1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Transforms/Utils/BuildLibCalls.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Transforms/Utils/SizeOpts.h"
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 static cl::opt<bool>
40     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
41                          cl::init(false),
42                          cl::desc("Enable unsafe double to float "
43                                   "shrinking for math lib calls"));
44 
45 //===----------------------------------------------------------------------===//
46 // Helper Functions
47 //===----------------------------------------------------------------------===//
48 
49 static bool ignoreCallingConv(LibFunc Func) {
50   return Func == LibFunc_abs || Func == LibFunc_labs ||
51          Func == LibFunc_llabs || Func == LibFunc_strlen;
52 }
53 
54 /// Return true if it is only used in equality comparisons with With.
55 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
56   for (User *U : V->users()) {
57     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
58       if (IC->isEquality() && IC->getOperand(1) == With)
59         continue;
60     // Unknown instruction.
61     return false;
62   }
63   return true;
64 }
65 
66 static bool callHasFloatingPointArgument(const CallInst *CI) {
67   return any_of(CI->operands(), [](const Use &OI) {
68     return OI->getType()->isFloatingPointTy();
69   });
70 }
71 
72 static bool callHasFP128Argument(const CallInst *CI) {
73   return any_of(CI->operands(), [](const Use &OI) {
74     return OI->getType()->isFP128Ty();
75   });
76 }
77 
78 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
79   if (Base < 2 || Base > 36)
80     // handle special zero base
81     if (Base != 0)
82       return nullptr;
83 
84   char *End;
85   std::string nptr = Str.str();
86   errno = 0;
87   long long int Result = strtoll(nptr.c_str(), &End, Base);
88   if (errno)
89     return nullptr;
90 
91   // if we assume all possible target locales are ASCII supersets,
92   // then if strtoll successfully parses a number on the host,
93   // it will also successfully parse the same way on the target
94   if (*End != '\0')
95     return nullptr;
96 
97   if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
98     return nullptr;
99 
100   return ConstantInt::get(CI->getType(), Result);
101 }
102 
103 static bool isOnlyUsedInComparisonWithZero(Value *V) {
104   for (User *U : V->users()) {
105     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
106       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
107         if (C->isNullValue())
108           continue;
109     // Unknown instruction.
110     return false;
111   }
112   return true;
113 }
114 
115 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
116                                  const DataLayout &DL) {
117   if (!isOnlyUsedInComparisonWithZero(CI))
118     return false;
119 
120   if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL))
121     return false;
122 
123   if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
124     return false;
125 
126   return true;
127 }
128 
129 static void annotateDereferenceableBytes(CallInst *CI,
130                                          ArrayRef<unsigned> ArgNos,
131                                          uint64_t DereferenceableBytes) {
132   const Function *F = CI->getCaller();
133   if (!F)
134     return;
135   for (unsigned ArgNo : ArgNos) {
136     uint64_t DerefBytes = DereferenceableBytes;
137     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
138     if (!llvm::NullPointerIsDefined(F, AS) ||
139         CI->paramHasAttr(ArgNo, Attribute::NonNull))
140       DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo),
141                             DereferenceableBytes);
142 
143     if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) {
144       CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
145       if (!llvm::NullPointerIsDefined(F, AS) ||
146           CI->paramHasAttr(ArgNo, Attribute::NonNull))
147         CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
148       CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
149                                   CI->getContext(), DerefBytes));
150     }
151   }
152 }
153 
154 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI,
155                                          ArrayRef<unsigned> ArgNos) {
156   Function *F = CI->getCaller();
157   if (!F)
158     return;
159 
160   for (unsigned ArgNo : ArgNos) {
161     if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef))
162       CI->addParamAttr(ArgNo, Attribute::NoUndef);
163 
164     if (CI->paramHasAttr(ArgNo, Attribute::NonNull))
165       continue;
166     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
167     if (llvm::NullPointerIsDefined(F, AS))
168       continue;
169 
170     CI->addParamAttr(ArgNo, Attribute::NonNull);
171     annotateDereferenceableBytes(CI, ArgNo, 1);
172   }
173 }
174 
175 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
176                                Value *Size, const DataLayout &DL) {
177   if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
178     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
179     annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
180   } else if (isKnownNonZero(Size, DL)) {
181     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
182     const APInt *X, *Y;
183     uint64_t DerefMin = 1;
184     if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
185       DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
186       annotateDereferenceableBytes(CI, ArgNos, DerefMin);
187     }
188   }
189 }
190 
191 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for
192 // easier chaining. Calls to emit* and B.createCall should probably be wrapped
193 // in this function when New is created to replace Old. Callers should take
194 // care to check Old.isMustTailCall() if they aren't replacing Old directly
195 // with New.
196 static Value *copyFlags(const CallInst &Old, Value *New) {
197   assert(!Old.isMustTailCall() && "do not copy musttail call flags");
198   assert(!Old.isNoTailCall() && "do not copy notail call flags");
199   if (auto *NewCI = dyn_cast_or_null<CallInst>(New))
200     NewCI->setTailCallKind(Old.getTailCallKind());
201   return New;
202 }
203 
204 // Helper to avoid truncating the length if size_t is 32-bits.
205 static StringRef substr(StringRef Str, uint64_t Len) {
206   return Len >= Str.size() ? Str : Str.substr(0, Len);
207 }
208 
209 //===----------------------------------------------------------------------===//
210 // String and Memory Library Call Optimizations
211 //===----------------------------------------------------------------------===//
212 
213 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) {
214   // Extract some information from the instruction
215   Value *Dst = CI->getArgOperand(0);
216   Value *Src = CI->getArgOperand(1);
217   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
218 
219   // See if we can get the length of the input string.
220   uint64_t Len = GetStringLength(Src);
221   if (Len)
222     annotateDereferenceableBytes(CI, 1, Len);
223   else
224     return nullptr;
225   --Len; // Unbias length.
226 
227   // Handle the simple, do-nothing case: strcat(x, "") -> x
228   if (Len == 0)
229     return Dst;
230 
231   return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B));
232 }
233 
234 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
235                                            IRBuilderBase &B) {
236   // We need to find the end of the destination string.  That's where the
237   // memory is to be moved to. We just generate a call to strlen.
238   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
239   if (!DstLen)
240     return nullptr;
241 
242   // Now that we have the destination's length, we must index into the
243   // destination's pointer to get the actual memcpy destination (end of
244   // the string .. we're concatenating).
245   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
246 
247   // We have enough information to now generate the memcpy call to do the
248   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
249   B.CreateMemCpy(
250       CpyDst, Align(1), Src, Align(1),
251       ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
252   return Dst;
253 }
254 
255 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) {
256   // Extract some information from the instruction.
257   Value *Dst = CI->getArgOperand(0);
258   Value *Src = CI->getArgOperand(1);
259   Value *Size = CI->getArgOperand(2);
260   uint64_t Len;
261   annotateNonNullNoUndefBasedOnAccess(CI, 0);
262   if (isKnownNonZero(Size, DL))
263     annotateNonNullNoUndefBasedOnAccess(CI, 1);
264 
265   // We don't do anything if length is not constant.
266   ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
267   if (LengthArg) {
268     Len = LengthArg->getZExtValue();
269     // strncat(x, c, 0) -> x
270     if (!Len)
271       return Dst;
272   } else {
273     return nullptr;
274   }
275 
276   // See if we can get the length of the input string.
277   uint64_t SrcLen = GetStringLength(Src);
278   if (SrcLen) {
279     annotateDereferenceableBytes(CI, 1, SrcLen);
280     --SrcLen; // Unbias length.
281   } else {
282     return nullptr;
283   }
284 
285   // strncat(x, "", c) -> x
286   if (SrcLen == 0)
287     return Dst;
288 
289   // We don't optimize this case.
290   if (Len < SrcLen)
291     return nullptr;
292 
293   // strncat(x, s, c) -> strcat(x, s)
294   // s is constant so the strcat can be optimized further.
295   return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B));
296 }
297 
298 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) {
299   Function *Callee = CI->getCalledFunction();
300   FunctionType *FT = Callee->getFunctionType();
301   Value *SrcStr = CI->getArgOperand(0);
302   annotateNonNullNoUndefBasedOnAccess(CI, 0);
303 
304   // If the second operand is non-constant, see if we can compute the length
305   // of the input string and turn this into memchr.
306   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
307   if (!CharC) {
308     uint64_t Len = GetStringLength(SrcStr);
309     if (Len)
310       annotateDereferenceableBytes(CI, 0, Len);
311     else
312       return nullptr;
313     if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
314       return nullptr;
315 
316     return copyFlags(
317         *CI,
318         emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
319                    ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), B,
320                    DL, TLI));
321   }
322 
323   // Otherwise, the character is a constant, see if the first argument is
324   // a string literal.  If so, we can constant fold.
325   StringRef Str;
326   if (!getConstantStringInfo(SrcStr, Str)) {
327     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
328       if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
329         return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
330     return nullptr;
331   }
332 
333   // Compute the offset, make sure to handle the case when we're searching for
334   // zero (a weird way to spell strlen).
335   size_t I = (0xFF & CharC->getSExtValue()) == 0
336                  ? Str.size()
337                  : Str.find(CharC->getSExtValue());
338   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
339     return Constant::getNullValue(CI->getType());
340 
341   // strchr(s+n,c)  -> gep(s+n+i,c)
342   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
343 }
344 
345 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) {
346   Value *SrcStr = CI->getArgOperand(0);
347   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
348   annotateNonNullNoUndefBasedOnAccess(CI, 0);
349 
350   // Cannot fold anything if we're not looking for a constant.
351   if (!CharC)
352     return nullptr;
353 
354   StringRef Str;
355   if (!getConstantStringInfo(SrcStr, Str)) {
356     // strrchr(s, 0) -> strchr(s, 0)
357     if (CharC->isZero())
358       return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI));
359     return nullptr;
360   }
361 
362   // Compute the offset.
363   size_t I = (0xFF & CharC->getSExtValue()) == 0
364                  ? Str.size()
365                  : Str.rfind(CharC->getSExtValue());
366   if (I == StringRef::npos) // Didn't find the char. Return null.
367     return Constant::getNullValue(CI->getType());
368 
369   // strrchr(s+n,c) -> gep(s+n+i,c)
370   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
371 }
372 
373 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) {
374   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
375   if (Str1P == Str2P) // strcmp(x,x)  -> 0
376     return ConstantInt::get(CI->getType(), 0);
377 
378   StringRef Str1, Str2;
379   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
380   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
381 
382   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
383   if (HasStr1 && HasStr2)
384     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
385 
386   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
387     return B.CreateNeg(B.CreateZExt(
388         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
389 
390   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
391     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
392                         CI->getType());
393 
394   // strcmp(P, "x") -> memcmp(P, "x", 2)
395   uint64_t Len1 = GetStringLength(Str1P);
396   if (Len1)
397     annotateDereferenceableBytes(CI, 0, Len1);
398   uint64_t Len2 = GetStringLength(Str2P);
399   if (Len2)
400     annotateDereferenceableBytes(CI, 1, Len2);
401 
402   if (Len1 && Len2) {
403     return copyFlags(
404         *CI, emitMemCmp(Str1P, Str2P,
405                         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
406                                          std::min(Len1, Len2)),
407                         B, DL, TLI));
408   }
409 
410   // strcmp to memcmp
411   if (!HasStr1 && HasStr2) {
412     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
413       return copyFlags(
414           *CI,
415           emitMemCmp(Str1P, Str2P,
416                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
417                      B, DL, TLI));
418   } else if (HasStr1 && !HasStr2) {
419     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
420       return copyFlags(
421           *CI,
422           emitMemCmp(Str1P, Str2P,
423                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
424                      B, DL, TLI));
425   }
426 
427   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
428   return nullptr;
429 }
430 
431 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) {
432   Value *Str1P = CI->getArgOperand(0);
433   Value *Str2P = CI->getArgOperand(1);
434   Value *Size = CI->getArgOperand(2);
435   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
436     return ConstantInt::get(CI->getType(), 0);
437 
438   if (isKnownNonZero(Size, DL))
439     annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
440   // Get the length argument if it is constant.
441   uint64_t Length;
442   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
443     Length = LengthArg->getZExtValue();
444   else
445     return nullptr;
446 
447   if (Length == 0) // strncmp(x,y,0)   -> 0
448     return ConstantInt::get(CI->getType(), 0);
449 
450   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
451     return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI));
452 
453   StringRef Str1, Str2;
454   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
455   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
456 
457   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
458   if (HasStr1 && HasStr2) {
459     // Avoid truncating the 64-bit Length to 32 bits in ILP32.
460     StringRef SubStr1 = substr(Str1, Length);
461     StringRef SubStr2 = substr(Str2, Length);
462     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
463   }
464 
465   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
466     return B.CreateNeg(B.CreateZExt(
467         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
468 
469   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
470     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
471                         CI->getType());
472 
473   uint64_t Len1 = GetStringLength(Str1P);
474   if (Len1)
475     annotateDereferenceableBytes(CI, 0, Len1);
476   uint64_t Len2 = GetStringLength(Str2P);
477   if (Len2)
478     annotateDereferenceableBytes(CI, 1, Len2);
479 
480   // strncmp to memcmp
481   if (!HasStr1 && HasStr2) {
482     Len2 = std::min(Len2, Length);
483     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
484       return copyFlags(
485           *CI,
486           emitMemCmp(Str1P, Str2P,
487                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
488                      B, DL, TLI));
489   } else if (HasStr1 && !HasStr2) {
490     Len1 = std::min(Len1, Length);
491     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
492       return copyFlags(
493           *CI,
494           emitMemCmp(Str1P, Str2P,
495                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
496                      B, DL, TLI));
497   }
498 
499   return nullptr;
500 }
501 
502 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) {
503   Value *Src = CI->getArgOperand(0);
504   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
505   uint64_t SrcLen = GetStringLength(Src);
506   if (SrcLen && Size) {
507     annotateDereferenceableBytes(CI, 0, SrcLen);
508     if (SrcLen <= Size->getZExtValue() + 1)
509       return copyFlags(*CI, emitStrDup(Src, B, TLI));
510   }
511 
512   return nullptr;
513 }
514 
515 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) {
516   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
517   if (Dst == Src) // strcpy(x,x)  -> x
518     return Src;
519 
520   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
521   // See if we can get the length of the input string.
522   uint64_t Len = GetStringLength(Src);
523   if (Len)
524     annotateDereferenceableBytes(CI, 1, Len);
525   else
526     return nullptr;
527 
528   // We have enough information to now generate the memcpy call to do the
529   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
530   CallInst *NewCI =
531       B.CreateMemCpy(Dst, Align(1), Src, Align(1),
532                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
533   NewCI->setAttributes(CI->getAttributes());
534   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
535   copyFlags(*CI, NewCI);
536   return Dst;
537 }
538 
539 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) {
540   Function *Callee = CI->getCalledFunction();
541   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
542 
543   // stpcpy(d,s) -> strcpy(d,s) if the result is not used.
544   if (CI->use_empty())
545     return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
546 
547   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
548     Value *StrLen = emitStrLen(Src, B, DL, TLI);
549     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
550   }
551 
552   // See if we can get the length of the input string.
553   uint64_t Len = GetStringLength(Src);
554   if (Len)
555     annotateDereferenceableBytes(CI, 1, Len);
556   else
557     return nullptr;
558 
559   Type *PT = Callee->getFunctionType()->getParamType(0);
560   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
561   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
562                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
563 
564   // We have enough information to now generate the memcpy call to do the
565   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
566   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV);
567   NewCI->setAttributes(CI->getAttributes());
568   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
569   copyFlags(*CI, NewCI);
570   return DstEnd;
571 }
572 
573 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) {
574   Function *Callee = CI->getCalledFunction();
575   Value *Dst = CI->getArgOperand(0);
576   Value *Src = CI->getArgOperand(1);
577   Value *Size = CI->getArgOperand(2);
578   annotateNonNullNoUndefBasedOnAccess(CI, 0);
579   if (isKnownNonZero(Size, DL))
580     annotateNonNullNoUndefBasedOnAccess(CI, 1);
581 
582   uint64_t Len;
583   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
584     Len = LengthArg->getZExtValue();
585   else
586     return nullptr;
587 
588   // strncpy(x, y, 0) -> x
589   if (Len == 0)
590     return Dst;
591 
592   // See if we can get the length of the input string.
593   uint64_t SrcLen = GetStringLength(Src);
594   if (SrcLen) {
595     annotateDereferenceableBytes(CI, 1, SrcLen);
596     --SrcLen; // Unbias length.
597   } else {
598     return nullptr;
599   }
600 
601   if (SrcLen == 0) {
602     // strncpy(x, "", y) -> memset(x, '\0', y)
603     Align MemSetAlign =
604         CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne();
605     CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign);
606     AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0));
607     NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
608         CI->getContext(), 0, ArgAttrs));
609     copyFlags(*CI, NewCI);
610     return Dst;
611   }
612 
613   // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4)
614   if (Len > SrcLen + 1) {
615     if (Len <= 128) {
616       StringRef Str;
617       if (!getConstantStringInfo(Src, Str))
618         return nullptr;
619       std::string SrcStr = Str.str();
620       SrcStr.resize(Len, '\0');
621       Src = B.CreateGlobalString(SrcStr, "str");
622     } else {
623       return nullptr;
624     }
625   }
626 
627   Type *PT = Callee->getFunctionType()->getParamType(0);
628   // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
629   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
630                                    ConstantInt::get(DL.getIntPtrType(PT), Len));
631   NewCI->setAttributes(CI->getAttributes());
632   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
633   copyFlags(*CI, NewCI);
634   return Dst;
635 }
636 
637 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B,
638                                                unsigned CharSize,
639                                                Value *Bound) {
640   Value *Src = CI->getArgOperand(0);
641   Type *CharTy = B.getIntNTy(CharSize);
642 
643   if (isOnlyUsedInZeroEqualityComparison(CI) &&
644       (!Bound || isKnownNonZero(Bound, DL))) {
645     // Fold strlen:
646     //   strlen(x) != 0 --> *x != 0
647     //   strlen(x) == 0 --> *x == 0
648     // and likewise strnlen with constant N > 0:
649     //   strnlen(x, N) != 0 --> *x != 0
650     //   strnlen(x, N) == 0 --> *x == 0
651     return B.CreateZExt(B.CreateLoad(CharTy, Src, "char0"),
652                         CI->getType());
653   }
654 
655   if (Bound) {
656     if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) {
657       if (BoundCst->isZero())
658         // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise.
659         return ConstantInt::get(CI->getType(), 0);
660 
661       if (BoundCst->isOne()) {
662         // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s.
663         Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0");
664         Value *ZeroChar = ConstantInt::get(CharTy, 0);
665         Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp");
666         return B.CreateZExt(Cmp, CI->getType());
667       }
668     }
669   }
670 
671   if (uint64_t Len = GetStringLength(Src, CharSize)) {
672     Value *LenC = ConstantInt::get(CI->getType(), Len - 1);
673     // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2
674     // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound.
675     if (Bound)
676       return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound);
677     return LenC;
678   }
679 
680   if (Bound)
681     // Punt for strnlen for now.
682     return nullptr;
683 
684   // If s is a constant pointer pointing to a string literal, we can fold
685   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
686   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
687   // We only try to simplify strlen when the pointer s points to an array
688   // of i8. Otherwise, we would need to scale the offset x before doing the
689   // subtraction. This will make the optimization more complex, and it's not
690   // very useful because calling strlen for a pointer of other types is
691   // very uncommon.
692   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
693     if (!isGEPBasedOnPointerToString(GEP, CharSize))
694       return nullptr;
695 
696     ConstantDataArraySlice Slice;
697     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
698       uint64_t NullTermIdx;
699       if (Slice.Array == nullptr) {
700         NullTermIdx = 0;
701       } else {
702         NullTermIdx = ~((uint64_t)0);
703         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
704           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
705             NullTermIdx = I;
706             break;
707           }
708         }
709         // If the string does not have '\0', leave it to strlen to compute
710         // its length.
711         if (NullTermIdx == ~((uint64_t)0))
712           return nullptr;
713       }
714 
715       Value *Offset = GEP->getOperand(2);
716       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
717       uint64_t ArrSize =
718              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
719 
720       // If Offset is not provably in the range [0, NullTermIdx], we can still
721       // optimize if we can prove that the program has undefined behavior when
722       // Offset is outside that range. That is the case when GEP->getOperand(0)
723       // is a pointer to an object whose memory extent is NullTermIdx+1.
724       if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) ||
725           (isa<GlobalVariable>(GEP->getOperand(0)) &&
726            NullTermIdx == ArrSize - 1)) {
727         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
728         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
729                            Offset);
730       }
731     }
732   }
733 
734   // strlen(x?"foo":"bars") --> x ? 3 : 4
735   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
736     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
737     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
738     if (LenTrue && LenFalse) {
739       ORE.emit([&]() {
740         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
741                << "folded strlen(select) to select of constants";
742       });
743       return B.CreateSelect(SI->getCondition(),
744                             ConstantInt::get(CI->getType(), LenTrue - 1),
745                             ConstantInt::get(CI->getType(), LenFalse - 1));
746     }
747   }
748 
749   return nullptr;
750 }
751 
752 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) {
753   if (Value *V = optimizeStringLength(CI, B, 8))
754     return V;
755   annotateNonNullNoUndefBasedOnAccess(CI, 0);
756   return nullptr;
757 }
758 
759 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) {
760   Value *Bound = CI->getArgOperand(1);
761   if (Value *V = optimizeStringLength(CI, B, 8, Bound))
762     return V;
763 
764   if (isKnownNonZero(Bound, DL))
765     annotateNonNullNoUndefBasedOnAccess(CI, 0);
766   return nullptr;
767 }
768 
769 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) {
770   Module &M = *CI->getModule();
771   unsigned WCharSize = TLI->getWCharSize(M) * 8;
772   // We cannot perform this optimization without wchar_size metadata.
773   if (WCharSize == 0)
774     return nullptr;
775 
776   return optimizeStringLength(CI, B, WCharSize);
777 }
778 
779 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) {
780   StringRef S1, S2;
781   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
782   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
783 
784   // strpbrk(s, "") -> nullptr
785   // strpbrk("", s) -> nullptr
786   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
787     return Constant::getNullValue(CI->getType());
788 
789   // Constant folding.
790   if (HasS1 && HasS2) {
791     size_t I = S1.find_first_of(S2);
792     if (I == StringRef::npos) // No match.
793       return Constant::getNullValue(CI->getType());
794 
795     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
796                        "strpbrk");
797   }
798 
799   // strpbrk(s, "a") -> strchr(s, 'a')
800   if (HasS2 && S2.size() == 1)
801     return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI));
802 
803   return nullptr;
804 }
805 
806 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) {
807   Value *EndPtr = CI->getArgOperand(1);
808   if (isa<ConstantPointerNull>(EndPtr)) {
809     // With a null EndPtr, this function won't capture the main argument.
810     // It would be readonly too, except that it still may write to errno.
811     CI->addParamAttr(0, Attribute::NoCapture);
812   }
813 
814   return nullptr;
815 }
816 
817 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) {
818   StringRef S1, S2;
819   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
820   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
821 
822   // strspn(s, "") -> 0
823   // strspn("", s) -> 0
824   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
825     return Constant::getNullValue(CI->getType());
826 
827   // Constant folding.
828   if (HasS1 && HasS2) {
829     size_t Pos = S1.find_first_not_of(S2);
830     if (Pos == StringRef::npos)
831       Pos = S1.size();
832     return ConstantInt::get(CI->getType(), Pos);
833   }
834 
835   return nullptr;
836 }
837 
838 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) {
839   StringRef S1, S2;
840   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
841   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
842 
843   // strcspn("", s) -> 0
844   if (HasS1 && S1.empty())
845     return Constant::getNullValue(CI->getType());
846 
847   // Constant folding.
848   if (HasS1 && HasS2) {
849     size_t Pos = S1.find_first_of(S2);
850     if (Pos == StringRef::npos)
851       Pos = S1.size();
852     return ConstantInt::get(CI->getType(), Pos);
853   }
854 
855   // strcspn(s, "") -> strlen(s)
856   if (HasS2 && S2.empty())
857     return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI));
858 
859   return nullptr;
860 }
861 
862 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) {
863   // fold strstr(x, x) -> x.
864   if (CI->getArgOperand(0) == CI->getArgOperand(1))
865     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
866 
867   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
868   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
869     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
870     if (!StrLen)
871       return nullptr;
872     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
873                                  StrLen, B, DL, TLI);
874     if (!StrNCmp)
875       return nullptr;
876     for (User *U : llvm::make_early_inc_range(CI->users())) {
877       ICmpInst *Old = cast<ICmpInst>(U);
878       Value *Cmp =
879           B.CreateICmp(Old->getPredicate(), StrNCmp,
880                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
881       replaceAllUsesWith(Old, Cmp);
882     }
883     return CI;
884   }
885 
886   // See if either input string is a constant string.
887   StringRef SearchStr, ToFindStr;
888   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
889   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
890 
891   // fold strstr(x, "") -> x.
892   if (HasStr2 && ToFindStr.empty())
893     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
894 
895   // If both strings are known, constant fold it.
896   if (HasStr1 && HasStr2) {
897     size_t Offset = SearchStr.find(ToFindStr);
898 
899     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
900       return Constant::getNullValue(CI->getType());
901 
902     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
903     Value *Result = castToCStr(CI->getArgOperand(0), B);
904     Result =
905         B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
906     return B.CreateBitCast(Result, CI->getType());
907   }
908 
909   // fold strstr(x, "y") -> strchr(x, 'y').
910   if (HasStr2 && ToFindStr.size() == 1) {
911     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
912     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
913   }
914 
915   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
916   return nullptr;
917 }
918 
919 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) {
920   Value *SrcStr = CI->getArgOperand(0);
921   Value *Size = CI->getArgOperand(2);
922   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
923   Value *CharVal = CI->getArgOperand(1);
924   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
925   Value *NullPtr = Constant::getNullValue(CI->getType());
926 
927   if (LenC) {
928     if (LenC->isZero())
929       // Fold memrchr(x, y, 0) --> null.
930       return NullPtr;
931 
932     if (LenC->isOne()) {
933       // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y,
934       // constant or otherwise.
935       Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0");
936       // Slice off the character's high end bits.
937       CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
938       Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp");
939       return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel");
940     }
941   }
942 
943   StringRef Str;
944   if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
945     return nullptr;
946 
947   uint64_t EndOff = UINT64_MAX;
948   if (LenC) {
949     EndOff = LenC->getZExtValue();
950     if (Str.size() < EndOff)
951       // Punt out-of-bounds accesses to sanitizers and/or libc.
952       return nullptr;
953   }
954 
955   if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) {
956     // Fold memrchr(S, C, N) for a constant C.
957     size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff);
958     if (Pos == StringRef::npos)
959       // When the character is not in the source array fold the result
960       // to null regardless of Size.
961       return NullPtr;
962 
963     if (LenC)
964       // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos.
965       return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos));
966 
967     if (Str.find(CharC->getZExtValue(), Pos) == StringRef::npos) {
968       // When there is just a single occurrence of C in S, fold
969       //   memrchr(s, c, N) --> N <= Pos ? null : s + Pos
970       // for nonconstant N.
971       Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(),
972 							  Pos),
973 				   "memrchr.cmp");
974       Value *SrcPlus = B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos),
975 				   "memrchr.ptr_plus");
976       return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel");
977     }
978   }
979 
980   // Truncate the string to search at most EndOff characters.
981   Str = Str.substr(0, EndOff);
982   if (Str.find_first_not_of(Str[0]) != StringRef::npos)
983     return nullptr;
984 
985   // If the source array consists of all equal characters, then for any
986   // C and N (whether in bounds or not), fold memrchr(S, C, N) to
987   //   N != 0 && *S == C ? S + N - 1 : null
988   Type *SizeTy = Size->getType();
989   Type *Int8Ty = B.getInt8Ty();
990   Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
991   // Slice off the sought character's high end bits.
992   CharVal = B.CreateTrunc(CharVal, Int8Ty);
993   Value *CEqS0 = B.CreateICmpEQ(ConstantInt::get(Int8Ty, Str[0]), CharVal);
994   Value *And = B.CreateLogicalAnd(NNeZ, CEqS0);
995   Value *SizeM1 = B.CreateSub(Size, ConstantInt::get(SizeTy, 1));
996   Value *SrcPlus = B.CreateGEP(Int8Ty, SrcStr, SizeM1, "memrchr.ptr_plus");
997   return B.CreateSelect(And, SrcPlus, NullPtr, "memrchr.sel");
998 }
999 
1000 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) {
1001   Value *SrcStr = CI->getArgOperand(0);
1002   Value *Size = CI->getArgOperand(2);
1003   if (isKnownNonZero(Size, DL))
1004     annotateNonNullNoUndefBasedOnAccess(CI, 0);
1005 
1006   Value *CharVal = CI->getArgOperand(1);
1007   ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
1008   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1009   Value *NullPtr = Constant::getNullValue(CI->getType());
1010 
1011   // memchr(x, y, 0) -> null
1012   if (LenC) {
1013     if (LenC->isZero())
1014       return NullPtr;
1015 
1016     if (LenC->isOne()) {
1017       // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y,
1018       // constant or otherwise.
1019       Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0");
1020       // Slice off the character's high end bits.
1021       CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
1022       Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp");
1023       return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel");
1024     }
1025   }
1026 
1027   StringRef Str;
1028   if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
1029     return nullptr;
1030 
1031   if (CharC) {
1032     size_t Pos = Str.find(CharC->getZExtValue());
1033     if (Pos == StringRef::npos)
1034       // When the character is not in the source array fold the result
1035       // to null regardless of Size.
1036       return NullPtr;
1037 
1038     // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos
1039     // When the constant Size is less than or equal to the character
1040     // position also fold the result to null.
1041     Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
1042                                  "memchr.cmp");
1043     Value *SrcPlus =
1044         B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), "memchr.ptr");
1045     return B.CreateSelect(Cmp, NullPtr, SrcPlus);
1046   }
1047 
1048   if (LenC)
1049     Str = substr(Str, LenC->getZExtValue());
1050 
1051   size_t Pos = Str.find_first_not_of(Str[0]);
1052   if (Pos == StringRef::npos
1053       || Str.find_first_not_of(Str[Pos], Pos) == StringRef::npos) {
1054     // If the source array consists of at most two consecutive sequences
1055     // of the same characters, then for any C and N (whether in bounds or
1056     // not), fold memchr(S, C, N) to
1057     //   N != 0 && *S == C ? S : null
1058     // or for the two sequences to:
1059     //   N != 0 && *S == C ? S : (N > Pos && S[Pos] == C ? S + Pos : null)
1060     //   ^Sel2                   ^Sel1 are denoted above.
1061     // The latter makes it also possible to fold strchr() calls with strings
1062     // of the same characters.
1063     Type *SizeTy = Size->getType();
1064     Type *Int8Ty = B.getInt8Ty();
1065 
1066     // Slice off the sought character's high end bits.
1067     CharVal = B.CreateTrunc(CharVal, Int8Ty);
1068 
1069     Value *Sel1 = NullPtr;
1070     if (Pos != StringRef::npos) {
1071       // Handle two consecutive sequences of the same characters.
1072       Value *PosVal = ConstantInt::get(SizeTy, Pos);
1073       Value *StrPos = ConstantInt::get(Int8Ty, Str[Pos]);
1074       Value *CEqSPos = B.CreateICmpEQ(CharVal, StrPos);
1075       Value *NGtPos = B.CreateICmp(ICmpInst::ICMP_UGT, Size, PosVal);
1076       Value *And = B.CreateAnd(CEqSPos, NGtPos);
1077       Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, PosVal);
1078       Sel1 = B.CreateSelect(And, SrcPlus, NullPtr, "memchr.sel1");
1079     }
1080 
1081     Value *Str0 = ConstantInt::get(Int8Ty, Str[0]);
1082     Value *CEqS0 = B.CreateICmpEQ(Str0, CharVal);
1083     Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
1084     Value *And = B.CreateAnd(NNeZ, CEqS0);
1085     return B.CreateSelect(And, SrcStr, Sel1, "memchr.sel2");
1086   }
1087 
1088   if (!LenC)
1089     // From now on we need a constant length and constant array.
1090     return nullptr;
1091 
1092   // If the char is variable but the input str and length are not we can turn
1093   // this memchr call into a simple bit field test. Of course this only works
1094   // when the return value is only checked against null.
1095   //
1096   // It would be really nice to reuse switch lowering here but we can't change
1097   // the CFG at this point.
1098   //
1099   // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
1100   // != 0
1101   //   after bounds check.
1102   if (Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI))
1103     return nullptr;
1104 
1105   unsigned char Max =
1106       *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
1107                         reinterpret_cast<const unsigned char *>(Str.end()));
1108 
1109   // Make sure the bit field we're about to create fits in a register on the
1110   // target.
1111   // FIXME: On a 64 bit architecture this prevents us from using the
1112   // interesting range of alpha ascii chars. We could do better by emitting
1113   // two bitfields or shifting the range by 64 if no lower chars are used.
1114   if (!DL.fitsInLegalInteger(Max + 1))
1115     return nullptr;
1116 
1117   // For the bit field use a power-of-2 type with at least 8 bits to avoid
1118   // creating unnecessary illegal types.
1119   unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
1120 
1121   // Now build the bit field.
1122   APInt Bitfield(Width, 0);
1123   for (char C : Str)
1124     Bitfield.setBit((unsigned char)C);
1125   Value *BitfieldC = B.getInt(Bitfield);
1126 
1127   // Adjust width of "C" to the bitfield width, then mask off the high bits.
1128   Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType());
1129   C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
1130 
1131   // First check that the bit field access is within bounds.
1132   Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
1133                                "memchr.bounds");
1134 
1135   // Create code that checks if the given bit is set in the field.
1136   Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
1137   Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
1138 
1139   // Finally merge both checks and cast to pointer type. The inttoptr
1140   // implicitly zexts the i1 to intptr type.
1141   return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"),
1142                           CI->getType());
1143 }
1144 
1145 // Optimize a memcmp call CI with constant arrays LHS and RHS and nonconstant
1146 // Size.
1147 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS,
1148                                     Value *Size, IRBuilderBase &B,
1149                                     const DataLayout &DL) {
1150   if (LHS == RHS) // memcmp(s,s,x) -> 0
1151     return Constant::getNullValue(CI->getType());
1152 
1153   StringRef LStr, RStr;
1154   if (!getConstantStringInfo(LHS, LStr, 0, /*TrimAtNul=*/false) ||
1155       !getConstantStringInfo(RHS, RStr, 0, /*TrimAtNul=*/false))
1156     return nullptr;
1157 
1158   // If the contents of both constant arrays are known, fold a call to
1159   // memcmp(A, B, N) to
1160   //   N <= Pos ? 0 : (A < B ? -1 : B < A ? +1 : 0)
1161   // where Pos is the first mismatch between A and B, determined below.
1162 
1163   Value *Zero = ConstantInt::get(CI->getType(), 0);
1164 
1165   uint64_t MinSize = std::min(LStr.size(), RStr.size());
1166   for (uint64_t Pos = 0; Pos < MinSize; ++Pos) {
1167     if (LStr[Pos] != RStr[Pos]) {
1168       Value *MaxSize = ConstantInt::get(Size->getType(), Pos);
1169       Value *Cmp = B.CreateICmp(ICmpInst::ICMP_ULE, Size, MaxSize);
1170       typedef unsigned char UChar;
1171       int IRes = UChar(LStr[Pos]) < UChar(RStr[Pos]) ? -1 : 1;
1172       Value *Res = ConstantInt::get(CI->getType(), IRes);
1173       return B.CreateSelect(Cmp, Zero, Res);
1174     }
1175   }
1176 
1177   // One array is a leading part of the other of equal or greater size.
1178   // Fold the result to zero.  Size is assumed to be in bounds, since
1179   // otherwise the call would be undefined.
1180   return Zero;
1181 }
1182 
1183 // Optimize a memcmp call CI with constant size Len.
1184 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
1185                                          uint64_t Len, IRBuilderBase &B,
1186                                          const DataLayout &DL) {
1187   if (Len == 0) // memcmp(s1,s2,0) -> 0
1188     return Constant::getNullValue(CI->getType());
1189 
1190   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
1191   if (Len == 1) {
1192     Value *LHSV =
1193         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
1194                      CI->getType(), "lhsv");
1195     Value *RHSV =
1196         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
1197                      CI->getType(), "rhsv");
1198     return B.CreateSub(LHSV, RHSV, "chardiff");
1199   }
1200 
1201   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
1202   // TODO: The case where both inputs are constants does not need to be limited
1203   // to legal integers or equality comparison. See block below this.
1204   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
1205     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
1206     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
1207 
1208     // First, see if we can fold either argument to a constant.
1209     Value *LHSV = nullptr;
1210     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
1211       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
1212       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
1213     }
1214     Value *RHSV = nullptr;
1215     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
1216       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
1217       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
1218     }
1219 
1220     // Don't generate unaligned loads. If either source is constant data,
1221     // alignment doesn't matter for that source because there is no load.
1222     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
1223         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
1224       if (!LHSV) {
1225         Type *LHSPtrTy =
1226             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
1227         LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
1228       }
1229       if (!RHSV) {
1230         Type *RHSPtrTy =
1231             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
1232         RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
1233       }
1234       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1235     }
1236   }
1237 
1238   return nullptr;
1239 }
1240 
1241 // Most simplifications for memcmp also apply to bcmp.
1242 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1243                                                    IRBuilderBase &B) {
1244   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1245   Value *Size = CI->getArgOperand(2);
1246 
1247   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1248 
1249   if (Value *Res = optimizeMemCmpVarSize(CI, LHS, RHS, Size, B, DL))
1250     return Res;
1251 
1252   // Handle constant Size.
1253   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1254   if (!LenC)
1255     return nullptr;
1256 
1257   return optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL);
1258 }
1259 
1260 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
1261   Module *M = CI->getModule();
1262   if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1263     return V;
1264 
1265   // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1266   // bcmp can be more efficient than memcmp because it only has to know that
1267   // there is a difference, not how different one is to the other.
1268   if (isLibFuncEmittable(M, TLI, LibFunc_bcmp) &&
1269       isOnlyUsedInZeroEqualityComparison(CI)) {
1270     Value *LHS = CI->getArgOperand(0);
1271     Value *RHS = CI->getArgOperand(1);
1272     Value *Size = CI->getArgOperand(2);
1273     return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI));
1274   }
1275 
1276   return nullptr;
1277 }
1278 
1279 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) {
1280   return optimizeMemCmpBCmpCommon(CI, B);
1281 }
1282 
1283 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) {
1284   Value *Size = CI->getArgOperand(2);
1285   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1286   if (isa<IntrinsicInst>(CI))
1287     return nullptr;
1288 
1289   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1290   CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1),
1291                                    CI->getArgOperand(1), Align(1), Size);
1292   NewCI->setAttributes(CI->getAttributes());
1293   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1294   copyFlags(*CI, NewCI);
1295   return CI->getArgOperand(0);
1296 }
1297 
1298 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) {
1299   Value *Dst = CI->getArgOperand(0);
1300   Value *Src = CI->getArgOperand(1);
1301   ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1302   ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1303   StringRef SrcStr;
1304   if (CI->use_empty() && Dst == Src)
1305     return Dst;
1306   // memccpy(d, s, c, 0) -> nullptr
1307   if (N) {
1308     if (N->isNullValue())
1309       return Constant::getNullValue(CI->getType());
1310     if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0,
1311                                /*TrimAtNul=*/false) ||
1312         !StopChar)
1313       return nullptr;
1314   } else {
1315     return nullptr;
1316   }
1317 
1318   // Wrap arg 'c' of type int to char
1319   size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1320   if (Pos == StringRef::npos) {
1321     if (N->getZExtValue() <= SrcStr.size()) {
1322       copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1),
1323                                     CI->getArgOperand(3)));
1324       return Constant::getNullValue(CI->getType());
1325     }
1326     return nullptr;
1327   }
1328 
1329   Value *NewN =
1330       ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1331   // memccpy -> llvm.memcpy
1332   copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN));
1333   return Pos + 1 <= N->getZExtValue()
1334              ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1335              : Constant::getNullValue(CI->getType());
1336 }
1337 
1338 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) {
1339   Value *Dst = CI->getArgOperand(0);
1340   Value *N = CI->getArgOperand(2);
1341   // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1342   CallInst *NewCI =
1343       B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N);
1344   // Propagate attributes, but memcpy has no return value, so make sure that
1345   // any return attributes are compliant.
1346   // TODO: Attach return value attributes to the 1st operand to preserve them?
1347   NewCI->setAttributes(CI->getAttributes());
1348   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1349   copyFlags(*CI, NewCI);
1350   return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1351 }
1352 
1353 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) {
1354   Value *Size = CI->getArgOperand(2);
1355   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1356   if (isa<IntrinsicInst>(CI))
1357     return nullptr;
1358 
1359   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1360   CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1),
1361                                     CI->getArgOperand(1), Align(1), Size);
1362   NewCI->setAttributes(CI->getAttributes());
1363   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1364   copyFlags(*CI, NewCI);
1365   return CI->getArgOperand(0);
1366 }
1367 
1368 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) {
1369   Value *Size = CI->getArgOperand(2);
1370   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1371   if (isa<IntrinsicInst>(CI))
1372     return nullptr;
1373 
1374   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1375   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1376   CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1));
1377   NewCI->setAttributes(CI->getAttributes());
1378   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
1379   copyFlags(*CI, NewCI);
1380   return CI->getArgOperand(0);
1381 }
1382 
1383 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) {
1384   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1385     return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI));
1386 
1387   return nullptr;
1388 }
1389 
1390 //===----------------------------------------------------------------------===//
1391 // Math Library Optimizations
1392 //===----------------------------------------------------------------------===//
1393 
1394 // Replace a libcall \p CI with a call to intrinsic \p IID
1395 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B,
1396                                Intrinsic::ID IID) {
1397   // Propagate fast-math flags from the existing call to the new call.
1398   IRBuilderBase::FastMathFlagGuard Guard(B);
1399   B.setFastMathFlags(CI->getFastMathFlags());
1400 
1401   Module *M = CI->getModule();
1402   Value *V = CI->getArgOperand(0);
1403   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1404   CallInst *NewCall = B.CreateCall(F, V);
1405   NewCall->takeName(CI);
1406   return copyFlags(*CI, NewCall);
1407 }
1408 
1409 /// Return a variant of Val with float type.
1410 /// Currently this works in two cases: If Val is an FPExtension of a float
1411 /// value to something bigger, simply return the operand.
1412 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1413 /// loss of precision do so.
1414 static Value *valueHasFloatPrecision(Value *Val) {
1415   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1416     Value *Op = Cast->getOperand(0);
1417     if (Op->getType()->isFloatTy())
1418       return Op;
1419   }
1420   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1421     APFloat F = Const->getValueAPF();
1422     bool losesInfo;
1423     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1424                     &losesInfo);
1425     if (!losesInfo)
1426       return ConstantFP::get(Const->getContext(), F);
1427   }
1428   return nullptr;
1429 }
1430 
1431 /// Shrink double -> float functions.
1432 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
1433                                bool isBinary, const TargetLibraryInfo *TLI,
1434                                bool isPrecise = false) {
1435   Function *CalleeFn = CI->getCalledFunction();
1436   if (!CI->getType()->isDoubleTy() || !CalleeFn)
1437     return nullptr;
1438 
1439   // If not all the uses of the function are converted to float, then bail out.
1440   // This matters if the precision of the result is more important than the
1441   // precision of the arguments.
1442   if (isPrecise)
1443     for (User *U : CI->users()) {
1444       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1445       if (!Cast || !Cast->getType()->isFloatTy())
1446         return nullptr;
1447     }
1448 
1449   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1450   Value *V[2];
1451   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1452   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1453   if (!V[0] || (isBinary && !V[1]))
1454     return nullptr;
1455 
1456   // If call isn't an intrinsic, check that it isn't within a function with the
1457   // same name as the float version of this call, otherwise the result is an
1458   // infinite loop.  For example, from MinGW-w64:
1459   //
1460   // float expf(float val) { return (float) exp((double) val); }
1461   StringRef CalleeName = CalleeFn->getName();
1462   bool IsIntrinsic = CalleeFn->isIntrinsic();
1463   if (!IsIntrinsic) {
1464     StringRef CallerName = CI->getFunction()->getName();
1465     if (!CallerName.empty() && CallerName.back() == 'f' &&
1466         CallerName.size() == (CalleeName.size() + 1) &&
1467         CallerName.startswith(CalleeName))
1468       return nullptr;
1469   }
1470 
1471   // Propagate the math semantics from the current function to the new function.
1472   IRBuilderBase::FastMathFlagGuard Guard(B);
1473   B.setFastMathFlags(CI->getFastMathFlags());
1474 
1475   // g((double) float) -> (double) gf(float)
1476   Value *R;
1477   if (IsIntrinsic) {
1478     Module *M = CI->getModule();
1479     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1480     Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1481     R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1482   } else {
1483     AttributeList CalleeAttrs = CalleeFn->getAttributes();
1484     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B,
1485                                          CalleeAttrs)
1486                  : emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs);
1487   }
1488   return B.CreateFPExt(R, B.getDoubleTy());
1489 }
1490 
1491 /// Shrink double -> float for unary functions.
1492 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1493                                     const TargetLibraryInfo *TLI,
1494                                     bool isPrecise = false) {
1495   return optimizeDoubleFP(CI, B, false, TLI, isPrecise);
1496 }
1497 
1498 /// Shrink double -> float for binary functions.
1499 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1500                                      const TargetLibraryInfo *TLI,
1501                                      bool isPrecise = false) {
1502   return optimizeDoubleFP(CI, B, true, TLI, isPrecise);
1503 }
1504 
1505 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1506 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) {
1507   if (!CI->isFast())
1508     return nullptr;
1509 
1510   // Propagate fast-math flags from the existing call to new instructions.
1511   IRBuilderBase::FastMathFlagGuard Guard(B);
1512   B.setFastMathFlags(CI->getFastMathFlags());
1513 
1514   Value *Real, *Imag;
1515   if (CI->arg_size() == 1) {
1516     Value *Op = CI->getArgOperand(0);
1517     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1518     Real = B.CreateExtractValue(Op, 0, "real");
1519     Imag = B.CreateExtractValue(Op, 1, "imag");
1520   } else {
1521     assert(CI->arg_size() == 2 && "Unexpected signature for cabs!");
1522     Real = CI->getArgOperand(0);
1523     Imag = CI->getArgOperand(1);
1524   }
1525 
1526   Value *RealReal = B.CreateFMul(Real, Real);
1527   Value *ImagImag = B.CreateFMul(Imag, Imag);
1528 
1529   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1530                                               CI->getType());
1531   return copyFlags(
1532       *CI, B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"));
1533 }
1534 
1535 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1536                                       IRBuilderBase &B) {
1537   if (!isa<FPMathOperator>(Call))
1538     return nullptr;
1539 
1540   IRBuilderBase::FastMathFlagGuard Guard(B);
1541   B.setFastMathFlags(Call->getFastMathFlags());
1542 
1543   // TODO: Can this be shared to also handle LLVM intrinsics?
1544   Value *X;
1545   switch (Func) {
1546   case LibFunc_sin:
1547   case LibFunc_sinf:
1548   case LibFunc_sinl:
1549   case LibFunc_tan:
1550   case LibFunc_tanf:
1551   case LibFunc_tanl:
1552     // sin(-X) --> -sin(X)
1553     // tan(-X) --> -tan(X)
1554     if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1555       return B.CreateFNeg(
1556           copyFlags(*Call, B.CreateCall(Call->getCalledFunction(), X)));
1557     break;
1558   case LibFunc_cos:
1559   case LibFunc_cosf:
1560   case LibFunc_cosl:
1561     // cos(-X) --> cos(X)
1562     if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1563       return copyFlags(*Call,
1564                        B.CreateCall(Call->getCalledFunction(), X, "cos"));
1565     break;
1566   default:
1567     break;
1568   }
1569   return nullptr;
1570 }
1571 
1572 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) {
1573   // Multiplications calculated using Addition Chains.
1574   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1575 
1576   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1577 
1578   if (InnerChain[Exp])
1579     return InnerChain[Exp];
1580 
1581   static const unsigned AddChain[33][2] = {
1582       {0, 0}, // Unused.
1583       {0, 0}, // Unused (base case = pow1).
1584       {1, 1}, // Unused (pre-computed).
1585       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1586       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1587       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1588       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1589       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1590   };
1591 
1592   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1593                                  getPow(InnerChain, AddChain[Exp][1], B));
1594   return InnerChain[Exp];
1595 }
1596 
1597 // Return a properly extended integer (DstWidth bits wide) if the operation is
1598 // an itofp.
1599 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) {
1600   if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
1601     Value *Op = cast<Instruction>(I2F)->getOperand(0);
1602     // Make sure that the exponent fits inside an "int" of size DstWidth,
1603     // thus avoiding any range issues that FP has not.
1604     unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1605     if (BitWidth < DstWidth ||
1606         (BitWidth == DstWidth && isa<SIToFPInst>(I2F)))
1607       return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth))
1608                                   : B.CreateZExt(Op, B.getIntNTy(DstWidth));
1609   }
1610 
1611   return nullptr;
1612 }
1613 
1614 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1615 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1616 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1617 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
1618   Module *M = Pow->getModule();
1619   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1620   AttributeList Attrs; // Attributes are only meaningful on the original call
1621   Module *Mod = Pow->getModule();
1622   Type *Ty = Pow->getType();
1623   bool Ignored;
1624 
1625   // Evaluate special cases related to a nested function as the base.
1626 
1627   // pow(exp(x), y) -> exp(x * y)
1628   // pow(exp2(x), y) -> exp2(x * y)
1629   // If exp{,2}() is used only once, it is better to fold two transcendental
1630   // math functions into one.  If used again, exp{,2}() would still have to be
1631   // called with the original argument, then keep both original transcendental
1632   // functions.  However, this transformation is only safe with fully relaxed
1633   // math semantics, since, besides rounding differences, it changes overflow
1634   // and underflow behavior quite dramatically.  For example:
1635   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1636   // Whereas:
1637   //   exp(1000 * 0.001) = exp(1)
1638   // TODO: Loosen the requirement for fully relaxed math semantics.
1639   // TODO: Handle exp10() when more targets have it available.
1640   CallInst *BaseFn = dyn_cast<CallInst>(Base);
1641   if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1642     LibFunc LibFn;
1643 
1644     Function *CalleeFn = BaseFn->getCalledFunction();
1645     if (CalleeFn &&
1646         TLI->getLibFunc(CalleeFn->getName(), LibFn) &&
1647         isLibFuncEmittable(M, TLI, LibFn)) {
1648       StringRef ExpName;
1649       Intrinsic::ID ID;
1650       Value *ExpFn;
1651       LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
1652 
1653       switch (LibFn) {
1654       default:
1655         return nullptr;
1656       case LibFunc_expf:  case LibFunc_exp:  case LibFunc_expl:
1657         ExpName = TLI->getName(LibFunc_exp);
1658         ID = Intrinsic::exp;
1659         LibFnFloat = LibFunc_expf;
1660         LibFnDouble = LibFunc_exp;
1661         LibFnLongDouble = LibFunc_expl;
1662         break;
1663       case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1664         ExpName = TLI->getName(LibFunc_exp2);
1665         ID = Intrinsic::exp2;
1666         LibFnFloat = LibFunc_exp2f;
1667         LibFnDouble = LibFunc_exp2;
1668         LibFnLongDouble = LibFunc_exp2l;
1669         break;
1670       }
1671 
1672       // Create new exp{,2}() with the product as its argument.
1673       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1674       ExpFn = BaseFn->doesNotAccessMemory()
1675               ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1676                              FMul, ExpName)
1677               : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1678                                      LibFnLongDouble, B,
1679                                      BaseFn->getAttributes());
1680 
1681       // Since the new exp{,2}() is different from the original one, dead code
1682       // elimination cannot be trusted to remove it, since it may have side
1683       // effects (e.g., errno).  When the only consumer for the original
1684       // exp{,2}() is pow(), then it has to be explicitly erased.
1685       substituteInParent(BaseFn, ExpFn);
1686       return ExpFn;
1687     }
1688   }
1689 
1690   // Evaluate special cases related to a constant base.
1691 
1692   const APFloat *BaseF;
1693   if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1694     return nullptr;
1695 
1696   // pow(2.0, itofp(x)) -> ldexp(1.0, x)
1697   if (match(Base, m_SpecificFP(2.0)) &&
1698       (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
1699       hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1700     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
1701       return copyFlags(*Pow,
1702                        emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI,
1703                                              TLI, LibFunc_ldexp, LibFunc_ldexpf,
1704                                              LibFunc_ldexpl, B, Attrs));
1705   }
1706 
1707   // pow(2.0 ** n, x) -> exp2(n * x)
1708   if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1709     APFloat BaseR = APFloat(1.0);
1710     BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1711     BaseR = BaseR / *BaseF;
1712     bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
1713     const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1714     APSInt NI(64, false);
1715     if ((IsInteger || IsReciprocal) &&
1716         NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
1717             APFloat::opOK &&
1718         NI > 1 && NI.isPowerOf2()) {
1719       double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1720       Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1721       if (Pow->doesNotAccessMemory())
1722         return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
1723                                                 Mod, Intrinsic::exp2, Ty),
1724                                             FMul, "exp2"));
1725       else
1726         return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
1727                                                     LibFunc_exp2f,
1728                                                     LibFunc_exp2l, B, Attrs));
1729     }
1730   }
1731 
1732   // pow(10.0, x) -> exp10(x)
1733   // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1734   if (match(Base, m_SpecificFP(10.0)) &&
1735       hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1736     return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10,
1737                                                 LibFunc_exp10f, LibFunc_exp10l,
1738                                                 B, Attrs));
1739 
1740   // pow(x, y) -> exp2(log2(x) * y)
1741   if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() &&
1742       !BaseF->isNegative()) {
1743     // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
1744     // Luckily optimizePow has already handled the x == 1 case.
1745     assert(!match(Base, m_FPOne()) &&
1746            "pow(1.0, y) should have been simplified earlier!");
1747 
1748     Value *Log = nullptr;
1749     if (Ty->isFloatTy())
1750       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
1751     else if (Ty->isDoubleTy())
1752       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
1753 
1754     if (Log) {
1755       Value *FMul = B.CreateFMul(Log, Expo, "mul");
1756       if (Pow->doesNotAccessMemory())
1757         return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
1758                                                 Mod, Intrinsic::exp2, Ty),
1759                                             FMul, "exp2"));
1760       else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f,
1761                           LibFunc_exp2l))
1762         return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
1763                                                     LibFunc_exp2f,
1764                                                     LibFunc_exp2l, B, Attrs));
1765     }
1766   }
1767 
1768   return nullptr;
1769 }
1770 
1771 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1772                           Module *M, IRBuilderBase &B,
1773                           const TargetLibraryInfo *TLI) {
1774   // If errno is never set, then use the intrinsic for sqrt().
1775   if (NoErrno) {
1776     Function *SqrtFn =
1777         Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1778     return B.CreateCall(SqrtFn, V, "sqrt");
1779   }
1780 
1781   // Otherwise, use the libcall for sqrt().
1782   if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf,
1783                  LibFunc_sqrtl))
1784     // TODO: We also should check that the target can in fact lower the sqrt()
1785     // libcall. We currently have no way to ask this question, so we ask if
1786     // the target has a sqrt() libcall, which is not exactly the same.
1787     return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1788                                 LibFunc_sqrtl, B, Attrs);
1789 
1790   return nullptr;
1791 }
1792 
1793 /// Use square root in place of pow(x, +/-0.5).
1794 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) {
1795   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1796   AttributeList Attrs; // Attributes are only meaningful on the original call
1797   Module *Mod = Pow->getModule();
1798   Type *Ty = Pow->getType();
1799 
1800   const APFloat *ExpoF;
1801   if (!match(Expo, m_APFloat(ExpoF)) ||
1802       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1803     return nullptr;
1804 
1805   // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
1806   // so that requires fast-math-flags (afn or reassoc).
1807   if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
1808     return nullptr;
1809 
1810   // If we have a pow() library call (accesses memory) and we can't guarantee
1811   // that the base is not an infinity, give up:
1812   // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting
1813   // errno), but sqrt(-Inf) is required by various standards to set errno.
1814   if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() &&
1815       !isKnownNeverInfinity(Base, TLI))
1816     return nullptr;
1817 
1818   Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1819   if (!Sqrt)
1820     return nullptr;
1821 
1822   // Handle signed zero base by expanding to fabs(sqrt(x)).
1823   if (!Pow->hasNoSignedZeros()) {
1824     Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1825     Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1826   }
1827 
1828   Sqrt = copyFlags(*Pow, Sqrt);
1829 
1830   // Handle non finite base by expanding to
1831   // (x == -infinity ? +infinity : sqrt(x)).
1832   if (!Pow->hasNoInfs()) {
1833     Value *PosInf = ConstantFP::getInfinity(Ty),
1834           *NegInf = ConstantFP::getInfinity(Ty, true);
1835     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1836     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1837   }
1838 
1839   // If the exponent is negative, then get the reciprocal.
1840   if (ExpoF->isNegative())
1841     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1842 
1843   return Sqrt;
1844 }
1845 
1846 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
1847                                            IRBuilderBase &B) {
1848   Value *Args[] = {Base, Expo};
1849   Type *Types[] = {Base->getType(), Expo->getType()};
1850   Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types);
1851   return B.CreateCall(F, Args);
1852 }
1853 
1854 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
1855   Value *Base = Pow->getArgOperand(0);
1856   Value *Expo = Pow->getArgOperand(1);
1857   Function *Callee = Pow->getCalledFunction();
1858   StringRef Name = Callee->getName();
1859   Type *Ty = Pow->getType();
1860   Module *M = Pow->getModule();
1861   bool AllowApprox = Pow->hasApproxFunc();
1862   bool Ignored;
1863 
1864   // Propagate the math semantics from the call to any created instructions.
1865   IRBuilderBase::FastMathFlagGuard Guard(B);
1866   B.setFastMathFlags(Pow->getFastMathFlags());
1867   // Evaluate special cases related to the base.
1868 
1869   // pow(1.0, x) -> 1.0
1870   if (match(Base, m_FPOne()))
1871     return Base;
1872 
1873   if (Value *Exp = replacePowWithExp(Pow, B))
1874     return Exp;
1875 
1876   // Evaluate special cases related to the exponent.
1877 
1878   // pow(x, -1.0) -> 1.0 / x
1879   if (match(Expo, m_SpecificFP(-1.0)))
1880     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1881 
1882   // pow(x, +/-0.0) -> 1.0
1883   if (match(Expo, m_AnyZeroFP()))
1884     return ConstantFP::get(Ty, 1.0);
1885 
1886   // pow(x, 1.0) -> x
1887   if (match(Expo, m_FPOne()))
1888     return Base;
1889 
1890   // pow(x, 2.0) -> x * x
1891   if (match(Expo, m_SpecificFP(2.0)))
1892     return B.CreateFMul(Base, Base, "square");
1893 
1894   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1895     return Sqrt;
1896 
1897   // pow(x, n) -> x * x * x * ...
1898   const APFloat *ExpoF;
1899   if (AllowApprox && match(Expo, m_APFloat(ExpoF)) &&
1900       !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) {
1901     // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1902     // If the exponent is an integer+0.5 we generate a call to sqrt and an
1903     // additional fmul.
1904     // TODO: This whole transformation should be backend specific (e.g. some
1905     //       backends might prefer libcalls or the limit for the exponent might
1906     //       be different) and it should also consider optimizing for size.
1907     APFloat LimF(ExpoF->getSemantics(), 33),
1908             ExpoA(abs(*ExpoF));
1909     if (ExpoA < LimF) {
1910       // This transformation applies to integer or integer+0.5 exponents only.
1911       // For integer+0.5, we create a sqrt(Base) call.
1912       Value *Sqrt = nullptr;
1913       if (!ExpoA.isInteger()) {
1914         APFloat Expo2 = ExpoA;
1915         // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1916         // is no floating point exception and the result is an integer, then
1917         // ExpoA == integer + 0.5
1918         if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
1919           return nullptr;
1920 
1921         if (!Expo2.isInteger())
1922           return nullptr;
1923 
1924         Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
1925                            Pow->doesNotAccessMemory(), M, B, TLI);
1926         if (!Sqrt)
1927           return nullptr;
1928       }
1929 
1930       // We will memoize intermediate products of the Addition Chain.
1931       Value *InnerChain[33] = {nullptr};
1932       InnerChain[1] = Base;
1933       InnerChain[2] = B.CreateFMul(Base, Base, "square");
1934 
1935       // We cannot readily convert a non-double type (like float) to a double.
1936       // So we first convert it to something which could be converted to double.
1937       ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1938       Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1939 
1940       // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
1941       if (Sqrt)
1942         FMul = B.CreateFMul(FMul, Sqrt);
1943 
1944       // If the exponent is negative, then get the reciprocal.
1945       if (ExpoF->isNegative())
1946         FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1947 
1948       return FMul;
1949     }
1950 
1951     APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false);
1952     // powf(x, n) -> powi(x, n) if n is a constant signed integer value
1953     if (ExpoF->isInteger() &&
1954         ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
1955             APFloat::opOK) {
1956       return copyFlags(
1957           *Pow,
1958           createPowWithIntegerExponent(
1959               Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo),
1960               M, B));
1961     }
1962   }
1963 
1964   // powf(x, itofp(y)) -> powi(x, y)
1965   if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
1966     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
1967       return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B));
1968   }
1969 
1970   // Shrink pow() to powf() if the arguments are single precision,
1971   // unless the result is expected to be double precision.
1972   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
1973       hasFloatVersion(M, Name)) {
1974     if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true))
1975       return Shrunk;
1976   }
1977 
1978   return nullptr;
1979 }
1980 
1981 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
1982   Module *M = CI->getModule();
1983   Function *Callee = CI->getCalledFunction();
1984   AttributeList Attrs; // Attributes are only meaningful on the original call
1985   StringRef Name = Callee->getName();
1986   Value *Ret = nullptr;
1987   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
1988       hasFloatVersion(M, Name))
1989     Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
1990 
1991   Type *Ty = CI->getType();
1992   Value *Op = CI->getArgOperand(0);
1993 
1994   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= IntSize
1995   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < IntSize
1996   if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
1997       hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1998     if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize()))
1999       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
2000                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
2001                                    B, Attrs);
2002   }
2003 
2004   return Ret;
2005 }
2006 
2007 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
2008   Module *M = CI->getModule();
2009 
2010   // If we can shrink the call to a float function rather than a double
2011   // function, do that first.
2012   Function *Callee = CI->getCalledFunction();
2013   StringRef Name = Callee->getName();
2014   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name))
2015     if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI))
2016       return Ret;
2017 
2018   // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
2019   // the intrinsics for improved optimization (for example, vectorization).
2020   // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
2021   // From the C standard draft WG14/N1256:
2022   // "Ideally, fmax would be sensitive to the sign of zero, for example
2023   // fmax(-0.0, +0.0) would return +0; however, implementation in software
2024   // might be impractical."
2025   IRBuilderBase::FastMathFlagGuard Guard(B);
2026   FastMathFlags FMF = CI->getFastMathFlags();
2027   FMF.setNoSignedZeros();
2028   B.setFastMathFlags(FMF);
2029 
2030   Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
2031                                                            : Intrinsic::maxnum;
2032   Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
2033   return copyFlags(
2034       *CI, B.CreateCall(F, {CI->getArgOperand(0), CI->getArgOperand(1)}));
2035 }
2036 
2037 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
2038   Function *LogFn = Log->getCalledFunction();
2039   AttributeList Attrs; // Attributes are only meaningful on the original call
2040   StringRef LogNm = LogFn->getName();
2041   Intrinsic::ID LogID = LogFn->getIntrinsicID();
2042   Module *Mod = Log->getModule();
2043   Type *Ty = Log->getType();
2044   Value *Ret = nullptr;
2045 
2046   if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm))
2047     Ret = optimizeUnaryDoubleFP(Log, B, TLI, true);
2048 
2049   // The earlier call must also be 'fast' in order to do these transforms.
2050   CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
2051   if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
2052     return Ret;
2053 
2054   LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
2055 
2056   // This is only applicable to log(), log2(), log10().
2057   if (TLI->getLibFunc(LogNm, LogLb))
2058     switch (LogLb) {
2059     case LibFunc_logf:
2060       LogID = Intrinsic::log;
2061       ExpLb = LibFunc_expf;
2062       Exp2Lb = LibFunc_exp2f;
2063       Exp10Lb = LibFunc_exp10f;
2064       PowLb = LibFunc_powf;
2065       break;
2066     case LibFunc_log:
2067       LogID = Intrinsic::log;
2068       ExpLb = LibFunc_exp;
2069       Exp2Lb = LibFunc_exp2;
2070       Exp10Lb = LibFunc_exp10;
2071       PowLb = LibFunc_pow;
2072       break;
2073     case LibFunc_logl:
2074       LogID = Intrinsic::log;
2075       ExpLb = LibFunc_expl;
2076       Exp2Lb = LibFunc_exp2l;
2077       Exp10Lb = LibFunc_exp10l;
2078       PowLb = LibFunc_powl;
2079       break;
2080     case LibFunc_log2f:
2081       LogID = Intrinsic::log2;
2082       ExpLb = LibFunc_expf;
2083       Exp2Lb = LibFunc_exp2f;
2084       Exp10Lb = LibFunc_exp10f;
2085       PowLb = LibFunc_powf;
2086       break;
2087     case LibFunc_log2:
2088       LogID = Intrinsic::log2;
2089       ExpLb = LibFunc_exp;
2090       Exp2Lb = LibFunc_exp2;
2091       Exp10Lb = LibFunc_exp10;
2092       PowLb = LibFunc_pow;
2093       break;
2094     case LibFunc_log2l:
2095       LogID = Intrinsic::log2;
2096       ExpLb = LibFunc_expl;
2097       Exp2Lb = LibFunc_exp2l;
2098       Exp10Lb = LibFunc_exp10l;
2099       PowLb = LibFunc_powl;
2100       break;
2101     case LibFunc_log10f:
2102       LogID = Intrinsic::log10;
2103       ExpLb = LibFunc_expf;
2104       Exp2Lb = LibFunc_exp2f;
2105       Exp10Lb = LibFunc_exp10f;
2106       PowLb = LibFunc_powf;
2107       break;
2108     case LibFunc_log10:
2109       LogID = Intrinsic::log10;
2110       ExpLb = LibFunc_exp;
2111       Exp2Lb = LibFunc_exp2;
2112       Exp10Lb = LibFunc_exp10;
2113       PowLb = LibFunc_pow;
2114       break;
2115     case LibFunc_log10l:
2116       LogID = Intrinsic::log10;
2117       ExpLb = LibFunc_expl;
2118       Exp2Lb = LibFunc_exp2l;
2119       Exp10Lb = LibFunc_exp10l;
2120       PowLb = LibFunc_powl;
2121       break;
2122     default:
2123       return Ret;
2124     }
2125   else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
2126            LogID == Intrinsic::log10) {
2127     if (Ty->getScalarType()->isFloatTy()) {
2128       ExpLb = LibFunc_expf;
2129       Exp2Lb = LibFunc_exp2f;
2130       Exp10Lb = LibFunc_exp10f;
2131       PowLb = LibFunc_powf;
2132     } else if (Ty->getScalarType()->isDoubleTy()) {
2133       ExpLb = LibFunc_exp;
2134       Exp2Lb = LibFunc_exp2;
2135       Exp10Lb = LibFunc_exp10;
2136       PowLb = LibFunc_pow;
2137     } else
2138       return Ret;
2139   } else
2140     return Ret;
2141 
2142   IRBuilderBase::FastMathFlagGuard Guard(B);
2143   B.setFastMathFlags(FastMathFlags::getFast());
2144 
2145   Intrinsic::ID ArgID = Arg->getIntrinsicID();
2146   LibFunc ArgLb = NotLibFunc;
2147   TLI->getLibFunc(*Arg, ArgLb);
2148 
2149   // log(pow(x,y)) -> y*log(x)
2150   if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
2151     Value *LogX =
2152         Log->doesNotAccessMemory()
2153             ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
2154                            Arg->getOperand(0), "log")
2155             : emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, Attrs);
2156     Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
2157     // Since pow() may have side effects, e.g. errno,
2158     // dead code elimination may not be trusted to remove it.
2159     substituteInParent(Arg, MulY);
2160     return MulY;
2161   }
2162 
2163   // log(exp{,2,10}(y)) -> y*log({e,2,10})
2164   // TODO: There is no exp10() intrinsic yet.
2165   if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
2166            ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
2167     Constant *Eul;
2168     if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
2169       // FIXME: Add more precise value of e for long double.
2170       Eul = ConstantFP::get(Log->getType(), numbers::e);
2171     else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
2172       Eul = ConstantFP::get(Log->getType(), 2.0);
2173     else
2174       Eul = ConstantFP::get(Log->getType(), 10.0);
2175     Value *LogE = Log->doesNotAccessMemory()
2176                       ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
2177                                      Eul, "log")
2178                       : emitUnaryFloatFnCall(Eul, TLI, LogNm, B, Attrs);
2179     Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
2180     // Since exp() may have side effects, e.g. errno,
2181     // dead code elimination may not be trusted to remove it.
2182     substituteInParent(Arg, MulY);
2183     return MulY;
2184   }
2185 
2186   return Ret;
2187 }
2188 
2189 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
2190   Module *M = CI->getModule();
2191   Function *Callee = CI->getCalledFunction();
2192   Value *Ret = nullptr;
2193   // TODO: Once we have a way (other than checking for the existince of the
2194   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
2195   // condition below.
2196   if (isLibFuncEmittable(M, TLI, LibFunc_sqrtf) &&
2197       (Callee->getName() == "sqrt" ||
2198        Callee->getIntrinsicID() == Intrinsic::sqrt))
2199     Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2200 
2201   if (!CI->isFast())
2202     return Ret;
2203 
2204   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
2205   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
2206     return Ret;
2207 
2208   // We're looking for a repeated factor in a multiplication tree,
2209   // so we can do this fold: sqrt(x * x) -> fabs(x);
2210   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2211   Value *Op0 = I->getOperand(0);
2212   Value *Op1 = I->getOperand(1);
2213   Value *RepeatOp = nullptr;
2214   Value *OtherOp = nullptr;
2215   if (Op0 == Op1) {
2216     // Simple match: the operands of the multiply are identical.
2217     RepeatOp = Op0;
2218   } else {
2219     // Look for a more complicated pattern: one of the operands is itself
2220     // a multiply, so search for a common factor in that multiply.
2221     // Note: We don't bother looking any deeper than this first level or for
2222     // variations of this pattern because instcombine's visitFMUL and/or the
2223     // reassociation pass should give us this form.
2224     Value *OtherMul0, *OtherMul1;
2225     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
2226       // Pattern: sqrt((x * y) * z)
2227       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
2228         // Matched: sqrt((x * x) * z)
2229         RepeatOp = OtherMul0;
2230         OtherOp = Op1;
2231       }
2232     }
2233   }
2234   if (!RepeatOp)
2235     return Ret;
2236 
2237   // Fast math flags for any created instructions should match the sqrt
2238   // and multiply.
2239   IRBuilderBase::FastMathFlagGuard Guard(B);
2240   B.setFastMathFlags(I->getFastMathFlags());
2241 
2242   // If we found a repeated factor, hoist it out of the square root and
2243   // replace it with the fabs of that factor.
2244   Type *ArgType = I->getType();
2245   Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
2246   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
2247   if (OtherOp) {
2248     // If we found a non-repeated factor, we still need to get its square
2249     // root. We then multiply that by the value that was simplified out
2250     // of the square root calculation.
2251     Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
2252     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
2253     return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall));
2254   }
2255   return copyFlags(*CI, FabsCall);
2256 }
2257 
2258 // TODO: Generalize to handle any trig function and its inverse.
2259 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) {
2260   Module *M = CI->getModule();
2261   Function *Callee = CI->getCalledFunction();
2262   Value *Ret = nullptr;
2263   StringRef Name = Callee->getName();
2264   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(M, Name))
2265     Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2266 
2267   Value *Op1 = CI->getArgOperand(0);
2268   auto *OpC = dyn_cast<CallInst>(Op1);
2269   if (!OpC)
2270     return Ret;
2271 
2272   // Both calls must be 'fast' in order to remove them.
2273   if (!CI->isFast() || !OpC->isFast())
2274     return Ret;
2275 
2276   // tan(atan(x)) -> x
2277   // tanf(atanf(x)) -> x
2278   // tanl(atanl(x)) -> x
2279   LibFunc Func;
2280   Function *F = OpC->getCalledFunction();
2281   if (F && TLI->getLibFunc(F->getName(), Func) &&
2282       isLibFuncEmittable(M, TLI, Func) &&
2283       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
2284        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
2285        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
2286     Ret = OpC->getArgOperand(0);
2287   return Ret;
2288 }
2289 
2290 static bool isTrigLibCall(CallInst *CI) {
2291   // We can only hope to do anything useful if we can ignore things like errno
2292   // and floating-point exceptions.
2293   // We already checked the prototype.
2294   return CI->hasFnAttr(Attribute::NoUnwind) &&
2295          CI->hasFnAttr(Attribute::ReadNone);
2296 }
2297 
2298 static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
2299                              bool UseFloat, Value *&Sin, Value *&Cos,
2300                              Value *&SinCos, const TargetLibraryInfo *TLI) {
2301   Module *M = OrigCallee->getParent();
2302   Type *ArgTy = Arg->getType();
2303   Type *ResTy;
2304   StringRef Name;
2305 
2306   Triple T(OrigCallee->getParent()->getTargetTriple());
2307   if (UseFloat) {
2308     Name = "__sincospif_stret";
2309 
2310     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2311     // x86_64 can't use {float, float} since that would be returned in both
2312     // xmm0 and xmm1, which isn't what a real struct would do.
2313     ResTy = T.getArch() == Triple::x86_64
2314                 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2))
2315                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2316   } else {
2317     Name = "__sincospi_stret";
2318     ResTy = StructType::get(ArgTy, ArgTy);
2319   }
2320 
2321   if (!isLibFuncEmittable(M, TLI, Name))
2322     return false;
2323   LibFunc TheLibFunc;
2324   TLI->getLibFunc(Name, TheLibFunc);
2325   FunctionCallee Callee = getOrInsertLibFunc(
2326       M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy);
2327 
2328   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2329     // If the argument is an instruction, it must dominate all uses so put our
2330     // sincos call there.
2331     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2332   } else {
2333     // Otherwise (e.g. for a constant) the beginning of the function is as
2334     // good a place as any.
2335     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2336     B.SetInsertPoint(&EntryBB, EntryBB.begin());
2337   }
2338 
2339   SinCos = B.CreateCall(Callee, Arg, "sincospi");
2340 
2341   if (SinCos->getType()->isStructTy()) {
2342     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2343     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2344   } else {
2345     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2346                                  "sinpi");
2347     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2348                                  "cospi");
2349   }
2350 
2351   return true;
2352 }
2353 
2354 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) {
2355   // Make sure the prototype is as expected, otherwise the rest of the
2356   // function is probably invalid and likely to abort.
2357   if (!isTrigLibCall(CI))
2358     return nullptr;
2359 
2360   Value *Arg = CI->getArgOperand(0);
2361   SmallVector<CallInst *, 1> SinCalls;
2362   SmallVector<CallInst *, 1> CosCalls;
2363   SmallVector<CallInst *, 1> SinCosCalls;
2364 
2365   bool IsFloat = Arg->getType()->isFloatTy();
2366 
2367   // Look for all compatible sinpi, cospi and sincospi calls with the same
2368   // argument. If there are enough (in some sense) we can make the
2369   // substitution.
2370   Function *F = CI->getFunction();
2371   for (User *U : Arg->users())
2372     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2373 
2374   // It's only worthwhile if both sinpi and cospi are actually used.
2375   if (SinCalls.empty() || CosCalls.empty())
2376     return nullptr;
2377 
2378   Value *Sin, *Cos, *SinCos;
2379   if (!insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos,
2380                         SinCos, TLI))
2381     return nullptr;
2382 
2383   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2384                                  Value *Res) {
2385     for (CallInst *C : Calls)
2386       replaceAllUsesWith(C, Res);
2387   };
2388 
2389   replaceTrigInsts(SinCalls, Sin);
2390   replaceTrigInsts(CosCalls, Cos);
2391   replaceTrigInsts(SinCosCalls, SinCos);
2392 
2393   return nullptr;
2394 }
2395 
2396 void LibCallSimplifier::classifyArgUse(
2397     Value *Val, Function *F, bool IsFloat,
2398     SmallVectorImpl<CallInst *> &SinCalls,
2399     SmallVectorImpl<CallInst *> &CosCalls,
2400     SmallVectorImpl<CallInst *> &SinCosCalls) {
2401   CallInst *CI = dyn_cast<CallInst>(Val);
2402   Module *M = CI->getModule();
2403 
2404   if (!CI || CI->use_empty())
2405     return;
2406 
2407   // Don't consider calls in other functions.
2408   if (CI->getFunction() != F)
2409     return;
2410 
2411   Function *Callee = CI->getCalledFunction();
2412   LibFunc Func;
2413   if (!Callee || !TLI->getLibFunc(*Callee, Func) ||
2414       !isLibFuncEmittable(M, TLI, Func) ||
2415       !isTrigLibCall(CI))
2416     return;
2417 
2418   if (IsFloat) {
2419     if (Func == LibFunc_sinpif)
2420       SinCalls.push_back(CI);
2421     else if (Func == LibFunc_cospif)
2422       CosCalls.push_back(CI);
2423     else if (Func == LibFunc_sincospif_stret)
2424       SinCosCalls.push_back(CI);
2425   } else {
2426     if (Func == LibFunc_sinpi)
2427       SinCalls.push_back(CI);
2428     else if (Func == LibFunc_cospi)
2429       CosCalls.push_back(CI);
2430     else if (Func == LibFunc_sincospi_stret)
2431       SinCosCalls.push_back(CI);
2432   }
2433 }
2434 
2435 //===----------------------------------------------------------------------===//
2436 // Integer Library Call Optimizations
2437 //===----------------------------------------------------------------------===//
2438 
2439 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) {
2440   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
2441   Value *Op = CI->getArgOperand(0);
2442   Type *ArgType = Op->getType();
2443   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2444                                           Intrinsic::cttz, ArgType);
2445   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
2446   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
2447   V = B.CreateIntCast(V, B.getInt32Ty(), false);
2448 
2449   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
2450   return B.CreateSelect(Cond, V, B.getInt32(0));
2451 }
2452 
2453 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) {
2454   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
2455   Value *Op = CI->getArgOperand(0);
2456   Type *ArgType = Op->getType();
2457   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2458                                           Intrinsic::ctlz, ArgType);
2459   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
2460   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
2461                   V);
2462   return B.CreateIntCast(V, CI->getType(), false);
2463 }
2464 
2465 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) {
2466   // abs(x) -> x <s 0 ? -x : x
2467   // The negation has 'nsw' because abs of INT_MIN is undefined.
2468   Value *X = CI->getArgOperand(0);
2469   Value *IsNeg = B.CreateIsNeg(X);
2470   Value *NegX = B.CreateNSWNeg(X, "neg");
2471   return B.CreateSelect(IsNeg, NegX, X);
2472 }
2473 
2474 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) {
2475   // isdigit(c) -> (c-'0') <u 10
2476   Value *Op = CI->getArgOperand(0);
2477   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
2478   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
2479   return B.CreateZExt(Op, CI->getType());
2480 }
2481 
2482 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) {
2483   // isascii(c) -> c <u 128
2484   Value *Op = CI->getArgOperand(0);
2485   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
2486   return B.CreateZExt(Op, CI->getType());
2487 }
2488 
2489 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) {
2490   // toascii(c) -> c & 0x7f
2491   return B.CreateAnd(CI->getArgOperand(0),
2492                      ConstantInt::get(CI->getType(), 0x7F));
2493 }
2494 
2495 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) {
2496   StringRef Str;
2497   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2498     return nullptr;
2499 
2500   return convertStrToNumber(CI, Str, 10);
2501 }
2502 
2503 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) {
2504   StringRef Str;
2505   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2506     return nullptr;
2507 
2508   if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
2509     return nullptr;
2510 
2511   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2512     return convertStrToNumber(CI, Str, CInt->getSExtValue());
2513   }
2514 
2515   return nullptr;
2516 }
2517 
2518 //===----------------------------------------------------------------------===//
2519 // Formatting and IO Library Call Optimizations
2520 //===----------------------------------------------------------------------===//
2521 
2522 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2523 
2524 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B,
2525                                                  int StreamArg) {
2526   Function *Callee = CI->getCalledFunction();
2527   // Error reporting calls should be cold, mark them as such.
2528   // This applies even to non-builtin calls: it is only a hint and applies to
2529   // functions that the frontend might not understand as builtins.
2530 
2531   // This heuristic was suggested in:
2532   // Improving Static Branch Prediction in a Compiler
2533   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2534   // Proceedings of PACT'98, Oct. 1998, IEEE
2535   if (!CI->hasFnAttr(Attribute::Cold) &&
2536       isReportingError(Callee, CI, StreamArg)) {
2537     CI->addFnAttr(Attribute::Cold);
2538   }
2539 
2540   return nullptr;
2541 }
2542 
2543 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2544   if (!Callee || !Callee->isDeclaration())
2545     return false;
2546 
2547   if (StreamArg < 0)
2548     return true;
2549 
2550   // These functions might be considered cold, but only if their stream
2551   // argument is stderr.
2552 
2553   if (StreamArg >= (int)CI->arg_size())
2554     return false;
2555   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2556   if (!LI)
2557     return false;
2558   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
2559   if (!GV || !GV->isDeclaration())
2560     return false;
2561   return GV->getName() == "stderr";
2562 }
2563 
2564 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
2565   // Check for a fixed format string.
2566   StringRef FormatStr;
2567   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2568     return nullptr;
2569 
2570   // Empty format string -> noop.
2571   if (FormatStr.empty()) // Tolerate printf's declared void.
2572     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2573 
2574   // Do not do any of the following transformations if the printf return value
2575   // is used, in general the printf return value is not compatible with either
2576   // putchar() or puts().
2577   if (!CI->use_empty())
2578     return nullptr;
2579 
2580   // printf("x") -> putchar('x'), even for "%" and "%%".
2581   if (FormatStr.size() == 1 || FormatStr == "%%")
2582     return copyFlags(*CI, emitPutChar(B.getInt32(FormatStr[0]), B, TLI));
2583 
2584   // Try to remove call or emit putchar/puts.
2585   if (FormatStr == "%s" && CI->arg_size() > 1) {
2586     StringRef OperandStr;
2587     if (!getConstantStringInfo(CI->getOperand(1), OperandStr))
2588       return nullptr;
2589     // printf("%s", "") --> NOP
2590     if (OperandStr.empty())
2591       return (Value *)CI;
2592     // printf("%s", "a") --> putchar('a')
2593     if (OperandStr.size() == 1)
2594       return copyFlags(*CI, emitPutChar(B.getInt32(OperandStr[0]), B, TLI));
2595     // printf("%s", str"\n") --> puts(str)
2596     if (OperandStr.back() == '\n') {
2597       OperandStr = OperandStr.drop_back();
2598       Value *GV = B.CreateGlobalString(OperandStr, "str");
2599       return copyFlags(*CI, emitPutS(GV, B, TLI));
2600     }
2601     return nullptr;
2602   }
2603 
2604   // printf("foo\n") --> puts("foo")
2605   if (FormatStr.back() == '\n' &&
2606       !FormatStr.contains('%')) { // No format characters.
2607     // Create a string literal with no \n on it.  We expect the constant merge
2608     // pass to be run after this pass, to merge duplicate strings.
2609     FormatStr = FormatStr.drop_back();
2610     Value *GV = B.CreateGlobalString(FormatStr, "str");
2611     return copyFlags(*CI, emitPutS(GV, B, TLI));
2612   }
2613 
2614   // Optimize specific format strings.
2615   // printf("%c", chr) --> putchar(chr)
2616   if (FormatStr == "%c" && CI->arg_size() > 1 &&
2617       CI->getArgOperand(1)->getType()->isIntegerTy())
2618     return copyFlags(*CI, emitPutChar(CI->getArgOperand(1), B, TLI));
2619 
2620   // printf("%s\n", str) --> puts(str)
2621   if (FormatStr == "%s\n" && CI->arg_size() > 1 &&
2622       CI->getArgOperand(1)->getType()->isPointerTy())
2623     return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI));
2624   return nullptr;
2625 }
2626 
2627 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
2628 
2629   Module *M = CI->getModule();
2630   Function *Callee = CI->getCalledFunction();
2631   FunctionType *FT = Callee->getFunctionType();
2632   if (Value *V = optimizePrintFString(CI, B)) {
2633     return V;
2634   }
2635 
2636   // printf(format, ...) -> iprintf(format, ...) if no floating point
2637   // arguments.
2638   if (isLibFuncEmittable(M, TLI, LibFunc_iprintf) &&
2639       !callHasFloatingPointArgument(CI)) {
2640     FunctionCallee IPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_iprintf, FT,
2641                                                   Callee->getAttributes());
2642     CallInst *New = cast<CallInst>(CI->clone());
2643     New->setCalledFunction(IPrintFFn);
2644     B.Insert(New);
2645     return New;
2646   }
2647 
2648   // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2649   // arguments.
2650   if (isLibFuncEmittable(M, TLI, LibFunc_small_printf) &&
2651       !callHasFP128Argument(CI)) {
2652     auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT,
2653                                             Callee->getAttributes());
2654     CallInst *New = cast<CallInst>(CI->clone());
2655     New->setCalledFunction(SmallPrintFFn);
2656     B.Insert(New);
2657     return New;
2658   }
2659 
2660   annotateNonNullNoUndefBasedOnAccess(CI, 0);
2661   return nullptr;
2662 }
2663 
2664 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
2665                                                 IRBuilderBase &B) {
2666   // Check for a fixed format string.
2667   StringRef FormatStr;
2668   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2669     return nullptr;
2670 
2671   // If we just have a format string (nothing else crazy) transform it.
2672   Value *Dest = CI->getArgOperand(0);
2673   if (CI->arg_size() == 2) {
2674     // Make sure there's no % in the constant array.  We could try to handle
2675     // %% -> % in the future if we cared.
2676     if (FormatStr.contains('%'))
2677       return nullptr; // we found a format specifier, bail out.
2678 
2679     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2680     B.CreateMemCpy(
2681         Dest, Align(1), CI->getArgOperand(1), Align(1),
2682         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2683                          FormatStr.size() + 1)); // Copy the null byte.
2684     return ConstantInt::get(CI->getType(), FormatStr.size());
2685   }
2686 
2687   // The remaining optimizations require the format string to be "%s" or "%c"
2688   // and have an extra operand.
2689   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
2690     return nullptr;
2691 
2692   // Decode the second character of the format string.
2693   if (FormatStr[1] == 'c') {
2694     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2695     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2696       return nullptr;
2697     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2698     Value *Ptr = castToCStr(Dest, B);
2699     B.CreateStore(V, Ptr);
2700     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2701     B.CreateStore(B.getInt8(0), Ptr);
2702 
2703     return ConstantInt::get(CI->getType(), 1);
2704   }
2705 
2706   if (FormatStr[1] == 's') {
2707     // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2708     // strlen(str)+1)
2709     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2710       return nullptr;
2711 
2712     if (CI->use_empty())
2713       // sprintf(dest, "%s", str) -> strcpy(dest, str)
2714       return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI));
2715 
2716     uint64_t SrcLen = GetStringLength(CI->getArgOperand(2));
2717     if (SrcLen) {
2718       B.CreateMemCpy(
2719           Dest, Align(1), CI->getArgOperand(2), Align(1),
2720           ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen));
2721       // Returns total number of characters written without null-character.
2722       return ConstantInt::get(CI->getType(), SrcLen - 1);
2723     } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) {
2724       // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest
2725       // Handle mismatched pointer types (goes away with typeless pointers?).
2726       V = B.CreatePointerCast(V, B.getInt8PtrTy());
2727       Dest = B.CreatePointerCast(Dest, B.getInt8PtrTy());
2728       Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest);
2729       return B.CreateIntCast(PtrDiff, CI->getType(), false);
2730     }
2731 
2732     bool OptForSize = CI->getFunction()->hasOptSize() ||
2733                       llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2734                                                   PGSOQueryType::IRPass);
2735     if (OptForSize)
2736       return nullptr;
2737 
2738     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2739     if (!Len)
2740       return nullptr;
2741     Value *IncLen =
2742         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2743     B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen);
2744 
2745     // The sprintf result is the unincremented number of bytes in the string.
2746     return B.CreateIntCast(Len, CI->getType(), false);
2747   }
2748   return nullptr;
2749 }
2750 
2751 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
2752   Module *M = CI->getModule();
2753   Function *Callee = CI->getCalledFunction();
2754   FunctionType *FT = Callee->getFunctionType();
2755   if (Value *V = optimizeSPrintFString(CI, B)) {
2756     return V;
2757   }
2758 
2759   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2760   // point arguments.
2761   if (isLibFuncEmittable(M, TLI, LibFunc_siprintf) &&
2762       !callHasFloatingPointArgument(CI)) {
2763     FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_siprintf,
2764                                                    FT, Callee->getAttributes());
2765     CallInst *New = cast<CallInst>(CI->clone());
2766     New->setCalledFunction(SIPrintFFn);
2767     B.Insert(New);
2768     return New;
2769   }
2770 
2771   // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
2772   // floating point arguments.
2773   if (isLibFuncEmittable(M, TLI, LibFunc_small_sprintf) &&
2774       !callHasFP128Argument(CI)) {
2775     auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT,
2776                                              Callee->getAttributes());
2777     CallInst *New = cast<CallInst>(CI->clone());
2778     New->setCalledFunction(SmallSPrintFFn);
2779     B.Insert(New);
2780     return New;
2781   }
2782 
2783   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
2784   return nullptr;
2785 }
2786 
2787 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
2788                                                  IRBuilderBase &B) {
2789   // Check for size
2790   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2791   if (!Size)
2792     return nullptr;
2793 
2794   uint64_t N = Size->getZExtValue();
2795   // Check for a fixed format string.
2796   StringRef FormatStr;
2797   if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2798     return nullptr;
2799 
2800   // If we just have a format string (nothing else crazy) transform it.
2801   if (CI->arg_size() == 3) {
2802     // Make sure there's no % in the constant array.  We could try to handle
2803     // %% -> % in the future if we cared.
2804     if (FormatStr.contains('%'))
2805       return nullptr; // we found a format specifier, bail out.
2806 
2807     if (N == 0)
2808       return ConstantInt::get(CI->getType(), FormatStr.size());
2809     else if (N < FormatStr.size() + 1)
2810       return nullptr;
2811 
2812     // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2813     // strlen(fmt)+1)
2814     copyFlags(
2815         *CI,
2816         B.CreateMemCpy(
2817             CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1),
2818             ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2819                              FormatStr.size() + 1))); // Copy the null byte.
2820     return ConstantInt::get(CI->getType(), FormatStr.size());
2821   }
2822 
2823   // The remaining optimizations require the format string to be "%s" or "%c"
2824   // and have an extra operand.
2825   if (FormatStr.size() == 2 && FormatStr[0] == '%' && CI->arg_size() == 4) {
2826 
2827     // Decode the second character of the format string.
2828     if (FormatStr[1] == 'c') {
2829       if (N == 0)
2830         return ConstantInt::get(CI->getType(), 1);
2831       else if (N == 1)
2832         return nullptr;
2833 
2834       // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2835       if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2836         return nullptr;
2837       Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2838       Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2839       B.CreateStore(V, Ptr);
2840       Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2841       B.CreateStore(B.getInt8(0), Ptr);
2842 
2843       return ConstantInt::get(CI->getType(), 1);
2844     }
2845 
2846     if (FormatStr[1] == 's') {
2847       // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2848       StringRef Str;
2849       if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2850         return nullptr;
2851 
2852       if (N == 0)
2853         return ConstantInt::get(CI->getType(), Str.size());
2854       else if (N < Str.size() + 1)
2855         return nullptr;
2856 
2857       copyFlags(
2858           *CI, B.CreateMemCpy(CI->getArgOperand(0), Align(1),
2859                               CI->getArgOperand(3), Align(1),
2860                               ConstantInt::get(CI->getType(), Str.size() + 1)));
2861 
2862       // The snprintf result is the unincremented number of bytes in the string.
2863       return ConstantInt::get(CI->getType(), Str.size());
2864     }
2865   }
2866   return nullptr;
2867 }
2868 
2869 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) {
2870   if (Value *V = optimizeSnPrintFString(CI, B)) {
2871     return V;
2872   }
2873 
2874   if (isKnownNonZero(CI->getOperand(1), DL))
2875     annotateNonNullNoUndefBasedOnAccess(CI, 0);
2876   return nullptr;
2877 }
2878 
2879 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
2880                                                 IRBuilderBase &B) {
2881   optimizeErrorReporting(CI, B, 0);
2882 
2883   // All the optimizations depend on the format string.
2884   StringRef FormatStr;
2885   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2886     return nullptr;
2887 
2888   // Do not do any of the following transformations if the fprintf return
2889   // value is used, in general the fprintf return value is not compatible
2890   // with fwrite(), fputc() or fputs().
2891   if (!CI->use_empty())
2892     return nullptr;
2893 
2894   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2895   if (CI->arg_size() == 2) {
2896     // Could handle %% -> % if we cared.
2897     if (FormatStr.contains('%'))
2898       return nullptr; // We found a format specifier.
2899 
2900     return copyFlags(
2901         *CI, emitFWrite(CI->getArgOperand(1),
2902                         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2903                                          FormatStr.size()),
2904                         CI->getArgOperand(0), B, DL, TLI));
2905   }
2906 
2907   // The remaining optimizations require the format string to be "%s" or "%c"
2908   // and have an extra operand.
2909   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
2910     return nullptr;
2911 
2912   // Decode the second character of the format string.
2913   if (FormatStr[1] == 'c') {
2914     // fprintf(F, "%c", chr) --> fputc(chr, F)
2915     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2916       return nullptr;
2917     return copyFlags(
2918         *CI, emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI));
2919   }
2920 
2921   if (FormatStr[1] == 's') {
2922     // fprintf(F, "%s", str) --> fputs(str, F)
2923     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2924       return nullptr;
2925     return copyFlags(
2926         *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI));
2927   }
2928   return nullptr;
2929 }
2930 
2931 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
2932   Module *M = CI->getModule();
2933   Function *Callee = CI->getCalledFunction();
2934   FunctionType *FT = Callee->getFunctionType();
2935   if (Value *V = optimizeFPrintFString(CI, B)) {
2936     return V;
2937   }
2938 
2939   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2940   // floating point arguments.
2941   if (isLibFuncEmittable(M, TLI, LibFunc_fiprintf) &&
2942       !callHasFloatingPointArgument(CI)) {
2943     FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_fiprintf,
2944                                                    FT, Callee->getAttributes());
2945     CallInst *New = cast<CallInst>(CI->clone());
2946     New->setCalledFunction(FIPrintFFn);
2947     B.Insert(New);
2948     return New;
2949   }
2950 
2951   // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
2952   // 128-bit floating point arguments.
2953   if (isLibFuncEmittable(M, TLI, LibFunc_small_fprintf) &&
2954       !callHasFP128Argument(CI)) {
2955     auto SmallFPrintFFn =
2956         getOrInsertLibFunc(M, *TLI, LibFunc_small_fprintf, FT,
2957                            Callee->getAttributes());
2958     CallInst *New = cast<CallInst>(CI->clone());
2959     New->setCalledFunction(SmallFPrintFFn);
2960     B.Insert(New);
2961     return New;
2962   }
2963 
2964   return nullptr;
2965 }
2966 
2967 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) {
2968   optimizeErrorReporting(CI, B, 3);
2969 
2970   // Get the element size and count.
2971   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2972   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2973   if (SizeC && CountC) {
2974     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2975 
2976     // If this is writing zero records, remove the call (it's a noop).
2977     if (Bytes == 0)
2978       return ConstantInt::get(CI->getType(), 0);
2979 
2980     // If this is writing one byte, turn it into fputc.
2981     // This optimisation is only valid, if the return value is unused.
2982     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2983       Value *Char = B.CreateLoad(B.getInt8Ty(),
2984                                  castToCStr(CI->getArgOperand(0), B), "char");
2985       Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2986       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2987     }
2988   }
2989 
2990   return nullptr;
2991 }
2992 
2993 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) {
2994   optimizeErrorReporting(CI, B, 1);
2995 
2996   // Don't rewrite fputs to fwrite when optimising for size because fwrite
2997   // requires more arguments and thus extra MOVs are required.
2998   bool OptForSize = CI->getFunction()->hasOptSize() ||
2999                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
3000                                                 PGSOQueryType::IRPass);
3001   if (OptForSize)
3002     return nullptr;
3003 
3004   // We can't optimize if return value is used.
3005   if (!CI->use_empty())
3006     return nullptr;
3007 
3008   // fputs(s,F) --> fwrite(s,strlen(s),1,F)
3009   uint64_t Len = GetStringLength(CI->getArgOperand(0));
3010   if (!Len)
3011     return nullptr;
3012 
3013   // Known to have no uses (see above).
3014   return copyFlags(
3015       *CI,
3016       emitFWrite(CI->getArgOperand(0),
3017                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
3018                  CI->getArgOperand(1), B, DL, TLI));
3019 }
3020 
3021 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) {
3022   annotateNonNullNoUndefBasedOnAccess(CI, 0);
3023   if (!CI->use_empty())
3024     return nullptr;
3025 
3026   // Check for a constant string.
3027   // puts("") -> putchar('\n')
3028   StringRef Str;
3029   if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
3030     return copyFlags(*CI, emitPutChar(B.getInt32('\n'), B, TLI));
3031 
3032   return nullptr;
3033 }
3034 
3035 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
3036   // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
3037   return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1),
3038                                         CI->getArgOperand(0), Align(1),
3039                                         CI->getArgOperand(2)));
3040 }
3041 
3042 bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) {
3043   SmallString<20> FloatFuncName = FuncName;
3044   FloatFuncName += 'f';
3045   return isLibFuncEmittable(M, TLI, FloatFuncName);
3046 }
3047 
3048 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
3049                                                       IRBuilderBase &Builder) {
3050   Module *M = CI->getModule();
3051   LibFunc Func;
3052   Function *Callee = CI->getCalledFunction();
3053   // Check for string/memory library functions.
3054   if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
3055     // Make sure we never change the calling convention.
3056     assert(
3057         (ignoreCallingConv(Func) ||
3058          TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) &&
3059         "Optimizing string/memory libcall would change the calling convention");
3060     switch (Func) {
3061     case LibFunc_strcat:
3062       return optimizeStrCat(CI, Builder);
3063     case LibFunc_strncat:
3064       return optimizeStrNCat(CI, Builder);
3065     case LibFunc_strchr:
3066       return optimizeStrChr(CI, Builder);
3067     case LibFunc_strrchr:
3068       return optimizeStrRChr(CI, Builder);
3069     case LibFunc_strcmp:
3070       return optimizeStrCmp(CI, Builder);
3071     case LibFunc_strncmp:
3072       return optimizeStrNCmp(CI, Builder);
3073     case LibFunc_strcpy:
3074       return optimizeStrCpy(CI, Builder);
3075     case LibFunc_stpcpy:
3076       return optimizeStpCpy(CI, Builder);
3077     case LibFunc_strncpy:
3078       return optimizeStrNCpy(CI, Builder);
3079     case LibFunc_strlen:
3080       return optimizeStrLen(CI, Builder);
3081     case LibFunc_strnlen:
3082       return optimizeStrNLen(CI, Builder);
3083     case LibFunc_strpbrk:
3084       return optimizeStrPBrk(CI, Builder);
3085     case LibFunc_strndup:
3086       return optimizeStrNDup(CI, Builder);
3087     case LibFunc_strtol:
3088     case LibFunc_strtod:
3089     case LibFunc_strtof:
3090     case LibFunc_strtoul:
3091     case LibFunc_strtoll:
3092     case LibFunc_strtold:
3093     case LibFunc_strtoull:
3094       return optimizeStrTo(CI, Builder);
3095     case LibFunc_strspn:
3096       return optimizeStrSpn(CI, Builder);
3097     case LibFunc_strcspn:
3098       return optimizeStrCSpn(CI, Builder);
3099     case LibFunc_strstr:
3100       return optimizeStrStr(CI, Builder);
3101     case LibFunc_memchr:
3102       return optimizeMemChr(CI, Builder);
3103     case LibFunc_memrchr:
3104       return optimizeMemRChr(CI, Builder);
3105     case LibFunc_bcmp:
3106       return optimizeBCmp(CI, Builder);
3107     case LibFunc_memcmp:
3108       return optimizeMemCmp(CI, Builder);
3109     case LibFunc_memcpy:
3110       return optimizeMemCpy(CI, Builder);
3111     case LibFunc_memccpy:
3112       return optimizeMemCCpy(CI, Builder);
3113     case LibFunc_mempcpy:
3114       return optimizeMemPCpy(CI, Builder);
3115     case LibFunc_memmove:
3116       return optimizeMemMove(CI, Builder);
3117     case LibFunc_memset:
3118       return optimizeMemSet(CI, Builder);
3119     case LibFunc_realloc:
3120       return optimizeRealloc(CI, Builder);
3121     case LibFunc_wcslen:
3122       return optimizeWcslen(CI, Builder);
3123     case LibFunc_bcopy:
3124       return optimizeBCopy(CI, Builder);
3125     default:
3126       break;
3127     }
3128   }
3129   return nullptr;
3130 }
3131 
3132 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
3133                                                        LibFunc Func,
3134                                                        IRBuilderBase &Builder) {
3135   const Module *M = CI->getModule();
3136 
3137   // Don't optimize calls that require strict floating point semantics.
3138   if (CI->isStrictFP())
3139     return nullptr;
3140 
3141   if (Value *V = optimizeTrigReflections(CI, Func, Builder))
3142     return V;
3143 
3144   switch (Func) {
3145   case LibFunc_sinpif:
3146   case LibFunc_sinpi:
3147   case LibFunc_cospif:
3148   case LibFunc_cospi:
3149     return optimizeSinCosPi(CI, Builder);
3150   case LibFunc_powf:
3151   case LibFunc_pow:
3152   case LibFunc_powl:
3153     return optimizePow(CI, Builder);
3154   case LibFunc_exp2l:
3155   case LibFunc_exp2:
3156   case LibFunc_exp2f:
3157     return optimizeExp2(CI, Builder);
3158   case LibFunc_fabsf:
3159   case LibFunc_fabs:
3160   case LibFunc_fabsl:
3161     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
3162   case LibFunc_sqrtf:
3163   case LibFunc_sqrt:
3164   case LibFunc_sqrtl:
3165     return optimizeSqrt(CI, Builder);
3166   case LibFunc_logf:
3167   case LibFunc_log:
3168   case LibFunc_logl:
3169   case LibFunc_log10f:
3170   case LibFunc_log10:
3171   case LibFunc_log10l:
3172   case LibFunc_log1pf:
3173   case LibFunc_log1p:
3174   case LibFunc_log1pl:
3175   case LibFunc_log2f:
3176   case LibFunc_log2:
3177   case LibFunc_log2l:
3178   case LibFunc_logbf:
3179   case LibFunc_logb:
3180   case LibFunc_logbl:
3181     return optimizeLog(CI, Builder);
3182   case LibFunc_tan:
3183   case LibFunc_tanf:
3184   case LibFunc_tanl:
3185     return optimizeTan(CI, Builder);
3186   case LibFunc_ceil:
3187     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
3188   case LibFunc_floor:
3189     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
3190   case LibFunc_round:
3191     return replaceUnaryCall(CI, Builder, Intrinsic::round);
3192   case LibFunc_roundeven:
3193     return replaceUnaryCall(CI, Builder, Intrinsic::roundeven);
3194   case LibFunc_nearbyint:
3195     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
3196   case LibFunc_rint:
3197     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
3198   case LibFunc_trunc:
3199     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
3200   case LibFunc_acos:
3201   case LibFunc_acosh:
3202   case LibFunc_asin:
3203   case LibFunc_asinh:
3204   case LibFunc_atan:
3205   case LibFunc_atanh:
3206   case LibFunc_cbrt:
3207   case LibFunc_cosh:
3208   case LibFunc_exp:
3209   case LibFunc_exp10:
3210   case LibFunc_expm1:
3211   case LibFunc_cos:
3212   case LibFunc_sin:
3213   case LibFunc_sinh:
3214   case LibFunc_tanh:
3215     if (UnsafeFPShrink && hasFloatVersion(M, CI->getCalledFunction()->getName()))
3216       return optimizeUnaryDoubleFP(CI, Builder, TLI, true);
3217     return nullptr;
3218   case LibFunc_copysign:
3219     if (hasFloatVersion(M, CI->getCalledFunction()->getName()))
3220       return optimizeBinaryDoubleFP(CI, Builder, TLI);
3221     return nullptr;
3222   case LibFunc_fminf:
3223   case LibFunc_fmin:
3224   case LibFunc_fminl:
3225   case LibFunc_fmaxf:
3226   case LibFunc_fmax:
3227   case LibFunc_fmaxl:
3228     return optimizeFMinFMax(CI, Builder);
3229   case LibFunc_cabs:
3230   case LibFunc_cabsf:
3231   case LibFunc_cabsl:
3232     return optimizeCAbs(CI, Builder);
3233   default:
3234     return nullptr;
3235   }
3236 }
3237 
3238 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
3239   Module *M = CI->getModule();
3240   assert(!CI->isMustTailCall() && "These transforms aren't musttail safe.");
3241 
3242   // TODO: Split out the code below that operates on FP calls so that
3243   //       we can all non-FP calls with the StrictFP attribute to be
3244   //       optimized.
3245   if (CI->isNoBuiltin())
3246     return nullptr;
3247 
3248   LibFunc Func;
3249   Function *Callee = CI->getCalledFunction();
3250   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
3251 
3252   SmallVector<OperandBundleDef, 2> OpBundles;
3253   CI->getOperandBundlesAsDefs(OpBundles);
3254 
3255   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3256   Builder.setDefaultOperandBundles(OpBundles);
3257 
3258   // Command-line parameter overrides instruction attribute.
3259   // This can't be moved to optimizeFloatingPointLibCall() because it may be
3260   // used by the intrinsic optimizations.
3261   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
3262     UnsafeFPShrink = EnableUnsafeFPShrink;
3263   else if (isa<FPMathOperator>(CI) && CI->isFast())
3264     UnsafeFPShrink = true;
3265 
3266   // First, check for intrinsics.
3267   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
3268     if (!IsCallingConvC)
3269       return nullptr;
3270     // The FP intrinsics have corresponding constrained versions so we don't
3271     // need to check for the StrictFP attribute here.
3272     switch (II->getIntrinsicID()) {
3273     case Intrinsic::pow:
3274       return optimizePow(CI, Builder);
3275     case Intrinsic::exp2:
3276       return optimizeExp2(CI, Builder);
3277     case Intrinsic::log:
3278     case Intrinsic::log2:
3279     case Intrinsic::log10:
3280       return optimizeLog(CI, Builder);
3281     case Intrinsic::sqrt:
3282       return optimizeSqrt(CI, Builder);
3283     case Intrinsic::memset:
3284       return optimizeMemSet(CI, Builder);
3285     case Intrinsic::memcpy:
3286       return optimizeMemCpy(CI, Builder);
3287     case Intrinsic::memmove:
3288       return optimizeMemMove(CI, Builder);
3289     default:
3290       return nullptr;
3291     }
3292   }
3293 
3294   // Also try to simplify calls to fortified library functions.
3295   if (Value *SimplifiedFortifiedCI =
3296           FortifiedSimplifier.optimizeCall(CI, Builder)) {
3297     // Try to further simplify the result.
3298     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
3299     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
3300       // Ensure that SimplifiedCI's uses are complete, since some calls have
3301       // their uses analyzed.
3302       replaceAllUsesWith(CI, SimplifiedCI);
3303 
3304       // Set insertion point to SimplifiedCI to guarantee we reach all uses
3305       // we might replace later on.
3306       IRBuilderBase::InsertPointGuard Guard(Builder);
3307       Builder.SetInsertPoint(SimplifiedCI);
3308       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) {
3309         // If we were able to further simplify, remove the now redundant call.
3310         substituteInParent(SimplifiedCI, V);
3311         return V;
3312       }
3313     }
3314     return SimplifiedFortifiedCI;
3315   }
3316 
3317   // Then check for known library functions.
3318   if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
3319     // We never change the calling convention.
3320     if (!ignoreCallingConv(Func) && !IsCallingConvC)
3321       return nullptr;
3322     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3323       return V;
3324     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3325       return V;
3326     switch (Func) {
3327     case LibFunc_ffs:
3328     case LibFunc_ffsl:
3329     case LibFunc_ffsll:
3330       return optimizeFFS(CI, Builder);
3331     case LibFunc_fls:
3332     case LibFunc_flsl:
3333     case LibFunc_flsll:
3334       return optimizeFls(CI, Builder);
3335     case LibFunc_abs:
3336     case LibFunc_labs:
3337     case LibFunc_llabs:
3338       return optimizeAbs(CI, Builder);
3339     case LibFunc_isdigit:
3340       return optimizeIsDigit(CI, Builder);
3341     case LibFunc_isascii:
3342       return optimizeIsAscii(CI, Builder);
3343     case LibFunc_toascii:
3344       return optimizeToAscii(CI, Builder);
3345     case LibFunc_atoi:
3346     case LibFunc_atol:
3347     case LibFunc_atoll:
3348       return optimizeAtoi(CI, Builder);
3349     case LibFunc_strtol:
3350     case LibFunc_strtoll:
3351       return optimizeStrtol(CI, Builder);
3352     case LibFunc_printf:
3353       return optimizePrintF(CI, Builder);
3354     case LibFunc_sprintf:
3355       return optimizeSPrintF(CI, Builder);
3356     case LibFunc_snprintf:
3357       return optimizeSnPrintF(CI, Builder);
3358     case LibFunc_fprintf:
3359       return optimizeFPrintF(CI, Builder);
3360     case LibFunc_fwrite:
3361       return optimizeFWrite(CI, Builder);
3362     case LibFunc_fputs:
3363       return optimizeFPuts(CI, Builder);
3364     case LibFunc_puts:
3365       return optimizePuts(CI, Builder);
3366     case LibFunc_perror:
3367       return optimizeErrorReporting(CI, Builder);
3368     case LibFunc_vfprintf:
3369     case LibFunc_fiprintf:
3370       return optimizeErrorReporting(CI, Builder, 0);
3371     default:
3372       return nullptr;
3373     }
3374   }
3375   return nullptr;
3376 }
3377 
3378 LibCallSimplifier::LibCallSimplifier(
3379     const DataLayout &DL, const TargetLibraryInfo *TLI,
3380     OptimizationRemarkEmitter &ORE,
3381     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
3382     function_ref<void(Instruction *, Value *)> Replacer,
3383     function_ref<void(Instruction *)> Eraser)
3384     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
3385       Replacer(Replacer), Eraser(Eraser) {}
3386 
3387 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3388   // Indirect through the replacer used in this instance.
3389   Replacer(I, With);
3390 }
3391 
3392 void LibCallSimplifier::eraseFromParent(Instruction *I) {
3393   Eraser(I);
3394 }
3395 
3396 // TODO:
3397 //   Additional cases that we need to add to this file:
3398 //
3399 // cbrt:
3400 //   * cbrt(expN(X))  -> expN(x/3)
3401 //   * cbrt(sqrt(x))  -> pow(x,1/6)
3402 //   * cbrt(cbrt(x))  -> pow(x,1/9)
3403 //
3404 // exp, expf, expl:
3405 //   * exp(log(x))  -> x
3406 //
3407 // log, logf, logl:
3408 //   * log(exp(x))   -> x
3409 //   * log(exp(y))   -> y*log(e)
3410 //   * log(exp10(y)) -> y*log(10)
3411 //   * log(sqrt(x))  -> 0.5*log(x)
3412 //
3413 // pow, powf, powl:
3414 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
3415 //   * pow(pow(x,y),z)-> pow(x,y*z)
3416 //
3417 // signbit:
3418 //   * signbit(cnst) -> cnst'
3419 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3420 //
3421 // sqrt, sqrtf, sqrtl:
3422 //   * sqrt(expN(x))  -> expN(x*0.5)
3423 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3424 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3425 //
3426 
3427 //===----------------------------------------------------------------------===//
3428 // Fortified Library Call Optimizations
3429 //===----------------------------------------------------------------------===//
3430 
3431 bool
3432 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
3433                                                     unsigned ObjSizeOp,
3434                                                     Optional<unsigned> SizeOp,
3435                                                     Optional<unsigned> StrOp,
3436                                                     Optional<unsigned> FlagOp) {
3437   // If this function takes a flag argument, the implementation may use it to
3438   // perform extra checks. Don't fold into the non-checking variant.
3439   if (FlagOp) {
3440     ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
3441     if (!Flag || !Flag->isZero())
3442       return false;
3443   }
3444 
3445   if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
3446     return true;
3447 
3448   if (ConstantInt *ObjSizeCI =
3449           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
3450     if (ObjSizeCI->isMinusOne())
3451       return true;
3452     // If the object size wasn't -1 (unknown), bail out if we were asked to.
3453     if (OnlyLowerUnknownSize)
3454       return false;
3455     if (StrOp) {
3456       uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
3457       // If the length is 0 we don't know how long it is and so we can't
3458       // remove the check.
3459       if (Len)
3460         annotateDereferenceableBytes(CI, *StrOp, Len);
3461       else
3462         return false;
3463       return ObjSizeCI->getZExtValue() >= Len;
3464     }
3465 
3466     if (SizeOp) {
3467       if (ConstantInt *SizeCI =
3468               dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
3469         return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
3470     }
3471   }
3472   return false;
3473 }
3474 
3475 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
3476                                                      IRBuilderBase &B) {
3477   if (isFortifiedCallFoldable(CI, 3, 2)) {
3478     CallInst *NewCI =
3479         B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3480                        Align(1), CI->getArgOperand(2));
3481     NewCI->setAttributes(CI->getAttributes());
3482     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3483     copyFlags(*CI, NewCI);
3484     return CI->getArgOperand(0);
3485   }
3486   return nullptr;
3487 }
3488 
3489 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
3490                                                       IRBuilderBase &B) {
3491   if (isFortifiedCallFoldable(CI, 3, 2)) {
3492     CallInst *NewCI =
3493         B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3494                         Align(1), CI->getArgOperand(2));
3495     NewCI->setAttributes(CI->getAttributes());
3496     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3497     copyFlags(*CI, NewCI);
3498     return CI->getArgOperand(0);
3499   }
3500   return nullptr;
3501 }
3502 
3503 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
3504                                                      IRBuilderBase &B) {
3505   if (isFortifiedCallFoldable(CI, 3, 2)) {
3506     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
3507     CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
3508                                      CI->getArgOperand(2), Align(1));
3509     NewCI->setAttributes(CI->getAttributes());
3510     NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3511     copyFlags(*CI, NewCI);
3512     return CI->getArgOperand(0);
3513   }
3514   return nullptr;
3515 }
3516 
3517 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI,
3518                                                       IRBuilderBase &B) {
3519   const DataLayout &DL = CI->getModule()->getDataLayout();
3520   if (isFortifiedCallFoldable(CI, 3, 2))
3521     if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3522                                   CI->getArgOperand(2), B, DL, TLI)) {
3523       CallInst *NewCI = cast<CallInst>(Call);
3524       NewCI->setAttributes(CI->getAttributes());
3525       NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
3526       return copyFlags(*CI, NewCI);
3527     }
3528   return nullptr;
3529 }
3530 
3531 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
3532                                                       IRBuilderBase &B,
3533                                                       LibFunc Func) {
3534   const DataLayout &DL = CI->getModule()->getDataLayout();
3535   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
3536         *ObjSize = CI->getArgOperand(2);
3537 
3538   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
3539   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
3540     Value *StrLen = emitStrLen(Src, B, DL, TLI);
3541     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
3542   }
3543 
3544   // If a) we don't have any length information, or b) we know this will
3545   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3546   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3547   // TODO: It might be nice to get a maximum length out of the possible
3548   // string lengths for varying.
3549   if (isFortifiedCallFoldable(CI, 2, None, 1)) {
3550     if (Func == LibFunc_strcpy_chk)
3551       return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
3552     else
3553       return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI));
3554   }
3555 
3556   if (OnlyLowerUnknownSize)
3557     return nullptr;
3558 
3559   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3560   uint64_t Len = GetStringLength(Src);
3561   if (Len)
3562     annotateDereferenceableBytes(CI, 1, Len);
3563   else
3564     return nullptr;
3565 
3566   // FIXME: There is really no guarantee that sizeof(size_t) is equal to
3567   // sizeof(int*) for every target. So the assumption used here to derive the
3568   // SizeTBits based on the size of an integer pointer in address space zero
3569   // isn't always valid.
3570   Type *SizeTTy = DL.getIntPtrType(CI->getContext(), /*AddressSpace=*/0);
3571   Value *LenV = ConstantInt::get(SizeTTy, Len);
3572   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
3573   // If the function was an __stpcpy_chk, and we were able to fold it into
3574   // a __memcpy_chk, we still need to return the correct end pointer.
3575   if (Ret && Func == LibFunc_stpcpy_chk)
3576     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
3577   return copyFlags(*CI, cast<CallInst>(Ret));
3578 }
3579 
3580 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
3581                                                      IRBuilderBase &B) {
3582   if (isFortifiedCallFoldable(CI, 1, None, 0))
3583     return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B,
3584                                      CI->getModule()->getDataLayout(), TLI));
3585   return nullptr;
3586 }
3587 
3588 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
3589                                                        IRBuilderBase &B,
3590                                                        LibFunc Func) {
3591   if (isFortifiedCallFoldable(CI, 3, 2)) {
3592     if (Func == LibFunc_strncpy_chk)
3593       return copyFlags(*CI,
3594                        emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3595                                    CI->getArgOperand(2), B, TLI));
3596     else
3597       return copyFlags(*CI,
3598                        emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3599                                    CI->getArgOperand(2), B, TLI));
3600   }
3601 
3602   return nullptr;
3603 }
3604 
3605 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
3606                                                       IRBuilderBase &B) {
3607   if (isFortifiedCallFoldable(CI, 4, 3))
3608     return copyFlags(
3609         *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3610                          CI->getArgOperand(2), CI->getArgOperand(3), B, TLI));
3611 
3612   return nullptr;
3613 }
3614 
3615 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
3616                                                        IRBuilderBase &B) {
3617   if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
3618     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5));
3619     return copyFlags(*CI,
3620                      emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3621                                   CI->getArgOperand(4), VariadicArgs, B, TLI));
3622   }
3623 
3624   return nullptr;
3625 }
3626 
3627 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
3628                                                       IRBuilderBase &B) {
3629   if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
3630     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4));
3631     return copyFlags(*CI,
3632                      emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3633                                  VariadicArgs, B, TLI));
3634   }
3635 
3636   return nullptr;
3637 }
3638 
3639 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
3640                                                      IRBuilderBase &B) {
3641   if (isFortifiedCallFoldable(CI, 2))
3642     return copyFlags(
3643         *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI));
3644 
3645   return nullptr;
3646 }
3647 
3648 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
3649                                                    IRBuilderBase &B) {
3650   if (isFortifiedCallFoldable(CI, 3))
3651     return copyFlags(*CI,
3652                      emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
3653                                  CI->getArgOperand(2), B, TLI));
3654 
3655   return nullptr;
3656 }
3657 
3658 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
3659                                                       IRBuilderBase &B) {
3660   if (isFortifiedCallFoldable(CI, 3))
3661     return copyFlags(*CI,
3662                      emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
3663                                  CI->getArgOperand(2), B, TLI));
3664 
3665   return nullptr;
3666 }
3667 
3668 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
3669                                                       IRBuilderBase &B) {
3670   if (isFortifiedCallFoldable(CI, 3))
3671     return copyFlags(*CI,
3672                      emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3673                                  CI->getArgOperand(2), B, TLI));
3674 
3675   return nullptr;
3676 }
3677 
3678 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
3679                                                         IRBuilderBase &B) {
3680   if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
3681     return copyFlags(
3682         *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3683                            CI->getArgOperand(4), CI->getArgOperand(5), B, TLI));
3684 
3685   return nullptr;
3686 }
3687 
3688 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
3689                                                        IRBuilderBase &B) {
3690   if (isFortifiedCallFoldable(CI, 2, None, None, 1))
3691     return copyFlags(*CI,
3692                      emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3693                                   CI->getArgOperand(4), B, TLI));
3694 
3695   return nullptr;
3696 }
3697 
3698 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI,
3699                                                 IRBuilderBase &Builder) {
3700   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
3701   // Some clang users checked for _chk libcall availability using:
3702   //   __has_builtin(__builtin___memcpy_chk)
3703   // When compiling with -fno-builtin, this is always true.
3704   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
3705   // end up with fortified libcalls, which isn't acceptable in a freestanding
3706   // environment which only provides their non-fortified counterparts.
3707   //
3708   // Until we change clang and/or teach external users to check for availability
3709   // differently, disregard the "nobuiltin" attribute and TLI::has.
3710   //
3711   // PR23093.
3712 
3713   LibFunc Func;
3714   Function *Callee = CI->getCalledFunction();
3715   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
3716 
3717   SmallVector<OperandBundleDef, 2> OpBundles;
3718   CI->getOperandBundlesAsDefs(OpBundles);
3719 
3720   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3721   Builder.setDefaultOperandBundles(OpBundles);
3722 
3723   // First, check that this is a known library functions and that the prototype
3724   // is correct.
3725   if (!TLI->getLibFunc(*Callee, Func))
3726     return nullptr;
3727 
3728   // We never change the calling convention.
3729   if (!ignoreCallingConv(Func) && !IsCallingConvC)
3730     return nullptr;
3731 
3732   switch (Func) {
3733   case LibFunc_memcpy_chk:
3734     return optimizeMemCpyChk(CI, Builder);
3735   case LibFunc_mempcpy_chk:
3736     return optimizeMemPCpyChk(CI, Builder);
3737   case LibFunc_memmove_chk:
3738     return optimizeMemMoveChk(CI, Builder);
3739   case LibFunc_memset_chk:
3740     return optimizeMemSetChk(CI, Builder);
3741   case LibFunc_stpcpy_chk:
3742   case LibFunc_strcpy_chk:
3743     return optimizeStrpCpyChk(CI, Builder, Func);
3744   case LibFunc_strlen_chk:
3745     return optimizeStrLenChk(CI, Builder);
3746   case LibFunc_stpncpy_chk:
3747   case LibFunc_strncpy_chk:
3748     return optimizeStrpNCpyChk(CI, Builder, Func);
3749   case LibFunc_memccpy_chk:
3750     return optimizeMemCCpyChk(CI, Builder);
3751   case LibFunc_snprintf_chk:
3752     return optimizeSNPrintfChk(CI, Builder);
3753   case LibFunc_sprintf_chk:
3754     return optimizeSPrintfChk(CI, Builder);
3755   case LibFunc_strcat_chk:
3756     return optimizeStrCatChk(CI, Builder);
3757   case LibFunc_strlcat_chk:
3758     return optimizeStrLCat(CI, Builder);
3759   case LibFunc_strncat_chk:
3760     return optimizeStrNCatChk(CI, Builder);
3761   case LibFunc_strlcpy_chk:
3762     return optimizeStrLCpyChk(CI, Builder);
3763   case LibFunc_vsnprintf_chk:
3764     return optimizeVSNPrintfChk(CI, Builder);
3765   case LibFunc_vsprintf_chk:
3766     return optimizeVSPrintfChk(CI, Builder);
3767   default:
3768     break;
3769   }
3770   return nullptr;
3771 }
3772 
3773 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
3774     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
3775     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
3776