1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is a utility pass used for testing the InstructionSimplify analysis.
11 // The analysis is applied to every instruction, and if it simplifies then the
12 // instruction is replaced by the simplification.  If you are looking for a pass
13 // that performs serious instruction folding, use the instcombine pass instead.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DiagnosticInfo.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Transforms/Utils/BuildLibCalls.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 static cl::opt<bool>
40     ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden,
41                    cl::desc("Treat error-reporting calls as cold"));
42 
43 static cl::opt<bool>
44     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
45                          cl::init(false),
46                          cl::desc("Enable unsafe double to float "
47                                   "shrinking for math lib calls"));
48 
49 
50 //===----------------------------------------------------------------------===//
51 // Helper Functions
52 //===----------------------------------------------------------------------===//
53 
54 static bool ignoreCallingConv(LibFunc Func) {
55   return Func == LibFunc_abs || Func == LibFunc_labs ||
56          Func == LibFunc_llabs || Func == LibFunc_strlen;
57 }
58 
59 static bool isCallingConvCCompatible(CallInst *CI) {
60   switch(CI->getCallingConv()) {
61   default:
62     return false;
63   case llvm::CallingConv::C:
64     return true;
65   case llvm::CallingConv::ARM_APCS:
66   case llvm::CallingConv::ARM_AAPCS:
67   case llvm::CallingConv::ARM_AAPCS_VFP: {
68 
69     // The iOS ABI diverges from the standard in some cases, so for now don't
70     // try to simplify those calls.
71     if (Triple(CI->getModule()->getTargetTriple()).isiOS())
72       return false;
73 
74     auto *FuncTy = CI->getFunctionType();
75 
76     if (!FuncTy->getReturnType()->isPointerTy() &&
77         !FuncTy->getReturnType()->isIntegerTy() &&
78         !FuncTy->getReturnType()->isVoidTy())
79       return false;
80 
81     for (auto Param : FuncTy->params()) {
82       if (!Param->isPointerTy() && !Param->isIntegerTy())
83         return false;
84     }
85     return true;
86   }
87   }
88   return false;
89 }
90 
91 /// Return true if it only matters that the value is equal or not-equal to zero.
92 static bool isOnlyUsedInZeroEqualityComparison(Value *V) {
93   for (User *U : V->users()) {
94     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
95       if (IC->isEquality())
96         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
97           if (C->isNullValue())
98             continue;
99     // Unknown instruction.
100     return false;
101   }
102   return true;
103 }
104 
105 /// Return true if it is only used in equality comparisons with With.
106 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
107   for (User *U : V->users()) {
108     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
109       if (IC->isEquality() && IC->getOperand(1) == With)
110         continue;
111     // Unknown instruction.
112     return false;
113   }
114   return true;
115 }
116 
117 static bool callHasFloatingPointArgument(const CallInst *CI) {
118   return any_of(CI->operands(), [](const Use &OI) {
119     return OI->getType()->isFloatingPointTy();
120   });
121 }
122 
123 /// \brief Check whether the overloaded unary floating point function
124 /// corresponding to \a Ty is available.
125 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
126                             LibFunc DoubleFn, LibFunc FloatFn,
127                             LibFunc LongDoubleFn) {
128   switch (Ty->getTypeID()) {
129   case Type::FloatTyID:
130     return TLI->has(FloatFn);
131   case Type::DoubleTyID:
132     return TLI->has(DoubleFn);
133   default:
134     return TLI->has(LongDoubleFn);
135   }
136 }
137 
138 //===----------------------------------------------------------------------===//
139 // String and Memory Library Call Optimizations
140 //===----------------------------------------------------------------------===//
141 
142 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
143   // Extract some information from the instruction
144   Value *Dst = CI->getArgOperand(0);
145   Value *Src = CI->getArgOperand(1);
146 
147   // See if we can get the length of the input string.
148   uint64_t Len = GetStringLength(Src);
149   if (Len == 0)
150     return nullptr;
151   --Len; // Unbias length.
152 
153   // Handle the simple, do-nothing case: strcat(x, "") -> x
154   if (Len == 0)
155     return Dst;
156 
157   return emitStrLenMemCpy(Src, Dst, Len, B);
158 }
159 
160 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
161                                            IRBuilder<> &B) {
162   // We need to find the end of the destination string.  That's where the
163   // memory is to be moved to. We just generate a call to strlen.
164   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
165   if (!DstLen)
166     return nullptr;
167 
168   // Now that we have the destination's length, we must index into the
169   // destination's pointer to get the actual memcpy destination (end of
170   // the string .. we're concatenating).
171   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
172 
173   // We have enough information to now generate the memcpy call to do the
174   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
175   B.CreateMemCpy(CpyDst, Src,
176                  ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1),
177                  1);
178   return Dst;
179 }
180 
181 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
182   // Extract some information from the instruction.
183   Value *Dst = CI->getArgOperand(0);
184   Value *Src = CI->getArgOperand(1);
185   uint64_t Len;
186 
187   // We don't do anything if length is not constant.
188   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
189     Len = LengthArg->getZExtValue();
190   else
191     return nullptr;
192 
193   // See if we can get the length of the input string.
194   uint64_t SrcLen = GetStringLength(Src);
195   if (SrcLen == 0)
196     return nullptr;
197   --SrcLen; // Unbias length.
198 
199   // Handle the simple, do-nothing cases:
200   // strncat(x, "", c) -> x
201   // strncat(x,  c, 0) -> x
202   if (SrcLen == 0 || Len == 0)
203     return Dst;
204 
205   // We don't optimize this case.
206   if (Len < SrcLen)
207     return nullptr;
208 
209   // strncat(x, s, c) -> strcat(x, s)
210   // s is constant so the strcat can be optimized further.
211   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
212 }
213 
214 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
215   Function *Callee = CI->getCalledFunction();
216   FunctionType *FT = Callee->getFunctionType();
217   Value *SrcStr = CI->getArgOperand(0);
218 
219   // If the second operand is non-constant, see if we can compute the length
220   // of the input string and turn this into memchr.
221   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
222   if (!CharC) {
223     uint64_t Len = GetStringLength(SrcStr);
224     if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
225       return nullptr;
226 
227     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
228                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
229                       B, DL, TLI);
230   }
231 
232   // Otherwise, the character is a constant, see if the first argument is
233   // a string literal.  If so, we can constant fold.
234   StringRef Str;
235   if (!getConstantStringInfo(SrcStr, Str)) {
236     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
237       return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI),
238                          "strchr");
239     return nullptr;
240   }
241 
242   // Compute the offset, make sure to handle the case when we're searching for
243   // zero (a weird way to spell strlen).
244   size_t I = (0xFF & CharC->getSExtValue()) == 0
245                  ? Str.size()
246                  : Str.find(CharC->getSExtValue());
247   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
248     return Constant::getNullValue(CI->getType());
249 
250   // strchr(s+n,c)  -> gep(s+n+i,c)
251   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
252 }
253 
254 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
255   Value *SrcStr = CI->getArgOperand(0);
256   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
257 
258   // Cannot fold anything if we're not looking for a constant.
259   if (!CharC)
260     return nullptr;
261 
262   StringRef Str;
263   if (!getConstantStringInfo(SrcStr, Str)) {
264     // strrchr(s, 0) -> strchr(s, 0)
265     if (CharC->isZero())
266       return emitStrChr(SrcStr, '\0', B, TLI);
267     return nullptr;
268   }
269 
270   // Compute the offset.
271   size_t I = (0xFF & CharC->getSExtValue()) == 0
272                  ? Str.size()
273                  : Str.rfind(CharC->getSExtValue());
274   if (I == StringRef::npos) // Didn't find the char. Return null.
275     return Constant::getNullValue(CI->getType());
276 
277   // strrchr(s+n,c) -> gep(s+n+i,c)
278   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
279 }
280 
281 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
282   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
283   if (Str1P == Str2P) // strcmp(x,x)  -> 0
284     return ConstantInt::get(CI->getType(), 0);
285 
286   StringRef Str1, Str2;
287   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
288   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
289 
290   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
291   if (HasStr1 && HasStr2)
292     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
293 
294   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
295     return B.CreateNeg(
296         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
297 
298   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
299     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
300 
301   // strcmp(P, "x") -> memcmp(P, "x", 2)
302   uint64_t Len1 = GetStringLength(Str1P);
303   uint64_t Len2 = GetStringLength(Str2P);
304   if (Len1 && Len2) {
305     return emitMemCmp(Str1P, Str2P,
306                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
307                                        std::min(Len1, Len2)),
308                       B, DL, TLI);
309   }
310 
311   return nullptr;
312 }
313 
314 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
315   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
316   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
317     return ConstantInt::get(CI->getType(), 0);
318 
319   // Get the length argument if it is constant.
320   uint64_t Length;
321   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
322     Length = LengthArg->getZExtValue();
323   else
324     return nullptr;
325 
326   if (Length == 0) // strncmp(x,y,0)   -> 0
327     return ConstantInt::get(CI->getType(), 0);
328 
329   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
330     return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
331 
332   StringRef Str1, Str2;
333   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
334   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
335 
336   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
337   if (HasStr1 && HasStr2) {
338     StringRef SubStr1 = Str1.substr(0, Length);
339     StringRef SubStr2 = Str2.substr(0, Length);
340     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
341   }
342 
343   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
344     return B.CreateNeg(
345         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
346 
347   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
348     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
349 
350   return nullptr;
351 }
352 
353 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
354   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
355   if (Dst == Src) // strcpy(x,x)  -> x
356     return Src;
357 
358   // See if we can get the length of the input string.
359   uint64_t Len = GetStringLength(Src);
360   if (Len == 0)
361     return nullptr;
362 
363   // We have enough information to now generate the memcpy call to do the
364   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
365   B.CreateMemCpy(Dst, Src,
366                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1);
367   return Dst;
368 }
369 
370 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
371   Function *Callee = CI->getCalledFunction();
372   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
373   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
374     Value *StrLen = emitStrLen(Src, B, DL, TLI);
375     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
376   }
377 
378   // See if we can get the length of the input string.
379   uint64_t Len = GetStringLength(Src);
380   if (Len == 0)
381     return nullptr;
382 
383   Type *PT = Callee->getFunctionType()->getParamType(0);
384   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
385   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
386                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
387 
388   // We have enough information to now generate the memcpy call to do the
389   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
390   B.CreateMemCpy(Dst, Src, LenV, 1);
391   return DstEnd;
392 }
393 
394 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
395   Function *Callee = CI->getCalledFunction();
396   Value *Dst = CI->getArgOperand(0);
397   Value *Src = CI->getArgOperand(1);
398   Value *LenOp = CI->getArgOperand(2);
399 
400   // See if we can get the length of the input string.
401   uint64_t SrcLen = GetStringLength(Src);
402   if (SrcLen == 0)
403     return nullptr;
404   --SrcLen;
405 
406   if (SrcLen == 0) {
407     // strncpy(x, "", y) -> memset(x, '\0', y, 1)
408     B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
409     return Dst;
410   }
411 
412   uint64_t Len;
413   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
414     Len = LengthArg->getZExtValue();
415   else
416     return nullptr;
417 
418   if (Len == 0)
419     return Dst; // strncpy(x, y, 0) -> x
420 
421   // Let strncpy handle the zero padding
422   if (Len > SrcLen + 1)
423     return nullptr;
424 
425   Type *PT = Callee->getFunctionType()->getParamType(0);
426   // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
427   B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1);
428 
429   return Dst;
430 }
431 
432 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
433   Value *Src = CI->getArgOperand(0);
434 
435   // Constant folding: strlen("xyz") -> 3
436   if (uint64_t Len = GetStringLength(Src))
437     return ConstantInt::get(CI->getType(), Len - 1);
438 
439   // If s is a constant pointer pointing to a string literal, we can fold
440   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
441   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
442   // We only try to simplify strlen when the pointer s points to an array
443   // of i8. Otherwise, we would need to scale the offset x before doing the
444   // subtraction. This will make the optimization more complex, and it's not
445   // very useful because calling strlen for a pointer of other types is
446   // very uncommon.
447   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
448     if (!isGEPBasedOnPointerToString(GEP))
449       return nullptr;
450 
451     StringRef Str;
452     if (getConstantStringInfo(GEP->getOperand(0), Str, 0, false)) {
453       size_t NullTermIdx = Str.find('\0');
454 
455       // If the string does not have '\0', leave it to strlen to compute
456       // its length.
457       if (NullTermIdx == StringRef::npos)
458         return nullptr;
459 
460       Value *Offset = GEP->getOperand(2);
461       unsigned BitWidth = Offset->getType()->getIntegerBitWidth();
462       APInt KnownZero(BitWidth, 0);
463       APInt KnownOne(BitWidth, 0);
464       computeKnownBits(Offset, KnownZero, KnownOne, DL, 0, nullptr, CI,
465                        nullptr);
466       KnownZero.flipAllBits();
467       size_t ArrSize =
468              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
469 
470       // KnownZero's bits are flipped, so zeros in KnownZero now represent
471       // bits known to be zeros in Offset, and ones in KnowZero represent
472       // bits unknown in Offset. Therefore, Offset is known to be in range
473       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
474       // unsigned-less-than NullTermIdx.
475       //
476       // If Offset is not provably in the range [0, NullTermIdx], we can still
477       // optimize if we can prove that the program has undefined behavior when
478       // Offset is outside that range. That is the case when GEP->getOperand(0)
479       // is a pointer to an object whose memory extent is NullTermIdx+1.
480       if ((KnownZero.isNonNegative() && KnownZero.ule(NullTermIdx)) ||
481           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
482            NullTermIdx == ArrSize - 1))
483         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
484                            Offset);
485     }
486 
487     return nullptr;
488   }
489 
490   // strlen(x?"foo":"bars") --> x ? 3 : 4
491   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
492     uint64_t LenTrue = GetStringLength(SI->getTrueValue());
493     uint64_t LenFalse = GetStringLength(SI->getFalseValue());
494     if (LenTrue && LenFalse) {
495       Function *Caller = CI->getParent()->getParent();
496       emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller,
497                              SI->getDebugLoc(),
498                              "folded strlen(select) to select of constants");
499       return B.CreateSelect(SI->getCondition(),
500                             ConstantInt::get(CI->getType(), LenTrue - 1),
501                             ConstantInt::get(CI->getType(), LenFalse - 1));
502     }
503   }
504 
505   // strlen(x) != 0 --> *x != 0
506   // strlen(x) == 0 --> *x == 0
507   if (isOnlyUsedInZeroEqualityComparison(CI))
508     return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
509 
510   return nullptr;
511 }
512 
513 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
514   StringRef S1, S2;
515   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
516   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
517 
518   // strpbrk(s, "") -> nullptr
519   // strpbrk("", s) -> nullptr
520   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
521     return Constant::getNullValue(CI->getType());
522 
523   // Constant folding.
524   if (HasS1 && HasS2) {
525     size_t I = S1.find_first_of(S2);
526     if (I == StringRef::npos) // No match.
527       return Constant::getNullValue(CI->getType());
528 
529     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
530                        "strpbrk");
531   }
532 
533   // strpbrk(s, "a") -> strchr(s, 'a')
534   if (HasS2 && S2.size() == 1)
535     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
536 
537   return nullptr;
538 }
539 
540 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
541   Value *EndPtr = CI->getArgOperand(1);
542   if (isa<ConstantPointerNull>(EndPtr)) {
543     // With a null EndPtr, this function won't capture the main argument.
544     // It would be readonly too, except that it still may write to errno.
545     CI->addAttribute(1, Attribute::NoCapture);
546   }
547 
548   return nullptr;
549 }
550 
551 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
552   StringRef S1, S2;
553   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
554   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
555 
556   // strspn(s, "") -> 0
557   // strspn("", s) -> 0
558   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
559     return Constant::getNullValue(CI->getType());
560 
561   // Constant folding.
562   if (HasS1 && HasS2) {
563     size_t Pos = S1.find_first_not_of(S2);
564     if (Pos == StringRef::npos)
565       Pos = S1.size();
566     return ConstantInt::get(CI->getType(), Pos);
567   }
568 
569   return nullptr;
570 }
571 
572 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
573   StringRef S1, S2;
574   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
575   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
576 
577   // strcspn("", s) -> 0
578   if (HasS1 && S1.empty())
579     return Constant::getNullValue(CI->getType());
580 
581   // Constant folding.
582   if (HasS1 && HasS2) {
583     size_t Pos = S1.find_first_of(S2);
584     if (Pos == StringRef::npos)
585       Pos = S1.size();
586     return ConstantInt::get(CI->getType(), Pos);
587   }
588 
589   // strcspn(s, "") -> strlen(s)
590   if (HasS2 && S2.empty())
591     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
592 
593   return nullptr;
594 }
595 
596 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
597   // fold strstr(x, x) -> x.
598   if (CI->getArgOperand(0) == CI->getArgOperand(1))
599     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
600 
601   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
602   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
603     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
604     if (!StrLen)
605       return nullptr;
606     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
607                                  StrLen, B, DL, TLI);
608     if (!StrNCmp)
609       return nullptr;
610     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
611       ICmpInst *Old = cast<ICmpInst>(*UI++);
612       Value *Cmp =
613           B.CreateICmp(Old->getPredicate(), StrNCmp,
614                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
615       replaceAllUsesWith(Old, Cmp);
616     }
617     return CI;
618   }
619 
620   // See if either input string is a constant string.
621   StringRef SearchStr, ToFindStr;
622   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
623   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
624 
625   // fold strstr(x, "") -> x.
626   if (HasStr2 && ToFindStr.empty())
627     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
628 
629   // If both strings are known, constant fold it.
630   if (HasStr1 && HasStr2) {
631     size_t Offset = SearchStr.find(ToFindStr);
632 
633     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
634       return Constant::getNullValue(CI->getType());
635 
636     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
637     Value *Result = castToCStr(CI->getArgOperand(0), B);
638     Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
639     return B.CreateBitCast(Result, CI->getType());
640   }
641 
642   // fold strstr(x, "y") -> strchr(x, 'y').
643   if (HasStr2 && ToFindStr.size() == 1) {
644     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
645     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
646   }
647   return nullptr;
648 }
649 
650 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
651   Value *SrcStr = CI->getArgOperand(0);
652   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
653   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
654 
655   // memchr(x, y, 0) -> null
656   if (LenC && LenC->isNullValue())
657     return Constant::getNullValue(CI->getType());
658 
659   // From now on we need at least constant length and string.
660   StringRef Str;
661   if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
662     return nullptr;
663 
664   // Truncate the string to LenC. If Str is smaller than LenC we will still only
665   // scan the string, as reading past the end of it is undefined and we can just
666   // return null if we don't find the char.
667   Str = Str.substr(0, LenC->getZExtValue());
668 
669   // If the char is variable but the input str and length are not we can turn
670   // this memchr call into a simple bit field test. Of course this only works
671   // when the return value is only checked against null.
672   //
673   // It would be really nice to reuse switch lowering here but we can't change
674   // the CFG at this point.
675   //
676   // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
677   //   after bounds check.
678   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
679     unsigned char Max =
680         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
681                           reinterpret_cast<const unsigned char *>(Str.end()));
682 
683     // Make sure the bit field we're about to create fits in a register on the
684     // target.
685     // FIXME: On a 64 bit architecture this prevents us from using the
686     // interesting range of alpha ascii chars. We could do better by emitting
687     // two bitfields or shifting the range by 64 if no lower chars are used.
688     if (!DL.fitsInLegalInteger(Max + 1))
689       return nullptr;
690 
691     // For the bit field use a power-of-2 type with at least 8 bits to avoid
692     // creating unnecessary illegal types.
693     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
694 
695     // Now build the bit field.
696     APInt Bitfield(Width, 0);
697     for (char C : Str)
698       Bitfield.setBit((unsigned char)C);
699     Value *BitfieldC = B.getInt(Bitfield);
700 
701     // First check that the bit field access is within bounds.
702     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
703     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
704                                  "memchr.bounds");
705 
706     // Create code that checks if the given bit is set in the field.
707     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
708     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
709 
710     // Finally merge both checks and cast to pointer type. The inttoptr
711     // implicitly zexts the i1 to intptr type.
712     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
713   }
714 
715   // Check if all arguments are constants.  If so, we can constant fold.
716   if (!CharC)
717     return nullptr;
718 
719   // Compute the offset.
720   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
721   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
722     return Constant::getNullValue(CI->getType());
723 
724   // memchr(s+n,c,l) -> gep(s+n+i,c)
725   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
726 }
727 
728 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
729   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
730 
731   if (LHS == RHS) // memcmp(s,s,x) -> 0
732     return Constant::getNullValue(CI->getType());
733 
734   // Make sure we have a constant length.
735   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
736   if (!LenC)
737     return nullptr;
738   uint64_t Len = LenC->getZExtValue();
739 
740   if (Len == 0) // memcmp(s1,s2,0) -> 0
741     return Constant::getNullValue(CI->getType());
742 
743   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
744   if (Len == 1) {
745     Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"),
746                                CI->getType(), "lhsv");
747     Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"),
748                                CI->getType(), "rhsv");
749     return B.CreateSub(LHSV, RHSV, "chardiff");
750   }
751 
752   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
753   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
754 
755     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
756     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
757 
758     if (getKnownAlignment(LHS, DL, CI) >= PrefAlignment &&
759         getKnownAlignment(RHS, DL, CI) >= PrefAlignment) {
760 
761       Type *LHSPtrTy =
762           IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
763       Type *RHSPtrTy =
764           IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
765 
766       Value *LHSV =
767           B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy, "lhsc"), "lhsv");
768       Value *RHSV =
769           B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy, "rhsc"), "rhsv");
770 
771       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
772     }
773   }
774 
775   // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
776   StringRef LHSStr, RHSStr;
777   if (getConstantStringInfo(LHS, LHSStr) &&
778       getConstantStringInfo(RHS, RHSStr)) {
779     // Make sure we're not reading out-of-bounds memory.
780     if (Len > LHSStr.size() || Len > RHSStr.size())
781       return nullptr;
782     // Fold the memcmp and normalize the result.  This way we get consistent
783     // results across multiple platforms.
784     uint64_t Ret = 0;
785     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
786     if (Cmp < 0)
787       Ret = -1;
788     else if (Cmp > 0)
789       Ret = 1;
790     return ConstantInt::get(CI->getType(), Ret);
791   }
792 
793   return nullptr;
794 }
795 
796 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
797   // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
798   B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
799                  CI->getArgOperand(2), 1);
800   return CI->getArgOperand(0);
801 }
802 
803 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
804   // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
805   B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
806                   CI->getArgOperand(2), 1);
807   return CI->getArgOperand(0);
808 }
809 
810 // TODO: Does this belong in BuildLibCalls or should all of those similar
811 // functions be moved here?
812 static Value *emitCalloc(Value *Num, Value *Size, const AttributeSet &Attrs,
813                          IRBuilder<> &B, const TargetLibraryInfo &TLI) {
814   LibFunc Func;
815   if (!TLI.getLibFunc("calloc", Func) || !TLI.has(Func))
816     return nullptr;
817 
818   Module *M = B.GetInsertBlock()->getModule();
819   const DataLayout &DL = M->getDataLayout();
820   IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext()));
821   Value *Calloc = M->getOrInsertFunction("calloc", Attrs, B.getInt8PtrTy(),
822                                          PtrType, PtrType, nullptr);
823   CallInst *CI = B.CreateCall(Calloc, { Num, Size }, "calloc");
824 
825   if (const auto *F = dyn_cast<Function>(Calloc->stripPointerCasts()))
826     CI->setCallingConv(F->getCallingConv());
827 
828   return CI;
829 }
830 
831 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
832 static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B,
833                                const TargetLibraryInfo &TLI) {
834   // This has to be a memset of zeros (bzero).
835   auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
836   if (!FillValue || FillValue->getZExtValue() != 0)
837     return nullptr;
838 
839   // TODO: We should handle the case where the malloc has more than one use.
840   // This is necessary to optimize common patterns such as when the result of
841   // the malloc is checked against null or when a memset intrinsic is used in
842   // place of a memset library call.
843   auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
844   if (!Malloc || !Malloc->hasOneUse())
845     return nullptr;
846 
847   // Is the inner call really malloc()?
848   Function *InnerCallee = Malloc->getCalledFunction();
849   LibFunc Func;
850   if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
851       Func != LibFunc_malloc)
852     return nullptr;
853 
854   // The memset must cover the same number of bytes that are malloc'd.
855   if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
856     return nullptr;
857 
858   // Replace the malloc with a calloc. We need the data layout to know what the
859   // actual size of a 'size_t' parameter is.
860   B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
861   const DataLayout &DL = Malloc->getModule()->getDataLayout();
862   IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
863   Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
864                              Malloc->getArgOperand(0), Malloc->getAttributes(),
865                              B, TLI);
866   if (!Calloc)
867     return nullptr;
868 
869   Malloc->replaceAllUsesWith(Calloc);
870   Malloc->eraseFromParent();
871 
872   return Calloc;
873 }
874 
875 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
876   if (auto *Calloc = foldMallocMemset(CI, B, *TLI))
877     return Calloc;
878 
879   // memset(p, v, n) -> llvm.memset(p, v, n, 1)
880   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
881   B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
882   return CI->getArgOperand(0);
883 }
884 
885 //===----------------------------------------------------------------------===//
886 // Math Library Optimizations
887 //===----------------------------------------------------------------------===//
888 
889 /// Return a variant of Val with float type.
890 /// Currently this works in two cases: If Val is an FPExtension of a float
891 /// value to something bigger, simply return the operand.
892 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
893 /// loss of precision do so.
894 static Value *valueHasFloatPrecision(Value *Val) {
895   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
896     Value *Op = Cast->getOperand(0);
897     if (Op->getType()->isFloatTy())
898       return Op;
899   }
900   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
901     APFloat F = Const->getValueAPF();
902     bool losesInfo;
903     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
904                     &losesInfo);
905     if (!losesInfo)
906       return ConstantFP::get(Const->getContext(), F);
907   }
908   return nullptr;
909 }
910 
911 /// Shrink double -> float for unary functions like 'floor'.
912 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
913                                     bool CheckRetType) {
914   Function *Callee = CI->getCalledFunction();
915   // We know this libcall has a valid prototype, but we don't know which.
916   if (!CI->getType()->isDoubleTy())
917     return nullptr;
918 
919   if (CheckRetType) {
920     // Check if all the uses for function like 'sin' are converted to float.
921     for (User *U : CI->users()) {
922       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
923       if (!Cast || !Cast->getType()->isFloatTy())
924         return nullptr;
925     }
926   }
927 
928   // If this is something like 'floor((double)floatval)', convert to floorf.
929   Value *V = valueHasFloatPrecision(CI->getArgOperand(0));
930   if (V == nullptr)
931     return nullptr;
932 
933   // Propagate fast-math flags from the existing call to the new call.
934   IRBuilder<>::FastMathFlagGuard Guard(B);
935   B.setFastMathFlags(CI->getFastMathFlags());
936 
937   // floor((double)floatval) -> (double)floorf(floatval)
938   if (Callee->isIntrinsic()) {
939     Module *M = CI->getModule();
940     Intrinsic::ID IID = Callee->getIntrinsicID();
941     Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
942     V = B.CreateCall(F, V);
943   } else {
944     // The call is a library call rather than an intrinsic.
945     V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
946   }
947 
948   return B.CreateFPExt(V, B.getDoubleTy());
949 }
950 
951 // Replace a libcall \p CI with a call to intrinsic \p IID
952 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) {
953   // Propagate fast-math flags from the existing call to the new call.
954   IRBuilder<>::FastMathFlagGuard Guard(B);
955   B.setFastMathFlags(CI->getFastMathFlags());
956 
957   Module *M = CI->getModule();
958   Value *V = CI->getArgOperand(0);
959   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
960   CallInst *NewCall = B.CreateCall(F, V);
961   NewCall->takeName(CI);
962   return NewCall;
963 }
964 
965 /// Shrink double -> float for binary functions like 'fmin/fmax'.
966 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
967   Function *Callee = CI->getCalledFunction();
968   // We know this libcall has a valid prototype, but we don't know which.
969   if (!CI->getType()->isDoubleTy())
970     return nullptr;
971 
972   // If this is something like 'fmin((double)floatval1, (double)floatval2)',
973   // or fmin(1.0, (double)floatval), then we convert it to fminf.
974   Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0));
975   if (V1 == nullptr)
976     return nullptr;
977   Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1));
978   if (V2 == nullptr)
979     return nullptr;
980 
981   // Propagate fast-math flags from the existing call to the new call.
982   IRBuilder<>::FastMathFlagGuard Guard(B);
983   B.setFastMathFlags(CI->getFastMathFlags());
984 
985   // fmin((double)floatval1, (double)floatval2)
986   //                      -> (double)fminf(floatval1, floatval2)
987   // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP().
988   Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
989                                    Callee->getAttributes());
990   return B.CreateFPExt(V, B.getDoubleTy());
991 }
992 
993 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
994   Function *Callee = CI->getCalledFunction();
995   Value *Ret = nullptr;
996   StringRef Name = Callee->getName();
997   if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name))
998     Ret = optimizeUnaryDoubleFP(CI, B, true);
999 
1000   // cos(-x) -> cos(x)
1001   Value *Op1 = CI->getArgOperand(0);
1002   if (BinaryOperator::isFNeg(Op1)) {
1003     BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
1004     return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
1005   }
1006   return Ret;
1007 }
1008 
1009 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
1010   // Multiplications calculated using Addition Chains.
1011   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1012 
1013   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1014 
1015   if (InnerChain[Exp])
1016     return InnerChain[Exp];
1017 
1018   static const unsigned AddChain[33][2] = {
1019       {0, 0}, // Unused.
1020       {0, 0}, // Unused (base case = pow1).
1021       {1, 1}, // Unused (pre-computed).
1022       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1023       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1024       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1025       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1026       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1027   };
1028 
1029   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1030                                  getPow(InnerChain, AddChain[Exp][1], B));
1031   return InnerChain[Exp];
1032 }
1033 
1034 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
1035   Function *Callee = CI->getCalledFunction();
1036   Value *Ret = nullptr;
1037   StringRef Name = Callee->getName();
1038   if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name))
1039     Ret = optimizeUnaryDoubleFP(CI, B, true);
1040 
1041   Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
1042 
1043   // pow(1.0, x) -> 1.0
1044   if (match(Op1, m_SpecificFP(1.0)))
1045     return Op1;
1046   // pow(2.0, x) -> llvm.exp2(x)
1047   if (match(Op1, m_SpecificFP(2.0))) {
1048     Value *Exp2 = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::exp2,
1049                                             CI->getType());
1050     return B.CreateCall(Exp2, Op2, "exp2");
1051   }
1052 
1053   // There's no llvm.exp10 intrinsic yet, but, maybe, some day there will
1054   // be one.
1055   if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
1056     // pow(10.0, x) -> exp10(x)
1057     if (Op1C->isExactlyValue(10.0) &&
1058         hasUnaryFloatFn(TLI, Op1->getType(), LibFunc_exp10, LibFunc_exp10f,
1059                         LibFunc_exp10l))
1060       return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc_exp10), B,
1061                                   Callee->getAttributes());
1062   }
1063 
1064   // pow(exp(x), y) -> exp(x * y)
1065   // pow(exp2(x), y) -> exp2(x * y)
1066   // We enable these only with fast-math. Besides rounding differences, the
1067   // transformation changes overflow and underflow behavior quite dramatically.
1068   // Example: x = 1000, y = 0.001.
1069   // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1).
1070   auto *OpC = dyn_cast<CallInst>(Op1);
1071   if (OpC && OpC->hasUnsafeAlgebra() && CI->hasUnsafeAlgebra()) {
1072     LibFunc Func;
1073     Function *OpCCallee = OpC->getCalledFunction();
1074     if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) &&
1075         TLI->has(Func) && (Func == LibFunc_exp || Func == LibFunc_exp2)) {
1076       IRBuilder<>::FastMathFlagGuard Guard(B);
1077       B.setFastMathFlags(CI->getFastMathFlags());
1078       Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul");
1079       return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B,
1080                                   OpCCallee->getAttributes());
1081     }
1082   }
1083 
1084   ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
1085   if (!Op2C)
1086     return Ret;
1087 
1088   if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
1089     return ConstantFP::get(CI->getType(), 1.0);
1090 
1091   if (Op2C->isExactlyValue(-0.5) &&
1092       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf,
1093                       LibFunc_sqrtl)) {
1094     // If -ffast-math:
1095     // pow(x, -0.5) -> 1.0 / sqrt(x)
1096     if (CI->hasUnsafeAlgebra()) {
1097       IRBuilder<>::FastMathFlagGuard Guard(B);
1098       B.setFastMathFlags(CI->getFastMathFlags());
1099 
1100       // Here we cannot lower to an intrinsic because C99 sqrt() and llvm.sqrt
1101       // are not guaranteed to have the same semantics.
1102       Value *Sqrt = emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc_sqrt), B,
1103                                          Callee->getAttributes());
1104 
1105       return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Sqrt, "sqrtrecip");
1106     }
1107   }
1108 
1109   if (Op2C->isExactlyValue(0.5) &&
1110       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf,
1111                       LibFunc_sqrtl)) {
1112 
1113     // In -ffast-math, pow(x, 0.5) -> sqrt(x).
1114     if (CI->hasUnsafeAlgebra()) {
1115       IRBuilder<>::FastMathFlagGuard Guard(B);
1116       B.setFastMathFlags(CI->getFastMathFlags());
1117 
1118       // Unlike other math intrinsics, sqrt has differerent semantics
1119       // from the libc function. See LangRef for details.
1120       return emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc_sqrt), B,
1121                                   Callee->getAttributes());
1122     }
1123 
1124     // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
1125     // This is faster than calling pow, and still handles negative zero
1126     // and negative infinity correctly.
1127     // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
1128     Value *Inf = ConstantFP::getInfinity(CI->getType());
1129     Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
1130     Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes());
1131 
1132     Module *M = Callee->getParent();
1133     Function *FabsF = Intrinsic::getDeclaration(M, Intrinsic::fabs,
1134                                                 CI->getType());
1135     Value *FAbs = B.CreateCall(FabsF, Sqrt);
1136 
1137     Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
1138     Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
1139     return Sel;
1140   }
1141 
1142   if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
1143     return Op1;
1144   if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
1145     return B.CreateFMul(Op1, Op1, "pow2");
1146   if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
1147     return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
1148 
1149   // In -ffast-math, generate repeated fmul instead of generating pow(x, n).
1150   if (CI->hasUnsafeAlgebra()) {
1151     APFloat V = abs(Op2C->getValueAPF());
1152     // We limit to a max of 7 fmul(s). Thus max exponent is 32.
1153     // This transformation applies to integer exponents only.
1154     if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan ||
1155         !V.isInteger())
1156       return nullptr;
1157 
1158     // Propagate fast math flags.
1159     IRBuilder<>::FastMathFlagGuard Guard(B);
1160     B.setFastMathFlags(CI->getFastMathFlags());
1161 
1162     // We will memoize intermediate products of the Addition Chain.
1163     Value *InnerChain[33] = {nullptr};
1164     InnerChain[1] = Op1;
1165     InnerChain[2] = B.CreateFMul(Op1, Op1);
1166 
1167     // We cannot readily convert a non-double type (like float) to a double.
1168     // So we first convert V to something which could be converted to double.
1169     bool ignored;
1170     V.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &ignored);
1171 
1172     Value *FMul = getPow(InnerChain, V.convertToDouble(), B);
1173     // For negative exponents simply compute the reciprocal.
1174     if (Op2C->isNegative())
1175       FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul);
1176     return FMul;
1177   }
1178 
1179   return nullptr;
1180 }
1181 
1182 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1183   Function *Callee = CI->getCalledFunction();
1184   Value *Ret = nullptr;
1185   StringRef Name = Callee->getName();
1186   if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name))
1187     Ret = optimizeUnaryDoubleFP(CI, B, true);
1188 
1189   Value *Op = CI->getArgOperand(0);
1190   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1191   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1192   LibFunc LdExp = LibFunc_ldexpl;
1193   if (Op->getType()->isFloatTy())
1194     LdExp = LibFunc_ldexpf;
1195   else if (Op->getType()->isDoubleTy())
1196     LdExp = LibFunc_ldexp;
1197 
1198   if (TLI->has(LdExp)) {
1199     Value *LdExpArg = nullptr;
1200     if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
1201       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
1202         LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
1203     } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
1204       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
1205         LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
1206     }
1207 
1208     if (LdExpArg) {
1209       Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
1210       if (!Op->getType()->isFloatTy())
1211         One = ConstantExpr::getFPExtend(One, Op->getType());
1212 
1213       Module *M = CI->getModule();
1214       Value *NewCallee =
1215           M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
1216                                  Op->getType(), B.getInt32Ty(), nullptr);
1217       CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg});
1218       if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
1219         CI->setCallingConv(F->getCallingConv());
1220 
1221       return CI;
1222     }
1223   }
1224   return Ret;
1225 }
1226 
1227 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1228   Function *Callee = CI->getCalledFunction();
1229   // If we can shrink the call to a float function rather than a double
1230   // function, do that first.
1231   StringRef Name = Callee->getName();
1232   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1233     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1234       return Ret;
1235 
1236   IRBuilder<>::FastMathFlagGuard Guard(B);
1237   FastMathFlags FMF;
1238   if (CI->hasUnsafeAlgebra()) {
1239     // Unsafe algebra sets all fast-math-flags to true.
1240     FMF.setUnsafeAlgebra();
1241   } else {
1242     // At a minimum, no-nans-fp-math must be true.
1243     if (!CI->hasNoNaNs())
1244       return nullptr;
1245     // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
1246     // "Ideally, fmax would be sensitive to the sign of zero, for example
1247     // fmax(-0. 0, +0. 0) would return +0; however, implementation in software
1248     // might be impractical."
1249     FMF.setNoSignedZeros();
1250     FMF.setNoNaNs();
1251   }
1252   B.setFastMathFlags(FMF);
1253 
1254   // We have a relaxed floating-point environment. We can ignore NaN-handling
1255   // and transform to a compare and select. We do not have to consider errno or
1256   // exceptions, because fmin/fmax do not have those.
1257   Value *Op0 = CI->getArgOperand(0);
1258   Value *Op1 = CI->getArgOperand(1);
1259   Value *Cmp = Callee->getName().startswith("fmin") ?
1260     B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
1261   return B.CreateSelect(Cmp, Op0, Op1);
1262 }
1263 
1264 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
1265   Function *Callee = CI->getCalledFunction();
1266   Value *Ret = nullptr;
1267   StringRef Name = Callee->getName();
1268   if (UnsafeFPShrink && hasFloatVersion(Name))
1269     Ret = optimizeUnaryDoubleFP(CI, B, true);
1270 
1271   if (!CI->hasUnsafeAlgebra())
1272     return Ret;
1273   Value *Op1 = CI->getArgOperand(0);
1274   auto *OpC = dyn_cast<CallInst>(Op1);
1275 
1276   // The earlier call must also be unsafe in order to do these transforms.
1277   if (!OpC || !OpC->hasUnsafeAlgebra())
1278     return Ret;
1279 
1280   // log(pow(x,y)) -> y*log(x)
1281   // This is only applicable to log, log2, log10.
1282   if (Name != "log" && Name != "log2" && Name != "log10")
1283     return Ret;
1284 
1285   IRBuilder<>::FastMathFlagGuard Guard(B);
1286   FastMathFlags FMF;
1287   FMF.setUnsafeAlgebra();
1288   B.setFastMathFlags(FMF);
1289 
1290   LibFunc Func;
1291   Function *F = OpC->getCalledFunction();
1292   if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1293       Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow))
1294     return B.CreateFMul(OpC->getArgOperand(1),
1295       emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B,
1296                            Callee->getAttributes()), "mul");
1297 
1298   // log(exp2(y)) -> y*log(2)
1299   if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) &&
1300       TLI->has(Func) && Func == LibFunc_exp2)
1301     return B.CreateFMul(
1302         OpC->getArgOperand(0),
1303         emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0),
1304                              Callee->getName(), B, Callee->getAttributes()),
1305         "logmul");
1306   return Ret;
1307 }
1308 
1309 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
1310   Function *Callee = CI->getCalledFunction();
1311   Value *Ret = nullptr;
1312   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
1313                              Callee->getIntrinsicID() == Intrinsic::sqrt))
1314     Ret = optimizeUnaryDoubleFP(CI, B, true);
1315 
1316   if (!CI->hasUnsafeAlgebra())
1317     return Ret;
1318 
1319   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
1320   if (!I || I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
1321     return Ret;
1322 
1323   // We're looking for a repeated factor in a multiplication tree,
1324   // so we can do this fold: sqrt(x * x) -> fabs(x);
1325   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
1326   Value *Op0 = I->getOperand(0);
1327   Value *Op1 = I->getOperand(1);
1328   Value *RepeatOp = nullptr;
1329   Value *OtherOp = nullptr;
1330   if (Op0 == Op1) {
1331     // Simple match: the operands of the multiply are identical.
1332     RepeatOp = Op0;
1333   } else {
1334     // Look for a more complicated pattern: one of the operands is itself
1335     // a multiply, so search for a common factor in that multiply.
1336     // Note: We don't bother looking any deeper than this first level or for
1337     // variations of this pattern because instcombine's visitFMUL and/or the
1338     // reassociation pass should give us this form.
1339     Value *OtherMul0, *OtherMul1;
1340     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
1341       // Pattern: sqrt((x * y) * z)
1342       if (OtherMul0 == OtherMul1 &&
1343           cast<Instruction>(Op0)->hasUnsafeAlgebra()) {
1344         // Matched: sqrt((x * x) * z)
1345         RepeatOp = OtherMul0;
1346         OtherOp = Op1;
1347       }
1348     }
1349   }
1350   if (!RepeatOp)
1351     return Ret;
1352 
1353   // Fast math flags for any created instructions should match the sqrt
1354   // and multiply.
1355   IRBuilder<>::FastMathFlagGuard Guard(B);
1356   B.setFastMathFlags(I->getFastMathFlags());
1357 
1358   // If we found a repeated factor, hoist it out of the square root and
1359   // replace it with the fabs of that factor.
1360   Module *M = Callee->getParent();
1361   Type *ArgType = I->getType();
1362   Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
1363   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
1364   if (OtherOp) {
1365     // If we found a non-repeated factor, we still need to get its square
1366     // root. We then multiply that by the value that was simplified out
1367     // of the square root calculation.
1368     Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
1369     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
1370     return B.CreateFMul(FabsCall, SqrtCall);
1371   }
1372   return FabsCall;
1373 }
1374 
1375 // TODO: Generalize to handle any trig function and its inverse.
1376 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
1377   Function *Callee = CI->getCalledFunction();
1378   Value *Ret = nullptr;
1379   StringRef Name = Callee->getName();
1380   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
1381     Ret = optimizeUnaryDoubleFP(CI, B, true);
1382 
1383   Value *Op1 = CI->getArgOperand(0);
1384   auto *OpC = dyn_cast<CallInst>(Op1);
1385   if (!OpC)
1386     return Ret;
1387 
1388   // Both calls must allow unsafe optimizations in order to remove them.
1389   if (!CI->hasUnsafeAlgebra() || !OpC->hasUnsafeAlgebra())
1390     return Ret;
1391 
1392   // tan(atan(x)) -> x
1393   // tanf(atanf(x)) -> x
1394   // tanl(atanl(x)) -> x
1395   LibFunc Func;
1396   Function *F = OpC->getCalledFunction();
1397   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1398       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
1399        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
1400        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
1401     Ret = OpC->getArgOperand(0);
1402   return Ret;
1403 }
1404 
1405 static bool isTrigLibCall(CallInst *CI) {
1406   // We can only hope to do anything useful if we can ignore things like errno
1407   // and floating-point exceptions.
1408   // We already checked the prototype.
1409   return CI->hasFnAttr(Attribute::NoUnwind) &&
1410          CI->hasFnAttr(Attribute::ReadNone);
1411 }
1412 
1413 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
1414                              bool UseFloat, Value *&Sin, Value *&Cos,
1415                              Value *&SinCos) {
1416   Type *ArgTy = Arg->getType();
1417   Type *ResTy;
1418   StringRef Name;
1419 
1420   Triple T(OrigCallee->getParent()->getTargetTriple());
1421   if (UseFloat) {
1422     Name = "__sincospif_stret";
1423 
1424     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
1425     // x86_64 can't use {float, float} since that would be returned in both
1426     // xmm0 and xmm1, which isn't what a real struct would do.
1427     ResTy = T.getArch() == Triple::x86_64
1428     ? static_cast<Type *>(VectorType::get(ArgTy, 2))
1429     : static_cast<Type *>(StructType::get(ArgTy, ArgTy, nullptr));
1430   } else {
1431     Name = "__sincospi_stret";
1432     ResTy = StructType::get(ArgTy, ArgTy, nullptr);
1433   }
1434 
1435   Module *M = OrigCallee->getParent();
1436   Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
1437                                          ResTy, ArgTy, nullptr);
1438 
1439   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
1440     // If the argument is an instruction, it must dominate all uses so put our
1441     // sincos call there.
1442     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
1443   } else {
1444     // Otherwise (e.g. for a constant) the beginning of the function is as
1445     // good a place as any.
1446     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
1447     B.SetInsertPoint(&EntryBB, EntryBB.begin());
1448   }
1449 
1450   SinCos = B.CreateCall(Callee, Arg, "sincospi");
1451 
1452   if (SinCos->getType()->isStructTy()) {
1453     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
1454     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
1455   } else {
1456     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
1457                                  "sinpi");
1458     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
1459                                  "cospi");
1460   }
1461 }
1462 
1463 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
1464   // Make sure the prototype is as expected, otherwise the rest of the
1465   // function is probably invalid and likely to abort.
1466   if (!isTrigLibCall(CI))
1467     return nullptr;
1468 
1469   Value *Arg = CI->getArgOperand(0);
1470   SmallVector<CallInst *, 1> SinCalls;
1471   SmallVector<CallInst *, 1> CosCalls;
1472   SmallVector<CallInst *, 1> SinCosCalls;
1473 
1474   bool IsFloat = Arg->getType()->isFloatTy();
1475 
1476   // Look for all compatible sinpi, cospi and sincospi calls with the same
1477   // argument. If there are enough (in some sense) we can make the
1478   // substitution.
1479   Function *F = CI->getFunction();
1480   for (User *U : Arg->users())
1481     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
1482 
1483   // It's only worthwhile if both sinpi and cospi are actually used.
1484   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
1485     return nullptr;
1486 
1487   Value *Sin, *Cos, *SinCos;
1488   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
1489 
1490   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
1491                                  Value *Res) {
1492     for (CallInst *C : Calls)
1493       replaceAllUsesWith(C, Res);
1494   };
1495 
1496   replaceTrigInsts(SinCalls, Sin);
1497   replaceTrigInsts(CosCalls, Cos);
1498   replaceTrigInsts(SinCosCalls, SinCos);
1499 
1500   return nullptr;
1501 }
1502 
1503 void LibCallSimplifier::classifyArgUse(
1504     Value *Val, Function *F, bool IsFloat,
1505     SmallVectorImpl<CallInst *> &SinCalls,
1506     SmallVectorImpl<CallInst *> &CosCalls,
1507     SmallVectorImpl<CallInst *> &SinCosCalls) {
1508   CallInst *CI = dyn_cast<CallInst>(Val);
1509 
1510   if (!CI)
1511     return;
1512 
1513   // Don't consider calls in other functions.
1514   if (CI->getFunction() != F)
1515     return;
1516 
1517   Function *Callee = CI->getCalledFunction();
1518   LibFunc Func;
1519   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
1520       !isTrigLibCall(CI))
1521     return;
1522 
1523   if (IsFloat) {
1524     if (Func == LibFunc_sinpif)
1525       SinCalls.push_back(CI);
1526     else if (Func == LibFunc_cospif)
1527       CosCalls.push_back(CI);
1528     else if (Func == LibFunc_sincospif_stret)
1529       SinCosCalls.push_back(CI);
1530   } else {
1531     if (Func == LibFunc_sinpi)
1532       SinCalls.push_back(CI);
1533     else if (Func == LibFunc_cospi)
1534       CosCalls.push_back(CI);
1535     else if (Func == LibFunc_sincospi_stret)
1536       SinCosCalls.push_back(CI);
1537   }
1538 }
1539 
1540 //===----------------------------------------------------------------------===//
1541 // Integer Library Call Optimizations
1542 //===----------------------------------------------------------------------===//
1543 
1544 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
1545   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
1546   Value *Op = CI->getArgOperand(0);
1547   Type *ArgType = Op->getType();
1548   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1549                                        Intrinsic::cttz, ArgType);
1550   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
1551   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
1552   V = B.CreateIntCast(V, B.getInt32Ty(), false);
1553 
1554   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
1555   return B.CreateSelect(Cond, V, B.getInt32(0));
1556 }
1557 
1558 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
1559   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
1560   Value *Op = CI->getArgOperand(0);
1561   Type *ArgType = Op->getType();
1562   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1563                                        Intrinsic::ctlz, ArgType);
1564   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
1565   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
1566                   V);
1567   return B.CreateIntCast(V, CI->getType(), false);
1568 }
1569 
1570 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
1571   // abs(x) -> x >s -1 ? x : -x
1572   Value *Op = CI->getArgOperand(0);
1573   Value *Pos =
1574       B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos");
1575   Value *Neg = B.CreateNeg(Op, "neg");
1576   return B.CreateSelect(Pos, Op, Neg);
1577 }
1578 
1579 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
1580   // isdigit(c) -> (c-'0') <u 10
1581   Value *Op = CI->getArgOperand(0);
1582   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
1583   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
1584   return B.CreateZExt(Op, CI->getType());
1585 }
1586 
1587 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
1588   // isascii(c) -> c <u 128
1589   Value *Op = CI->getArgOperand(0);
1590   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
1591   return B.CreateZExt(Op, CI->getType());
1592 }
1593 
1594 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
1595   // toascii(c) -> c & 0x7f
1596   return B.CreateAnd(CI->getArgOperand(0),
1597                      ConstantInt::get(CI->getType(), 0x7F));
1598 }
1599 
1600 //===----------------------------------------------------------------------===//
1601 // Formatting and IO Library Call Optimizations
1602 //===----------------------------------------------------------------------===//
1603 
1604 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
1605 
1606 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
1607                                                  int StreamArg) {
1608   Function *Callee = CI->getCalledFunction();
1609   // Error reporting calls should be cold, mark them as such.
1610   // This applies even to non-builtin calls: it is only a hint and applies to
1611   // functions that the frontend might not understand as builtins.
1612 
1613   // This heuristic was suggested in:
1614   // Improving Static Branch Prediction in a Compiler
1615   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
1616   // Proceedings of PACT'98, Oct. 1998, IEEE
1617   if (!CI->hasFnAttr(Attribute::Cold) &&
1618       isReportingError(Callee, CI, StreamArg)) {
1619     CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
1620   }
1621 
1622   return nullptr;
1623 }
1624 
1625 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
1626   if (!ColdErrorCalls || !Callee || !Callee->isDeclaration())
1627     return false;
1628 
1629   if (StreamArg < 0)
1630     return true;
1631 
1632   // These functions might be considered cold, but only if their stream
1633   // argument is stderr.
1634 
1635   if (StreamArg >= (int)CI->getNumArgOperands())
1636     return false;
1637   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
1638   if (!LI)
1639     return false;
1640   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
1641   if (!GV || !GV->isDeclaration())
1642     return false;
1643   return GV->getName() == "stderr";
1644 }
1645 
1646 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
1647   // Check for a fixed format string.
1648   StringRef FormatStr;
1649   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
1650     return nullptr;
1651 
1652   // Empty format string -> noop.
1653   if (FormatStr.empty()) // Tolerate printf's declared void.
1654     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
1655 
1656   // Do not do any of the following transformations if the printf return value
1657   // is used, in general the printf return value is not compatible with either
1658   // putchar() or puts().
1659   if (!CI->use_empty())
1660     return nullptr;
1661 
1662   // printf("x") -> putchar('x'), even for "%" and "%%".
1663   if (FormatStr.size() == 1 || FormatStr == "%%")
1664     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
1665 
1666   // printf("%s", "a") --> putchar('a')
1667   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
1668     StringRef ChrStr;
1669     if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
1670       return nullptr;
1671     if (ChrStr.size() != 1)
1672       return nullptr;
1673     return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
1674   }
1675 
1676   // printf("foo\n") --> puts("foo")
1677   if (FormatStr[FormatStr.size() - 1] == '\n' &&
1678       FormatStr.find('%') == StringRef::npos) { // No format characters.
1679     // Create a string literal with no \n on it.  We expect the constant merge
1680     // pass to be run after this pass, to merge duplicate strings.
1681     FormatStr = FormatStr.drop_back();
1682     Value *GV = B.CreateGlobalString(FormatStr, "str");
1683     return emitPutS(GV, B, TLI);
1684   }
1685 
1686   // Optimize specific format strings.
1687   // printf("%c", chr) --> putchar(chr)
1688   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
1689       CI->getArgOperand(1)->getType()->isIntegerTy())
1690     return emitPutChar(CI->getArgOperand(1), B, TLI);
1691 
1692   // printf("%s\n", str) --> puts(str)
1693   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
1694       CI->getArgOperand(1)->getType()->isPointerTy())
1695     return emitPutS(CI->getArgOperand(1), B, TLI);
1696   return nullptr;
1697 }
1698 
1699 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
1700 
1701   Function *Callee = CI->getCalledFunction();
1702   FunctionType *FT = Callee->getFunctionType();
1703   if (Value *V = optimizePrintFString(CI, B)) {
1704     return V;
1705   }
1706 
1707   // printf(format, ...) -> iprintf(format, ...) if no floating point
1708   // arguments.
1709   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
1710     Module *M = B.GetInsertBlock()->getParent()->getParent();
1711     Constant *IPrintFFn =
1712         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
1713     CallInst *New = cast<CallInst>(CI->clone());
1714     New->setCalledFunction(IPrintFFn);
1715     B.Insert(New);
1716     return New;
1717   }
1718   return nullptr;
1719 }
1720 
1721 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
1722   // Check for a fixed format string.
1723   StringRef FormatStr;
1724   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1725     return nullptr;
1726 
1727   // If we just have a format string (nothing else crazy) transform it.
1728   if (CI->getNumArgOperands() == 2) {
1729     // Make sure there's no % in the constant array.  We could try to handle
1730     // %% -> % in the future if we cared.
1731     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1732       if (FormatStr[i] == '%')
1733         return nullptr; // we found a format specifier, bail out.
1734 
1735     // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
1736     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
1737                    ConstantInt::get(DL.getIntPtrType(CI->getContext()),
1738                                     FormatStr.size() + 1),
1739                    1); // Copy the null byte.
1740     return ConstantInt::get(CI->getType(), FormatStr.size());
1741   }
1742 
1743   // The remaining optimizations require the format string to be "%s" or "%c"
1744   // and have an extra operand.
1745   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1746       CI->getNumArgOperands() < 3)
1747     return nullptr;
1748 
1749   // Decode the second character of the format string.
1750   if (FormatStr[1] == 'c') {
1751     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
1752     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1753       return nullptr;
1754     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
1755     Value *Ptr = castToCStr(CI->getArgOperand(0), B);
1756     B.CreateStore(V, Ptr);
1757     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
1758     B.CreateStore(B.getInt8(0), Ptr);
1759 
1760     return ConstantInt::get(CI->getType(), 1);
1761   }
1762 
1763   if (FormatStr[1] == 's') {
1764     // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1765     if (!CI->getArgOperand(2)->getType()->isPointerTy())
1766       return nullptr;
1767 
1768     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
1769     if (!Len)
1770       return nullptr;
1771     Value *IncLen =
1772         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
1773     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
1774 
1775     // The sprintf result is the unincremented number of bytes in the string.
1776     return B.CreateIntCast(Len, CI->getType(), false);
1777   }
1778   return nullptr;
1779 }
1780 
1781 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
1782   Function *Callee = CI->getCalledFunction();
1783   FunctionType *FT = Callee->getFunctionType();
1784   if (Value *V = optimizeSPrintFString(CI, B)) {
1785     return V;
1786   }
1787 
1788   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
1789   // point arguments.
1790   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
1791     Module *M = B.GetInsertBlock()->getParent()->getParent();
1792     Constant *SIPrintFFn =
1793         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
1794     CallInst *New = cast<CallInst>(CI->clone());
1795     New->setCalledFunction(SIPrintFFn);
1796     B.Insert(New);
1797     return New;
1798   }
1799   return nullptr;
1800 }
1801 
1802 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
1803   optimizeErrorReporting(CI, B, 0);
1804 
1805   // All the optimizations depend on the format string.
1806   StringRef FormatStr;
1807   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1808     return nullptr;
1809 
1810   // Do not do any of the following transformations if the fprintf return
1811   // value is used, in general the fprintf return value is not compatible
1812   // with fwrite(), fputc() or fputs().
1813   if (!CI->use_empty())
1814     return nullptr;
1815 
1816   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
1817   if (CI->getNumArgOperands() == 2) {
1818     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1819       if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
1820         return nullptr;        // We found a format specifier.
1821 
1822     return emitFWrite(
1823         CI->getArgOperand(1),
1824         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
1825         CI->getArgOperand(0), B, DL, TLI);
1826   }
1827 
1828   // The remaining optimizations require the format string to be "%s" or "%c"
1829   // and have an extra operand.
1830   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1831       CI->getNumArgOperands() < 3)
1832     return nullptr;
1833 
1834   // Decode the second character of the format string.
1835   if (FormatStr[1] == 'c') {
1836     // fprintf(F, "%c", chr) --> fputc(chr, F)
1837     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1838       return nullptr;
1839     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1840   }
1841 
1842   if (FormatStr[1] == 's') {
1843     // fprintf(F, "%s", str) --> fputs(str, F)
1844     if (!CI->getArgOperand(2)->getType()->isPointerTy())
1845       return nullptr;
1846     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1847   }
1848   return nullptr;
1849 }
1850 
1851 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
1852   Function *Callee = CI->getCalledFunction();
1853   FunctionType *FT = Callee->getFunctionType();
1854   if (Value *V = optimizeFPrintFString(CI, B)) {
1855     return V;
1856   }
1857 
1858   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
1859   // floating point arguments.
1860   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
1861     Module *M = B.GetInsertBlock()->getParent()->getParent();
1862     Constant *FIPrintFFn =
1863         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
1864     CallInst *New = cast<CallInst>(CI->clone());
1865     New->setCalledFunction(FIPrintFFn);
1866     B.Insert(New);
1867     return New;
1868   }
1869   return nullptr;
1870 }
1871 
1872 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
1873   optimizeErrorReporting(CI, B, 3);
1874 
1875   // Get the element size and count.
1876   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
1877   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1878   if (!SizeC || !CountC)
1879     return nullptr;
1880   uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
1881 
1882   // If this is writing zero records, remove the call (it's a noop).
1883   if (Bytes == 0)
1884     return ConstantInt::get(CI->getType(), 0);
1885 
1886   // If this is writing one byte, turn it into fputc.
1887   // This optimisation is only valid, if the return value is unused.
1888   if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
1889     Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char");
1890     Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
1891     return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
1892   }
1893 
1894   return nullptr;
1895 }
1896 
1897 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
1898   optimizeErrorReporting(CI, B, 1);
1899 
1900   // Don't rewrite fputs to fwrite when optimising for size because fwrite
1901   // requires more arguments and thus extra MOVs are required.
1902   if (CI->getParent()->getParent()->optForSize())
1903     return nullptr;
1904 
1905   // We can't optimize if return value is used.
1906   if (!CI->use_empty())
1907     return nullptr;
1908 
1909   // fputs(s,F) --> fwrite(s,1,strlen(s),F)
1910   uint64_t Len = GetStringLength(CI->getArgOperand(0));
1911   if (!Len)
1912     return nullptr;
1913 
1914   // Known to have no uses (see above).
1915   return emitFWrite(
1916       CI->getArgOperand(0),
1917       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
1918       CI->getArgOperand(1), B, DL, TLI);
1919 }
1920 
1921 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
1922   // Check for a constant string.
1923   StringRef Str;
1924   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
1925     return nullptr;
1926 
1927   if (Str.empty() && CI->use_empty()) {
1928     // puts("") -> putchar('\n')
1929     Value *Res = emitPutChar(B.getInt32('\n'), B, TLI);
1930     if (CI->use_empty() || !Res)
1931       return Res;
1932     return B.CreateIntCast(Res, CI->getType(), true);
1933   }
1934 
1935   return nullptr;
1936 }
1937 
1938 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
1939   LibFunc Func;
1940   SmallString<20> FloatFuncName = FuncName;
1941   FloatFuncName += 'f';
1942   if (TLI->getLibFunc(FloatFuncName, Func))
1943     return TLI->has(Func);
1944   return false;
1945 }
1946 
1947 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
1948                                                       IRBuilder<> &Builder) {
1949   LibFunc Func;
1950   Function *Callee = CI->getCalledFunction();
1951   // Check for string/memory library functions.
1952   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
1953     // Make sure we never change the calling convention.
1954     assert((ignoreCallingConv(Func) ||
1955             isCallingConvCCompatible(CI)) &&
1956       "Optimizing string/memory libcall would change the calling convention");
1957     switch (Func) {
1958     case LibFunc_strcat:
1959       return optimizeStrCat(CI, Builder);
1960     case LibFunc_strncat:
1961       return optimizeStrNCat(CI, Builder);
1962     case LibFunc_strchr:
1963       return optimizeStrChr(CI, Builder);
1964     case LibFunc_strrchr:
1965       return optimizeStrRChr(CI, Builder);
1966     case LibFunc_strcmp:
1967       return optimizeStrCmp(CI, Builder);
1968     case LibFunc_strncmp:
1969       return optimizeStrNCmp(CI, Builder);
1970     case LibFunc_strcpy:
1971       return optimizeStrCpy(CI, Builder);
1972     case LibFunc_stpcpy:
1973       return optimizeStpCpy(CI, Builder);
1974     case LibFunc_strncpy:
1975       return optimizeStrNCpy(CI, Builder);
1976     case LibFunc_strlen:
1977       return optimizeStrLen(CI, Builder);
1978     case LibFunc_strpbrk:
1979       return optimizeStrPBrk(CI, Builder);
1980     case LibFunc_strtol:
1981     case LibFunc_strtod:
1982     case LibFunc_strtof:
1983     case LibFunc_strtoul:
1984     case LibFunc_strtoll:
1985     case LibFunc_strtold:
1986     case LibFunc_strtoull:
1987       return optimizeStrTo(CI, Builder);
1988     case LibFunc_strspn:
1989       return optimizeStrSpn(CI, Builder);
1990     case LibFunc_strcspn:
1991       return optimizeStrCSpn(CI, Builder);
1992     case LibFunc_strstr:
1993       return optimizeStrStr(CI, Builder);
1994     case LibFunc_memchr:
1995       return optimizeMemChr(CI, Builder);
1996     case LibFunc_memcmp:
1997       return optimizeMemCmp(CI, Builder);
1998     case LibFunc_memcpy:
1999       return optimizeMemCpy(CI, Builder);
2000     case LibFunc_memmove:
2001       return optimizeMemMove(CI, Builder);
2002     case LibFunc_memset:
2003       return optimizeMemSet(CI, Builder);
2004     default:
2005       break;
2006     }
2007   }
2008   return nullptr;
2009 }
2010 
2011 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
2012   if (CI->isNoBuiltin())
2013     return nullptr;
2014 
2015   LibFunc Func;
2016   Function *Callee = CI->getCalledFunction();
2017   StringRef FuncName = Callee->getName();
2018 
2019   SmallVector<OperandBundleDef, 2> OpBundles;
2020   CI->getOperandBundlesAsDefs(OpBundles);
2021   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2022   bool isCallingConvC = isCallingConvCCompatible(CI);
2023 
2024   // Command-line parameter overrides instruction attribute.
2025   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
2026     UnsafeFPShrink = EnableUnsafeFPShrink;
2027   else if (isa<FPMathOperator>(CI) && CI->hasUnsafeAlgebra())
2028     UnsafeFPShrink = true;
2029 
2030   // First, check for intrinsics.
2031   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
2032     if (!isCallingConvC)
2033       return nullptr;
2034     switch (II->getIntrinsicID()) {
2035     case Intrinsic::pow:
2036       return optimizePow(CI, Builder);
2037     case Intrinsic::exp2:
2038       return optimizeExp2(CI, Builder);
2039     case Intrinsic::log:
2040       return optimizeLog(CI, Builder);
2041     case Intrinsic::sqrt:
2042       return optimizeSqrt(CI, Builder);
2043     // TODO: Use foldMallocMemset() with memset intrinsic.
2044     default:
2045       return nullptr;
2046     }
2047   }
2048 
2049   // Also try to simplify calls to fortified library functions.
2050   if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
2051     // Try to further simplify the result.
2052     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
2053     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
2054       // Use an IR Builder from SimplifiedCI if available instead of CI
2055       // to guarantee we reach all uses we might replace later on.
2056       IRBuilder<> TmpBuilder(SimplifiedCI);
2057       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
2058         // If we were able to further simplify, remove the now redundant call.
2059         SimplifiedCI->replaceAllUsesWith(V);
2060         SimplifiedCI->eraseFromParent();
2061         return V;
2062       }
2063     }
2064     return SimplifiedFortifiedCI;
2065   }
2066 
2067   // Then check for known library functions.
2068   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2069     // We never change the calling convention.
2070     if (!ignoreCallingConv(Func) && !isCallingConvC)
2071       return nullptr;
2072     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
2073       return V;
2074     switch (Func) {
2075     case LibFunc_cosf:
2076     case LibFunc_cos:
2077     case LibFunc_cosl:
2078       return optimizeCos(CI, Builder);
2079     case LibFunc_sinpif:
2080     case LibFunc_sinpi:
2081     case LibFunc_cospif:
2082     case LibFunc_cospi:
2083       return optimizeSinCosPi(CI, Builder);
2084     case LibFunc_powf:
2085     case LibFunc_pow:
2086     case LibFunc_powl:
2087       return optimizePow(CI, Builder);
2088     case LibFunc_exp2l:
2089     case LibFunc_exp2:
2090     case LibFunc_exp2f:
2091       return optimizeExp2(CI, Builder);
2092     case LibFunc_fabsf:
2093     case LibFunc_fabs:
2094     case LibFunc_fabsl:
2095       return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2096     case LibFunc_sqrtf:
2097     case LibFunc_sqrt:
2098     case LibFunc_sqrtl:
2099       return optimizeSqrt(CI, Builder);
2100     case LibFunc_ffs:
2101     case LibFunc_ffsl:
2102     case LibFunc_ffsll:
2103       return optimizeFFS(CI, Builder);
2104     case LibFunc_fls:
2105     case LibFunc_flsl:
2106     case LibFunc_flsll:
2107       return optimizeFls(CI, Builder);
2108     case LibFunc_abs:
2109     case LibFunc_labs:
2110     case LibFunc_llabs:
2111       return optimizeAbs(CI, Builder);
2112     case LibFunc_isdigit:
2113       return optimizeIsDigit(CI, Builder);
2114     case LibFunc_isascii:
2115       return optimizeIsAscii(CI, Builder);
2116     case LibFunc_toascii:
2117       return optimizeToAscii(CI, Builder);
2118     case LibFunc_printf:
2119       return optimizePrintF(CI, Builder);
2120     case LibFunc_sprintf:
2121       return optimizeSPrintF(CI, Builder);
2122     case LibFunc_fprintf:
2123       return optimizeFPrintF(CI, Builder);
2124     case LibFunc_fwrite:
2125       return optimizeFWrite(CI, Builder);
2126     case LibFunc_fputs:
2127       return optimizeFPuts(CI, Builder);
2128     case LibFunc_log:
2129     case LibFunc_log10:
2130     case LibFunc_log1p:
2131     case LibFunc_log2:
2132     case LibFunc_logb:
2133       return optimizeLog(CI, Builder);
2134     case LibFunc_puts:
2135       return optimizePuts(CI, Builder);
2136     case LibFunc_tan:
2137     case LibFunc_tanf:
2138     case LibFunc_tanl:
2139       return optimizeTan(CI, Builder);
2140     case LibFunc_perror:
2141       return optimizeErrorReporting(CI, Builder);
2142     case LibFunc_vfprintf:
2143     case LibFunc_fiprintf:
2144       return optimizeErrorReporting(CI, Builder, 0);
2145     case LibFunc_fputc:
2146       return optimizeErrorReporting(CI, Builder, 1);
2147     case LibFunc_ceil:
2148       return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2149     case LibFunc_floor:
2150       return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2151     case LibFunc_round:
2152       return replaceUnaryCall(CI, Builder, Intrinsic::round);
2153     case LibFunc_nearbyint:
2154     case LibFunc_rint:
2155       return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2156     case LibFunc_trunc:
2157       return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
2158     case LibFunc_acos:
2159     case LibFunc_acosh:
2160     case LibFunc_asin:
2161     case LibFunc_asinh:
2162     case LibFunc_atan:
2163     case LibFunc_atanh:
2164     case LibFunc_cbrt:
2165     case LibFunc_cosh:
2166     case LibFunc_exp:
2167     case LibFunc_exp10:
2168     case LibFunc_expm1:
2169     case LibFunc_sin:
2170     case LibFunc_sinh:
2171     case LibFunc_tanh:
2172       if (UnsafeFPShrink && hasFloatVersion(FuncName))
2173         return optimizeUnaryDoubleFP(CI, Builder, true);
2174       return nullptr;
2175     case LibFunc_copysign:
2176       if (hasFloatVersion(FuncName))
2177         return optimizeBinaryDoubleFP(CI, Builder);
2178       return nullptr;
2179     case LibFunc_fminf:
2180     case LibFunc_fmin:
2181     case LibFunc_fminl:
2182     case LibFunc_fmaxf:
2183     case LibFunc_fmax:
2184     case LibFunc_fmaxl:
2185       return optimizeFMinFMax(CI, Builder);
2186     default:
2187       return nullptr;
2188     }
2189   }
2190   return nullptr;
2191 }
2192 
2193 LibCallSimplifier::LibCallSimplifier(
2194     const DataLayout &DL, const TargetLibraryInfo *TLI,
2195     function_ref<void(Instruction *, Value *)> Replacer)
2196     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), UnsafeFPShrink(false),
2197       Replacer(Replacer) {}
2198 
2199 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
2200   // Indirect through the replacer used in this instance.
2201   Replacer(I, With);
2202 }
2203 
2204 // TODO:
2205 //   Additional cases that we need to add to this file:
2206 //
2207 // cbrt:
2208 //   * cbrt(expN(X))  -> expN(x/3)
2209 //   * cbrt(sqrt(x))  -> pow(x,1/6)
2210 //   * cbrt(cbrt(x))  -> pow(x,1/9)
2211 //
2212 // exp, expf, expl:
2213 //   * exp(log(x))  -> x
2214 //
2215 // log, logf, logl:
2216 //   * log(exp(x))   -> x
2217 //   * log(exp(y))   -> y*log(e)
2218 //   * log(exp10(y)) -> y*log(10)
2219 //   * log(sqrt(x))  -> 0.5*log(x)
2220 //
2221 // pow, powf, powl:
2222 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
2223 //   * pow(pow(x,y),z)-> pow(x,y*z)
2224 //
2225 // signbit:
2226 //   * signbit(cnst) -> cnst'
2227 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2228 //
2229 // sqrt, sqrtf, sqrtl:
2230 //   * sqrt(expN(x))  -> expN(x*0.5)
2231 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2232 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2233 //
2234 
2235 //===----------------------------------------------------------------------===//
2236 // Fortified Library Call Optimizations
2237 //===----------------------------------------------------------------------===//
2238 
2239 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
2240                                                          unsigned ObjSizeOp,
2241                                                          unsigned SizeOp,
2242                                                          bool isString) {
2243   if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
2244     return true;
2245   if (ConstantInt *ObjSizeCI =
2246           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
2247     if (ObjSizeCI->isAllOnesValue())
2248       return true;
2249     // If the object size wasn't -1 (unknown), bail out if we were asked to.
2250     if (OnlyLowerUnknownSize)
2251       return false;
2252     if (isString) {
2253       uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
2254       // If the length is 0 we don't know how long it is and so we can't
2255       // remove the check.
2256       if (Len == 0)
2257         return false;
2258       return ObjSizeCI->getZExtValue() >= Len;
2259     }
2260     if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
2261       return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
2262   }
2263   return false;
2264 }
2265 
2266 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
2267                                                      IRBuilder<> &B) {
2268   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2269     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2270                    CI->getArgOperand(2), 1);
2271     return CI->getArgOperand(0);
2272   }
2273   return nullptr;
2274 }
2275 
2276 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
2277                                                       IRBuilder<> &B) {
2278   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2279     B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
2280                     CI->getArgOperand(2), 1);
2281     return CI->getArgOperand(0);
2282   }
2283   return nullptr;
2284 }
2285 
2286 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
2287                                                      IRBuilder<> &B) {
2288   // TODO: Try foldMallocMemset() here.
2289 
2290   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2291     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
2292     B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
2293     return CI->getArgOperand(0);
2294   }
2295   return nullptr;
2296 }
2297 
2298 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
2299                                                       IRBuilder<> &B,
2300                                                       LibFunc Func) {
2301   Function *Callee = CI->getCalledFunction();
2302   StringRef Name = Callee->getName();
2303   const DataLayout &DL = CI->getModule()->getDataLayout();
2304   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
2305         *ObjSize = CI->getArgOperand(2);
2306 
2307   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
2308   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
2309     Value *StrLen = emitStrLen(Src, B, DL, TLI);
2310     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
2311   }
2312 
2313   // If a) we don't have any length information, or b) we know this will
2314   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
2315   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
2316   // TODO: It might be nice to get a maximum length out of the possible
2317   // string lengths for varying.
2318   if (isFortifiedCallFoldable(CI, 2, 1, true))
2319     return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
2320 
2321   if (OnlyLowerUnknownSize)
2322     return nullptr;
2323 
2324   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
2325   uint64_t Len = GetStringLength(Src);
2326   if (Len == 0)
2327     return nullptr;
2328 
2329   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
2330   Value *LenV = ConstantInt::get(SizeTTy, Len);
2331   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
2332   // If the function was an __stpcpy_chk, and we were able to fold it into
2333   // a __memcpy_chk, we still need to return the correct end pointer.
2334   if (Ret && Func == LibFunc_stpcpy_chk)
2335     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
2336   return Ret;
2337 }
2338 
2339 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
2340                                                        IRBuilder<> &B,
2341                                                        LibFunc Func) {
2342   Function *Callee = CI->getCalledFunction();
2343   StringRef Name = Callee->getName();
2344   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2345     Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2346                              CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
2347     return Ret;
2348   }
2349   return nullptr;
2350 }
2351 
2352 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
2353   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
2354   // Some clang users checked for _chk libcall availability using:
2355   //   __has_builtin(__builtin___memcpy_chk)
2356   // When compiling with -fno-builtin, this is always true.
2357   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
2358   // end up with fortified libcalls, which isn't acceptable in a freestanding
2359   // environment which only provides their non-fortified counterparts.
2360   //
2361   // Until we change clang and/or teach external users to check for availability
2362   // differently, disregard the "nobuiltin" attribute and TLI::has.
2363   //
2364   // PR23093.
2365 
2366   LibFunc Func;
2367   Function *Callee = CI->getCalledFunction();
2368 
2369   SmallVector<OperandBundleDef, 2> OpBundles;
2370   CI->getOperandBundlesAsDefs(OpBundles);
2371   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2372   bool isCallingConvC = isCallingConvCCompatible(CI);
2373 
2374   // First, check that this is a known library functions and that the prototype
2375   // is correct.
2376   if (!TLI->getLibFunc(*Callee, Func))
2377     return nullptr;
2378 
2379   // We never change the calling convention.
2380   if (!ignoreCallingConv(Func) && !isCallingConvC)
2381     return nullptr;
2382 
2383   switch (Func) {
2384   case LibFunc_memcpy_chk:
2385     return optimizeMemCpyChk(CI, Builder);
2386   case LibFunc_memmove_chk:
2387     return optimizeMemMoveChk(CI, Builder);
2388   case LibFunc_memset_chk:
2389     return optimizeMemSetChk(CI, Builder);
2390   case LibFunc_stpcpy_chk:
2391   case LibFunc_strcpy_chk:
2392     return optimizeStrpCpyChk(CI, Builder, Func);
2393   case LibFunc_stpncpy_chk:
2394   case LibFunc_strncpy_chk:
2395     return optimizeStrpNCpyChk(CI, Builder, Func);
2396   default:
2397     break;
2398   }
2399   return nullptr;
2400 }
2401 
2402 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
2403     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
2404     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
2405