1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the library calls simplifier. It does not implement 11 // any pass, but can't be used by other passes to do simplifications. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Transforms/Utils/Local.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/KnownBits.h" 35 #include "llvm/Transforms/Utils/BuildLibCalls.h" 36 37 using namespace llvm; 38 using namespace PatternMatch; 39 40 static cl::opt<bool> 41 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 42 cl::init(false), 43 cl::desc("Enable unsafe double to float " 44 "shrinking for math lib calls")); 45 46 47 //===----------------------------------------------------------------------===// 48 // Helper Functions 49 //===----------------------------------------------------------------------===// 50 51 static bool ignoreCallingConv(LibFunc Func) { 52 return Func == LibFunc_abs || Func == LibFunc_labs || 53 Func == LibFunc_llabs || Func == LibFunc_strlen; 54 } 55 56 static bool isCallingConvCCompatible(CallInst *CI) { 57 switch(CI->getCallingConv()) { 58 default: 59 return false; 60 case llvm::CallingConv::C: 61 return true; 62 case llvm::CallingConv::ARM_APCS: 63 case llvm::CallingConv::ARM_AAPCS: 64 case llvm::CallingConv::ARM_AAPCS_VFP: { 65 66 // The iOS ABI diverges from the standard in some cases, so for now don't 67 // try to simplify those calls. 68 if (Triple(CI->getModule()->getTargetTriple()).isiOS()) 69 return false; 70 71 auto *FuncTy = CI->getFunctionType(); 72 73 if (!FuncTy->getReturnType()->isPointerTy() && 74 !FuncTy->getReturnType()->isIntegerTy() && 75 !FuncTy->getReturnType()->isVoidTy()) 76 return false; 77 78 for (auto Param : FuncTy->params()) { 79 if (!Param->isPointerTy() && !Param->isIntegerTy()) 80 return false; 81 } 82 return true; 83 } 84 } 85 return false; 86 } 87 88 /// Return true if it is only used in equality comparisons with With. 89 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 90 for (User *U : V->users()) { 91 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 92 if (IC->isEquality() && IC->getOperand(1) == With) 93 continue; 94 // Unknown instruction. 95 return false; 96 } 97 return true; 98 } 99 100 static bool callHasFloatingPointArgument(const CallInst *CI) { 101 return any_of(CI->operands(), [](const Use &OI) { 102 return OI->getType()->isFloatingPointTy(); 103 }); 104 } 105 106 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 107 if (Base < 2 || Base > 36) 108 // handle special zero base 109 if (Base != 0) 110 return nullptr; 111 112 char *End; 113 std::string nptr = Str.str(); 114 errno = 0; 115 long long int Result = strtoll(nptr.c_str(), &End, Base); 116 if (errno) 117 return nullptr; 118 119 // if we assume all possible target locales are ASCII supersets, 120 // then if strtoll successfully parses a number on the host, 121 // it will also successfully parse the same way on the target 122 if (*End != '\0') 123 return nullptr; 124 125 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 126 return nullptr; 127 128 return ConstantInt::get(CI->getType(), Result); 129 } 130 131 static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B, 132 const TargetLibraryInfo *TLI) { 133 CallInst *FOpen = dyn_cast<CallInst>(File); 134 if (!FOpen) 135 return false; 136 137 Function *InnerCallee = FOpen->getCalledFunction(); 138 if (!InnerCallee) 139 return false; 140 141 LibFunc Func; 142 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 143 Func != LibFunc_fopen) 144 return false; 145 146 inferLibFuncAttributes(*CI->getCalledFunction(), *TLI); 147 if (PointerMayBeCaptured(File, true, true)) 148 return false; 149 150 return true; 151 } 152 153 //===----------------------------------------------------------------------===// 154 // String and Memory Library Call Optimizations 155 //===----------------------------------------------------------------------===// 156 157 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 158 // Extract some information from the instruction 159 Value *Dst = CI->getArgOperand(0); 160 Value *Src = CI->getArgOperand(1); 161 162 // See if we can get the length of the input string. 163 uint64_t Len = GetStringLength(Src); 164 if (Len == 0) 165 return nullptr; 166 --Len; // Unbias length. 167 168 // Handle the simple, do-nothing case: strcat(x, "") -> x 169 if (Len == 0) 170 return Dst; 171 172 return emitStrLenMemCpy(Src, Dst, Len, B); 173 } 174 175 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 176 IRBuilder<> &B) { 177 // We need to find the end of the destination string. That's where the 178 // memory is to be moved to. We just generate a call to strlen. 179 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 180 if (!DstLen) 181 return nullptr; 182 183 // Now that we have the destination's length, we must index into the 184 // destination's pointer to get the actual memcpy destination (end of 185 // the string .. we're concatenating). 186 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 187 188 // We have enough information to now generate the memcpy call to do the 189 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 190 B.CreateMemCpy(CpyDst, 1, Src, 1, 191 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 192 return Dst; 193 } 194 195 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 196 // Extract some information from the instruction. 197 Value *Dst = CI->getArgOperand(0); 198 Value *Src = CI->getArgOperand(1); 199 uint64_t Len; 200 201 // We don't do anything if length is not constant. 202 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 203 Len = LengthArg->getZExtValue(); 204 else 205 return nullptr; 206 207 // See if we can get the length of the input string. 208 uint64_t SrcLen = GetStringLength(Src); 209 if (SrcLen == 0) 210 return nullptr; 211 --SrcLen; // Unbias length. 212 213 // Handle the simple, do-nothing cases: 214 // strncat(x, "", c) -> x 215 // strncat(x, c, 0) -> x 216 if (SrcLen == 0 || Len == 0) 217 return Dst; 218 219 // We don't optimize this case. 220 if (Len < SrcLen) 221 return nullptr; 222 223 // strncat(x, s, c) -> strcat(x, s) 224 // s is constant so the strcat can be optimized further. 225 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 226 } 227 228 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 229 Function *Callee = CI->getCalledFunction(); 230 FunctionType *FT = Callee->getFunctionType(); 231 Value *SrcStr = CI->getArgOperand(0); 232 233 // If the second operand is non-constant, see if we can compute the length 234 // of the input string and turn this into memchr. 235 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 236 if (!CharC) { 237 uint64_t Len = GetStringLength(SrcStr); 238 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 239 return nullptr; 240 241 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 242 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 243 B, DL, TLI); 244 } 245 246 // Otherwise, the character is a constant, see if the first argument is 247 // a string literal. If so, we can constant fold. 248 StringRef Str; 249 if (!getConstantStringInfo(SrcStr, Str)) { 250 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 251 return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI), 252 "strchr"); 253 return nullptr; 254 } 255 256 // Compute the offset, make sure to handle the case when we're searching for 257 // zero (a weird way to spell strlen). 258 size_t I = (0xFF & CharC->getSExtValue()) == 0 259 ? Str.size() 260 : Str.find(CharC->getSExtValue()); 261 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 262 return Constant::getNullValue(CI->getType()); 263 264 // strchr(s+n,c) -> gep(s+n+i,c) 265 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 266 } 267 268 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 269 Value *SrcStr = CI->getArgOperand(0); 270 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 271 272 // Cannot fold anything if we're not looking for a constant. 273 if (!CharC) 274 return nullptr; 275 276 StringRef Str; 277 if (!getConstantStringInfo(SrcStr, Str)) { 278 // strrchr(s, 0) -> strchr(s, 0) 279 if (CharC->isZero()) 280 return emitStrChr(SrcStr, '\0', B, TLI); 281 return nullptr; 282 } 283 284 // Compute the offset. 285 size_t I = (0xFF & CharC->getSExtValue()) == 0 286 ? Str.size() 287 : Str.rfind(CharC->getSExtValue()); 288 if (I == StringRef::npos) // Didn't find the char. Return null. 289 return Constant::getNullValue(CI->getType()); 290 291 // strrchr(s+n,c) -> gep(s+n+i,c) 292 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 293 } 294 295 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 296 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 297 if (Str1P == Str2P) // strcmp(x,x) -> 0 298 return ConstantInt::get(CI->getType(), 0); 299 300 StringRef Str1, Str2; 301 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 302 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 303 304 // strcmp(x, y) -> cnst (if both x and y are constant strings) 305 if (HasStr1 && HasStr2) 306 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 307 308 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 309 return B.CreateNeg( 310 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 311 312 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 313 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 314 315 // strcmp(P, "x") -> memcmp(P, "x", 2) 316 uint64_t Len1 = GetStringLength(Str1P); 317 uint64_t Len2 = GetStringLength(Str2P); 318 if (Len1 && Len2) { 319 return emitMemCmp(Str1P, Str2P, 320 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 321 std::min(Len1, Len2)), 322 B, DL, TLI); 323 } 324 325 return nullptr; 326 } 327 328 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 329 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 330 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 331 return ConstantInt::get(CI->getType(), 0); 332 333 // Get the length argument if it is constant. 334 uint64_t Length; 335 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 336 Length = LengthArg->getZExtValue(); 337 else 338 return nullptr; 339 340 if (Length == 0) // strncmp(x,y,0) -> 0 341 return ConstantInt::get(CI->getType(), 0); 342 343 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 344 return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 345 346 StringRef Str1, Str2; 347 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 348 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 349 350 // strncmp(x, y) -> cnst (if both x and y are constant strings) 351 if (HasStr1 && HasStr2) { 352 StringRef SubStr1 = Str1.substr(0, Length); 353 StringRef SubStr2 = Str2.substr(0, Length); 354 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 355 } 356 357 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 358 return B.CreateNeg( 359 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 360 361 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 362 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 363 364 return nullptr; 365 } 366 367 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 368 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 369 if (Dst == Src) // strcpy(x,x) -> x 370 return Src; 371 372 // See if we can get the length of the input string. 373 uint64_t Len = GetStringLength(Src); 374 if (Len == 0) 375 return nullptr; 376 377 // We have enough information to now generate the memcpy call to do the 378 // copy for us. Make a memcpy to copy the nul byte with align = 1. 379 B.CreateMemCpy(Dst, 1, Src, 1, 380 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 381 return Dst; 382 } 383 384 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 385 Function *Callee = CI->getCalledFunction(); 386 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 387 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 388 Value *StrLen = emitStrLen(Src, B, DL, TLI); 389 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 390 } 391 392 // See if we can get the length of the input string. 393 uint64_t Len = GetStringLength(Src); 394 if (Len == 0) 395 return nullptr; 396 397 Type *PT = Callee->getFunctionType()->getParamType(0); 398 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 399 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 400 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 401 402 // We have enough information to now generate the memcpy call to do the 403 // copy for us. Make a memcpy to copy the nul byte with align = 1. 404 B.CreateMemCpy(Dst, 1, Src, 1, LenV); 405 return DstEnd; 406 } 407 408 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 409 Function *Callee = CI->getCalledFunction(); 410 Value *Dst = CI->getArgOperand(0); 411 Value *Src = CI->getArgOperand(1); 412 Value *LenOp = CI->getArgOperand(2); 413 414 // See if we can get the length of the input string. 415 uint64_t SrcLen = GetStringLength(Src); 416 if (SrcLen == 0) 417 return nullptr; 418 --SrcLen; 419 420 if (SrcLen == 0) { 421 // strncpy(x, "", y) -> memset(align 1 x, '\0', y) 422 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 423 return Dst; 424 } 425 426 uint64_t Len; 427 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 428 Len = LengthArg->getZExtValue(); 429 else 430 return nullptr; 431 432 if (Len == 0) 433 return Dst; // strncpy(x, y, 0) -> x 434 435 // Let strncpy handle the zero padding 436 if (Len > SrcLen + 1) 437 return nullptr; 438 439 Type *PT = Callee->getFunctionType()->getParamType(0); 440 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 441 B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len)); 442 443 return Dst; 444 } 445 446 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B, 447 unsigned CharSize) { 448 Value *Src = CI->getArgOperand(0); 449 450 // Constant folding: strlen("xyz") -> 3 451 if (uint64_t Len = GetStringLength(Src, CharSize)) 452 return ConstantInt::get(CI->getType(), Len - 1); 453 454 // If s is a constant pointer pointing to a string literal, we can fold 455 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 456 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 457 // We only try to simplify strlen when the pointer s points to an array 458 // of i8. Otherwise, we would need to scale the offset x before doing the 459 // subtraction. This will make the optimization more complex, and it's not 460 // very useful because calling strlen for a pointer of other types is 461 // very uncommon. 462 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 463 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 464 return nullptr; 465 466 ConstantDataArraySlice Slice; 467 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 468 uint64_t NullTermIdx; 469 if (Slice.Array == nullptr) { 470 NullTermIdx = 0; 471 } else { 472 NullTermIdx = ~((uint64_t)0); 473 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 474 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 475 NullTermIdx = I; 476 break; 477 } 478 } 479 // If the string does not have '\0', leave it to strlen to compute 480 // its length. 481 if (NullTermIdx == ~((uint64_t)0)) 482 return nullptr; 483 } 484 485 Value *Offset = GEP->getOperand(2); 486 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 487 Known.Zero.flipAllBits(); 488 uint64_t ArrSize = 489 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 490 491 // KnownZero's bits are flipped, so zeros in KnownZero now represent 492 // bits known to be zeros in Offset, and ones in KnowZero represent 493 // bits unknown in Offset. Therefore, Offset is known to be in range 494 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 495 // unsigned-less-than NullTermIdx. 496 // 497 // If Offset is not provably in the range [0, NullTermIdx], we can still 498 // optimize if we can prove that the program has undefined behavior when 499 // Offset is outside that range. That is the case when GEP->getOperand(0) 500 // is a pointer to an object whose memory extent is NullTermIdx+1. 501 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 502 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 503 NullTermIdx == ArrSize - 1)) { 504 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 505 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 506 Offset); 507 } 508 } 509 510 return nullptr; 511 } 512 513 // strlen(x?"foo":"bars") --> x ? 3 : 4 514 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 515 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 516 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 517 if (LenTrue && LenFalse) { 518 ORE.emit([&]() { 519 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 520 << "folded strlen(select) to select of constants"; 521 }); 522 return B.CreateSelect(SI->getCondition(), 523 ConstantInt::get(CI->getType(), LenTrue - 1), 524 ConstantInt::get(CI->getType(), LenFalse - 1)); 525 } 526 } 527 528 // strlen(x) != 0 --> *x != 0 529 // strlen(x) == 0 --> *x == 0 530 if (isOnlyUsedInZeroEqualityComparison(CI)) 531 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); 532 533 return nullptr; 534 } 535 536 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 537 return optimizeStringLength(CI, B, 8); 538 } 539 540 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) { 541 Module &M = *CI->getModule(); 542 unsigned WCharSize = TLI->getWCharSize(M) * 8; 543 // We cannot perform this optimization without wchar_size metadata. 544 if (WCharSize == 0) 545 return nullptr; 546 547 return optimizeStringLength(CI, B, WCharSize); 548 } 549 550 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 551 StringRef S1, S2; 552 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 553 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 554 555 // strpbrk(s, "") -> nullptr 556 // strpbrk("", s) -> nullptr 557 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 558 return Constant::getNullValue(CI->getType()); 559 560 // Constant folding. 561 if (HasS1 && HasS2) { 562 size_t I = S1.find_first_of(S2); 563 if (I == StringRef::npos) // No match. 564 return Constant::getNullValue(CI->getType()); 565 566 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 567 "strpbrk"); 568 } 569 570 // strpbrk(s, "a") -> strchr(s, 'a') 571 if (HasS2 && S2.size() == 1) 572 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 573 574 return nullptr; 575 } 576 577 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 578 Value *EndPtr = CI->getArgOperand(1); 579 if (isa<ConstantPointerNull>(EndPtr)) { 580 // With a null EndPtr, this function won't capture the main argument. 581 // It would be readonly too, except that it still may write to errno. 582 CI->addParamAttr(0, Attribute::NoCapture); 583 } 584 585 return nullptr; 586 } 587 588 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 589 StringRef S1, S2; 590 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 591 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 592 593 // strspn(s, "") -> 0 594 // strspn("", s) -> 0 595 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 596 return Constant::getNullValue(CI->getType()); 597 598 // Constant folding. 599 if (HasS1 && HasS2) { 600 size_t Pos = S1.find_first_not_of(S2); 601 if (Pos == StringRef::npos) 602 Pos = S1.size(); 603 return ConstantInt::get(CI->getType(), Pos); 604 } 605 606 return nullptr; 607 } 608 609 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 610 StringRef S1, S2; 611 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 612 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 613 614 // strcspn("", s) -> 0 615 if (HasS1 && S1.empty()) 616 return Constant::getNullValue(CI->getType()); 617 618 // Constant folding. 619 if (HasS1 && HasS2) { 620 size_t Pos = S1.find_first_of(S2); 621 if (Pos == StringRef::npos) 622 Pos = S1.size(); 623 return ConstantInt::get(CI->getType(), Pos); 624 } 625 626 // strcspn(s, "") -> strlen(s) 627 if (HasS2 && S2.empty()) 628 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 629 630 return nullptr; 631 } 632 633 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 634 // fold strstr(x, x) -> x. 635 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 636 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 637 638 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 639 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 640 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 641 if (!StrLen) 642 return nullptr; 643 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 644 StrLen, B, DL, TLI); 645 if (!StrNCmp) 646 return nullptr; 647 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 648 ICmpInst *Old = cast<ICmpInst>(*UI++); 649 Value *Cmp = 650 B.CreateICmp(Old->getPredicate(), StrNCmp, 651 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 652 replaceAllUsesWith(Old, Cmp); 653 } 654 return CI; 655 } 656 657 // See if either input string is a constant string. 658 StringRef SearchStr, ToFindStr; 659 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 660 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 661 662 // fold strstr(x, "") -> x. 663 if (HasStr2 && ToFindStr.empty()) 664 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 665 666 // If both strings are known, constant fold it. 667 if (HasStr1 && HasStr2) { 668 size_t Offset = SearchStr.find(ToFindStr); 669 670 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 671 return Constant::getNullValue(CI->getType()); 672 673 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 674 Value *Result = castToCStr(CI->getArgOperand(0), B); 675 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); 676 return B.CreateBitCast(Result, CI->getType()); 677 } 678 679 // fold strstr(x, "y") -> strchr(x, 'y'). 680 if (HasStr2 && ToFindStr.size() == 1) { 681 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 682 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 683 } 684 return nullptr; 685 } 686 687 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { 688 Value *SrcStr = CI->getArgOperand(0); 689 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 690 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 691 692 // memchr(x, y, 0) -> null 693 if (LenC && LenC->isZero()) 694 return Constant::getNullValue(CI->getType()); 695 696 // From now on we need at least constant length and string. 697 StringRef Str; 698 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 699 return nullptr; 700 701 // Truncate the string to LenC. If Str is smaller than LenC we will still only 702 // scan the string, as reading past the end of it is undefined and we can just 703 // return null if we don't find the char. 704 Str = Str.substr(0, LenC->getZExtValue()); 705 706 // If the char is variable but the input str and length are not we can turn 707 // this memchr call into a simple bit field test. Of course this only works 708 // when the return value is only checked against null. 709 // 710 // It would be really nice to reuse switch lowering here but we can't change 711 // the CFG at this point. 712 // 713 // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0 714 // after bounds check. 715 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 716 unsigned char Max = 717 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 718 reinterpret_cast<const unsigned char *>(Str.end())); 719 720 // Make sure the bit field we're about to create fits in a register on the 721 // target. 722 // FIXME: On a 64 bit architecture this prevents us from using the 723 // interesting range of alpha ascii chars. We could do better by emitting 724 // two bitfields or shifting the range by 64 if no lower chars are used. 725 if (!DL.fitsInLegalInteger(Max + 1)) 726 return nullptr; 727 728 // For the bit field use a power-of-2 type with at least 8 bits to avoid 729 // creating unnecessary illegal types. 730 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 731 732 // Now build the bit field. 733 APInt Bitfield(Width, 0); 734 for (char C : Str) 735 Bitfield.setBit((unsigned char)C); 736 Value *BitfieldC = B.getInt(Bitfield); 737 738 // First check that the bit field access is within bounds. 739 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 740 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 741 "memchr.bounds"); 742 743 // Create code that checks if the given bit is set in the field. 744 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 745 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 746 747 // Finally merge both checks and cast to pointer type. The inttoptr 748 // implicitly zexts the i1 to intptr type. 749 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 750 } 751 752 // Check if all arguments are constants. If so, we can constant fold. 753 if (!CharC) 754 return nullptr; 755 756 // Compute the offset. 757 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 758 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 759 return Constant::getNullValue(CI->getType()); 760 761 // memchr(s+n,c,l) -> gep(s+n+i,c) 762 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 763 } 764 765 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 766 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 767 768 if (LHS == RHS) // memcmp(s,s,x) -> 0 769 return Constant::getNullValue(CI->getType()); 770 771 // Make sure we have a constant length. 772 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 773 if (!LenC) 774 return nullptr; 775 776 uint64_t Len = LenC->getZExtValue(); 777 if (Len == 0) // memcmp(s1,s2,0) -> 0 778 return Constant::getNullValue(CI->getType()); 779 780 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 781 if (Len == 1) { 782 Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"), 783 CI->getType(), "lhsv"); 784 Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"), 785 CI->getType(), "rhsv"); 786 return B.CreateSub(LHSV, RHSV, "chardiff"); 787 } 788 789 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 790 // TODO: The case where both inputs are constants does not need to be limited 791 // to legal integers or equality comparison. See block below this. 792 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 793 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 794 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 795 796 // First, see if we can fold either argument to a constant. 797 Value *LHSV = nullptr; 798 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 799 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 800 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 801 } 802 Value *RHSV = nullptr; 803 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 804 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 805 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 806 } 807 808 // Don't generate unaligned loads. If either source is constant data, 809 // alignment doesn't matter for that source because there is no load. 810 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 811 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 812 if (!LHSV) { 813 Type *LHSPtrTy = 814 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 815 LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 816 } 817 if (!RHSV) { 818 Type *RHSPtrTy = 819 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 820 RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 821 } 822 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 823 } 824 } 825 826 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 827 // TODO: This is limited to i8 arrays. 828 StringRef LHSStr, RHSStr; 829 if (getConstantStringInfo(LHS, LHSStr) && 830 getConstantStringInfo(RHS, RHSStr)) { 831 // Make sure we're not reading out-of-bounds memory. 832 if (Len > LHSStr.size() || Len > RHSStr.size()) 833 return nullptr; 834 // Fold the memcmp and normalize the result. This way we get consistent 835 // results across multiple platforms. 836 uint64_t Ret = 0; 837 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 838 if (Cmp < 0) 839 Ret = -1; 840 else if (Cmp > 0) 841 Ret = 1; 842 return ConstantInt::get(CI->getType(), Ret); 843 } 844 845 return nullptr; 846 } 847 848 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { 849 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 850 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 851 CI->getArgOperand(2)); 852 return CI->getArgOperand(0); 853 } 854 855 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { 856 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 857 B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 858 CI->getArgOperand(2)); 859 return CI->getArgOperand(0); 860 } 861 862 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 863 static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B, 864 const TargetLibraryInfo &TLI) { 865 // This has to be a memset of zeros (bzero). 866 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 867 if (!FillValue || FillValue->getZExtValue() != 0) 868 return nullptr; 869 870 // TODO: We should handle the case where the malloc has more than one use. 871 // This is necessary to optimize common patterns such as when the result of 872 // the malloc is checked against null or when a memset intrinsic is used in 873 // place of a memset library call. 874 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 875 if (!Malloc || !Malloc->hasOneUse()) 876 return nullptr; 877 878 // Is the inner call really malloc()? 879 Function *InnerCallee = Malloc->getCalledFunction(); 880 if (!InnerCallee) 881 return nullptr; 882 883 LibFunc Func; 884 if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) || 885 Func != LibFunc_malloc) 886 return nullptr; 887 888 // The memset must cover the same number of bytes that are malloc'd. 889 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 890 return nullptr; 891 892 // Replace the malloc with a calloc. We need the data layout to know what the 893 // actual size of a 'size_t' parameter is. 894 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 895 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 896 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 897 Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 898 Malloc->getArgOperand(0), Malloc->getAttributes(), 899 B, TLI); 900 if (!Calloc) 901 return nullptr; 902 903 Malloc->replaceAllUsesWith(Calloc); 904 Malloc->eraseFromParent(); 905 906 return Calloc; 907 } 908 909 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { 910 if (auto *Calloc = foldMallocMemset(CI, B, *TLI)) 911 return Calloc; 912 913 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 914 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 915 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 916 return CI->getArgOperand(0); 917 } 918 919 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) { 920 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 921 return emitMalloc(CI->getArgOperand(1), B, DL, TLI); 922 923 return nullptr; 924 } 925 926 //===----------------------------------------------------------------------===// 927 // Math Library Optimizations 928 //===----------------------------------------------------------------------===// 929 930 // Replace a libcall \p CI with a call to intrinsic \p IID 931 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) { 932 // Propagate fast-math flags from the existing call to the new call. 933 IRBuilder<>::FastMathFlagGuard Guard(B); 934 B.setFastMathFlags(CI->getFastMathFlags()); 935 936 Module *M = CI->getModule(); 937 Value *V = CI->getArgOperand(0); 938 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 939 CallInst *NewCall = B.CreateCall(F, V); 940 NewCall->takeName(CI); 941 return NewCall; 942 } 943 944 /// Return a variant of Val with float type. 945 /// Currently this works in two cases: If Val is an FPExtension of a float 946 /// value to something bigger, simply return the operand. 947 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 948 /// loss of precision do so. 949 static Value *valueHasFloatPrecision(Value *Val) { 950 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 951 Value *Op = Cast->getOperand(0); 952 if (Op->getType()->isFloatTy()) 953 return Op; 954 } 955 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 956 APFloat F = Const->getValueAPF(); 957 bool losesInfo; 958 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 959 &losesInfo); 960 if (!losesInfo) 961 return ConstantFP::get(Const->getContext(), F); 962 } 963 return nullptr; 964 } 965 966 /// Shrink double -> float functions. 967 static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B, 968 bool isBinary, bool doResultCheck = false) { 969 if (!CI->getType()->isDoubleTy()) 970 return nullptr; 971 972 // Check if all the uses of the function are converted to float. 973 if (doResultCheck) 974 for (User *U : CI->users()) { 975 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 976 if (!Cast || !Cast->getType()->isFloatTy()) 977 return nullptr; 978 } 979 980 // If this is something like 'g((double) float)', convert to 'gf(float)'. 981 Value *V[2]; 982 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 983 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 984 if (!V[0] || (isBinary && !V[1])) 985 return nullptr; 986 987 // If call isn't an intrinsic, check that it isn't within a function with the 988 // same name as the float version of this call, otherwise the result is an 989 // infinite loop. For example, from MinGW-w64: 990 // 991 // float expf(float val) { return (float) exp((double) val); } 992 Function *CalleeFn = CI->getCalledFunction(); 993 StringRef CalleeNm = CalleeFn->getName(); 994 AttributeList CalleeAt = CalleeFn->getAttributes(); 995 if (CalleeFn && !CalleeFn->isIntrinsic()) { 996 const Function *Fn = CI->getFunction(); 997 StringRef FnName = Fn->getName(); 998 if (FnName.back() == 'f' && 999 FnName.size() == (CalleeNm.size() + 1) && 1000 FnName.startswith(CalleeNm)) 1001 return nullptr; 1002 } 1003 1004 // Propagate the math semantics from the current function to the new function. 1005 IRBuilder<>::FastMathFlagGuard Guard(B); 1006 B.setFastMathFlags(CI->getFastMathFlags()); 1007 1008 // g((double) float) -> (double) gf(float) 1009 Value *R; 1010 if (CalleeFn->isIntrinsic()) { 1011 Module *M = CI->getModule(); 1012 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1013 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1014 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1015 } 1016 else 1017 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeNm, B, CalleeAt) 1018 : emitUnaryFloatFnCall(V[0], CalleeNm, B, CalleeAt); 1019 1020 return B.CreateFPExt(R, B.getDoubleTy()); 1021 } 1022 1023 /// Shrink double -> float for unary functions. 1024 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1025 bool doResultCheck = false) { 1026 return optimizeDoubleFP(CI, B, false, doResultCheck); 1027 } 1028 1029 /// Shrink double -> float for binary functions. 1030 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1031 bool doResultCheck = false) { 1032 return optimizeDoubleFP(CI, B, true, doResultCheck); 1033 } 1034 1035 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1036 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) { 1037 if (!CI->isFast()) 1038 return nullptr; 1039 1040 // Propagate fast-math flags from the existing call to new instructions. 1041 IRBuilder<>::FastMathFlagGuard Guard(B); 1042 B.setFastMathFlags(CI->getFastMathFlags()); 1043 1044 Value *Real, *Imag; 1045 if (CI->getNumArgOperands() == 1) { 1046 Value *Op = CI->getArgOperand(0); 1047 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1048 Real = B.CreateExtractValue(Op, 0, "real"); 1049 Imag = B.CreateExtractValue(Op, 1, "imag"); 1050 } else { 1051 assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); 1052 Real = CI->getArgOperand(0); 1053 Imag = CI->getArgOperand(1); 1054 } 1055 1056 Value *RealReal = B.CreateFMul(Real, Real); 1057 Value *ImagImag = B.CreateFMul(Imag, Imag); 1058 1059 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1060 CI->getType()); 1061 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); 1062 } 1063 1064 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) { 1065 Function *Callee = CI->getCalledFunction(); 1066 Value *Ret = nullptr; 1067 StringRef Name = Callee->getName(); 1068 if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name)) 1069 Ret = optimizeUnaryDoubleFP(CI, B, true); 1070 1071 // cos(-x) -> cos(x) 1072 Value *Op1 = CI->getArgOperand(0); 1073 if (BinaryOperator::isFNeg(Op1)) { 1074 BinaryOperator *BinExpr = cast<BinaryOperator>(Op1); 1075 return B.CreateCall(Callee, BinExpr->getOperand(1), "cos"); 1076 } 1077 return Ret; 1078 } 1079 1080 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) { 1081 // Multiplications calculated using Addition Chains. 1082 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1083 1084 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1085 1086 if (InnerChain[Exp]) 1087 return InnerChain[Exp]; 1088 1089 static const unsigned AddChain[33][2] = { 1090 {0, 0}, // Unused. 1091 {0, 0}, // Unused (base case = pow1). 1092 {1, 1}, // Unused (pre-computed). 1093 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1094 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1095 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1096 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1097 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1098 }; 1099 1100 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1101 getPow(InnerChain, AddChain[Exp][1], B)); 1102 return InnerChain[Exp]; 1103 } 1104 1105 /// Use square root in place of pow(x, +/-0.5). 1106 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) { 1107 // TODO: There is some subset of 'fast' under which these transforms should 1108 // be allowed. 1109 if (!Pow->isFast()) 1110 return nullptr; 1111 1112 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1113 Type *Ty = Pow->getType(); 1114 1115 const APFloat *ExpoF; 1116 if (!match(Expo, m_APFloat(ExpoF)) || 1117 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1118 return nullptr; 1119 1120 // If errno is never set, then use the intrinsic for sqrt(). 1121 if (Pow->hasFnAttr(Attribute::ReadNone)) { 1122 Function *SqrtFn = Intrinsic::getDeclaration(Pow->getModule(), 1123 Intrinsic::sqrt, Ty); 1124 Sqrt = B.CreateCall(SqrtFn, Base); 1125 } 1126 // Otherwise, use the libcall for sqrt(). 1127 else if (hasUnaryFloatFn(TLI, Ty, LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) 1128 // TODO: We also should check that the target can in fact lower the sqrt() 1129 // libcall. We currently have no way to ask this question, so we ask if 1130 // the target has a sqrt() libcall, which is not exactly the same. 1131 Sqrt = emitUnaryFloatFnCall(Base, TLI->getName(LibFunc_sqrt), B, 1132 Pow->getCalledFunction()->getAttributes()); 1133 else 1134 return nullptr; 1135 1136 // If the exponent is negative, then get the reciprocal. 1137 if (ExpoF->isNegative()) 1138 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1139 1140 return Sqrt; 1141 } 1142 1143 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) { 1144 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1145 Function *Callee = Pow->getCalledFunction(); 1146 AttributeList Attrs = Callee->getAttributes(); 1147 StringRef Name = Callee->getName(); 1148 Module *Module = Pow->getModule(); 1149 Type *Ty = Pow->getType(); 1150 Value *Shrunk = nullptr; 1151 bool Ignored; 1152 1153 if (UnsafeFPShrink && 1154 Name == TLI->getName(LibFunc_pow) && hasFloatVersion(Name)) 1155 Shrunk = optimizeUnaryDoubleFP(Pow, B, true); 1156 1157 // Propagate the math semantics from the call to any created instructions. 1158 IRBuilder<>::FastMathFlagGuard Guard(B); 1159 B.setFastMathFlags(Pow->getFastMathFlags()); 1160 1161 // Evaluate special cases related to the base. 1162 1163 // pow(1.0, x) -> 1.0 1164 if (match(Base, m_FPOne())) 1165 return Base; 1166 1167 // pow(2.0, x) -> exp2(x) 1168 if (match(Base, m_SpecificFP(2.0))) { 1169 Value *Exp2 = Intrinsic::getDeclaration(Module, Intrinsic::exp2, Ty); 1170 return B.CreateCall(Exp2, Expo, "exp2"); 1171 } 1172 1173 // pow(10.0, x) -> exp10(x) 1174 if (ConstantFP *BaseC = dyn_cast<ConstantFP>(Base)) 1175 // There's no exp10 intrinsic yet, but, maybe, some day there shall be one. 1176 if (BaseC->isExactlyValue(10.0) && 1177 hasUnaryFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1178 return emitUnaryFloatFnCall(Expo, TLI->getName(LibFunc_exp10), B, Attrs); 1179 1180 // pow(exp(x), y) -> exp(x * y) 1181 // pow(exp2(x), y) -> exp2(x * y) 1182 // We enable these only with fast-math. Besides rounding differences, the 1183 // transformation changes overflow and underflow behavior quite dramatically. 1184 // Example: x = 1000, y = 0.001. 1185 // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1). 1186 auto *BaseFn = dyn_cast<CallInst>(Base); 1187 if (BaseFn && BaseFn->isFast() && Pow->isFast()) { 1188 LibFunc LibFn; 1189 Function *CalleeFn = BaseFn->getCalledFunction(); 1190 if (CalleeFn && TLI->getLibFunc(CalleeFn->getName(), LibFn) && 1191 (LibFn == LibFunc_exp || LibFn == LibFunc_exp2) && TLI->has(LibFn)) { 1192 IRBuilder<>::FastMathFlagGuard Guard(B); 1193 B.setFastMathFlags(Pow->getFastMathFlags()); 1194 1195 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1196 return emitUnaryFloatFnCall(FMul, CalleeFn->getName(), B, 1197 CalleeFn->getAttributes()); 1198 } 1199 } 1200 1201 // Evaluate special cases related to the exponent. 1202 1203 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1204 return Sqrt; 1205 1206 ConstantFP *ExpoC = dyn_cast<ConstantFP>(Expo); 1207 if (!ExpoC) 1208 return Shrunk; 1209 1210 // pow(x, -1.0) -> 1.0 / x 1211 if (ExpoC->isExactlyValue(-1.0)) 1212 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1213 1214 // pow(x, 0.0) -> 1.0 1215 if (ExpoC->getValueAPF().isZero()) 1216 return ConstantFP::get(Ty, 1.0); 1217 1218 // pow(x, 1.0) -> x 1219 if (ExpoC->isExactlyValue(1.0)) 1220 return Base; 1221 1222 // pow(x, 2.0) -> x * x 1223 if (ExpoC->isExactlyValue(2.0)) 1224 return B.CreateFMul(Base, Base, "square"); 1225 1226 // FIXME: Correct the transforms and pull this into replacePowWithSqrt(). 1227 if (ExpoC->isExactlyValue(0.5) && 1228 hasUnaryFloatFn(TLI, Ty, LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) { 1229 // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). 1230 // This is faster than calling pow(), and still handles -0.0 and 1231 // negative infinity correctly. 1232 // TODO: In finite-only mode, this could be just fabs(sqrt(x)). 1233 Value *PosInf = ConstantFP::getInfinity(Ty); 1234 Value *NegInf = ConstantFP::getInfinity(Ty, true); 1235 1236 // TODO: As above, we should lower to the sqrt() intrinsic if the pow() is 1237 // an intrinsic, to match errno semantics. 1238 Value *Sqrt = emitUnaryFloatFnCall(Base, TLI->getName(LibFunc_sqrt), 1239 B, Attrs); 1240 Function *FAbsFn = Intrinsic::getDeclaration(Module, Intrinsic::fabs, Ty); 1241 Value *FAbs = B.CreateCall(FAbsFn, Sqrt, "abs"); 1242 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1243 Sqrt = B.CreateSelect(FCmp, PosInf, FAbs); 1244 return Sqrt; 1245 } 1246 1247 // pow(x, n) -> x * x * x * .... 1248 if (Pow->isFast()) { 1249 APFloat ExpoA = abs(ExpoC->getValueAPF()); 1250 // We limit to a max of 7 fmul(s). Thus the maximum exponent is 32. 1251 // This transformation applies to integer exponents only. 1252 if (!ExpoA.isInteger() || 1253 ExpoA.compare 1254 (APFloat(ExpoA.getSemantics(), 32.0)) == APFloat::cmpGreaterThan) 1255 return nullptr; 1256 1257 // We will memoize intermediate products of the Addition Chain. 1258 Value *InnerChain[33] = {nullptr}; 1259 InnerChain[1] = Base; 1260 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1261 1262 // We cannot readily convert a non-double type (like float) to a double. 1263 // So we first convert it to something which could be converted to double. 1264 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1265 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1266 1267 // If the exponent is negative, then get the reciprocal. 1268 if (ExpoC->isNegative()) 1269 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1270 return FMul; 1271 } 1272 1273 return nullptr; 1274 } 1275 1276 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1277 Function *Callee = CI->getCalledFunction(); 1278 Value *Ret = nullptr; 1279 StringRef Name = Callee->getName(); 1280 if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name)) 1281 Ret = optimizeUnaryDoubleFP(CI, B, true); 1282 1283 Value *Op = CI->getArgOperand(0); 1284 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1285 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1286 LibFunc LdExp = LibFunc_ldexpl; 1287 if (Op->getType()->isFloatTy()) 1288 LdExp = LibFunc_ldexpf; 1289 else if (Op->getType()->isDoubleTy()) 1290 LdExp = LibFunc_ldexp; 1291 1292 if (TLI->has(LdExp)) { 1293 Value *LdExpArg = nullptr; 1294 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 1295 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 1296 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 1297 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 1298 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 1299 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 1300 } 1301 1302 if (LdExpArg) { 1303 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); 1304 if (!Op->getType()->isFloatTy()) 1305 One = ConstantExpr::getFPExtend(One, Op->getType()); 1306 1307 Module *M = CI->getModule(); 1308 Value *NewCallee = 1309 M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), 1310 Op->getType(), B.getInt32Ty()); 1311 CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg}); 1312 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 1313 CI->setCallingConv(F->getCallingConv()); 1314 1315 return CI; 1316 } 1317 } 1318 return Ret; 1319 } 1320 1321 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { 1322 Function *Callee = CI->getCalledFunction(); 1323 // If we can shrink the call to a float function rather than a double 1324 // function, do that first. 1325 StringRef Name = Callee->getName(); 1326 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1327 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1328 return Ret; 1329 1330 IRBuilder<>::FastMathFlagGuard Guard(B); 1331 FastMathFlags FMF; 1332 if (CI->isFast()) { 1333 // If the call is 'fast', then anything we create here will also be 'fast'. 1334 FMF.setFast(); 1335 } else { 1336 // At a minimum, no-nans-fp-math must be true. 1337 if (!CI->hasNoNaNs()) 1338 return nullptr; 1339 // No-signed-zeros is implied by the definitions of fmax/fmin themselves: 1340 // "Ideally, fmax would be sensitive to the sign of zero, for example 1341 // fmax(-0. 0, +0. 0) would return +0; however, implementation in software 1342 // might be impractical." 1343 FMF.setNoSignedZeros(); 1344 FMF.setNoNaNs(); 1345 } 1346 B.setFastMathFlags(FMF); 1347 1348 // We have a relaxed floating-point environment. We can ignore NaN-handling 1349 // and transform to a compare and select. We do not have to consider errno or 1350 // exceptions, because fmin/fmax do not have those. 1351 Value *Op0 = CI->getArgOperand(0); 1352 Value *Op1 = CI->getArgOperand(1); 1353 Value *Cmp = Callee->getName().startswith("fmin") ? 1354 B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1); 1355 return B.CreateSelect(Cmp, Op0, Op1); 1356 } 1357 1358 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { 1359 Function *Callee = CI->getCalledFunction(); 1360 Value *Ret = nullptr; 1361 StringRef Name = Callee->getName(); 1362 if (UnsafeFPShrink && hasFloatVersion(Name)) 1363 Ret = optimizeUnaryDoubleFP(CI, B, true); 1364 1365 if (!CI->isFast()) 1366 return Ret; 1367 Value *Op1 = CI->getArgOperand(0); 1368 auto *OpC = dyn_cast<CallInst>(Op1); 1369 1370 // The earlier call must also be 'fast' in order to do these transforms. 1371 if (!OpC || !OpC->isFast()) 1372 return Ret; 1373 1374 // log(pow(x,y)) -> y*log(x) 1375 // This is only applicable to log, log2, log10. 1376 if (Name != "log" && Name != "log2" && Name != "log10") 1377 return Ret; 1378 1379 IRBuilder<>::FastMathFlagGuard Guard(B); 1380 FastMathFlags FMF; 1381 FMF.setFast(); 1382 B.setFastMathFlags(FMF); 1383 1384 LibFunc Func; 1385 Function *F = OpC->getCalledFunction(); 1386 if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1387 Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow)) 1388 return B.CreateFMul(OpC->getArgOperand(1), 1389 emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, 1390 Callee->getAttributes()), "mul"); 1391 1392 // log(exp2(y)) -> y*log(2) 1393 if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && 1394 TLI->has(Func) && Func == LibFunc_exp2) 1395 return B.CreateFMul( 1396 OpC->getArgOperand(0), 1397 emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), 1398 Callee->getName(), B, Callee->getAttributes()), 1399 "logmul"); 1400 return Ret; 1401 } 1402 1403 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1404 Function *Callee = CI->getCalledFunction(); 1405 Value *Ret = nullptr; 1406 // TODO: Once we have a way (other than checking for the existince of the 1407 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 1408 // condition below. 1409 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 1410 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1411 Ret = optimizeUnaryDoubleFP(CI, B, true); 1412 1413 if (!CI->isFast()) 1414 return Ret; 1415 1416 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1417 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 1418 return Ret; 1419 1420 // We're looking for a repeated factor in a multiplication tree, 1421 // so we can do this fold: sqrt(x * x) -> fabs(x); 1422 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 1423 Value *Op0 = I->getOperand(0); 1424 Value *Op1 = I->getOperand(1); 1425 Value *RepeatOp = nullptr; 1426 Value *OtherOp = nullptr; 1427 if (Op0 == Op1) { 1428 // Simple match: the operands of the multiply are identical. 1429 RepeatOp = Op0; 1430 } else { 1431 // Look for a more complicated pattern: one of the operands is itself 1432 // a multiply, so search for a common factor in that multiply. 1433 // Note: We don't bother looking any deeper than this first level or for 1434 // variations of this pattern because instcombine's visitFMUL and/or the 1435 // reassociation pass should give us this form. 1436 Value *OtherMul0, *OtherMul1; 1437 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1438 // Pattern: sqrt((x * y) * z) 1439 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 1440 // Matched: sqrt((x * x) * z) 1441 RepeatOp = OtherMul0; 1442 OtherOp = Op1; 1443 } 1444 } 1445 } 1446 if (!RepeatOp) 1447 return Ret; 1448 1449 // Fast math flags for any created instructions should match the sqrt 1450 // and multiply. 1451 IRBuilder<>::FastMathFlagGuard Guard(B); 1452 B.setFastMathFlags(I->getFastMathFlags()); 1453 1454 // If we found a repeated factor, hoist it out of the square root and 1455 // replace it with the fabs of that factor. 1456 Module *M = Callee->getParent(); 1457 Type *ArgType = I->getType(); 1458 Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1459 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1460 if (OtherOp) { 1461 // If we found a non-repeated factor, we still need to get its square 1462 // root. We then multiply that by the value that was simplified out 1463 // of the square root calculation. 1464 Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1465 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1466 return B.CreateFMul(FabsCall, SqrtCall); 1467 } 1468 return FabsCall; 1469 } 1470 1471 // TODO: Generalize to handle any trig function and its inverse. 1472 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { 1473 Function *Callee = CI->getCalledFunction(); 1474 Value *Ret = nullptr; 1475 StringRef Name = Callee->getName(); 1476 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 1477 Ret = optimizeUnaryDoubleFP(CI, B, true); 1478 1479 Value *Op1 = CI->getArgOperand(0); 1480 auto *OpC = dyn_cast<CallInst>(Op1); 1481 if (!OpC) 1482 return Ret; 1483 1484 // Both calls must be 'fast' in order to remove them. 1485 if (!CI->isFast() || !OpC->isFast()) 1486 return Ret; 1487 1488 // tan(atan(x)) -> x 1489 // tanf(atanf(x)) -> x 1490 // tanl(atanl(x)) -> x 1491 LibFunc Func; 1492 Function *F = OpC->getCalledFunction(); 1493 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1494 ((Func == LibFunc_atan && Callee->getName() == "tan") || 1495 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 1496 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 1497 Ret = OpC->getArgOperand(0); 1498 return Ret; 1499 } 1500 1501 static bool isTrigLibCall(CallInst *CI) { 1502 // We can only hope to do anything useful if we can ignore things like errno 1503 // and floating-point exceptions. 1504 // We already checked the prototype. 1505 return CI->hasFnAttr(Attribute::NoUnwind) && 1506 CI->hasFnAttr(Attribute::ReadNone); 1507 } 1508 1509 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1510 bool UseFloat, Value *&Sin, Value *&Cos, 1511 Value *&SinCos) { 1512 Type *ArgTy = Arg->getType(); 1513 Type *ResTy; 1514 StringRef Name; 1515 1516 Triple T(OrigCallee->getParent()->getTargetTriple()); 1517 if (UseFloat) { 1518 Name = "__sincospif_stret"; 1519 1520 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1521 // x86_64 can't use {float, float} since that would be returned in both 1522 // xmm0 and xmm1, which isn't what a real struct would do. 1523 ResTy = T.getArch() == Triple::x86_64 1524 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1525 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 1526 } else { 1527 Name = "__sincospi_stret"; 1528 ResTy = StructType::get(ArgTy, ArgTy); 1529 } 1530 1531 Module *M = OrigCallee->getParent(); 1532 Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), 1533 ResTy, ArgTy); 1534 1535 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1536 // If the argument is an instruction, it must dominate all uses so put our 1537 // sincos call there. 1538 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1539 } else { 1540 // Otherwise (e.g. for a constant) the beginning of the function is as 1541 // good a place as any. 1542 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1543 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1544 } 1545 1546 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1547 1548 if (SinCos->getType()->isStructTy()) { 1549 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1550 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1551 } else { 1552 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1553 "sinpi"); 1554 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1555 "cospi"); 1556 } 1557 } 1558 1559 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1560 // Make sure the prototype is as expected, otherwise the rest of the 1561 // function is probably invalid and likely to abort. 1562 if (!isTrigLibCall(CI)) 1563 return nullptr; 1564 1565 Value *Arg = CI->getArgOperand(0); 1566 SmallVector<CallInst *, 1> SinCalls; 1567 SmallVector<CallInst *, 1> CosCalls; 1568 SmallVector<CallInst *, 1> SinCosCalls; 1569 1570 bool IsFloat = Arg->getType()->isFloatTy(); 1571 1572 // Look for all compatible sinpi, cospi and sincospi calls with the same 1573 // argument. If there are enough (in some sense) we can make the 1574 // substitution. 1575 Function *F = CI->getFunction(); 1576 for (User *U : Arg->users()) 1577 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 1578 1579 // It's only worthwhile if both sinpi and cospi are actually used. 1580 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1581 return nullptr; 1582 1583 Value *Sin, *Cos, *SinCos; 1584 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1585 1586 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 1587 Value *Res) { 1588 for (CallInst *C : Calls) 1589 replaceAllUsesWith(C, Res); 1590 }; 1591 1592 replaceTrigInsts(SinCalls, Sin); 1593 replaceTrigInsts(CosCalls, Cos); 1594 replaceTrigInsts(SinCosCalls, SinCos); 1595 1596 return nullptr; 1597 } 1598 1599 void LibCallSimplifier::classifyArgUse( 1600 Value *Val, Function *F, bool IsFloat, 1601 SmallVectorImpl<CallInst *> &SinCalls, 1602 SmallVectorImpl<CallInst *> &CosCalls, 1603 SmallVectorImpl<CallInst *> &SinCosCalls) { 1604 CallInst *CI = dyn_cast<CallInst>(Val); 1605 1606 if (!CI) 1607 return; 1608 1609 // Don't consider calls in other functions. 1610 if (CI->getFunction() != F) 1611 return; 1612 1613 Function *Callee = CI->getCalledFunction(); 1614 LibFunc Func; 1615 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 1616 !isTrigLibCall(CI)) 1617 return; 1618 1619 if (IsFloat) { 1620 if (Func == LibFunc_sinpif) 1621 SinCalls.push_back(CI); 1622 else if (Func == LibFunc_cospif) 1623 CosCalls.push_back(CI); 1624 else if (Func == LibFunc_sincospif_stret) 1625 SinCosCalls.push_back(CI); 1626 } else { 1627 if (Func == LibFunc_sinpi) 1628 SinCalls.push_back(CI); 1629 else if (Func == LibFunc_cospi) 1630 CosCalls.push_back(CI); 1631 else if (Func == LibFunc_sincospi_stret) 1632 SinCosCalls.push_back(CI); 1633 } 1634 } 1635 1636 //===----------------------------------------------------------------------===// 1637 // Integer Library Call Optimizations 1638 //===----------------------------------------------------------------------===// 1639 1640 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1641 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1642 Value *Op = CI->getArgOperand(0); 1643 Type *ArgType = Op->getType(); 1644 Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1645 Intrinsic::cttz, ArgType); 1646 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 1647 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1648 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1649 1650 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1651 return B.CreateSelect(Cond, V, B.getInt32(0)); 1652 } 1653 1654 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) { 1655 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 1656 Value *Op = CI->getArgOperand(0); 1657 Type *ArgType = Op->getType(); 1658 Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1659 Intrinsic::ctlz, ArgType); 1660 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 1661 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 1662 V); 1663 return B.CreateIntCast(V, CI->getType(), false); 1664 } 1665 1666 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1667 // abs(x) -> x <s 0 ? -x : x 1668 // The negation has 'nsw' because abs of INT_MIN is undefined. 1669 Value *X = CI->getArgOperand(0); 1670 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 1671 Value *NegX = B.CreateNSWNeg(X, "neg"); 1672 return B.CreateSelect(IsNeg, NegX, X); 1673 } 1674 1675 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 1676 // isdigit(c) -> (c-'0') <u 10 1677 Value *Op = CI->getArgOperand(0); 1678 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1679 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1680 return B.CreateZExt(Op, CI->getType()); 1681 } 1682 1683 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 1684 // isascii(c) -> c <u 128 1685 Value *Op = CI->getArgOperand(0); 1686 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1687 return B.CreateZExt(Op, CI->getType()); 1688 } 1689 1690 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 1691 // toascii(c) -> c & 0x7f 1692 return B.CreateAnd(CI->getArgOperand(0), 1693 ConstantInt::get(CI->getType(), 0x7F)); 1694 } 1695 1696 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) { 1697 StringRef Str; 1698 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1699 return nullptr; 1700 1701 return convertStrToNumber(CI, Str, 10); 1702 } 1703 1704 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) { 1705 StringRef Str; 1706 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1707 return nullptr; 1708 1709 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 1710 return nullptr; 1711 1712 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 1713 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 1714 } 1715 1716 return nullptr; 1717 } 1718 1719 //===----------------------------------------------------------------------===// 1720 // Formatting and IO Library Call Optimizations 1721 //===----------------------------------------------------------------------===// 1722 1723 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 1724 1725 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 1726 int StreamArg) { 1727 Function *Callee = CI->getCalledFunction(); 1728 // Error reporting calls should be cold, mark them as such. 1729 // This applies even to non-builtin calls: it is only a hint and applies to 1730 // functions that the frontend might not understand as builtins. 1731 1732 // This heuristic was suggested in: 1733 // Improving Static Branch Prediction in a Compiler 1734 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 1735 // Proceedings of PACT'98, Oct. 1998, IEEE 1736 if (!CI->hasFnAttr(Attribute::Cold) && 1737 isReportingError(Callee, CI, StreamArg)) { 1738 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 1739 } 1740 1741 return nullptr; 1742 } 1743 1744 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 1745 if (!Callee || !Callee->isDeclaration()) 1746 return false; 1747 1748 if (StreamArg < 0) 1749 return true; 1750 1751 // These functions might be considered cold, but only if their stream 1752 // argument is stderr. 1753 1754 if (StreamArg >= (int)CI->getNumArgOperands()) 1755 return false; 1756 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 1757 if (!LI) 1758 return false; 1759 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 1760 if (!GV || !GV->isDeclaration()) 1761 return false; 1762 return GV->getName() == "stderr"; 1763 } 1764 1765 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 1766 // Check for a fixed format string. 1767 StringRef FormatStr; 1768 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 1769 return nullptr; 1770 1771 // Empty format string -> noop. 1772 if (FormatStr.empty()) // Tolerate printf's declared void. 1773 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 1774 1775 // Do not do any of the following transformations if the printf return value 1776 // is used, in general the printf return value is not compatible with either 1777 // putchar() or puts(). 1778 if (!CI->use_empty()) 1779 return nullptr; 1780 1781 // printf("x") -> putchar('x'), even for "%" and "%%". 1782 if (FormatStr.size() == 1 || FormatStr == "%%") 1783 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 1784 1785 // printf("%s", "a") --> putchar('a') 1786 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 1787 StringRef ChrStr; 1788 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 1789 return nullptr; 1790 if (ChrStr.size() != 1) 1791 return nullptr; 1792 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 1793 } 1794 1795 // printf("foo\n") --> puts("foo") 1796 if (FormatStr[FormatStr.size() - 1] == '\n' && 1797 FormatStr.find('%') == StringRef::npos) { // No format characters. 1798 // Create a string literal with no \n on it. We expect the constant merge 1799 // pass to be run after this pass, to merge duplicate strings. 1800 FormatStr = FormatStr.drop_back(); 1801 Value *GV = B.CreateGlobalString(FormatStr, "str"); 1802 return emitPutS(GV, B, TLI); 1803 } 1804 1805 // Optimize specific format strings. 1806 // printf("%c", chr) --> putchar(chr) 1807 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 1808 CI->getArgOperand(1)->getType()->isIntegerTy()) 1809 return emitPutChar(CI->getArgOperand(1), B, TLI); 1810 1811 // printf("%s\n", str) --> puts(str) 1812 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 1813 CI->getArgOperand(1)->getType()->isPointerTy()) 1814 return emitPutS(CI->getArgOperand(1), B, TLI); 1815 return nullptr; 1816 } 1817 1818 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 1819 1820 Function *Callee = CI->getCalledFunction(); 1821 FunctionType *FT = Callee->getFunctionType(); 1822 if (Value *V = optimizePrintFString(CI, B)) { 1823 return V; 1824 } 1825 1826 // printf(format, ...) -> iprintf(format, ...) if no floating point 1827 // arguments. 1828 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 1829 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1830 Constant *IPrintFFn = 1831 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 1832 CallInst *New = cast<CallInst>(CI->clone()); 1833 New->setCalledFunction(IPrintFFn); 1834 B.Insert(New); 1835 return New; 1836 } 1837 return nullptr; 1838 } 1839 1840 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 1841 // Check for a fixed format string. 1842 StringRef FormatStr; 1843 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1844 return nullptr; 1845 1846 // If we just have a format string (nothing else crazy) transform it. 1847 if (CI->getNumArgOperands() == 2) { 1848 // Make sure there's no % in the constant array. We could try to handle 1849 // %% -> % in the future if we cared. 1850 if (FormatStr.find('%') != StringRef::npos) 1851 return nullptr; // we found a format specifier, bail out. 1852 1853 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 1854 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 1855 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 1856 FormatStr.size() + 1)); // Copy the null byte. 1857 return ConstantInt::get(CI->getType(), FormatStr.size()); 1858 } 1859 1860 // The remaining optimizations require the format string to be "%s" or "%c" 1861 // and have an extra operand. 1862 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1863 CI->getNumArgOperands() < 3) 1864 return nullptr; 1865 1866 // Decode the second character of the format string. 1867 if (FormatStr[1] == 'c') { 1868 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 1869 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1870 return nullptr; 1871 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 1872 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 1873 B.CreateStore(V, Ptr); 1874 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 1875 B.CreateStore(B.getInt8(0), Ptr); 1876 1877 return ConstantInt::get(CI->getType(), 1); 1878 } 1879 1880 if (FormatStr[1] == 's') { 1881 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) 1882 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1883 return nullptr; 1884 1885 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 1886 if (!Len) 1887 return nullptr; 1888 Value *IncLen = 1889 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 1890 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen); 1891 1892 // The sprintf result is the unincremented number of bytes in the string. 1893 return B.CreateIntCast(Len, CI->getType(), false); 1894 } 1895 return nullptr; 1896 } 1897 1898 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 1899 Function *Callee = CI->getCalledFunction(); 1900 FunctionType *FT = Callee->getFunctionType(); 1901 if (Value *V = optimizeSPrintFString(CI, B)) { 1902 return V; 1903 } 1904 1905 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 1906 // point arguments. 1907 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 1908 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1909 Constant *SIPrintFFn = 1910 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 1911 CallInst *New = cast<CallInst>(CI->clone()); 1912 New->setCalledFunction(SIPrintFFn); 1913 B.Insert(New); 1914 return New; 1915 } 1916 return nullptr; 1917 } 1918 1919 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) { 1920 // Check for a fixed format string. 1921 StringRef FormatStr; 1922 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 1923 return nullptr; 1924 1925 // Check for size 1926 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 1927 if (!Size) 1928 return nullptr; 1929 1930 uint64_t N = Size->getZExtValue(); 1931 1932 // If we just have a format string (nothing else crazy) transform it. 1933 if (CI->getNumArgOperands() == 3) { 1934 // Make sure there's no % in the constant array. We could try to handle 1935 // %% -> % in the future if we cared. 1936 if (FormatStr.find('%') != StringRef::npos) 1937 return nullptr; // we found a format specifier, bail out. 1938 1939 if (N == 0) 1940 return ConstantInt::get(CI->getType(), FormatStr.size()); 1941 else if (N < FormatStr.size() + 1) 1942 return nullptr; 1943 1944 // sprintf(str, size, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, 1945 // strlen(fmt)+1) 1946 B.CreateMemCpy( 1947 CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, 1948 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 1949 FormatStr.size() + 1)); // Copy the null byte. 1950 return ConstantInt::get(CI->getType(), FormatStr.size()); 1951 } 1952 1953 // The remaining optimizations require the format string to be "%s" or "%c" 1954 // and have an extra operand. 1955 if (FormatStr.size() == 2 && FormatStr[0] == '%' && 1956 CI->getNumArgOperands() == 4) { 1957 1958 // Decode the second character of the format string. 1959 if (FormatStr[1] == 'c') { 1960 if (N == 0) 1961 return ConstantInt::get(CI->getType(), 1); 1962 else if (N == 1) 1963 return nullptr; 1964 1965 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 1966 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 1967 return nullptr; 1968 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 1969 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 1970 B.CreateStore(V, Ptr); 1971 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 1972 B.CreateStore(B.getInt8(0), Ptr); 1973 1974 return ConstantInt::get(CI->getType(), 1); 1975 } 1976 1977 if (FormatStr[1] == 's') { 1978 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 1979 StringRef Str; 1980 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 1981 return nullptr; 1982 1983 if (N == 0) 1984 return ConstantInt::get(CI->getType(), Str.size()); 1985 else if (N < Str.size() + 1) 1986 return nullptr; 1987 1988 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(3), 1, 1989 ConstantInt::get(CI->getType(), Str.size() + 1)); 1990 1991 // The snprintf result is the unincremented number of bytes in the string. 1992 return ConstantInt::get(CI->getType(), Str.size()); 1993 } 1994 } 1995 return nullptr; 1996 } 1997 1998 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) { 1999 if (Value *V = optimizeSnPrintFString(CI, B)) { 2000 return V; 2001 } 2002 2003 return nullptr; 2004 } 2005 2006 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 2007 optimizeErrorReporting(CI, B, 0); 2008 2009 // All the optimizations depend on the format string. 2010 StringRef FormatStr; 2011 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2012 return nullptr; 2013 2014 // Do not do any of the following transformations if the fprintf return 2015 // value is used, in general the fprintf return value is not compatible 2016 // with fwrite(), fputc() or fputs(). 2017 if (!CI->use_empty()) 2018 return nullptr; 2019 2020 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2021 if (CI->getNumArgOperands() == 2) { 2022 // Could handle %% -> % if we cared. 2023 if (FormatStr.find('%') != StringRef::npos) 2024 return nullptr; // We found a format specifier. 2025 2026 return emitFWrite( 2027 CI->getArgOperand(1), 2028 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 2029 CI->getArgOperand(0), B, DL, TLI); 2030 } 2031 2032 // The remaining optimizations require the format string to be "%s" or "%c" 2033 // and have an extra operand. 2034 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2035 CI->getNumArgOperands() < 3) 2036 return nullptr; 2037 2038 // Decode the second character of the format string. 2039 if (FormatStr[1] == 'c') { 2040 // fprintf(F, "%c", chr) --> fputc(chr, F) 2041 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2042 return nullptr; 2043 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2044 } 2045 2046 if (FormatStr[1] == 's') { 2047 // fprintf(F, "%s", str) --> fputs(str, F) 2048 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2049 return nullptr; 2050 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2051 } 2052 return nullptr; 2053 } 2054 2055 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 2056 Function *Callee = CI->getCalledFunction(); 2057 FunctionType *FT = Callee->getFunctionType(); 2058 if (Value *V = optimizeFPrintFString(CI, B)) { 2059 return V; 2060 } 2061 2062 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2063 // floating point arguments. 2064 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2065 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2066 Constant *FIPrintFFn = 2067 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2068 CallInst *New = cast<CallInst>(CI->clone()); 2069 New->setCalledFunction(FIPrintFFn); 2070 B.Insert(New); 2071 return New; 2072 } 2073 return nullptr; 2074 } 2075 2076 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 2077 optimizeErrorReporting(CI, B, 3); 2078 2079 // Get the element size and count. 2080 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2081 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2082 if (SizeC && CountC) { 2083 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2084 2085 // If this is writing zero records, remove the call (it's a noop). 2086 if (Bytes == 0) 2087 return ConstantInt::get(CI->getType(), 0); 2088 2089 // If this is writing one byte, turn it into fputc. 2090 // This optimisation is only valid, if the return value is unused. 2091 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2092 Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char"); 2093 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2094 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2095 } 2096 } 2097 2098 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) 2099 return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2100 CI->getArgOperand(2), CI->getArgOperand(3), B, DL, 2101 TLI); 2102 2103 return nullptr; 2104 } 2105 2106 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 2107 optimizeErrorReporting(CI, B, 1); 2108 2109 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2110 // requires more arguments and thus extra MOVs are required. 2111 if (CI->getFunction()->optForSize()) 2112 return nullptr; 2113 2114 // Check if has any use 2115 if (!CI->use_empty()) { 2116 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) 2117 return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, 2118 TLI); 2119 else 2120 // We can't optimize if return value is used. 2121 return nullptr; 2122 } 2123 2124 // fputs(s,F) --> fwrite(s,1,strlen(s),F) 2125 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2126 if (!Len) 2127 return nullptr; 2128 2129 // Known to have no uses (see above). 2130 return emitFWrite( 2131 CI->getArgOperand(0), 2132 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2133 CI->getArgOperand(1), B, DL, TLI); 2134 } 2135 2136 Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) { 2137 optimizeErrorReporting(CI, B, 1); 2138 2139 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) 2140 return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, 2141 TLI); 2142 2143 return nullptr; 2144 } 2145 2146 Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) { 2147 if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI)) 2148 return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI); 2149 2150 return nullptr; 2151 } 2152 2153 Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) { 2154 if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI)) 2155 return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2156 CI->getArgOperand(2), B, TLI); 2157 2158 return nullptr; 2159 } 2160 2161 Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) { 2162 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) 2163 return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2164 CI->getArgOperand(2), CI->getArgOperand(3), B, DL, 2165 TLI); 2166 2167 return nullptr; 2168 } 2169 2170 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 2171 // Check for a constant string. 2172 StringRef Str; 2173 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2174 return nullptr; 2175 2176 if (Str.empty() && CI->use_empty()) { 2177 // puts("") -> putchar('\n') 2178 Value *Res = emitPutChar(B.getInt32('\n'), B, TLI); 2179 if (CI->use_empty() || !Res) 2180 return Res; 2181 return B.CreateIntCast(Res, CI->getType(), true); 2182 } 2183 2184 return nullptr; 2185 } 2186 2187 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2188 LibFunc Func; 2189 SmallString<20> FloatFuncName = FuncName; 2190 FloatFuncName += 'f'; 2191 if (TLI->getLibFunc(FloatFuncName, Func)) 2192 return TLI->has(Func); 2193 return false; 2194 } 2195 2196 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2197 IRBuilder<> &Builder) { 2198 LibFunc Func; 2199 Function *Callee = CI->getCalledFunction(); 2200 // Check for string/memory library functions. 2201 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2202 // Make sure we never change the calling convention. 2203 assert((ignoreCallingConv(Func) || 2204 isCallingConvCCompatible(CI)) && 2205 "Optimizing string/memory libcall would change the calling convention"); 2206 switch (Func) { 2207 case LibFunc_strcat: 2208 return optimizeStrCat(CI, Builder); 2209 case LibFunc_strncat: 2210 return optimizeStrNCat(CI, Builder); 2211 case LibFunc_strchr: 2212 return optimizeStrChr(CI, Builder); 2213 case LibFunc_strrchr: 2214 return optimizeStrRChr(CI, Builder); 2215 case LibFunc_strcmp: 2216 return optimizeStrCmp(CI, Builder); 2217 case LibFunc_strncmp: 2218 return optimizeStrNCmp(CI, Builder); 2219 case LibFunc_strcpy: 2220 return optimizeStrCpy(CI, Builder); 2221 case LibFunc_stpcpy: 2222 return optimizeStpCpy(CI, Builder); 2223 case LibFunc_strncpy: 2224 return optimizeStrNCpy(CI, Builder); 2225 case LibFunc_strlen: 2226 return optimizeStrLen(CI, Builder); 2227 case LibFunc_strpbrk: 2228 return optimizeStrPBrk(CI, Builder); 2229 case LibFunc_strtol: 2230 case LibFunc_strtod: 2231 case LibFunc_strtof: 2232 case LibFunc_strtoul: 2233 case LibFunc_strtoll: 2234 case LibFunc_strtold: 2235 case LibFunc_strtoull: 2236 return optimizeStrTo(CI, Builder); 2237 case LibFunc_strspn: 2238 return optimizeStrSpn(CI, Builder); 2239 case LibFunc_strcspn: 2240 return optimizeStrCSpn(CI, Builder); 2241 case LibFunc_strstr: 2242 return optimizeStrStr(CI, Builder); 2243 case LibFunc_memchr: 2244 return optimizeMemChr(CI, Builder); 2245 case LibFunc_memcmp: 2246 return optimizeMemCmp(CI, Builder); 2247 case LibFunc_memcpy: 2248 return optimizeMemCpy(CI, Builder); 2249 case LibFunc_memmove: 2250 return optimizeMemMove(CI, Builder); 2251 case LibFunc_memset: 2252 return optimizeMemSet(CI, Builder); 2253 case LibFunc_realloc: 2254 return optimizeRealloc(CI, Builder); 2255 case LibFunc_wcslen: 2256 return optimizeWcslen(CI, Builder); 2257 default: 2258 break; 2259 } 2260 } 2261 return nullptr; 2262 } 2263 2264 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2265 LibFunc Func, 2266 IRBuilder<> &Builder) { 2267 // Don't optimize calls that require strict floating point semantics. 2268 if (CI->isStrictFP()) 2269 return nullptr; 2270 2271 switch (Func) { 2272 case LibFunc_cosf: 2273 case LibFunc_cos: 2274 case LibFunc_cosl: 2275 return optimizeCos(CI, Builder); 2276 case LibFunc_sinpif: 2277 case LibFunc_sinpi: 2278 case LibFunc_cospif: 2279 case LibFunc_cospi: 2280 return optimizeSinCosPi(CI, Builder); 2281 case LibFunc_powf: 2282 case LibFunc_pow: 2283 case LibFunc_powl: 2284 return optimizePow(CI, Builder); 2285 case LibFunc_exp2l: 2286 case LibFunc_exp2: 2287 case LibFunc_exp2f: 2288 return optimizeExp2(CI, Builder); 2289 case LibFunc_fabsf: 2290 case LibFunc_fabs: 2291 case LibFunc_fabsl: 2292 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2293 case LibFunc_sqrtf: 2294 case LibFunc_sqrt: 2295 case LibFunc_sqrtl: 2296 return optimizeSqrt(CI, Builder); 2297 case LibFunc_log: 2298 case LibFunc_log10: 2299 case LibFunc_log1p: 2300 case LibFunc_log2: 2301 case LibFunc_logb: 2302 return optimizeLog(CI, Builder); 2303 case LibFunc_tan: 2304 case LibFunc_tanf: 2305 case LibFunc_tanl: 2306 return optimizeTan(CI, Builder); 2307 case LibFunc_ceil: 2308 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2309 case LibFunc_floor: 2310 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2311 case LibFunc_round: 2312 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2313 case LibFunc_nearbyint: 2314 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2315 case LibFunc_rint: 2316 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2317 case LibFunc_trunc: 2318 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2319 case LibFunc_acos: 2320 case LibFunc_acosh: 2321 case LibFunc_asin: 2322 case LibFunc_asinh: 2323 case LibFunc_atan: 2324 case LibFunc_atanh: 2325 case LibFunc_cbrt: 2326 case LibFunc_cosh: 2327 case LibFunc_exp: 2328 case LibFunc_exp10: 2329 case LibFunc_expm1: 2330 case LibFunc_sin: 2331 case LibFunc_sinh: 2332 case LibFunc_tanh: 2333 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 2334 return optimizeUnaryDoubleFP(CI, Builder, true); 2335 return nullptr; 2336 case LibFunc_copysign: 2337 if (hasFloatVersion(CI->getCalledFunction()->getName())) 2338 return optimizeBinaryDoubleFP(CI, Builder); 2339 return nullptr; 2340 case LibFunc_fminf: 2341 case LibFunc_fmin: 2342 case LibFunc_fminl: 2343 case LibFunc_fmaxf: 2344 case LibFunc_fmax: 2345 case LibFunc_fmaxl: 2346 return optimizeFMinFMax(CI, Builder); 2347 case LibFunc_cabs: 2348 case LibFunc_cabsf: 2349 case LibFunc_cabsl: 2350 return optimizeCAbs(CI, Builder); 2351 default: 2352 return nullptr; 2353 } 2354 } 2355 2356 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 2357 // TODO: Split out the code below that operates on FP calls so that 2358 // we can all non-FP calls with the StrictFP attribute to be 2359 // optimized. 2360 if (CI->isNoBuiltin()) 2361 return nullptr; 2362 2363 LibFunc Func; 2364 Function *Callee = CI->getCalledFunction(); 2365 2366 SmallVector<OperandBundleDef, 2> OpBundles; 2367 CI->getOperandBundlesAsDefs(OpBundles); 2368 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2369 bool isCallingConvC = isCallingConvCCompatible(CI); 2370 2371 // Command-line parameter overrides instruction attribute. 2372 // This can't be moved to optimizeFloatingPointLibCall() because it may be 2373 // used by the intrinsic optimizations. 2374 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2375 UnsafeFPShrink = EnableUnsafeFPShrink; 2376 else if (isa<FPMathOperator>(CI) && CI->isFast()) 2377 UnsafeFPShrink = true; 2378 2379 // First, check for intrinsics. 2380 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2381 if (!isCallingConvC) 2382 return nullptr; 2383 // The FP intrinsics have corresponding constrained versions so we don't 2384 // need to check for the StrictFP attribute here. 2385 switch (II->getIntrinsicID()) { 2386 case Intrinsic::pow: 2387 return optimizePow(CI, Builder); 2388 case Intrinsic::exp2: 2389 return optimizeExp2(CI, Builder); 2390 case Intrinsic::log: 2391 return optimizeLog(CI, Builder); 2392 case Intrinsic::sqrt: 2393 return optimizeSqrt(CI, Builder); 2394 // TODO: Use foldMallocMemset() with memset intrinsic. 2395 default: 2396 return nullptr; 2397 } 2398 } 2399 2400 // Also try to simplify calls to fortified library functions. 2401 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 2402 // Try to further simplify the result. 2403 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 2404 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 2405 // Use an IR Builder from SimplifiedCI if available instead of CI 2406 // to guarantee we reach all uses we might replace later on. 2407 IRBuilder<> TmpBuilder(SimplifiedCI); 2408 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { 2409 // If we were able to further simplify, remove the now redundant call. 2410 SimplifiedCI->replaceAllUsesWith(V); 2411 SimplifiedCI->eraseFromParent(); 2412 return V; 2413 } 2414 } 2415 return SimplifiedFortifiedCI; 2416 } 2417 2418 // Then check for known library functions. 2419 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2420 // We never change the calling convention. 2421 if (!ignoreCallingConv(Func) && !isCallingConvC) 2422 return nullptr; 2423 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 2424 return V; 2425 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 2426 return V; 2427 switch (Func) { 2428 case LibFunc_ffs: 2429 case LibFunc_ffsl: 2430 case LibFunc_ffsll: 2431 return optimizeFFS(CI, Builder); 2432 case LibFunc_fls: 2433 case LibFunc_flsl: 2434 case LibFunc_flsll: 2435 return optimizeFls(CI, Builder); 2436 case LibFunc_abs: 2437 case LibFunc_labs: 2438 case LibFunc_llabs: 2439 return optimizeAbs(CI, Builder); 2440 case LibFunc_isdigit: 2441 return optimizeIsDigit(CI, Builder); 2442 case LibFunc_isascii: 2443 return optimizeIsAscii(CI, Builder); 2444 case LibFunc_toascii: 2445 return optimizeToAscii(CI, Builder); 2446 case LibFunc_atoi: 2447 case LibFunc_atol: 2448 case LibFunc_atoll: 2449 return optimizeAtoi(CI, Builder); 2450 case LibFunc_strtol: 2451 case LibFunc_strtoll: 2452 return optimizeStrtol(CI, Builder); 2453 case LibFunc_printf: 2454 return optimizePrintF(CI, Builder); 2455 case LibFunc_sprintf: 2456 return optimizeSPrintF(CI, Builder); 2457 case LibFunc_snprintf: 2458 return optimizeSnPrintF(CI, Builder); 2459 case LibFunc_fprintf: 2460 return optimizeFPrintF(CI, Builder); 2461 case LibFunc_fwrite: 2462 return optimizeFWrite(CI, Builder); 2463 case LibFunc_fread: 2464 return optimizeFRead(CI, Builder); 2465 case LibFunc_fputs: 2466 return optimizeFPuts(CI, Builder); 2467 case LibFunc_fgets: 2468 return optimizeFGets(CI, Builder); 2469 case LibFunc_fputc: 2470 return optimizeFPutc(CI, Builder); 2471 case LibFunc_fgetc: 2472 return optimizeFGetc(CI, Builder); 2473 case LibFunc_puts: 2474 return optimizePuts(CI, Builder); 2475 case LibFunc_perror: 2476 return optimizeErrorReporting(CI, Builder); 2477 case LibFunc_vfprintf: 2478 case LibFunc_fiprintf: 2479 return optimizeErrorReporting(CI, Builder, 0); 2480 default: 2481 return nullptr; 2482 } 2483 } 2484 return nullptr; 2485 } 2486 2487 LibCallSimplifier::LibCallSimplifier( 2488 const DataLayout &DL, const TargetLibraryInfo *TLI, 2489 OptimizationRemarkEmitter &ORE, 2490 function_ref<void(Instruction *, Value *)> Replacer) 2491 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), 2492 UnsafeFPShrink(false), Replacer(Replacer) {} 2493 2494 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 2495 // Indirect through the replacer used in this instance. 2496 Replacer(I, With); 2497 } 2498 2499 // TODO: 2500 // Additional cases that we need to add to this file: 2501 // 2502 // cbrt: 2503 // * cbrt(expN(X)) -> expN(x/3) 2504 // * cbrt(sqrt(x)) -> pow(x,1/6) 2505 // * cbrt(cbrt(x)) -> pow(x,1/9) 2506 // 2507 // exp, expf, expl: 2508 // * exp(log(x)) -> x 2509 // 2510 // log, logf, logl: 2511 // * log(exp(x)) -> x 2512 // * log(exp(y)) -> y*log(e) 2513 // * log(exp10(y)) -> y*log(10) 2514 // * log(sqrt(x)) -> 0.5*log(x) 2515 // 2516 // pow, powf, powl: 2517 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2518 // * pow(pow(x,y),z)-> pow(x,y*z) 2519 // 2520 // signbit: 2521 // * signbit(cnst) -> cnst' 2522 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2523 // 2524 // sqrt, sqrtf, sqrtl: 2525 // * sqrt(expN(x)) -> expN(x*0.5) 2526 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2527 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2528 // 2529 2530 //===----------------------------------------------------------------------===// 2531 // Fortified Library Call Optimizations 2532 //===----------------------------------------------------------------------===// 2533 2534 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2535 unsigned ObjSizeOp, 2536 unsigned SizeOp, 2537 bool isString) { 2538 if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp)) 2539 return true; 2540 if (ConstantInt *ObjSizeCI = 2541 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2542 if (ObjSizeCI->isMinusOne()) 2543 return true; 2544 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2545 if (OnlyLowerUnknownSize) 2546 return false; 2547 if (isString) { 2548 uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp)); 2549 // If the length is 0 we don't know how long it is and so we can't 2550 // remove the check. 2551 if (Len == 0) 2552 return false; 2553 return ObjSizeCI->getZExtValue() >= Len; 2554 } 2555 if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp))) 2556 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2557 } 2558 return false; 2559 } 2560 2561 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 2562 IRBuilder<> &B) { 2563 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2564 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2565 CI->getArgOperand(2)); 2566 return CI->getArgOperand(0); 2567 } 2568 return nullptr; 2569 } 2570 2571 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 2572 IRBuilder<> &B) { 2573 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2574 B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2575 CI->getArgOperand(2)); 2576 return CI->getArgOperand(0); 2577 } 2578 return nullptr; 2579 } 2580 2581 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 2582 IRBuilder<> &B) { 2583 // TODO: Try foldMallocMemset() here. 2584 2585 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2586 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2587 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2588 return CI->getArgOperand(0); 2589 } 2590 return nullptr; 2591 } 2592 2593 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 2594 IRBuilder<> &B, 2595 LibFunc Func) { 2596 Function *Callee = CI->getCalledFunction(); 2597 StringRef Name = Callee->getName(); 2598 const DataLayout &DL = CI->getModule()->getDataLayout(); 2599 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 2600 *ObjSize = CI->getArgOperand(2); 2601 2602 // __stpcpy_chk(x,x,...) -> x+strlen(x) 2603 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 2604 Value *StrLen = emitStrLen(Src, B, DL, TLI); 2605 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 2606 } 2607 2608 // If a) we don't have any length information, or b) we know this will 2609 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 2610 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 2611 // TODO: It might be nice to get a maximum length out of the possible 2612 // string lengths for varying. 2613 if (isFortifiedCallFoldable(CI, 2, 1, true)) 2614 return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6)); 2615 2616 if (OnlyLowerUnknownSize) 2617 return nullptr; 2618 2619 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 2620 uint64_t Len = GetStringLength(Src); 2621 if (Len == 0) 2622 return nullptr; 2623 2624 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 2625 Value *LenV = ConstantInt::get(SizeTTy, Len); 2626 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 2627 // If the function was an __stpcpy_chk, and we were able to fold it into 2628 // a __memcpy_chk, we still need to return the correct end pointer. 2629 if (Ret && Func == LibFunc_stpcpy_chk) 2630 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 2631 return Ret; 2632 } 2633 2634 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 2635 IRBuilder<> &B, 2636 LibFunc Func) { 2637 Function *Callee = CI->getCalledFunction(); 2638 StringRef Name = Callee->getName(); 2639 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2640 Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2641 CI->getArgOperand(2), B, TLI, Name.substr(2, 7)); 2642 return Ret; 2643 } 2644 return nullptr; 2645 } 2646 2647 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 2648 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 2649 // Some clang users checked for _chk libcall availability using: 2650 // __has_builtin(__builtin___memcpy_chk) 2651 // When compiling with -fno-builtin, this is always true. 2652 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 2653 // end up with fortified libcalls, which isn't acceptable in a freestanding 2654 // environment which only provides their non-fortified counterparts. 2655 // 2656 // Until we change clang and/or teach external users to check for availability 2657 // differently, disregard the "nobuiltin" attribute and TLI::has. 2658 // 2659 // PR23093. 2660 2661 LibFunc Func; 2662 Function *Callee = CI->getCalledFunction(); 2663 2664 SmallVector<OperandBundleDef, 2> OpBundles; 2665 CI->getOperandBundlesAsDefs(OpBundles); 2666 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2667 bool isCallingConvC = isCallingConvCCompatible(CI); 2668 2669 // First, check that this is a known library functions and that the prototype 2670 // is correct. 2671 if (!TLI->getLibFunc(*Callee, Func)) 2672 return nullptr; 2673 2674 // We never change the calling convention. 2675 if (!ignoreCallingConv(Func) && !isCallingConvC) 2676 return nullptr; 2677 2678 switch (Func) { 2679 case LibFunc_memcpy_chk: 2680 return optimizeMemCpyChk(CI, Builder); 2681 case LibFunc_memmove_chk: 2682 return optimizeMemMoveChk(CI, Builder); 2683 case LibFunc_memset_chk: 2684 return optimizeMemSetChk(CI, Builder); 2685 case LibFunc_stpcpy_chk: 2686 case LibFunc_strcpy_chk: 2687 return optimizeStrpCpyChk(CI, Builder, Func); 2688 case LibFunc_stpncpy_chk: 2689 case LibFunc_strncpy_chk: 2690 return optimizeStrpNCpyChk(CI, Builder, Func); 2691 default: 2692 break; 2693 } 2694 return nullptr; 2695 } 2696 2697 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 2698 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 2699 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 2700