1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is a utility pass used for testing the InstructionSimplify analysis.
11 // The analysis is applied to every instruction, and if it simplifies then the
12 // instruction is replaced by the simplification.  If you are looking for a pass
13 // that performs serious instruction folding, use the instcombine pass instead.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DiagnosticInfo.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Transforms/Utils/BuildLibCalls.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 static cl::opt<bool>
40     ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden,
41                    cl::desc("Treat error-reporting calls as cold"));
42 
43 static cl::opt<bool>
44     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
45                          cl::init(false),
46                          cl::desc("Enable unsafe double to float "
47                                   "shrinking for math lib calls"));
48 
49 
50 //===----------------------------------------------------------------------===//
51 // Helper Functions
52 //===----------------------------------------------------------------------===//
53 
54 static bool ignoreCallingConv(LibFunc Func) {
55   return Func == LibFunc_abs || Func == LibFunc_labs ||
56          Func == LibFunc_llabs || Func == LibFunc_strlen;
57 }
58 
59 static bool isCallingConvCCompatible(CallInst *CI) {
60   switch(CI->getCallingConv()) {
61   default:
62     return false;
63   case llvm::CallingConv::C:
64     return true;
65   case llvm::CallingConv::ARM_APCS:
66   case llvm::CallingConv::ARM_AAPCS:
67   case llvm::CallingConv::ARM_AAPCS_VFP: {
68 
69     // The iOS ABI diverges from the standard in some cases, so for now don't
70     // try to simplify those calls.
71     if (Triple(CI->getModule()->getTargetTriple()).isiOS())
72       return false;
73 
74     auto *FuncTy = CI->getFunctionType();
75 
76     if (!FuncTy->getReturnType()->isPointerTy() &&
77         !FuncTy->getReturnType()->isIntegerTy() &&
78         !FuncTy->getReturnType()->isVoidTy())
79       return false;
80 
81     for (auto Param : FuncTy->params()) {
82       if (!Param->isPointerTy() && !Param->isIntegerTy())
83         return false;
84     }
85     return true;
86   }
87   }
88   return false;
89 }
90 
91 /// Return true if it only matters that the value is equal or not-equal to zero.
92 static bool isOnlyUsedInZeroEqualityComparison(Value *V) {
93   for (User *U : V->users()) {
94     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
95       if (IC->isEquality())
96         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
97           if (C->isNullValue())
98             continue;
99     // Unknown instruction.
100     return false;
101   }
102   return true;
103 }
104 
105 /// Return true if it is only used in equality comparisons with With.
106 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
107   for (User *U : V->users()) {
108     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
109       if (IC->isEquality() && IC->getOperand(1) == With)
110         continue;
111     // Unknown instruction.
112     return false;
113   }
114   return true;
115 }
116 
117 static bool callHasFloatingPointArgument(const CallInst *CI) {
118   return any_of(CI->operands(), [](const Use &OI) {
119     return OI->getType()->isFloatingPointTy();
120   });
121 }
122 
123 /// \brief Check whether the overloaded unary floating point function
124 /// corresponding to \a Ty is available.
125 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
126                             LibFunc DoubleFn, LibFunc FloatFn,
127                             LibFunc LongDoubleFn) {
128   switch (Ty->getTypeID()) {
129   case Type::FloatTyID:
130     return TLI->has(FloatFn);
131   case Type::DoubleTyID:
132     return TLI->has(DoubleFn);
133   default:
134     return TLI->has(LongDoubleFn);
135   }
136 }
137 
138 //===----------------------------------------------------------------------===//
139 // String and Memory Library Call Optimizations
140 //===----------------------------------------------------------------------===//
141 
142 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
143   // Extract some information from the instruction
144   Value *Dst = CI->getArgOperand(0);
145   Value *Src = CI->getArgOperand(1);
146 
147   // See if we can get the length of the input string.
148   uint64_t Len = GetStringLength(Src);
149   if (Len == 0)
150     return nullptr;
151   --Len; // Unbias length.
152 
153   // Handle the simple, do-nothing case: strcat(x, "") -> x
154   if (Len == 0)
155     return Dst;
156 
157   return emitStrLenMemCpy(Src, Dst, Len, B);
158 }
159 
160 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
161                                            IRBuilder<> &B) {
162   // We need to find the end of the destination string.  That's where the
163   // memory is to be moved to. We just generate a call to strlen.
164   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
165   if (!DstLen)
166     return nullptr;
167 
168   // Now that we have the destination's length, we must index into the
169   // destination's pointer to get the actual memcpy destination (end of
170   // the string .. we're concatenating).
171   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
172 
173   // We have enough information to now generate the memcpy call to do the
174   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
175   B.CreateMemCpy(CpyDst, Src,
176                  ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1),
177                  1);
178   return Dst;
179 }
180 
181 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
182   // Extract some information from the instruction.
183   Value *Dst = CI->getArgOperand(0);
184   Value *Src = CI->getArgOperand(1);
185   uint64_t Len;
186 
187   // We don't do anything if length is not constant.
188   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
189     Len = LengthArg->getZExtValue();
190   else
191     return nullptr;
192 
193   // See if we can get the length of the input string.
194   uint64_t SrcLen = GetStringLength(Src);
195   if (SrcLen == 0)
196     return nullptr;
197   --SrcLen; // Unbias length.
198 
199   // Handle the simple, do-nothing cases:
200   // strncat(x, "", c) -> x
201   // strncat(x,  c, 0) -> x
202   if (SrcLen == 0 || Len == 0)
203     return Dst;
204 
205   // We don't optimize this case.
206   if (Len < SrcLen)
207     return nullptr;
208 
209   // strncat(x, s, c) -> strcat(x, s)
210   // s is constant so the strcat can be optimized further.
211   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
212 }
213 
214 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
215   Function *Callee = CI->getCalledFunction();
216   FunctionType *FT = Callee->getFunctionType();
217   Value *SrcStr = CI->getArgOperand(0);
218 
219   // If the second operand is non-constant, see if we can compute the length
220   // of the input string and turn this into memchr.
221   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
222   if (!CharC) {
223     uint64_t Len = GetStringLength(SrcStr);
224     if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
225       return nullptr;
226 
227     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
228                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
229                       B, DL, TLI);
230   }
231 
232   // Otherwise, the character is a constant, see if the first argument is
233   // a string literal.  If so, we can constant fold.
234   StringRef Str;
235   if (!getConstantStringInfo(SrcStr, Str)) {
236     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
237       return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI),
238                          "strchr");
239     return nullptr;
240   }
241 
242   // Compute the offset, make sure to handle the case when we're searching for
243   // zero (a weird way to spell strlen).
244   size_t I = (0xFF & CharC->getSExtValue()) == 0
245                  ? Str.size()
246                  : Str.find(CharC->getSExtValue());
247   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
248     return Constant::getNullValue(CI->getType());
249 
250   // strchr(s+n,c)  -> gep(s+n+i,c)
251   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
252 }
253 
254 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
255   Value *SrcStr = CI->getArgOperand(0);
256   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
257 
258   // Cannot fold anything if we're not looking for a constant.
259   if (!CharC)
260     return nullptr;
261 
262   StringRef Str;
263   if (!getConstantStringInfo(SrcStr, Str)) {
264     // strrchr(s, 0) -> strchr(s, 0)
265     if (CharC->isZero())
266       return emitStrChr(SrcStr, '\0', B, TLI);
267     return nullptr;
268   }
269 
270   // Compute the offset.
271   size_t I = (0xFF & CharC->getSExtValue()) == 0
272                  ? Str.size()
273                  : Str.rfind(CharC->getSExtValue());
274   if (I == StringRef::npos) // Didn't find the char. Return null.
275     return Constant::getNullValue(CI->getType());
276 
277   // strrchr(s+n,c) -> gep(s+n+i,c)
278   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
279 }
280 
281 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
282   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
283   if (Str1P == Str2P) // strcmp(x,x)  -> 0
284     return ConstantInt::get(CI->getType(), 0);
285 
286   StringRef Str1, Str2;
287   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
288   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
289 
290   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
291   if (HasStr1 && HasStr2)
292     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
293 
294   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
295     return B.CreateNeg(
296         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
297 
298   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
299     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
300 
301   // strcmp(P, "x") -> memcmp(P, "x", 2)
302   uint64_t Len1 = GetStringLength(Str1P);
303   uint64_t Len2 = GetStringLength(Str2P);
304   if (Len1 && Len2) {
305     return emitMemCmp(Str1P, Str2P,
306                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
307                                        std::min(Len1, Len2)),
308                       B, DL, TLI);
309   }
310 
311   return nullptr;
312 }
313 
314 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
315   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
316   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
317     return ConstantInt::get(CI->getType(), 0);
318 
319   // Get the length argument if it is constant.
320   uint64_t Length;
321   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
322     Length = LengthArg->getZExtValue();
323   else
324     return nullptr;
325 
326   if (Length == 0) // strncmp(x,y,0)   -> 0
327     return ConstantInt::get(CI->getType(), 0);
328 
329   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
330     return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
331 
332   StringRef Str1, Str2;
333   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
334   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
335 
336   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
337   if (HasStr1 && HasStr2) {
338     StringRef SubStr1 = Str1.substr(0, Length);
339     StringRef SubStr2 = Str2.substr(0, Length);
340     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
341   }
342 
343   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
344     return B.CreateNeg(
345         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
346 
347   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
348     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
349 
350   return nullptr;
351 }
352 
353 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
354   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
355   if (Dst == Src) // strcpy(x,x)  -> x
356     return Src;
357 
358   // See if we can get the length of the input string.
359   uint64_t Len = GetStringLength(Src);
360   if (Len == 0)
361     return nullptr;
362 
363   // We have enough information to now generate the memcpy call to do the
364   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
365   B.CreateMemCpy(Dst, Src,
366                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1);
367   return Dst;
368 }
369 
370 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
371   Function *Callee = CI->getCalledFunction();
372   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
373   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
374     Value *StrLen = emitStrLen(Src, B, DL, TLI);
375     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
376   }
377 
378   // See if we can get the length of the input string.
379   uint64_t Len = GetStringLength(Src);
380   if (Len == 0)
381     return nullptr;
382 
383   Type *PT = Callee->getFunctionType()->getParamType(0);
384   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
385   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
386                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
387 
388   // We have enough information to now generate the memcpy call to do the
389   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
390   B.CreateMemCpy(Dst, Src, LenV, 1);
391   return DstEnd;
392 }
393 
394 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
395   Function *Callee = CI->getCalledFunction();
396   Value *Dst = CI->getArgOperand(0);
397   Value *Src = CI->getArgOperand(1);
398   Value *LenOp = CI->getArgOperand(2);
399 
400   // See if we can get the length of the input string.
401   uint64_t SrcLen = GetStringLength(Src);
402   if (SrcLen == 0)
403     return nullptr;
404   --SrcLen;
405 
406   if (SrcLen == 0) {
407     // strncpy(x, "", y) -> memset(x, '\0', y, 1)
408     B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
409     return Dst;
410   }
411 
412   uint64_t Len;
413   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
414     Len = LengthArg->getZExtValue();
415   else
416     return nullptr;
417 
418   if (Len == 0)
419     return Dst; // strncpy(x, y, 0) -> x
420 
421   // Let strncpy handle the zero padding
422   if (Len > SrcLen + 1)
423     return nullptr;
424 
425   Type *PT = Callee->getFunctionType()->getParamType(0);
426   // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
427   B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1);
428 
429   return Dst;
430 }
431 
432 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
433   Value *Src = CI->getArgOperand(0);
434 
435   // Constant folding: strlen("xyz") -> 3
436   if (uint64_t Len = GetStringLength(Src))
437     return ConstantInt::get(CI->getType(), Len - 1);
438 
439   // If s is a constant pointer pointing to a string literal, we can fold
440   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
441   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
442   // We only try to simplify strlen when the pointer s points to an array
443   // of i8. Otherwise, we would need to scale the offset x before doing the
444   // subtraction. This will make the optimization more complex, and it's not
445   // very useful because calling strlen for a pointer of other types is
446   // very uncommon.
447   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
448     if (!isGEPBasedOnPointerToString(GEP))
449       return nullptr;
450 
451     StringRef Str;
452     if (getConstantStringInfo(GEP->getOperand(0), Str, 0, false)) {
453       size_t NullTermIdx = Str.find('\0');
454 
455       // If the string does not have '\0', leave it to strlen to compute
456       // its length.
457       if (NullTermIdx == StringRef::npos)
458         return nullptr;
459 
460       Value *Offset = GEP->getOperand(2);
461       unsigned BitWidth = Offset->getType()->getIntegerBitWidth();
462       APInt KnownZero(BitWidth, 0);
463       APInt KnownOne(BitWidth, 0);
464       computeKnownBits(Offset, KnownZero, KnownOne, DL, 0, nullptr, CI,
465                        nullptr);
466       KnownZero.flipAllBits();
467       size_t ArrSize =
468              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
469 
470       // KnownZero's bits are flipped, so zeros in KnownZero now represent
471       // bits known to be zeros in Offset, and ones in KnowZero represent
472       // bits unknown in Offset. Therefore, Offset is known to be in range
473       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
474       // unsigned-less-than NullTermIdx.
475       //
476       // If Offset is not provably in the range [0, NullTermIdx], we can still
477       // optimize if we can prove that the program has undefined behavior when
478       // Offset is outside that range. That is the case when GEP->getOperand(0)
479       // is a pointer to an object whose memory extent is NullTermIdx+1.
480       if ((KnownZero.isNonNegative() && KnownZero.ule(NullTermIdx)) ||
481           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
482            NullTermIdx == ArrSize - 1))
483         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
484                            Offset);
485     }
486 
487     return nullptr;
488   }
489 
490   // strlen(x?"foo":"bars") --> x ? 3 : 4
491   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
492     uint64_t LenTrue = GetStringLength(SI->getTrueValue());
493     uint64_t LenFalse = GetStringLength(SI->getFalseValue());
494     if (LenTrue && LenFalse) {
495       Function *Caller = CI->getParent()->getParent();
496       emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller,
497                              SI->getDebugLoc(),
498                              "folded strlen(select) to select of constants");
499       return B.CreateSelect(SI->getCondition(),
500                             ConstantInt::get(CI->getType(), LenTrue - 1),
501                             ConstantInt::get(CI->getType(), LenFalse - 1));
502     }
503   }
504 
505   // strlen(x) != 0 --> *x != 0
506   // strlen(x) == 0 --> *x == 0
507   if (isOnlyUsedInZeroEqualityComparison(CI))
508     return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
509 
510   return nullptr;
511 }
512 
513 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
514   StringRef S1, S2;
515   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
516   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
517 
518   // strpbrk(s, "") -> nullptr
519   // strpbrk("", s) -> nullptr
520   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
521     return Constant::getNullValue(CI->getType());
522 
523   // Constant folding.
524   if (HasS1 && HasS2) {
525     size_t I = S1.find_first_of(S2);
526     if (I == StringRef::npos) // No match.
527       return Constant::getNullValue(CI->getType());
528 
529     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
530                        "strpbrk");
531   }
532 
533   // strpbrk(s, "a") -> strchr(s, 'a')
534   if (HasS2 && S2.size() == 1)
535     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
536 
537   return nullptr;
538 }
539 
540 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
541   Value *EndPtr = CI->getArgOperand(1);
542   if (isa<ConstantPointerNull>(EndPtr)) {
543     // With a null EndPtr, this function won't capture the main argument.
544     // It would be readonly too, except that it still may write to errno.
545     CI->addAttribute(1, Attribute::NoCapture);
546   }
547 
548   return nullptr;
549 }
550 
551 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
552   StringRef S1, S2;
553   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
554   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
555 
556   // strspn(s, "") -> 0
557   // strspn("", s) -> 0
558   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
559     return Constant::getNullValue(CI->getType());
560 
561   // Constant folding.
562   if (HasS1 && HasS2) {
563     size_t Pos = S1.find_first_not_of(S2);
564     if (Pos == StringRef::npos)
565       Pos = S1.size();
566     return ConstantInt::get(CI->getType(), Pos);
567   }
568 
569   return nullptr;
570 }
571 
572 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
573   StringRef S1, S2;
574   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
575   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
576 
577   // strcspn("", s) -> 0
578   if (HasS1 && S1.empty())
579     return Constant::getNullValue(CI->getType());
580 
581   // Constant folding.
582   if (HasS1 && HasS2) {
583     size_t Pos = S1.find_first_of(S2);
584     if (Pos == StringRef::npos)
585       Pos = S1.size();
586     return ConstantInt::get(CI->getType(), Pos);
587   }
588 
589   // strcspn(s, "") -> strlen(s)
590   if (HasS2 && S2.empty())
591     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
592 
593   return nullptr;
594 }
595 
596 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
597   // fold strstr(x, x) -> x.
598   if (CI->getArgOperand(0) == CI->getArgOperand(1))
599     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
600 
601   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
602   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
603     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
604     if (!StrLen)
605       return nullptr;
606     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
607                                  StrLen, B, DL, TLI);
608     if (!StrNCmp)
609       return nullptr;
610     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
611       ICmpInst *Old = cast<ICmpInst>(*UI++);
612       Value *Cmp =
613           B.CreateICmp(Old->getPredicate(), StrNCmp,
614                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
615       replaceAllUsesWith(Old, Cmp);
616     }
617     return CI;
618   }
619 
620   // See if either input string is a constant string.
621   StringRef SearchStr, ToFindStr;
622   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
623   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
624 
625   // fold strstr(x, "") -> x.
626   if (HasStr2 && ToFindStr.empty())
627     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
628 
629   // If both strings are known, constant fold it.
630   if (HasStr1 && HasStr2) {
631     size_t Offset = SearchStr.find(ToFindStr);
632 
633     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
634       return Constant::getNullValue(CI->getType());
635 
636     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
637     Value *Result = castToCStr(CI->getArgOperand(0), B);
638     Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
639     return B.CreateBitCast(Result, CI->getType());
640   }
641 
642   // fold strstr(x, "y") -> strchr(x, 'y').
643   if (HasStr2 && ToFindStr.size() == 1) {
644     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
645     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
646   }
647   return nullptr;
648 }
649 
650 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
651   Value *SrcStr = CI->getArgOperand(0);
652   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
653   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
654 
655   // memchr(x, y, 0) -> null
656   if (LenC && LenC->isNullValue())
657     return Constant::getNullValue(CI->getType());
658 
659   // From now on we need at least constant length and string.
660   StringRef Str;
661   if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
662     return nullptr;
663 
664   // Truncate the string to LenC. If Str is smaller than LenC we will still only
665   // scan the string, as reading past the end of it is undefined and we can just
666   // return null if we don't find the char.
667   Str = Str.substr(0, LenC->getZExtValue());
668 
669   // If the char is variable but the input str and length are not we can turn
670   // this memchr call into a simple bit field test. Of course this only works
671   // when the return value is only checked against null.
672   //
673   // It would be really nice to reuse switch lowering here but we can't change
674   // the CFG at this point.
675   //
676   // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
677   //   after bounds check.
678   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
679     unsigned char Max =
680         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
681                           reinterpret_cast<const unsigned char *>(Str.end()));
682 
683     // Make sure the bit field we're about to create fits in a register on the
684     // target.
685     // FIXME: On a 64 bit architecture this prevents us from using the
686     // interesting range of alpha ascii chars. We could do better by emitting
687     // two bitfields or shifting the range by 64 if no lower chars are used.
688     if (!DL.fitsInLegalInteger(Max + 1))
689       return nullptr;
690 
691     // For the bit field use a power-of-2 type with at least 8 bits to avoid
692     // creating unnecessary illegal types.
693     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
694 
695     // Now build the bit field.
696     APInt Bitfield(Width, 0);
697     for (char C : Str)
698       Bitfield.setBit((unsigned char)C);
699     Value *BitfieldC = B.getInt(Bitfield);
700 
701     // First check that the bit field access is within bounds.
702     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
703     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
704                                  "memchr.bounds");
705 
706     // Create code that checks if the given bit is set in the field.
707     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
708     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
709 
710     // Finally merge both checks and cast to pointer type. The inttoptr
711     // implicitly zexts the i1 to intptr type.
712     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
713   }
714 
715   // Check if all arguments are constants.  If so, we can constant fold.
716   if (!CharC)
717     return nullptr;
718 
719   // Compute the offset.
720   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
721   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
722     return Constant::getNullValue(CI->getType());
723 
724   // memchr(s+n,c,l) -> gep(s+n+i,c)
725   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
726 }
727 
728 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
729   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
730 
731   if (LHS == RHS) // memcmp(s,s,x) -> 0
732     return Constant::getNullValue(CI->getType());
733 
734   // Make sure we have a constant length.
735   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
736   if (!LenC)
737     return nullptr;
738   uint64_t Len = LenC->getZExtValue();
739 
740   if (Len == 0) // memcmp(s1,s2,0) -> 0
741     return Constant::getNullValue(CI->getType());
742 
743   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
744   if (Len == 1) {
745     Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"),
746                                CI->getType(), "lhsv");
747     Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"),
748                                CI->getType(), "rhsv");
749     return B.CreateSub(LHSV, RHSV, "chardiff");
750   }
751 
752   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
753   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
754 
755     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
756     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
757 
758     if (getKnownAlignment(LHS, DL, CI) >= PrefAlignment &&
759         getKnownAlignment(RHS, DL, CI) >= PrefAlignment) {
760 
761       Type *LHSPtrTy =
762           IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
763       Type *RHSPtrTy =
764           IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
765 
766       Value *LHSV =
767           B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy, "lhsc"), "lhsv");
768       Value *RHSV =
769           B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy, "rhsc"), "rhsv");
770 
771       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
772     }
773   }
774 
775   // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
776   StringRef LHSStr, RHSStr;
777   if (getConstantStringInfo(LHS, LHSStr) &&
778       getConstantStringInfo(RHS, RHSStr)) {
779     // Make sure we're not reading out-of-bounds memory.
780     if (Len > LHSStr.size() || Len > RHSStr.size())
781       return nullptr;
782     // Fold the memcmp and normalize the result.  This way we get consistent
783     // results across multiple platforms.
784     uint64_t Ret = 0;
785     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
786     if (Cmp < 0)
787       Ret = -1;
788     else if (Cmp > 0)
789       Ret = 1;
790     return ConstantInt::get(CI->getType(), Ret);
791   }
792 
793   return nullptr;
794 }
795 
796 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
797   // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
798   B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
799                  CI->getArgOperand(2), 1);
800   return CI->getArgOperand(0);
801 }
802 
803 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
804   // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
805   B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
806                   CI->getArgOperand(2), 1);
807   return CI->getArgOperand(0);
808 }
809 
810 // TODO: Does this belong in BuildLibCalls or should all of those similar
811 // functions be moved here?
812 static Value *emitCalloc(Value *Num, Value *Size, const AttributeList &Attrs,
813                          IRBuilder<> &B, const TargetLibraryInfo &TLI) {
814   LibFunc Func;
815   if (!TLI.getLibFunc("calloc", Func) || !TLI.has(Func))
816     return nullptr;
817 
818   Module *M = B.GetInsertBlock()->getModule();
819   const DataLayout &DL = M->getDataLayout();
820   IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext()));
821   Value *Calloc = M->getOrInsertFunction("calloc", Attrs, B.getInt8PtrTy(),
822                                          PtrType, PtrType);
823   CallInst *CI = B.CreateCall(Calloc, { Num, Size }, "calloc");
824 
825   if (const auto *F = dyn_cast<Function>(Calloc->stripPointerCasts()))
826     CI->setCallingConv(F->getCallingConv());
827 
828   return CI;
829 }
830 
831 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
832 static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B,
833                                const TargetLibraryInfo &TLI) {
834   // This has to be a memset of zeros (bzero).
835   auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
836   if (!FillValue || FillValue->getZExtValue() != 0)
837     return nullptr;
838 
839   // TODO: We should handle the case where the malloc has more than one use.
840   // This is necessary to optimize common patterns such as when the result of
841   // the malloc is checked against null or when a memset intrinsic is used in
842   // place of a memset library call.
843   auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
844   if (!Malloc || !Malloc->hasOneUse())
845     return nullptr;
846 
847   // Is the inner call really malloc()?
848   Function *InnerCallee = Malloc->getCalledFunction();
849   LibFunc Func;
850   if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
851       Func != LibFunc_malloc)
852     return nullptr;
853 
854   // The memset must cover the same number of bytes that are malloc'd.
855   if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
856     return nullptr;
857 
858   // Replace the malloc with a calloc. We need the data layout to know what the
859   // actual size of a 'size_t' parameter is.
860   B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
861   const DataLayout &DL = Malloc->getModule()->getDataLayout();
862   IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
863   Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
864                              Malloc->getArgOperand(0), Malloc->getAttributes(),
865                              B, TLI);
866   if (!Calloc)
867     return nullptr;
868 
869   Malloc->replaceAllUsesWith(Calloc);
870   Malloc->eraseFromParent();
871 
872   return Calloc;
873 }
874 
875 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
876   if (auto *Calloc = foldMallocMemset(CI, B, *TLI))
877     return Calloc;
878 
879   // memset(p, v, n) -> llvm.memset(p, v, n, 1)
880   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
881   B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
882   return CI->getArgOperand(0);
883 }
884 
885 //===----------------------------------------------------------------------===//
886 // Math Library Optimizations
887 //===----------------------------------------------------------------------===//
888 
889 /// Return a variant of Val with float type.
890 /// Currently this works in two cases: If Val is an FPExtension of a float
891 /// value to something bigger, simply return the operand.
892 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
893 /// loss of precision do so.
894 static Value *valueHasFloatPrecision(Value *Val) {
895   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
896     Value *Op = Cast->getOperand(0);
897     if (Op->getType()->isFloatTy())
898       return Op;
899   }
900   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
901     APFloat F = Const->getValueAPF();
902     bool losesInfo;
903     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
904                     &losesInfo);
905     if (!losesInfo)
906       return ConstantFP::get(Const->getContext(), F);
907   }
908   return nullptr;
909 }
910 
911 /// Shrink double -> float for unary functions like 'floor'.
912 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
913                                     bool CheckRetType) {
914   Function *Callee = CI->getCalledFunction();
915   // We know this libcall has a valid prototype, but we don't know which.
916   if (!CI->getType()->isDoubleTy())
917     return nullptr;
918 
919   if (CheckRetType) {
920     // Check if all the uses for function like 'sin' are converted to float.
921     for (User *U : CI->users()) {
922       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
923       if (!Cast || !Cast->getType()->isFloatTy())
924         return nullptr;
925     }
926   }
927 
928   // If this is something like 'floor((double)floatval)', convert to floorf.
929   Value *V = valueHasFloatPrecision(CI->getArgOperand(0));
930   if (V == nullptr)
931     return nullptr;
932 
933   // Propagate fast-math flags from the existing call to the new call.
934   IRBuilder<>::FastMathFlagGuard Guard(B);
935   B.setFastMathFlags(CI->getFastMathFlags());
936 
937   // floor((double)floatval) -> (double)floorf(floatval)
938   if (Callee->isIntrinsic()) {
939     Module *M = CI->getModule();
940     Intrinsic::ID IID = Callee->getIntrinsicID();
941     Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
942     V = B.CreateCall(F, V);
943   } else {
944     // The call is a library call rather than an intrinsic.
945     V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
946   }
947 
948   return B.CreateFPExt(V, B.getDoubleTy());
949 }
950 
951 // Replace a libcall \p CI with a call to intrinsic \p IID
952 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) {
953   // Propagate fast-math flags from the existing call to the new call.
954   IRBuilder<>::FastMathFlagGuard Guard(B);
955   B.setFastMathFlags(CI->getFastMathFlags());
956 
957   Module *M = CI->getModule();
958   Value *V = CI->getArgOperand(0);
959   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
960   CallInst *NewCall = B.CreateCall(F, V);
961   NewCall->takeName(CI);
962   return NewCall;
963 }
964 
965 /// Shrink double -> float for binary functions like 'fmin/fmax'.
966 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
967   Function *Callee = CI->getCalledFunction();
968   // We know this libcall has a valid prototype, but we don't know which.
969   if (!CI->getType()->isDoubleTy())
970     return nullptr;
971 
972   // If this is something like 'fmin((double)floatval1, (double)floatval2)',
973   // or fmin(1.0, (double)floatval), then we convert it to fminf.
974   Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0));
975   if (V1 == nullptr)
976     return nullptr;
977   Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1));
978   if (V2 == nullptr)
979     return nullptr;
980 
981   // Propagate fast-math flags from the existing call to the new call.
982   IRBuilder<>::FastMathFlagGuard Guard(B);
983   B.setFastMathFlags(CI->getFastMathFlags());
984 
985   // fmin((double)floatval1, (double)floatval2)
986   //                      -> (double)fminf(floatval1, floatval2)
987   // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP().
988   Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
989                                    Callee->getAttributes());
990   return B.CreateFPExt(V, B.getDoubleTy());
991 }
992 
993 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
994   Function *Callee = CI->getCalledFunction();
995   Value *Ret = nullptr;
996   StringRef Name = Callee->getName();
997   if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name))
998     Ret = optimizeUnaryDoubleFP(CI, B, true);
999 
1000   // cos(-x) -> cos(x)
1001   Value *Op1 = CI->getArgOperand(0);
1002   if (BinaryOperator::isFNeg(Op1)) {
1003     BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
1004     return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
1005   }
1006   return Ret;
1007 }
1008 
1009 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
1010   // Multiplications calculated using Addition Chains.
1011   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1012 
1013   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1014 
1015   if (InnerChain[Exp])
1016     return InnerChain[Exp];
1017 
1018   static const unsigned AddChain[33][2] = {
1019       {0, 0}, // Unused.
1020       {0, 0}, // Unused (base case = pow1).
1021       {1, 1}, // Unused (pre-computed).
1022       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1023       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1024       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1025       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1026       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1027   };
1028 
1029   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1030                                  getPow(InnerChain, AddChain[Exp][1], B));
1031   return InnerChain[Exp];
1032 }
1033 
1034 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
1035   Function *Callee = CI->getCalledFunction();
1036   Value *Ret = nullptr;
1037   StringRef Name = Callee->getName();
1038   if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name))
1039     Ret = optimizeUnaryDoubleFP(CI, B, true);
1040 
1041   Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
1042 
1043   // pow(1.0, x) -> 1.0
1044   if (match(Op1, m_SpecificFP(1.0)))
1045     return Op1;
1046   // pow(2.0, x) -> llvm.exp2(x)
1047   if (match(Op1, m_SpecificFP(2.0))) {
1048     Value *Exp2 = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::exp2,
1049                                             CI->getType());
1050     return B.CreateCall(Exp2, Op2, "exp2");
1051   }
1052 
1053   // There's no llvm.exp10 intrinsic yet, but, maybe, some day there will
1054   // be one.
1055   if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
1056     // pow(10.0, x) -> exp10(x)
1057     if (Op1C->isExactlyValue(10.0) &&
1058         hasUnaryFloatFn(TLI, Op1->getType(), LibFunc_exp10, LibFunc_exp10f,
1059                         LibFunc_exp10l))
1060       return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc_exp10), B,
1061                                   Callee->getAttributes());
1062   }
1063 
1064   // pow(exp(x), y) -> exp(x * y)
1065   // pow(exp2(x), y) -> exp2(x * y)
1066   // We enable these only with fast-math. Besides rounding differences, the
1067   // transformation changes overflow and underflow behavior quite dramatically.
1068   // Example: x = 1000, y = 0.001.
1069   // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1).
1070   auto *OpC = dyn_cast<CallInst>(Op1);
1071   if (OpC && OpC->hasUnsafeAlgebra() && CI->hasUnsafeAlgebra()) {
1072     LibFunc Func;
1073     Function *OpCCallee = OpC->getCalledFunction();
1074     if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) &&
1075         TLI->has(Func) && (Func == LibFunc_exp || Func == LibFunc_exp2)) {
1076       IRBuilder<>::FastMathFlagGuard Guard(B);
1077       B.setFastMathFlags(CI->getFastMathFlags());
1078       Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul");
1079       return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B,
1080                                   OpCCallee->getAttributes());
1081     }
1082   }
1083 
1084   ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
1085   if (!Op2C)
1086     return Ret;
1087 
1088   if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
1089     return ConstantFP::get(CI->getType(), 1.0);
1090 
1091   if (Op2C->isExactlyValue(-0.5) &&
1092       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf,
1093                       LibFunc_sqrtl)) {
1094     // If -ffast-math:
1095     // pow(x, -0.5) -> 1.0 / sqrt(x)
1096     if (CI->hasUnsafeAlgebra()) {
1097       IRBuilder<>::FastMathFlagGuard Guard(B);
1098       B.setFastMathFlags(CI->getFastMathFlags());
1099 
1100       // TODO: If the pow call is an intrinsic, we should lower to the sqrt
1101       // intrinsic, so we match errno semantics.  We also should check that the
1102       // target can in fact lower the sqrt intrinsic -- we currently have no way
1103       // to ask this question other than asking whether the target has a sqrt
1104       // libcall, which is a sufficient but not necessary condition.
1105       Value *Sqrt = emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc_sqrt), B,
1106                                          Callee->getAttributes());
1107 
1108       return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Sqrt, "sqrtrecip");
1109     }
1110   }
1111 
1112   if (Op2C->isExactlyValue(0.5) &&
1113       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf,
1114                       LibFunc_sqrtl)) {
1115 
1116     // In -ffast-math, pow(x, 0.5) -> sqrt(x).
1117     if (CI->hasUnsafeAlgebra()) {
1118       IRBuilder<>::FastMathFlagGuard Guard(B);
1119       B.setFastMathFlags(CI->getFastMathFlags());
1120 
1121       // TODO: As above, we should lower to the sqrt intrinsic if the pow is an
1122       // intrinsic, to match errno semantics.
1123       return emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc_sqrt), B,
1124                                   Callee->getAttributes());
1125     }
1126 
1127     // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
1128     // This is faster than calling pow, and still handles negative zero
1129     // and negative infinity correctly.
1130     // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
1131     Value *Inf = ConstantFP::getInfinity(CI->getType());
1132     Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
1133 
1134     // TODO: As above, we should lower to the sqrt intrinsic if the pow is an
1135     // intrinsic, to match errno semantics.
1136     Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes());
1137 
1138     Module *M = Callee->getParent();
1139     Function *FabsF = Intrinsic::getDeclaration(M, Intrinsic::fabs,
1140                                                 CI->getType());
1141     Value *FAbs = B.CreateCall(FabsF, Sqrt);
1142 
1143     Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
1144     Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
1145     return Sel;
1146   }
1147 
1148   if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
1149     return Op1;
1150   if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
1151     return B.CreateFMul(Op1, Op1, "pow2");
1152   if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
1153     return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
1154 
1155   // In -ffast-math, generate repeated fmul instead of generating pow(x, n).
1156   if (CI->hasUnsafeAlgebra()) {
1157     APFloat V = abs(Op2C->getValueAPF());
1158     // We limit to a max of 7 fmul(s). Thus max exponent is 32.
1159     // This transformation applies to integer exponents only.
1160     if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan ||
1161         !V.isInteger())
1162       return nullptr;
1163 
1164     // Propagate fast math flags.
1165     IRBuilder<>::FastMathFlagGuard Guard(B);
1166     B.setFastMathFlags(CI->getFastMathFlags());
1167 
1168     // We will memoize intermediate products of the Addition Chain.
1169     Value *InnerChain[33] = {nullptr};
1170     InnerChain[1] = Op1;
1171     InnerChain[2] = B.CreateFMul(Op1, Op1);
1172 
1173     // We cannot readily convert a non-double type (like float) to a double.
1174     // So we first convert V to something which could be converted to double.
1175     bool ignored;
1176     V.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &ignored);
1177 
1178     Value *FMul = getPow(InnerChain, V.convertToDouble(), B);
1179     // For negative exponents simply compute the reciprocal.
1180     if (Op2C->isNegative())
1181       FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul);
1182     return FMul;
1183   }
1184 
1185   return nullptr;
1186 }
1187 
1188 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1189   Function *Callee = CI->getCalledFunction();
1190   Value *Ret = nullptr;
1191   StringRef Name = Callee->getName();
1192   if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name))
1193     Ret = optimizeUnaryDoubleFP(CI, B, true);
1194 
1195   Value *Op = CI->getArgOperand(0);
1196   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1197   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1198   LibFunc LdExp = LibFunc_ldexpl;
1199   if (Op->getType()->isFloatTy())
1200     LdExp = LibFunc_ldexpf;
1201   else if (Op->getType()->isDoubleTy())
1202     LdExp = LibFunc_ldexp;
1203 
1204   if (TLI->has(LdExp)) {
1205     Value *LdExpArg = nullptr;
1206     if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
1207       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
1208         LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
1209     } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
1210       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
1211         LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
1212     }
1213 
1214     if (LdExpArg) {
1215       Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
1216       if (!Op->getType()->isFloatTy())
1217         One = ConstantExpr::getFPExtend(One, Op->getType());
1218 
1219       Module *M = CI->getModule();
1220       Value *NewCallee =
1221           M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
1222                                  Op->getType(), B.getInt32Ty());
1223       CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg});
1224       if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
1225         CI->setCallingConv(F->getCallingConv());
1226 
1227       return CI;
1228     }
1229   }
1230   return Ret;
1231 }
1232 
1233 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1234   Function *Callee = CI->getCalledFunction();
1235   // If we can shrink the call to a float function rather than a double
1236   // function, do that first.
1237   StringRef Name = Callee->getName();
1238   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1239     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1240       return Ret;
1241 
1242   IRBuilder<>::FastMathFlagGuard Guard(B);
1243   FastMathFlags FMF;
1244   if (CI->hasUnsafeAlgebra()) {
1245     // Unsafe algebra sets all fast-math-flags to true.
1246     FMF.setUnsafeAlgebra();
1247   } else {
1248     // At a minimum, no-nans-fp-math must be true.
1249     if (!CI->hasNoNaNs())
1250       return nullptr;
1251     // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
1252     // "Ideally, fmax would be sensitive to the sign of zero, for example
1253     // fmax(-0. 0, +0. 0) would return +0; however, implementation in software
1254     // might be impractical."
1255     FMF.setNoSignedZeros();
1256     FMF.setNoNaNs();
1257   }
1258   B.setFastMathFlags(FMF);
1259 
1260   // We have a relaxed floating-point environment. We can ignore NaN-handling
1261   // and transform to a compare and select. We do not have to consider errno or
1262   // exceptions, because fmin/fmax do not have those.
1263   Value *Op0 = CI->getArgOperand(0);
1264   Value *Op1 = CI->getArgOperand(1);
1265   Value *Cmp = Callee->getName().startswith("fmin") ?
1266     B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
1267   return B.CreateSelect(Cmp, Op0, Op1);
1268 }
1269 
1270 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
1271   Function *Callee = CI->getCalledFunction();
1272   Value *Ret = nullptr;
1273   StringRef Name = Callee->getName();
1274   if (UnsafeFPShrink && hasFloatVersion(Name))
1275     Ret = optimizeUnaryDoubleFP(CI, B, true);
1276 
1277   if (!CI->hasUnsafeAlgebra())
1278     return Ret;
1279   Value *Op1 = CI->getArgOperand(0);
1280   auto *OpC = dyn_cast<CallInst>(Op1);
1281 
1282   // The earlier call must also be unsafe in order to do these transforms.
1283   if (!OpC || !OpC->hasUnsafeAlgebra())
1284     return Ret;
1285 
1286   // log(pow(x,y)) -> y*log(x)
1287   // This is only applicable to log, log2, log10.
1288   if (Name != "log" && Name != "log2" && Name != "log10")
1289     return Ret;
1290 
1291   IRBuilder<>::FastMathFlagGuard Guard(B);
1292   FastMathFlags FMF;
1293   FMF.setUnsafeAlgebra();
1294   B.setFastMathFlags(FMF);
1295 
1296   LibFunc Func;
1297   Function *F = OpC->getCalledFunction();
1298   if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1299       Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow))
1300     return B.CreateFMul(OpC->getArgOperand(1),
1301       emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B,
1302                            Callee->getAttributes()), "mul");
1303 
1304   // log(exp2(y)) -> y*log(2)
1305   if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) &&
1306       TLI->has(Func) && Func == LibFunc_exp2)
1307     return B.CreateFMul(
1308         OpC->getArgOperand(0),
1309         emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0),
1310                              Callee->getName(), B, Callee->getAttributes()),
1311         "logmul");
1312   return Ret;
1313 }
1314 
1315 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
1316   Function *Callee = CI->getCalledFunction();
1317   Value *Ret = nullptr;
1318   // TODO: Once we have a way (other than checking for the existince of the
1319   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
1320   // condition below.
1321   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
1322                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
1323     Ret = optimizeUnaryDoubleFP(CI, B, true);
1324 
1325   if (!CI->hasUnsafeAlgebra())
1326     return Ret;
1327 
1328   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
1329   if (!I || I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
1330     return Ret;
1331 
1332   // We're looking for a repeated factor in a multiplication tree,
1333   // so we can do this fold: sqrt(x * x) -> fabs(x);
1334   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
1335   Value *Op0 = I->getOperand(0);
1336   Value *Op1 = I->getOperand(1);
1337   Value *RepeatOp = nullptr;
1338   Value *OtherOp = nullptr;
1339   if (Op0 == Op1) {
1340     // Simple match: the operands of the multiply are identical.
1341     RepeatOp = Op0;
1342   } else {
1343     // Look for a more complicated pattern: one of the operands is itself
1344     // a multiply, so search for a common factor in that multiply.
1345     // Note: We don't bother looking any deeper than this first level or for
1346     // variations of this pattern because instcombine's visitFMUL and/or the
1347     // reassociation pass should give us this form.
1348     Value *OtherMul0, *OtherMul1;
1349     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
1350       // Pattern: sqrt((x * y) * z)
1351       if (OtherMul0 == OtherMul1 &&
1352           cast<Instruction>(Op0)->hasUnsafeAlgebra()) {
1353         // Matched: sqrt((x * x) * z)
1354         RepeatOp = OtherMul0;
1355         OtherOp = Op1;
1356       }
1357     }
1358   }
1359   if (!RepeatOp)
1360     return Ret;
1361 
1362   // Fast math flags for any created instructions should match the sqrt
1363   // and multiply.
1364   IRBuilder<>::FastMathFlagGuard Guard(B);
1365   B.setFastMathFlags(I->getFastMathFlags());
1366 
1367   // If we found a repeated factor, hoist it out of the square root and
1368   // replace it with the fabs of that factor.
1369   Module *M = Callee->getParent();
1370   Type *ArgType = I->getType();
1371   Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
1372   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
1373   if (OtherOp) {
1374     // If we found a non-repeated factor, we still need to get its square
1375     // root. We then multiply that by the value that was simplified out
1376     // of the square root calculation.
1377     Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
1378     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
1379     return B.CreateFMul(FabsCall, SqrtCall);
1380   }
1381   return FabsCall;
1382 }
1383 
1384 // TODO: Generalize to handle any trig function and its inverse.
1385 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
1386   Function *Callee = CI->getCalledFunction();
1387   Value *Ret = nullptr;
1388   StringRef Name = Callee->getName();
1389   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
1390     Ret = optimizeUnaryDoubleFP(CI, B, true);
1391 
1392   Value *Op1 = CI->getArgOperand(0);
1393   auto *OpC = dyn_cast<CallInst>(Op1);
1394   if (!OpC)
1395     return Ret;
1396 
1397   // Both calls must allow unsafe optimizations in order to remove them.
1398   if (!CI->hasUnsafeAlgebra() || !OpC->hasUnsafeAlgebra())
1399     return Ret;
1400 
1401   // tan(atan(x)) -> x
1402   // tanf(atanf(x)) -> x
1403   // tanl(atanl(x)) -> x
1404   LibFunc Func;
1405   Function *F = OpC->getCalledFunction();
1406   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1407       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
1408        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
1409        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
1410     Ret = OpC->getArgOperand(0);
1411   return Ret;
1412 }
1413 
1414 static bool isTrigLibCall(CallInst *CI) {
1415   // We can only hope to do anything useful if we can ignore things like errno
1416   // and floating-point exceptions.
1417   // We already checked the prototype.
1418   return CI->hasFnAttr(Attribute::NoUnwind) &&
1419          CI->hasFnAttr(Attribute::ReadNone);
1420 }
1421 
1422 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
1423                              bool UseFloat, Value *&Sin, Value *&Cos,
1424                              Value *&SinCos) {
1425   Type *ArgTy = Arg->getType();
1426   Type *ResTy;
1427   StringRef Name;
1428 
1429   Triple T(OrigCallee->getParent()->getTargetTriple());
1430   if (UseFloat) {
1431     Name = "__sincospif_stret";
1432 
1433     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
1434     // x86_64 can't use {float, float} since that would be returned in both
1435     // xmm0 and xmm1, which isn't what a real struct would do.
1436     ResTy = T.getArch() == Triple::x86_64
1437     ? static_cast<Type *>(VectorType::get(ArgTy, 2))
1438     : static_cast<Type *>(StructType::get(ArgTy, ArgTy, nullptr));
1439   } else {
1440     Name = "__sincospi_stret";
1441     ResTy = StructType::get(ArgTy, ArgTy, nullptr);
1442   }
1443 
1444   Module *M = OrigCallee->getParent();
1445   Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
1446                                          ResTy, ArgTy);
1447 
1448   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
1449     // If the argument is an instruction, it must dominate all uses so put our
1450     // sincos call there.
1451     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
1452   } else {
1453     // Otherwise (e.g. for a constant) the beginning of the function is as
1454     // good a place as any.
1455     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
1456     B.SetInsertPoint(&EntryBB, EntryBB.begin());
1457   }
1458 
1459   SinCos = B.CreateCall(Callee, Arg, "sincospi");
1460 
1461   if (SinCos->getType()->isStructTy()) {
1462     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
1463     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
1464   } else {
1465     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
1466                                  "sinpi");
1467     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
1468                                  "cospi");
1469   }
1470 }
1471 
1472 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
1473   // Make sure the prototype is as expected, otherwise the rest of the
1474   // function is probably invalid and likely to abort.
1475   if (!isTrigLibCall(CI))
1476     return nullptr;
1477 
1478   Value *Arg = CI->getArgOperand(0);
1479   SmallVector<CallInst *, 1> SinCalls;
1480   SmallVector<CallInst *, 1> CosCalls;
1481   SmallVector<CallInst *, 1> SinCosCalls;
1482 
1483   bool IsFloat = Arg->getType()->isFloatTy();
1484 
1485   // Look for all compatible sinpi, cospi and sincospi calls with the same
1486   // argument. If there are enough (in some sense) we can make the
1487   // substitution.
1488   Function *F = CI->getFunction();
1489   for (User *U : Arg->users())
1490     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
1491 
1492   // It's only worthwhile if both sinpi and cospi are actually used.
1493   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
1494     return nullptr;
1495 
1496   Value *Sin, *Cos, *SinCos;
1497   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
1498 
1499   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
1500                                  Value *Res) {
1501     for (CallInst *C : Calls)
1502       replaceAllUsesWith(C, Res);
1503   };
1504 
1505   replaceTrigInsts(SinCalls, Sin);
1506   replaceTrigInsts(CosCalls, Cos);
1507   replaceTrigInsts(SinCosCalls, SinCos);
1508 
1509   return nullptr;
1510 }
1511 
1512 void LibCallSimplifier::classifyArgUse(
1513     Value *Val, Function *F, bool IsFloat,
1514     SmallVectorImpl<CallInst *> &SinCalls,
1515     SmallVectorImpl<CallInst *> &CosCalls,
1516     SmallVectorImpl<CallInst *> &SinCosCalls) {
1517   CallInst *CI = dyn_cast<CallInst>(Val);
1518 
1519   if (!CI)
1520     return;
1521 
1522   // Don't consider calls in other functions.
1523   if (CI->getFunction() != F)
1524     return;
1525 
1526   Function *Callee = CI->getCalledFunction();
1527   LibFunc Func;
1528   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
1529       !isTrigLibCall(CI))
1530     return;
1531 
1532   if (IsFloat) {
1533     if (Func == LibFunc_sinpif)
1534       SinCalls.push_back(CI);
1535     else if (Func == LibFunc_cospif)
1536       CosCalls.push_back(CI);
1537     else if (Func == LibFunc_sincospif_stret)
1538       SinCosCalls.push_back(CI);
1539   } else {
1540     if (Func == LibFunc_sinpi)
1541       SinCalls.push_back(CI);
1542     else if (Func == LibFunc_cospi)
1543       CosCalls.push_back(CI);
1544     else if (Func == LibFunc_sincospi_stret)
1545       SinCosCalls.push_back(CI);
1546   }
1547 }
1548 
1549 //===----------------------------------------------------------------------===//
1550 // Integer Library Call Optimizations
1551 //===----------------------------------------------------------------------===//
1552 
1553 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
1554   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
1555   Value *Op = CI->getArgOperand(0);
1556   Type *ArgType = Op->getType();
1557   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1558                                        Intrinsic::cttz, ArgType);
1559   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
1560   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
1561   V = B.CreateIntCast(V, B.getInt32Ty(), false);
1562 
1563   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
1564   return B.CreateSelect(Cond, V, B.getInt32(0));
1565 }
1566 
1567 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
1568   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
1569   Value *Op = CI->getArgOperand(0);
1570   Type *ArgType = Op->getType();
1571   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1572                                        Intrinsic::ctlz, ArgType);
1573   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
1574   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
1575                   V);
1576   return B.CreateIntCast(V, CI->getType(), false);
1577 }
1578 
1579 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
1580   // abs(x) -> x >s -1 ? x : -x
1581   Value *Op = CI->getArgOperand(0);
1582   Value *Pos =
1583       B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos");
1584   Value *Neg = B.CreateNeg(Op, "neg");
1585   return B.CreateSelect(Pos, Op, Neg);
1586 }
1587 
1588 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
1589   // isdigit(c) -> (c-'0') <u 10
1590   Value *Op = CI->getArgOperand(0);
1591   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
1592   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
1593   return B.CreateZExt(Op, CI->getType());
1594 }
1595 
1596 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
1597   // isascii(c) -> c <u 128
1598   Value *Op = CI->getArgOperand(0);
1599   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
1600   return B.CreateZExt(Op, CI->getType());
1601 }
1602 
1603 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
1604   // toascii(c) -> c & 0x7f
1605   return B.CreateAnd(CI->getArgOperand(0),
1606                      ConstantInt::get(CI->getType(), 0x7F));
1607 }
1608 
1609 //===----------------------------------------------------------------------===//
1610 // Formatting and IO Library Call Optimizations
1611 //===----------------------------------------------------------------------===//
1612 
1613 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
1614 
1615 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
1616                                                  int StreamArg) {
1617   Function *Callee = CI->getCalledFunction();
1618   // Error reporting calls should be cold, mark them as such.
1619   // This applies even to non-builtin calls: it is only a hint and applies to
1620   // functions that the frontend might not understand as builtins.
1621 
1622   // This heuristic was suggested in:
1623   // Improving Static Branch Prediction in a Compiler
1624   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
1625   // Proceedings of PACT'98, Oct. 1998, IEEE
1626   if (!CI->hasFnAttr(Attribute::Cold) &&
1627       isReportingError(Callee, CI, StreamArg)) {
1628     CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
1629   }
1630 
1631   return nullptr;
1632 }
1633 
1634 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
1635   if (!ColdErrorCalls || !Callee || !Callee->isDeclaration())
1636     return false;
1637 
1638   if (StreamArg < 0)
1639     return true;
1640 
1641   // These functions might be considered cold, but only if their stream
1642   // argument is stderr.
1643 
1644   if (StreamArg >= (int)CI->getNumArgOperands())
1645     return false;
1646   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
1647   if (!LI)
1648     return false;
1649   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
1650   if (!GV || !GV->isDeclaration())
1651     return false;
1652   return GV->getName() == "stderr";
1653 }
1654 
1655 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
1656   // Check for a fixed format string.
1657   StringRef FormatStr;
1658   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
1659     return nullptr;
1660 
1661   // Empty format string -> noop.
1662   if (FormatStr.empty()) // Tolerate printf's declared void.
1663     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
1664 
1665   // Do not do any of the following transformations if the printf return value
1666   // is used, in general the printf return value is not compatible with either
1667   // putchar() or puts().
1668   if (!CI->use_empty())
1669     return nullptr;
1670 
1671   // printf("x") -> putchar('x'), even for "%" and "%%".
1672   if (FormatStr.size() == 1 || FormatStr == "%%")
1673     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
1674 
1675   // printf("%s", "a") --> putchar('a')
1676   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
1677     StringRef ChrStr;
1678     if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
1679       return nullptr;
1680     if (ChrStr.size() != 1)
1681       return nullptr;
1682     return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
1683   }
1684 
1685   // printf("foo\n") --> puts("foo")
1686   if (FormatStr[FormatStr.size() - 1] == '\n' &&
1687       FormatStr.find('%') == StringRef::npos) { // No format characters.
1688     // Create a string literal with no \n on it.  We expect the constant merge
1689     // pass to be run after this pass, to merge duplicate strings.
1690     FormatStr = FormatStr.drop_back();
1691     Value *GV = B.CreateGlobalString(FormatStr, "str");
1692     return emitPutS(GV, B, TLI);
1693   }
1694 
1695   // Optimize specific format strings.
1696   // printf("%c", chr) --> putchar(chr)
1697   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
1698       CI->getArgOperand(1)->getType()->isIntegerTy())
1699     return emitPutChar(CI->getArgOperand(1), B, TLI);
1700 
1701   // printf("%s\n", str) --> puts(str)
1702   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
1703       CI->getArgOperand(1)->getType()->isPointerTy())
1704     return emitPutS(CI->getArgOperand(1), B, TLI);
1705   return nullptr;
1706 }
1707 
1708 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
1709 
1710   Function *Callee = CI->getCalledFunction();
1711   FunctionType *FT = Callee->getFunctionType();
1712   if (Value *V = optimizePrintFString(CI, B)) {
1713     return V;
1714   }
1715 
1716   // printf(format, ...) -> iprintf(format, ...) if no floating point
1717   // arguments.
1718   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
1719     Module *M = B.GetInsertBlock()->getParent()->getParent();
1720     Constant *IPrintFFn =
1721         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
1722     CallInst *New = cast<CallInst>(CI->clone());
1723     New->setCalledFunction(IPrintFFn);
1724     B.Insert(New);
1725     return New;
1726   }
1727   return nullptr;
1728 }
1729 
1730 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
1731   // Check for a fixed format string.
1732   StringRef FormatStr;
1733   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1734     return nullptr;
1735 
1736   // If we just have a format string (nothing else crazy) transform it.
1737   if (CI->getNumArgOperands() == 2) {
1738     // Make sure there's no % in the constant array.  We could try to handle
1739     // %% -> % in the future if we cared.
1740     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1741       if (FormatStr[i] == '%')
1742         return nullptr; // we found a format specifier, bail out.
1743 
1744     // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
1745     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
1746                    ConstantInt::get(DL.getIntPtrType(CI->getContext()),
1747                                     FormatStr.size() + 1),
1748                    1); // Copy the null byte.
1749     return ConstantInt::get(CI->getType(), FormatStr.size());
1750   }
1751 
1752   // The remaining optimizations require the format string to be "%s" or "%c"
1753   // and have an extra operand.
1754   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1755       CI->getNumArgOperands() < 3)
1756     return nullptr;
1757 
1758   // Decode the second character of the format string.
1759   if (FormatStr[1] == 'c') {
1760     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
1761     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1762       return nullptr;
1763     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
1764     Value *Ptr = castToCStr(CI->getArgOperand(0), B);
1765     B.CreateStore(V, Ptr);
1766     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
1767     B.CreateStore(B.getInt8(0), Ptr);
1768 
1769     return ConstantInt::get(CI->getType(), 1);
1770   }
1771 
1772   if (FormatStr[1] == 's') {
1773     // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1774     if (!CI->getArgOperand(2)->getType()->isPointerTy())
1775       return nullptr;
1776 
1777     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
1778     if (!Len)
1779       return nullptr;
1780     Value *IncLen =
1781         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
1782     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
1783 
1784     // The sprintf result is the unincremented number of bytes in the string.
1785     return B.CreateIntCast(Len, CI->getType(), false);
1786   }
1787   return nullptr;
1788 }
1789 
1790 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
1791   Function *Callee = CI->getCalledFunction();
1792   FunctionType *FT = Callee->getFunctionType();
1793   if (Value *V = optimizeSPrintFString(CI, B)) {
1794     return V;
1795   }
1796 
1797   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
1798   // point arguments.
1799   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
1800     Module *M = B.GetInsertBlock()->getParent()->getParent();
1801     Constant *SIPrintFFn =
1802         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
1803     CallInst *New = cast<CallInst>(CI->clone());
1804     New->setCalledFunction(SIPrintFFn);
1805     B.Insert(New);
1806     return New;
1807   }
1808   return nullptr;
1809 }
1810 
1811 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
1812   optimizeErrorReporting(CI, B, 0);
1813 
1814   // All the optimizations depend on the format string.
1815   StringRef FormatStr;
1816   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1817     return nullptr;
1818 
1819   // Do not do any of the following transformations if the fprintf return
1820   // value is used, in general the fprintf return value is not compatible
1821   // with fwrite(), fputc() or fputs().
1822   if (!CI->use_empty())
1823     return nullptr;
1824 
1825   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
1826   if (CI->getNumArgOperands() == 2) {
1827     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1828       if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
1829         return nullptr;        // We found a format specifier.
1830 
1831     return emitFWrite(
1832         CI->getArgOperand(1),
1833         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
1834         CI->getArgOperand(0), B, DL, TLI);
1835   }
1836 
1837   // The remaining optimizations require the format string to be "%s" or "%c"
1838   // and have an extra operand.
1839   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1840       CI->getNumArgOperands() < 3)
1841     return nullptr;
1842 
1843   // Decode the second character of the format string.
1844   if (FormatStr[1] == 'c') {
1845     // fprintf(F, "%c", chr) --> fputc(chr, F)
1846     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1847       return nullptr;
1848     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1849   }
1850 
1851   if (FormatStr[1] == 's') {
1852     // fprintf(F, "%s", str) --> fputs(str, F)
1853     if (!CI->getArgOperand(2)->getType()->isPointerTy())
1854       return nullptr;
1855     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1856   }
1857   return nullptr;
1858 }
1859 
1860 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
1861   Function *Callee = CI->getCalledFunction();
1862   FunctionType *FT = Callee->getFunctionType();
1863   if (Value *V = optimizeFPrintFString(CI, B)) {
1864     return V;
1865   }
1866 
1867   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
1868   // floating point arguments.
1869   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
1870     Module *M = B.GetInsertBlock()->getParent()->getParent();
1871     Constant *FIPrintFFn =
1872         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
1873     CallInst *New = cast<CallInst>(CI->clone());
1874     New->setCalledFunction(FIPrintFFn);
1875     B.Insert(New);
1876     return New;
1877   }
1878   return nullptr;
1879 }
1880 
1881 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
1882   optimizeErrorReporting(CI, B, 3);
1883 
1884   // Get the element size and count.
1885   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
1886   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1887   if (!SizeC || !CountC)
1888     return nullptr;
1889   uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
1890 
1891   // If this is writing zero records, remove the call (it's a noop).
1892   if (Bytes == 0)
1893     return ConstantInt::get(CI->getType(), 0);
1894 
1895   // If this is writing one byte, turn it into fputc.
1896   // This optimisation is only valid, if the return value is unused.
1897   if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
1898     Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char");
1899     Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
1900     return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
1901   }
1902 
1903   return nullptr;
1904 }
1905 
1906 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
1907   optimizeErrorReporting(CI, B, 1);
1908 
1909   // Don't rewrite fputs to fwrite when optimising for size because fwrite
1910   // requires more arguments and thus extra MOVs are required.
1911   if (CI->getParent()->getParent()->optForSize())
1912     return nullptr;
1913 
1914   // We can't optimize if return value is used.
1915   if (!CI->use_empty())
1916     return nullptr;
1917 
1918   // fputs(s,F) --> fwrite(s,1,strlen(s),F)
1919   uint64_t Len = GetStringLength(CI->getArgOperand(0));
1920   if (!Len)
1921     return nullptr;
1922 
1923   // Known to have no uses (see above).
1924   return emitFWrite(
1925       CI->getArgOperand(0),
1926       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
1927       CI->getArgOperand(1), B, DL, TLI);
1928 }
1929 
1930 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
1931   // Check for a constant string.
1932   StringRef Str;
1933   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
1934     return nullptr;
1935 
1936   if (Str.empty() && CI->use_empty()) {
1937     // puts("") -> putchar('\n')
1938     Value *Res = emitPutChar(B.getInt32('\n'), B, TLI);
1939     if (CI->use_empty() || !Res)
1940       return Res;
1941     return B.CreateIntCast(Res, CI->getType(), true);
1942   }
1943 
1944   return nullptr;
1945 }
1946 
1947 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
1948   LibFunc Func;
1949   SmallString<20> FloatFuncName = FuncName;
1950   FloatFuncName += 'f';
1951   if (TLI->getLibFunc(FloatFuncName, Func))
1952     return TLI->has(Func);
1953   return false;
1954 }
1955 
1956 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
1957                                                       IRBuilder<> &Builder) {
1958   LibFunc Func;
1959   Function *Callee = CI->getCalledFunction();
1960   // Check for string/memory library functions.
1961   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
1962     // Make sure we never change the calling convention.
1963     assert((ignoreCallingConv(Func) ||
1964             isCallingConvCCompatible(CI)) &&
1965       "Optimizing string/memory libcall would change the calling convention");
1966     switch (Func) {
1967     case LibFunc_strcat:
1968       return optimizeStrCat(CI, Builder);
1969     case LibFunc_strncat:
1970       return optimizeStrNCat(CI, Builder);
1971     case LibFunc_strchr:
1972       return optimizeStrChr(CI, Builder);
1973     case LibFunc_strrchr:
1974       return optimizeStrRChr(CI, Builder);
1975     case LibFunc_strcmp:
1976       return optimizeStrCmp(CI, Builder);
1977     case LibFunc_strncmp:
1978       return optimizeStrNCmp(CI, Builder);
1979     case LibFunc_strcpy:
1980       return optimizeStrCpy(CI, Builder);
1981     case LibFunc_stpcpy:
1982       return optimizeStpCpy(CI, Builder);
1983     case LibFunc_strncpy:
1984       return optimizeStrNCpy(CI, Builder);
1985     case LibFunc_strlen:
1986       return optimizeStrLen(CI, Builder);
1987     case LibFunc_strpbrk:
1988       return optimizeStrPBrk(CI, Builder);
1989     case LibFunc_strtol:
1990     case LibFunc_strtod:
1991     case LibFunc_strtof:
1992     case LibFunc_strtoul:
1993     case LibFunc_strtoll:
1994     case LibFunc_strtold:
1995     case LibFunc_strtoull:
1996       return optimizeStrTo(CI, Builder);
1997     case LibFunc_strspn:
1998       return optimizeStrSpn(CI, Builder);
1999     case LibFunc_strcspn:
2000       return optimizeStrCSpn(CI, Builder);
2001     case LibFunc_strstr:
2002       return optimizeStrStr(CI, Builder);
2003     case LibFunc_memchr:
2004       return optimizeMemChr(CI, Builder);
2005     case LibFunc_memcmp:
2006       return optimizeMemCmp(CI, Builder);
2007     case LibFunc_memcpy:
2008       return optimizeMemCpy(CI, Builder);
2009     case LibFunc_memmove:
2010       return optimizeMemMove(CI, Builder);
2011     case LibFunc_memset:
2012       return optimizeMemSet(CI, Builder);
2013     default:
2014       break;
2015     }
2016   }
2017   return nullptr;
2018 }
2019 
2020 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
2021   if (CI->isNoBuiltin())
2022     return nullptr;
2023 
2024   LibFunc Func;
2025   Function *Callee = CI->getCalledFunction();
2026   StringRef FuncName = Callee->getName();
2027 
2028   SmallVector<OperandBundleDef, 2> OpBundles;
2029   CI->getOperandBundlesAsDefs(OpBundles);
2030   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2031   bool isCallingConvC = isCallingConvCCompatible(CI);
2032 
2033   // Command-line parameter overrides instruction attribute.
2034   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
2035     UnsafeFPShrink = EnableUnsafeFPShrink;
2036   else if (isa<FPMathOperator>(CI) && CI->hasUnsafeAlgebra())
2037     UnsafeFPShrink = true;
2038 
2039   // First, check for intrinsics.
2040   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
2041     if (!isCallingConvC)
2042       return nullptr;
2043     switch (II->getIntrinsicID()) {
2044     case Intrinsic::pow:
2045       return optimizePow(CI, Builder);
2046     case Intrinsic::exp2:
2047       return optimizeExp2(CI, Builder);
2048     case Intrinsic::log:
2049       return optimizeLog(CI, Builder);
2050     case Intrinsic::sqrt:
2051       return optimizeSqrt(CI, Builder);
2052     // TODO: Use foldMallocMemset() with memset intrinsic.
2053     default:
2054       return nullptr;
2055     }
2056   }
2057 
2058   // Also try to simplify calls to fortified library functions.
2059   if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
2060     // Try to further simplify the result.
2061     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
2062     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
2063       // Use an IR Builder from SimplifiedCI if available instead of CI
2064       // to guarantee we reach all uses we might replace later on.
2065       IRBuilder<> TmpBuilder(SimplifiedCI);
2066       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
2067         // If we were able to further simplify, remove the now redundant call.
2068         SimplifiedCI->replaceAllUsesWith(V);
2069         SimplifiedCI->eraseFromParent();
2070         return V;
2071       }
2072     }
2073     return SimplifiedFortifiedCI;
2074   }
2075 
2076   // Then check for known library functions.
2077   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2078     // We never change the calling convention.
2079     if (!ignoreCallingConv(Func) && !isCallingConvC)
2080       return nullptr;
2081     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
2082       return V;
2083     switch (Func) {
2084     case LibFunc_cosf:
2085     case LibFunc_cos:
2086     case LibFunc_cosl:
2087       return optimizeCos(CI, Builder);
2088     case LibFunc_sinpif:
2089     case LibFunc_sinpi:
2090     case LibFunc_cospif:
2091     case LibFunc_cospi:
2092       return optimizeSinCosPi(CI, Builder);
2093     case LibFunc_powf:
2094     case LibFunc_pow:
2095     case LibFunc_powl:
2096       return optimizePow(CI, Builder);
2097     case LibFunc_exp2l:
2098     case LibFunc_exp2:
2099     case LibFunc_exp2f:
2100       return optimizeExp2(CI, Builder);
2101     case LibFunc_fabsf:
2102     case LibFunc_fabs:
2103     case LibFunc_fabsl:
2104       return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2105     case LibFunc_sqrtf:
2106     case LibFunc_sqrt:
2107     case LibFunc_sqrtl:
2108       return optimizeSqrt(CI, Builder);
2109     case LibFunc_ffs:
2110     case LibFunc_ffsl:
2111     case LibFunc_ffsll:
2112       return optimizeFFS(CI, Builder);
2113     case LibFunc_fls:
2114     case LibFunc_flsl:
2115     case LibFunc_flsll:
2116       return optimizeFls(CI, Builder);
2117     case LibFunc_abs:
2118     case LibFunc_labs:
2119     case LibFunc_llabs:
2120       return optimizeAbs(CI, Builder);
2121     case LibFunc_isdigit:
2122       return optimizeIsDigit(CI, Builder);
2123     case LibFunc_isascii:
2124       return optimizeIsAscii(CI, Builder);
2125     case LibFunc_toascii:
2126       return optimizeToAscii(CI, Builder);
2127     case LibFunc_printf:
2128       return optimizePrintF(CI, Builder);
2129     case LibFunc_sprintf:
2130       return optimizeSPrintF(CI, Builder);
2131     case LibFunc_fprintf:
2132       return optimizeFPrintF(CI, Builder);
2133     case LibFunc_fwrite:
2134       return optimizeFWrite(CI, Builder);
2135     case LibFunc_fputs:
2136       return optimizeFPuts(CI, Builder);
2137     case LibFunc_log:
2138     case LibFunc_log10:
2139     case LibFunc_log1p:
2140     case LibFunc_log2:
2141     case LibFunc_logb:
2142       return optimizeLog(CI, Builder);
2143     case LibFunc_puts:
2144       return optimizePuts(CI, Builder);
2145     case LibFunc_tan:
2146     case LibFunc_tanf:
2147     case LibFunc_tanl:
2148       return optimizeTan(CI, Builder);
2149     case LibFunc_perror:
2150       return optimizeErrorReporting(CI, Builder);
2151     case LibFunc_vfprintf:
2152     case LibFunc_fiprintf:
2153       return optimizeErrorReporting(CI, Builder, 0);
2154     case LibFunc_fputc:
2155       return optimizeErrorReporting(CI, Builder, 1);
2156     case LibFunc_ceil:
2157       return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2158     case LibFunc_floor:
2159       return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2160     case LibFunc_round:
2161       return replaceUnaryCall(CI, Builder, Intrinsic::round);
2162     case LibFunc_nearbyint:
2163       return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2164     case LibFunc_rint:
2165       return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2166     case LibFunc_trunc:
2167       return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
2168     case LibFunc_acos:
2169     case LibFunc_acosh:
2170     case LibFunc_asin:
2171     case LibFunc_asinh:
2172     case LibFunc_atan:
2173     case LibFunc_atanh:
2174     case LibFunc_cbrt:
2175     case LibFunc_cosh:
2176     case LibFunc_exp:
2177     case LibFunc_exp10:
2178     case LibFunc_expm1:
2179     case LibFunc_sin:
2180     case LibFunc_sinh:
2181     case LibFunc_tanh:
2182       if (UnsafeFPShrink && hasFloatVersion(FuncName))
2183         return optimizeUnaryDoubleFP(CI, Builder, true);
2184       return nullptr;
2185     case LibFunc_copysign:
2186       if (hasFloatVersion(FuncName))
2187         return optimizeBinaryDoubleFP(CI, Builder);
2188       return nullptr;
2189     case LibFunc_fminf:
2190     case LibFunc_fmin:
2191     case LibFunc_fminl:
2192     case LibFunc_fmaxf:
2193     case LibFunc_fmax:
2194     case LibFunc_fmaxl:
2195       return optimizeFMinFMax(CI, Builder);
2196     default:
2197       return nullptr;
2198     }
2199   }
2200   return nullptr;
2201 }
2202 
2203 LibCallSimplifier::LibCallSimplifier(
2204     const DataLayout &DL, const TargetLibraryInfo *TLI,
2205     function_ref<void(Instruction *, Value *)> Replacer)
2206     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), UnsafeFPShrink(false),
2207       Replacer(Replacer) {}
2208 
2209 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
2210   // Indirect through the replacer used in this instance.
2211   Replacer(I, With);
2212 }
2213 
2214 // TODO:
2215 //   Additional cases that we need to add to this file:
2216 //
2217 // cbrt:
2218 //   * cbrt(expN(X))  -> expN(x/3)
2219 //   * cbrt(sqrt(x))  -> pow(x,1/6)
2220 //   * cbrt(cbrt(x))  -> pow(x,1/9)
2221 //
2222 // exp, expf, expl:
2223 //   * exp(log(x))  -> x
2224 //
2225 // log, logf, logl:
2226 //   * log(exp(x))   -> x
2227 //   * log(exp(y))   -> y*log(e)
2228 //   * log(exp10(y)) -> y*log(10)
2229 //   * log(sqrt(x))  -> 0.5*log(x)
2230 //
2231 // pow, powf, powl:
2232 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
2233 //   * pow(pow(x,y),z)-> pow(x,y*z)
2234 //
2235 // signbit:
2236 //   * signbit(cnst) -> cnst'
2237 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2238 //
2239 // sqrt, sqrtf, sqrtl:
2240 //   * sqrt(expN(x))  -> expN(x*0.5)
2241 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2242 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2243 //
2244 
2245 //===----------------------------------------------------------------------===//
2246 // Fortified Library Call Optimizations
2247 //===----------------------------------------------------------------------===//
2248 
2249 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
2250                                                          unsigned ObjSizeOp,
2251                                                          unsigned SizeOp,
2252                                                          bool isString) {
2253   if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
2254     return true;
2255   if (ConstantInt *ObjSizeCI =
2256           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
2257     if (ObjSizeCI->isAllOnesValue())
2258       return true;
2259     // If the object size wasn't -1 (unknown), bail out if we were asked to.
2260     if (OnlyLowerUnknownSize)
2261       return false;
2262     if (isString) {
2263       uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
2264       // If the length is 0 we don't know how long it is and so we can't
2265       // remove the check.
2266       if (Len == 0)
2267         return false;
2268       return ObjSizeCI->getZExtValue() >= Len;
2269     }
2270     if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
2271       return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
2272   }
2273   return false;
2274 }
2275 
2276 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
2277                                                      IRBuilder<> &B) {
2278   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2279     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2280                    CI->getArgOperand(2), 1);
2281     return CI->getArgOperand(0);
2282   }
2283   return nullptr;
2284 }
2285 
2286 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
2287                                                       IRBuilder<> &B) {
2288   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2289     B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
2290                     CI->getArgOperand(2), 1);
2291     return CI->getArgOperand(0);
2292   }
2293   return nullptr;
2294 }
2295 
2296 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
2297                                                      IRBuilder<> &B) {
2298   // TODO: Try foldMallocMemset() here.
2299 
2300   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2301     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
2302     B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
2303     return CI->getArgOperand(0);
2304   }
2305   return nullptr;
2306 }
2307 
2308 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
2309                                                       IRBuilder<> &B,
2310                                                       LibFunc Func) {
2311   Function *Callee = CI->getCalledFunction();
2312   StringRef Name = Callee->getName();
2313   const DataLayout &DL = CI->getModule()->getDataLayout();
2314   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
2315         *ObjSize = CI->getArgOperand(2);
2316 
2317   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
2318   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
2319     Value *StrLen = emitStrLen(Src, B, DL, TLI);
2320     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
2321   }
2322 
2323   // If a) we don't have any length information, or b) we know this will
2324   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
2325   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
2326   // TODO: It might be nice to get a maximum length out of the possible
2327   // string lengths for varying.
2328   if (isFortifiedCallFoldable(CI, 2, 1, true))
2329     return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
2330 
2331   if (OnlyLowerUnknownSize)
2332     return nullptr;
2333 
2334   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
2335   uint64_t Len = GetStringLength(Src);
2336   if (Len == 0)
2337     return nullptr;
2338 
2339   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
2340   Value *LenV = ConstantInt::get(SizeTTy, Len);
2341   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
2342   // If the function was an __stpcpy_chk, and we were able to fold it into
2343   // a __memcpy_chk, we still need to return the correct end pointer.
2344   if (Ret && Func == LibFunc_stpcpy_chk)
2345     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
2346   return Ret;
2347 }
2348 
2349 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
2350                                                        IRBuilder<> &B,
2351                                                        LibFunc Func) {
2352   Function *Callee = CI->getCalledFunction();
2353   StringRef Name = Callee->getName();
2354   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2355     Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2356                              CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
2357     return Ret;
2358   }
2359   return nullptr;
2360 }
2361 
2362 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
2363   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
2364   // Some clang users checked for _chk libcall availability using:
2365   //   __has_builtin(__builtin___memcpy_chk)
2366   // When compiling with -fno-builtin, this is always true.
2367   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
2368   // end up with fortified libcalls, which isn't acceptable in a freestanding
2369   // environment which only provides their non-fortified counterparts.
2370   //
2371   // Until we change clang and/or teach external users to check for availability
2372   // differently, disregard the "nobuiltin" attribute and TLI::has.
2373   //
2374   // PR23093.
2375 
2376   LibFunc Func;
2377   Function *Callee = CI->getCalledFunction();
2378 
2379   SmallVector<OperandBundleDef, 2> OpBundles;
2380   CI->getOperandBundlesAsDefs(OpBundles);
2381   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2382   bool isCallingConvC = isCallingConvCCompatible(CI);
2383 
2384   // First, check that this is a known library functions and that the prototype
2385   // is correct.
2386   if (!TLI->getLibFunc(*Callee, Func))
2387     return nullptr;
2388 
2389   // We never change the calling convention.
2390   if (!ignoreCallingConv(Func) && !isCallingConvC)
2391     return nullptr;
2392 
2393   switch (Func) {
2394   case LibFunc_memcpy_chk:
2395     return optimizeMemCpyChk(CI, Builder);
2396   case LibFunc_memmove_chk:
2397     return optimizeMemMoveChk(CI, Builder);
2398   case LibFunc_memset_chk:
2399     return optimizeMemSetChk(CI, Builder);
2400   case LibFunc_stpcpy_chk:
2401   case LibFunc_strcpy_chk:
2402     return optimizeStrpCpyChk(CI, Builder, Func);
2403   case LibFunc_stpncpy_chk:
2404   case LibFunc_strncpy_chk:
2405     return optimizeStrpNCpyChk(CI, Builder, Func);
2406   default:
2407     break;
2408   }
2409   return nullptr;
2410 }
2411 
2412 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
2413     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
2414     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
2415