Src, CharSize)) 525 return ConstantInt::get(CI->getType(), Len - 1); 526 527 // If s is a constant pointer pointing to a string literal, we can fold 528 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 529 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 530 // We only try to simplify strlen when the pointer s points to an array 531 // of i8. Otherwise, we would need to scale the offset x before doing the 532 // subtraction. This will make the optimization more complex, and it's not 533 // very useful because calling strlen for a pointer of other types is 534 // very uncommon. 535 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 536 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 537 return nullptr; 538 539 ConstantDataArraySlice Slice; 540 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 541 uint64_t NullTermIdx; 542 if (Slice.Array == nullptr) { 543 NullTermIdx = 0; 544 } else { 545 NullTermIdx = ~((uint64_t)0); 546 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 547 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 548 NullTermIdx = I; 549 break; 550 } 551 } 552 // If the string does not have '\0', leave it to strlen to compute 553 // its length. 554 if (NullTermIdx == ~((uint64_t)0)) 555 return nullptr; 556 } 557 558 Value *Offset = GEP->getOperand(2); 559 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 560 Known.Zero.flipAllBits(); 561 uint64_t ArrSize = 562 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 563 564 // KnownZero's bits are flipped, so zeros in KnownZero now represent 565 // bits known to be zeros in Offset, and ones in KnowZero represent 566 // bits unknown in Offset. Therefore, Offset is known to be in range 567 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 568 // unsigned-less-than NullTermIdx. 569 // 570 // If Offset is not provably in the range [0, NullTermIdx], we can still 571 // optimize if we can prove that the program has undefined behavior when 572 // Offset is outside that range. That is the case when GEP->getOperand(0) 573 // is a pointer to an object whose memory extent is NullTermIdx+1. 574 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 575 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 576 NullTermIdx == ArrSize - 1)) { 577 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 578 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 579 Offset); 580 } 581 } 582 583 return nullptr; 584 } 585 586 // strlen(x?"foo":"bars") --> x ? 3 : 4 587 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 588 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 589 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 590 if (LenTrue && LenFalse) { 591 ORE.emit([&]() { 592 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 593 << "folded strlen(select) to select of constants"; 594 }); 595 return B.CreateSelect(SI->getCondition(), 596 ConstantInt::get(CI->getType(), LenTrue - 1), 597 ConstantInt::get(CI->getType(), LenFalse - 1)); 598 } 599 } 600 601 // strlen(x) != 0 --> *x != 0 602 // strlen(x) == 0 --> *x == 0 603 if (isOnlyUsedInZeroEqualityComparison(CI)) 604 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), 605 CI->getType()); 606 607 return nullptr; 608 } 609 610 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 611 return optimizeStringLength(CI, B, 8); 612 } 613 614 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) { 615 Module &M = *CI->getModule(); 616 unsigned WCharSize = TLI->getWCharSize(M) * 8; 617 // We cannot perform this optimization without wchar_size metadata. 618 if (WCharSize == 0) 619 return nullptr; 620 621 return optimizeStringLength(CI, B, WCharSize); 622 } 623 624 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 625 StringRef S1, S2; 626 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 627 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 628 629 // strpbrk(s, "") -> nullptr 630 // strpbrk("", s) -> nullptr 631 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 632 return Constant::getNullValue(CI->getType()); 633 634 // Constant folding. 635 if (HasS1 && HasS2) { 636 size_t I = S1.find_first_of(S2); 637 if (I == StringRef::npos) // No match. 638 return Constant::getNullValue(CI->getType()); 639 640 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 641 "strpbrk"); 642 } 643 644 // strpbrk(s, "a") -> strchr(s, 'a') 645 if (HasS2 && S2.size() == 1) 646 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 647 648 return nullptr; 649 } 650 651 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 652 Value *EndPtr = CI->getArgOperand(1); 653 if (isa<ConstantPointerNull>(EndPtr)) { 654 // With a null EndPtr, this function won't capture the main argument. 655 // It would be readonly too, except that it still may write to errno. 656 CI->addParamAttr(0, Attribute::NoCapture); 657 } 658 659 return nullptr; 660 } 661 662 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 663 StringRef S1, S2; 664 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 665 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 666 667 // strspn(s, "") -> 0 668 // strspn("", s) -> 0 669 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 670 return Constant::getNullValue(CI->getType()); 671 672 // Constant folding. 673 if (HasS1 && HasS2) { 674 size_t Pos = S1.find_first_not_of(S2); 675 if (Pos == StringRef::npos) 676 Pos = S1.size(); 677 return ConstantInt::get(CI->getType(), Pos); 678 } 679 680 return nullptr; 681 } 682 683 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 684 StringRef S1, S2; 685 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 686 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 687 688 // strcspn("", s) -> 0 689 if (HasS1 && S1.empty()) 690 return Constant::getNullValue(CI->getType()); 691 692 // Constant folding. 693 if (HasS1 && HasS2) { 694 size_t Pos = S1.find_first_of(S2); 695 if (Pos == StringRef::npos) 696 Pos = S1.size(); 697 return ConstantInt::get(CI->getType(), Pos); 698 } 699 700 // strcspn(s, "") -> strlen(s) 701 if (HasS2 && S2.empty()) 702 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 703 704 return nullptr; 705 } 706 707 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 708 // fold strstr(x, x) -> x. 709 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 710 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 711 712 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 713 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 714 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 715 if (!StrLen) 716 return nullptr; 717 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 718 StrLen, B, DL, TLI); 719 if (!StrNCmp) 720 return nullptr; 721 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 722 ICmpInst *Old = cast<ICmpInst>(*UI++); 723 Value *Cmp = 724 B.CreateICmp(Old->getPredicate(), StrNCmp, 725 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 726 replaceAllUsesWith(Old, Cmp); 727 } 728 return CI; 729 } 730 731 // See if either input string is a constant string. 732 StringRef SearchStr, ToFindStr; 733 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 734 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 735 736 // fold strstr(x, "") -> x. 737 if (HasStr2 && ToFindStr.empty()) 738 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 739 740 // If both strings are known, constant fold it. 741 if (HasStr1 && HasStr2) { 742 size_t Offset = SearchStr.find(ToFindStr); 743 744 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 745 return Constant::getNullValue(CI->getType()); 746 747 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 748 Value *Result = castToCStr(CI->getArgOperand(0), B); 749 Result = 750 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 751 return B.CreateBitCast(Result, CI->getType()); 752 } 753 754 // fold strstr(x, "y") -> strchr(x, 'y'). 755 if (HasStr2 && ToFindStr.size() == 1) { 756 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 757 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 758 } 759 return nullptr; 760 } 761 762 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { 763 Value *SrcStr = CI->getArgOperand(0); 764 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 765 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 766 767 // memchr(x, y, 0) -> null 768 if (LenC && LenC->isZero()) 769 return Constant::getNullValue(CI->getType()); 770 771 // From now on we need at least constant length and string. 772 StringRef Str; 773 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 774 return nullptr; 775 776 // Truncate the string to LenC. If Str is smaller than LenC we will still only 777 // scan the string, as reading past the end of it is undefined and we can just 778 // return null if we don't find the char. 779 Str = Str.substr(0, LenC->getZExtValue()); 780 781 // If the char is variable but the input str and length are not we can turn 782 // this memchr call into a simple bit field test. Of course this only works 783 // when the return value is only checked against null. 784 // 785 // It would be really nice to reuse switch lowering here but we can't change 786 // the CFG at this point. 787 // 788 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 789 // != 0 790 // after bounds check. 791 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 792 unsigned char Max = 793 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 794 reinterpret_cast<const unsigned char *>(Str.end())); 795 796 // Make sure the bit field we're about to create fits in a register on the 797 // target. 798 // FIXME: On a 64 bit architecture this prevents us from using the 799 // interesting range of alpha ascii chars. We could do better by emitting 800 // two bitfields or shifting the range by 64 if no lower chars are used. 801 if (!DL.fitsInLegalInteger(Max + 1)) 802 return nullptr; 803 804 // For the bit field use a power-of-2 type with at least 8 bits to avoid 805 // creating unnecessary illegal types. 806 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 807 808 // Now build the bit field. 809 APInt Bitfield(Width, 0); 810 for (char C : Str) 811 Bitfield.setBit((unsigned char)C); 812 Value *BitfieldC = B.getInt(Bitfield); 813 814 // Adjust width of "C" to the bitfield width, then mask off the high bits. 815 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 816 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 817 818 // First check that the bit field access is within bounds. 819 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 820 "memchr.bounds"); 821 822 // Create code that checks if the given bit is set in the field. 823 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 824 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 825 826 // Finally merge both checks and cast to pointer type. The inttoptr 827 // implicitly zexts the i1 to intptr type. 828 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 829 } 830 831 // Check if all arguments are constants. If so, we can constant fold. 832 if (!CharC) 833 return nullptr; 834 835 // Compute the offset. 836 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 837 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 838 return Constant::getNullValue(CI->getType()); 839 840 // memchr(s+n,c,l) -> gep(s+n+i,c) 841 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 842 } 843 844 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 845 uint64_t Len, IRBuilder<> &B, 846 const DataLayout &DL) { 847 if (Len == 0) // memcmp(s1,s2,0) -> 0 848 return Constant::getNullValue(CI->getType()); 849 850 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 851 if (Len == 1) { 852 Value *LHSV = 853 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 854 CI->getType(), "lhsv"); 855 Value *RHSV = 856 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 857 CI->getType(), "rhsv"); 858 return B.CreateSub(LHSV, RHSV, "chardiff"); 859 } 860 861 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 862 // TODO: The case where both inputs are constants does not need to be limited 863 // to legal integers or equality comparison. See block below this. 864 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 865 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 866 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 867 868 // First, see if we can fold either argument to a constant. 869 Value *LHSV = nullptr; 870 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 871 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 872 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 873 } 874 Value *RHSV = nullptr; 875 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 876 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 877 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 878 } 879 880 // Don't generate unaligned loads. If either source is constant data, 881 // alignment doesn't matter for that source because there is no load. 882 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 883 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 884 if (!LHSV) { 885 Type *LHSPtrTy = 886 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 887 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 888 } 889 if (!RHSV) { 890 Type *RHSPtrTy = 891 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 892 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 893 } 894 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 895 } 896 } 897 898 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 899 // TODO: This is limited to i8 arrays. 900 StringRef LHSStr, RHSStr; 901 if (getConstantStringInfo(LHS, LHSStr) && 902 getConstantStringInfo(RHS, RHSStr)) { 903 // Make sure we're not reading out-of-bounds memory. 904 if (Len > LHSStr.size() || Len > RHSStr.size()) 905 return nullptr; 906 // Fold the memcmp and normalize the result. This way we get consistent 907 // results across multiple platforms. 908 uint64_t Ret = 0; 909 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 910 if (Cmp < 0) 911 Ret = -1; 912 else if (Cmp > 0) 913 Ret = 1; 914 return ConstantInt::get(CI->getType(), Ret); 915 } 916 return nullptr; 917 } 918 919 // Most simplifications for memcmp also apply to bcmp. 920 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 921 IRBuilder<> &B) { 922 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 923 Value *Size = CI->getArgOperand(2); 924 925 if (LHS == RHS) // memcmp(s,s,x) -> 0 926 return Constant::getNullValue(CI->getType()); 927 928 // Handle constant lengths. 929 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) 930 if (Value *Res = optimizeMemCmpConstantSize(CI, LHS, RHS, 931 LenC->getZExtValue(), B, DL)) 932 return Res; 933 934 return nullptr; 935 } 936 937 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 938 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 939 return V; 940 941 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 942 // `bcmp` can be more efficient than memcmp because it only has to know that 943 // there is a difference, not where it is. 944 if (isOnlyUsedInZeroEqualityComparison(CI) && TLI->has(LibFunc_bcmp)) { 945 Value *LHS = CI->getArgOperand(0); 946 Value *RHS = CI->getArgOperand(1); 947 Value *Size = CI->getArgOperand(2); 948 return emitBCmp(LHS, RHS, Size, B, DL, TLI); 949 } 950 951 return nullptr; 952 } 953 954 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilder<> &B) { 955 return optimizeMemCmpBCmpCommon(CI, B); 956 } 957 958 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { 959 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 960 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 961 CI->getArgOperand(2)); 962 return CI->getArgOperand(0); 963 } 964 965 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { 966 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 967 B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 968 CI->getArgOperand(2)); 969 return CI->getArgOperand(0); 970 } 971 972 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 973 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilder<> &B) { 974 // This has to be a memset of zeros (bzero). 975 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 976 if (!FillValue || FillValue->getZExtValue() != 0) 977 return nullptr; 978 979 // TODO: We should handle the case where the malloc has more than one use. 980 // This is necessary to optimize common patterns such as when the result of 981 // the malloc is checked against null or when a memset intrinsic is used in 982 // place of a memset library call. 983 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 984 if (!Malloc || !Malloc->hasOneUse()) 985 return nullptr; 986 987 // Is the inner call really malloc()? 988 Function *InnerCallee = Malloc->getCalledFunction(); 989 if (!InnerCallee) 990 return nullptr; 991 992 LibFunc Func; 993 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 994 Func != LibFunc_malloc) 995 return nullptr; 996 997 // The memset must cover the same number of bytes that are malloc'd. 998 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 999 return nullptr; 1000 1001 // Replace the malloc with a calloc. We need the data layout to know what the 1002 // actual size of a 'size_t' parameter is. 1003 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 1004 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 1005 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 1006 Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 1007 Malloc->getArgOperand(0), Malloc->getAttributes(), 1008 B, *TLI); 1009 if (!Calloc) 1010 return nullptr; 1011 1012 Malloc->replaceAllUsesWith(Calloc); 1013 eraseFromParent(Malloc); 1014 1015 return Calloc; 1016 } 1017 1018 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { 1019 if (auto *Calloc = foldMallocMemset(CI, B)) 1020 return Calloc; 1021 1022 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1023 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1024 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 1025 return CI->getArgOperand(0); 1026 } 1027 1028 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) { 1029 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1030 return emitMalloc(CI->getArgOperand(1), B, DL, TLI); 1031 1032 return nullptr; 1033 } 1034 1035 //===----------------------------------------------------------------------===// 1036 // Math Library Optimizations 1037 //===----------------------------------------------------------------------===// 1038 1039 // Replace a libcall \p CI with a call to intrinsic \p IID 1040 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) { 1041 // Propagate fast-math flags from the existing call to the new call. 1042 IRBuilder<>::FastMathFlagGuard Guard(B); 1043 B.setFastMathFlags(CI->getFastMathFlags()); 1044 1045 Module *M = CI->getModule(); 1046 Value *V = CI->getArgOperand(0); 1047 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1048 CallInst *NewCall = B.CreateCall(F, V); 1049 NewCall->takeName(CI); 1050 return NewCall; 1051 } 1052 1053 /// Return a variant of Val with float type. 1054 /// Currently this works in two cases: If Val is an FPExtension of a float 1055 /// value to something bigger, simply return the operand. 1056 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1057 /// loss of precision do so. 1058 static Value *valueHasFloatPrecision(Value *Val) { 1059 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1060 Value *Op = Cast->getOperand(0); 1061 if (Op->getType()->isFloatTy()) 1062 return Op; 1063 } 1064 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1065 APFloat F = Const->getValueAPF(); 1066 bool losesInfo; 1067 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1068 &losesInfo); 1069 if (!losesInfo) 1070 return ConstantFP::get(Const->getContext(), F); 1071 } 1072 return nullptr; 1073 } 1074 1075 /// Shrink double -> float functions. 1076 static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B, 1077 bool isBinary, bool isPrecise = false) { 1078 Function *CalleeFn = CI->getCalledFunction(); 1079 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1080 return nullptr; 1081 1082 // If not all the uses of the function are converted to float, then bail out. 1083 // This matters if the precision of the result is more important than the 1084 // precision of the arguments. 1085 if (isPrecise) 1086 for (User *U : CI->users()) { 1087 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1088 if (!Cast || !Cast->getType()->isFloatTy()) 1089 return nullptr; 1090 } 1091 1092 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1093 Value *V[2]; 1094 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1095 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1096 if (!V[0] || (isBinary && !V[1])) 1097 return nullptr; 1098 1099 StringRef CalleeNm = CalleeFn->getName(); 1100 AttributeList CalleeAt = CalleeFn->getAttributes(); 1101 bool CalleeIn = CalleeFn->isIntrinsic(); 1102 1103 // If call isn't an intrinsic, check that it isn't within a function with the 1104 // same name as the float version of this call, otherwise the result is an 1105 // infinite loop. For example, from MinGW-w64: 1106 // 1107 // float expf(float val) { return (float) exp((double) val); } 1108 if (!CalleeIn) { 1109 const Function *Fn = CI->getFunction(); 1110 StringRef FnName = Fn->getName(); 1111 if (FnName.back() == 'f' && 1112 FnName.size() == (CalleeNm.size() + 1) && 1113 FnName.startswith(CalleeNm)) 1114 return nullptr; 1115 } 1116 1117 // Propagate the math semantics from the current function to the new function. 1118 IRBuilder<>::FastMathFlagGuard Guard(B); 1119 B.setFastMathFlags(CI->getFastMathFlags()); 1120 1121 // g((double) float) -> (double) gf(float) 1122 Value *R; 1123 if (CalleeIn) { 1124 Module *M = CI->getModule(); 1125 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1126 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1127 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1128 } 1129 else 1130 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeNm, B, CalleeAt) 1131 : emitUnaryFloatFnCall(V[0], CalleeNm, B, CalleeAt); 1132 1133 return B.CreateFPExt(R, B.getDoubleTy()); 1134 } 1135 1136 /// Shrink double -> float for unary functions. 1137 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1138 bool isPrecise = false) { 1139 return optimizeDoubleFP(CI, B, false, isPrecise); 1140 } 1141 1142 /// Shrink double -> float for binary functions. 1143 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1144 bool isPrecise = false) { 1145 return optimizeDoubleFP(CI, B, true, isPrecise); 1146 } 1147 1148 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1149 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) { 1150 if (!CI->isFast()) 1151 return nullptr; 1152 1153 // Propagate fast-math flags from the existing call to new instructions. 1154 IRBuilder<>::FastMathFlagGuard Guard(B); 1155 B.setFastMathFlags(CI->getFastMathFlags()); 1156 1157 Value *Real, *Imag; 1158 if (CI->getNumArgOperands() == 1) { 1159 Value *Op = CI->getArgOperand(0); 1160 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1161 Real = B.CreateExtractValue(Op, 0, "real"); 1162 Imag = B.CreateExtractValue(Op, 1, "imag"); 1163 } else { 1164 assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); 1165 Real = CI->getArgOperand(0); 1166 Imag = CI->getArgOperand(1); 1167 } 1168 1169 Value *RealReal = B.CreateFMul(Real, Real); 1170 Value *ImagImag = B.CreateFMul(Imag, Imag); 1171 1172 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1173 CI->getType()); 1174 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); 1175 } 1176 1177 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1178 IRBuilder<> &B) { 1179 if (!isa<FPMathOperator>(Call)) 1180 return nullptr; 1181 1182 IRBuilder<>::FastMathFlagGuard Guard(B); 1183 B.setFastMathFlags(Call->getFastMathFlags()); 1184 1185 // TODO: Can this be shared to also handle LLVM intrinsics? 1186 Value *X; 1187 switch (Func) { 1188 case LibFunc_sin: 1189 case LibFunc_sinf: 1190 case LibFunc_sinl: 1191 case LibFunc_tan: 1192 case LibFunc_tanf: 1193 case LibFunc_tanl: 1194 // sin(-X) --> -sin(X) 1195 // tan(-X) --> -tan(X) 1196 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1197 return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X)); 1198 break; 1199 case LibFunc_cos: 1200 case LibFunc_cosf: 1201 case LibFunc_cosl: 1202 // cos(-X) --> cos(X) 1203 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1204 return B.CreateCall(Call->getCalledFunction(), X, "cos"); 1205 break; 1206 default: 1207 break; 1208 } 1209 return nullptr; 1210 } 1211 1212 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) { 1213 // Multiplications calculated using Addition Chains. 1214 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1215 1216 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1217 1218 if (InnerChain[Exp]) 1219 return InnerChain[Exp]; 1220 1221 static const unsigned AddChain[33][2] = { 1222 {0, 0}, // Unused. 1223 {0, 0}, // Unused (base case = pow1). 1224 {1, 1}, // Unused (pre-computed). 1225 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1226 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1227 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1228 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1229 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1230 }; 1231 1232 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1233 getPow(InnerChain, AddChain[Exp][1], B)); 1234 return InnerChain[Exp]; 1235 } 1236 1237 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1238 /// exp2(n * x) for pow(2.0 ** n, x); exp10(x) for pow(10.0, x). 1239 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) { 1240 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1241 AttributeList Attrs = Pow->getCalledFunction()->getAttributes(); 1242 Module *Mod = Pow->getModule(); 1243 Type *Ty = Pow->getType(); 1244 bool Ignored; 1245 1246 // Evaluate special cases related to a nested function as the base. 1247 1248 // pow(exp(x), y) -> exp(x * y) 1249 // pow(exp2(x), y) -> exp2(x * y) 1250 // If exp{,2}() is used only once, it is better to fold two transcendental 1251 // math functions into one. If used again, exp{,2}() would still have to be 1252 // called with the original argument, then keep both original transcendental 1253 // functions. However, this transformation is only safe with fully relaxed 1254 // math semantics, since, besides rounding differences, it changes overflow 1255 // and underflow behavior quite dramatically. For example: 1256 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1257 // Whereas: 1258 // exp(1000 * 0.001) = exp(1) 1259 // TODO: Loosen the requirement for fully relaxed math semantics. 1260 // TODO: Handle exp10() when more targets have it available. 1261 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1262 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1263 LibFunc LibFn; 1264 1265 Function *CalleeFn = BaseFn->getCalledFunction(); 1266 if (CalleeFn && 1267 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1268 StringRef ExpName; 1269 Intrinsic::ID ID; 1270 Value *ExpFn; 1271 LibFunc LibFnFloat; 1272 LibFunc LibFnDouble; 1273 LibFunc LibFnLongDouble; 1274 1275 switch (LibFn) { 1276 default: 1277 return nullptr; 1278 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1279 ExpName = TLI->getName(LibFunc_exp); 1280 ID = Intrinsic::exp; 1281 LibFnFloat = LibFunc_expf; 1282 LibFnDouble = LibFunc_exp; 1283 LibFnLongDouble = LibFunc_expl; 1284 break; 1285 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1286 ExpName = TLI->getName(LibFunc_exp2); 1287 ID = Intrinsic::exp2; 1288 LibFnFloat = LibFunc_exp2f; 1289 LibFnDouble = LibFunc_exp2; 1290 LibFnLongDouble = LibFunc_exp2l; 1291 break; 1292 } 1293 1294 // Create new exp{,2}() with the product as its argument. 1295 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1296 ExpFn = BaseFn->doesNotAccessMemory() 1297 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1298 FMul, ExpName) 1299 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1300 LibFnLongDouble, B, 1301 BaseFn->getAttributes()); 1302 1303 // Since the new exp{,2}() is different from the original one, dead code 1304 // elimination cannot be trusted to remove it, since it may have side 1305 // effects (e.g., errno). When the only consumer for the original 1306 // exp{,2}() is pow(), then it has to be explicitly erased. 1307 BaseFn->replaceAllUsesWith(ExpFn); 1308 eraseFromParent(BaseFn); 1309 1310 return ExpFn; 1311 } 1312 } 1313 1314 // Evaluate special cases related to a constant base. 1315 1316 const APFloat *BaseF; 1317 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1318 return nullptr; 1319 1320 // pow(2.0 ** n, x) -> exp2(n * x) 1321 if (hasUnaryFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1322 APFloat BaseR = APFloat(1.0); 1323 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1324 BaseR = BaseR / *BaseF; 1325 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1326 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1327 APSInt NI(64, false); 1328 if ((IsInteger || IsReciprocal) && 1329 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1330 APFloat::opOK && 1331 NI > 1 && NI.isPowerOf2()) { 1332 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1333 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1334 if (Pow->doesNotAccessMemory()) 1335 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1336 FMul, "exp2"); 1337 else 1338 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1339 LibFunc_exp2l, B, Attrs); 1340 } 1341 } 1342 1343 // pow(10.0, x) -> exp10(x) 1344 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1345 if (match(Base, m_SpecificFP(10.0)) && 1346 hasUnaryFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1347 return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f, 1348 LibFunc_exp10l, B, Attrs); 1349 1350 return nullptr; 1351 } 1352 1353 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1354 Module *M, IRBuilder<> &B, 1355 const TargetLibraryInfo *TLI) { 1356 // If errno is never set, then use the intrinsic for sqrt(). 1357 if (NoErrno) { 1358 Function *SqrtFn = 1359 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1360 return B.CreateCall(SqrtFn, V, "sqrt"); 1361 } 1362 1363 // Otherwise, use the libcall for sqrt(). 1364 if (hasUnaryFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, 1365 LibFunc_sqrtl)) 1366 // TODO: We also should check that the target can in fact lower the sqrt() 1367 // libcall. We currently have no way to ask this question, so we ask if 1368 // the target has a sqrt() libcall, which is not exactly the same. 1369 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1370 LibFunc_sqrtl, B, Attrs); 1371 1372 return nullptr; 1373 } 1374 1375 /// Use square root in place of pow(x, +/-0.5). 1376 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) { 1377 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1378 AttributeList Attrs = Pow->getCalledFunction()->getAttributes(); 1379 Module *Mod = Pow->getModule(); 1380 Type *Ty = Pow->getType(); 1381 1382 const APFloat *ExpoF; 1383 if (!match(Expo, m_APFloat(ExpoF)) || 1384 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1385 return nullptr; 1386 1387 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1388 if (!Sqrt) 1389 return nullptr; 1390 1391 // Handle signed zero base by expanding to fabs(sqrt(x)). 1392 if (!Pow->hasNoSignedZeros()) { 1393 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1394 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1395 } 1396 1397 // Handle non finite base by expanding to 1398 // (x == -infinity ? +infinity : sqrt(x)). 1399 if (!Pow->hasNoInfs()) { 1400 Value *PosInf = ConstantFP::getInfinity(Ty), 1401 *NegInf = ConstantFP::getInfinity(Ty, true); 1402 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1403 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1404 } 1405 1406 // If the exponent is negative, then get the reciprocal. 1407 if (ExpoF->isNegative()) 1408 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1409 1410 return Sqrt; 1411 } 1412 1413 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1414 IRBuilder<> &B) { 1415 Value *Args[] = {Base, Expo}; 1416 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType()); 1417 return B.CreateCall(F, Args); 1418 } 1419 1420 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) { 1421 Value *Base = Pow->getArgOperand(0); 1422 Value *Expo = Pow->getArgOperand(1); 1423 Function *Callee = Pow->getCalledFunction(); 1424 StringRef Name = Callee->getName(); 1425 Type *Ty = Pow->getType(); 1426 Module *M = Pow->getModule(); 1427 Value *Shrunk = nullptr; 1428 bool AllowApprox = Pow->hasApproxFunc(); 1429 bool Ignored; 1430 1431 // Bail out if simplifying libcalls to pow() is disabled. 1432 if (!hasUnaryFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl)) 1433 return nullptr; 1434 1435 // Propagate the math semantics from the call to any created instructions. 1436 IRBuilder<>::FastMathFlagGuard Guard(B); 1437 B.setFastMathFlags(Pow->getFastMathFlags()); 1438 1439 // Shrink pow() to powf() if the arguments are single precision, 1440 // unless the result is expected to be double precision. 1441 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 1442 hasFloatVersion(Name)) 1443 Shrunk = optimizeBinaryDoubleFP(Pow, B, true); 1444 1445 // Evaluate special cases related to the base. 1446 1447 // pow(1.0, x) -> 1.0 1448 if (match(Base, m_FPOne())) 1449 return Base; 1450 1451 // powf(x, sitofp(e)) -> powi(x, e) 1452 // powf(x, uitofp(e)) -> powi(x, e) 1453 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 1454 Value *IntExpo = cast<Instruction>(Expo)->getOperand(0); 1455 Value *NewExpo = nullptr; 1456 unsigned BitWidth = IntExpo->getType()->getPrimitiveSizeInBits(); 1457 if (isa<SIToFPInst>(Expo) && BitWidth == 32) 1458 NewExpo = IntExpo; 1459 else if (BitWidth < 32) 1460 NewExpo = isa<SIToFPInst>(Expo) ? B.CreateSExt(IntExpo, B.getInt32Ty()) 1461 : B.CreateZExt(IntExpo, B.getInt32Ty()); 1462 if (NewExpo) 1463 return createPowWithIntegerExponent(Base, NewExpo, M, B); 1464 } 1465 1466 if (Value *Exp = replacePowWithExp(Pow, B)) 1467 return Exp; 1468 1469 // Evaluate special cases related to the exponent. 1470 1471 // pow(x, -1.0) -> 1.0 / x 1472 if (match(Expo, m_SpecificFP(-1.0))) 1473 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1474 1475 // pow(x, 0.0) -> 1.0 1476 if (match(Expo, m_SpecificFP(0.0))) 1477 return ConstantFP::get(Ty, 1.0); 1478 1479 // pow(x, 1.0) -> x 1480 if (match(Expo, m_FPOne())) 1481 return Base; 1482 1483 // pow(x, 2.0) -> x * x 1484 if (match(Expo, m_SpecificFP(2.0))) 1485 return B.CreateFMul(Base, Base, "square"); 1486 1487 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1488 return Sqrt; 1489 1490 if (!AllowApprox) 1491 return Shrunk; 1492 1493 // pow(x, n) -> x * x * x * ... 1494 const APFloat *ExpoF; 1495 if (match(Expo, m_APFloat(ExpoF))) { 1496 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1497 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1498 // additional fmul. 1499 // TODO: This whole transformation should be backend specific (e.g. some 1500 // backends might prefer libcalls or the limit for the exponent might 1501 // be different) and it should also consider optimizing for size. 1502 APFloat LimF(ExpoF->getSemantics(), 33.0), 1503 ExpoA(abs(*ExpoF)); 1504 if (ExpoA.compare(LimF) == APFloat::cmpLessThan) { 1505 // This transformation applies to integer or integer+0.5 exponents only. 1506 // For integer+0.5, we create a sqrt(Base) call. 1507 Value *Sqrt = nullptr; 1508 if (!ExpoA.isInteger()) { 1509 APFloat Expo2 = ExpoA; 1510 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1511 // is no floating point exception and the result is an integer, then 1512 // ExpoA == integer + 0.5 1513 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1514 return nullptr; 1515 1516 if (!Expo2.isInteger()) 1517 return nullptr; 1518 1519 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1520 Pow->doesNotAccessMemory(), M, B, TLI); 1521 } 1522 1523 // We will memoize intermediate products of the Addition Chain. 1524 Value *InnerChain[33] = {nullptr}; 1525 InnerChain[1] = Base; 1526 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1527 1528 // We cannot readily convert a non-double type (like float) to a double. 1529 // So we first convert it to something which could be converted to double. 1530 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1531 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1532 1533 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1534 if (Sqrt) 1535 FMul = B.CreateFMul(FMul, Sqrt); 1536 1537 // If the exponent is negative, then get the reciprocal. 1538 if (ExpoF->isNegative()) 1539 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1540 1541 return FMul; 1542 } 1543 1544 APSInt IntExpo(32, /*isUnsigned=*/false); 1545 // powf(x, C) -> powi(x, C) iff C is a constant signed integer value 1546 if (ExpoF->isInteger() && 1547 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 1548 APFloat::opOK) { 1549 return createPowWithIntegerExponent( 1550 Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B); 1551 } 1552 } 1553 1554 return Shrunk; 1555 } 1556 1557 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1558 Function *Callee = CI->getCalledFunction(); 1559 Value *Ret = nullptr; 1560 StringRef Name = Callee->getName(); 1561 if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name)) 1562 Ret = optimizeUnaryDoubleFP(CI, B, true); 1563 1564 Value *Op = CI->getArgOperand(0); 1565 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1566 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1567 LibFunc LdExp = LibFunc_ldexpl; 1568 if (Op->getType()->isFloatTy()) 1569 LdExp = LibFunc_ldexpf; 1570 else if (Op->getType()->isDoubleTy()) 1571 LdExp = LibFunc_ldexp; 1572 1573 if (TLI->has(LdExp)) { 1574 Value *LdExpArg = nullptr; 1575 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 1576 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 1577 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 1578 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 1579 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 1580 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 1581 } 1582 1583 if (LdExpArg) { 1584 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); 1585 if (!Op->getType()->isFloatTy()) 1586 One = ConstantExpr::getFPExtend(One, Op->getType()); 1587 1588 Module *M = CI->getModule(); 1589 FunctionCallee NewCallee = M->getOrInsertFunction( 1590 TLI->getName(LdExp), Op->getType(), Op->getType(), B.getInt32Ty()); 1591 CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg}); 1592 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 1593 CI->setCallingConv(F->getCallingConv()); 1594 1595 return CI; 1596 } 1597 } 1598 return Ret; 1599 } 1600 1601 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { 1602 // If we can shrink the call to a float function rather than a double 1603 // function, do that first. 1604 Function *Callee = CI->getCalledFunction(); 1605 StringRef Name = Callee->getName(); 1606 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1607 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1608 return Ret; 1609 1610 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 1611 // the intrinsics for improved optimization (for example, vectorization). 1612 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 1613 // From the C standard draft WG14/N1256: 1614 // "Ideally, fmax would be sensitive to the sign of zero, for example 1615 // fmax(-0.0, +0.0) would return +0; however, implementation in software 1616 // might be impractical." 1617 IRBuilder<>::FastMathFlagGuard Guard(B); 1618 FastMathFlags FMF = CI->getFastMathFlags(); 1619 FMF.setNoSignedZeros(); 1620 B.setFastMathFlags(FMF); 1621 1622 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 1623 : Intrinsic::maxnum; 1624 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 1625 return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) }); 1626 } 1627 1628 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { 1629 Function *Callee = CI->getCalledFunction(); 1630 Value *Ret = nullptr; 1631 StringRef Name = Callee->getName(); 1632 if (UnsafeFPShrink && hasFloatVersion(Name)) 1633 Ret = optimizeUnaryDoubleFP(CI, B, true); 1634 1635 if (!CI->isFast()) 1636 return Ret; 1637 Value *Op1 = CI->getArgOperand(0); 1638 auto *OpC = dyn_cast<CallInst>(Op1); 1639 1640 // The earlier call must also be 'fast' in order to do these transforms. 1641 if (!OpC || !OpC->isFast()) 1642 return Ret; 1643 1644 // log(pow(x,y)) -> y*log(x) 1645 // This is only applicable to log, log2, log10. 1646 if (Name != "log" && Name != "log2" && Name != "log10") 1647 return Ret; 1648 1649 IRBuilder<>::FastMathFlagGuard Guard(B); 1650 FastMathFlags FMF; 1651 FMF.setFast(); 1652 B.setFastMathFlags(FMF); 1653 1654 LibFunc Func; 1655 Function *F = OpC->getCalledFunction(); 1656 if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1657 Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow)) 1658 return B.CreateFMul(OpC->getArgOperand(1), 1659 emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, 1660 Callee->getAttributes()), "mul"); 1661 1662 // log(exp2(y)) -> y*log(2) 1663 if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && 1664 TLI->has(Func) && Func == LibFunc_exp2) 1665 return B.CreateFMul( 1666 OpC->getArgOperand(0), 1667 emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), 1668 Callee->getName(), B, Callee->getAttributes()), 1669 "logmul"); 1670 return Ret; 1671 } 1672 1673 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1674 Function *Callee = CI->getCalledFunction(); 1675 Value *Ret = nullptr; 1676 // TODO: Once we have a way (other than checking for the existince of the 1677 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 1678 // condition below. 1679 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 1680 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1681 Ret = optimizeUnaryDoubleFP(CI, B, true); 1682 1683 if (!CI->isFast()) 1684 return Ret; 1685 1686 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1687 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 1688 return Ret; 1689 1690 // We're looking for a repeated factor in a multiplication tree, 1691 // so we can do this fold: sqrt(x * x) -> fabs(x); 1692 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 1693 Value *Op0 = I->getOperand(0); 1694 Value *Op1 = I->getOperand(1); 1695 Value *RepeatOp = nullptr; 1696 Value *OtherOp = nullptr; 1697 if (Op0 == Op1) { 1698 // Simple match: the operands of the multiply are identical. 1699 RepeatOp = Op0; 1700 } else { 1701 // Look for a more complicated pattern: one of the operands is itself 1702 // a multiply, so search for a common factor in that multiply. 1703 // Note: We don't bother looking any deeper than this first level or for 1704 // variations of this pattern because instcombine's visitFMUL and/or the 1705 // reassociation pass should give us this form. 1706 Value *OtherMul0, *OtherMul1; 1707 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1708 // Pattern: sqrt((x * y) * z) 1709 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 1710 // Matched: sqrt((x * x) * z) 1711 RepeatOp = OtherMul0; 1712 OtherOp = Op1; 1713 } 1714 } 1715 } 1716 if (!RepeatOp) 1717 return Ret; 1718 1719 // Fast math flags for any created instructions should match the sqrt 1720 // and multiply. 1721 IRBuilder<>::FastMathFlagGuard Guard(B); 1722 B.setFastMathFlags(I->getFastMathFlags()); 1723 1724 // If we found a repeated factor, hoist it out of the square root and 1725 // replace it with the fabs of that factor. 1726 Module *M = Callee->getParent(); 1727 Type *ArgType = I->getType(); 1728 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1729 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1730 if (OtherOp) { 1731 // If we found a non-repeated factor, we still need to get its square 1732 // root. We then multiply that by the value that was simplified out 1733 // of the square root calculation. 1734 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1735 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1736 return B.CreateFMul(FabsCall, SqrtCall); 1737 } 1738 return FabsCall; 1739 } 1740 1741 // TODO: Generalize to handle any trig function and its inverse. 1742 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { 1743 Function *Callee = CI->getCalledFunction(); 1744 Value *Ret = nullptr; 1745 StringRef Name = Callee->getName(); 1746 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 1747 Ret = optimizeUnaryDoubleFP(CI, B, true); 1748 1749 Value *Op1 = CI->getArgOperand(0); 1750 auto *OpC = dyn_cast<CallInst>(Op1); 1751 if (!OpC) 1752 return Ret; 1753 1754 // Both calls must be 'fast' in order to remove them. 1755 if (!CI->isFast() || !OpC->isFast()) 1756 return Ret; 1757 1758 // tan(atan(x)) -> x 1759 // tanf(atanf(x)) -> x 1760 // tanl(atanl(x)) -> x 1761 LibFunc Func; 1762 Function *F = OpC->getCalledFunction(); 1763 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1764 ((Func == LibFunc_atan && Callee->getName() == "tan") || 1765 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 1766 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 1767 Ret = OpC->getArgOperand(0); 1768 return Ret; 1769 } 1770 1771 static bool isTrigLibCall(CallInst *CI) { 1772 // We can only hope to do anything useful if we can ignore things like errno 1773 // and floating-point exceptions. 1774 // We already checked the prototype. 1775 return CI->hasFnAttr(Attribute::NoUnwind) && 1776 CI->hasFnAttr(Attribute::ReadNone); 1777 } 1778 1779 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1780 bool UseFloat, Value *&Sin, Value *&Cos, 1781 Value *&SinCos) { 1782 Type *ArgTy = Arg->getType(); 1783 Type *ResTy; 1784 StringRef Name; 1785 1786 Triple T(OrigCallee->getParent()->getTargetTriple()); 1787 if (UseFloat) { 1788 Name = "__sincospif_stret"; 1789 1790 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1791 // x86_64 can't use {float, float} since that would be returned in both 1792 // xmm0 and xmm1, which isn't what a real struct would do. 1793 ResTy = T.getArch() == Triple::x86_64 1794 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1795 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 1796 } else { 1797 Name = "__sincospi_stret"; 1798 ResTy = StructType::get(ArgTy, ArgTy); 1799 } 1800 1801 Module *M = OrigCallee->getParent(); 1802 FunctionCallee Callee = 1803 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); 1804 1805 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1806 // If the argument is an instruction, it must dominate all uses so put our 1807 // sincos call there. 1808 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1809 } else { 1810 // Otherwise (e.g. for a constant) the beginning of the function is as 1811 // good a place as any. 1812 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1813 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1814 } 1815 1816 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1817 1818 if (SinCos->getType()->isStructTy()) { 1819 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1820 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1821 } else { 1822 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1823 "sinpi"); 1824 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1825 "cospi"); 1826 } 1827 } 1828 1829 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1830 // Make sure the prototype is as expected, otherwise the rest of the 1831 // function is probably invalid and likely to abort. 1832 if (!isTrigLibCall(CI)) 1833 return nullptr; 1834 1835 Value *Arg = CI->getArgOperand(0); 1836 SmallVector<CallInst *, 1> SinCalls; 1837 SmallVector<CallInst *, 1> CosCalls; 1838 SmallVector<CallInst *, 1> SinCosCalls; 1839 1840 bool IsFloat = Arg->getType()->isFloatTy(); 1841 1842 // Look for all compatible sinpi, cospi and sincospi calls with the same 1843 // argument. If there are enough (in some sense) we can make the 1844 // substitution. 1845 Function *F = CI->getFunction(); 1846 for (User *U : Arg->users()) 1847 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 1848 1849 // It's only worthwhile if both sinpi and cospi are actually used. 1850 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1851 return nullptr; 1852 1853 Value *Sin, *Cos, *SinCos; 1854 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1855 1856 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 1857 Value *Res) { 1858 for (CallInst *C : Calls) 1859 replaceAllUsesWith(C, Res); 1860 }; 1861 1862 replaceTrigInsts(SinCalls, Sin); 1863 replaceTrigInsts(CosCalls, Cos); 1864 replaceTrigInsts(SinCosCalls, SinCos); 1865 1866 return nullptr; 1867 } 1868 1869 void LibCallSimplifier::classifyArgUse( 1870 Value *Val, Function *F, bool IsFloat, 1871 SmallVectorImpl<CallInst *> &SinCalls, 1872 SmallVectorImpl<CallInst *> &CosCalls, 1873 SmallVectorImpl<CallInst *> &SinCosCalls) { 1874 CallInst *CI = dyn_cast<CallInst>(Val); 1875 1876 if (!CI) 1877 return; 1878 1879 // Don't consider calls in other functions. 1880 if (CI->getFunction() != F) 1881 return; 1882 1883 Function *Callee = CI->getCalledFunction(); 1884 LibFunc Func; 1885 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 1886 !isTrigLibCall(CI)) 1887 return; 1888 1889 if (IsFloat) { 1890 if (Func == LibFunc_sinpif) 1891 SinCalls.push_back(CI); 1892 else if (Func == LibFunc_cospif) 1893 CosCalls.push_back(CI); 1894 else if (Func == LibFunc_sincospif_stret) 1895 SinCosCalls.push_back(CI); 1896 } else { 1897 if (Func == LibFunc_sinpi) 1898 SinCalls.push_back(CI); 1899 else if (Func == LibFunc_cospi) 1900 CosCalls.push_back(CI); 1901 else if (Func == LibFunc_sincospi_stret) 1902 SinCosCalls.push_back(CI); 1903 } 1904 } 1905 1906 //===----------------------------------------------------------------------===// 1907 // Integer Library Call Optimizations 1908 //===----------------------------------------------------------------------===// 1909 1910 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1911 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1912 Value *Op = CI->getArgOperand(0); 1913 Type *ArgType = Op->getType(); 1914 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1915 Intrinsic::cttz, ArgType); 1916 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 1917 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1918 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1919 1920 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1921 return B.CreateSelect(Cond, V, B.getInt32(0)); 1922 } 1923 1924 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) { 1925 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 1926 Value *Op = CI->getArgOperand(0); 1927 Type *ArgType = Op->getType(); 1928 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1929 Intrinsic::ctlz, ArgType); 1930 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 1931 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 1932 V); 1933 return B.CreateIntCast(V, CI->getType(), false); 1934 } 1935 1936 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1937 // abs(x) -> x <s 0 ? -x : x 1938 // The negation has 'nsw' because abs of INT_MIN is undefined. 1939 Value *X = CI->getArgOperand(0); 1940 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 1941 Value *NegX = B.CreateNSWNeg(X, "neg"); 1942 return B.CreateSelect(IsNeg, NegX, X); 1943 } 1944 1945 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 1946 // isdigit(c) -> (c-'0') <u 10 1947 Value *Op = CI->getArgOperand(0); 1948 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1949 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1950 return B.CreateZExt(Op, CI->getType()); 1951 } 1952 1953 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 1954 // isascii(c) -> c <u 128 1955 Value *Op = CI->getArgOperand(0); 1956 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1957 return B.CreateZExt(Op, CI->getType()); 1958 } 1959 1960 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 1961 // toascii(c) -> c & 0x7f 1962 return B.CreateAnd(CI->getArgOperand(0), 1963 ConstantInt::get(CI->getType(), 0x7F)); 1964 } 1965 1966 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) { 1967 StringRef Str; 1968 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1969 return nullptr; 1970 1971 return convertStrToNumber(CI, Str, 10); 1972 } 1973 1974 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) { 1975 StringRef Str; 1976 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1977 return nullptr; 1978 1979 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 1980 return nullptr; 1981 1982 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 1983 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 1984 } 1985 1986 return nullptr; 1987 } 1988 1989 //===----------------------------------------------------------------------===// 1990 // Formatting and IO Library Call Optimizations 1991 //===----------------------------------------------------------------------===// 1992 1993 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 1994 1995 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 1996 int StreamArg) { 1997 Function *Callee = CI->getCalledFunction(); 1998 // Error reporting calls should be cold, mark them as such. 1999 // This applies even to non-builtin calls: it is only a hint and applies to 2000 // functions that the frontend might not understand as builtins. 2001 2002 // This heuristic was suggested in: 2003 // Improving Static Branch Prediction in a Compiler 2004 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2005 // Proceedings of PACT'98, Oct. 1998, IEEE 2006 if (!CI->hasFnAttr(Attribute::Cold) && 2007 isReportingError(Callee, CI, StreamArg)) { 2008 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 2009 } 2010 2011 return nullptr; 2012 } 2013 2014 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2015 if (!Callee || !Callee->isDeclaration()) 2016 return false; 2017 2018 if (StreamArg < 0) 2019 return true; 2020 2021 // These functions might be considered cold, but only if their stream 2022 // argument is stderr. 2023 2024 if (StreamArg >= (int)CI->getNumArgOperands()) 2025 return false; 2026 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2027 if (!LI) 2028 return false; 2029 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2030 if (!GV || !GV->isDeclaration()) 2031 return false; 2032 return GV->getName() == "stderr"; 2033 } 2034 2035 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 2036 // Check for a fixed format string. 2037 StringRef FormatStr; 2038 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2039 return nullptr; 2040 2041 // Empty format string -> noop. 2042 if (FormatStr.empty()) // Tolerate printf's declared void. 2043 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2044 2045 // Do not do any of the following transformations if the printf return value 2046 // is used, in general the printf return value is not compatible with either 2047 // putchar() or puts(). 2048 if (!CI->use_empty()) 2049 return nullptr; 2050 2051 // printf("x") -> putchar('x'), even for "%" and "%%". 2052 if (FormatStr.size() == 1 || FormatStr == "%%") 2053 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 2054 2055 // printf("%s", "a") --> putchar('a') 2056 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 2057 StringRef ChrStr; 2058 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 2059 return nullptr; 2060 if (ChrStr.size() != 1) 2061 return nullptr; 2062 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 2063 } 2064 2065 // printf("foo\n") --> puts("foo") 2066 if (FormatStr[FormatStr.size() - 1] == '\n' && 2067 FormatStr.find('%') == StringRef::npos) { // No format characters. 2068 // Create a string literal with no \n on it. We expect the constant merge 2069 // pass to be run after this pass, to merge duplicate strings. 2070 FormatStr = FormatStr.drop_back(); 2071 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2072 return emitPutS(GV, B, TLI); 2073 } 2074 2075 // Optimize specific format strings. 2076 // printf("%c", chr) --> putchar(chr) 2077 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 2078 CI->getArgOperand(1)->getType()->isIntegerTy()) 2079 return emitPutChar(CI->getArgOperand(1), B, TLI); 2080 2081 // printf("%s\n", str) --> puts(str) 2082 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 2083 CI->getArgOperand(1)->getType()->isPointerTy()) 2084 return emitPutS(CI->getArgOperand(1), B, TLI); 2085 return nullptr; 2086 } 2087 2088 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 2089 2090 Function *Callee = CI->getCalledFunction(); 2091 FunctionType *FT = Callee->getFunctionType(); 2092 if (Value *V = optimizePrintFString(CI, B)) { 2093 return V; 2094 } 2095 2096 // printf(format, ...) -> iprintf(format, ...) if no floating point 2097 // arguments. 2098 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2099 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2100 FunctionCallee IPrintFFn = 2101 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2102 CallInst *New = cast<CallInst>(CI->clone()); 2103 New->setCalledFunction(IPrintFFn); 2104 B.Insert(New); 2105 return New; 2106 } 2107 2108 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2109 // arguments. 2110 if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) { 2111 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2112 auto SmallPrintFFn = 2113 M->getOrInsertFunction(TLI->getName(LibFunc_small_printf), 2114 FT, Callee->getAttributes()); 2115 CallInst *New = cast<CallInst>(CI->clone()); 2116 New->setCalledFunction(SmallPrintFFn); 2117 B.Insert(New); 2118 return New; 2119 } 2120 2121 return nullptr; 2122 } 2123 2124 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 2125 // Check for a fixed format string. 2126 StringRef FormatStr; 2127 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2128 return nullptr; 2129 2130 // If we just have a format string (nothing else crazy) transform it. 2131 if (CI->getNumArgOperands() == 2) { 2132 // Make sure there's no % in the constant array. We could try to handle 2133 // %% -> % in the future if we cared. 2134 if (FormatStr.find('%') != StringRef::npos) 2135 return nullptr; // we found a format specifier, bail out. 2136 2137 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2138 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2139 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2140 FormatStr.size() + 1)); // Copy the null byte. 2141 return ConstantInt::get(CI->getType(), FormatStr.size()); 2142 } 2143 2144 // The remaining optimizations require the format string to be "%s" or "%c" 2145 // and have an extra operand. 2146 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2147 CI->getNumArgOperands() < 3) 2148 return nullptr; 2149 2150 // Decode the second character of the format string. 2151 if (FormatStr[1] == 'c') { 2152 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2153 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2154 return nullptr; 2155 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2156 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2157 B.CreateStore(V, Ptr); 2158 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2159 B.CreateStore(B.getInt8(0), Ptr); 2160 2161 return ConstantInt::get(CI->getType(), 1); 2162 } 2163 2164 if (FormatStr[1] == 's') { 2165 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2166 // strlen(str)+1) 2167 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2168 return nullptr; 2169 2170 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2171 if (!Len) 2172 return nullptr; 2173 Value *IncLen = 2174 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2175 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen); 2176 2177 // The sprintf result is the unincremented number of bytes in the string. 2178 return B.CreateIntCast(Len, CI->getType(), false); 2179 } 2180 return nullptr; 2181 } 2182 2183 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 2184 Function *Callee = CI->getCalledFunction(); 2185 FunctionType *FT = Callee->getFunctionType(); 2186 if (Value *V = optimizeSPrintFString(CI, B)) { 2187 return V; 2188 } 2189 2190 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2191 // point arguments. 2192 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2193 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2194 FunctionCallee SIPrintFFn = 2195 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2196 CallInst *New = cast<CallInst>(CI->clone()); 2197 New->setCalledFunction(SIPrintFFn); 2198 B.Insert(New); 2199 return New; 2200 } 2201 2202 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2203 // floating point arguments. 2204 if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) { 2205 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2206 auto SmallSPrintFFn = 2207 M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf), 2208 FT, Callee->getAttributes()); 2209 CallInst *New = cast<CallInst>(CI->clone()); 2210 New->setCalledFunction(SmallSPrintFFn); 2211 B.Insert(New); 2212 return New; 2213 } 2214 2215 return nullptr; 2216 } 2217 2218 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) { 2219 // Check for a fixed format string. 2220 StringRef FormatStr; 2221 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2222 return nullptr; 2223 2224 // Check for size 2225 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2226 if (!Size) 2227 return nullptr; 2228 2229 uint64_t N = Size->getZExtValue(); 2230 2231 // If we just have a format string (nothing else crazy) transform it. 2232 if (CI->getNumArgOperands() == 3) { 2233 // Make sure there's no % in the constant array. We could try to handle 2234 // %% -> % in the future if we cared. 2235 if (FormatStr.find('%') != StringRef::npos) 2236 return nullptr; // we found a format specifier, bail out. 2237 2238 if (N == 0) 2239 return ConstantInt::get(CI->getType(), FormatStr.size()); 2240 else if (N < FormatStr.size() + 1) 2241 return nullptr; 2242 2243 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2244 // strlen(fmt)+1) 2245 B.CreateMemCpy( 2246 CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, 2247 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2248 FormatStr.size() + 1)); // Copy the null byte. 2249 return ConstantInt::get(CI->getType(), FormatStr.size()); 2250 } 2251 2252 // The remaining optimizations require the format string to be "%s" or "%c" 2253 // and have an extra operand. 2254 if (FormatStr.size() == 2 && FormatStr[0] == '%' && 2255 CI->getNumArgOperands() == 4) { 2256 2257 // Decode the second character of the format string. 2258 if (FormatStr[1] == 'c') { 2259 if (N == 0) 2260 return ConstantInt::get(CI->getType(), 1); 2261 else if (N == 1) 2262 return nullptr; 2263 2264 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2265 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2266 return nullptr; 2267 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2268 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2269 B.CreateStore(V, Ptr); 2270 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2271 B.CreateStore(B.getInt8(0), Ptr); 2272 2273 return ConstantInt::get(CI->getType(), 1); 2274 } 2275 2276 if (FormatStr[1] == 's') { 2277 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2278 StringRef Str; 2279 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2280 return nullptr; 2281 2282 if (N == 0) 2283 return ConstantInt::get(CI->getType(), Str.size()); 2284 else if (N < Str.size() + 1) 2285 return nullptr; 2286 2287 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(3), 1, 2288 ConstantInt::get(CI->getType(), Str.size() + 1)); 2289 2290 // The snprintf result is the unincremented number of bytes in the string. 2291 return ConstantInt::get(CI->getType(), Str.size()); 2292 } 2293 } 2294 return nullptr; 2295 } 2296 2297 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) { 2298 if (Value *V = optimizeSnPrintFString(CI, B)) { 2299 return V; 2300 } 2301 2302 return nullptr; 2303 } 2304 2305 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 2306 optimizeErrorReporting(CI, B, 0); 2307 2308 // All the optimizations depend on the format string. 2309 StringRef FormatStr; 2310 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2311 return nullptr; 2312 2313 // Do not do any of the following transformations if the fprintf return 2314 // value is used, in general the fprintf return value is not compatible 2315 // with fwrite(), fputc() or fputs(). 2316 if (!CI->use_empty()) 2317 return nullptr; 2318 2319 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2320 if (CI->getNumArgOperands() == 2) { 2321 // Could handle %% -> % if we cared. 2322 if (FormatStr.find('%') != StringRef::npos) 2323 return nullptr; // We found a format specifier. 2324 2325 return emitFWrite( 2326 CI->getArgOperand(1), 2327 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 2328 CI->getArgOperand(0), B, DL, TLI); 2329 } 2330 2331 // The remaining optimizations require the format string to be "%s" or "%c" 2332 // and have an extra operand. 2333 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2334 CI->getNumArgOperands() < 3) 2335 return nullptr; 2336 2337 // Decode the second character of the format string. 2338 if (FormatStr[1] == 'c') { 2339 // fprintf(F, "%c", chr) --> fputc(chr, F) 2340 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2341 return nullptr; 2342 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2343 } 2344 2345 if (FormatStr[1] == 's') { 2346 // fprintf(F, "%s", str) --> fputs(str, F) 2347 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2348 return nullptr; 2349 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2350 } 2351 return nullptr; 2352 } 2353 2354 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 2355 Function *Callee = CI->getCalledFunction(); 2356 FunctionType *FT = Callee->getFunctionType(); 2357 if (Value *V = optimizeFPrintFString(CI, B)) { 2358 return V; 2359 } 2360 2361 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2362 // floating point arguments. 2363 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2364 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2365 FunctionCallee FIPrintFFn = 2366 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2367 CallInst *New = cast<CallInst>(CI->clone()); 2368 New->setCalledFunction(FIPrintFFn); 2369 B.Insert(New); 2370 return New; 2371 } 2372 2373 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2374 // 128-bit floating point arguments. 2375 if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) { 2376 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2377 auto SmallFPrintFFn = 2378 M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf), 2379 FT, Callee->getAttributes()); 2380 CallInst *New = cast<CallInst>(CI->clone()); 2381 New->setCalledFunction(SmallFPrintFFn); 2382 B.Insert(New); 2383 return New; 2384 } 2385 2386 return nullptr; 2387 } 2388 2389 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 2390 optimizeErrorReporting(CI, B, 3); 2391 2392 // Get the element size and count. 2393 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2394 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2395 if (SizeC && CountC) { 2396 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2397 2398 // If this is writing zero records, remove the call (it's a noop). 2399 if (Bytes == 0) 2400 return ConstantInt::get(CI->getType(), 0); 2401 2402 // If this is writing one byte, turn it into fputc. 2403 // This optimisation is only valid, if the return value is unused. 2404 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2405 Value *Char = B.CreateLoad(B.getInt8Ty(), 2406 castToCStr(CI->getArgOperand(0), B), "char"); 2407 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2408 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2409 } 2410 } 2411 2412 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) 2413 return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2414 CI->getArgOperand(2), CI->getArgOperand(3), B, DL, 2415 TLI); 2416 2417 return nullptr; 2418 } 2419 2420 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 2421 optimizeErrorReporting(CI, B, 1); 2422 2423 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2424 // requires more arguments and thus extra MOVs are required. 2425 bool OptForSize = CI->getFunction()->hasOptSize() || 2426 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 2427 if (OptForSize) 2428 return nullptr; 2429 2430 // Check if has any use 2431 if (!CI->use_empty()) { 2432 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) 2433 return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, 2434 TLI); 2435 else 2436 // We can't optimize if return value is used. 2437 return nullptr; 2438 } 2439 2440 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2441 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2442 if (!Len) 2443 return nullptr; 2444 2445 // Known to have no uses (see above). 2446 return emitFWrite( 2447 CI->getArgOperand(0), 2448 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2449 CI->getArgOperand(1), B, DL, TLI); 2450 } 2451 2452 Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) { 2453 optimizeErrorReporting(CI, B, 1); 2454 2455 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) 2456 return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, 2457 TLI); 2458 2459 return nullptr; 2460 } 2461 2462 Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) { 2463 if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI)) 2464 return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI); 2465 2466 return nullptr; 2467 } 2468 2469 Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) { 2470 if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI)) 2471 return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2472 CI->getArgOperand(2), B, TLI); 2473 2474 return nullptr; 2475 } 2476 2477 Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) { 2478 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) 2479 return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2480 CI->getArgOperand(2), CI->getArgOperand(3), B, DL, 2481 TLI); 2482 2483 return nullptr; 2484 } 2485 2486 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 2487 if (!CI->use_empty()) 2488 return nullptr; 2489 2490 // Check for a constant string. 2491 // puts("") -> putchar('\n') 2492 StringRef Str; 2493 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 2494 return emitPutChar(B.getInt32('\n'), B, TLI); 2495 2496 return nullptr; 2497 } 2498 2499 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2500 LibFunc Func; 2501 SmallString<20> FloatFuncName = FuncName; 2502 FloatFuncName += 'f'; 2503 if (TLI->getLibFunc(FloatFuncName, Func)) 2504 return TLI->has(Func); 2505 return false; 2506 } 2507 2508 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2509 IRBuilder<> &Builder) { 2510 LibFunc Func; 2511 Function *Callee = CI->getCalledFunction(); 2512 // Check for string/memory library functions. 2513 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2514 // Make sure we never change the calling convention. 2515 assert((ignoreCallingConv(Func) || 2516 isCallingConvCCompatible(CI)) && 2517 "Optimizing string/memory libcall would change the calling convention"); 2518 switch (Func) { 2519 case LibFunc_strcat: 2520 return optimizeStrCat(CI, Builder); 2521 case LibFunc_strncat: 2522 return optimizeStrNCat(CI, Builder); 2523 case LibFunc_strchr: 2524 return optimizeStrChr(CI, Builder); 2525 case LibFunc_strrchr: 2526 return optimizeStrRChr(CI, Builder); 2527 case LibFunc_strcmp: 2528 return optimizeStrCmp(CI, Builder); 2529 case LibFunc_strncmp: 2530 return optimizeStrNCmp(CI, Builder); 2531 case LibFunc_strcpy: 2532 return optimizeStrCpy(CI, Builder); 2533 case LibFunc_stpcpy: 2534 return optimizeStpCpy(CI, Builder); 2535 case LibFunc_strncpy: 2536 return optimizeStrNCpy(CI, Builder); 2537 case LibFunc_strlen: 2538 return optimizeStrLen(CI, Builder); 2539 case LibFunc_strpbrk: 2540 return optimizeStrPBrk(CI, Builder); 2541 case LibFunc_strtol: 2542 case LibFunc_strtod: 2543 case LibFunc_strtof: 2544 case LibFunc_strtoul: 2545 case LibFunc_strtoll: 2546 case LibFunc_strtold: 2547 case LibFunc_strtoull: 2548 return optimizeStrTo(CI, Builder); 2549 case LibFunc_strspn: 2550 return optimizeStrSpn(CI, Builder); 2551 case LibFunc_strcspn: 2552 return optimizeStrCSpn(CI, Builder); 2553 case LibFunc_strstr: 2554 return optimizeStrStr(CI, Builder); 2555 case LibFunc_memchr: 2556 return optimizeMemChr(CI, Builder); 2557 case LibFunc_bcmp: 2558 return optimizeBCmp(CI, Builder); 2559 case LibFunc_memcmp: 2560 return optimizeMemCmp(CI, Builder); 2561 case LibFunc_memcpy: 2562 return optimizeMemCpy(CI, Builder); 2563 case LibFunc_memmove: 2564 return optimizeMemMove(CI, Builder); 2565 case LibFunc_memset: 2566 return optimizeMemSet(CI, Builder); 2567 case LibFunc_realloc: 2568 return optimizeRealloc(CI, Builder); 2569 case LibFunc_wcslen: 2570 return optimizeWcslen(CI, Builder); 2571 default: 2572 break; 2573 } 2574 } 2575 return nullptr; 2576 } 2577 2578 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2579 LibFunc Func, 2580 IRBuilder<> &Builder) { 2581 // Don't optimize calls that require strict floating point semantics. 2582 if (CI->isStrictFP()) 2583 return nullptr; 2584 2585 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 2586 return V; 2587 2588 switch (Func) { 2589 case LibFunc_sinpif: 2590 case LibFunc_sinpi: 2591 case LibFunc_cospif: 2592 case LibFunc_cospi: 2593 return optimizeSinCosPi(CI, Builder); 2594 case LibFunc_powf: 2595 case LibFunc_pow: 2596 case LibFunc_powl: 2597 return optimizePow(CI, Builder); 2598 case LibFunc_exp2l: 2599 case LibFunc_exp2: 2600 case LibFunc_exp2f: 2601 return optimizeExp2(CI, Builder); 2602 case LibFunc_fabsf: 2603 case LibFunc_fabs: 2604 case LibFunc_fabsl: 2605 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2606 case LibFunc_sqrtf: 2607 case LibFunc_sqrt: 2608 case LibFunc_sqrtl: 2609 return optimizeSqrt(CI, Builder); 2610 case LibFunc_log: 2611 case LibFunc_log10: 2612 case LibFunc_log1p: 2613 case LibFunc_log2: 2614 case LibFunc_logb: 2615 return optimizeLog(CI, Builder); 2616 case LibFunc_tan: 2617 case LibFunc_tanf: 2618 case LibFunc_tanl: 2619 return optimizeTan(CI, Builder); 2620 case LibFunc_ceil: 2621 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2622 case LibFunc_floor: 2623 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2624 case LibFunc_round: 2625 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2626 case LibFunc_nearbyint: 2627 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2628 case LibFunc_rint: 2629 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2630 case LibFunc_trunc: 2631 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2632 case LibFunc_acos: 2633 case LibFunc_acosh: 2634 case LibFunc_asin: 2635 case LibFunc_asinh: 2636 case LibFunc_atan: 2637 case LibFunc_atanh: 2638 case LibFunc_cbrt: 2639 case LibFunc_cosh: 2640 case LibFunc_exp: 2641 case LibFunc_exp10: 2642 case LibFunc_expm1: 2643 case LibFunc_cos: 2644 case LibFunc_sin: 2645 case LibFunc_sinh: 2646 case LibFunc_tanh: 2647 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 2648 return optimizeUnaryDoubleFP(CI, Builder, true); 2649 return nullptr; 2650 case LibFunc_copysign: 2651 if (hasFloatVersion(CI->getCalledFunction()->getName())) 2652 return optimizeBinaryDoubleFP(CI, Builder); 2653 return nullptr; 2654 case LibFunc_fminf: 2655 case LibFunc_fmin: 2656 case LibFunc_fminl: 2657 case LibFunc_fmaxf: 2658 case LibFunc_fmax: 2659 case LibFunc_fmaxl: 2660 return optimizeFMinFMax(CI, Builder); 2661 case LibFunc_cabs: 2662 case LibFunc_cabsf: 2663 case LibFunc_cabsl: 2664 return optimizeCAbs(CI, Builder); 2665 default: 2666 return nullptr; 2667 } 2668 } 2669 2670 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 2671 // TODO: Split out the code below that operates on FP calls so that 2672 // we can all non-FP calls with the StrictFP attribute to be 2673 // optimized. 2674 if (CI->isNoBuiltin()) 2675 return nullptr; 2676 2677 LibFunc Func; 2678 Function *Callee = CI->getCalledFunction(); 2679 2680 SmallVector<OperandBundleDef, 2> OpBundles; 2681 CI->getOperandBundlesAsDefs(OpBundles); 2682 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2683 bool isCallingConvC = isCallingConvCCompatible(CI); 2684 2685 // Command-line parameter overrides instruction attribute. 2686 // This can't be moved to optimizeFloatingPointLibCall() because it may be 2687 // used by the intrinsic optimizations. 2688 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2689 UnsafeFPShrink = EnableUnsafeFPShrink; 2690 else if (isa<FPMathOperator>(CI) && CI->isFast()) 2691 UnsafeFPShrink = true; 2692 2693 // First, check for intrinsics. 2694 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2695 if (!isCallingConvC) 2696 return nullptr; 2697 // The FP intrinsics have corresponding constrained versions so we don't 2698 // need to check for the StrictFP attribute here. 2699 switch (II->getIntrinsicID()) { 2700 case Intrinsic::pow: 2701 return optimizePow(CI, Builder); 2702 case Intrinsic::exp2: 2703 return optimizeExp2(CI, Builder); 2704 case Intrinsic::log: 2705 return optimizeLog(CI, Builder); 2706 case Intrinsic::sqrt: 2707 return optimizeSqrt(CI, Builder); 2708 // TODO: Use foldMallocMemset() with memset intrinsic. 2709 default: 2710 return nullptr; 2711 } 2712 } 2713 2714 // Also try to simplify calls to fortified library functions. 2715 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 2716 // Try to further simplify the result. 2717 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 2718 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 2719 // Use an IR Builder from SimplifiedCI if available instead of CI 2720 // to guarantee we reach all uses we might replace later on. 2721 IRBuilder<> TmpBuilder(SimplifiedCI); 2722 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { 2723 // If we were able to further simplify, remove the now redundant call. 2724 SimplifiedCI->replaceAllUsesWith(V); 2725 eraseFromParent(SimplifiedCI); 2726 return V; 2727 } 2728 } 2729 return SimplifiedFortifiedCI; 2730 } 2731 2732 // Then check for known library functions. 2733 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2734 // We never change the calling convention. 2735 if (!ignoreCallingConv(Func) && !isCallingConvC) 2736 return nullptr; 2737 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 2738 return V; 2739 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 2740 return V; 2741 switch (Func) { 2742 case LibFunc_ffs: 2743 case LibFunc_ffsl: 2744 case LibFunc_ffsll: 2745 return optimizeFFS(CI, Builder); 2746 case LibFunc_fls: 2747 case LibFunc_flsl: 2748 case LibFunc_flsll: 2749 return optimizeFls(CI, Builder); 2750 case LibFunc_abs: 2751 case LibFunc_labs: 2752 case LibFunc_llabs: 2753 return optimizeAbs(CI, Builder); 2754 case LibFunc_isdigit: 2755 return optimizeIsDigit(CI, Builder); 2756 case LibFunc_isascii: 2757 return optimizeIsAscii(CI, Builder); 2758 case LibFunc_toascii: 2759 return optimizeToAscii(CI, Builder); 2760 case LibFunc_atoi: 2761 case LibFunc_atol: 2762 case LibFunc_atoll: 2763 return optimizeAtoi(CI, Builder); 2764 case LibFunc_strtol: 2765 case LibFunc_strtoll: 2766 return optimizeStrtol(CI, Builder); 2767 case LibFunc_printf: 2768 return optimizePrintF(CI, Builder); 2769 case LibFunc_sprintf: 2770 return optimizeSPrintF(CI, Builder); 2771 case LibFunc_snprintf: 2772 return optimizeSnPrintF(CI, Builder); 2773 case LibFunc_fprintf: 2774 return optimizeFPrintF(CI, Builder); 2775 case LibFunc_fwrite: 2776 return optimizeFWrite(CI, Builder); 2777 case LibFunc_fread: 2778 return optimizeFRead(CI, Builder); 2779 case LibFunc_fputs: 2780 return optimizeFPuts(CI, Builder); 2781 case LibFunc_fgets: 2782 return optimizeFGets(CI, Builder); 2783 case LibFunc_fputc: 2784 return optimizeFPutc(CI, Builder); 2785 case LibFunc_fgetc: 2786 return optimizeFGetc(CI, Builder); 2787 case LibFunc_puts: 2788 return optimizePuts(CI, Builder); 2789 case LibFunc_perror: 2790 return optimizeErrorReporting(CI, Builder); 2791 case LibFunc_vfprintf: 2792 case LibFunc_fiprintf: 2793 return optimizeErrorReporting(CI, Builder, 0); 2794 default: 2795 return nullptr; 2796 } 2797 } 2798 return nullptr; 2799 } 2800 2801 LibCallSimplifier::LibCallSimplifier( 2802 const DataLayout &DL, const TargetLibraryInfo *TLI, 2803 OptimizationRemarkEmitter &ORE, 2804 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 2805 function_ref<void(Instruction *, Value *)> Replacer, 2806 function_ref<void(Instruction *)> Eraser) 2807 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 2808 UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {} 2809 2810 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 2811 // Indirect through the replacer used in this instance. 2812 Replacer(I, With); 2813 } 2814 2815 void LibCallSimplifier::eraseFromParent(Instruction *I) { 2816 Eraser(I); 2817 } 2818 2819 // TODO: 2820 // Additional cases that we need to add to this file: 2821 // 2822 // cbrt: 2823 // * cbrt(expN(X)) -> expN(x/3) 2824 // * cbrt(sqrt(x)) -> pow(x,1/6) 2825 // * cbrt(cbrt(x)) -> pow(x,1/9) 2826 // 2827 // exp, expf, expl: 2828 // * exp(log(x)) -> x 2829 // 2830 // log, logf, logl: 2831 // * log(exp(x)) -> x 2832 // * log(exp(y)) -> y*log(e) 2833 // * log(exp10(y)) -> y*log(10) 2834 // * log(sqrt(x)) -> 0.5*log(x) 2835 // 2836 // pow, powf, powl: 2837 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2838 // * pow(pow(x,y),z)-> pow(x,y*z) 2839 // 2840 // signbit: 2841 // * signbit(cnst) -> cnst' 2842 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2843 // 2844 // sqrt, sqrtf, sqrtl: 2845 // * sqrt(expN(x)) -> expN(x*0.5) 2846 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2847 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2848 // 2849 2850 //===----------------------------------------------------------------------===// 2851 // Fortified Library Call Optimizations 2852 //===----------------------------------------------------------------------===// 2853 2854 bool 2855 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2856 unsigned ObjSizeOp, 2857 Optional<unsigned> SizeOp, 2858 Optional<unsigned> StrOp, 2859 Optional<unsigned> FlagOp) { 2860 // If this function takes a flag argument, the implementation may use it to 2861 // perform extra checks. Don't fold into the non-checking variant. 2862 if (FlagOp) { 2863 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 2864 if (!Flag || !Flag->isZero()) 2865 return false; 2866 } 2867 2868 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 2869 return true; 2870 2871 if (ConstantInt *ObjSizeCI = 2872 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2873 if (ObjSizeCI->isMinusOne()) 2874 return true; 2875 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2876 if (OnlyLowerUnknownSize) 2877 return false; 2878 if (StrOp) { 2879 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 2880 // If the length is 0 we don't know how long it is and so we can't 2881 // remove the check. 2882 if (Len == 0) 2883 return false; 2884 return ObjSizeCI->getZExtValue() >= Len; 2885 } 2886 2887 if (SizeOp) { 2888 if (ConstantInt *SizeCI = 2889 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 2890 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2891 } 2892 } 2893 return false; 2894 } 2895 2896 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 2897 IRBuilder<> &B) { 2898 if (isFortifiedCallFoldable(CI, 3, 2)) { 2899 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2900 CI->getArgOperand(2)); 2901 return CI->getArgOperand(0); 2902 } 2903 return nullptr; 2904 } 2905 2906 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 2907 IRBuilder<> &B) { 2908 if (isFortifiedCallFoldable(CI, 3, 2)) { 2909 B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2910 CI->getArgOperand(2)); 2911 return CI->getArgOperand(0); 2912 } 2913 return nullptr; 2914 } 2915 2916 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 2917 IRBuilder<> &B) { 2918 // TODO: Try foldMallocMemset() here. 2919 2920 if (isFortifiedCallFoldable(CI, 3, 2)) { 2921 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2922 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2923 return CI->getArgOperand(0); 2924 } 2925 return nullptr; 2926 } 2927 2928 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 2929 IRBuilder<> &B, 2930 LibFunc Func) { 2931 const DataLayout &DL = CI->getModule()->getDataLayout(); 2932 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 2933 *ObjSize = CI->getArgOperand(2); 2934 2935 // __stpcpy_chk(x,x,...) -> x+strlen(x) 2936 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 2937 Value *StrLen = emitStrLen(Src, B, DL, TLI); 2938 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 2939 } 2940 2941 // If a) we don't have any length information, or b) we know this will 2942 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 2943 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 2944 // TODO: It might be nice to get a maximum length out of the possible 2945 // string lengths for varying. 2946 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 2947 if (Func == LibFunc_strcpy_chk) 2948 return emitStrCpy(Dst, Src, B, TLI); 2949 else 2950 return emitStpCpy(Dst, Src, B, TLI); 2951 } 2952 2953 if (OnlyLowerUnknownSize) 2954 return nullptr; 2955 2956 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 2957 uint64_t Len = GetStringLength(Src); 2958 if (Len == 0) 2959 return nullptr; 2960 2961 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 2962 Value *LenV = ConstantInt::get(SizeTTy, Len); 2963 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 2964 // If the function was an __stpcpy_chk, and we were able to fold it into 2965 // a __memcpy_chk, we still need to return the correct end pointer. 2966 if (Ret && Func == LibFunc_stpcpy_chk) 2967 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 2968 return Ret; 2969 } 2970 2971 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 2972 IRBuilder<> &B, 2973 LibFunc Func) { 2974 if (isFortifiedCallFoldable(CI, 3, 2)) { 2975 if (Func == LibFunc_strncpy_chk) 2976 return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2977 CI->getArgOperand(2), B, TLI); 2978 else 2979 return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2980 CI->getArgOperand(2), B, TLI); 2981 } 2982 2983 return nullptr; 2984 } 2985 2986 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 2987 IRBuilder<> &B) { 2988 if (isFortifiedCallFoldable(CI, 4, 3)) 2989 return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2990 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI); 2991 2992 return nullptr; 2993 } 2994 2995 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 2996 IRBuilder<> &B) { 2997 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 2998 SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 5, CI->arg_end()); 2999 return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3000 CI->getArgOperand(4), VariadicArgs, B, TLI); 3001 } 3002 3003 return nullptr; 3004 } 3005 3006 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3007 IRBuilder<> &B) { 3008 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3009 SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 4, CI->arg_end()); 3010 return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs, 3011 B, TLI); 3012 } 3013 3014 return nullptr; 3015 } 3016 3017 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3018 IRBuilder<> &B) { 3019 if (isFortifiedCallFoldable(CI, 2)) 3020 return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI); 3021 3022 return nullptr; 3023 } 3024 3025 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3026 IRBuilder<> &B) { 3027 if (isFortifiedCallFoldable(CI, 3)) 3028 return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3029 CI->getArgOperand(2), B, TLI); 3030 3031 return nullptr; 3032 } 3033 3034 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3035 IRBuilder<> &B) { 3036 if (isFortifiedCallFoldable(CI, 3)) 3037 return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3038 CI->getArgOperand(2), B, TLI); 3039 3040 return nullptr; 3041 } 3042 3043 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3044 IRBuilder<> &B) { 3045 if (isFortifiedCallFoldable(CI, 3)) 3046 return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3047 CI->getArgOperand(2), B, TLI); 3048 3049 return nullptr; 3050 } 3051 3052 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3053 IRBuilder<> &B) { 3054 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3055 return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3056 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI); 3057 3058 return nullptr; 3059 } 3060 3061 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3062 IRBuilder<> &B) { 3063 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3064 return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3065 CI->getArgOperand(4), B, TLI); 3066 3067 return nullptr; 3068 } 3069 3070 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 3071 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3072 // Some clang users checked for _chk libcall availability using: 3073 // __has_builtin(__builtin___memcpy_chk) 3074 // When compiling with -fno-builtin, this is always true. 3075 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3076 // end up with fortified libcalls, which isn't acceptable in a freestanding 3077 // environment which only provides their non-fortified counterparts. 3078 // 3079 // Until we change clang and/or teach external users to check for availability 3080 // differently, disregard the "nobuiltin" attribute and TLI::has. 3081 // 3082 // PR23093. 3083 3084 LibFunc Func; 3085 Function *Callee = CI->getCalledFunction(); 3086 3087 SmallVector<OperandBundleDef, 2> OpBundles; 3088 CI->getOperandBundlesAsDefs(OpBundles); 3089 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 3090 bool isCallingConvC = isCallingConvCCompatible(CI); 3091 3092 // First, check that this is a known library functions and that the prototype 3093 // is correct. 3094 if (!TLI->getLibFunc(*Callee, Func)) 3095 return nullptr; 3096 3097 // We never change the calling convention. 3098 if (!ignoreCallingConv(Func) && !isCallingConvC) 3099 return nullptr; 3100 3101 switch (Func) { 3102 case LibFunc_memcpy_chk: 3103 return optimizeMemCpyChk(CI, Builder); 3104 case LibFunc_memmove_chk: 3105 return optimizeMemMoveChk(CI, Builder); 3106 case LibFunc_memset_chk: 3107 return optimizeMemSetChk(CI, Builder); 3108 case LibFunc_stpcpy_chk: 3109 case LibFunc_strcpy_chk: 3110 return optimizeStrpCpyChk(CI, Builder, Func); 3111 case LibFunc_stpncpy_chk: 3112 case LibFunc_strncpy_chk: 3113 return optimizeStrpNCpyChk(CI, Builder, Func); 3114 case LibFunc_memccpy_chk: 3115 return optimizeMemCCpyChk(CI, Builder); 3116 case LibFunc_snprintf_chk: 3117 return optimizeSNPrintfChk(CI, Builder); 3118 case LibFunc_sprintf_chk: 3119 return optimizeSPrintfChk(CI, Builder); 3120 case LibFunc_strcat_chk: 3121 return optimizeStrCatChk(CI, Builder); 3122 case LibFunc_strlcat_chk: 3123 return optimizeStrLCat(CI, Builder); 3124 case LibFunc_strncat_chk: 3125 return optimizeStrNCatChk(CI, Builder); 3126 case LibFunc_strlcpy_chk: 3127 return optimizeStrLCpyChk(CI, Builder); 3128 case LibFunc_vsnprintf_chk: 3129 return optimizeVSNPrintfChk(CI, Builder); 3130 case LibFunc_vsprintf_chk: 3131 return optimizeVSPrintfChk(CI, Builder); 3132 default: 3133 break; 3134 } 3135 return nullptr; 3136 } 3137 3138 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3139 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3140 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}