1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the library calls simplifier. It does not implement 11 // any pass, but can't be used by other passes to do simplifications. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/Utils/Local.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/KnownBits.h" 34 #include "llvm/Transforms/Utils/BuildLibCalls.h" 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 static cl::opt<bool> 40 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 41 cl::init(false), 42 cl::desc("Enable unsafe double to float " 43 "shrinking for math lib calls")); 44 45 46 //===----------------------------------------------------------------------===// 47 // Helper Functions 48 //===----------------------------------------------------------------------===// 49 50 static bool ignoreCallingConv(LibFunc Func) { 51 return Func == LibFunc_abs || Func == LibFunc_labs || 52 Func == LibFunc_llabs || Func == LibFunc_strlen; 53 } 54 55 static bool isCallingConvCCompatible(CallInst *CI) { 56 switch(CI->getCallingConv()) { 57 default: 58 return false; 59 case llvm::CallingConv::C: 60 return true; 61 case llvm::CallingConv::ARM_APCS: 62 case llvm::CallingConv::ARM_AAPCS: 63 case llvm::CallingConv::ARM_AAPCS_VFP: { 64 65 // The iOS ABI diverges from the standard in some cases, so for now don't 66 // try to simplify those calls. 67 if (Triple(CI->getModule()->getTargetTriple()).isiOS()) 68 return false; 69 70 auto *FuncTy = CI->getFunctionType(); 71 72 if (!FuncTy->getReturnType()->isPointerTy() && 73 !FuncTy->getReturnType()->isIntegerTy() && 74 !FuncTy->getReturnType()->isVoidTy()) 75 return false; 76 77 for (auto Param : FuncTy->params()) { 78 if (!Param->isPointerTy() && !Param->isIntegerTy()) 79 return false; 80 } 81 return true; 82 } 83 } 84 return false; 85 } 86 87 /// Return true if it is only used in equality comparisons with With. 88 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 89 for (User *U : V->users()) { 90 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 91 if (IC->isEquality() && IC->getOperand(1) == With) 92 continue; 93 // Unknown instruction. 94 return false; 95 } 96 return true; 97 } 98 99 static bool callHasFloatingPointArgument(const CallInst *CI) { 100 return any_of(CI->operands(), [](const Use &OI) { 101 return OI->getType()->isFloatingPointTy(); 102 }); 103 } 104 105 //===----------------------------------------------------------------------===// 106 // String and Memory Library Call Optimizations 107 //===----------------------------------------------------------------------===// 108 109 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 110 // Extract some information from the instruction 111 Value *Dst = CI->getArgOperand(0); 112 Value *Src = CI->getArgOperand(1); 113 114 // See if we can get the length of the input string. 115 uint64_t Len = GetStringLength(Src); 116 if (Len == 0) 117 return nullptr; 118 --Len; // Unbias length. 119 120 // Handle the simple, do-nothing case: strcat(x, "") -> x 121 if (Len == 0) 122 return Dst; 123 124 return emitStrLenMemCpy(Src, Dst, Len, B); 125 } 126 127 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 128 IRBuilder<> &B) { 129 // We need to find the end of the destination string. That's where the 130 // memory is to be moved to. We just generate a call to strlen. 131 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 132 if (!DstLen) 133 return nullptr; 134 135 // Now that we have the destination's length, we must index into the 136 // destination's pointer to get the actual memcpy destination (end of 137 // the string .. we're concatenating). 138 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 139 140 // We have enough information to now generate the memcpy call to do the 141 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 142 B.CreateMemCpy(CpyDst, 1, Src, 1, 143 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 144 return Dst; 145 } 146 147 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 148 // Extract some information from the instruction. 149 Value *Dst = CI->getArgOperand(0); 150 Value *Src = CI->getArgOperand(1); 151 uint64_t Len; 152 153 // We don't do anything if length is not constant. 154 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 155 Len = LengthArg->getZExtValue(); 156 else 157 return nullptr; 158 159 // See if we can get the length of the input string. 160 uint64_t SrcLen = GetStringLength(Src); 161 if (SrcLen == 0) 162 return nullptr; 163 --SrcLen; // Unbias length. 164 165 // Handle the simple, do-nothing cases: 166 // strncat(x, "", c) -> x 167 // strncat(x, c, 0) -> x 168 if (SrcLen == 0 || Len == 0) 169 return Dst; 170 171 // We don't optimize this case. 172 if (Len < SrcLen) 173 return nullptr; 174 175 // strncat(x, s, c) -> strcat(x, s) 176 // s is constant so the strcat can be optimized further. 177 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 178 } 179 180 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 181 Function *Callee = CI->getCalledFunction(); 182 FunctionType *FT = Callee->getFunctionType(); 183 Value *SrcStr = CI->getArgOperand(0); 184 185 // If the second operand is non-constant, see if we can compute the length 186 // of the input string and turn this into memchr. 187 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 188 if (!CharC) { 189 uint64_t Len = GetStringLength(SrcStr); 190 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 191 return nullptr; 192 193 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 194 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 195 B, DL, TLI); 196 } 197 198 // Otherwise, the character is a constant, see if the first argument is 199 // a string literal. If so, we can constant fold. 200 StringRef Str; 201 if (!getConstantStringInfo(SrcStr, Str)) { 202 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 203 return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI), 204 "strchr"); 205 return nullptr; 206 } 207 208 // Compute the offset, make sure to handle the case when we're searching for 209 // zero (a weird way to spell strlen). 210 size_t I = (0xFF & CharC->getSExtValue()) == 0 211 ? Str.size() 212 : Str.find(CharC->getSExtValue()); 213 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 214 return Constant::getNullValue(CI->getType()); 215 216 // strchr(s+n,c) -> gep(s+n+i,c) 217 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 218 } 219 220 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 221 Value *SrcStr = CI->getArgOperand(0); 222 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 223 224 // Cannot fold anything if we're not looking for a constant. 225 if (!CharC) 226 return nullptr; 227 228 StringRef Str; 229 if (!getConstantStringInfo(SrcStr, Str)) { 230 // strrchr(s, 0) -> strchr(s, 0) 231 if (CharC->isZero()) 232 return emitStrChr(SrcStr, '\0', B, TLI); 233 return nullptr; 234 } 235 236 // Compute the offset. 237 size_t I = (0xFF & CharC->getSExtValue()) == 0 238 ? Str.size() 239 : Str.rfind(CharC->getSExtValue()); 240 if (I == StringRef::npos) // Didn't find the char. Return null. 241 return Constant::getNullValue(CI->getType()); 242 243 // strrchr(s+n,c) -> gep(s+n+i,c) 244 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 245 } 246 247 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 248 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 249 if (Str1P == Str2P) // strcmp(x,x) -> 0 250 return ConstantInt::get(CI->getType(), 0); 251 252 StringRef Str1, Str2; 253 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 254 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 255 256 // strcmp(x, y) -> cnst (if both x and y are constant strings) 257 if (HasStr1 && HasStr2) 258 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 259 260 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 261 return B.CreateNeg( 262 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 263 264 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 265 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 266 267 // strcmp(P, "x") -> memcmp(P, "x", 2) 268 uint64_t Len1 = GetStringLength(Str1P); 269 uint64_t Len2 = GetStringLength(Str2P); 270 if (Len1 && Len2) { 271 return emitMemCmp(Str1P, Str2P, 272 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 273 std::min(Len1, Len2)), 274 B, DL, TLI); 275 } 276 277 return nullptr; 278 } 279 280 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 281 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 282 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 283 return ConstantInt::get(CI->getType(), 0); 284 285 // Get the length argument if it is constant. 286 uint64_t Length; 287 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 288 Length = LengthArg->getZExtValue(); 289 else 290 return nullptr; 291 292 if (Length == 0) // strncmp(x,y,0) -> 0 293 return ConstantInt::get(CI->getType(), 0); 294 295 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 296 return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 297 298 StringRef Str1, Str2; 299 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 300 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 301 302 // strncmp(x, y) -> cnst (if both x and y are constant strings) 303 if (HasStr1 && HasStr2) { 304 StringRef SubStr1 = Str1.substr(0, Length); 305 StringRef SubStr2 = Str2.substr(0, Length); 306 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 307 } 308 309 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 310 return B.CreateNeg( 311 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 312 313 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 314 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 315 316 return nullptr; 317 } 318 319 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 320 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 321 if (Dst == Src) // strcpy(x,x) -> x 322 return Src; 323 324 // See if we can get the length of the input string. 325 uint64_t Len = GetStringLength(Src); 326 if (Len == 0) 327 return nullptr; 328 329 // We have enough information to now generate the memcpy call to do the 330 // copy for us. Make a memcpy to copy the nul byte with align = 1. 331 B.CreateMemCpy(Dst, 1, Src, 1, 332 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 333 return Dst; 334 } 335 336 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 337 Function *Callee = CI->getCalledFunction(); 338 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 339 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 340 Value *StrLen = emitStrLen(Src, B, DL, TLI); 341 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 342 } 343 344 // See if we can get the length of the input string. 345 uint64_t Len = GetStringLength(Src); 346 if (Len == 0) 347 return nullptr; 348 349 Type *PT = Callee->getFunctionType()->getParamType(0); 350 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 351 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 352 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 353 354 // We have enough information to now generate the memcpy call to do the 355 // copy for us. Make a memcpy to copy the nul byte with align = 1. 356 B.CreateMemCpy(Dst, 1, Src, 1, LenV); 357 return DstEnd; 358 } 359 360 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 361 Function *Callee = CI->getCalledFunction(); 362 Value *Dst = CI->getArgOperand(0); 363 Value *Src = CI->getArgOperand(1); 364 Value *LenOp = CI->getArgOperand(2); 365 366 // See if we can get the length of the input string. 367 uint64_t SrcLen = GetStringLength(Src); 368 if (SrcLen == 0) 369 return nullptr; 370 --SrcLen; 371 372 if (SrcLen == 0) { 373 // strncpy(x, "", y) -> memset(align 1 x, '\0', y) 374 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 375 return Dst; 376 } 377 378 uint64_t Len; 379 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 380 Len = LengthArg->getZExtValue(); 381 else 382 return nullptr; 383 384 if (Len == 0) 385 return Dst; // strncpy(x, y, 0) -> x 386 387 // Let strncpy handle the zero padding 388 if (Len > SrcLen + 1) 389 return nullptr; 390 391 Type *PT = Callee->getFunctionType()->getParamType(0); 392 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 393 B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len)); 394 395 return Dst; 396 } 397 398 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B, 399 unsigned CharSize) { 400 Value *Src = CI->getArgOperand(0); 401 402 // Constant folding: strlen("xyz") -> 3 403 if (uint64_t Len = GetStringLength(Src, CharSize)) 404 return ConstantInt::get(CI->getType(), Len - 1); 405 406 // If s is a constant pointer pointing to a string literal, we can fold 407 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 408 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 409 // We only try to simplify strlen when the pointer s points to an array 410 // of i8. Otherwise, we would need to scale the offset x before doing the 411 // subtraction. This will make the optimization more complex, and it's not 412 // very useful because calling strlen for a pointer of other types is 413 // very uncommon. 414 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 415 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 416 return nullptr; 417 418 ConstantDataArraySlice Slice; 419 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 420 uint64_t NullTermIdx; 421 if (Slice.Array == nullptr) { 422 NullTermIdx = 0; 423 } else { 424 NullTermIdx = ~((uint64_t)0); 425 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 426 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 427 NullTermIdx = I; 428 break; 429 } 430 } 431 // If the string does not have '\0', leave it to strlen to compute 432 // its length. 433 if (NullTermIdx == ~((uint64_t)0)) 434 return nullptr; 435 } 436 437 Value *Offset = GEP->getOperand(2); 438 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 439 Known.Zero.flipAllBits(); 440 uint64_t ArrSize = 441 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 442 443 // KnownZero's bits are flipped, so zeros in KnownZero now represent 444 // bits known to be zeros in Offset, and ones in KnowZero represent 445 // bits unknown in Offset. Therefore, Offset is known to be in range 446 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 447 // unsigned-less-than NullTermIdx. 448 // 449 // If Offset is not provably in the range [0, NullTermIdx], we can still 450 // optimize if we can prove that the program has undefined behavior when 451 // Offset is outside that range. That is the case when GEP->getOperand(0) 452 // is a pointer to an object whose memory extent is NullTermIdx+1. 453 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 454 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 455 NullTermIdx == ArrSize - 1)) { 456 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 457 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 458 Offset); 459 } 460 } 461 462 return nullptr; 463 } 464 465 // strlen(x?"foo":"bars") --> x ? 3 : 4 466 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 467 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 468 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 469 if (LenTrue && LenFalse) { 470 ORE.emit([&]() { 471 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 472 << "folded strlen(select) to select of constants"; 473 }); 474 return B.CreateSelect(SI->getCondition(), 475 ConstantInt::get(CI->getType(), LenTrue - 1), 476 ConstantInt::get(CI->getType(), LenFalse - 1)); 477 } 478 } 479 480 // strlen(x) != 0 --> *x != 0 481 // strlen(x) == 0 --> *x == 0 482 if (isOnlyUsedInZeroEqualityComparison(CI)) 483 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); 484 485 return nullptr; 486 } 487 488 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 489 return optimizeStringLength(CI, B, 8); 490 } 491 492 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) { 493 Module &M = *CI->getParent()->getParent()->getParent(); 494 unsigned WCharSize = TLI->getWCharSize(M) * 8; 495 // We cannot perform this optimization without wchar_size metadata. 496 if (WCharSize == 0) 497 return nullptr; 498 499 return optimizeStringLength(CI, B, WCharSize); 500 } 501 502 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 503 StringRef S1, S2; 504 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 505 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 506 507 // strpbrk(s, "") -> nullptr 508 // strpbrk("", s) -> nullptr 509 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 510 return Constant::getNullValue(CI->getType()); 511 512 // Constant folding. 513 if (HasS1 && HasS2) { 514 size_t I = S1.find_first_of(S2); 515 if (I == StringRef::npos) // No match. 516 return Constant::getNullValue(CI->getType()); 517 518 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 519 "strpbrk"); 520 } 521 522 // strpbrk(s, "a") -> strchr(s, 'a') 523 if (HasS2 && S2.size() == 1) 524 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 525 526 return nullptr; 527 } 528 529 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 530 Value *EndPtr = CI->getArgOperand(1); 531 if (isa<ConstantPointerNull>(EndPtr)) { 532 // With a null EndPtr, this function won't capture the main argument. 533 // It would be readonly too, except that it still may write to errno. 534 CI->addParamAttr(0, Attribute::NoCapture); 535 } 536 537 return nullptr; 538 } 539 540 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 541 StringRef S1, S2; 542 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 543 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 544 545 // strspn(s, "") -> 0 546 // strspn("", s) -> 0 547 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 548 return Constant::getNullValue(CI->getType()); 549 550 // Constant folding. 551 if (HasS1 && HasS2) { 552 size_t Pos = S1.find_first_not_of(S2); 553 if (Pos == StringRef::npos) 554 Pos = S1.size(); 555 return ConstantInt::get(CI->getType(), Pos); 556 } 557 558 return nullptr; 559 } 560 561 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 562 StringRef S1, S2; 563 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 564 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 565 566 // strcspn("", s) -> 0 567 if (HasS1 && S1.empty()) 568 return Constant::getNullValue(CI->getType()); 569 570 // Constant folding. 571 if (HasS1 && HasS2) { 572 size_t Pos = S1.find_first_of(S2); 573 if (Pos == StringRef::npos) 574 Pos = S1.size(); 575 return ConstantInt::get(CI->getType(), Pos); 576 } 577 578 // strcspn(s, "") -> strlen(s) 579 if (HasS2 && S2.empty()) 580 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 581 582 return nullptr; 583 } 584 585 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 586 // fold strstr(x, x) -> x. 587 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 588 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 589 590 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 591 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 592 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 593 if (!StrLen) 594 return nullptr; 595 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 596 StrLen, B, DL, TLI); 597 if (!StrNCmp) 598 return nullptr; 599 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 600 ICmpInst *Old = cast<ICmpInst>(*UI++); 601 Value *Cmp = 602 B.CreateICmp(Old->getPredicate(), StrNCmp, 603 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 604 replaceAllUsesWith(Old, Cmp); 605 } 606 return CI; 607 } 608 609 // See if either input string is a constant string. 610 StringRef SearchStr, ToFindStr; 611 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 612 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 613 614 // fold strstr(x, "") -> x. 615 if (HasStr2 && ToFindStr.empty()) 616 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 617 618 // If both strings are known, constant fold it. 619 if (HasStr1 && HasStr2) { 620 size_t Offset = SearchStr.find(ToFindStr); 621 622 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 623 return Constant::getNullValue(CI->getType()); 624 625 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 626 Value *Result = castToCStr(CI->getArgOperand(0), B); 627 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); 628 return B.CreateBitCast(Result, CI->getType()); 629 } 630 631 // fold strstr(x, "y") -> strchr(x, 'y'). 632 if (HasStr2 && ToFindStr.size() == 1) { 633 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 634 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 635 } 636 return nullptr; 637 } 638 639 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { 640 Value *SrcStr = CI->getArgOperand(0); 641 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 642 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 643 644 // memchr(x, y, 0) -> null 645 if (LenC && LenC->isZero()) 646 return Constant::getNullValue(CI->getType()); 647 648 // From now on we need at least constant length and string. 649 StringRef Str; 650 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 651 return nullptr; 652 653 // Truncate the string to LenC. If Str is smaller than LenC we will still only 654 // scan the string, as reading past the end of it is undefined and we can just 655 // return null if we don't find the char. 656 Str = Str.substr(0, LenC->getZExtValue()); 657 658 // If the char is variable but the input str and length are not we can turn 659 // this memchr call into a simple bit field test. Of course this only works 660 // when the return value is only checked against null. 661 // 662 // It would be really nice to reuse switch lowering here but we can't change 663 // the CFG at this point. 664 // 665 // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0 666 // after bounds check. 667 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 668 unsigned char Max = 669 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 670 reinterpret_cast<const unsigned char *>(Str.end())); 671 672 // Make sure the bit field we're about to create fits in a register on the 673 // target. 674 // FIXME: On a 64 bit architecture this prevents us from using the 675 // interesting range of alpha ascii chars. We could do better by emitting 676 // two bitfields or shifting the range by 64 if no lower chars are used. 677 if (!DL.fitsInLegalInteger(Max + 1)) 678 return nullptr; 679 680 // For the bit field use a power-of-2 type with at least 8 bits to avoid 681 // creating unnecessary illegal types. 682 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 683 684 // Now build the bit field. 685 APInt Bitfield(Width, 0); 686 for (char C : Str) 687 Bitfield.setBit((unsigned char)C); 688 Value *BitfieldC = B.getInt(Bitfield); 689 690 // First check that the bit field access is within bounds. 691 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 692 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 693 "memchr.bounds"); 694 695 // Create code that checks if the given bit is set in the field. 696 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 697 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 698 699 // Finally merge both checks and cast to pointer type. The inttoptr 700 // implicitly zexts the i1 to intptr type. 701 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 702 } 703 704 // Check if all arguments are constants. If so, we can constant fold. 705 if (!CharC) 706 return nullptr; 707 708 // Compute the offset. 709 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 710 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 711 return Constant::getNullValue(CI->getType()); 712 713 // memchr(s+n,c,l) -> gep(s+n+i,c) 714 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 715 } 716 717 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 718 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 719 720 if (LHS == RHS) // memcmp(s,s,x) -> 0 721 return Constant::getNullValue(CI->getType()); 722 723 // Make sure we have a constant length. 724 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 725 if (!LenC) 726 return nullptr; 727 728 uint64_t Len = LenC->getZExtValue(); 729 if (Len == 0) // memcmp(s1,s2,0) -> 0 730 return Constant::getNullValue(CI->getType()); 731 732 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 733 if (Len == 1) { 734 Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"), 735 CI->getType(), "lhsv"); 736 Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"), 737 CI->getType(), "rhsv"); 738 return B.CreateSub(LHSV, RHSV, "chardiff"); 739 } 740 741 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 742 // TODO: The case where both inputs are constants does not need to be limited 743 // to legal integers or equality comparison. See block below this. 744 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 745 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 746 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 747 748 // First, see if we can fold either argument to a constant. 749 Value *LHSV = nullptr; 750 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 751 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 752 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 753 } 754 Value *RHSV = nullptr; 755 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 756 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 757 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 758 } 759 760 // Don't generate unaligned loads. If either source is constant data, 761 // alignment doesn't matter for that source because there is no load. 762 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 763 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 764 if (!LHSV) { 765 Type *LHSPtrTy = 766 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 767 LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 768 } 769 if (!RHSV) { 770 Type *RHSPtrTy = 771 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 772 RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 773 } 774 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 775 } 776 } 777 778 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 779 // TODO: This is limited to i8 arrays. 780 StringRef LHSStr, RHSStr; 781 if (getConstantStringInfo(LHS, LHSStr) && 782 getConstantStringInfo(RHS, RHSStr)) { 783 // Make sure we're not reading out-of-bounds memory. 784 if (Len > LHSStr.size() || Len > RHSStr.size()) 785 return nullptr; 786 // Fold the memcmp and normalize the result. This way we get consistent 787 // results across multiple platforms. 788 uint64_t Ret = 0; 789 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 790 if (Cmp < 0) 791 Ret = -1; 792 else if (Cmp > 0) 793 Ret = 1; 794 return ConstantInt::get(CI->getType(), Ret); 795 } 796 797 return nullptr; 798 } 799 800 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { 801 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 802 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 803 CI->getArgOperand(2)); 804 return CI->getArgOperand(0); 805 } 806 807 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { 808 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 809 B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 810 CI->getArgOperand(2)); 811 return CI->getArgOperand(0); 812 } 813 814 // TODO: Does this belong in BuildLibCalls or should all of those similar 815 // functions be moved here? 816 static Value *emitCalloc(Value *Num, Value *Size, const AttributeList &Attrs, 817 IRBuilder<> &B, const TargetLibraryInfo &TLI) { 818 LibFunc Func; 819 if (!TLI.getLibFunc("calloc", Func) || !TLI.has(Func)) 820 return nullptr; 821 822 Module *M = B.GetInsertBlock()->getModule(); 823 const DataLayout &DL = M->getDataLayout(); 824 IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext())); 825 Value *Calloc = M->getOrInsertFunction("calloc", Attrs, B.getInt8PtrTy(), 826 PtrType, PtrType); 827 CallInst *CI = B.CreateCall(Calloc, { Num, Size }, "calloc"); 828 829 if (const auto *F = dyn_cast<Function>(Calloc->stripPointerCasts())) 830 CI->setCallingConv(F->getCallingConv()); 831 832 return CI; 833 } 834 835 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 836 static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B, 837 const TargetLibraryInfo &TLI) { 838 // This has to be a memset of zeros (bzero). 839 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 840 if (!FillValue || FillValue->getZExtValue() != 0) 841 return nullptr; 842 843 // TODO: We should handle the case where the malloc has more than one use. 844 // This is necessary to optimize common patterns such as when the result of 845 // the malloc is checked against null or when a memset intrinsic is used in 846 // place of a memset library call. 847 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 848 if (!Malloc || !Malloc->hasOneUse()) 849 return nullptr; 850 851 // Is the inner call really malloc()? 852 Function *InnerCallee = Malloc->getCalledFunction(); 853 if (!InnerCallee) 854 return nullptr; 855 856 LibFunc Func; 857 if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) || 858 Func != LibFunc_malloc) 859 return nullptr; 860 861 // The memset must cover the same number of bytes that are malloc'd. 862 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 863 return nullptr; 864 865 // Replace the malloc with a calloc. We need the data layout to know what the 866 // actual size of a 'size_t' parameter is. 867 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 868 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 869 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 870 Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 871 Malloc->getArgOperand(0), Malloc->getAttributes(), 872 B, TLI); 873 if (!Calloc) 874 return nullptr; 875 876 Malloc->replaceAllUsesWith(Calloc); 877 Malloc->eraseFromParent(); 878 879 return Calloc; 880 } 881 882 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { 883 if (auto *Calloc = foldMallocMemset(CI, B, *TLI)) 884 return Calloc; 885 886 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 887 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 888 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 889 return CI->getArgOperand(0); 890 } 891 892 //===----------------------------------------------------------------------===// 893 // Math Library Optimizations 894 //===----------------------------------------------------------------------===// 895 896 /// Return a variant of Val with float type. 897 /// Currently this works in two cases: If Val is an FPExtension of a float 898 /// value to something bigger, simply return the operand. 899 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 900 /// loss of precision do so. 901 static Value *valueHasFloatPrecision(Value *Val) { 902 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 903 Value *Op = Cast->getOperand(0); 904 if (Op->getType()->isFloatTy()) 905 return Op; 906 } 907 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 908 APFloat F = Const->getValueAPF(); 909 bool losesInfo; 910 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 911 &losesInfo); 912 if (!losesInfo) 913 return ConstantFP::get(Const->getContext(), F); 914 } 915 return nullptr; 916 } 917 918 /// Shrink double -> float for unary functions like 'floor'. 919 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 920 bool CheckRetType) { 921 Function *Callee = CI->getCalledFunction(); 922 // We know this libcall has a valid prototype, but we don't know which. 923 if (!CI->getType()->isDoubleTy()) 924 return nullptr; 925 926 if (CheckRetType) { 927 // Check if all the uses for function like 'sin' are converted to float. 928 for (User *U : CI->users()) { 929 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 930 if (!Cast || !Cast->getType()->isFloatTy()) 931 return nullptr; 932 } 933 } 934 935 // If this is something like 'floor((double)floatval)', convert to floorf. 936 Value *V = valueHasFloatPrecision(CI->getArgOperand(0)); 937 if (V == nullptr) 938 return nullptr; 939 940 // If call isn't an intrinsic, check that it isn't within a function with the 941 // same name as the float version of this call. 942 // 943 // e.g. inline float expf(float val) { return (float) exp((double) val); } 944 // 945 // A similar such definition exists in the MinGW-w64 math.h header file which 946 // when compiled with -O2 -ffast-math causes the generation of infinite loops 947 // where expf is called. 948 if (!Callee->isIntrinsic()) { 949 const Function *F = CI->getFunction(); 950 StringRef FName = F->getName(); 951 StringRef CalleeName = Callee->getName(); 952 if ((FName.size() == (CalleeName.size() + 1)) && 953 (FName.back() == 'f') && 954 FName.startswith(CalleeName)) 955 return nullptr; 956 } 957 958 // Propagate fast-math flags from the existing call to the new call. 959 IRBuilder<>::FastMathFlagGuard Guard(B); 960 B.setFastMathFlags(CI->getFastMathFlags()); 961 962 // floor((double)floatval) -> (double)floorf(floatval) 963 if (Callee->isIntrinsic()) { 964 Module *M = CI->getModule(); 965 Intrinsic::ID IID = Callee->getIntrinsicID(); 966 Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 967 V = B.CreateCall(F, V); 968 } else { 969 // The call is a library call rather than an intrinsic. 970 V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes()); 971 } 972 973 return B.CreateFPExt(V, B.getDoubleTy()); 974 } 975 976 // Replace a libcall \p CI with a call to intrinsic \p IID 977 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) { 978 // Propagate fast-math flags from the existing call to the new call. 979 IRBuilder<>::FastMathFlagGuard Guard(B); 980 B.setFastMathFlags(CI->getFastMathFlags()); 981 982 Module *M = CI->getModule(); 983 Value *V = CI->getArgOperand(0); 984 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 985 CallInst *NewCall = B.CreateCall(F, V); 986 NewCall->takeName(CI); 987 return NewCall; 988 } 989 990 /// Shrink double -> float for binary functions like 'fmin/fmax'. 991 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) { 992 Function *Callee = CI->getCalledFunction(); 993 // We know this libcall has a valid prototype, but we don't know which. 994 if (!CI->getType()->isDoubleTy()) 995 return nullptr; 996 997 // If this is something like 'fmin((double)floatval1, (double)floatval2)', 998 // or fmin(1.0, (double)floatval), then we convert it to fminf. 999 Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0)); 1000 if (V1 == nullptr) 1001 return nullptr; 1002 Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1)); 1003 if (V2 == nullptr) 1004 return nullptr; 1005 1006 // Propagate fast-math flags from the existing call to the new call. 1007 IRBuilder<>::FastMathFlagGuard Guard(B); 1008 B.setFastMathFlags(CI->getFastMathFlags()); 1009 1010 // fmin((double)floatval1, (double)floatval2) 1011 // -> (double)fminf(floatval1, floatval2) 1012 // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP(). 1013 Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B, 1014 Callee->getAttributes()); 1015 return B.CreateFPExt(V, B.getDoubleTy()); 1016 } 1017 1018 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1019 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) { 1020 if (!CI->isFast()) 1021 return nullptr; 1022 1023 // Propagate fast-math flags from the existing call to new instructions. 1024 IRBuilder<>::FastMathFlagGuard Guard(B); 1025 B.setFastMathFlags(CI->getFastMathFlags()); 1026 1027 Value *Real, *Imag; 1028 if (CI->getNumArgOperands() == 1) { 1029 Value *Op = CI->getArgOperand(0); 1030 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1031 Real = B.CreateExtractValue(Op, 0, "real"); 1032 Imag = B.CreateExtractValue(Op, 1, "imag"); 1033 } else { 1034 assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); 1035 Real = CI->getArgOperand(0); 1036 Imag = CI->getArgOperand(1); 1037 } 1038 1039 Value *RealReal = B.CreateFMul(Real, Real); 1040 Value *ImagImag = B.CreateFMul(Imag, Imag); 1041 1042 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1043 CI->getType()); 1044 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); 1045 } 1046 1047 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) { 1048 Function *Callee = CI->getCalledFunction(); 1049 Value *Ret = nullptr; 1050 StringRef Name = Callee->getName(); 1051 if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name)) 1052 Ret = optimizeUnaryDoubleFP(CI, B, true); 1053 1054 // cos(-x) -> cos(x) 1055 Value *Op1 = CI->getArgOperand(0); 1056 if (BinaryOperator::isFNeg(Op1)) { 1057 BinaryOperator *BinExpr = cast<BinaryOperator>(Op1); 1058 return B.CreateCall(Callee, BinExpr->getOperand(1), "cos"); 1059 } 1060 return Ret; 1061 } 1062 1063 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) { 1064 // Multiplications calculated using Addition Chains. 1065 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1066 1067 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1068 1069 if (InnerChain[Exp]) 1070 return InnerChain[Exp]; 1071 1072 static const unsigned AddChain[33][2] = { 1073 {0, 0}, // Unused. 1074 {0, 0}, // Unused (base case = pow1). 1075 {1, 1}, // Unused (pre-computed). 1076 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1077 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1078 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1079 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1080 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1081 }; 1082 1083 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1084 getPow(InnerChain, AddChain[Exp][1], B)); 1085 return InnerChain[Exp]; 1086 } 1087 1088 /// Use square root in place of pow(x, +/-0.5). 1089 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) { 1090 // TODO: There is some subset of 'fast' under which these transforms should 1091 // be allowed. 1092 if (!Pow->isFast()) 1093 return nullptr; 1094 1095 const APFloat *Arg1C; 1096 if (!match(Pow->getArgOperand(1), m_APFloat(Arg1C))) 1097 return nullptr; 1098 if (!Arg1C->isExactlyValue(0.5) && !Arg1C->isExactlyValue(-0.5)) 1099 return nullptr; 1100 1101 // Fast-math flags from the pow() are propagated to all replacement ops. 1102 IRBuilder<>::FastMathFlagGuard Guard(B); 1103 B.setFastMathFlags(Pow->getFastMathFlags()); 1104 Type *Ty = Pow->getType(); 1105 Value *Sqrt; 1106 if (Pow->hasFnAttr(Attribute::ReadNone)) { 1107 // We know that errno is never set, so replace with an intrinsic: 1108 // pow(x, 0.5) --> llvm.sqrt(x) 1109 // llvm.pow(x, 0.5) --> llvm.sqrt(x) 1110 auto *F = Intrinsic::getDeclaration(Pow->getModule(), Intrinsic::sqrt, Ty); 1111 Sqrt = B.CreateCall(F, Pow->getArgOperand(0)); 1112 } else if (hasUnaryFloatFn(TLI, Ty, LibFunc_sqrt, LibFunc_sqrtf, 1113 LibFunc_sqrtl)) { 1114 // Errno could be set, so we must use a sqrt libcall. 1115 // TODO: We also should check that the target can in fact lower the sqrt 1116 // libcall. We currently have no way to ask this question, so we ask 1117 // whether the target has a sqrt libcall which is not exactly the same. 1118 Sqrt = emitUnaryFloatFnCall(Pow->getArgOperand(0), 1119 TLI->getName(LibFunc_sqrt), B, 1120 Pow->getCalledFunction()->getAttributes()); 1121 } else { 1122 // We can't replace with an intrinsic or a libcall. 1123 return nullptr; 1124 } 1125 1126 // If this is pow(x, -0.5), get the reciprocal. 1127 if (Arg1C->isExactlyValue(-0.5)) 1128 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt); 1129 1130 return Sqrt; 1131 } 1132 1133 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) { 1134 Function *Callee = CI->getCalledFunction(); 1135 Value *Ret = nullptr; 1136 StringRef Name = Callee->getName(); 1137 if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name)) 1138 Ret = optimizeUnaryDoubleFP(CI, B, true); 1139 1140 Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1); 1141 1142 // pow(1.0, x) -> 1.0 1143 if (match(Op1, m_SpecificFP(1.0))) 1144 return Op1; 1145 // pow(2.0, x) -> llvm.exp2(x) 1146 if (match(Op1, m_SpecificFP(2.0))) { 1147 Value *Exp2 = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::exp2, 1148 CI->getType()); 1149 return B.CreateCall(Exp2, Op2, "exp2"); 1150 } 1151 1152 // There's no llvm.exp10 intrinsic yet, but, maybe, some day there will 1153 // be one. 1154 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { 1155 // pow(10.0, x) -> exp10(x) 1156 if (Op1C->isExactlyValue(10.0) && 1157 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc_exp10, LibFunc_exp10f, 1158 LibFunc_exp10l)) 1159 return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc_exp10), B, 1160 Callee->getAttributes()); 1161 } 1162 1163 // pow(exp(x), y) -> exp(x * y) 1164 // pow(exp2(x), y) -> exp2(x * y) 1165 // We enable these only with fast-math. Besides rounding differences, the 1166 // transformation changes overflow and underflow behavior quite dramatically. 1167 // Example: x = 1000, y = 0.001. 1168 // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1). 1169 auto *OpC = dyn_cast<CallInst>(Op1); 1170 if (OpC && OpC->isFast() && CI->isFast()) { 1171 LibFunc Func; 1172 Function *OpCCallee = OpC->getCalledFunction(); 1173 if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) && 1174 TLI->has(Func) && (Func == LibFunc_exp || Func == LibFunc_exp2)) { 1175 IRBuilder<>::FastMathFlagGuard Guard(B); 1176 B.setFastMathFlags(CI->getFastMathFlags()); 1177 Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul"); 1178 return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B, 1179 OpCCallee->getAttributes()); 1180 } 1181 } 1182 1183 if (Value *Sqrt = replacePowWithSqrt(CI, B)) 1184 return Sqrt; 1185 1186 ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2); 1187 if (!Op2C) 1188 return Ret; 1189 1190 if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 1191 return ConstantFP::get(CI->getType(), 1.0); 1192 1193 // FIXME: Correct the transforms and pull this into replacePowWithSqrt(). 1194 if (Op2C->isExactlyValue(0.5) && 1195 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf, 1196 LibFunc_sqrtl)) { 1197 // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). 1198 // This is faster than calling pow, and still handles negative zero 1199 // and negative infinity correctly. 1200 // TODO: In finite-only mode, this could be just fabs(sqrt(x)). 1201 Value *Inf = ConstantFP::getInfinity(CI->getType()); 1202 Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); 1203 1204 // TODO: As above, we should lower to the sqrt intrinsic if the pow is an 1205 // intrinsic, to match errno semantics. 1206 Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes()); 1207 1208 Module *M = Callee->getParent(); 1209 Function *FabsF = Intrinsic::getDeclaration(M, Intrinsic::fabs, 1210 CI->getType()); 1211 Value *FAbs = B.CreateCall(FabsF, Sqrt); 1212 1213 Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf); 1214 Value *Sel = B.CreateSelect(FCmp, Inf, FAbs); 1215 return Sel; 1216 } 1217 1218 // Propagate fast-math-flags from the call to any created instructions. 1219 IRBuilder<>::FastMathFlagGuard Guard(B); 1220 B.setFastMathFlags(CI->getFastMathFlags()); 1221 // pow(x, 1.0) --> x 1222 if (Op2C->isExactlyValue(1.0)) 1223 return Op1; 1224 // pow(x, 2.0) --> x * x 1225 if (Op2C->isExactlyValue(2.0)) 1226 return B.CreateFMul(Op1, Op1, "pow2"); 1227 // pow(x, -1.0) --> 1.0 / x 1228 if (Op2C->isExactlyValue(-1.0)) 1229 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip"); 1230 1231 // In -ffast-math, generate repeated fmul instead of generating pow(x, n). 1232 if (CI->isFast()) { 1233 APFloat V = abs(Op2C->getValueAPF()); 1234 // We limit to a max of 7 fmul(s). Thus max exponent is 32. 1235 // This transformation applies to integer exponents only. 1236 if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan || 1237 !V.isInteger()) 1238 return nullptr; 1239 1240 // We will memoize intermediate products of the Addition Chain. 1241 Value *InnerChain[33] = {nullptr}; 1242 InnerChain[1] = Op1; 1243 InnerChain[2] = B.CreateFMul(Op1, Op1); 1244 1245 // We cannot readily convert a non-double type (like float) to a double. 1246 // So we first convert V to something which could be converted to double. 1247 bool Ignored; 1248 V.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1249 1250 Value *FMul = getPow(InnerChain, V.convertToDouble(), B); 1251 // For negative exponents simply compute the reciprocal. 1252 if (Op2C->isNegative()) 1253 FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul); 1254 return FMul; 1255 } 1256 1257 return nullptr; 1258 } 1259 1260 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1261 Function *Callee = CI->getCalledFunction(); 1262 Value *Ret = nullptr; 1263 StringRef Name = Callee->getName(); 1264 if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name)) 1265 Ret = optimizeUnaryDoubleFP(CI, B, true); 1266 1267 Value *Op = CI->getArgOperand(0); 1268 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1269 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1270 LibFunc LdExp = LibFunc_ldexpl; 1271 if (Op->getType()->isFloatTy()) 1272 LdExp = LibFunc_ldexpf; 1273 else if (Op->getType()->isDoubleTy()) 1274 LdExp = LibFunc_ldexp; 1275 1276 if (TLI->has(LdExp)) { 1277 Value *LdExpArg = nullptr; 1278 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 1279 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 1280 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 1281 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 1282 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 1283 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 1284 } 1285 1286 if (LdExpArg) { 1287 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); 1288 if (!Op->getType()->isFloatTy()) 1289 One = ConstantExpr::getFPExtend(One, Op->getType()); 1290 1291 Module *M = CI->getModule(); 1292 Value *NewCallee = 1293 M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), 1294 Op->getType(), B.getInt32Ty()); 1295 CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg}); 1296 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 1297 CI->setCallingConv(F->getCallingConv()); 1298 1299 return CI; 1300 } 1301 } 1302 return Ret; 1303 } 1304 1305 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { 1306 Function *Callee = CI->getCalledFunction(); 1307 // If we can shrink the call to a float function rather than a double 1308 // function, do that first. 1309 StringRef Name = Callee->getName(); 1310 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1311 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1312 return Ret; 1313 1314 IRBuilder<>::FastMathFlagGuard Guard(B); 1315 FastMathFlags FMF; 1316 if (CI->isFast()) { 1317 // If the call is 'fast', then anything we create here will also be 'fast'. 1318 FMF.setFast(); 1319 } else { 1320 // At a minimum, no-nans-fp-math must be true. 1321 if (!CI->hasNoNaNs()) 1322 return nullptr; 1323 // No-signed-zeros is implied by the definitions of fmax/fmin themselves: 1324 // "Ideally, fmax would be sensitive to the sign of zero, for example 1325 // fmax(-0. 0, +0. 0) would return +0; however, implementation in software 1326 // might be impractical." 1327 FMF.setNoSignedZeros(); 1328 FMF.setNoNaNs(); 1329 } 1330 B.setFastMathFlags(FMF); 1331 1332 // We have a relaxed floating-point environment. We can ignore NaN-handling 1333 // and transform to a compare and select. We do not have to consider errno or 1334 // exceptions, because fmin/fmax do not have those. 1335 Value *Op0 = CI->getArgOperand(0); 1336 Value *Op1 = CI->getArgOperand(1); 1337 Value *Cmp = Callee->getName().startswith("fmin") ? 1338 B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1); 1339 return B.CreateSelect(Cmp, Op0, Op1); 1340 } 1341 1342 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { 1343 Function *Callee = CI->getCalledFunction(); 1344 Value *Ret = nullptr; 1345 StringRef Name = Callee->getName(); 1346 if (UnsafeFPShrink && hasFloatVersion(Name)) 1347 Ret = optimizeUnaryDoubleFP(CI, B, true); 1348 1349 if (!CI->isFast()) 1350 return Ret; 1351 Value *Op1 = CI->getArgOperand(0); 1352 auto *OpC = dyn_cast<CallInst>(Op1); 1353 1354 // The earlier call must also be 'fast' in order to do these transforms. 1355 if (!OpC || !OpC->isFast()) 1356 return Ret; 1357 1358 // log(pow(x,y)) -> y*log(x) 1359 // This is only applicable to log, log2, log10. 1360 if (Name != "log" && Name != "log2" && Name != "log10") 1361 return Ret; 1362 1363 IRBuilder<>::FastMathFlagGuard Guard(B); 1364 FastMathFlags FMF; 1365 FMF.setFast(); 1366 B.setFastMathFlags(FMF); 1367 1368 LibFunc Func; 1369 Function *F = OpC->getCalledFunction(); 1370 if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1371 Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow)) 1372 return B.CreateFMul(OpC->getArgOperand(1), 1373 emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, 1374 Callee->getAttributes()), "mul"); 1375 1376 // log(exp2(y)) -> y*log(2) 1377 if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && 1378 TLI->has(Func) && Func == LibFunc_exp2) 1379 return B.CreateFMul( 1380 OpC->getArgOperand(0), 1381 emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), 1382 Callee->getName(), B, Callee->getAttributes()), 1383 "logmul"); 1384 return Ret; 1385 } 1386 1387 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1388 Function *Callee = CI->getCalledFunction(); 1389 Value *Ret = nullptr; 1390 // TODO: Once we have a way (other than checking for the existince of the 1391 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 1392 // condition below. 1393 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 1394 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1395 Ret = optimizeUnaryDoubleFP(CI, B, true); 1396 1397 if (!CI->isFast()) 1398 return Ret; 1399 1400 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1401 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 1402 return Ret; 1403 1404 // We're looking for a repeated factor in a multiplication tree, 1405 // so we can do this fold: sqrt(x * x) -> fabs(x); 1406 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 1407 Value *Op0 = I->getOperand(0); 1408 Value *Op1 = I->getOperand(1); 1409 Value *RepeatOp = nullptr; 1410 Value *OtherOp = nullptr; 1411 if (Op0 == Op1) { 1412 // Simple match: the operands of the multiply are identical. 1413 RepeatOp = Op0; 1414 } else { 1415 // Look for a more complicated pattern: one of the operands is itself 1416 // a multiply, so search for a common factor in that multiply. 1417 // Note: We don't bother looking any deeper than this first level or for 1418 // variations of this pattern because instcombine's visitFMUL and/or the 1419 // reassociation pass should give us this form. 1420 Value *OtherMul0, *OtherMul1; 1421 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1422 // Pattern: sqrt((x * y) * z) 1423 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 1424 // Matched: sqrt((x * x) * z) 1425 RepeatOp = OtherMul0; 1426 OtherOp = Op1; 1427 } 1428 } 1429 } 1430 if (!RepeatOp) 1431 return Ret; 1432 1433 // Fast math flags for any created instructions should match the sqrt 1434 // and multiply. 1435 IRBuilder<>::FastMathFlagGuard Guard(B); 1436 B.setFastMathFlags(I->getFastMathFlags()); 1437 1438 // If we found a repeated factor, hoist it out of the square root and 1439 // replace it with the fabs of that factor. 1440 Module *M = Callee->getParent(); 1441 Type *ArgType = I->getType(); 1442 Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1443 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1444 if (OtherOp) { 1445 // If we found a non-repeated factor, we still need to get its square 1446 // root. We then multiply that by the value that was simplified out 1447 // of the square root calculation. 1448 Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1449 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1450 return B.CreateFMul(FabsCall, SqrtCall); 1451 } 1452 return FabsCall; 1453 } 1454 1455 // TODO: Generalize to handle any trig function and its inverse. 1456 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { 1457 Function *Callee = CI->getCalledFunction(); 1458 Value *Ret = nullptr; 1459 StringRef Name = Callee->getName(); 1460 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 1461 Ret = optimizeUnaryDoubleFP(CI, B, true); 1462 1463 Value *Op1 = CI->getArgOperand(0); 1464 auto *OpC = dyn_cast<CallInst>(Op1); 1465 if (!OpC) 1466 return Ret; 1467 1468 // Both calls must be 'fast' in order to remove them. 1469 if (!CI->isFast() || !OpC->isFast()) 1470 return Ret; 1471 1472 // tan(atan(x)) -> x 1473 // tanf(atanf(x)) -> x 1474 // tanl(atanl(x)) -> x 1475 LibFunc Func; 1476 Function *F = OpC->getCalledFunction(); 1477 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1478 ((Func == LibFunc_atan && Callee->getName() == "tan") || 1479 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 1480 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 1481 Ret = OpC->getArgOperand(0); 1482 return Ret; 1483 } 1484 1485 static bool isTrigLibCall(CallInst *CI) { 1486 // We can only hope to do anything useful if we can ignore things like errno 1487 // and floating-point exceptions. 1488 // We already checked the prototype. 1489 return CI->hasFnAttr(Attribute::NoUnwind) && 1490 CI->hasFnAttr(Attribute::ReadNone); 1491 } 1492 1493 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1494 bool UseFloat, Value *&Sin, Value *&Cos, 1495 Value *&SinCos) { 1496 Type *ArgTy = Arg->getType(); 1497 Type *ResTy; 1498 StringRef Name; 1499 1500 Triple T(OrigCallee->getParent()->getTargetTriple()); 1501 if (UseFloat) { 1502 Name = "__sincospif_stret"; 1503 1504 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1505 // x86_64 can't use {float, float} since that would be returned in both 1506 // xmm0 and xmm1, which isn't what a real struct would do. 1507 ResTy = T.getArch() == Triple::x86_64 1508 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1509 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 1510 } else { 1511 Name = "__sincospi_stret"; 1512 ResTy = StructType::get(ArgTy, ArgTy); 1513 } 1514 1515 Module *M = OrigCallee->getParent(); 1516 Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), 1517 ResTy, ArgTy); 1518 1519 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1520 // If the argument is an instruction, it must dominate all uses so put our 1521 // sincos call there. 1522 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1523 } else { 1524 // Otherwise (e.g. for a constant) the beginning of the function is as 1525 // good a place as any. 1526 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1527 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1528 } 1529 1530 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1531 1532 if (SinCos->getType()->isStructTy()) { 1533 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1534 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1535 } else { 1536 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1537 "sinpi"); 1538 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1539 "cospi"); 1540 } 1541 } 1542 1543 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1544 // Make sure the prototype is as expected, otherwise the rest of the 1545 // function is probably invalid and likely to abort. 1546 if (!isTrigLibCall(CI)) 1547 return nullptr; 1548 1549 Value *Arg = CI->getArgOperand(0); 1550 SmallVector<CallInst *, 1> SinCalls; 1551 SmallVector<CallInst *, 1> CosCalls; 1552 SmallVector<CallInst *, 1> SinCosCalls; 1553 1554 bool IsFloat = Arg->getType()->isFloatTy(); 1555 1556 // Look for all compatible sinpi, cospi and sincospi calls with the same 1557 // argument. If there are enough (in some sense) we can make the 1558 // substitution. 1559 Function *F = CI->getFunction(); 1560 for (User *U : Arg->users()) 1561 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 1562 1563 // It's only worthwhile if both sinpi and cospi are actually used. 1564 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1565 return nullptr; 1566 1567 Value *Sin, *Cos, *SinCos; 1568 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1569 1570 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 1571 Value *Res) { 1572 for (CallInst *C : Calls) 1573 replaceAllUsesWith(C, Res); 1574 }; 1575 1576 replaceTrigInsts(SinCalls, Sin); 1577 replaceTrigInsts(CosCalls, Cos); 1578 replaceTrigInsts(SinCosCalls, SinCos); 1579 1580 return nullptr; 1581 } 1582 1583 void LibCallSimplifier::classifyArgUse( 1584 Value *Val, Function *F, bool IsFloat, 1585 SmallVectorImpl<CallInst *> &SinCalls, 1586 SmallVectorImpl<CallInst *> &CosCalls, 1587 SmallVectorImpl<CallInst *> &SinCosCalls) { 1588 CallInst *CI = dyn_cast<CallInst>(Val); 1589 1590 if (!CI) 1591 return; 1592 1593 // Don't consider calls in other functions. 1594 if (CI->getFunction() != F) 1595 return; 1596 1597 Function *Callee = CI->getCalledFunction(); 1598 LibFunc Func; 1599 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 1600 !isTrigLibCall(CI)) 1601 return; 1602 1603 if (IsFloat) { 1604 if (Func == LibFunc_sinpif) 1605 SinCalls.push_back(CI); 1606 else if (Func == LibFunc_cospif) 1607 CosCalls.push_back(CI); 1608 else if (Func == LibFunc_sincospif_stret) 1609 SinCosCalls.push_back(CI); 1610 } else { 1611 if (Func == LibFunc_sinpi) 1612 SinCalls.push_back(CI); 1613 else if (Func == LibFunc_cospi) 1614 CosCalls.push_back(CI); 1615 else if (Func == LibFunc_sincospi_stret) 1616 SinCosCalls.push_back(CI); 1617 } 1618 } 1619 1620 //===----------------------------------------------------------------------===// 1621 // Integer Library Call Optimizations 1622 //===----------------------------------------------------------------------===// 1623 1624 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1625 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1626 Value *Op = CI->getArgOperand(0); 1627 Type *ArgType = Op->getType(); 1628 Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1629 Intrinsic::cttz, ArgType); 1630 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 1631 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1632 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1633 1634 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1635 return B.CreateSelect(Cond, V, B.getInt32(0)); 1636 } 1637 1638 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) { 1639 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 1640 Value *Op = CI->getArgOperand(0); 1641 Type *ArgType = Op->getType(); 1642 Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1643 Intrinsic::ctlz, ArgType); 1644 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 1645 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 1646 V); 1647 return B.CreateIntCast(V, CI->getType(), false); 1648 } 1649 1650 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1651 // abs(x) -> x >s -1 ? x : -x 1652 Value *Op = CI->getArgOperand(0); 1653 Value *Pos = 1654 B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos"); 1655 Value *Neg = B.CreateNeg(Op, "neg"); 1656 return B.CreateSelect(Pos, Op, Neg); 1657 } 1658 1659 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 1660 // isdigit(c) -> (c-'0') <u 10 1661 Value *Op = CI->getArgOperand(0); 1662 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1663 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1664 return B.CreateZExt(Op, CI->getType()); 1665 } 1666 1667 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 1668 // isascii(c) -> c <u 128 1669 Value *Op = CI->getArgOperand(0); 1670 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1671 return B.CreateZExt(Op, CI->getType()); 1672 } 1673 1674 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 1675 // toascii(c) -> c & 0x7f 1676 return B.CreateAnd(CI->getArgOperand(0), 1677 ConstantInt::get(CI->getType(), 0x7F)); 1678 } 1679 1680 //===----------------------------------------------------------------------===// 1681 // Formatting and IO Library Call Optimizations 1682 //===----------------------------------------------------------------------===// 1683 1684 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 1685 1686 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 1687 int StreamArg) { 1688 Function *Callee = CI->getCalledFunction(); 1689 // Error reporting calls should be cold, mark them as such. 1690 // This applies even to non-builtin calls: it is only a hint and applies to 1691 // functions that the frontend might not understand as builtins. 1692 1693 // This heuristic was suggested in: 1694 // Improving Static Branch Prediction in a Compiler 1695 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 1696 // Proceedings of PACT'98, Oct. 1998, IEEE 1697 if (!CI->hasFnAttr(Attribute::Cold) && 1698 isReportingError(Callee, CI, StreamArg)) { 1699 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 1700 } 1701 1702 return nullptr; 1703 } 1704 1705 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 1706 if (!Callee || !Callee->isDeclaration()) 1707 return false; 1708 1709 if (StreamArg < 0) 1710 return true; 1711 1712 // These functions might be considered cold, but only if their stream 1713 // argument is stderr. 1714 1715 if (StreamArg >= (int)CI->getNumArgOperands()) 1716 return false; 1717 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 1718 if (!LI) 1719 return false; 1720 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 1721 if (!GV || !GV->isDeclaration()) 1722 return false; 1723 return GV->getName() == "stderr"; 1724 } 1725 1726 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 1727 // Check for a fixed format string. 1728 StringRef FormatStr; 1729 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 1730 return nullptr; 1731 1732 // Empty format string -> noop. 1733 if (FormatStr.empty()) // Tolerate printf's declared void. 1734 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 1735 1736 // Do not do any of the following transformations if the printf return value 1737 // is used, in general the printf return value is not compatible with either 1738 // putchar() or puts(). 1739 if (!CI->use_empty()) 1740 return nullptr; 1741 1742 // printf("x") -> putchar('x'), even for "%" and "%%". 1743 if (FormatStr.size() == 1 || FormatStr == "%%") 1744 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 1745 1746 // printf("%s", "a") --> putchar('a') 1747 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 1748 StringRef ChrStr; 1749 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 1750 return nullptr; 1751 if (ChrStr.size() != 1) 1752 return nullptr; 1753 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 1754 } 1755 1756 // printf("foo\n") --> puts("foo") 1757 if (FormatStr[FormatStr.size() - 1] == '\n' && 1758 FormatStr.find('%') == StringRef::npos) { // No format characters. 1759 // Create a string literal with no \n on it. We expect the constant merge 1760 // pass to be run after this pass, to merge duplicate strings. 1761 FormatStr = FormatStr.drop_back(); 1762 Value *GV = B.CreateGlobalString(FormatStr, "str"); 1763 return emitPutS(GV, B, TLI); 1764 } 1765 1766 // Optimize specific format strings. 1767 // printf("%c", chr) --> putchar(chr) 1768 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 1769 CI->getArgOperand(1)->getType()->isIntegerTy()) 1770 return emitPutChar(CI->getArgOperand(1), B, TLI); 1771 1772 // printf("%s\n", str) --> puts(str) 1773 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 1774 CI->getArgOperand(1)->getType()->isPointerTy()) 1775 return emitPutS(CI->getArgOperand(1), B, TLI); 1776 return nullptr; 1777 } 1778 1779 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 1780 1781 Function *Callee = CI->getCalledFunction(); 1782 FunctionType *FT = Callee->getFunctionType(); 1783 if (Value *V = optimizePrintFString(CI, B)) { 1784 return V; 1785 } 1786 1787 // printf(format, ...) -> iprintf(format, ...) if no floating point 1788 // arguments. 1789 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 1790 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1791 Constant *IPrintFFn = 1792 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 1793 CallInst *New = cast<CallInst>(CI->clone()); 1794 New->setCalledFunction(IPrintFFn); 1795 B.Insert(New); 1796 return New; 1797 } 1798 return nullptr; 1799 } 1800 1801 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 1802 // Check for a fixed format string. 1803 StringRef FormatStr; 1804 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1805 return nullptr; 1806 1807 // If we just have a format string (nothing else crazy) transform it. 1808 if (CI->getNumArgOperands() == 2) { 1809 // Make sure there's no % in the constant array. We could try to handle 1810 // %% -> % in the future if we cared. 1811 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1812 if (FormatStr[i] == '%') 1813 return nullptr; // we found a format specifier, bail out. 1814 1815 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 1816 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 1817 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 1818 FormatStr.size() + 1)); // Copy the null byte. 1819 return ConstantInt::get(CI->getType(), FormatStr.size()); 1820 } 1821 1822 // The remaining optimizations require the format string to be "%s" or "%c" 1823 // and have an extra operand. 1824 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1825 CI->getNumArgOperands() < 3) 1826 return nullptr; 1827 1828 // Decode the second character of the format string. 1829 if (FormatStr[1] == 'c') { 1830 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 1831 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1832 return nullptr; 1833 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 1834 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 1835 B.CreateStore(V, Ptr); 1836 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 1837 B.CreateStore(B.getInt8(0), Ptr); 1838 1839 return ConstantInt::get(CI->getType(), 1); 1840 } 1841 1842 if (FormatStr[1] == 's') { 1843 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) 1844 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1845 return nullptr; 1846 1847 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 1848 if (!Len) 1849 return nullptr; 1850 Value *IncLen = 1851 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 1852 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen); 1853 1854 // The sprintf result is the unincremented number of bytes in the string. 1855 return B.CreateIntCast(Len, CI->getType(), false); 1856 } 1857 return nullptr; 1858 } 1859 1860 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 1861 Function *Callee = CI->getCalledFunction(); 1862 FunctionType *FT = Callee->getFunctionType(); 1863 if (Value *V = optimizeSPrintFString(CI, B)) { 1864 return V; 1865 } 1866 1867 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 1868 // point arguments. 1869 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 1870 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1871 Constant *SIPrintFFn = 1872 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 1873 CallInst *New = cast<CallInst>(CI->clone()); 1874 New->setCalledFunction(SIPrintFFn); 1875 B.Insert(New); 1876 return New; 1877 } 1878 return nullptr; 1879 } 1880 1881 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 1882 optimizeErrorReporting(CI, B, 0); 1883 1884 // All the optimizations depend on the format string. 1885 StringRef FormatStr; 1886 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1887 return nullptr; 1888 1889 // Do not do any of the following transformations if the fprintf return 1890 // value is used, in general the fprintf return value is not compatible 1891 // with fwrite(), fputc() or fputs(). 1892 if (!CI->use_empty()) 1893 return nullptr; 1894 1895 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 1896 if (CI->getNumArgOperands() == 2) { 1897 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1898 if (FormatStr[i] == '%') // Could handle %% -> % if we cared. 1899 return nullptr; // We found a format specifier. 1900 1901 return emitFWrite( 1902 CI->getArgOperand(1), 1903 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 1904 CI->getArgOperand(0), B, DL, TLI); 1905 } 1906 1907 // The remaining optimizations require the format string to be "%s" or "%c" 1908 // and have an extra operand. 1909 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1910 CI->getNumArgOperands() < 3) 1911 return nullptr; 1912 1913 // Decode the second character of the format string. 1914 if (FormatStr[1] == 'c') { 1915 // fprintf(F, "%c", chr) --> fputc(chr, F) 1916 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1917 return nullptr; 1918 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 1919 } 1920 1921 if (FormatStr[1] == 's') { 1922 // fprintf(F, "%s", str) --> fputs(str, F) 1923 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1924 return nullptr; 1925 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 1926 } 1927 return nullptr; 1928 } 1929 1930 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 1931 Function *Callee = CI->getCalledFunction(); 1932 FunctionType *FT = Callee->getFunctionType(); 1933 if (Value *V = optimizeFPrintFString(CI, B)) { 1934 return V; 1935 } 1936 1937 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 1938 // floating point arguments. 1939 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 1940 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1941 Constant *FIPrintFFn = 1942 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 1943 CallInst *New = cast<CallInst>(CI->clone()); 1944 New->setCalledFunction(FIPrintFFn); 1945 B.Insert(New); 1946 return New; 1947 } 1948 return nullptr; 1949 } 1950 1951 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 1952 optimizeErrorReporting(CI, B, 3); 1953 1954 // Get the element size and count. 1955 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 1956 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1957 if (!SizeC || !CountC) 1958 return nullptr; 1959 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 1960 1961 // If this is writing zero records, remove the call (it's a noop). 1962 if (Bytes == 0) 1963 return ConstantInt::get(CI->getType(), 0); 1964 1965 // If this is writing one byte, turn it into fputc. 1966 // This optimisation is only valid, if the return value is unused. 1967 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 1968 Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char"); 1969 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 1970 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 1971 } 1972 1973 return nullptr; 1974 } 1975 1976 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 1977 optimizeErrorReporting(CI, B, 1); 1978 1979 // Don't rewrite fputs to fwrite when optimising for size because fwrite 1980 // requires more arguments and thus extra MOVs are required. 1981 if (CI->getParent()->getParent()->optForSize()) 1982 return nullptr; 1983 1984 // We can't optimize if return value is used. 1985 if (!CI->use_empty()) 1986 return nullptr; 1987 1988 // fputs(s,F) --> fwrite(s,1,strlen(s),F) 1989 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 1990 if (!Len) 1991 return nullptr; 1992 1993 // Known to have no uses (see above). 1994 return emitFWrite( 1995 CI->getArgOperand(0), 1996 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 1997 CI->getArgOperand(1), B, DL, TLI); 1998 } 1999 2000 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 2001 // Check for a constant string. 2002 StringRef Str; 2003 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2004 return nullptr; 2005 2006 if (Str.empty() && CI->use_empty()) { 2007 // puts("") -> putchar('\n') 2008 Value *Res = emitPutChar(B.getInt32('\n'), B, TLI); 2009 if (CI->use_empty() || !Res) 2010 return Res; 2011 return B.CreateIntCast(Res, CI->getType(), true); 2012 } 2013 2014 return nullptr; 2015 } 2016 2017 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2018 LibFunc Func; 2019 SmallString<20> FloatFuncName = FuncName; 2020 FloatFuncName += 'f'; 2021 if (TLI->getLibFunc(FloatFuncName, Func)) 2022 return TLI->has(Func); 2023 return false; 2024 } 2025 2026 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2027 IRBuilder<> &Builder) { 2028 LibFunc Func; 2029 Function *Callee = CI->getCalledFunction(); 2030 // Check for string/memory library functions. 2031 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2032 // Make sure we never change the calling convention. 2033 assert((ignoreCallingConv(Func) || 2034 isCallingConvCCompatible(CI)) && 2035 "Optimizing string/memory libcall would change the calling convention"); 2036 switch (Func) { 2037 case LibFunc_strcat: 2038 return optimizeStrCat(CI, Builder); 2039 case LibFunc_strncat: 2040 return optimizeStrNCat(CI, Builder); 2041 case LibFunc_strchr: 2042 return optimizeStrChr(CI, Builder); 2043 case LibFunc_strrchr: 2044 return optimizeStrRChr(CI, Builder); 2045 case LibFunc_strcmp: 2046 return optimizeStrCmp(CI, Builder); 2047 case LibFunc_strncmp: 2048 return optimizeStrNCmp(CI, Builder); 2049 case LibFunc_strcpy: 2050 return optimizeStrCpy(CI, Builder); 2051 case LibFunc_stpcpy: 2052 return optimizeStpCpy(CI, Builder); 2053 case LibFunc_strncpy: 2054 return optimizeStrNCpy(CI, Builder); 2055 case LibFunc_strlen: 2056 return optimizeStrLen(CI, Builder); 2057 case LibFunc_strpbrk: 2058 return optimizeStrPBrk(CI, Builder); 2059 case LibFunc_strtol: 2060 case LibFunc_strtod: 2061 case LibFunc_strtof: 2062 case LibFunc_strtoul: 2063 case LibFunc_strtoll: 2064 case LibFunc_strtold: 2065 case LibFunc_strtoull: 2066 return optimizeStrTo(CI, Builder); 2067 case LibFunc_strspn: 2068 return optimizeStrSpn(CI, Builder); 2069 case LibFunc_strcspn: 2070 return optimizeStrCSpn(CI, Builder); 2071 case LibFunc_strstr: 2072 return optimizeStrStr(CI, Builder); 2073 case LibFunc_memchr: 2074 return optimizeMemChr(CI, Builder); 2075 case LibFunc_memcmp: 2076 return optimizeMemCmp(CI, Builder); 2077 case LibFunc_memcpy: 2078 return optimizeMemCpy(CI, Builder); 2079 case LibFunc_memmove: 2080 return optimizeMemMove(CI, Builder); 2081 case LibFunc_memset: 2082 return optimizeMemSet(CI, Builder); 2083 case LibFunc_wcslen: 2084 return optimizeWcslen(CI, Builder); 2085 default: 2086 break; 2087 } 2088 } 2089 return nullptr; 2090 } 2091 2092 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2093 LibFunc Func, 2094 IRBuilder<> &Builder) { 2095 // Don't optimize calls that require strict floating point semantics. 2096 if (CI->isStrictFP()) 2097 return nullptr; 2098 2099 switch (Func) { 2100 case LibFunc_cosf: 2101 case LibFunc_cos: 2102 case LibFunc_cosl: 2103 return optimizeCos(CI, Builder); 2104 case LibFunc_sinpif: 2105 case LibFunc_sinpi: 2106 case LibFunc_cospif: 2107 case LibFunc_cospi: 2108 return optimizeSinCosPi(CI, Builder); 2109 case LibFunc_powf: 2110 case LibFunc_pow: 2111 case LibFunc_powl: 2112 return optimizePow(CI, Builder); 2113 case LibFunc_exp2l: 2114 case LibFunc_exp2: 2115 case LibFunc_exp2f: 2116 return optimizeExp2(CI, Builder); 2117 case LibFunc_fabsf: 2118 case LibFunc_fabs: 2119 case LibFunc_fabsl: 2120 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2121 case LibFunc_sqrtf: 2122 case LibFunc_sqrt: 2123 case LibFunc_sqrtl: 2124 return optimizeSqrt(CI, Builder); 2125 case LibFunc_log: 2126 case LibFunc_log10: 2127 case LibFunc_log1p: 2128 case LibFunc_log2: 2129 case LibFunc_logb: 2130 return optimizeLog(CI, Builder); 2131 case LibFunc_tan: 2132 case LibFunc_tanf: 2133 case LibFunc_tanl: 2134 return optimizeTan(CI, Builder); 2135 case LibFunc_ceil: 2136 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2137 case LibFunc_floor: 2138 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2139 case LibFunc_round: 2140 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2141 case LibFunc_nearbyint: 2142 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2143 case LibFunc_rint: 2144 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2145 case LibFunc_trunc: 2146 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2147 case LibFunc_acos: 2148 case LibFunc_acosh: 2149 case LibFunc_asin: 2150 case LibFunc_asinh: 2151 case LibFunc_atan: 2152 case LibFunc_atanh: 2153 case LibFunc_cbrt: 2154 case LibFunc_cosh: 2155 case LibFunc_exp: 2156 case LibFunc_exp10: 2157 case LibFunc_expm1: 2158 case LibFunc_sin: 2159 case LibFunc_sinh: 2160 case LibFunc_tanh: 2161 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 2162 return optimizeUnaryDoubleFP(CI, Builder, true); 2163 return nullptr; 2164 case LibFunc_copysign: 2165 if (hasFloatVersion(CI->getCalledFunction()->getName())) 2166 return optimizeBinaryDoubleFP(CI, Builder); 2167 return nullptr; 2168 case LibFunc_fminf: 2169 case LibFunc_fmin: 2170 case LibFunc_fminl: 2171 case LibFunc_fmaxf: 2172 case LibFunc_fmax: 2173 case LibFunc_fmaxl: 2174 return optimizeFMinFMax(CI, Builder); 2175 case LibFunc_cabs: 2176 case LibFunc_cabsf: 2177 case LibFunc_cabsl: 2178 return optimizeCAbs(CI, Builder); 2179 default: 2180 return nullptr; 2181 } 2182 } 2183 2184 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 2185 // TODO: Split out the code below that operates on FP calls so that 2186 // we can all non-FP calls with the StrictFP attribute to be 2187 // optimized. 2188 if (CI->isNoBuiltin()) 2189 return nullptr; 2190 2191 LibFunc Func; 2192 Function *Callee = CI->getCalledFunction(); 2193 2194 SmallVector<OperandBundleDef, 2> OpBundles; 2195 CI->getOperandBundlesAsDefs(OpBundles); 2196 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2197 bool isCallingConvC = isCallingConvCCompatible(CI); 2198 2199 // Command-line parameter overrides instruction attribute. 2200 // This can't be moved to optimizeFloatingPointLibCall() because it may be 2201 // used by the intrinsic optimizations. 2202 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2203 UnsafeFPShrink = EnableUnsafeFPShrink; 2204 else if (isa<FPMathOperator>(CI) && CI->isFast()) 2205 UnsafeFPShrink = true; 2206 2207 // First, check for intrinsics. 2208 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2209 if (!isCallingConvC) 2210 return nullptr; 2211 // The FP intrinsics have corresponding constrained versions so we don't 2212 // need to check for the StrictFP attribute here. 2213 switch (II->getIntrinsicID()) { 2214 case Intrinsic::pow: 2215 return optimizePow(CI, Builder); 2216 case Intrinsic::exp2: 2217 return optimizeExp2(CI, Builder); 2218 case Intrinsic::log: 2219 return optimizeLog(CI, Builder); 2220 case Intrinsic::sqrt: 2221 return optimizeSqrt(CI, Builder); 2222 // TODO: Use foldMallocMemset() with memset intrinsic. 2223 default: 2224 return nullptr; 2225 } 2226 } 2227 2228 // Also try to simplify calls to fortified library functions. 2229 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 2230 // Try to further simplify the result. 2231 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 2232 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 2233 // Use an IR Builder from SimplifiedCI if available instead of CI 2234 // to guarantee we reach all uses we might replace later on. 2235 IRBuilder<> TmpBuilder(SimplifiedCI); 2236 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { 2237 // If we were able to further simplify, remove the now redundant call. 2238 SimplifiedCI->replaceAllUsesWith(V); 2239 SimplifiedCI->eraseFromParent(); 2240 return V; 2241 } 2242 } 2243 return SimplifiedFortifiedCI; 2244 } 2245 2246 // Then check for known library functions. 2247 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2248 // We never change the calling convention. 2249 if (!ignoreCallingConv(Func) && !isCallingConvC) 2250 return nullptr; 2251 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 2252 return V; 2253 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 2254 return V; 2255 switch (Func) { 2256 case LibFunc_ffs: 2257 case LibFunc_ffsl: 2258 case LibFunc_ffsll: 2259 return optimizeFFS(CI, Builder); 2260 case LibFunc_fls: 2261 case LibFunc_flsl: 2262 case LibFunc_flsll: 2263 return optimizeFls(CI, Builder); 2264 case LibFunc_abs: 2265 case LibFunc_labs: 2266 case LibFunc_llabs: 2267 return optimizeAbs(CI, Builder); 2268 case LibFunc_isdigit: 2269 return optimizeIsDigit(CI, Builder); 2270 case LibFunc_isascii: 2271 return optimizeIsAscii(CI, Builder); 2272 case LibFunc_toascii: 2273 return optimizeToAscii(CI, Builder); 2274 case LibFunc_printf: 2275 return optimizePrintF(CI, Builder); 2276 case LibFunc_sprintf: 2277 return optimizeSPrintF(CI, Builder); 2278 case LibFunc_fprintf: 2279 return optimizeFPrintF(CI, Builder); 2280 case LibFunc_fwrite: 2281 return optimizeFWrite(CI, Builder); 2282 case LibFunc_fputs: 2283 return optimizeFPuts(CI, Builder); 2284 case LibFunc_puts: 2285 return optimizePuts(CI, Builder); 2286 case LibFunc_perror: 2287 return optimizeErrorReporting(CI, Builder); 2288 case LibFunc_vfprintf: 2289 case LibFunc_fiprintf: 2290 return optimizeErrorReporting(CI, Builder, 0); 2291 case LibFunc_fputc: 2292 return optimizeErrorReporting(CI, Builder, 1); 2293 default: 2294 return nullptr; 2295 } 2296 } 2297 return nullptr; 2298 } 2299 2300 LibCallSimplifier::LibCallSimplifier( 2301 const DataLayout &DL, const TargetLibraryInfo *TLI, 2302 OptimizationRemarkEmitter &ORE, 2303 function_ref<void(Instruction *, Value *)> Replacer) 2304 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), 2305 UnsafeFPShrink(false), Replacer(Replacer) {} 2306 2307 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 2308 // Indirect through the replacer used in this instance. 2309 Replacer(I, With); 2310 } 2311 2312 // TODO: 2313 // Additional cases that we need to add to this file: 2314 // 2315 // cbrt: 2316 // * cbrt(expN(X)) -> expN(x/3) 2317 // * cbrt(sqrt(x)) -> pow(x,1/6) 2318 // * cbrt(cbrt(x)) -> pow(x,1/9) 2319 // 2320 // exp, expf, expl: 2321 // * exp(log(x)) -> x 2322 // 2323 // log, logf, logl: 2324 // * log(exp(x)) -> x 2325 // * log(exp(y)) -> y*log(e) 2326 // * log(exp10(y)) -> y*log(10) 2327 // * log(sqrt(x)) -> 0.5*log(x) 2328 // 2329 // pow, powf, powl: 2330 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2331 // * pow(pow(x,y),z)-> pow(x,y*z) 2332 // 2333 // signbit: 2334 // * signbit(cnst) -> cnst' 2335 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2336 // 2337 // sqrt, sqrtf, sqrtl: 2338 // * sqrt(expN(x)) -> expN(x*0.5) 2339 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2340 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2341 // 2342 2343 //===----------------------------------------------------------------------===// 2344 // Fortified Library Call Optimizations 2345 //===----------------------------------------------------------------------===// 2346 2347 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2348 unsigned ObjSizeOp, 2349 unsigned SizeOp, 2350 bool isString) { 2351 if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp)) 2352 return true; 2353 if (ConstantInt *ObjSizeCI = 2354 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2355 if (ObjSizeCI->isMinusOne()) 2356 return true; 2357 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2358 if (OnlyLowerUnknownSize) 2359 return false; 2360 if (isString) { 2361 uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp)); 2362 // If the length is 0 we don't know how long it is and so we can't 2363 // remove the check. 2364 if (Len == 0) 2365 return false; 2366 return ObjSizeCI->getZExtValue() >= Len; 2367 } 2368 if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp))) 2369 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2370 } 2371 return false; 2372 } 2373 2374 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 2375 IRBuilder<> &B) { 2376 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2377 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2378 CI->getArgOperand(2)); 2379 return CI->getArgOperand(0); 2380 } 2381 return nullptr; 2382 } 2383 2384 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 2385 IRBuilder<> &B) { 2386 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2387 B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2388 CI->getArgOperand(2)); 2389 return CI->getArgOperand(0); 2390 } 2391 return nullptr; 2392 } 2393 2394 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 2395 IRBuilder<> &B) { 2396 // TODO: Try foldMallocMemset() here. 2397 2398 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2399 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2400 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2401 return CI->getArgOperand(0); 2402 } 2403 return nullptr; 2404 } 2405 2406 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 2407 IRBuilder<> &B, 2408 LibFunc Func) { 2409 Function *Callee = CI->getCalledFunction(); 2410 StringRef Name = Callee->getName(); 2411 const DataLayout &DL = CI->getModule()->getDataLayout(); 2412 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 2413 *ObjSize = CI->getArgOperand(2); 2414 2415 // __stpcpy_chk(x,x,...) -> x+strlen(x) 2416 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 2417 Value *StrLen = emitStrLen(Src, B, DL, TLI); 2418 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 2419 } 2420 2421 // If a) we don't have any length information, or b) we know this will 2422 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 2423 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 2424 // TODO: It might be nice to get a maximum length out of the possible 2425 // string lengths for varying. 2426 if (isFortifiedCallFoldable(CI, 2, 1, true)) 2427 return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6)); 2428 2429 if (OnlyLowerUnknownSize) 2430 return nullptr; 2431 2432 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 2433 uint64_t Len = GetStringLength(Src); 2434 if (Len == 0) 2435 return nullptr; 2436 2437 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 2438 Value *LenV = ConstantInt::get(SizeTTy, Len); 2439 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 2440 // If the function was an __stpcpy_chk, and we were able to fold it into 2441 // a __memcpy_chk, we still need to return the correct end pointer. 2442 if (Ret && Func == LibFunc_stpcpy_chk) 2443 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 2444 return Ret; 2445 } 2446 2447 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 2448 IRBuilder<> &B, 2449 LibFunc Func) { 2450 Function *Callee = CI->getCalledFunction(); 2451 StringRef Name = Callee->getName(); 2452 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2453 Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2454 CI->getArgOperand(2), B, TLI, Name.substr(2, 7)); 2455 return Ret; 2456 } 2457 return nullptr; 2458 } 2459 2460 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 2461 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 2462 // Some clang users checked for _chk libcall availability using: 2463 // __has_builtin(__builtin___memcpy_chk) 2464 // When compiling with -fno-builtin, this is always true. 2465 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 2466 // end up with fortified libcalls, which isn't acceptable in a freestanding 2467 // environment which only provides their non-fortified counterparts. 2468 // 2469 // Until we change clang and/or teach external users to check for availability 2470 // differently, disregard the "nobuiltin" attribute and TLI::has. 2471 // 2472 // PR23093. 2473 2474 LibFunc Func; 2475 Function *Callee = CI->getCalledFunction(); 2476 2477 SmallVector<OperandBundleDef, 2> OpBundles; 2478 CI->getOperandBundlesAsDefs(OpBundles); 2479 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2480 bool isCallingConvC = isCallingConvCCompatible(CI); 2481 2482 // First, check that this is a known library functions and that the prototype 2483 // is correct. 2484 if (!TLI->getLibFunc(*Callee, Func)) 2485 return nullptr; 2486 2487 // We never change the calling convention. 2488 if (!ignoreCallingConv(Func) && !isCallingConvC) 2489 return nullptr; 2490 2491 switch (Func) { 2492 case LibFunc_memcpy_chk: 2493 return optimizeMemCpyChk(CI, Builder); 2494 case LibFunc_memmove_chk: 2495 return optimizeMemMoveChk(CI, Builder); 2496 case LibFunc_memset_chk: 2497 return optimizeMemSetChk(CI, Builder); 2498 case LibFunc_stpcpy_chk: 2499 case LibFunc_strcpy_chk: 2500 return optimizeStrpCpyChk(CI, Builder, Func); 2501 case LibFunc_stpncpy_chk: 2502 case LibFunc_strncpy_chk: 2503 return optimizeStrpNCpyChk(CI, Builder, Func); 2504 default: 2505 break; 2506 } 2507 return nullptr; 2508 } 2509 2510 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 2511 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 2512 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 2513