1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Analysis/BlockFrequencyInfo.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ProfileSummaryInfo.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/KnownBits.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Transforms/Utils/BuildLibCalls.h" 39 #include "llvm/Transforms/Utils/SizeOpts.h" 40 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 static cl::opt<bool> 45 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 46 cl::init(false), 47 cl::desc("Enable unsafe double to float " 48 "shrinking for math lib calls")); 49 50 //===----------------------------------------------------------------------===// 51 // Helper Functions 52 //===----------------------------------------------------------------------===// 53 54 static bool ignoreCallingConv(LibFunc Func) { 55 return Func == LibFunc_abs || Func == LibFunc_labs || 56 Func == LibFunc_llabs || Func == LibFunc_strlen; 57 } 58 59 static bool isCallingConvCCompatible(CallInst *CI) { 60 switch(CI->getCallingConv()) { 61 default: 62 return false; 63 case llvm::CallingConv::C: 64 return true; 65 case llvm::CallingConv::ARM_APCS: 66 case llvm::CallingConv::ARM_AAPCS: 67 case llvm::CallingConv::ARM_AAPCS_VFP: { 68 69 // The iOS ABI diverges from the standard in some cases, so for now don't 70 // try to simplify those calls. 71 if (Triple(CI->getModule()->getTargetTriple()).isiOS()) 72 return false; 73 74 auto *FuncTy = CI->getFunctionType(); 75 76 if (!FuncTy->getReturnType()->isPointerTy() && 77 !FuncTy->getReturnType()->isIntegerTy() && 78 !FuncTy->getReturnType()->isVoidTy()) 79 return false; 80 81 for (auto Param : FuncTy->params()) { 82 if (!Param->isPointerTy() && !Param->isIntegerTy()) 83 return false; 84 } 85 return true; 86 } 87 } 88 return false; 89 } 90 91 /// Return true if it is only used in equality comparisons with With. 92 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 93 for (User *U : V->users()) { 94 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 95 if (IC->isEquality() && IC->getOperand(1) == With) 96 continue; 97 // Unknown instruction. 98 return false; 99 } 100 return true; 101 } 102 103 static bool callHasFloatingPointArgument(const CallInst *CI) { 104 return any_of(CI->operands(), [](const Use &OI) { 105 return OI->getType()->isFloatingPointTy(); 106 }); 107 } 108 109 static bool callHasFP128Argument(const CallInst *CI) { 110 return any_of(CI->operands(), [](const Use &OI) { 111 return OI->getType()->isFP128Ty(); 112 }); 113 } 114 115 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 116 if (Base < 2 || Base > 36) 117 // handle special zero base 118 if (Base != 0) 119 return nullptr; 120 121 char *End; 122 std::string nptr = Str.str(); 123 errno = 0; 124 long long int Result = strtoll(nptr.c_str(), &End, Base); 125 if (errno) 126 return nullptr; 127 128 // if we assume all possible target locales are ASCII supersets, 129 // then if strtoll successfully parses a number on the host, 130 // it will also successfully parse the same way on the target 131 if (*End != '\0') 132 return nullptr; 133 134 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 135 return nullptr; 136 137 return ConstantInt::get(CI->getType(), Result); 138 } 139 140 static bool isOnlyUsedInComparisonWithZero(Value *V) { 141 for (User *U : V->users()) { 142 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 143 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 144 if (C->isNullValue()) 145 continue; 146 // Unknown instruction. 147 return false; 148 } 149 return true; 150 } 151 152 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 153 const DataLayout &DL) { 154 if (!isOnlyUsedInComparisonWithZero(CI)) 155 return false; 156 157 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 158 return false; 159 160 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 161 return false; 162 163 return true; 164 } 165 166 static void annotateDereferenceableBytes(CallInst *CI, 167 ArrayRef<unsigned> ArgNos, 168 uint64_t DereferenceableBytes) { 169 const Function *F = CI->getCaller(); 170 if (!F) 171 return; 172 for (unsigned ArgNo : ArgNos) { 173 uint64_t DerefBytes = DereferenceableBytes; 174 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 175 if (!llvm::NullPointerIsDefined(F, AS) || 176 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 177 DerefBytes = std::max(CI->getDereferenceableOrNullBytes( 178 ArgNo + AttributeList::FirstArgIndex), 179 DereferenceableBytes); 180 181 if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) < 182 DerefBytes) { 183 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 184 if (!llvm::NullPointerIsDefined(F, AS) || 185 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 186 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 187 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 188 CI->getContext(), DerefBytes)); 189 } 190 } 191 } 192 193 static void annotateNonNullBasedOnAccess(CallInst *CI, 194 ArrayRef<unsigned> ArgNos) { 195 Function *F = CI->getCaller(); 196 if (!F) 197 return; 198 199 for (unsigned ArgNo : ArgNos) { 200 if (CI->paramHasAttr(ArgNo, Attribute::NonNull)) 201 continue; 202 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 203 if (llvm::NullPointerIsDefined(F, AS)) 204 continue; 205 206 CI->addParamAttr(ArgNo, Attribute::NonNull); 207 annotateDereferenceableBytes(CI, ArgNo, 1); 208 } 209 } 210 211 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 212 Value *Size, const DataLayout &DL) { 213 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 214 annotateNonNullBasedOnAccess(CI, ArgNos); 215 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 216 } else if (isKnownNonZero(Size, DL)) { 217 annotateNonNullBasedOnAccess(CI, ArgNos); 218 const APInt *X, *Y; 219 uint64_t DerefMin = 1; 220 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 221 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 222 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 223 } 224 } 225 } 226 227 //===----------------------------------------------------------------------===// 228 // String and Memory Library Call Optimizations 229 //===----------------------------------------------------------------------===// 230 231 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 232 // Extract some information from the instruction 233 Value *Dst = CI->getArgOperand(0); 234 Value *Src = CI->getArgOperand(1); 235 annotateNonNullBasedOnAccess(CI, {0, 1}); 236 237 // See if we can get the length of the input string. 238 uint64_t Len = GetStringLength(Src); 239 if (Len) 240 annotateDereferenceableBytes(CI, 1, Len); 241 else 242 return nullptr; 243 --Len; // Unbias length. 244 245 // Handle the simple, do-nothing case: strcat(x, "") -> x 246 if (Len == 0) 247 return Dst; 248 249 return emitStrLenMemCpy(Src, Dst, Len, B); 250 } 251 252 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 253 IRBuilderBase &B) { 254 // We need to find the end of the destination string. That's where the 255 // memory is to be moved to. We just generate a call to strlen. 256 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 257 if (!DstLen) 258 return nullptr; 259 260 // Now that we have the destination's length, we must index into the 261 // destination's pointer to get the actual memcpy destination (end of 262 // the string .. we're concatenating). 263 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 264 265 // We have enough information to now generate the memcpy call to do the 266 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 267 B.CreateMemCpy( 268 CpyDst, Align(1), Src, Align(1), 269 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 270 return Dst; 271 } 272 273 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 274 // Extract some information from the instruction. 275 Value *Dst = CI->getArgOperand(0); 276 Value *Src = CI->getArgOperand(1); 277 Value *Size = CI->getArgOperand(2); 278 uint64_t Len; 279 annotateNonNullBasedOnAccess(CI, 0); 280 if (isKnownNonZero(Size, DL)) 281 annotateNonNullBasedOnAccess(CI, 1); 282 283 // We don't do anything if length is not constant. 284 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 285 if (LengthArg) { 286 Len = LengthArg->getZExtValue(); 287 // strncat(x, c, 0) -> x 288 if (!Len) 289 return Dst; 290 } else { 291 return nullptr; 292 } 293 294 // See if we can get the length of the input string. 295 uint64_t SrcLen = GetStringLength(Src); 296 if (SrcLen) { 297 annotateDereferenceableBytes(CI, 1, SrcLen); 298 --SrcLen; // Unbias length. 299 } else { 300 return nullptr; 301 } 302 303 // strncat(x, "", c) -> x 304 if (SrcLen == 0) 305 return Dst; 306 307 // We don't optimize this case. 308 if (Len < SrcLen) 309 return nullptr; 310 311 // strncat(x, s, c) -> strcat(x, s) 312 // s is constant so the strcat can be optimized further. 313 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 314 } 315 316 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 317 Function *Callee = CI->getCalledFunction(); 318 FunctionType *FT = Callee->getFunctionType(); 319 Value *SrcStr = CI->getArgOperand(0); 320 annotateNonNullBasedOnAccess(CI, 0); 321 322 // If the second operand is non-constant, see if we can compute the length 323 // of the input string and turn this into memchr. 324 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 325 if (!CharC) { 326 uint64_t Len = GetStringLength(SrcStr); 327 if (Len) 328 annotateDereferenceableBytes(CI, 0, Len); 329 else 330 return nullptr; 331 if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 332 return nullptr; 333 334 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 335 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 336 B, DL, TLI); 337 } 338 339 // Otherwise, the character is a constant, see if the first argument is 340 // a string literal. If so, we can constant fold. 341 StringRef Str; 342 if (!getConstantStringInfo(SrcStr, Str)) { 343 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 344 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 345 return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 346 return nullptr; 347 } 348 349 // Compute the offset, make sure to handle the case when we're searching for 350 // zero (a weird way to spell strlen). 351 size_t I = (0xFF & CharC->getSExtValue()) == 0 352 ? Str.size() 353 : Str.find(CharC->getSExtValue()); 354 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 355 return Constant::getNullValue(CI->getType()); 356 357 // strchr(s+n,c) -> gep(s+n+i,c) 358 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 359 } 360 361 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 362 Value *SrcStr = CI->getArgOperand(0); 363 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 364 annotateNonNullBasedOnAccess(CI, 0); 365 366 // Cannot fold anything if we're not looking for a constant. 367 if (!CharC) 368 return nullptr; 369 370 StringRef Str; 371 if (!getConstantStringInfo(SrcStr, Str)) { 372 // strrchr(s, 0) -> strchr(s, 0) 373 if (CharC->isZero()) 374 return emitStrChr(SrcStr, '\0', B, TLI); 375 return nullptr; 376 } 377 378 // Compute the offset. 379 size_t I = (0xFF & CharC->getSExtValue()) == 0 380 ? Str.size() 381 : Str.rfind(CharC->getSExtValue()); 382 if (I == StringRef::npos) // Didn't find the char. Return null. 383 return Constant::getNullValue(CI->getType()); 384 385 // strrchr(s+n,c) -> gep(s+n+i,c) 386 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 387 } 388 389 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 390 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 391 if (Str1P == Str2P) // strcmp(x,x) -> 0 392 return ConstantInt::get(CI->getType(), 0); 393 394 StringRef Str1, Str2; 395 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 396 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 397 398 // strcmp(x, y) -> cnst (if both x and y are constant strings) 399 if (HasStr1 && HasStr2) 400 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 401 402 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 403 return B.CreateNeg(B.CreateZExt( 404 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 405 406 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 407 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 408 CI->getType()); 409 410 // strcmp(P, "x") -> memcmp(P, "x", 2) 411 uint64_t Len1 = GetStringLength(Str1P); 412 if (Len1) 413 annotateDereferenceableBytes(CI, 0, Len1); 414 uint64_t Len2 = GetStringLength(Str2P); 415 if (Len2) 416 annotateDereferenceableBytes(CI, 1, Len2); 417 418 if (Len1 && Len2) { 419 return emitMemCmp(Str1P, Str2P, 420 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 421 std::min(Len1, Len2)), 422 B, DL, TLI); 423 } 424 425 // strcmp to memcmp 426 if (!HasStr1 && HasStr2) { 427 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 428 return emitMemCmp( 429 Str1P, Str2P, 430 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 431 TLI); 432 } else if (HasStr1 && !HasStr2) { 433 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 434 return emitMemCmp( 435 Str1P, Str2P, 436 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 437 TLI); 438 } 439 440 annotateNonNullBasedOnAccess(CI, {0, 1}); 441 return nullptr; 442 } 443 444 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 445 Value *Str1P = CI->getArgOperand(0); 446 Value *Str2P = CI->getArgOperand(1); 447 Value *Size = CI->getArgOperand(2); 448 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 449 return ConstantInt::get(CI->getType(), 0); 450 451 if (isKnownNonZero(Size, DL)) 452 annotateNonNullBasedOnAccess(CI, {0, 1}); 453 // Get the length argument if it is constant. 454 uint64_t Length; 455 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 456 Length = LengthArg->getZExtValue(); 457 else 458 return nullptr; 459 460 if (Length == 0) // strncmp(x,y,0) -> 0 461 return ConstantInt::get(CI->getType(), 0); 462 463 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 464 return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI); 465 466 StringRef Str1, Str2; 467 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 468 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 469 470 // strncmp(x, y) -> cnst (if both x and y are constant strings) 471 if (HasStr1 && HasStr2) { 472 StringRef SubStr1 = Str1.substr(0, Length); 473 StringRef SubStr2 = Str2.substr(0, Length); 474 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 475 } 476 477 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 478 return B.CreateNeg(B.CreateZExt( 479 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 480 481 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 482 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 483 CI->getType()); 484 485 uint64_t Len1 = GetStringLength(Str1P); 486 if (Len1) 487 annotateDereferenceableBytes(CI, 0, Len1); 488 uint64_t Len2 = GetStringLength(Str2P); 489 if (Len2) 490 annotateDereferenceableBytes(CI, 1, Len2); 491 492 // strncmp to memcmp 493 if (!HasStr1 && HasStr2) { 494 Len2 = std::min(Len2, Length); 495 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 496 return emitMemCmp( 497 Str1P, Str2P, 498 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 499 TLI); 500 } else if (HasStr1 && !HasStr2) { 501 Len1 = std::min(Len1, Length); 502 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 503 return emitMemCmp( 504 Str1P, Str2P, 505 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 506 TLI); 507 } 508 509 return nullptr; 510 } 511 512 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 513 Value *Src = CI->getArgOperand(0); 514 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 515 uint64_t SrcLen = GetStringLength(Src); 516 if (SrcLen && Size) { 517 annotateDereferenceableBytes(CI, 0, SrcLen); 518 if (SrcLen <= Size->getZExtValue() + 1) 519 return emitStrDup(Src, B, TLI); 520 } 521 522 return nullptr; 523 } 524 525 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 526 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 527 if (Dst == Src) // strcpy(x,x) -> x 528 return Src; 529 530 annotateNonNullBasedOnAccess(CI, {0, 1}); 531 // See if we can get the length of the input string. 532 uint64_t Len = GetStringLength(Src); 533 if (Len) 534 annotateDereferenceableBytes(CI, 1, Len); 535 else 536 return nullptr; 537 538 // We have enough information to now generate the memcpy call to do the 539 // copy for us. Make a memcpy to copy the nul byte with align = 1. 540 CallInst *NewCI = 541 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 542 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 543 NewCI->setAttributes(CI->getAttributes()); 544 return Dst; 545 } 546 547 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 548 Function *Callee = CI->getCalledFunction(); 549 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 550 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 551 Value *StrLen = emitStrLen(Src, B, DL, TLI); 552 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 553 } 554 555 // See if we can get the length of the input string. 556 uint64_t Len = GetStringLength(Src); 557 if (Len) 558 annotateDereferenceableBytes(CI, 1, Len); 559 else 560 return nullptr; 561 562 Type *PT = Callee->getFunctionType()->getParamType(0); 563 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 564 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 565 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 566 567 // We have enough information to now generate the memcpy call to do the 568 // copy for us. Make a memcpy to copy the nul byte with align = 1. 569 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 570 NewCI->setAttributes(CI->getAttributes()); 571 return DstEnd; 572 } 573 574 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) { 575 Function *Callee = CI->getCalledFunction(); 576 Value *Dst = CI->getArgOperand(0); 577 Value *Src = CI->getArgOperand(1); 578 Value *Size = CI->getArgOperand(2); 579 annotateNonNullBasedOnAccess(CI, 0); 580 if (isKnownNonZero(Size, DL)) 581 annotateNonNullBasedOnAccess(CI, 1); 582 583 uint64_t Len; 584 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 585 Len = LengthArg->getZExtValue(); 586 else 587 return nullptr; 588 589 // strncpy(x, y, 0) -> x 590 if (Len == 0) 591 return Dst; 592 593 // See if we can get the length of the input string. 594 uint64_t SrcLen = GetStringLength(Src); 595 if (SrcLen) { 596 annotateDereferenceableBytes(CI, 1, SrcLen); 597 --SrcLen; // Unbias length. 598 } else { 599 return nullptr; 600 } 601 602 if (SrcLen == 0) { 603 // strncpy(x, "", y) -> memset(align 1 x, '\0', y) 604 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, Align(1)); 605 AttrBuilder ArgAttrs(CI->getAttributes().getParamAttributes(0)); 606 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 607 CI->getContext(), 0, ArgAttrs)); 608 return Dst; 609 } 610 611 // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4) 612 if (Len > SrcLen + 1) { 613 StringRef Str; 614 if (!getConstantStringInfo(Src, Str)) 615 return nullptr; 616 std::string SrcStr = Str.str(); 617 SrcStr.resize(Len, '\0'); 618 Src = B.CreateGlobalString(SrcStr, "str"); 619 } 620 621 Type *PT = Callee->getFunctionType()->getParamType(0); 622 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 623 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 624 ConstantInt::get(DL.getIntPtrType(PT), Len)); 625 NewCI->setAttributes(CI->getAttributes()); 626 return Dst; 627 } 628 629 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 630 unsigned CharSize) { 631 Value *Src = CI->getArgOperand(0); 632 633 // Constant folding: strlen("xyz") -> 3 634 if (uint64_t Len = GetStringLength(Src, CharSize)) 635 return ConstantInt::get(CI->getType(), Len - 1); 636 637 // If s is a constant pointer pointing to a string literal, we can fold 638 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 639 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 640 // We only try to simplify strlen when the pointer s points to an array 641 // of i8. Otherwise, we would need to scale the offset x before doing the 642 // subtraction. This will make the optimization more complex, and it's not 643 // very useful because calling strlen for a pointer of other types is 644 // very uncommon. 645 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 646 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 647 return nullptr; 648 649 ConstantDataArraySlice Slice; 650 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 651 uint64_t NullTermIdx; 652 if (Slice.Array == nullptr) { 653 NullTermIdx = 0; 654 } else { 655 NullTermIdx = ~((uint64_t)0); 656 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 657 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 658 NullTermIdx = I; 659 break; 660 } 661 } 662 // If the string does not have '\0', leave it to strlen to compute 663 // its length. 664 if (NullTermIdx == ~((uint64_t)0)) 665 return nullptr; 666 } 667 668 Value *Offset = GEP->getOperand(2); 669 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 670 Known.Zero.flipAllBits(); 671 uint64_t ArrSize = 672 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 673 674 // KnownZero's bits are flipped, so zeros in KnownZero now represent 675 // bits known to be zeros in Offset, and ones in KnowZero represent 676 // bits unknown in Offset. Therefore, Offset is known to be in range 677 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 678 // unsigned-less-than NullTermIdx. 679 // 680 // If Offset is not provably in the range [0, NullTermIdx], we can still 681 // optimize if we can prove that the program has undefined behavior when 682 // Offset is outside that range. That is the case when GEP->getOperand(0) 683 // is a pointer to an object whose memory extent is NullTermIdx+1. 684 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 685 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 686 NullTermIdx == ArrSize - 1)) { 687 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 688 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 689 Offset); 690 } 691 } 692 693 return nullptr; 694 } 695 696 // strlen(x?"foo":"bars") --> x ? 3 : 4 697 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 698 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 699 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 700 if (LenTrue && LenFalse) { 701 ORE.emit([&]() { 702 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 703 << "folded strlen(select) to select of constants"; 704 }); 705 return B.CreateSelect(SI->getCondition(), 706 ConstantInt::get(CI->getType(), LenTrue - 1), 707 ConstantInt::get(CI->getType(), LenFalse - 1)); 708 } 709 } 710 711 // strlen(x) != 0 --> *x != 0 712 // strlen(x) == 0 --> *x == 0 713 if (isOnlyUsedInZeroEqualityComparison(CI)) 714 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), 715 CI->getType()); 716 717 return nullptr; 718 } 719 720 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 721 if (Value *V = optimizeStringLength(CI, B, 8)) 722 return V; 723 annotateNonNullBasedOnAccess(CI, 0); 724 return nullptr; 725 } 726 727 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 728 Module &M = *CI->getModule(); 729 unsigned WCharSize = TLI->getWCharSize(M) * 8; 730 // We cannot perform this optimization without wchar_size metadata. 731 if (WCharSize == 0) 732 return nullptr; 733 734 return optimizeStringLength(CI, B, WCharSize); 735 } 736 737 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 738 StringRef S1, S2; 739 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 740 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 741 742 // strpbrk(s, "") -> nullptr 743 // strpbrk("", s) -> nullptr 744 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 745 return Constant::getNullValue(CI->getType()); 746 747 // Constant folding. 748 if (HasS1 && HasS2) { 749 size_t I = S1.find_first_of(S2); 750 if (I == StringRef::npos) // No match. 751 return Constant::getNullValue(CI->getType()); 752 753 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 754 "strpbrk"); 755 } 756 757 // strpbrk(s, "a") -> strchr(s, 'a') 758 if (HasS2 && S2.size() == 1) 759 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 760 761 return nullptr; 762 } 763 764 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 765 Value *EndPtr = CI->getArgOperand(1); 766 if (isa<ConstantPointerNull>(EndPtr)) { 767 // With a null EndPtr, this function won't capture the main argument. 768 // It would be readonly too, except that it still may write to errno. 769 CI->addParamAttr(0, Attribute::NoCapture); 770 } 771 772 return nullptr; 773 } 774 775 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 776 StringRef S1, S2; 777 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 778 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 779 780 // strspn(s, "") -> 0 781 // strspn("", s) -> 0 782 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 783 return Constant::getNullValue(CI->getType()); 784 785 // Constant folding. 786 if (HasS1 && HasS2) { 787 size_t Pos = S1.find_first_not_of(S2); 788 if (Pos == StringRef::npos) 789 Pos = S1.size(); 790 return ConstantInt::get(CI->getType(), Pos); 791 } 792 793 return nullptr; 794 } 795 796 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 797 StringRef S1, S2; 798 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 799 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 800 801 // strcspn("", s) -> 0 802 if (HasS1 && S1.empty()) 803 return Constant::getNullValue(CI->getType()); 804 805 // Constant folding. 806 if (HasS1 && HasS2) { 807 size_t Pos = S1.find_first_of(S2); 808 if (Pos == StringRef::npos) 809 Pos = S1.size(); 810 return ConstantInt::get(CI->getType(), Pos); 811 } 812 813 // strcspn(s, "") -> strlen(s) 814 if (HasS2 && S2.empty()) 815 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 816 817 return nullptr; 818 } 819 820 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 821 // fold strstr(x, x) -> x. 822 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 823 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 824 825 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 826 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 827 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 828 if (!StrLen) 829 return nullptr; 830 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 831 StrLen, B, DL, TLI); 832 if (!StrNCmp) 833 return nullptr; 834 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 835 ICmpInst *Old = cast<ICmpInst>(*UI++); 836 Value *Cmp = 837 B.CreateICmp(Old->getPredicate(), StrNCmp, 838 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 839 replaceAllUsesWith(Old, Cmp); 840 } 841 return CI; 842 } 843 844 // See if either input string is a constant string. 845 StringRef SearchStr, ToFindStr; 846 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 847 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 848 849 // fold strstr(x, "") -> x. 850 if (HasStr2 && ToFindStr.empty()) 851 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 852 853 // If both strings are known, constant fold it. 854 if (HasStr1 && HasStr2) { 855 size_t Offset = SearchStr.find(ToFindStr); 856 857 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 858 return Constant::getNullValue(CI->getType()); 859 860 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 861 Value *Result = castToCStr(CI->getArgOperand(0), B); 862 Result = 863 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 864 return B.CreateBitCast(Result, CI->getType()); 865 } 866 867 // fold strstr(x, "y") -> strchr(x, 'y'). 868 if (HasStr2 && ToFindStr.size() == 1) { 869 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 870 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 871 } 872 873 annotateNonNullBasedOnAccess(CI, {0, 1}); 874 return nullptr; 875 } 876 877 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 878 if (isKnownNonZero(CI->getOperand(2), DL)) 879 annotateNonNullBasedOnAccess(CI, 0); 880 return nullptr; 881 } 882 883 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 884 Value *SrcStr = CI->getArgOperand(0); 885 Value *Size = CI->getArgOperand(2); 886 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 887 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 888 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 889 890 // memchr(x, y, 0) -> null 891 if (LenC) { 892 if (LenC->isZero()) 893 return Constant::getNullValue(CI->getType()); 894 } else { 895 // From now on we need at least constant length and string. 896 return nullptr; 897 } 898 899 StringRef Str; 900 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 901 return nullptr; 902 903 // Truncate the string to LenC. If Str is smaller than LenC we will still only 904 // scan the string, as reading past the end of it is undefined and we can just 905 // return null if we don't find the char. 906 Str = Str.substr(0, LenC->getZExtValue()); 907 908 // If the char is variable but the input str and length are not we can turn 909 // this memchr call into a simple bit field test. Of course this only works 910 // when the return value is only checked against null. 911 // 912 // It would be really nice to reuse switch lowering here but we can't change 913 // the CFG at this point. 914 // 915 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 916 // != 0 917 // after bounds check. 918 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 919 unsigned char Max = 920 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 921 reinterpret_cast<const unsigned char *>(Str.end())); 922 923 // Make sure the bit field we're about to create fits in a register on the 924 // target. 925 // FIXME: On a 64 bit architecture this prevents us from using the 926 // interesting range of alpha ascii chars. We could do better by emitting 927 // two bitfields or shifting the range by 64 if no lower chars are used. 928 if (!DL.fitsInLegalInteger(Max + 1)) 929 return nullptr; 930 931 // For the bit field use a power-of-2 type with at least 8 bits to avoid 932 // creating unnecessary illegal types. 933 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 934 935 // Now build the bit field. 936 APInt Bitfield(Width, 0); 937 for (char C : Str) 938 Bitfield.setBit((unsigned char)C); 939 Value *BitfieldC = B.getInt(Bitfield); 940 941 // Adjust width of "C" to the bitfield width, then mask off the high bits. 942 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 943 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 944 945 // First check that the bit field access is within bounds. 946 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 947 "memchr.bounds"); 948 949 // Create code that checks if the given bit is set in the field. 950 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 951 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 952 953 // Finally merge both checks and cast to pointer type. The inttoptr 954 // implicitly zexts the i1 to intptr type. 955 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 956 } 957 958 // Check if all arguments are constants. If so, we can constant fold. 959 if (!CharC) 960 return nullptr; 961 962 // Compute the offset. 963 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 964 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 965 return Constant::getNullValue(CI->getType()); 966 967 // memchr(s+n,c,l) -> gep(s+n+i,c) 968 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 969 } 970 971 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 972 uint64_t Len, IRBuilderBase &B, 973 const DataLayout &DL) { 974 if (Len == 0) // memcmp(s1,s2,0) -> 0 975 return Constant::getNullValue(CI->getType()); 976 977 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 978 if (Len == 1) { 979 Value *LHSV = 980 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 981 CI->getType(), "lhsv"); 982 Value *RHSV = 983 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 984 CI->getType(), "rhsv"); 985 return B.CreateSub(LHSV, RHSV, "chardiff"); 986 } 987 988 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 989 // TODO: The case where both inputs are constants does not need to be limited 990 // to legal integers or equality comparison. See block below this. 991 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 992 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 993 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 994 995 // First, see if we can fold either argument to a constant. 996 Value *LHSV = nullptr; 997 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 998 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 999 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 1000 } 1001 Value *RHSV = nullptr; 1002 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 1003 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 1004 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 1005 } 1006 1007 // Don't generate unaligned loads. If either source is constant data, 1008 // alignment doesn't matter for that source because there is no load. 1009 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 1010 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 1011 if (!LHSV) { 1012 Type *LHSPtrTy = 1013 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 1014 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 1015 } 1016 if (!RHSV) { 1017 Type *RHSPtrTy = 1018 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 1019 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 1020 } 1021 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1022 } 1023 } 1024 1025 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 1026 // TODO: This is limited to i8 arrays. 1027 StringRef LHSStr, RHSStr; 1028 if (getConstantStringInfo(LHS, LHSStr) && 1029 getConstantStringInfo(RHS, RHSStr)) { 1030 // Make sure we're not reading out-of-bounds memory. 1031 if (Len > LHSStr.size() || Len > RHSStr.size()) 1032 return nullptr; 1033 // Fold the memcmp and normalize the result. This way we get consistent 1034 // results across multiple platforms. 1035 uint64_t Ret = 0; 1036 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 1037 if (Cmp < 0) 1038 Ret = -1; 1039 else if (Cmp > 0) 1040 Ret = 1; 1041 return ConstantInt::get(CI->getType(), Ret); 1042 } 1043 1044 return nullptr; 1045 } 1046 1047 // Most simplifications for memcmp also apply to bcmp. 1048 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1049 IRBuilderBase &B) { 1050 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1051 Value *Size = CI->getArgOperand(2); 1052 1053 if (LHS == RHS) // memcmp(s,s,x) -> 0 1054 return Constant::getNullValue(CI->getType()); 1055 1056 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1057 // Handle constant lengths. 1058 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1059 if (!LenC) 1060 return nullptr; 1061 1062 // memcmp(d,s,0) -> 0 1063 if (LenC->getZExtValue() == 0) 1064 return Constant::getNullValue(CI->getType()); 1065 1066 if (Value *Res = 1067 optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL)) 1068 return Res; 1069 return nullptr; 1070 } 1071 1072 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1073 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1074 return V; 1075 1076 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1077 // bcmp can be more efficient than memcmp because it only has to know that 1078 // there is a difference, not how different one is to the other. 1079 if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) { 1080 Value *LHS = CI->getArgOperand(0); 1081 Value *RHS = CI->getArgOperand(1); 1082 Value *Size = CI->getArgOperand(2); 1083 return emitBCmp(LHS, RHS, Size, B, DL, TLI); 1084 } 1085 1086 return nullptr; 1087 } 1088 1089 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1090 return optimizeMemCmpBCmpCommon(CI, B); 1091 } 1092 1093 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1094 Value *Size = CI->getArgOperand(2); 1095 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1096 if (isa<IntrinsicInst>(CI)) 1097 return nullptr; 1098 1099 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1100 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1101 CI->getArgOperand(1), Align(1), Size); 1102 NewCI->setAttributes(CI->getAttributes()); 1103 return CI->getArgOperand(0); 1104 } 1105 1106 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1107 Value *Dst = CI->getArgOperand(0); 1108 Value *Src = CI->getArgOperand(1); 1109 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1110 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1111 StringRef SrcStr; 1112 if (CI->use_empty() && Dst == Src) 1113 return Dst; 1114 // memccpy(d, s, c, 0) -> nullptr 1115 if (N) { 1116 if (N->isNullValue()) 1117 return Constant::getNullValue(CI->getType()); 1118 if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0, 1119 /*TrimAtNul=*/false) || 1120 !StopChar) 1121 return nullptr; 1122 } else { 1123 return nullptr; 1124 } 1125 1126 // Wrap arg 'c' of type int to char 1127 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1128 if (Pos == StringRef::npos) { 1129 if (N->getZExtValue() <= SrcStr.size()) { 1130 B.CreateMemCpy(Dst, Align(1), Src, Align(1), CI->getArgOperand(3)); 1131 return Constant::getNullValue(CI->getType()); 1132 } 1133 return nullptr; 1134 } 1135 1136 Value *NewN = 1137 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1138 // memccpy -> llvm.memcpy 1139 B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN); 1140 return Pos + 1 <= N->getZExtValue() 1141 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1142 : Constant::getNullValue(CI->getType()); 1143 } 1144 1145 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1146 Value *Dst = CI->getArgOperand(0); 1147 Value *N = CI->getArgOperand(2); 1148 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1149 CallInst *NewCI = 1150 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1151 NewCI->setAttributes(CI->getAttributes()); 1152 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1153 } 1154 1155 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1156 Value *Size = CI->getArgOperand(2); 1157 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1158 if (isa<IntrinsicInst>(CI)) 1159 return nullptr; 1160 1161 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1162 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1163 CI->getArgOperand(1), Align(1), Size); 1164 NewCI->setAttributes(CI->getAttributes()); 1165 return CI->getArgOperand(0); 1166 } 1167 1168 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 1169 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilderBase &B) { 1170 // This has to be a memset of zeros (bzero). 1171 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 1172 if (!FillValue || FillValue->getZExtValue() != 0) 1173 return nullptr; 1174 1175 // TODO: We should handle the case where the malloc has more than one use. 1176 // This is necessary to optimize common patterns such as when the result of 1177 // the malloc is checked against null or when a memset intrinsic is used in 1178 // place of a memset library call. 1179 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 1180 if (!Malloc || !Malloc->hasOneUse()) 1181 return nullptr; 1182 1183 // Is the inner call really malloc()? 1184 Function *InnerCallee = Malloc->getCalledFunction(); 1185 if (!InnerCallee) 1186 return nullptr; 1187 1188 LibFunc Func; 1189 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 1190 Func != LibFunc_malloc) 1191 return nullptr; 1192 1193 // The memset must cover the same number of bytes that are malloc'd. 1194 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 1195 return nullptr; 1196 1197 // Replace the malloc with a calloc. We need the data layout to know what the 1198 // actual size of a 'size_t' parameter is. 1199 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 1200 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 1201 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 1202 if (Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 1203 Malloc->getArgOperand(0), 1204 Malloc->getAttributes(), B, *TLI)) { 1205 substituteInParent(Malloc, Calloc); 1206 return Calloc; 1207 } 1208 1209 return nullptr; 1210 } 1211 1212 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1213 Value *Size = CI->getArgOperand(2); 1214 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1215 if (isa<IntrinsicInst>(CI)) 1216 return nullptr; 1217 1218 if (auto *Calloc = foldMallocMemset(CI, B)) 1219 return Calloc; 1220 1221 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1222 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1223 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1224 NewCI->setAttributes(CI->getAttributes()); 1225 return CI->getArgOperand(0); 1226 } 1227 1228 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1229 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1230 return emitMalloc(CI->getArgOperand(1), B, DL, TLI); 1231 1232 return nullptr; 1233 } 1234 1235 //===----------------------------------------------------------------------===// 1236 // Math Library Optimizations 1237 //===----------------------------------------------------------------------===// 1238 1239 // Replace a libcall \p CI with a call to intrinsic \p IID 1240 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1241 Intrinsic::ID IID) { 1242 // Propagate fast-math flags from the existing call to the new call. 1243 IRBuilderBase::FastMathFlagGuard Guard(B); 1244 B.setFastMathFlags(CI->getFastMathFlags()); 1245 1246 Module *M = CI->getModule(); 1247 Value *V = CI->getArgOperand(0); 1248 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1249 CallInst *NewCall = B.CreateCall(F, V); 1250 NewCall->takeName(CI); 1251 return NewCall; 1252 } 1253 1254 /// Return a variant of Val with float type. 1255 /// Currently this works in two cases: If Val is an FPExtension of a float 1256 /// value to something bigger, simply return the operand. 1257 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1258 /// loss of precision do so. 1259 static Value *valueHasFloatPrecision(Value *Val) { 1260 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1261 Value *Op = Cast->getOperand(0); 1262 if (Op->getType()->isFloatTy()) 1263 return Op; 1264 } 1265 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1266 APFloat F = Const->getValueAPF(); 1267 bool losesInfo; 1268 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1269 &losesInfo); 1270 if (!losesInfo) 1271 return ConstantFP::get(Const->getContext(), F); 1272 } 1273 return nullptr; 1274 } 1275 1276 /// Shrink double -> float functions. 1277 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1278 bool isBinary, bool isPrecise = false) { 1279 Function *CalleeFn = CI->getCalledFunction(); 1280 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1281 return nullptr; 1282 1283 // If not all the uses of the function are converted to float, then bail out. 1284 // This matters if the precision of the result is more important than the 1285 // precision of the arguments. 1286 if (isPrecise) 1287 for (User *U : CI->users()) { 1288 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1289 if (!Cast || !Cast->getType()->isFloatTy()) 1290 return nullptr; 1291 } 1292 1293 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1294 Value *V[2]; 1295 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1296 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1297 if (!V[0] || (isBinary && !V[1])) 1298 return nullptr; 1299 1300 // If call isn't an intrinsic, check that it isn't within a function with the 1301 // same name as the float version of this call, otherwise the result is an 1302 // infinite loop. For example, from MinGW-w64: 1303 // 1304 // float expf(float val) { return (float) exp((double) val); } 1305 StringRef CalleeName = CalleeFn->getName(); 1306 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1307 if (!IsIntrinsic) { 1308 StringRef CallerName = CI->getFunction()->getName(); 1309 if (!CallerName.empty() && CallerName.back() == 'f' && 1310 CallerName.size() == (CalleeName.size() + 1) && 1311 CallerName.startswith(CalleeName)) 1312 return nullptr; 1313 } 1314 1315 // Propagate the math semantics from the current function to the new function. 1316 IRBuilderBase::FastMathFlagGuard Guard(B); 1317 B.setFastMathFlags(CI->getFastMathFlags()); 1318 1319 // g((double) float) -> (double) gf(float) 1320 Value *R; 1321 if (IsIntrinsic) { 1322 Module *M = CI->getModule(); 1323 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1324 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1325 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1326 } else { 1327 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1328 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs) 1329 : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs); 1330 } 1331 return B.CreateFPExt(R, B.getDoubleTy()); 1332 } 1333 1334 /// Shrink double -> float for unary functions. 1335 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1336 bool isPrecise = false) { 1337 return optimizeDoubleFP(CI, B, false, isPrecise); 1338 } 1339 1340 /// Shrink double -> float for binary functions. 1341 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1342 bool isPrecise = false) { 1343 return optimizeDoubleFP(CI, B, true, isPrecise); 1344 } 1345 1346 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1347 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1348 if (!CI->isFast()) 1349 return nullptr; 1350 1351 // Propagate fast-math flags from the existing call to new instructions. 1352 IRBuilderBase::FastMathFlagGuard Guard(B); 1353 B.setFastMathFlags(CI->getFastMathFlags()); 1354 1355 Value *Real, *Imag; 1356 if (CI->getNumArgOperands() == 1) { 1357 Value *Op = CI->getArgOperand(0); 1358 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1359 Real = B.CreateExtractValue(Op, 0, "real"); 1360 Imag = B.CreateExtractValue(Op, 1, "imag"); 1361 } else { 1362 assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); 1363 Real = CI->getArgOperand(0); 1364 Imag = CI->getArgOperand(1); 1365 } 1366 1367 Value *RealReal = B.CreateFMul(Real, Real); 1368 Value *ImagImag = B.CreateFMul(Imag, Imag); 1369 1370 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1371 CI->getType()); 1372 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); 1373 } 1374 1375 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1376 IRBuilderBase &B) { 1377 if (!isa<FPMathOperator>(Call)) 1378 return nullptr; 1379 1380 IRBuilderBase::FastMathFlagGuard Guard(B); 1381 B.setFastMathFlags(Call->getFastMathFlags()); 1382 1383 // TODO: Can this be shared to also handle LLVM intrinsics? 1384 Value *X; 1385 switch (Func) { 1386 case LibFunc_sin: 1387 case LibFunc_sinf: 1388 case LibFunc_sinl: 1389 case LibFunc_tan: 1390 case LibFunc_tanf: 1391 case LibFunc_tanl: 1392 // sin(-X) --> -sin(X) 1393 // tan(-X) --> -tan(X) 1394 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1395 return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X)); 1396 break; 1397 case LibFunc_cos: 1398 case LibFunc_cosf: 1399 case LibFunc_cosl: 1400 // cos(-X) --> cos(X) 1401 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1402 return B.CreateCall(Call->getCalledFunction(), X, "cos"); 1403 break; 1404 default: 1405 break; 1406 } 1407 return nullptr; 1408 } 1409 1410 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) { 1411 // Multiplications calculated using Addition Chains. 1412 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1413 1414 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1415 1416 if (InnerChain[Exp]) 1417 return InnerChain[Exp]; 1418 1419 static const unsigned AddChain[33][2] = { 1420 {0, 0}, // Unused. 1421 {0, 0}, // Unused (base case = pow1). 1422 {1, 1}, // Unused (pre-computed). 1423 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1424 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1425 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1426 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1427 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1428 }; 1429 1430 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1431 getPow(InnerChain, AddChain[Exp][1], B)); 1432 return InnerChain[Exp]; 1433 } 1434 1435 // Return a properly extended 32-bit integer if the operation is an itofp. 1436 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B) { 1437 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1438 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1439 // Make sure that the exponent fits inside an int32_t, 1440 // thus avoiding any range issues that FP has not. 1441 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); 1442 if (BitWidth < 32 || 1443 (BitWidth == 32 && isa<SIToFPInst>(I2F))) 1444 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getInt32Ty()) 1445 : B.CreateZExt(Op, B.getInt32Ty()); 1446 } 1447 1448 return nullptr; 1449 } 1450 1451 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1452 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 1453 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 1454 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 1455 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1456 AttributeList Attrs; // Attributes are only meaningful on the original call 1457 Module *Mod = Pow->getModule(); 1458 Type *Ty = Pow->getType(); 1459 bool Ignored; 1460 1461 // Evaluate special cases related to a nested function as the base. 1462 1463 // pow(exp(x), y) -> exp(x * y) 1464 // pow(exp2(x), y) -> exp2(x * y) 1465 // If exp{,2}() is used only once, it is better to fold two transcendental 1466 // math functions into one. If used again, exp{,2}() would still have to be 1467 // called with the original argument, then keep both original transcendental 1468 // functions. However, this transformation is only safe with fully relaxed 1469 // math semantics, since, besides rounding differences, it changes overflow 1470 // and underflow behavior quite dramatically. For example: 1471 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1472 // Whereas: 1473 // exp(1000 * 0.001) = exp(1) 1474 // TODO: Loosen the requirement for fully relaxed math semantics. 1475 // TODO: Handle exp10() when more targets have it available. 1476 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1477 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1478 LibFunc LibFn; 1479 1480 Function *CalleeFn = BaseFn->getCalledFunction(); 1481 if (CalleeFn && 1482 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1483 StringRef ExpName; 1484 Intrinsic::ID ID; 1485 Value *ExpFn; 1486 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 1487 1488 switch (LibFn) { 1489 default: 1490 return nullptr; 1491 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1492 ExpName = TLI->getName(LibFunc_exp); 1493 ID = Intrinsic::exp; 1494 LibFnFloat = LibFunc_expf; 1495 LibFnDouble = LibFunc_exp; 1496 LibFnLongDouble = LibFunc_expl; 1497 break; 1498 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1499 ExpName = TLI->getName(LibFunc_exp2); 1500 ID = Intrinsic::exp2; 1501 LibFnFloat = LibFunc_exp2f; 1502 LibFnDouble = LibFunc_exp2; 1503 LibFnLongDouble = LibFunc_exp2l; 1504 break; 1505 } 1506 1507 // Create new exp{,2}() with the product as its argument. 1508 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1509 ExpFn = BaseFn->doesNotAccessMemory() 1510 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1511 FMul, ExpName) 1512 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1513 LibFnLongDouble, B, 1514 BaseFn->getAttributes()); 1515 1516 // Since the new exp{,2}() is different from the original one, dead code 1517 // elimination cannot be trusted to remove it, since it may have side 1518 // effects (e.g., errno). When the only consumer for the original 1519 // exp{,2}() is pow(), then it has to be explicitly erased. 1520 substituteInParent(BaseFn, ExpFn); 1521 return ExpFn; 1522 } 1523 } 1524 1525 // Evaluate special cases related to a constant base. 1526 1527 const APFloat *BaseF; 1528 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1529 return nullptr; 1530 1531 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 1532 if (match(Base, m_SpecificFP(2.0)) && 1533 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 1534 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1535 if (Value *ExpoI = getIntToFPVal(Expo, B)) 1536 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI, 1537 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1538 B, Attrs); 1539 } 1540 1541 // pow(2.0 ** n, x) -> exp2(n * x) 1542 if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1543 APFloat BaseR = APFloat(1.0); 1544 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1545 BaseR = BaseR / *BaseF; 1546 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1547 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1548 APSInt NI(64, false); 1549 if ((IsInteger || IsReciprocal) && 1550 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1551 APFloat::opOK && 1552 NI > 1 && NI.isPowerOf2()) { 1553 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1554 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1555 if (Pow->doesNotAccessMemory()) 1556 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1557 FMul, "exp2"); 1558 else 1559 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1560 LibFunc_exp2l, B, Attrs); 1561 } 1562 } 1563 1564 // pow(10.0, x) -> exp10(x) 1565 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1566 if (match(Base, m_SpecificFP(10.0)) && 1567 hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1568 return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f, 1569 LibFunc_exp10l, B, Attrs); 1570 1571 // pow(x, y) -> exp2(log2(x) * y) 1572 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 1573 !BaseF->isNegative()) { 1574 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 1575 // Luckily optimizePow has already handled the x == 1 case. 1576 assert(!match(Base, m_FPOne()) && 1577 "pow(1.0, y) should have been simplified earlier!"); 1578 1579 Value *Log = nullptr; 1580 if (Ty->isFloatTy()) 1581 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 1582 else if (Ty->isDoubleTy()) 1583 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 1584 1585 if (Log) { 1586 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 1587 if (Pow->doesNotAccessMemory()) 1588 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1589 FMul, "exp2"); 1590 else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) 1591 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1592 LibFunc_exp2l, B, Attrs); 1593 } 1594 } 1595 1596 return nullptr; 1597 } 1598 1599 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1600 Module *M, IRBuilderBase &B, 1601 const TargetLibraryInfo *TLI) { 1602 // If errno is never set, then use the intrinsic for sqrt(). 1603 if (NoErrno) { 1604 Function *SqrtFn = 1605 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1606 return B.CreateCall(SqrtFn, V, "sqrt"); 1607 } 1608 1609 // Otherwise, use the libcall for sqrt(). 1610 if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) 1611 // TODO: We also should check that the target can in fact lower the sqrt() 1612 // libcall. We currently have no way to ask this question, so we ask if 1613 // the target has a sqrt() libcall, which is not exactly the same. 1614 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1615 LibFunc_sqrtl, B, Attrs); 1616 1617 return nullptr; 1618 } 1619 1620 /// Use square root in place of pow(x, +/-0.5). 1621 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 1622 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1623 AttributeList Attrs; // Attributes are only meaningful on the original call 1624 Module *Mod = Pow->getModule(); 1625 Type *Ty = Pow->getType(); 1626 1627 const APFloat *ExpoF; 1628 if (!match(Expo, m_APFloat(ExpoF)) || 1629 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1630 return nullptr; 1631 1632 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 1633 // so that requires fast-math-flags (afn or reassoc). 1634 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 1635 return nullptr; 1636 1637 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1638 if (!Sqrt) 1639 return nullptr; 1640 1641 // Handle signed zero base by expanding to fabs(sqrt(x)). 1642 if (!Pow->hasNoSignedZeros()) { 1643 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1644 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1645 } 1646 1647 // Handle non finite base by expanding to 1648 // (x == -infinity ? +infinity : sqrt(x)). 1649 if (!Pow->hasNoInfs()) { 1650 Value *PosInf = ConstantFP::getInfinity(Ty), 1651 *NegInf = ConstantFP::getInfinity(Ty, true); 1652 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1653 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1654 } 1655 1656 // If the exponent is negative, then get the reciprocal. 1657 if (ExpoF->isNegative()) 1658 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1659 1660 return Sqrt; 1661 } 1662 1663 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1664 IRBuilderBase &B) { 1665 Value *Args[] = {Base, Expo}; 1666 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType()); 1667 return B.CreateCall(F, Args); 1668 } 1669 1670 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 1671 Value *Base = Pow->getArgOperand(0); 1672 Value *Expo = Pow->getArgOperand(1); 1673 Function *Callee = Pow->getCalledFunction(); 1674 StringRef Name = Callee->getName(); 1675 Type *Ty = Pow->getType(); 1676 Module *M = Pow->getModule(); 1677 Value *Shrunk = nullptr; 1678 bool AllowApprox = Pow->hasApproxFunc(); 1679 bool Ignored; 1680 1681 // Propagate the math semantics from the call to any created instructions. 1682 IRBuilderBase::FastMathFlagGuard Guard(B); 1683 B.setFastMathFlags(Pow->getFastMathFlags()); 1684 1685 // Shrink pow() to powf() if the arguments are single precision, 1686 // unless the result is expected to be double precision. 1687 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 1688 hasFloatVersion(Name)) 1689 Shrunk = optimizeBinaryDoubleFP(Pow, B, true); 1690 1691 // Evaluate special cases related to the base. 1692 1693 // pow(1.0, x) -> 1.0 1694 if (match(Base, m_FPOne())) 1695 return Base; 1696 1697 if (Value *Exp = replacePowWithExp(Pow, B)) 1698 return Exp; 1699 1700 // Evaluate special cases related to the exponent. 1701 1702 // pow(x, -1.0) -> 1.0 / x 1703 if (match(Expo, m_SpecificFP(-1.0))) 1704 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1705 1706 // pow(x, +/-0.0) -> 1.0 1707 if (match(Expo, m_AnyZeroFP())) 1708 return ConstantFP::get(Ty, 1.0); 1709 1710 // pow(x, 1.0) -> x 1711 if (match(Expo, m_FPOne())) 1712 return Base; 1713 1714 // pow(x, 2.0) -> x * x 1715 if (match(Expo, m_SpecificFP(2.0))) 1716 return B.CreateFMul(Base, Base, "square"); 1717 1718 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1719 return Sqrt; 1720 1721 // pow(x, n) -> x * x * x * ... 1722 const APFloat *ExpoF; 1723 if (AllowApprox && match(Expo, m_APFloat(ExpoF))) { 1724 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1725 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1726 // additional fmul. 1727 // TODO: This whole transformation should be backend specific (e.g. some 1728 // backends might prefer libcalls or the limit for the exponent might 1729 // be different) and it should also consider optimizing for size. 1730 APFloat LimF(ExpoF->getSemantics(), 33), 1731 ExpoA(abs(*ExpoF)); 1732 if (ExpoA < LimF) { 1733 // This transformation applies to integer or integer+0.5 exponents only. 1734 // For integer+0.5, we create a sqrt(Base) call. 1735 Value *Sqrt = nullptr; 1736 if (!ExpoA.isInteger()) { 1737 APFloat Expo2 = ExpoA; 1738 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1739 // is no floating point exception and the result is an integer, then 1740 // ExpoA == integer + 0.5 1741 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1742 return nullptr; 1743 1744 if (!Expo2.isInteger()) 1745 return nullptr; 1746 1747 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1748 Pow->doesNotAccessMemory(), M, B, TLI); 1749 } 1750 1751 // We will memoize intermediate products of the Addition Chain. 1752 Value *InnerChain[33] = {nullptr}; 1753 InnerChain[1] = Base; 1754 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1755 1756 // We cannot readily convert a non-double type (like float) to a double. 1757 // So we first convert it to something which could be converted to double. 1758 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1759 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1760 1761 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1762 if (Sqrt) 1763 FMul = B.CreateFMul(FMul, Sqrt); 1764 1765 // If the exponent is negative, then get the reciprocal. 1766 if (ExpoF->isNegative()) 1767 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1768 1769 return FMul; 1770 } 1771 1772 APSInt IntExpo(32, /*isUnsigned=*/false); 1773 // powf(x, n) -> powi(x, n) if n is a constant signed integer value 1774 if (ExpoF->isInteger() && 1775 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 1776 APFloat::opOK) { 1777 return createPowWithIntegerExponent( 1778 Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B); 1779 } 1780 } 1781 1782 // powf(x, itofp(y)) -> powi(x, y) 1783 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 1784 if (Value *ExpoI = getIntToFPVal(Expo, B)) 1785 return createPowWithIntegerExponent(Base, ExpoI, M, B); 1786 } 1787 1788 return Shrunk; 1789 } 1790 1791 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 1792 Function *Callee = CI->getCalledFunction(); 1793 AttributeList Attrs; // Attributes are only meaningful on the original call 1794 StringRef Name = Callee->getName(); 1795 Value *Ret = nullptr; 1796 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 1797 hasFloatVersion(Name)) 1798 Ret = optimizeUnaryDoubleFP(CI, B, true); 1799 1800 Type *Ty = CI->getType(); 1801 Value *Op = CI->getArgOperand(0); 1802 1803 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1804 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1805 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 1806 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1807 if (Value *Exp = getIntToFPVal(Op, B)) 1808 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 1809 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1810 B, Attrs); 1811 } 1812 1813 return Ret; 1814 } 1815 1816 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 1817 // If we can shrink the call to a float function rather than a double 1818 // function, do that first. 1819 Function *Callee = CI->getCalledFunction(); 1820 StringRef Name = Callee->getName(); 1821 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1822 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1823 return Ret; 1824 1825 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 1826 // the intrinsics for improved optimization (for example, vectorization). 1827 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 1828 // From the C standard draft WG14/N1256: 1829 // "Ideally, fmax would be sensitive to the sign of zero, for example 1830 // fmax(-0.0, +0.0) would return +0; however, implementation in software 1831 // might be impractical." 1832 IRBuilderBase::FastMathFlagGuard Guard(B); 1833 FastMathFlags FMF = CI->getFastMathFlags(); 1834 FMF.setNoSignedZeros(); 1835 B.setFastMathFlags(FMF); 1836 1837 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 1838 : Intrinsic::maxnum; 1839 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 1840 return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) }); 1841 } 1842 1843 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 1844 Function *LogFn = Log->getCalledFunction(); 1845 AttributeList Attrs; // Attributes are only meaningful on the original call 1846 StringRef LogNm = LogFn->getName(); 1847 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 1848 Module *Mod = Log->getModule(); 1849 Type *Ty = Log->getType(); 1850 Value *Ret = nullptr; 1851 1852 if (UnsafeFPShrink && hasFloatVersion(LogNm)) 1853 Ret = optimizeUnaryDoubleFP(Log, B, true); 1854 1855 // The earlier call must also be 'fast' in order to do these transforms. 1856 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 1857 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 1858 return Ret; 1859 1860 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 1861 1862 // This is only applicable to log(), log2(), log10(). 1863 if (TLI->getLibFunc(LogNm, LogLb)) 1864 switch (LogLb) { 1865 case LibFunc_logf: 1866 LogID = Intrinsic::log; 1867 ExpLb = LibFunc_expf; 1868 Exp2Lb = LibFunc_exp2f; 1869 Exp10Lb = LibFunc_exp10f; 1870 PowLb = LibFunc_powf; 1871 break; 1872 case LibFunc_log: 1873 LogID = Intrinsic::log; 1874 ExpLb = LibFunc_exp; 1875 Exp2Lb = LibFunc_exp2; 1876 Exp10Lb = LibFunc_exp10; 1877 PowLb = LibFunc_pow; 1878 break; 1879 case LibFunc_logl: 1880 LogID = Intrinsic::log; 1881 ExpLb = LibFunc_expl; 1882 Exp2Lb = LibFunc_exp2l; 1883 Exp10Lb = LibFunc_exp10l; 1884 PowLb = LibFunc_powl; 1885 break; 1886 case LibFunc_log2f: 1887 LogID = Intrinsic::log2; 1888 ExpLb = LibFunc_expf; 1889 Exp2Lb = LibFunc_exp2f; 1890 Exp10Lb = LibFunc_exp10f; 1891 PowLb = LibFunc_powf; 1892 break; 1893 case LibFunc_log2: 1894 LogID = Intrinsic::log2; 1895 ExpLb = LibFunc_exp; 1896 Exp2Lb = LibFunc_exp2; 1897 Exp10Lb = LibFunc_exp10; 1898 PowLb = LibFunc_pow; 1899 break; 1900 case LibFunc_log2l: 1901 LogID = Intrinsic::log2; 1902 ExpLb = LibFunc_expl; 1903 Exp2Lb = LibFunc_exp2l; 1904 Exp10Lb = LibFunc_exp10l; 1905 PowLb = LibFunc_powl; 1906 break; 1907 case LibFunc_log10f: 1908 LogID = Intrinsic::log10; 1909 ExpLb = LibFunc_expf; 1910 Exp2Lb = LibFunc_exp2f; 1911 Exp10Lb = LibFunc_exp10f; 1912 PowLb = LibFunc_powf; 1913 break; 1914 case LibFunc_log10: 1915 LogID = Intrinsic::log10; 1916 ExpLb = LibFunc_exp; 1917 Exp2Lb = LibFunc_exp2; 1918 Exp10Lb = LibFunc_exp10; 1919 PowLb = LibFunc_pow; 1920 break; 1921 case LibFunc_log10l: 1922 LogID = Intrinsic::log10; 1923 ExpLb = LibFunc_expl; 1924 Exp2Lb = LibFunc_exp2l; 1925 Exp10Lb = LibFunc_exp10l; 1926 PowLb = LibFunc_powl; 1927 break; 1928 default: 1929 return Ret; 1930 } 1931 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 1932 LogID == Intrinsic::log10) { 1933 if (Ty->getScalarType()->isFloatTy()) { 1934 ExpLb = LibFunc_expf; 1935 Exp2Lb = LibFunc_exp2f; 1936 Exp10Lb = LibFunc_exp10f; 1937 PowLb = LibFunc_powf; 1938 } else if (Ty->getScalarType()->isDoubleTy()) { 1939 ExpLb = LibFunc_exp; 1940 Exp2Lb = LibFunc_exp2; 1941 Exp10Lb = LibFunc_exp10; 1942 PowLb = LibFunc_pow; 1943 } else 1944 return Ret; 1945 } else 1946 return Ret; 1947 1948 IRBuilderBase::FastMathFlagGuard Guard(B); 1949 B.setFastMathFlags(FastMathFlags::getFast()); 1950 1951 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 1952 LibFunc ArgLb = NotLibFunc; 1953 TLI->getLibFunc(*Arg, ArgLb); 1954 1955 // log(pow(x,y)) -> y*log(x) 1956 if (ArgLb == PowLb || ArgID == Intrinsic::pow) { 1957 Value *LogX = 1958 Log->doesNotAccessMemory() 1959 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 1960 Arg->getOperand(0), "log") 1961 : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs); 1962 Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul"); 1963 // Since pow() may have side effects, e.g. errno, 1964 // dead code elimination may not be trusted to remove it. 1965 substituteInParent(Arg, MulY); 1966 return MulY; 1967 } 1968 1969 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 1970 // TODO: There is no exp10() intrinsic yet. 1971 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 1972 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 1973 Constant *Eul; 1974 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 1975 // FIXME: Add more precise value of e for long double. 1976 Eul = ConstantFP::get(Log->getType(), numbers::e); 1977 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 1978 Eul = ConstantFP::get(Log->getType(), 2.0); 1979 else 1980 Eul = ConstantFP::get(Log->getType(), 10.0); 1981 Value *LogE = Log->doesNotAccessMemory() 1982 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 1983 Eul, "log") 1984 : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs); 1985 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 1986 // Since exp() may have side effects, e.g. errno, 1987 // dead code elimination may not be trusted to remove it. 1988 substituteInParent(Arg, MulY); 1989 return MulY; 1990 } 1991 1992 return Ret; 1993 } 1994 1995 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 1996 Function *Callee = CI->getCalledFunction(); 1997 Value *Ret = nullptr; 1998 // TODO: Once we have a way (other than checking for the existince of the 1999 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 2000 // condition below. 2001 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 2002 Callee->getIntrinsicID() == Intrinsic::sqrt)) 2003 Ret = optimizeUnaryDoubleFP(CI, B, true); 2004 2005 if (!CI->isFast()) 2006 return Ret; 2007 2008 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 2009 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 2010 return Ret; 2011 2012 // We're looking for a repeated factor in a multiplication tree, 2013 // so we can do this fold: sqrt(x * x) -> fabs(x); 2014 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 2015 Value *Op0 = I->getOperand(0); 2016 Value *Op1 = I->getOperand(1); 2017 Value *RepeatOp = nullptr; 2018 Value *OtherOp = nullptr; 2019 if (Op0 == Op1) { 2020 // Simple match: the operands of the multiply are identical. 2021 RepeatOp = Op0; 2022 } else { 2023 // Look for a more complicated pattern: one of the operands is itself 2024 // a multiply, so search for a common factor in that multiply. 2025 // Note: We don't bother looking any deeper than this first level or for 2026 // variations of this pattern because instcombine's visitFMUL and/or the 2027 // reassociation pass should give us this form. 2028 Value *OtherMul0, *OtherMul1; 2029 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 2030 // Pattern: sqrt((x * y) * z) 2031 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 2032 // Matched: sqrt((x * x) * z) 2033 RepeatOp = OtherMul0; 2034 OtherOp = Op1; 2035 } 2036 } 2037 } 2038 if (!RepeatOp) 2039 return Ret; 2040 2041 // Fast math flags for any created instructions should match the sqrt 2042 // and multiply. 2043 IRBuilderBase::FastMathFlagGuard Guard(B); 2044 B.setFastMathFlags(I->getFastMathFlags()); 2045 2046 // If we found a repeated factor, hoist it out of the square root and 2047 // replace it with the fabs of that factor. 2048 Module *M = Callee->getParent(); 2049 Type *ArgType = I->getType(); 2050 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 2051 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 2052 if (OtherOp) { 2053 // If we found a non-repeated factor, we still need to get its square 2054 // root. We then multiply that by the value that was simplified out 2055 // of the square root calculation. 2056 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 2057 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 2058 return B.CreateFMul(FabsCall, SqrtCall); 2059 } 2060 return FabsCall; 2061 } 2062 2063 // TODO: Generalize to handle any trig function and its inverse. 2064 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) { 2065 Function *Callee = CI->getCalledFunction(); 2066 Value *Ret = nullptr; 2067 StringRef Name = Callee->getName(); 2068 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 2069 Ret = optimizeUnaryDoubleFP(CI, B, true); 2070 2071 Value *Op1 = CI->getArgOperand(0); 2072 auto *OpC = dyn_cast<CallInst>(Op1); 2073 if (!OpC) 2074 return Ret; 2075 2076 // Both calls must be 'fast' in order to remove them. 2077 if (!CI->isFast() || !OpC->isFast()) 2078 return Ret; 2079 2080 // tan(atan(x)) -> x 2081 // tanf(atanf(x)) -> x 2082 // tanl(atanl(x)) -> x 2083 LibFunc Func; 2084 Function *F = OpC->getCalledFunction(); 2085 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 2086 ((Func == LibFunc_atan && Callee->getName() == "tan") || 2087 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 2088 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 2089 Ret = OpC->getArgOperand(0); 2090 return Ret; 2091 } 2092 2093 static bool isTrigLibCall(CallInst *CI) { 2094 // We can only hope to do anything useful if we can ignore things like errno 2095 // and floating-point exceptions. 2096 // We already checked the prototype. 2097 return CI->hasFnAttr(Attribute::NoUnwind) && 2098 CI->hasFnAttr(Attribute::ReadNone); 2099 } 2100 2101 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2102 bool UseFloat, Value *&Sin, Value *&Cos, 2103 Value *&SinCos) { 2104 Type *ArgTy = Arg->getType(); 2105 Type *ResTy; 2106 StringRef Name; 2107 2108 Triple T(OrigCallee->getParent()->getTargetTriple()); 2109 if (UseFloat) { 2110 Name = "__sincospif_stret"; 2111 2112 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2113 // x86_64 can't use {float, float} since that would be returned in both 2114 // xmm0 and xmm1, which isn't what a real struct would do. 2115 ResTy = T.getArch() == Triple::x86_64 2116 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2117 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2118 } else { 2119 Name = "__sincospi_stret"; 2120 ResTy = StructType::get(ArgTy, ArgTy); 2121 } 2122 2123 Module *M = OrigCallee->getParent(); 2124 FunctionCallee Callee = 2125 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); 2126 2127 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2128 // If the argument is an instruction, it must dominate all uses so put our 2129 // sincos call there. 2130 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2131 } else { 2132 // Otherwise (e.g. for a constant) the beginning of the function is as 2133 // good a place as any. 2134 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2135 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2136 } 2137 2138 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2139 2140 if (SinCos->getType()->isStructTy()) { 2141 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2142 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2143 } else { 2144 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2145 "sinpi"); 2146 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2147 "cospi"); 2148 } 2149 } 2150 2151 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) { 2152 // Make sure the prototype is as expected, otherwise the rest of the 2153 // function is probably invalid and likely to abort. 2154 if (!isTrigLibCall(CI)) 2155 return nullptr; 2156 2157 Value *Arg = CI->getArgOperand(0); 2158 SmallVector<CallInst *, 1> SinCalls; 2159 SmallVector<CallInst *, 1> CosCalls; 2160 SmallVector<CallInst *, 1> SinCosCalls; 2161 2162 bool IsFloat = Arg->getType()->isFloatTy(); 2163 2164 // Look for all compatible sinpi, cospi and sincospi calls with the same 2165 // argument. If there are enough (in some sense) we can make the 2166 // substitution. 2167 Function *F = CI->getFunction(); 2168 for (User *U : Arg->users()) 2169 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2170 2171 // It's only worthwhile if both sinpi and cospi are actually used. 2172 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 2173 return nullptr; 2174 2175 Value *Sin, *Cos, *SinCos; 2176 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 2177 2178 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2179 Value *Res) { 2180 for (CallInst *C : Calls) 2181 replaceAllUsesWith(C, Res); 2182 }; 2183 2184 replaceTrigInsts(SinCalls, Sin); 2185 replaceTrigInsts(CosCalls, Cos); 2186 replaceTrigInsts(SinCosCalls, SinCos); 2187 2188 return nullptr; 2189 } 2190 2191 void LibCallSimplifier::classifyArgUse( 2192 Value *Val, Function *F, bool IsFloat, 2193 SmallVectorImpl<CallInst *> &SinCalls, 2194 SmallVectorImpl<CallInst *> &CosCalls, 2195 SmallVectorImpl<CallInst *> &SinCosCalls) { 2196 CallInst *CI = dyn_cast<CallInst>(Val); 2197 2198 if (!CI) 2199 return; 2200 2201 // Don't consider calls in other functions. 2202 if (CI->getFunction() != F) 2203 return; 2204 2205 Function *Callee = CI->getCalledFunction(); 2206 LibFunc Func; 2207 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 2208 !isTrigLibCall(CI)) 2209 return; 2210 2211 if (IsFloat) { 2212 if (Func == LibFunc_sinpif) 2213 SinCalls.push_back(CI); 2214 else if (Func == LibFunc_cospif) 2215 CosCalls.push_back(CI); 2216 else if (Func == LibFunc_sincospif_stret) 2217 SinCosCalls.push_back(CI); 2218 } else { 2219 if (Func == LibFunc_sinpi) 2220 SinCalls.push_back(CI); 2221 else if (Func == LibFunc_cospi) 2222 CosCalls.push_back(CI); 2223 else if (Func == LibFunc_sincospi_stret) 2224 SinCosCalls.push_back(CI); 2225 } 2226 } 2227 2228 //===----------------------------------------------------------------------===// 2229 // Integer Library Call Optimizations 2230 //===----------------------------------------------------------------------===// 2231 2232 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 2233 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 2234 Value *Op = CI->getArgOperand(0); 2235 Type *ArgType = Op->getType(); 2236 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2237 Intrinsic::cttz, ArgType); 2238 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 2239 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 2240 V = B.CreateIntCast(V, B.getInt32Ty(), false); 2241 2242 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 2243 return B.CreateSelect(Cond, V, B.getInt32(0)); 2244 } 2245 2246 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 2247 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 2248 Value *Op = CI->getArgOperand(0); 2249 Type *ArgType = Op->getType(); 2250 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2251 Intrinsic::ctlz, ArgType); 2252 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 2253 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 2254 V); 2255 return B.CreateIntCast(V, CI->getType(), false); 2256 } 2257 2258 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 2259 // abs(x) -> x <s 0 ? -x : x 2260 // The negation has 'nsw' because abs of INT_MIN is undefined. 2261 Value *X = CI->getArgOperand(0); 2262 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 2263 Value *NegX = B.CreateNSWNeg(X, "neg"); 2264 return B.CreateSelect(IsNeg, NegX, X); 2265 } 2266 2267 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 2268 // isdigit(c) -> (c-'0') <u 10 2269 Value *Op = CI->getArgOperand(0); 2270 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 2271 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 2272 return B.CreateZExt(Op, CI->getType()); 2273 } 2274 2275 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 2276 // isascii(c) -> c <u 128 2277 Value *Op = CI->getArgOperand(0); 2278 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 2279 return B.CreateZExt(Op, CI->getType()); 2280 } 2281 2282 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 2283 // toascii(c) -> c & 0x7f 2284 return B.CreateAnd(CI->getArgOperand(0), 2285 ConstantInt::get(CI->getType(), 0x7F)); 2286 } 2287 2288 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 2289 StringRef Str; 2290 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2291 return nullptr; 2292 2293 return convertStrToNumber(CI, Str, 10); 2294 } 2295 2296 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) { 2297 StringRef Str; 2298 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2299 return nullptr; 2300 2301 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 2302 return nullptr; 2303 2304 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2305 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 2306 } 2307 2308 return nullptr; 2309 } 2310 2311 //===----------------------------------------------------------------------===// 2312 // Formatting and IO Library Call Optimizations 2313 //===----------------------------------------------------------------------===// 2314 2315 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2316 2317 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 2318 int StreamArg) { 2319 Function *Callee = CI->getCalledFunction(); 2320 // Error reporting calls should be cold, mark them as such. 2321 // This applies even to non-builtin calls: it is only a hint and applies to 2322 // functions that the frontend might not understand as builtins. 2323 2324 // This heuristic was suggested in: 2325 // Improving Static Branch Prediction in a Compiler 2326 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2327 // Proceedings of PACT'98, Oct. 1998, IEEE 2328 if (!CI->hasFnAttr(Attribute::Cold) && 2329 isReportingError(Callee, CI, StreamArg)) { 2330 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 2331 } 2332 2333 return nullptr; 2334 } 2335 2336 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2337 if (!Callee || !Callee->isDeclaration()) 2338 return false; 2339 2340 if (StreamArg < 0) 2341 return true; 2342 2343 // These functions might be considered cold, but only if their stream 2344 // argument is stderr. 2345 2346 if (StreamArg >= (int)CI->getNumArgOperands()) 2347 return false; 2348 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2349 if (!LI) 2350 return false; 2351 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2352 if (!GV || !GV->isDeclaration()) 2353 return false; 2354 return GV->getName() == "stderr"; 2355 } 2356 2357 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 2358 // Check for a fixed format string. 2359 StringRef FormatStr; 2360 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2361 return nullptr; 2362 2363 // Empty format string -> noop. 2364 if (FormatStr.empty()) // Tolerate printf's declared void. 2365 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2366 2367 // Do not do any of the following transformations if the printf return value 2368 // is used, in general the printf return value is not compatible with either 2369 // putchar() or puts(). 2370 if (!CI->use_empty()) 2371 return nullptr; 2372 2373 // printf("x") -> putchar('x'), even for "%" and "%%". 2374 if (FormatStr.size() == 1 || FormatStr == "%%") 2375 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 2376 2377 // printf("%s", "a") --> putchar('a') 2378 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 2379 StringRef ChrStr; 2380 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 2381 return nullptr; 2382 if (ChrStr.size() != 1) 2383 return nullptr; 2384 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 2385 } 2386 2387 // printf("foo\n") --> puts("foo") 2388 if (FormatStr[FormatStr.size() - 1] == '\n' && 2389 FormatStr.find('%') == StringRef::npos) { // No format characters. 2390 // Create a string literal with no \n on it. We expect the constant merge 2391 // pass to be run after this pass, to merge duplicate strings. 2392 FormatStr = FormatStr.drop_back(); 2393 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2394 return emitPutS(GV, B, TLI); 2395 } 2396 2397 // Optimize specific format strings. 2398 // printf("%c", chr) --> putchar(chr) 2399 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 2400 CI->getArgOperand(1)->getType()->isIntegerTy()) 2401 return emitPutChar(CI->getArgOperand(1), B, TLI); 2402 2403 // printf("%s\n", str) --> puts(str) 2404 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 2405 CI->getArgOperand(1)->getType()->isPointerTy()) 2406 return emitPutS(CI->getArgOperand(1), B, TLI); 2407 return nullptr; 2408 } 2409 2410 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 2411 2412 Function *Callee = CI->getCalledFunction(); 2413 FunctionType *FT = Callee->getFunctionType(); 2414 if (Value *V = optimizePrintFString(CI, B)) { 2415 return V; 2416 } 2417 2418 // printf(format, ...) -> iprintf(format, ...) if no floating point 2419 // arguments. 2420 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2421 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2422 FunctionCallee IPrintFFn = 2423 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2424 CallInst *New = cast<CallInst>(CI->clone()); 2425 New->setCalledFunction(IPrintFFn); 2426 B.Insert(New); 2427 return New; 2428 } 2429 2430 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2431 // arguments. 2432 if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) { 2433 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2434 auto SmallPrintFFn = 2435 M->getOrInsertFunction(TLI->getName(LibFunc_small_printf), 2436 FT, Callee->getAttributes()); 2437 CallInst *New = cast<CallInst>(CI->clone()); 2438 New->setCalledFunction(SmallPrintFFn); 2439 B.Insert(New); 2440 return New; 2441 } 2442 2443 annotateNonNullBasedOnAccess(CI, 0); 2444 return nullptr; 2445 } 2446 2447 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 2448 IRBuilderBase &B) { 2449 // Check for a fixed format string. 2450 StringRef FormatStr; 2451 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2452 return nullptr; 2453 2454 // If we just have a format string (nothing else crazy) transform it. 2455 if (CI->getNumArgOperands() == 2) { 2456 // Make sure there's no % in the constant array. We could try to handle 2457 // %% -> % in the future if we cared. 2458 if (FormatStr.find('%') != StringRef::npos) 2459 return nullptr; // we found a format specifier, bail out. 2460 2461 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2462 B.CreateMemCpy( 2463 CI->getArgOperand(0), Align(1), CI->getArgOperand(1), Align(1), 2464 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2465 FormatStr.size() + 1)); // Copy the null byte. 2466 return ConstantInt::get(CI->getType(), FormatStr.size()); 2467 } 2468 2469 // The remaining optimizations require the format string to be "%s" or "%c" 2470 // and have an extra operand. 2471 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2472 CI->getNumArgOperands() < 3) 2473 return nullptr; 2474 2475 // Decode the second character of the format string. 2476 if (FormatStr[1] == 'c') { 2477 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2478 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2479 return nullptr; 2480 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2481 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2482 B.CreateStore(V, Ptr); 2483 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2484 B.CreateStore(B.getInt8(0), Ptr); 2485 2486 return ConstantInt::get(CI->getType(), 1); 2487 } 2488 2489 if (FormatStr[1] == 's') { 2490 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2491 // strlen(str)+1) 2492 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2493 return nullptr; 2494 2495 if (CI->use_empty()) 2496 // sprintf(dest, "%s", str) -> strcpy(dest, str) 2497 return emitStrCpy(CI->getArgOperand(0), CI->getArgOperand(2), B, TLI); 2498 2499 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 2500 if (SrcLen) { 2501 B.CreateMemCpy( 2502 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2503 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 2504 // Returns total number of characters written without null-character. 2505 return ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen - 1); 2506 } else if (Value *V = emitStpCpy(CI->getArgOperand(0), CI->getArgOperand(2), 2507 B, TLI)) { 2508 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 2509 Value *PtrDiff = B.CreatePtrDiff(V, CI->getArgOperand(0)); 2510 return B.CreateIntCast(PtrDiff, CI->getType(), false); 2511 } 2512 2513 bool OptForSize = CI->getFunction()->hasOptSize() || 2514 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2515 PGSOQueryType::IRPass); 2516 if (OptForSize) 2517 return nullptr; 2518 2519 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2520 if (!Len) 2521 return nullptr; 2522 Value *IncLen = 2523 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2524 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(2), 2525 Align(1), IncLen); 2526 2527 // The sprintf result is the unincremented number of bytes in the string. 2528 return B.CreateIntCast(Len, CI->getType(), false); 2529 } 2530 return nullptr; 2531 } 2532 2533 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 2534 Function *Callee = CI->getCalledFunction(); 2535 FunctionType *FT = Callee->getFunctionType(); 2536 if (Value *V = optimizeSPrintFString(CI, B)) { 2537 return V; 2538 } 2539 2540 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2541 // point arguments. 2542 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2543 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2544 FunctionCallee SIPrintFFn = 2545 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2546 CallInst *New = cast<CallInst>(CI->clone()); 2547 New->setCalledFunction(SIPrintFFn); 2548 B.Insert(New); 2549 return New; 2550 } 2551 2552 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2553 // floating point arguments. 2554 if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) { 2555 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2556 auto SmallSPrintFFn = 2557 M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf), 2558 FT, Callee->getAttributes()); 2559 CallInst *New = cast<CallInst>(CI->clone()); 2560 New->setCalledFunction(SmallSPrintFFn); 2561 B.Insert(New); 2562 return New; 2563 } 2564 2565 annotateNonNullBasedOnAccess(CI, {0, 1}); 2566 return nullptr; 2567 } 2568 2569 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 2570 IRBuilderBase &B) { 2571 // Check for size 2572 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2573 if (!Size) 2574 return nullptr; 2575 2576 uint64_t N = Size->getZExtValue(); 2577 // Check for a fixed format string. 2578 StringRef FormatStr; 2579 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2580 return nullptr; 2581 2582 // If we just have a format string (nothing else crazy) transform it. 2583 if (CI->getNumArgOperands() == 3) { 2584 // Make sure there's no % in the constant array. We could try to handle 2585 // %% -> % in the future if we cared. 2586 if (FormatStr.find('%') != StringRef::npos) 2587 return nullptr; // we found a format specifier, bail out. 2588 2589 if (N == 0) 2590 return ConstantInt::get(CI->getType(), FormatStr.size()); 2591 else if (N < FormatStr.size() + 1) 2592 return nullptr; 2593 2594 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2595 // strlen(fmt)+1) 2596 B.CreateMemCpy( 2597 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2598 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2599 FormatStr.size() + 1)); // Copy the null byte. 2600 return ConstantInt::get(CI->getType(), FormatStr.size()); 2601 } 2602 2603 // The remaining optimizations require the format string to be "%s" or "%c" 2604 // and have an extra operand. 2605 if (FormatStr.size() == 2 && FormatStr[0] == '%' && 2606 CI->getNumArgOperands() == 4) { 2607 2608 // Decode the second character of the format string. 2609 if (FormatStr[1] == 'c') { 2610 if (N == 0) 2611 return ConstantInt::get(CI->getType(), 1); 2612 else if (N == 1) 2613 return nullptr; 2614 2615 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2616 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2617 return nullptr; 2618 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2619 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2620 B.CreateStore(V, Ptr); 2621 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2622 B.CreateStore(B.getInt8(0), Ptr); 2623 2624 return ConstantInt::get(CI->getType(), 1); 2625 } 2626 2627 if (FormatStr[1] == 's') { 2628 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2629 StringRef Str; 2630 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2631 return nullptr; 2632 2633 if (N == 0) 2634 return ConstantInt::get(CI->getType(), Str.size()); 2635 else if (N < Str.size() + 1) 2636 return nullptr; 2637 2638 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(3), 2639 Align(1), ConstantInt::get(CI->getType(), Str.size() + 1)); 2640 2641 // The snprintf result is the unincremented number of bytes in the string. 2642 return ConstantInt::get(CI->getType(), Str.size()); 2643 } 2644 } 2645 return nullptr; 2646 } 2647 2648 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 2649 if (Value *V = optimizeSnPrintFString(CI, B)) { 2650 return V; 2651 } 2652 2653 if (isKnownNonZero(CI->getOperand(1), DL)) 2654 annotateNonNullBasedOnAccess(CI, 0); 2655 return nullptr; 2656 } 2657 2658 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 2659 IRBuilderBase &B) { 2660 optimizeErrorReporting(CI, B, 0); 2661 2662 // All the optimizations depend on the format string. 2663 StringRef FormatStr; 2664 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2665 return nullptr; 2666 2667 // Do not do any of the following transformations if the fprintf return 2668 // value is used, in general the fprintf return value is not compatible 2669 // with fwrite(), fputc() or fputs(). 2670 if (!CI->use_empty()) 2671 return nullptr; 2672 2673 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2674 if (CI->getNumArgOperands() == 2) { 2675 // Could handle %% -> % if we cared. 2676 if (FormatStr.find('%') != StringRef::npos) 2677 return nullptr; // We found a format specifier. 2678 2679 return emitFWrite( 2680 CI->getArgOperand(1), 2681 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 2682 CI->getArgOperand(0), B, DL, TLI); 2683 } 2684 2685 // The remaining optimizations require the format string to be "%s" or "%c" 2686 // and have an extra operand. 2687 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2688 CI->getNumArgOperands() < 3) 2689 return nullptr; 2690 2691 // Decode the second character of the format string. 2692 if (FormatStr[1] == 'c') { 2693 // fprintf(F, "%c", chr) --> fputc(chr, F) 2694 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2695 return nullptr; 2696 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2697 } 2698 2699 if (FormatStr[1] == 's') { 2700 // fprintf(F, "%s", str) --> fputs(str, F) 2701 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2702 return nullptr; 2703 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2704 } 2705 return nullptr; 2706 } 2707 2708 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 2709 Function *Callee = CI->getCalledFunction(); 2710 FunctionType *FT = Callee->getFunctionType(); 2711 if (Value *V = optimizeFPrintFString(CI, B)) { 2712 return V; 2713 } 2714 2715 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2716 // floating point arguments. 2717 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2718 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2719 FunctionCallee FIPrintFFn = 2720 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2721 CallInst *New = cast<CallInst>(CI->clone()); 2722 New->setCalledFunction(FIPrintFFn); 2723 B.Insert(New); 2724 return New; 2725 } 2726 2727 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2728 // 128-bit floating point arguments. 2729 if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) { 2730 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2731 auto SmallFPrintFFn = 2732 M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf), 2733 FT, Callee->getAttributes()); 2734 CallInst *New = cast<CallInst>(CI->clone()); 2735 New->setCalledFunction(SmallFPrintFFn); 2736 B.Insert(New); 2737 return New; 2738 } 2739 2740 return nullptr; 2741 } 2742 2743 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 2744 optimizeErrorReporting(CI, B, 3); 2745 2746 // Get the element size and count. 2747 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2748 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2749 if (SizeC && CountC) { 2750 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2751 2752 // If this is writing zero records, remove the call (it's a noop). 2753 if (Bytes == 0) 2754 return ConstantInt::get(CI->getType(), 0); 2755 2756 // If this is writing one byte, turn it into fputc. 2757 // This optimisation is only valid, if the return value is unused. 2758 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2759 Value *Char = B.CreateLoad(B.getInt8Ty(), 2760 castToCStr(CI->getArgOperand(0), B), "char"); 2761 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2762 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2763 } 2764 } 2765 2766 return nullptr; 2767 } 2768 2769 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 2770 optimizeErrorReporting(CI, B, 1); 2771 2772 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2773 // requires more arguments and thus extra MOVs are required. 2774 bool OptForSize = CI->getFunction()->hasOptSize() || 2775 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2776 PGSOQueryType::IRPass); 2777 if (OptForSize) 2778 return nullptr; 2779 2780 // We can't optimize if return value is used. 2781 if (!CI->use_empty()) 2782 return nullptr; 2783 2784 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2785 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2786 if (!Len) 2787 return nullptr; 2788 2789 // Known to have no uses (see above). 2790 return emitFWrite( 2791 CI->getArgOperand(0), 2792 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2793 CI->getArgOperand(1), B, DL, TLI); 2794 } 2795 2796 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 2797 annotateNonNullBasedOnAccess(CI, 0); 2798 if (!CI->use_empty()) 2799 return nullptr; 2800 2801 // Check for a constant string. 2802 // puts("") -> putchar('\n') 2803 StringRef Str; 2804 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 2805 return emitPutChar(B.getInt32('\n'), B, TLI); 2806 2807 return nullptr; 2808 } 2809 2810 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 2811 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 2812 return B.CreateMemMove(CI->getArgOperand(1), Align(1), CI->getArgOperand(0), 2813 Align(1), CI->getArgOperand(2)); 2814 } 2815 2816 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2817 LibFunc Func; 2818 SmallString<20> FloatFuncName = FuncName; 2819 FloatFuncName += 'f'; 2820 if (TLI->getLibFunc(FloatFuncName, Func)) 2821 return TLI->has(Func); 2822 return false; 2823 } 2824 2825 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2826 IRBuilderBase &Builder) { 2827 LibFunc Func; 2828 Function *Callee = CI->getCalledFunction(); 2829 // Check for string/memory library functions. 2830 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2831 // Make sure we never change the calling convention. 2832 assert((ignoreCallingConv(Func) || 2833 isCallingConvCCompatible(CI)) && 2834 "Optimizing string/memory libcall would change the calling convention"); 2835 switch (Func) { 2836 case LibFunc_strcat: 2837 return optimizeStrCat(CI, Builder); 2838 case LibFunc_strncat: 2839 return optimizeStrNCat(CI, Builder); 2840 case LibFunc_strchr: 2841 return optimizeStrChr(CI, Builder); 2842 case LibFunc_strrchr: 2843 return optimizeStrRChr(CI, Builder); 2844 case LibFunc_strcmp: 2845 return optimizeStrCmp(CI, Builder); 2846 case LibFunc_strncmp: 2847 return optimizeStrNCmp(CI, Builder); 2848 case LibFunc_strcpy: 2849 return optimizeStrCpy(CI, Builder); 2850 case LibFunc_stpcpy: 2851 return optimizeStpCpy(CI, Builder); 2852 case LibFunc_strncpy: 2853 return optimizeStrNCpy(CI, Builder); 2854 case LibFunc_strlen: 2855 return optimizeStrLen(CI, Builder); 2856 case LibFunc_strpbrk: 2857 return optimizeStrPBrk(CI, Builder); 2858 case LibFunc_strndup: 2859 return optimizeStrNDup(CI, Builder); 2860 case LibFunc_strtol: 2861 case LibFunc_strtod: 2862 case LibFunc_strtof: 2863 case LibFunc_strtoul: 2864 case LibFunc_strtoll: 2865 case LibFunc_strtold: 2866 case LibFunc_strtoull: 2867 return optimizeStrTo(CI, Builder); 2868 case LibFunc_strspn: 2869 return optimizeStrSpn(CI, Builder); 2870 case LibFunc_strcspn: 2871 return optimizeStrCSpn(CI, Builder); 2872 case LibFunc_strstr: 2873 return optimizeStrStr(CI, Builder); 2874 case LibFunc_memchr: 2875 return optimizeMemChr(CI, Builder); 2876 case LibFunc_memrchr: 2877 return optimizeMemRChr(CI, Builder); 2878 case LibFunc_bcmp: 2879 return optimizeBCmp(CI, Builder); 2880 case LibFunc_memcmp: 2881 return optimizeMemCmp(CI, Builder); 2882 case LibFunc_memcpy: 2883 return optimizeMemCpy(CI, Builder); 2884 case LibFunc_memccpy: 2885 return optimizeMemCCpy(CI, Builder); 2886 case LibFunc_mempcpy: 2887 return optimizeMemPCpy(CI, Builder); 2888 case LibFunc_memmove: 2889 return optimizeMemMove(CI, Builder); 2890 case LibFunc_memset: 2891 return optimizeMemSet(CI, Builder); 2892 case LibFunc_realloc: 2893 return optimizeRealloc(CI, Builder); 2894 case LibFunc_wcslen: 2895 return optimizeWcslen(CI, Builder); 2896 case LibFunc_bcopy: 2897 return optimizeBCopy(CI, Builder); 2898 default: 2899 break; 2900 } 2901 } 2902 return nullptr; 2903 } 2904 2905 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2906 LibFunc Func, 2907 IRBuilderBase &Builder) { 2908 // Don't optimize calls that require strict floating point semantics. 2909 if (CI->isStrictFP()) 2910 return nullptr; 2911 2912 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 2913 return V; 2914 2915 switch (Func) { 2916 case LibFunc_sinpif: 2917 case LibFunc_sinpi: 2918 case LibFunc_cospif: 2919 case LibFunc_cospi: 2920 return optimizeSinCosPi(CI, Builder); 2921 case LibFunc_powf: 2922 case LibFunc_pow: 2923 case LibFunc_powl: 2924 return optimizePow(CI, Builder); 2925 case LibFunc_exp2l: 2926 case LibFunc_exp2: 2927 case LibFunc_exp2f: 2928 return optimizeExp2(CI, Builder); 2929 case LibFunc_fabsf: 2930 case LibFunc_fabs: 2931 case LibFunc_fabsl: 2932 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2933 case LibFunc_sqrtf: 2934 case LibFunc_sqrt: 2935 case LibFunc_sqrtl: 2936 return optimizeSqrt(CI, Builder); 2937 case LibFunc_logf: 2938 case LibFunc_log: 2939 case LibFunc_logl: 2940 case LibFunc_log10f: 2941 case LibFunc_log10: 2942 case LibFunc_log10l: 2943 case LibFunc_log1pf: 2944 case LibFunc_log1p: 2945 case LibFunc_log1pl: 2946 case LibFunc_log2f: 2947 case LibFunc_log2: 2948 case LibFunc_log2l: 2949 case LibFunc_logbf: 2950 case LibFunc_logb: 2951 case LibFunc_logbl: 2952 return optimizeLog(CI, Builder); 2953 case LibFunc_tan: 2954 case LibFunc_tanf: 2955 case LibFunc_tanl: 2956 return optimizeTan(CI, Builder); 2957 case LibFunc_ceil: 2958 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2959 case LibFunc_floor: 2960 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2961 case LibFunc_round: 2962 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2963 case LibFunc_roundeven: 2964 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 2965 case LibFunc_nearbyint: 2966 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2967 case LibFunc_rint: 2968 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2969 case LibFunc_trunc: 2970 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2971 case LibFunc_acos: 2972 case LibFunc_acosh: 2973 case LibFunc_asin: 2974 case LibFunc_asinh: 2975 case LibFunc_atan: 2976 case LibFunc_atanh: 2977 case LibFunc_cbrt: 2978 case LibFunc_cosh: 2979 case LibFunc_exp: 2980 case LibFunc_exp10: 2981 case LibFunc_expm1: 2982 case LibFunc_cos: 2983 case LibFunc_sin: 2984 case LibFunc_sinh: 2985 case LibFunc_tanh: 2986 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 2987 return optimizeUnaryDoubleFP(CI, Builder, true); 2988 return nullptr; 2989 case LibFunc_copysign: 2990 if (hasFloatVersion(CI->getCalledFunction()->getName())) 2991 return optimizeBinaryDoubleFP(CI, Builder); 2992 return nullptr; 2993 case LibFunc_fminf: 2994 case LibFunc_fmin: 2995 case LibFunc_fminl: 2996 case LibFunc_fmaxf: 2997 case LibFunc_fmax: 2998 case LibFunc_fmaxl: 2999 return optimizeFMinFMax(CI, Builder); 3000 case LibFunc_cabs: 3001 case LibFunc_cabsf: 3002 case LibFunc_cabsl: 3003 return optimizeCAbs(CI, Builder); 3004 default: 3005 return nullptr; 3006 } 3007 } 3008 3009 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 3010 // TODO: Split out the code below that operates on FP calls so that 3011 // we can all non-FP calls with the StrictFP attribute to be 3012 // optimized. 3013 if (CI->isNoBuiltin()) 3014 return nullptr; 3015 3016 LibFunc Func; 3017 Function *Callee = CI->getCalledFunction(); 3018 bool isCallingConvC = isCallingConvCCompatible(CI); 3019 3020 SmallVector<OperandBundleDef, 2> OpBundles; 3021 CI->getOperandBundlesAsDefs(OpBundles); 3022 3023 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3024 Builder.setDefaultOperandBundles(OpBundles); 3025 3026 // Command-line parameter overrides instruction attribute. 3027 // This can't be moved to optimizeFloatingPointLibCall() because it may be 3028 // used by the intrinsic optimizations. 3029 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 3030 UnsafeFPShrink = EnableUnsafeFPShrink; 3031 else if (isa<FPMathOperator>(CI) && CI->isFast()) 3032 UnsafeFPShrink = true; 3033 3034 // First, check for intrinsics. 3035 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 3036 if (!isCallingConvC) 3037 return nullptr; 3038 // The FP intrinsics have corresponding constrained versions so we don't 3039 // need to check for the StrictFP attribute here. 3040 switch (II->getIntrinsicID()) { 3041 case Intrinsic::pow: 3042 return optimizePow(CI, Builder); 3043 case Intrinsic::exp2: 3044 return optimizeExp2(CI, Builder); 3045 case Intrinsic::log: 3046 case Intrinsic::log2: 3047 case Intrinsic::log10: 3048 return optimizeLog(CI, Builder); 3049 case Intrinsic::sqrt: 3050 return optimizeSqrt(CI, Builder); 3051 // TODO: Use foldMallocMemset() with memset intrinsic. 3052 case Intrinsic::memset: 3053 return optimizeMemSet(CI, Builder); 3054 case Intrinsic::memcpy: 3055 return optimizeMemCpy(CI, Builder); 3056 case Intrinsic::memmove: 3057 return optimizeMemMove(CI, Builder); 3058 default: 3059 return nullptr; 3060 } 3061 } 3062 3063 // Also try to simplify calls to fortified library functions. 3064 if (Value *SimplifiedFortifiedCI = 3065 FortifiedSimplifier.optimizeCall(CI, Builder)) { 3066 // Try to further simplify the result. 3067 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 3068 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 3069 // Ensure that SimplifiedCI's uses are complete, since some calls have 3070 // their uses analyzed. 3071 replaceAllUsesWith(CI, SimplifiedCI); 3072 3073 // Set insertion point to SimplifiedCI to guarantee we reach all uses 3074 // we might replace later on. 3075 IRBuilderBase::InsertPointGuard Guard(Builder); 3076 Builder.SetInsertPoint(SimplifiedCI); 3077 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) { 3078 // If we were able to further simplify, remove the now redundant call. 3079 substituteInParent(SimplifiedCI, V); 3080 return V; 3081 } 3082 } 3083 return SimplifiedFortifiedCI; 3084 } 3085 3086 // Then check for known library functions. 3087 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 3088 // We never change the calling convention. 3089 if (!ignoreCallingConv(Func) && !isCallingConvC) 3090 return nullptr; 3091 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 3092 return V; 3093 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 3094 return V; 3095 switch (Func) { 3096 case LibFunc_ffs: 3097 case LibFunc_ffsl: 3098 case LibFunc_ffsll: 3099 return optimizeFFS(CI, Builder); 3100 case LibFunc_fls: 3101 case LibFunc_flsl: 3102 case LibFunc_flsll: 3103 return optimizeFls(CI, Builder); 3104 case LibFunc_abs: 3105 case LibFunc_labs: 3106 case LibFunc_llabs: 3107 return optimizeAbs(CI, Builder); 3108 case LibFunc_isdigit: 3109 return optimizeIsDigit(CI, Builder); 3110 case LibFunc_isascii: 3111 return optimizeIsAscii(CI, Builder); 3112 case LibFunc_toascii: 3113 return optimizeToAscii(CI, Builder); 3114 case LibFunc_atoi: 3115 case LibFunc_atol: 3116 case LibFunc_atoll: 3117 return optimizeAtoi(CI, Builder); 3118 case LibFunc_strtol: 3119 case LibFunc_strtoll: 3120 return optimizeStrtol(CI, Builder); 3121 case LibFunc_printf: 3122 return optimizePrintF(CI, Builder); 3123 case LibFunc_sprintf: 3124 return optimizeSPrintF(CI, Builder); 3125 case LibFunc_snprintf: 3126 return optimizeSnPrintF(CI, Builder); 3127 case LibFunc_fprintf: 3128 return optimizeFPrintF(CI, Builder); 3129 case LibFunc_fwrite: 3130 return optimizeFWrite(CI, Builder); 3131 case LibFunc_fputs: 3132 return optimizeFPuts(CI, Builder); 3133 case LibFunc_puts: 3134 return optimizePuts(CI, Builder); 3135 case LibFunc_perror: 3136 return optimizeErrorReporting(CI, Builder); 3137 case LibFunc_vfprintf: 3138 case LibFunc_fiprintf: 3139 return optimizeErrorReporting(CI, Builder, 0); 3140 default: 3141 return nullptr; 3142 } 3143 } 3144 return nullptr; 3145 } 3146 3147 LibCallSimplifier::LibCallSimplifier( 3148 const DataLayout &DL, const TargetLibraryInfo *TLI, 3149 OptimizationRemarkEmitter &ORE, 3150 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 3151 function_ref<void(Instruction *, Value *)> Replacer, 3152 function_ref<void(Instruction *)> Eraser) 3153 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 3154 UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {} 3155 3156 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 3157 // Indirect through the replacer used in this instance. 3158 Replacer(I, With); 3159 } 3160 3161 void LibCallSimplifier::eraseFromParent(Instruction *I) { 3162 Eraser(I); 3163 } 3164 3165 // TODO: 3166 // Additional cases that we need to add to this file: 3167 // 3168 // cbrt: 3169 // * cbrt(expN(X)) -> expN(x/3) 3170 // * cbrt(sqrt(x)) -> pow(x,1/6) 3171 // * cbrt(cbrt(x)) -> pow(x,1/9) 3172 // 3173 // exp, expf, expl: 3174 // * exp(log(x)) -> x 3175 // 3176 // log, logf, logl: 3177 // * log(exp(x)) -> x 3178 // * log(exp(y)) -> y*log(e) 3179 // * log(exp10(y)) -> y*log(10) 3180 // * log(sqrt(x)) -> 0.5*log(x) 3181 // 3182 // pow, powf, powl: 3183 // * pow(sqrt(x),y) -> pow(x,y*0.5) 3184 // * pow(pow(x,y),z)-> pow(x,y*z) 3185 // 3186 // signbit: 3187 // * signbit(cnst) -> cnst' 3188 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 3189 // 3190 // sqrt, sqrtf, sqrtl: 3191 // * sqrt(expN(x)) -> expN(x*0.5) 3192 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 3193 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 3194 // 3195 3196 //===----------------------------------------------------------------------===// 3197 // Fortified Library Call Optimizations 3198 //===----------------------------------------------------------------------===// 3199 3200 bool 3201 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 3202 unsigned ObjSizeOp, 3203 Optional<unsigned> SizeOp, 3204 Optional<unsigned> StrOp, 3205 Optional<unsigned> FlagOp) { 3206 // If this function takes a flag argument, the implementation may use it to 3207 // perform extra checks. Don't fold into the non-checking variant. 3208 if (FlagOp) { 3209 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 3210 if (!Flag || !Flag->isZero()) 3211 return false; 3212 } 3213 3214 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 3215 return true; 3216 3217 if (ConstantInt *ObjSizeCI = 3218 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 3219 if (ObjSizeCI->isMinusOne()) 3220 return true; 3221 // If the object size wasn't -1 (unknown), bail out if we were asked to. 3222 if (OnlyLowerUnknownSize) 3223 return false; 3224 if (StrOp) { 3225 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 3226 // If the length is 0 we don't know how long it is and so we can't 3227 // remove the check. 3228 if (Len) 3229 annotateDereferenceableBytes(CI, *StrOp, Len); 3230 else 3231 return false; 3232 return ObjSizeCI->getZExtValue() >= Len; 3233 } 3234 3235 if (SizeOp) { 3236 if (ConstantInt *SizeCI = 3237 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 3238 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 3239 } 3240 } 3241 return false; 3242 } 3243 3244 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 3245 IRBuilderBase &B) { 3246 if (isFortifiedCallFoldable(CI, 3, 2)) { 3247 CallInst *NewCI = 3248 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3249 Align(1), CI->getArgOperand(2)); 3250 NewCI->setAttributes(CI->getAttributes()); 3251 return CI->getArgOperand(0); 3252 } 3253 return nullptr; 3254 } 3255 3256 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 3257 IRBuilderBase &B) { 3258 if (isFortifiedCallFoldable(CI, 3, 2)) { 3259 CallInst *NewCI = 3260 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3261 Align(1), CI->getArgOperand(2)); 3262 NewCI->setAttributes(CI->getAttributes()); 3263 return CI->getArgOperand(0); 3264 } 3265 return nullptr; 3266 } 3267 3268 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 3269 IRBuilderBase &B) { 3270 // TODO: Try foldMallocMemset() here. 3271 3272 if (isFortifiedCallFoldable(CI, 3, 2)) { 3273 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 3274 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 3275 CI->getArgOperand(2), Align(1)); 3276 NewCI->setAttributes(CI->getAttributes()); 3277 return CI->getArgOperand(0); 3278 } 3279 return nullptr; 3280 } 3281 3282 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 3283 IRBuilderBase &B, 3284 LibFunc Func) { 3285 const DataLayout &DL = CI->getModule()->getDataLayout(); 3286 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 3287 *ObjSize = CI->getArgOperand(2); 3288 3289 // __stpcpy_chk(x,x,...) -> x+strlen(x) 3290 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 3291 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3292 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3293 } 3294 3295 // If a) we don't have any length information, or b) we know this will 3296 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3297 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3298 // TODO: It might be nice to get a maximum length out of the possible 3299 // string lengths for varying. 3300 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 3301 if (Func == LibFunc_strcpy_chk) 3302 return emitStrCpy(Dst, Src, B, TLI); 3303 else 3304 return emitStpCpy(Dst, Src, B, TLI); 3305 } 3306 3307 if (OnlyLowerUnknownSize) 3308 return nullptr; 3309 3310 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3311 uint64_t Len = GetStringLength(Src); 3312 if (Len) 3313 annotateDereferenceableBytes(CI, 1, Len); 3314 else 3315 return nullptr; 3316 3317 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 3318 Value *LenV = ConstantInt::get(SizeTTy, Len); 3319 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 3320 // If the function was an __stpcpy_chk, and we were able to fold it into 3321 // a __memcpy_chk, we still need to return the correct end pointer. 3322 if (Ret && Func == LibFunc_stpcpy_chk) 3323 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 3324 return Ret; 3325 } 3326 3327 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 3328 IRBuilderBase &B) { 3329 if (isFortifiedCallFoldable(CI, 1, None, 0)) 3330 return emitStrLen(CI->getArgOperand(0), B, CI->getModule()->getDataLayout(), 3331 TLI); 3332 return nullptr; 3333 } 3334 3335 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 3336 IRBuilderBase &B, 3337 LibFunc Func) { 3338 if (isFortifiedCallFoldable(CI, 3, 2)) { 3339 if (Func == LibFunc_strncpy_chk) 3340 return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3341 CI->getArgOperand(2), B, TLI); 3342 else 3343 return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3344 CI->getArgOperand(2), B, TLI); 3345 } 3346 3347 return nullptr; 3348 } 3349 3350 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 3351 IRBuilderBase &B) { 3352 if (isFortifiedCallFoldable(CI, 4, 3)) 3353 return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3354 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI); 3355 3356 return nullptr; 3357 } 3358 3359 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 3360 IRBuilderBase &B) { 3361 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 3362 SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 5, CI->arg_end()); 3363 return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3364 CI->getArgOperand(4), VariadicArgs, B, TLI); 3365 } 3366 3367 return nullptr; 3368 } 3369 3370 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3371 IRBuilderBase &B) { 3372 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3373 SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 4, CI->arg_end()); 3374 return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs, 3375 B, TLI); 3376 } 3377 3378 return nullptr; 3379 } 3380 3381 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3382 IRBuilderBase &B) { 3383 if (isFortifiedCallFoldable(CI, 2)) 3384 return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI); 3385 3386 return nullptr; 3387 } 3388 3389 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3390 IRBuilderBase &B) { 3391 if (isFortifiedCallFoldable(CI, 3)) 3392 return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3393 CI->getArgOperand(2), B, TLI); 3394 3395 return nullptr; 3396 } 3397 3398 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3399 IRBuilderBase &B) { 3400 if (isFortifiedCallFoldable(CI, 3)) 3401 return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3402 CI->getArgOperand(2), B, TLI); 3403 3404 return nullptr; 3405 } 3406 3407 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3408 IRBuilderBase &B) { 3409 if (isFortifiedCallFoldable(CI, 3)) 3410 return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3411 CI->getArgOperand(2), B, TLI); 3412 3413 return nullptr; 3414 } 3415 3416 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3417 IRBuilderBase &B) { 3418 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3419 return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3420 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI); 3421 3422 return nullptr; 3423 } 3424 3425 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3426 IRBuilderBase &B) { 3427 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3428 return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3429 CI->getArgOperand(4), B, TLI); 3430 3431 return nullptr; 3432 } 3433 3434 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 3435 IRBuilderBase &Builder) { 3436 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3437 // Some clang users checked for _chk libcall availability using: 3438 // __has_builtin(__builtin___memcpy_chk) 3439 // When compiling with -fno-builtin, this is always true. 3440 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3441 // end up with fortified libcalls, which isn't acceptable in a freestanding 3442 // environment which only provides their non-fortified counterparts. 3443 // 3444 // Until we change clang and/or teach external users to check for availability 3445 // differently, disregard the "nobuiltin" attribute and TLI::has. 3446 // 3447 // PR23093. 3448 3449 LibFunc Func; 3450 Function *Callee = CI->getCalledFunction(); 3451 bool isCallingConvC = isCallingConvCCompatible(CI); 3452 3453 SmallVector<OperandBundleDef, 2> OpBundles; 3454 CI->getOperandBundlesAsDefs(OpBundles); 3455 3456 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3457 Builder.setDefaultOperandBundles(OpBundles); 3458 3459 // First, check that this is a known library functions and that the prototype 3460 // is correct. 3461 if (!TLI->getLibFunc(*Callee, Func)) 3462 return nullptr; 3463 3464 // We never change the calling convention. 3465 if (!ignoreCallingConv(Func) && !isCallingConvC) 3466 return nullptr; 3467 3468 switch (Func) { 3469 case LibFunc_memcpy_chk: 3470 return optimizeMemCpyChk(CI, Builder); 3471 case LibFunc_memmove_chk: 3472 return optimizeMemMoveChk(CI, Builder); 3473 case LibFunc_memset_chk: 3474 return optimizeMemSetChk(CI, Builder); 3475 case LibFunc_stpcpy_chk: 3476 case LibFunc_strcpy_chk: 3477 return optimizeStrpCpyChk(CI, Builder, Func); 3478 case LibFunc_strlen_chk: 3479 return optimizeStrLenChk(CI, Builder); 3480 case LibFunc_stpncpy_chk: 3481 case LibFunc_strncpy_chk: 3482 return optimizeStrpNCpyChk(CI, Builder, Func); 3483 case LibFunc_memccpy_chk: 3484 return optimizeMemCCpyChk(CI, Builder); 3485 case LibFunc_snprintf_chk: 3486 return optimizeSNPrintfChk(CI, Builder); 3487 case LibFunc_sprintf_chk: 3488 return optimizeSPrintfChk(CI, Builder); 3489 case LibFunc_strcat_chk: 3490 return optimizeStrCatChk(CI, Builder); 3491 case LibFunc_strlcat_chk: 3492 return optimizeStrLCat(CI, Builder); 3493 case LibFunc_strncat_chk: 3494 return optimizeStrNCatChk(CI, Builder); 3495 case LibFunc_strlcpy_chk: 3496 return optimizeStrLCpyChk(CI, Builder); 3497 case LibFunc_vsnprintf_chk: 3498 return optimizeVSNPrintfChk(CI, Builder); 3499 case LibFunc_vsprintf_chk: 3500 return optimizeVSPrintfChk(CI, Builder); 3501 default: 3502 break; 3503 } 3504 return nullptr; 3505 } 3506 3507 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3508 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3509 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 3510