1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the library calls simplifier. It does not implement
11 // any pass, but can't be used by other passes to do simplifications.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/CaptureTracking.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/KnownBits.h"
37 #include "llvm/Transforms/Utils/BuildLibCalls.h"
38 
39 using namespace llvm;
40 using namespace PatternMatch;
41 
42 static cl::opt<bool>
43     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
44                          cl::init(false),
45                          cl::desc("Enable unsafe double to float "
46                                   "shrinking for math lib calls"));
47 
48 
49 //===----------------------------------------------------------------------===//
50 // Helper Functions
51 //===----------------------------------------------------------------------===//
52 
53 static bool ignoreCallingConv(LibFunc Func) {
54   return Func == LibFunc_abs || Func == LibFunc_labs ||
55          Func == LibFunc_llabs || Func == LibFunc_strlen;
56 }
57 
58 static bool isCallingConvCCompatible(CallInst *CI) {
59   switch(CI->getCallingConv()) {
60   default:
61     return false;
62   case llvm::CallingConv::C:
63     return true;
64   case llvm::CallingConv::ARM_APCS:
65   case llvm::CallingConv::ARM_AAPCS:
66   case llvm::CallingConv::ARM_AAPCS_VFP: {
67 
68     // The iOS ABI diverges from the standard in some cases, so for now don't
69     // try to simplify those calls.
70     if (Triple(CI->getModule()->getTargetTriple()).isiOS())
71       return false;
72 
73     auto *FuncTy = CI->getFunctionType();
74 
75     if (!FuncTy->getReturnType()->isPointerTy() &&
76         !FuncTy->getReturnType()->isIntegerTy() &&
77         !FuncTy->getReturnType()->isVoidTy())
78       return false;
79 
80     for (auto Param : FuncTy->params()) {
81       if (!Param->isPointerTy() && !Param->isIntegerTy())
82         return false;
83     }
84     return true;
85   }
86   }
87   return false;
88 }
89 
90 /// Return true if it is only used in equality comparisons with With.
91 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
92   for (User *U : V->users()) {
93     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
94       if (IC->isEquality() && IC->getOperand(1) == With)
95         continue;
96     // Unknown instruction.
97     return false;
98   }
99   return true;
100 }
101 
102 static bool callHasFloatingPointArgument(const CallInst *CI) {
103   return any_of(CI->operands(), [](const Use &OI) {
104     return OI->getType()->isFloatingPointTy();
105   });
106 }
107 
108 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
109   if (Base < 2 || Base > 36)
110     // handle special zero base
111     if (Base != 0)
112       return nullptr;
113 
114   char *End;
115   std::string nptr = Str.str();
116   errno = 0;
117   long long int Result = strtoll(nptr.c_str(), &End, Base);
118   if (errno)
119     return nullptr;
120 
121   // if we assume all possible target locales are ASCII supersets,
122   // then if strtoll successfully parses a number on the host,
123   // it will also successfully parse the same way on the target
124   if (*End != '\0')
125     return nullptr;
126 
127   if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
128     return nullptr;
129 
130   return ConstantInt::get(CI->getType(), Result);
131 }
132 
133 static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B,
134                                 const TargetLibraryInfo *TLI) {
135   CallInst *FOpen = dyn_cast<CallInst>(File);
136   if (!FOpen)
137     return false;
138 
139   Function *InnerCallee = FOpen->getCalledFunction();
140   if (!InnerCallee)
141     return false;
142 
143   LibFunc Func;
144   if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
145       Func != LibFunc_fopen)
146     return false;
147 
148   inferLibFuncAttributes(*CI->getCalledFunction(), *TLI);
149   if (PointerMayBeCaptured(File, true, true))
150     return false;
151 
152   return true;
153 }
154 
155 static bool isOnlyUsedInComparisonWithZero(Value *V) {
156   for (User *U : V->users()) {
157     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
158       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
159         if (C->isNullValue())
160           continue;
161     // Unknown instruction.
162     return false;
163   }
164   return true;
165 }
166 
167 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
168                                  const DataLayout &DL) {
169   if (!isOnlyUsedInComparisonWithZero(CI))
170     return false;
171 
172   if (!isDereferenceableAndAlignedPointer(Str, 1, APInt(64, Len), DL))
173     return false;
174 
175   return true;
176 }
177 
178 //===----------------------------------------------------------------------===//
179 // String and Memory Library Call Optimizations
180 //===----------------------------------------------------------------------===//
181 
182 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
183   // Extract some information from the instruction
184   Value *Dst = CI->getArgOperand(0);
185   Value *Src = CI->getArgOperand(1);
186 
187   // See if we can get the length of the input string.
188   uint64_t Len = GetStringLength(Src);
189   if (Len == 0)
190     return nullptr;
191   --Len; // Unbias length.
192 
193   // Handle the simple, do-nothing case: strcat(x, "") -> x
194   if (Len == 0)
195     return Dst;
196 
197   return emitStrLenMemCpy(Src, Dst, Len, B);
198 }
199 
200 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
201                                            IRBuilder<> &B) {
202   // We need to find the end of the destination string.  That's where the
203   // memory is to be moved to. We just generate a call to strlen.
204   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
205   if (!DstLen)
206     return nullptr;
207 
208   // Now that we have the destination's length, we must index into the
209   // destination's pointer to get the actual memcpy destination (end of
210   // the string .. we're concatenating).
211   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
212 
213   // We have enough information to now generate the memcpy call to do the
214   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
215   B.CreateMemCpy(CpyDst, 1, Src, 1,
216                  ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
217   return Dst;
218 }
219 
220 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
221   // Extract some information from the instruction.
222   Value *Dst = CI->getArgOperand(0);
223   Value *Src = CI->getArgOperand(1);
224   uint64_t Len;
225 
226   // We don't do anything if length is not constant.
227   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
228     Len = LengthArg->getZExtValue();
229   else
230     return nullptr;
231 
232   // See if we can get the length of the input string.
233   uint64_t SrcLen = GetStringLength(Src);
234   if (SrcLen == 0)
235     return nullptr;
236   --SrcLen; // Unbias length.
237 
238   // Handle the simple, do-nothing cases:
239   // strncat(x, "", c) -> x
240   // strncat(x,  c, 0) -> x
241   if (SrcLen == 0 || Len == 0)
242     return Dst;
243 
244   // We don't optimize this case.
245   if (Len < SrcLen)
246     return nullptr;
247 
248   // strncat(x, s, c) -> strcat(x, s)
249   // s is constant so the strcat can be optimized further.
250   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
251 }
252 
253 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
254   Function *Callee = CI->getCalledFunction();
255   FunctionType *FT = Callee->getFunctionType();
256   Value *SrcStr = CI->getArgOperand(0);
257 
258   // If the second operand is non-constant, see if we can compute the length
259   // of the input string and turn this into memchr.
260   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
261   if (!CharC) {
262     uint64_t Len = GetStringLength(SrcStr);
263     if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
264       return nullptr;
265 
266     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
267                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
268                       B, DL, TLI);
269   }
270 
271   // Otherwise, the character is a constant, see if the first argument is
272   // a string literal.  If so, we can constant fold.
273   StringRef Str;
274   if (!getConstantStringInfo(SrcStr, Str)) {
275     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
276       return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI),
277                          "strchr");
278     return nullptr;
279   }
280 
281   // Compute the offset, make sure to handle the case when we're searching for
282   // zero (a weird way to spell strlen).
283   size_t I = (0xFF & CharC->getSExtValue()) == 0
284                  ? Str.size()
285                  : Str.find(CharC->getSExtValue());
286   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
287     return Constant::getNullValue(CI->getType());
288 
289   // strchr(s+n,c)  -> gep(s+n+i,c)
290   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
291 }
292 
293 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
294   Value *SrcStr = CI->getArgOperand(0);
295   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
296 
297   // Cannot fold anything if we're not looking for a constant.
298   if (!CharC)
299     return nullptr;
300 
301   StringRef Str;
302   if (!getConstantStringInfo(SrcStr, Str)) {
303     // strrchr(s, 0) -> strchr(s, 0)
304     if (CharC->isZero())
305       return emitStrChr(SrcStr, '\0', B, TLI);
306     return nullptr;
307   }
308 
309   // Compute the offset.
310   size_t I = (0xFF & CharC->getSExtValue()) == 0
311                  ? Str.size()
312                  : Str.rfind(CharC->getSExtValue());
313   if (I == StringRef::npos) // Didn't find the char. Return null.
314     return Constant::getNullValue(CI->getType());
315 
316   // strrchr(s+n,c) -> gep(s+n+i,c)
317   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
318 }
319 
320 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
321   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
322   if (Str1P == Str2P) // strcmp(x,x)  -> 0
323     return ConstantInt::get(CI->getType(), 0);
324 
325   StringRef Str1, Str2;
326   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
327   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
328 
329   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
330   if (HasStr1 && HasStr2)
331     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
332 
333   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
334     return B.CreateNeg(
335         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
336 
337   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
338     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
339 
340   // strcmp(P, "x") -> memcmp(P, "x", 2)
341   uint64_t Len1 = GetStringLength(Str1P);
342   uint64_t Len2 = GetStringLength(Str2P);
343   if (Len1 && Len2) {
344     return emitMemCmp(Str1P, Str2P,
345                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
346                                        std::min(Len1, Len2)),
347                       B, DL, TLI);
348   }
349 
350   // strcmp to memcmp
351   if (!HasStr1 && HasStr2) {
352     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
353       return emitMemCmp(
354           Str1P, Str2P,
355           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
356           TLI);
357   } else if (HasStr1 && !HasStr2) {
358     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
359       return emitMemCmp(
360           Str1P, Str2P,
361           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
362           TLI);
363   }
364 
365   return nullptr;
366 }
367 
368 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
369   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
370   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
371     return ConstantInt::get(CI->getType(), 0);
372 
373   // Get the length argument if it is constant.
374   uint64_t Length;
375   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
376     Length = LengthArg->getZExtValue();
377   else
378     return nullptr;
379 
380   if (Length == 0) // strncmp(x,y,0)   -> 0
381     return ConstantInt::get(CI->getType(), 0);
382 
383   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
384     return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
385 
386   StringRef Str1, Str2;
387   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
388   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
389 
390   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
391   if (HasStr1 && HasStr2) {
392     StringRef SubStr1 = Str1.substr(0, Length);
393     StringRef SubStr2 = Str2.substr(0, Length);
394     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
395   }
396 
397   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
398     return B.CreateNeg(
399         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
400 
401   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
402     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
403 
404   uint64_t Len1 = GetStringLength(Str1P);
405   uint64_t Len2 = GetStringLength(Str2P);
406 
407   // strncmp to memcmp
408   if (!HasStr1 && HasStr2) {
409     Len2 = std::min(Len2, Length);
410     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
411       return emitMemCmp(
412           Str1P, Str2P,
413           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
414           TLI);
415   } else if (HasStr1 && !HasStr2) {
416     Len1 = std::min(Len1, Length);
417     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
418       return emitMemCmp(
419           Str1P, Str2P,
420           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
421           TLI);
422   }
423 
424   return nullptr;
425 }
426 
427 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
428   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
429   if (Dst == Src) // strcpy(x,x)  -> x
430     return Src;
431 
432   // See if we can get the length of the input string.
433   uint64_t Len = GetStringLength(Src);
434   if (Len == 0)
435     return nullptr;
436 
437   // We have enough information to now generate the memcpy call to do the
438   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
439   B.CreateMemCpy(Dst, 1, Src, 1,
440                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
441   return Dst;
442 }
443 
444 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
445   Function *Callee = CI->getCalledFunction();
446   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
447   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
448     Value *StrLen = emitStrLen(Src, B, DL, TLI);
449     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
450   }
451 
452   // See if we can get the length of the input string.
453   uint64_t Len = GetStringLength(Src);
454   if (Len == 0)
455     return nullptr;
456 
457   Type *PT = Callee->getFunctionType()->getParamType(0);
458   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
459   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
460                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
461 
462   // We have enough information to now generate the memcpy call to do the
463   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
464   B.CreateMemCpy(Dst, 1, Src, 1, LenV);
465   return DstEnd;
466 }
467 
468 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
469   Function *Callee = CI->getCalledFunction();
470   Value *Dst = CI->getArgOperand(0);
471   Value *Src = CI->getArgOperand(1);
472   Value *LenOp = CI->getArgOperand(2);
473 
474   // See if we can get the length of the input string.
475   uint64_t SrcLen = GetStringLength(Src);
476   if (SrcLen == 0)
477     return nullptr;
478   --SrcLen;
479 
480   if (SrcLen == 0) {
481     // strncpy(x, "", y) -> memset(align 1 x, '\0', y)
482     B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
483     return Dst;
484   }
485 
486   uint64_t Len;
487   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
488     Len = LengthArg->getZExtValue();
489   else
490     return nullptr;
491 
492   if (Len == 0)
493     return Dst; // strncpy(x, y, 0) -> x
494 
495   // Let strncpy handle the zero padding
496   if (Len > SrcLen + 1)
497     return nullptr;
498 
499   Type *PT = Callee->getFunctionType()->getParamType(0);
500   // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
501   B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len));
502 
503   return Dst;
504 }
505 
506 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B,
507                                                unsigned CharSize) {
508   Value *Src = CI->getArgOperand(0);
509 
510   // Constant folding: strlen("xyz") -> 3
511   if (uint64_t Len = GetStringLength(Src, CharSize))
512     return ConstantInt::get(CI->getType(), Len - 1);
513 
514   // If s is a constant pointer pointing to a string literal, we can fold
515   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
516   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
517   // We only try to simplify strlen when the pointer s points to an array
518   // of i8. Otherwise, we would need to scale the offset x before doing the
519   // subtraction. This will make the optimization more complex, and it's not
520   // very useful because calling strlen for a pointer of other types is
521   // very uncommon.
522   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
523     if (!isGEPBasedOnPointerToString(GEP, CharSize))
524       return nullptr;
525 
526     ConstantDataArraySlice Slice;
527     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
528       uint64_t NullTermIdx;
529       if (Slice.Array == nullptr) {
530         NullTermIdx = 0;
531       } else {
532         NullTermIdx = ~((uint64_t)0);
533         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
534           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
535             NullTermIdx = I;
536             break;
537           }
538         }
539         // If the string does not have '\0', leave it to strlen to compute
540         // its length.
541         if (NullTermIdx == ~((uint64_t)0))
542           return nullptr;
543       }
544 
545       Value *Offset = GEP->getOperand(2);
546       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
547       Known.Zero.flipAllBits();
548       uint64_t ArrSize =
549              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
550 
551       // KnownZero's bits are flipped, so zeros in KnownZero now represent
552       // bits known to be zeros in Offset, and ones in KnowZero represent
553       // bits unknown in Offset. Therefore, Offset is known to be in range
554       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
555       // unsigned-less-than NullTermIdx.
556       //
557       // If Offset is not provably in the range [0, NullTermIdx], we can still
558       // optimize if we can prove that the program has undefined behavior when
559       // Offset is outside that range. That is the case when GEP->getOperand(0)
560       // is a pointer to an object whose memory extent is NullTermIdx+1.
561       if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
562           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
563            NullTermIdx == ArrSize - 1)) {
564         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
565         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
566                            Offset);
567       }
568     }
569 
570     return nullptr;
571   }
572 
573   // strlen(x?"foo":"bars") --> x ? 3 : 4
574   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
575     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
576     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
577     if (LenTrue && LenFalse) {
578       ORE.emit([&]() {
579         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
580                << "folded strlen(select) to select of constants";
581       });
582       return B.CreateSelect(SI->getCondition(),
583                             ConstantInt::get(CI->getType(), LenTrue - 1),
584                             ConstantInt::get(CI->getType(), LenFalse - 1));
585     }
586   }
587 
588   // strlen(x) != 0 --> *x != 0
589   // strlen(x) == 0 --> *x == 0
590   if (isOnlyUsedInZeroEqualityComparison(CI))
591     return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
592 
593   return nullptr;
594 }
595 
596 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
597   return optimizeStringLength(CI, B, 8);
598 }
599 
600 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) {
601   Module &M = *CI->getModule();
602   unsigned WCharSize = TLI->getWCharSize(M) * 8;
603   // We cannot perform this optimization without wchar_size metadata.
604   if (WCharSize == 0)
605     return nullptr;
606 
607   return optimizeStringLength(CI, B, WCharSize);
608 }
609 
610 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
611   StringRef S1, S2;
612   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
613   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
614 
615   // strpbrk(s, "") -> nullptr
616   // strpbrk("", s) -> nullptr
617   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
618     return Constant::getNullValue(CI->getType());
619 
620   // Constant folding.
621   if (HasS1 && HasS2) {
622     size_t I = S1.find_first_of(S2);
623     if (I == StringRef::npos) // No match.
624       return Constant::getNullValue(CI->getType());
625 
626     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
627                        "strpbrk");
628   }
629 
630   // strpbrk(s, "a") -> strchr(s, 'a')
631   if (HasS2 && S2.size() == 1)
632     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
633 
634   return nullptr;
635 }
636 
637 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
638   Value *EndPtr = CI->getArgOperand(1);
639   if (isa<ConstantPointerNull>(EndPtr)) {
640     // With a null EndPtr, this function won't capture the main argument.
641     // It would be readonly too, except that it still may write to errno.
642     CI->addParamAttr(0, Attribute::NoCapture);
643   }
644 
645   return nullptr;
646 }
647 
648 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
649   StringRef S1, S2;
650   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
651   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
652 
653   // strspn(s, "") -> 0
654   // strspn("", s) -> 0
655   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
656     return Constant::getNullValue(CI->getType());
657 
658   // Constant folding.
659   if (HasS1 && HasS2) {
660     size_t Pos = S1.find_first_not_of(S2);
661     if (Pos == StringRef::npos)
662       Pos = S1.size();
663     return ConstantInt::get(CI->getType(), Pos);
664   }
665 
666   return nullptr;
667 }
668 
669 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
670   StringRef S1, S2;
671   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
672   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
673 
674   // strcspn("", s) -> 0
675   if (HasS1 && S1.empty())
676     return Constant::getNullValue(CI->getType());
677 
678   // Constant folding.
679   if (HasS1 && HasS2) {
680     size_t Pos = S1.find_first_of(S2);
681     if (Pos == StringRef::npos)
682       Pos = S1.size();
683     return ConstantInt::get(CI->getType(), Pos);
684   }
685 
686   // strcspn(s, "") -> strlen(s)
687   if (HasS2 && S2.empty())
688     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
689 
690   return nullptr;
691 }
692 
693 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
694   // fold strstr(x, x) -> x.
695   if (CI->getArgOperand(0) == CI->getArgOperand(1))
696     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
697 
698   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
699   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
700     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
701     if (!StrLen)
702       return nullptr;
703     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
704                                  StrLen, B, DL, TLI);
705     if (!StrNCmp)
706       return nullptr;
707     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
708       ICmpInst *Old = cast<ICmpInst>(*UI++);
709       Value *Cmp =
710           B.CreateICmp(Old->getPredicate(), StrNCmp,
711                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
712       replaceAllUsesWith(Old, Cmp);
713     }
714     return CI;
715   }
716 
717   // See if either input string is a constant string.
718   StringRef SearchStr, ToFindStr;
719   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
720   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
721 
722   // fold strstr(x, "") -> x.
723   if (HasStr2 && ToFindStr.empty())
724     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
725 
726   // If both strings are known, constant fold it.
727   if (HasStr1 && HasStr2) {
728     size_t Offset = SearchStr.find(ToFindStr);
729 
730     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
731       return Constant::getNullValue(CI->getType());
732 
733     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
734     Value *Result = castToCStr(CI->getArgOperand(0), B);
735     Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
736     return B.CreateBitCast(Result, CI->getType());
737   }
738 
739   // fold strstr(x, "y") -> strchr(x, 'y').
740   if (HasStr2 && ToFindStr.size() == 1) {
741     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
742     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
743   }
744   return nullptr;
745 }
746 
747 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
748   Value *SrcStr = CI->getArgOperand(0);
749   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
750   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
751 
752   // memchr(x, y, 0) -> null
753   if (LenC && LenC->isZero())
754     return Constant::getNullValue(CI->getType());
755 
756   // From now on we need at least constant length and string.
757   StringRef Str;
758   if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
759     return nullptr;
760 
761   // Truncate the string to LenC. If Str is smaller than LenC we will still only
762   // scan the string, as reading past the end of it is undefined and we can just
763   // return null if we don't find the char.
764   Str = Str.substr(0, LenC->getZExtValue());
765 
766   // If the char is variable but the input str and length are not we can turn
767   // this memchr call into a simple bit field test. Of course this only works
768   // when the return value is only checked against null.
769   //
770   // It would be really nice to reuse switch lowering here but we can't change
771   // the CFG at this point.
772   //
773   // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
774   //   after bounds check.
775   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
776     unsigned char Max =
777         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
778                           reinterpret_cast<const unsigned char *>(Str.end()));
779 
780     // Make sure the bit field we're about to create fits in a register on the
781     // target.
782     // FIXME: On a 64 bit architecture this prevents us from using the
783     // interesting range of alpha ascii chars. We could do better by emitting
784     // two bitfields or shifting the range by 64 if no lower chars are used.
785     if (!DL.fitsInLegalInteger(Max + 1))
786       return nullptr;
787 
788     // For the bit field use a power-of-2 type with at least 8 bits to avoid
789     // creating unnecessary illegal types.
790     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
791 
792     // Now build the bit field.
793     APInt Bitfield(Width, 0);
794     for (char C : Str)
795       Bitfield.setBit((unsigned char)C);
796     Value *BitfieldC = B.getInt(Bitfield);
797 
798     // First check that the bit field access is within bounds.
799     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
800     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
801                                  "memchr.bounds");
802 
803     // Create code that checks if the given bit is set in the field.
804     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
805     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
806 
807     // Finally merge both checks and cast to pointer type. The inttoptr
808     // implicitly zexts the i1 to intptr type.
809     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
810   }
811 
812   // Check if all arguments are constants.  If so, we can constant fold.
813   if (!CharC)
814     return nullptr;
815 
816   // Compute the offset.
817   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
818   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
819     return Constant::getNullValue(CI->getType());
820 
821   // memchr(s+n,c,l) -> gep(s+n+i,c)
822   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
823 }
824 
825 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
826   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
827 
828   if (LHS == RHS) // memcmp(s,s,x) -> 0
829     return Constant::getNullValue(CI->getType());
830 
831   // Make sure we have a constant length.
832   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
833   if (!LenC)
834     return nullptr;
835 
836   uint64_t Len = LenC->getZExtValue();
837   if (Len == 0) // memcmp(s1,s2,0) -> 0
838     return Constant::getNullValue(CI->getType());
839 
840   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
841   if (Len == 1) {
842     Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"),
843                                CI->getType(), "lhsv");
844     Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"),
845                                CI->getType(), "rhsv");
846     return B.CreateSub(LHSV, RHSV, "chardiff");
847   }
848 
849   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
850   // TODO: The case where both inputs are constants does not need to be limited
851   // to legal integers or equality comparison. See block below this.
852   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
853     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
854     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
855 
856     // First, see if we can fold either argument to a constant.
857     Value *LHSV = nullptr;
858     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
859       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
860       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
861     }
862     Value *RHSV = nullptr;
863     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
864       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
865       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
866     }
867 
868     // Don't generate unaligned loads. If either source is constant data,
869     // alignment doesn't matter for that source because there is no load.
870     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
871         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
872       if (!LHSV) {
873         Type *LHSPtrTy =
874             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
875         LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
876       }
877       if (!RHSV) {
878         Type *RHSPtrTy =
879             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
880         RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
881       }
882       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
883     }
884   }
885 
886   // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
887   // TODO: This is limited to i8 arrays.
888   StringRef LHSStr, RHSStr;
889   if (getConstantStringInfo(LHS, LHSStr) &&
890       getConstantStringInfo(RHS, RHSStr)) {
891     // Make sure we're not reading out-of-bounds memory.
892     if (Len > LHSStr.size() || Len > RHSStr.size())
893       return nullptr;
894     // Fold the memcmp and normalize the result.  This way we get consistent
895     // results across multiple platforms.
896     uint64_t Ret = 0;
897     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
898     if (Cmp < 0)
899       Ret = -1;
900     else if (Cmp > 0)
901       Ret = 1;
902     return ConstantInt::get(CI->getType(), Ret);
903   }
904 
905   return nullptr;
906 }
907 
908 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
909   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
910   B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
911                  CI->getArgOperand(2));
912   return CI->getArgOperand(0);
913 }
914 
915 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
916   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
917   B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
918                   CI->getArgOperand(2));
919   return CI->getArgOperand(0);
920 }
921 
922 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
923 static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B,
924                                const TargetLibraryInfo &TLI) {
925   // This has to be a memset of zeros (bzero).
926   auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
927   if (!FillValue || FillValue->getZExtValue() != 0)
928     return nullptr;
929 
930   // TODO: We should handle the case where the malloc has more than one use.
931   // This is necessary to optimize common patterns such as when the result of
932   // the malloc is checked against null or when a memset intrinsic is used in
933   // place of a memset library call.
934   auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
935   if (!Malloc || !Malloc->hasOneUse())
936     return nullptr;
937 
938   // Is the inner call really malloc()?
939   Function *InnerCallee = Malloc->getCalledFunction();
940   if (!InnerCallee)
941     return nullptr;
942 
943   LibFunc Func;
944   if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
945       Func != LibFunc_malloc)
946     return nullptr;
947 
948   // The memset must cover the same number of bytes that are malloc'd.
949   if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
950     return nullptr;
951 
952   // Replace the malloc with a calloc. We need the data layout to know what the
953   // actual size of a 'size_t' parameter is.
954   B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
955   const DataLayout &DL = Malloc->getModule()->getDataLayout();
956   IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
957   Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
958                              Malloc->getArgOperand(0), Malloc->getAttributes(),
959                              B, TLI);
960   if (!Calloc)
961     return nullptr;
962 
963   Malloc->replaceAllUsesWith(Calloc);
964   Malloc->eraseFromParent();
965 
966   return Calloc;
967 }
968 
969 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
970   if (auto *Calloc = foldMallocMemset(CI, B, *TLI))
971     return Calloc;
972 
973   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
974   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
975   B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
976   return CI->getArgOperand(0);
977 }
978 
979 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) {
980   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
981     return emitMalloc(CI->getArgOperand(1), B, DL, TLI);
982 
983   return nullptr;
984 }
985 
986 //===----------------------------------------------------------------------===//
987 // Math Library Optimizations
988 //===----------------------------------------------------------------------===//
989 
990 // Replace a libcall \p CI with a call to intrinsic \p IID
991 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) {
992   // Propagate fast-math flags from the existing call to the new call.
993   IRBuilder<>::FastMathFlagGuard Guard(B);
994   B.setFastMathFlags(CI->getFastMathFlags());
995 
996   Module *M = CI->getModule();
997   Value *V = CI->getArgOperand(0);
998   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
999   CallInst *NewCall = B.CreateCall(F, V);
1000   NewCall->takeName(CI);
1001   return NewCall;
1002 }
1003 
1004 /// Return a variant of Val with float type.
1005 /// Currently this works in two cases: If Val is an FPExtension of a float
1006 /// value to something bigger, simply return the operand.
1007 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1008 /// loss of precision do so.
1009 static Value *valueHasFloatPrecision(Value *Val) {
1010   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1011     Value *Op = Cast->getOperand(0);
1012     if (Op->getType()->isFloatTy())
1013       return Op;
1014   }
1015   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1016     APFloat F = Const->getValueAPF();
1017     bool losesInfo;
1018     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1019                     &losesInfo);
1020     if (!losesInfo)
1021       return ConstantFP::get(Const->getContext(), F);
1022   }
1023   return nullptr;
1024 }
1025 
1026 /// Shrink double -> float functions.
1027 static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B,
1028                                bool isBinary, bool isPrecise = false) {
1029   if (!CI->getType()->isDoubleTy())
1030     return nullptr;
1031 
1032   // If not all the uses of the function are converted to float, then bail out.
1033   // This matters if the precision of the result is more important than the
1034   // precision of the arguments.
1035   if (isPrecise)
1036     for (User *U : CI->users()) {
1037       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1038       if (!Cast || !Cast->getType()->isFloatTy())
1039         return nullptr;
1040     }
1041 
1042   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1043   Value *V[2];
1044   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1045   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1046   if (!V[0] || (isBinary && !V[1]))
1047     return nullptr;
1048 
1049   // If call isn't an intrinsic, check that it isn't within a function with the
1050   // same name as the float version of this call, otherwise the result is an
1051   // infinite loop.  For example, from MinGW-w64:
1052   //
1053   // float expf(float val) { return (float) exp((double) val); }
1054   Function *CalleeFn = CI->getCalledFunction();
1055   StringRef CalleeNm = CalleeFn->getName();
1056   AttributeList CalleeAt = CalleeFn->getAttributes();
1057   if (CalleeFn && !CalleeFn->isIntrinsic()) {
1058     const Function *Fn = CI->getFunction();
1059     StringRef FnName = Fn->getName();
1060     if (FnName.back() == 'f' &&
1061         FnName.size() == (CalleeNm.size() + 1) &&
1062         FnName.startswith(CalleeNm))
1063       return nullptr;
1064   }
1065 
1066   // Propagate the math semantics from the current function to the new function.
1067   IRBuilder<>::FastMathFlagGuard Guard(B);
1068   B.setFastMathFlags(CI->getFastMathFlags());
1069 
1070   // g((double) float) -> (double) gf(float)
1071   Value *R;
1072   if (CalleeFn->isIntrinsic()) {
1073     Module *M = CI->getModule();
1074     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1075     Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1076     R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1077   }
1078   else
1079     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeNm, B, CalleeAt)
1080                  : emitUnaryFloatFnCall(V[0], CalleeNm, B, CalleeAt);
1081 
1082   return B.CreateFPExt(R, B.getDoubleTy());
1083 }
1084 
1085 /// Shrink double -> float for unary functions.
1086 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
1087                                     bool isPrecise = false) {
1088   return optimizeDoubleFP(CI, B, false, isPrecise);
1089 }
1090 
1091 /// Shrink double -> float for binary functions.
1092 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B,
1093                                      bool isPrecise = false) {
1094   return optimizeDoubleFP(CI, B, true, isPrecise);
1095 }
1096 
1097 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1098 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) {
1099   if (!CI->isFast())
1100     return nullptr;
1101 
1102   // Propagate fast-math flags from the existing call to new instructions.
1103   IRBuilder<>::FastMathFlagGuard Guard(B);
1104   B.setFastMathFlags(CI->getFastMathFlags());
1105 
1106   Value *Real, *Imag;
1107   if (CI->getNumArgOperands() == 1) {
1108     Value *Op = CI->getArgOperand(0);
1109     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1110     Real = B.CreateExtractValue(Op, 0, "real");
1111     Imag = B.CreateExtractValue(Op, 1, "imag");
1112   } else {
1113     assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
1114     Real = CI->getArgOperand(0);
1115     Imag = CI->getArgOperand(1);
1116   }
1117 
1118   Value *RealReal = B.CreateFMul(Real, Real);
1119   Value *ImagImag = B.CreateFMul(Imag, Imag);
1120 
1121   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1122                                               CI->getType());
1123   return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
1124 }
1125 
1126 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1127                                       IRBuilder<> &B) {
1128   if (!isa<FPMathOperator>(Call))
1129     return nullptr;
1130 
1131   IRBuilder<>::FastMathFlagGuard Guard(B);
1132   B.setFastMathFlags(Call->getFastMathFlags());
1133 
1134   // TODO: Can this be shared to also handle LLVM intrinsics?
1135   Value *X;
1136   switch (Func) {
1137   case LibFunc_sin:
1138   case LibFunc_sinf:
1139   case LibFunc_sinl:
1140   case LibFunc_tan:
1141   case LibFunc_tanf:
1142   case LibFunc_tanl:
1143     // sin(-X) --> -sin(X)
1144     // tan(-X) --> -tan(X)
1145     if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1146       return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X));
1147     break;
1148   case LibFunc_cos:
1149   case LibFunc_cosf:
1150   case LibFunc_cosl:
1151     // cos(-X) --> cos(X)
1152     if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1153       return B.CreateCall(Call->getCalledFunction(), X, "cos");
1154     break;
1155   default:
1156     break;
1157   }
1158   return nullptr;
1159 }
1160 
1161 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
1162   // Multiplications calculated using Addition Chains.
1163   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1164 
1165   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1166 
1167   if (InnerChain[Exp])
1168     return InnerChain[Exp];
1169 
1170   static const unsigned AddChain[33][2] = {
1171       {0, 0}, // Unused.
1172       {0, 0}, // Unused (base case = pow1).
1173       {1, 1}, // Unused (pre-computed).
1174       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1175       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1176       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1177       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1178       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1179   };
1180 
1181   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1182                                  getPow(InnerChain, AddChain[Exp][1], B));
1183   return InnerChain[Exp];
1184 }
1185 
1186 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1187 /// exp2(n * x) for pow(2.0 ** n, x); exp10(x) for pow(10.0, x).
1188 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) {
1189   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1190   AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
1191   Module *Mod = Pow->getModule();
1192   Type *Ty = Pow->getType();
1193   bool Ignored;
1194 
1195   // Evaluate special cases related to a nested function as the base.
1196 
1197   // pow(exp(x), y) -> exp(x * y)
1198   // pow(exp2(x), y) -> exp2(x * y)
1199   // If exp{,2}() is used only once, it is better to fold two transcendental
1200   // math functions into one.  If used again, exp{,2}() would still have to be
1201   // called with the original argument, then keep both original transcendental
1202   // functions.  However, this transformation is only safe with fully relaxed
1203   // math semantics, since, besides rounding differences, it changes overflow
1204   // and underflow behavior quite dramatically.  For example:
1205   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1206   // Whereas:
1207   //   exp(1000 * 0.001) = exp(1)
1208   // TODO: Loosen the requirement for fully relaxed math semantics.
1209   // TODO: Handle exp10() when more targets have it available.
1210   CallInst *BaseFn = dyn_cast<CallInst>(Base);
1211   if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1212     LibFunc LibFn;
1213 
1214     Function *CalleeFn = BaseFn->getCalledFunction();
1215     if (CalleeFn &&
1216         TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) {
1217       StringRef ExpName;
1218       Intrinsic::ID ID;
1219       Value *ExpFn;
1220 
1221       switch (LibFn) {
1222       default:
1223         return nullptr;
1224       case LibFunc_expf:  case LibFunc_exp:  case LibFunc_expl:
1225         ExpName = TLI->getName(LibFunc_exp);
1226         ID = Intrinsic::exp;
1227         break;
1228       case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1229         ExpName = TLI->getName(LibFunc_exp2);
1230         ID = Intrinsic::exp2;
1231         break;
1232       }
1233 
1234       // Create new exp{,2}() with the product as its argument.
1235       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1236       ExpFn = BaseFn->doesNotAccessMemory()
1237               ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1238                              FMul, ExpName)
1239               : emitUnaryFloatFnCall(FMul, ExpName, B, BaseFn->getAttributes());
1240 
1241       // Since the new exp{,2}() is different from the original one, dead code
1242       // elimination cannot be trusted to remove it, since it may have side
1243       // effects (e.g., errno).  When the only consumer for the original
1244       // exp{,2}() is pow(), then it has to be explicitly erased.
1245       BaseFn->replaceAllUsesWith(ExpFn);
1246       BaseFn->eraseFromParent();
1247 
1248       return ExpFn;
1249     }
1250   }
1251 
1252   // Evaluate special cases related to a constant base.
1253 
1254   const APFloat *BaseF;
1255   if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1256     return nullptr;
1257 
1258   // pow(2.0 ** n, x) -> exp2(n * x)
1259   if (hasUnaryFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1260     APFloat BaseR = APFloat(1.0);
1261     BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1262     BaseR = BaseR / *BaseF;
1263     bool IsInteger    = BaseF->isInteger(),
1264          IsReciprocal = BaseR.isInteger();
1265     const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1266     APSInt NI(64, false);
1267     if ((IsInteger || IsReciprocal) &&
1268         !NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) &&
1269         NI > 1 && NI.isPowerOf2()) {
1270       double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1271       Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1272       if (Pow->doesNotAccessMemory())
1273         return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1274                             FMul, "exp2");
1275       else
1276         return emitUnaryFloatFnCall(FMul, TLI->getName(LibFunc_exp2), B, Attrs);
1277     }
1278   }
1279 
1280   // pow(10.0, x) -> exp10(x)
1281   // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1282   if (match(Base, m_SpecificFP(10.0)) &&
1283       hasUnaryFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1284     return emitUnaryFloatFnCall(Expo, TLI->getName(LibFunc_exp10), B, Attrs);
1285 
1286   return nullptr;
1287 }
1288 
1289 /// Use square root in place of pow(x, +/-0.5).
1290 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) {
1291   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1292   AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
1293   Module *Mod = Pow->getModule();
1294   Type *Ty = Pow->getType();
1295 
1296   const APFloat *ExpoF;
1297   if (!match(Expo, m_APFloat(ExpoF)) ||
1298       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1299     return nullptr;
1300 
1301   // If errno is never set, then use the intrinsic for sqrt().
1302   if (Pow->doesNotAccessMemory()) {
1303     Function *SqrtFn = Intrinsic::getDeclaration(Pow->getModule(),
1304                                                  Intrinsic::sqrt, Ty);
1305     Sqrt = B.CreateCall(SqrtFn, Base, "sqrt");
1306   }
1307   // Otherwise, use the libcall for sqrt().
1308   else if (hasUnaryFloatFn(TLI, Ty, LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl))
1309     // TODO: We also should check that the target can in fact lower the sqrt()
1310     // libcall. We currently have no way to ask this question, so we ask if
1311     // the target has a sqrt() libcall, which is not exactly the same.
1312     Sqrt = emitUnaryFloatFnCall(Base, TLI->getName(LibFunc_sqrt), B, Attrs);
1313   else
1314     return nullptr;
1315 
1316   // Handle signed zero base by expanding to fabs(sqrt(x)).
1317   if (!Pow->hasNoSignedZeros()) {
1318     Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1319     Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1320   }
1321 
1322   // Handle non finite base by expanding to
1323   // (x == -infinity ? +infinity : sqrt(x)).
1324   if (!Pow->hasNoInfs()) {
1325     Value *PosInf = ConstantFP::getInfinity(Ty),
1326           *NegInf = ConstantFP::getInfinity(Ty, true);
1327     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1328     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1329   }
1330 
1331   // If the exponent is negative, then get the reciprocal.
1332   if (ExpoF->isNegative())
1333     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1334 
1335   return Sqrt;
1336 }
1337 
1338 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) {
1339   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1340   Function *Callee = Pow->getCalledFunction();
1341   StringRef Name = Callee->getName();
1342   Type *Ty = Pow->getType();
1343   Value *Shrunk = nullptr;
1344   bool Ignored;
1345 
1346   // Bail out if simplifying libcalls to pow() is disabled.
1347   if (!hasUnaryFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl))
1348     return nullptr;
1349 
1350   // Propagate the math semantics from the call to any created instructions.
1351   IRBuilder<>::FastMathFlagGuard Guard(B);
1352   B.setFastMathFlags(Pow->getFastMathFlags());
1353 
1354   // Shrink pow() to powf() if the arguments are single precision,
1355   // unless the result is expected to be double precision.
1356   if (UnsafeFPShrink &&
1357       Name == TLI->getName(LibFunc_pow) && hasFloatVersion(Name))
1358     Shrunk = optimizeBinaryDoubleFP(Pow, B, true);
1359 
1360   // Evaluate special cases related to the base.
1361 
1362   // pow(1.0, x) -> 1.0
1363   if (match(Base, m_FPOne()))
1364     return Base;
1365 
1366   if (Value *Exp = replacePowWithExp(Pow, B))
1367     return Exp;
1368 
1369   // Evaluate special cases related to the exponent.
1370 
1371   // pow(x, -1.0) -> 1.0 / x
1372   if (match(Expo, m_SpecificFP(-1.0)))
1373     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1374 
1375   // pow(x, 0.0) -> 1.0
1376   if (match(Expo, m_SpecificFP(0.0)))
1377       return ConstantFP::get(Ty, 1.0);
1378 
1379   // pow(x, 1.0) -> x
1380   if (match(Expo, m_FPOne()))
1381     return Base;
1382 
1383   // pow(x, 2.0) -> x * x
1384   if (match(Expo, m_SpecificFP(2.0)))
1385     return B.CreateFMul(Base, Base, "square");
1386 
1387   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1388     return Sqrt;
1389 
1390   // pow(x, n) -> x * x * x * ...
1391   const APFloat *ExpoF;
1392   if (Pow->isFast() && match(Expo, m_APFloat(ExpoF))) {
1393     // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1394     APFloat LimF(ExpoF->getSemantics(), 33.0),
1395             ExpoA(abs(*ExpoF));
1396     if (ExpoA.isInteger() && ExpoA.compare(LimF) == APFloat::cmpLessThan) {
1397       // We will memoize intermediate products of the Addition Chain.
1398       Value *InnerChain[33] = {nullptr};
1399       InnerChain[1] = Base;
1400       InnerChain[2] = B.CreateFMul(Base, Base, "square");
1401 
1402       // We cannot readily convert a non-double type (like float) to a double.
1403       // So we first convert it to something which could be converted to double.
1404       ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1405       Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1406 
1407       // If the exponent is negative, then get the reciprocal.
1408       if (ExpoF->isNegative())
1409         FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1410 
1411       return FMul;
1412     }
1413   }
1414 
1415   return Shrunk;
1416 }
1417 
1418 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1419   Function *Callee = CI->getCalledFunction();
1420   Value *Ret = nullptr;
1421   StringRef Name = Callee->getName();
1422   if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name))
1423     Ret = optimizeUnaryDoubleFP(CI, B, true);
1424 
1425   Value *Op = CI->getArgOperand(0);
1426   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1427   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1428   LibFunc LdExp = LibFunc_ldexpl;
1429   if (Op->getType()->isFloatTy())
1430     LdExp = LibFunc_ldexpf;
1431   else if (Op->getType()->isDoubleTy())
1432     LdExp = LibFunc_ldexp;
1433 
1434   if (TLI->has(LdExp)) {
1435     Value *LdExpArg = nullptr;
1436     if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
1437       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
1438         LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
1439     } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
1440       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
1441         LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
1442     }
1443 
1444     if (LdExpArg) {
1445       Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
1446       if (!Op->getType()->isFloatTy())
1447         One = ConstantExpr::getFPExtend(One, Op->getType());
1448 
1449       Module *M = CI->getModule();
1450       Value *NewCallee =
1451           M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
1452                                  Op->getType(), B.getInt32Ty());
1453       CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg});
1454       if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
1455         CI->setCallingConv(F->getCallingConv());
1456 
1457       return CI;
1458     }
1459   }
1460   return Ret;
1461 }
1462 
1463 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1464   Function *Callee = CI->getCalledFunction();
1465   // If we can shrink the call to a float function rather than a double
1466   // function, do that first.
1467   StringRef Name = Callee->getName();
1468   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1469     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1470       return Ret;
1471 
1472   IRBuilder<>::FastMathFlagGuard Guard(B);
1473   FastMathFlags FMF;
1474   if (CI->isFast()) {
1475     // If the call is 'fast', then anything we create here will also be 'fast'.
1476     FMF.setFast();
1477   } else {
1478     // At a minimum, no-nans-fp-math must be true.
1479     if (!CI->hasNoNaNs())
1480       return nullptr;
1481     // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
1482     // "Ideally, fmax would be sensitive to the sign of zero, for example
1483     // fmax(-0. 0, +0. 0) would return +0; however, implementation in software
1484     // might be impractical."
1485     FMF.setNoSignedZeros();
1486     FMF.setNoNaNs();
1487   }
1488   B.setFastMathFlags(FMF);
1489 
1490   // We have a relaxed floating-point environment. We can ignore NaN-handling
1491   // and transform to a compare and select. We do not have to consider errno or
1492   // exceptions, because fmin/fmax do not have those.
1493   Value *Op0 = CI->getArgOperand(0);
1494   Value *Op1 = CI->getArgOperand(1);
1495   Value *Cmp = Callee->getName().startswith("fmin") ?
1496     B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
1497   return B.CreateSelect(Cmp, Op0, Op1);
1498 }
1499 
1500 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
1501   Function *Callee = CI->getCalledFunction();
1502   Value *Ret = nullptr;
1503   StringRef Name = Callee->getName();
1504   if (UnsafeFPShrink && hasFloatVersion(Name))
1505     Ret = optimizeUnaryDoubleFP(CI, B, true);
1506 
1507   if (!CI->isFast())
1508     return Ret;
1509   Value *Op1 = CI->getArgOperand(0);
1510   auto *OpC = dyn_cast<CallInst>(Op1);
1511 
1512   // The earlier call must also be 'fast' in order to do these transforms.
1513   if (!OpC || !OpC->isFast())
1514     return Ret;
1515 
1516   // log(pow(x,y)) -> y*log(x)
1517   // This is only applicable to log, log2, log10.
1518   if (Name != "log" && Name != "log2" && Name != "log10")
1519     return Ret;
1520 
1521   IRBuilder<>::FastMathFlagGuard Guard(B);
1522   FastMathFlags FMF;
1523   FMF.setFast();
1524   B.setFastMathFlags(FMF);
1525 
1526   LibFunc Func;
1527   Function *F = OpC->getCalledFunction();
1528   if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1529       Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow))
1530     return B.CreateFMul(OpC->getArgOperand(1),
1531       emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B,
1532                            Callee->getAttributes()), "mul");
1533 
1534   // log(exp2(y)) -> y*log(2)
1535   if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) &&
1536       TLI->has(Func) && Func == LibFunc_exp2)
1537     return B.CreateFMul(
1538         OpC->getArgOperand(0),
1539         emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0),
1540                              Callee->getName(), B, Callee->getAttributes()),
1541         "logmul");
1542   return Ret;
1543 }
1544 
1545 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
1546   Function *Callee = CI->getCalledFunction();
1547   Value *Ret = nullptr;
1548   // TODO: Once we have a way (other than checking for the existince of the
1549   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
1550   // condition below.
1551   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
1552                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
1553     Ret = optimizeUnaryDoubleFP(CI, B, true);
1554 
1555   if (!CI->isFast())
1556     return Ret;
1557 
1558   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
1559   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
1560     return Ret;
1561 
1562   // We're looking for a repeated factor in a multiplication tree,
1563   // so we can do this fold: sqrt(x * x) -> fabs(x);
1564   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
1565   Value *Op0 = I->getOperand(0);
1566   Value *Op1 = I->getOperand(1);
1567   Value *RepeatOp = nullptr;
1568   Value *OtherOp = nullptr;
1569   if (Op0 == Op1) {
1570     // Simple match: the operands of the multiply are identical.
1571     RepeatOp = Op0;
1572   } else {
1573     // Look for a more complicated pattern: one of the operands is itself
1574     // a multiply, so search for a common factor in that multiply.
1575     // Note: We don't bother looking any deeper than this first level or for
1576     // variations of this pattern because instcombine's visitFMUL and/or the
1577     // reassociation pass should give us this form.
1578     Value *OtherMul0, *OtherMul1;
1579     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
1580       // Pattern: sqrt((x * y) * z)
1581       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
1582         // Matched: sqrt((x * x) * z)
1583         RepeatOp = OtherMul0;
1584         OtherOp = Op1;
1585       }
1586     }
1587   }
1588   if (!RepeatOp)
1589     return Ret;
1590 
1591   // Fast math flags for any created instructions should match the sqrt
1592   // and multiply.
1593   IRBuilder<>::FastMathFlagGuard Guard(B);
1594   B.setFastMathFlags(I->getFastMathFlags());
1595 
1596   // If we found a repeated factor, hoist it out of the square root and
1597   // replace it with the fabs of that factor.
1598   Module *M = Callee->getParent();
1599   Type *ArgType = I->getType();
1600   Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
1601   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
1602   if (OtherOp) {
1603     // If we found a non-repeated factor, we still need to get its square
1604     // root. We then multiply that by the value that was simplified out
1605     // of the square root calculation.
1606     Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
1607     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
1608     return B.CreateFMul(FabsCall, SqrtCall);
1609   }
1610   return FabsCall;
1611 }
1612 
1613 // TODO: Generalize to handle any trig function and its inverse.
1614 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
1615   Function *Callee = CI->getCalledFunction();
1616   Value *Ret = nullptr;
1617   StringRef Name = Callee->getName();
1618   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
1619     Ret = optimizeUnaryDoubleFP(CI, B, true);
1620 
1621   Value *Op1 = CI->getArgOperand(0);
1622   auto *OpC = dyn_cast<CallInst>(Op1);
1623   if (!OpC)
1624     return Ret;
1625 
1626   // Both calls must be 'fast' in order to remove them.
1627   if (!CI->isFast() || !OpC->isFast())
1628     return Ret;
1629 
1630   // tan(atan(x)) -> x
1631   // tanf(atanf(x)) -> x
1632   // tanl(atanl(x)) -> x
1633   LibFunc Func;
1634   Function *F = OpC->getCalledFunction();
1635   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1636       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
1637        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
1638        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
1639     Ret = OpC->getArgOperand(0);
1640   return Ret;
1641 }
1642 
1643 static bool isTrigLibCall(CallInst *CI) {
1644   // We can only hope to do anything useful if we can ignore things like errno
1645   // and floating-point exceptions.
1646   // We already checked the prototype.
1647   return CI->hasFnAttr(Attribute::NoUnwind) &&
1648          CI->hasFnAttr(Attribute::ReadNone);
1649 }
1650 
1651 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
1652                              bool UseFloat, Value *&Sin, Value *&Cos,
1653                              Value *&SinCos) {
1654   Type *ArgTy = Arg->getType();
1655   Type *ResTy;
1656   StringRef Name;
1657 
1658   Triple T(OrigCallee->getParent()->getTargetTriple());
1659   if (UseFloat) {
1660     Name = "__sincospif_stret";
1661 
1662     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
1663     // x86_64 can't use {float, float} since that would be returned in both
1664     // xmm0 and xmm1, which isn't what a real struct would do.
1665     ResTy = T.getArch() == Triple::x86_64
1666                 ? static_cast<Type *>(VectorType::get(ArgTy, 2))
1667                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
1668   } else {
1669     Name = "__sincospi_stret";
1670     ResTy = StructType::get(ArgTy, ArgTy);
1671   }
1672 
1673   Module *M = OrigCallee->getParent();
1674   Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
1675                                          ResTy, ArgTy);
1676 
1677   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
1678     // If the argument is an instruction, it must dominate all uses so put our
1679     // sincos call there.
1680     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
1681   } else {
1682     // Otherwise (e.g. for a constant) the beginning of the function is as
1683     // good a place as any.
1684     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
1685     B.SetInsertPoint(&EntryBB, EntryBB.begin());
1686   }
1687 
1688   SinCos = B.CreateCall(Callee, Arg, "sincospi");
1689 
1690   if (SinCos->getType()->isStructTy()) {
1691     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
1692     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
1693   } else {
1694     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
1695                                  "sinpi");
1696     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
1697                                  "cospi");
1698   }
1699 }
1700 
1701 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
1702   // Make sure the prototype is as expected, otherwise the rest of the
1703   // function is probably invalid and likely to abort.
1704   if (!isTrigLibCall(CI))
1705     return nullptr;
1706 
1707   Value *Arg = CI->getArgOperand(0);
1708   SmallVector<CallInst *, 1> SinCalls;
1709   SmallVector<CallInst *, 1> CosCalls;
1710   SmallVector<CallInst *, 1> SinCosCalls;
1711 
1712   bool IsFloat = Arg->getType()->isFloatTy();
1713 
1714   // Look for all compatible sinpi, cospi and sincospi calls with the same
1715   // argument. If there are enough (in some sense) we can make the
1716   // substitution.
1717   Function *F = CI->getFunction();
1718   for (User *U : Arg->users())
1719     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
1720 
1721   // It's only worthwhile if both sinpi and cospi are actually used.
1722   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
1723     return nullptr;
1724 
1725   Value *Sin, *Cos, *SinCos;
1726   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
1727 
1728   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
1729                                  Value *Res) {
1730     for (CallInst *C : Calls)
1731       replaceAllUsesWith(C, Res);
1732   };
1733 
1734   replaceTrigInsts(SinCalls, Sin);
1735   replaceTrigInsts(CosCalls, Cos);
1736   replaceTrigInsts(SinCosCalls, SinCos);
1737 
1738   return nullptr;
1739 }
1740 
1741 void LibCallSimplifier::classifyArgUse(
1742     Value *Val, Function *F, bool IsFloat,
1743     SmallVectorImpl<CallInst *> &SinCalls,
1744     SmallVectorImpl<CallInst *> &CosCalls,
1745     SmallVectorImpl<CallInst *> &SinCosCalls) {
1746   CallInst *CI = dyn_cast<CallInst>(Val);
1747 
1748   if (!CI)
1749     return;
1750 
1751   // Don't consider calls in other functions.
1752   if (CI->getFunction() != F)
1753     return;
1754 
1755   Function *Callee = CI->getCalledFunction();
1756   LibFunc Func;
1757   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
1758       !isTrigLibCall(CI))
1759     return;
1760 
1761   if (IsFloat) {
1762     if (Func == LibFunc_sinpif)
1763       SinCalls.push_back(CI);
1764     else if (Func == LibFunc_cospif)
1765       CosCalls.push_back(CI);
1766     else if (Func == LibFunc_sincospif_stret)
1767       SinCosCalls.push_back(CI);
1768   } else {
1769     if (Func == LibFunc_sinpi)
1770       SinCalls.push_back(CI);
1771     else if (Func == LibFunc_cospi)
1772       CosCalls.push_back(CI);
1773     else if (Func == LibFunc_sincospi_stret)
1774       SinCosCalls.push_back(CI);
1775   }
1776 }
1777 
1778 //===----------------------------------------------------------------------===//
1779 // Integer Library Call Optimizations
1780 //===----------------------------------------------------------------------===//
1781 
1782 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
1783   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
1784   Value *Op = CI->getArgOperand(0);
1785   Type *ArgType = Op->getType();
1786   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1787                                        Intrinsic::cttz, ArgType);
1788   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
1789   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
1790   V = B.CreateIntCast(V, B.getInt32Ty(), false);
1791 
1792   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
1793   return B.CreateSelect(Cond, V, B.getInt32(0));
1794 }
1795 
1796 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
1797   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
1798   Value *Op = CI->getArgOperand(0);
1799   Type *ArgType = Op->getType();
1800   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1801                                        Intrinsic::ctlz, ArgType);
1802   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
1803   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
1804                   V);
1805   return B.CreateIntCast(V, CI->getType(), false);
1806 }
1807 
1808 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
1809   // abs(x) -> x <s 0 ? -x : x
1810   // The negation has 'nsw' because abs of INT_MIN is undefined.
1811   Value *X = CI->getArgOperand(0);
1812   Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
1813   Value *NegX = B.CreateNSWNeg(X, "neg");
1814   return B.CreateSelect(IsNeg, NegX, X);
1815 }
1816 
1817 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
1818   // isdigit(c) -> (c-'0') <u 10
1819   Value *Op = CI->getArgOperand(0);
1820   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
1821   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
1822   return B.CreateZExt(Op, CI->getType());
1823 }
1824 
1825 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
1826   // isascii(c) -> c <u 128
1827   Value *Op = CI->getArgOperand(0);
1828   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
1829   return B.CreateZExt(Op, CI->getType());
1830 }
1831 
1832 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
1833   // toascii(c) -> c & 0x7f
1834   return B.CreateAnd(CI->getArgOperand(0),
1835                      ConstantInt::get(CI->getType(), 0x7F));
1836 }
1837 
1838 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) {
1839   StringRef Str;
1840   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
1841     return nullptr;
1842 
1843   return convertStrToNumber(CI, Str, 10);
1844 }
1845 
1846 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) {
1847   StringRef Str;
1848   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
1849     return nullptr;
1850 
1851   if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
1852     return nullptr;
1853 
1854   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
1855     return convertStrToNumber(CI, Str, CInt->getSExtValue());
1856   }
1857 
1858   return nullptr;
1859 }
1860 
1861 //===----------------------------------------------------------------------===//
1862 // Formatting and IO Library Call Optimizations
1863 //===----------------------------------------------------------------------===//
1864 
1865 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
1866 
1867 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
1868                                                  int StreamArg) {
1869   Function *Callee = CI->getCalledFunction();
1870   // Error reporting calls should be cold, mark them as such.
1871   // This applies even to non-builtin calls: it is only a hint and applies to
1872   // functions that the frontend might not understand as builtins.
1873 
1874   // This heuristic was suggested in:
1875   // Improving Static Branch Prediction in a Compiler
1876   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
1877   // Proceedings of PACT'98, Oct. 1998, IEEE
1878   if (!CI->hasFnAttr(Attribute::Cold) &&
1879       isReportingError(Callee, CI, StreamArg)) {
1880     CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
1881   }
1882 
1883   return nullptr;
1884 }
1885 
1886 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
1887   if (!Callee || !Callee->isDeclaration())
1888     return false;
1889 
1890   if (StreamArg < 0)
1891     return true;
1892 
1893   // These functions might be considered cold, but only if their stream
1894   // argument is stderr.
1895 
1896   if (StreamArg >= (int)CI->getNumArgOperands())
1897     return false;
1898   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
1899   if (!LI)
1900     return false;
1901   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
1902   if (!GV || !GV->isDeclaration())
1903     return false;
1904   return GV->getName() == "stderr";
1905 }
1906 
1907 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
1908   // Check for a fixed format string.
1909   StringRef FormatStr;
1910   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
1911     return nullptr;
1912 
1913   // Empty format string -> noop.
1914   if (FormatStr.empty()) // Tolerate printf's declared void.
1915     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
1916 
1917   // Do not do any of the following transformations if the printf return value
1918   // is used, in general the printf return value is not compatible with either
1919   // putchar() or puts().
1920   if (!CI->use_empty())
1921     return nullptr;
1922 
1923   // printf("x") -> putchar('x'), even for "%" and "%%".
1924   if (FormatStr.size() == 1 || FormatStr == "%%")
1925     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
1926 
1927   // printf("%s", "a") --> putchar('a')
1928   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
1929     StringRef ChrStr;
1930     if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
1931       return nullptr;
1932     if (ChrStr.size() != 1)
1933       return nullptr;
1934     return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
1935   }
1936 
1937   // printf("foo\n") --> puts("foo")
1938   if (FormatStr[FormatStr.size() - 1] == '\n' &&
1939       FormatStr.find('%') == StringRef::npos) { // No format characters.
1940     // Create a string literal with no \n on it.  We expect the constant merge
1941     // pass to be run after this pass, to merge duplicate strings.
1942     FormatStr = FormatStr.drop_back();
1943     Value *GV = B.CreateGlobalString(FormatStr, "str");
1944     return emitPutS(GV, B, TLI);
1945   }
1946 
1947   // Optimize specific format strings.
1948   // printf("%c", chr) --> putchar(chr)
1949   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
1950       CI->getArgOperand(1)->getType()->isIntegerTy())
1951     return emitPutChar(CI->getArgOperand(1), B, TLI);
1952 
1953   // printf("%s\n", str) --> puts(str)
1954   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
1955       CI->getArgOperand(1)->getType()->isPointerTy())
1956     return emitPutS(CI->getArgOperand(1), B, TLI);
1957   return nullptr;
1958 }
1959 
1960 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
1961 
1962   Function *Callee = CI->getCalledFunction();
1963   FunctionType *FT = Callee->getFunctionType();
1964   if (Value *V = optimizePrintFString(CI, B)) {
1965     return V;
1966   }
1967 
1968   // printf(format, ...) -> iprintf(format, ...) if no floating point
1969   // arguments.
1970   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
1971     Module *M = B.GetInsertBlock()->getParent()->getParent();
1972     Constant *IPrintFFn =
1973         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
1974     CallInst *New = cast<CallInst>(CI->clone());
1975     New->setCalledFunction(IPrintFFn);
1976     B.Insert(New);
1977     return New;
1978   }
1979   return nullptr;
1980 }
1981 
1982 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
1983   // Check for a fixed format string.
1984   StringRef FormatStr;
1985   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1986     return nullptr;
1987 
1988   // If we just have a format string (nothing else crazy) transform it.
1989   if (CI->getNumArgOperands() == 2) {
1990     // Make sure there's no % in the constant array.  We could try to handle
1991     // %% -> % in the future if we cared.
1992     if (FormatStr.find('%') != StringRef::npos)
1993       return nullptr; // we found a format specifier, bail out.
1994 
1995     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
1996     B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
1997                    ConstantInt::get(DL.getIntPtrType(CI->getContext()),
1998                                     FormatStr.size() + 1)); // Copy the null byte.
1999     return ConstantInt::get(CI->getType(), FormatStr.size());
2000   }
2001 
2002   // The remaining optimizations require the format string to be "%s" or "%c"
2003   // and have an extra operand.
2004   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2005       CI->getNumArgOperands() < 3)
2006     return nullptr;
2007 
2008   // Decode the second character of the format string.
2009   if (FormatStr[1] == 'c') {
2010     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2011     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2012       return nullptr;
2013     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2014     Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2015     B.CreateStore(V, Ptr);
2016     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2017     B.CreateStore(B.getInt8(0), Ptr);
2018 
2019     return ConstantInt::get(CI->getType(), 1);
2020   }
2021 
2022   if (FormatStr[1] == 's') {
2023     // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
2024     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2025       return nullptr;
2026 
2027     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2028     if (!Len)
2029       return nullptr;
2030     Value *IncLen =
2031         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2032     B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen);
2033 
2034     // The sprintf result is the unincremented number of bytes in the string.
2035     return B.CreateIntCast(Len, CI->getType(), false);
2036   }
2037   return nullptr;
2038 }
2039 
2040 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
2041   Function *Callee = CI->getCalledFunction();
2042   FunctionType *FT = Callee->getFunctionType();
2043   if (Value *V = optimizeSPrintFString(CI, B)) {
2044     return V;
2045   }
2046 
2047   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2048   // point arguments.
2049   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
2050     Module *M = B.GetInsertBlock()->getParent()->getParent();
2051     Constant *SIPrintFFn =
2052         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
2053     CallInst *New = cast<CallInst>(CI->clone());
2054     New->setCalledFunction(SIPrintFFn);
2055     B.Insert(New);
2056     return New;
2057   }
2058   return nullptr;
2059 }
2060 
2061 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) {
2062   // Check for a fixed format string.
2063   StringRef FormatStr;
2064   if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2065     return nullptr;
2066 
2067   // Check for size
2068   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2069   if (!Size)
2070     return nullptr;
2071 
2072   uint64_t N = Size->getZExtValue();
2073 
2074   // If we just have a format string (nothing else crazy) transform it.
2075   if (CI->getNumArgOperands() == 3) {
2076     // Make sure there's no % in the constant array.  We could try to handle
2077     // %% -> % in the future if we cared.
2078     if (FormatStr.find('%') != StringRef::npos)
2079       return nullptr; // we found a format specifier, bail out.
2080 
2081     if (N == 0)
2082       return ConstantInt::get(CI->getType(), FormatStr.size());
2083     else if (N < FormatStr.size() + 1)
2084       return nullptr;
2085 
2086     // sprintf(str, size, fmt) -> llvm.memcpy(align 1 str, align 1 fmt,
2087     // strlen(fmt)+1)
2088     B.CreateMemCpy(
2089         CI->getArgOperand(0), 1, CI->getArgOperand(2), 1,
2090         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2091                          FormatStr.size() + 1)); // Copy the null byte.
2092     return ConstantInt::get(CI->getType(), FormatStr.size());
2093   }
2094 
2095   // The remaining optimizations require the format string to be "%s" or "%c"
2096   // and have an extra operand.
2097   if (FormatStr.size() == 2 && FormatStr[0] == '%' &&
2098       CI->getNumArgOperands() == 4) {
2099 
2100     // Decode the second character of the format string.
2101     if (FormatStr[1] == 'c') {
2102       if (N == 0)
2103         return ConstantInt::get(CI->getType(), 1);
2104       else if (N == 1)
2105         return nullptr;
2106 
2107       // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2108       if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2109         return nullptr;
2110       Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2111       Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2112       B.CreateStore(V, Ptr);
2113       Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2114       B.CreateStore(B.getInt8(0), Ptr);
2115 
2116       return ConstantInt::get(CI->getType(), 1);
2117     }
2118 
2119     if (FormatStr[1] == 's') {
2120       // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2121       StringRef Str;
2122       if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2123         return nullptr;
2124 
2125       if (N == 0)
2126         return ConstantInt::get(CI->getType(), Str.size());
2127       else if (N < Str.size() + 1)
2128         return nullptr;
2129 
2130       B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(3), 1,
2131                      ConstantInt::get(CI->getType(), Str.size() + 1));
2132 
2133       // The snprintf result is the unincremented number of bytes in the string.
2134       return ConstantInt::get(CI->getType(), Str.size());
2135     }
2136   }
2137   return nullptr;
2138 }
2139 
2140 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) {
2141   if (Value *V = optimizeSnPrintFString(CI, B)) {
2142     return V;
2143   }
2144 
2145   return nullptr;
2146 }
2147 
2148 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
2149   optimizeErrorReporting(CI, B, 0);
2150 
2151   // All the optimizations depend on the format string.
2152   StringRef FormatStr;
2153   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2154     return nullptr;
2155 
2156   // Do not do any of the following transformations if the fprintf return
2157   // value is used, in general the fprintf return value is not compatible
2158   // with fwrite(), fputc() or fputs().
2159   if (!CI->use_empty())
2160     return nullptr;
2161 
2162   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2163   if (CI->getNumArgOperands() == 2) {
2164     // Could handle %% -> % if we cared.
2165     if (FormatStr.find('%') != StringRef::npos)
2166       return nullptr; // We found a format specifier.
2167 
2168     return emitFWrite(
2169         CI->getArgOperand(1),
2170         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
2171         CI->getArgOperand(0), B, DL, TLI);
2172   }
2173 
2174   // The remaining optimizations require the format string to be "%s" or "%c"
2175   // and have an extra operand.
2176   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2177       CI->getNumArgOperands() < 3)
2178     return nullptr;
2179 
2180   // Decode the second character of the format string.
2181   if (FormatStr[1] == 'c') {
2182     // fprintf(F, "%c", chr) --> fputc(chr, F)
2183     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2184       return nullptr;
2185     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2186   }
2187 
2188   if (FormatStr[1] == 's') {
2189     // fprintf(F, "%s", str) --> fputs(str, F)
2190     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2191       return nullptr;
2192     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2193   }
2194   return nullptr;
2195 }
2196 
2197 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
2198   Function *Callee = CI->getCalledFunction();
2199   FunctionType *FT = Callee->getFunctionType();
2200   if (Value *V = optimizeFPrintFString(CI, B)) {
2201     return V;
2202   }
2203 
2204   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2205   // floating point arguments.
2206   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
2207     Module *M = B.GetInsertBlock()->getParent()->getParent();
2208     Constant *FIPrintFFn =
2209         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2210     CallInst *New = cast<CallInst>(CI->clone());
2211     New->setCalledFunction(FIPrintFFn);
2212     B.Insert(New);
2213     return New;
2214   }
2215   return nullptr;
2216 }
2217 
2218 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
2219   optimizeErrorReporting(CI, B, 3);
2220 
2221   // Get the element size and count.
2222   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2223   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2224   if (SizeC && CountC) {
2225     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2226 
2227     // If this is writing zero records, remove the call (it's a noop).
2228     if (Bytes == 0)
2229       return ConstantInt::get(CI->getType(), 0);
2230 
2231     // If this is writing one byte, turn it into fputc.
2232     // This optimisation is only valid, if the return value is unused.
2233     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2234       Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char");
2235       Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2236       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2237     }
2238   }
2239 
2240   if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2241     return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2242                               CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2243                               TLI);
2244 
2245   return nullptr;
2246 }
2247 
2248 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
2249   optimizeErrorReporting(CI, B, 1);
2250 
2251   // Don't rewrite fputs to fwrite when optimising for size because fwrite
2252   // requires more arguments and thus extra MOVs are required.
2253   if (CI->getFunction()->optForSize())
2254     return nullptr;
2255 
2256   // Check if has any use
2257   if (!CI->use_empty()) {
2258     if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2259       return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2260                                TLI);
2261     else
2262       // We can't optimize if return value is used.
2263       return nullptr;
2264   }
2265 
2266   // fputs(s,F) --> fwrite(s,1,strlen(s),F)
2267   uint64_t Len = GetStringLength(CI->getArgOperand(0));
2268   if (!Len)
2269     return nullptr;
2270 
2271   // Known to have no uses (see above).
2272   return emitFWrite(
2273       CI->getArgOperand(0),
2274       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2275       CI->getArgOperand(1), B, DL, TLI);
2276 }
2277 
2278 Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) {
2279   optimizeErrorReporting(CI, B, 1);
2280 
2281   if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2282     return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2283                              TLI);
2284 
2285   return nullptr;
2286 }
2287 
2288 Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) {
2289   if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI))
2290     return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI);
2291 
2292   return nullptr;
2293 }
2294 
2295 Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) {
2296   if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI))
2297     return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2298                              CI->getArgOperand(2), B, TLI);
2299 
2300   return nullptr;
2301 }
2302 
2303 Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) {
2304   if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2305     return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2306                              CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2307                              TLI);
2308 
2309   return nullptr;
2310 }
2311 
2312 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
2313   // Check for a constant string.
2314   StringRef Str;
2315   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2316     return nullptr;
2317 
2318   if (Str.empty() && CI->use_empty()) {
2319     // puts("") -> putchar('\n')
2320     Value *Res = emitPutChar(B.getInt32('\n'), B, TLI);
2321     if (CI->use_empty() || !Res)
2322       return Res;
2323     return B.CreateIntCast(Res, CI->getType(), true);
2324   }
2325 
2326   return nullptr;
2327 }
2328 
2329 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2330   LibFunc Func;
2331   SmallString<20> FloatFuncName = FuncName;
2332   FloatFuncName += 'f';
2333   if (TLI->getLibFunc(FloatFuncName, Func))
2334     return TLI->has(Func);
2335   return false;
2336 }
2337 
2338 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2339                                                       IRBuilder<> &Builder) {
2340   LibFunc Func;
2341   Function *Callee = CI->getCalledFunction();
2342   // Check for string/memory library functions.
2343   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2344     // Make sure we never change the calling convention.
2345     assert((ignoreCallingConv(Func) ||
2346             isCallingConvCCompatible(CI)) &&
2347       "Optimizing string/memory libcall would change the calling convention");
2348     switch (Func) {
2349     case LibFunc_strcat:
2350       return optimizeStrCat(CI, Builder);
2351     case LibFunc_strncat:
2352       return optimizeStrNCat(CI, Builder);
2353     case LibFunc_strchr:
2354       return optimizeStrChr(CI, Builder);
2355     case LibFunc_strrchr:
2356       return optimizeStrRChr(CI, Builder);
2357     case LibFunc_strcmp:
2358       return optimizeStrCmp(CI, Builder);
2359     case LibFunc_strncmp:
2360       return optimizeStrNCmp(CI, Builder);
2361     case LibFunc_strcpy:
2362       return optimizeStrCpy(CI, Builder);
2363     case LibFunc_stpcpy:
2364       return optimizeStpCpy(CI, Builder);
2365     case LibFunc_strncpy:
2366       return optimizeStrNCpy(CI, Builder);
2367     case LibFunc_strlen:
2368       return optimizeStrLen(CI, Builder);
2369     case LibFunc_strpbrk:
2370       return optimizeStrPBrk(CI, Builder);
2371     case LibFunc_strtol:
2372     case LibFunc_strtod:
2373     case LibFunc_strtof:
2374     case LibFunc_strtoul:
2375     case LibFunc_strtoll:
2376     case LibFunc_strtold:
2377     case LibFunc_strtoull:
2378       return optimizeStrTo(CI, Builder);
2379     case LibFunc_strspn:
2380       return optimizeStrSpn(CI, Builder);
2381     case LibFunc_strcspn:
2382       return optimizeStrCSpn(CI, Builder);
2383     case LibFunc_strstr:
2384       return optimizeStrStr(CI, Builder);
2385     case LibFunc_memchr:
2386       return optimizeMemChr(CI, Builder);
2387     case LibFunc_memcmp:
2388       return optimizeMemCmp(CI, Builder);
2389     case LibFunc_memcpy:
2390       return optimizeMemCpy(CI, Builder);
2391     case LibFunc_memmove:
2392       return optimizeMemMove(CI, Builder);
2393     case LibFunc_memset:
2394       return optimizeMemSet(CI, Builder);
2395     case LibFunc_realloc:
2396       return optimizeRealloc(CI, Builder);
2397     case LibFunc_wcslen:
2398       return optimizeWcslen(CI, Builder);
2399     default:
2400       break;
2401     }
2402   }
2403   return nullptr;
2404 }
2405 
2406 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2407                                                        LibFunc Func,
2408                                                        IRBuilder<> &Builder) {
2409   // Don't optimize calls that require strict floating point semantics.
2410   if (CI->isStrictFP())
2411     return nullptr;
2412 
2413   if (Value *V = optimizeTrigReflections(CI, Func, Builder))
2414     return V;
2415 
2416   switch (Func) {
2417   case LibFunc_sinpif:
2418   case LibFunc_sinpi:
2419   case LibFunc_cospif:
2420   case LibFunc_cospi:
2421     return optimizeSinCosPi(CI, Builder);
2422   case LibFunc_powf:
2423   case LibFunc_pow:
2424   case LibFunc_powl:
2425     return optimizePow(CI, Builder);
2426   case LibFunc_exp2l:
2427   case LibFunc_exp2:
2428   case LibFunc_exp2f:
2429     return optimizeExp2(CI, Builder);
2430   case LibFunc_fabsf:
2431   case LibFunc_fabs:
2432   case LibFunc_fabsl:
2433     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2434   case LibFunc_sqrtf:
2435   case LibFunc_sqrt:
2436   case LibFunc_sqrtl:
2437     return optimizeSqrt(CI, Builder);
2438   case LibFunc_log:
2439   case LibFunc_log10:
2440   case LibFunc_log1p:
2441   case LibFunc_log2:
2442   case LibFunc_logb:
2443     return optimizeLog(CI, Builder);
2444   case LibFunc_tan:
2445   case LibFunc_tanf:
2446   case LibFunc_tanl:
2447     return optimizeTan(CI, Builder);
2448   case LibFunc_ceil:
2449     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2450   case LibFunc_floor:
2451     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2452   case LibFunc_round:
2453     return replaceUnaryCall(CI, Builder, Intrinsic::round);
2454   case LibFunc_nearbyint:
2455     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2456   case LibFunc_rint:
2457     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2458   case LibFunc_trunc:
2459     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
2460   case LibFunc_acos:
2461   case LibFunc_acosh:
2462   case LibFunc_asin:
2463   case LibFunc_asinh:
2464   case LibFunc_atan:
2465   case LibFunc_atanh:
2466   case LibFunc_cbrt:
2467   case LibFunc_cosh:
2468   case LibFunc_exp:
2469   case LibFunc_exp10:
2470   case LibFunc_expm1:
2471   case LibFunc_cos:
2472   case LibFunc_sin:
2473   case LibFunc_sinh:
2474   case LibFunc_tanh:
2475     if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
2476       return optimizeUnaryDoubleFP(CI, Builder, true);
2477     return nullptr;
2478   case LibFunc_copysign:
2479     if (hasFloatVersion(CI->getCalledFunction()->getName()))
2480       return optimizeBinaryDoubleFP(CI, Builder);
2481     return nullptr;
2482   case LibFunc_fminf:
2483   case LibFunc_fmin:
2484   case LibFunc_fminl:
2485   case LibFunc_fmaxf:
2486   case LibFunc_fmax:
2487   case LibFunc_fmaxl:
2488     return optimizeFMinFMax(CI, Builder);
2489   case LibFunc_cabs:
2490   case LibFunc_cabsf:
2491   case LibFunc_cabsl:
2492     return optimizeCAbs(CI, Builder);
2493   default:
2494     return nullptr;
2495   }
2496 }
2497 
2498 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
2499   // TODO: Split out the code below that operates on FP calls so that
2500   //       we can all non-FP calls with the StrictFP attribute to be
2501   //       optimized.
2502   if (CI->isNoBuiltin())
2503     return nullptr;
2504 
2505   LibFunc Func;
2506   Function *Callee = CI->getCalledFunction();
2507 
2508   SmallVector<OperandBundleDef, 2> OpBundles;
2509   CI->getOperandBundlesAsDefs(OpBundles);
2510   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2511   bool isCallingConvC = isCallingConvCCompatible(CI);
2512 
2513   // Command-line parameter overrides instruction attribute.
2514   // This can't be moved to optimizeFloatingPointLibCall() because it may be
2515   // used by the intrinsic optimizations.
2516   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
2517     UnsafeFPShrink = EnableUnsafeFPShrink;
2518   else if (isa<FPMathOperator>(CI) && CI->isFast())
2519     UnsafeFPShrink = true;
2520 
2521   // First, check for intrinsics.
2522   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
2523     if (!isCallingConvC)
2524       return nullptr;
2525     // The FP intrinsics have corresponding constrained versions so we don't
2526     // need to check for the StrictFP attribute here.
2527     switch (II->getIntrinsicID()) {
2528     case Intrinsic::pow:
2529       return optimizePow(CI, Builder);
2530     case Intrinsic::exp2:
2531       return optimizeExp2(CI, Builder);
2532     case Intrinsic::log:
2533       return optimizeLog(CI, Builder);
2534     case Intrinsic::sqrt:
2535       return optimizeSqrt(CI, Builder);
2536     // TODO: Use foldMallocMemset() with memset intrinsic.
2537     default:
2538       return nullptr;
2539     }
2540   }
2541 
2542   // Also try to simplify calls to fortified library functions.
2543   if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
2544     // Try to further simplify the result.
2545     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
2546     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
2547       // Use an IR Builder from SimplifiedCI if available instead of CI
2548       // to guarantee we reach all uses we might replace later on.
2549       IRBuilder<> TmpBuilder(SimplifiedCI);
2550       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
2551         // If we were able to further simplify, remove the now redundant call.
2552         SimplifiedCI->replaceAllUsesWith(V);
2553         SimplifiedCI->eraseFromParent();
2554         return V;
2555       }
2556     }
2557     return SimplifiedFortifiedCI;
2558   }
2559 
2560   // Then check for known library functions.
2561   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2562     // We never change the calling convention.
2563     if (!ignoreCallingConv(Func) && !isCallingConvC)
2564       return nullptr;
2565     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
2566       return V;
2567     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
2568       return V;
2569     switch (Func) {
2570     case LibFunc_ffs:
2571     case LibFunc_ffsl:
2572     case LibFunc_ffsll:
2573       return optimizeFFS(CI, Builder);
2574     case LibFunc_fls:
2575     case LibFunc_flsl:
2576     case LibFunc_flsll:
2577       return optimizeFls(CI, Builder);
2578     case LibFunc_abs:
2579     case LibFunc_labs:
2580     case LibFunc_llabs:
2581       return optimizeAbs(CI, Builder);
2582     case LibFunc_isdigit:
2583       return optimizeIsDigit(CI, Builder);
2584     case LibFunc_isascii:
2585       return optimizeIsAscii(CI, Builder);
2586     case LibFunc_toascii:
2587       return optimizeToAscii(CI, Builder);
2588     case LibFunc_atoi:
2589     case LibFunc_atol:
2590     case LibFunc_atoll:
2591       return optimizeAtoi(CI, Builder);
2592     case LibFunc_strtol:
2593     case LibFunc_strtoll:
2594       return optimizeStrtol(CI, Builder);
2595     case LibFunc_printf:
2596       return optimizePrintF(CI, Builder);
2597     case LibFunc_sprintf:
2598       return optimizeSPrintF(CI, Builder);
2599     case LibFunc_snprintf:
2600       return optimizeSnPrintF(CI, Builder);
2601     case LibFunc_fprintf:
2602       return optimizeFPrintF(CI, Builder);
2603     case LibFunc_fwrite:
2604       return optimizeFWrite(CI, Builder);
2605     case LibFunc_fread:
2606       return optimizeFRead(CI, Builder);
2607     case LibFunc_fputs:
2608       return optimizeFPuts(CI, Builder);
2609     case LibFunc_fgets:
2610       return optimizeFGets(CI, Builder);
2611     case LibFunc_fputc:
2612       return optimizeFPutc(CI, Builder);
2613     case LibFunc_fgetc:
2614       return optimizeFGetc(CI, Builder);
2615     case LibFunc_puts:
2616       return optimizePuts(CI, Builder);
2617     case LibFunc_perror:
2618       return optimizeErrorReporting(CI, Builder);
2619     case LibFunc_vfprintf:
2620     case LibFunc_fiprintf:
2621       return optimizeErrorReporting(CI, Builder, 0);
2622     default:
2623       return nullptr;
2624     }
2625   }
2626   return nullptr;
2627 }
2628 
2629 LibCallSimplifier::LibCallSimplifier(
2630     const DataLayout &DL, const TargetLibraryInfo *TLI,
2631     OptimizationRemarkEmitter &ORE,
2632     function_ref<void(Instruction *, Value *)> Replacer)
2633     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE),
2634       UnsafeFPShrink(false), Replacer(Replacer) {}
2635 
2636 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
2637   // Indirect through the replacer used in this instance.
2638   Replacer(I, With);
2639 }
2640 
2641 // TODO:
2642 //   Additional cases that we need to add to this file:
2643 //
2644 // cbrt:
2645 //   * cbrt(expN(X))  -> expN(x/3)
2646 //   * cbrt(sqrt(x))  -> pow(x,1/6)
2647 //   * cbrt(cbrt(x))  -> pow(x,1/9)
2648 //
2649 // exp, expf, expl:
2650 //   * exp(log(x))  -> x
2651 //
2652 // log, logf, logl:
2653 //   * log(exp(x))   -> x
2654 //   * log(exp(y))   -> y*log(e)
2655 //   * log(exp10(y)) -> y*log(10)
2656 //   * log(sqrt(x))  -> 0.5*log(x)
2657 //
2658 // pow, powf, powl:
2659 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
2660 //   * pow(pow(x,y),z)-> pow(x,y*z)
2661 //
2662 // signbit:
2663 //   * signbit(cnst) -> cnst'
2664 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2665 //
2666 // sqrt, sqrtf, sqrtl:
2667 //   * sqrt(expN(x))  -> expN(x*0.5)
2668 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2669 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2670 //
2671 
2672 //===----------------------------------------------------------------------===//
2673 // Fortified Library Call Optimizations
2674 //===----------------------------------------------------------------------===//
2675 
2676 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
2677                                                          unsigned ObjSizeOp,
2678                                                          unsigned SizeOp,
2679                                                          bool isString) {
2680   if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
2681     return true;
2682   if (ConstantInt *ObjSizeCI =
2683           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
2684     if (ObjSizeCI->isMinusOne())
2685       return true;
2686     // If the object size wasn't -1 (unknown), bail out if we were asked to.
2687     if (OnlyLowerUnknownSize)
2688       return false;
2689     if (isString) {
2690       uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
2691       // If the length is 0 we don't know how long it is and so we can't
2692       // remove the check.
2693       if (Len == 0)
2694         return false;
2695       return ObjSizeCI->getZExtValue() >= Len;
2696     }
2697     if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
2698       return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
2699   }
2700   return false;
2701 }
2702 
2703 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
2704                                                      IRBuilder<> &B) {
2705   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2706     B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
2707                    CI->getArgOperand(2));
2708     return CI->getArgOperand(0);
2709   }
2710   return nullptr;
2711 }
2712 
2713 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
2714                                                       IRBuilder<> &B) {
2715   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2716     B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
2717                     CI->getArgOperand(2));
2718     return CI->getArgOperand(0);
2719   }
2720   return nullptr;
2721 }
2722 
2723 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
2724                                                      IRBuilder<> &B) {
2725   // TODO: Try foldMallocMemset() here.
2726 
2727   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2728     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
2729     B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
2730     return CI->getArgOperand(0);
2731   }
2732   return nullptr;
2733 }
2734 
2735 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
2736                                                       IRBuilder<> &B,
2737                                                       LibFunc Func) {
2738   Function *Callee = CI->getCalledFunction();
2739   StringRef Name = Callee->getName();
2740   const DataLayout &DL = CI->getModule()->getDataLayout();
2741   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
2742         *ObjSize = CI->getArgOperand(2);
2743 
2744   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
2745   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
2746     Value *StrLen = emitStrLen(Src, B, DL, TLI);
2747     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
2748   }
2749 
2750   // If a) we don't have any length information, or b) we know this will
2751   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
2752   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
2753   // TODO: It might be nice to get a maximum length out of the possible
2754   // string lengths for varying.
2755   if (isFortifiedCallFoldable(CI, 2, 1, true))
2756     return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
2757 
2758   if (OnlyLowerUnknownSize)
2759     return nullptr;
2760 
2761   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
2762   uint64_t Len = GetStringLength(Src);
2763   if (Len == 0)
2764     return nullptr;
2765 
2766   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
2767   Value *LenV = ConstantInt::get(SizeTTy, Len);
2768   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
2769   // If the function was an __stpcpy_chk, and we were able to fold it into
2770   // a __memcpy_chk, we still need to return the correct end pointer.
2771   if (Ret && Func == LibFunc_stpcpy_chk)
2772     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
2773   return Ret;
2774 }
2775 
2776 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
2777                                                        IRBuilder<> &B,
2778                                                        LibFunc Func) {
2779   Function *Callee = CI->getCalledFunction();
2780   StringRef Name = Callee->getName();
2781   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2782     Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2783                              CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
2784     return Ret;
2785   }
2786   return nullptr;
2787 }
2788 
2789 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
2790   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
2791   // Some clang users checked for _chk libcall availability using:
2792   //   __has_builtin(__builtin___memcpy_chk)
2793   // When compiling with -fno-builtin, this is always true.
2794   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
2795   // end up with fortified libcalls, which isn't acceptable in a freestanding
2796   // environment which only provides their non-fortified counterparts.
2797   //
2798   // Until we change clang and/or teach external users to check for availability
2799   // differently, disregard the "nobuiltin" attribute and TLI::has.
2800   //
2801   // PR23093.
2802 
2803   LibFunc Func;
2804   Function *Callee = CI->getCalledFunction();
2805 
2806   SmallVector<OperandBundleDef, 2> OpBundles;
2807   CI->getOperandBundlesAsDefs(OpBundles);
2808   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2809   bool isCallingConvC = isCallingConvCCompatible(CI);
2810 
2811   // First, check that this is a known library functions and that the prototype
2812   // is correct.
2813   if (!TLI->getLibFunc(*Callee, Func))
2814     return nullptr;
2815 
2816   // We never change the calling convention.
2817   if (!ignoreCallingConv(Func) && !isCallingConvC)
2818     return nullptr;
2819 
2820   switch (Func) {
2821   case LibFunc_memcpy_chk:
2822     return optimizeMemCpyChk(CI, Builder);
2823   case LibFunc_memmove_chk:
2824     return optimizeMemMoveChk(CI, Builder);
2825   case LibFunc_memset_chk:
2826     return optimizeMemSetChk(CI, Builder);
2827   case LibFunc_stpcpy_chk:
2828   case LibFunc_strcpy_chk:
2829     return optimizeStrpCpyChk(CI, Builder, Func);
2830   case LibFunc_stpncpy_chk:
2831   case LibFunc_strncpy_chk:
2832     return optimizeStrpNCpyChk(CI, Builder, Func);
2833   default:
2834     break;
2835   }
2836   return nullptr;
2837 }
2838 
2839 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
2840     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
2841     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
2842