1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Analysis/BlockFrequencyInfo.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ProfileSummaryInfo.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/KnownBits.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Transforms/Utils/BuildLibCalls.h" 39 #include "llvm/Transforms/Utils/SizeOpts.h" 40 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 static cl::opt<bool> 45 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 46 cl::init(false), 47 cl::desc("Enable unsafe double to float " 48 "shrinking for math lib calls")); 49 50 //===----------------------------------------------------------------------===// 51 // Helper Functions 52 //===----------------------------------------------------------------------===// 53 54 static bool ignoreCallingConv(LibFunc Func) { 55 return Func == LibFunc_abs || Func == LibFunc_labs || 56 Func == LibFunc_llabs || Func == LibFunc_strlen; 57 } 58 59 /// Return true if it is only used in equality comparisons with With. 60 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 61 for (User *U : V->users()) { 62 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 63 if (IC->isEquality() && IC->getOperand(1) == With) 64 continue; 65 // Unknown instruction. 66 return false; 67 } 68 return true; 69 } 70 71 static bool callHasFloatingPointArgument(const CallInst *CI) { 72 return any_of(CI->operands(), [](const Use &OI) { 73 return OI->getType()->isFloatingPointTy(); 74 }); 75 } 76 77 static bool callHasFP128Argument(const CallInst *CI) { 78 return any_of(CI->operands(), [](const Use &OI) { 79 return OI->getType()->isFP128Ty(); 80 }); 81 } 82 83 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 84 if (Base < 2 || Base > 36) 85 // handle special zero base 86 if (Base != 0) 87 return nullptr; 88 89 char *End; 90 std::string nptr = Str.str(); 91 errno = 0; 92 long long int Result = strtoll(nptr.c_str(), &End, Base); 93 if (errno) 94 return nullptr; 95 96 // if we assume all possible target locales are ASCII supersets, 97 // then if strtoll successfully parses a number on the host, 98 // it will also successfully parse the same way on the target 99 if (*End != '\0') 100 return nullptr; 101 102 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 103 return nullptr; 104 105 return ConstantInt::get(CI->getType(), Result); 106 } 107 108 static bool isOnlyUsedInComparisonWithZero(Value *V) { 109 for (User *U : V->users()) { 110 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 111 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 112 if (C->isNullValue()) 113 continue; 114 // Unknown instruction. 115 return false; 116 } 117 return true; 118 } 119 120 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 121 const DataLayout &DL) { 122 if (!isOnlyUsedInComparisonWithZero(CI)) 123 return false; 124 125 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 126 return false; 127 128 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 129 return false; 130 131 return true; 132 } 133 134 static void annotateDereferenceableBytes(CallInst *CI, 135 ArrayRef<unsigned> ArgNos, 136 uint64_t DereferenceableBytes) { 137 const Function *F = CI->getCaller(); 138 if (!F) 139 return; 140 for (unsigned ArgNo : ArgNos) { 141 uint64_t DerefBytes = DereferenceableBytes; 142 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 143 if (!llvm::NullPointerIsDefined(F, AS) || 144 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 145 DerefBytes = std::max(CI->getDereferenceableOrNullBytes( 146 ArgNo + AttributeList::FirstArgIndex), 147 DereferenceableBytes); 148 149 if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) < 150 DerefBytes) { 151 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 152 if (!llvm::NullPointerIsDefined(F, AS) || 153 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 154 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 155 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 156 CI->getContext(), DerefBytes)); 157 } 158 } 159 } 160 161 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, 162 ArrayRef<unsigned> ArgNos) { 163 Function *F = CI->getCaller(); 164 if (!F) 165 return; 166 167 for (unsigned ArgNo : ArgNos) { 168 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef)) 169 CI->addParamAttr(ArgNo, Attribute::NoUndef); 170 171 if (CI->paramHasAttr(ArgNo, Attribute::NonNull)) 172 continue; 173 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 174 if (llvm::NullPointerIsDefined(F, AS)) 175 continue; 176 177 CI->addParamAttr(ArgNo, Attribute::NonNull); 178 annotateDereferenceableBytes(CI, ArgNo, 1); 179 } 180 } 181 182 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 183 Value *Size, const DataLayout &DL) { 184 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 185 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 186 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 187 } else if (isKnownNonZero(Size, DL)) { 188 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 189 const APInt *X, *Y; 190 uint64_t DerefMin = 1; 191 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 192 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 193 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 194 } 195 } 196 } 197 198 //===----------------------------------------------------------------------===// 199 // String and Memory Library Call Optimizations 200 //===----------------------------------------------------------------------===// 201 202 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 203 // Extract some information from the instruction 204 Value *Dst = CI->getArgOperand(0); 205 Value *Src = CI->getArgOperand(1); 206 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 207 208 // See if we can get the length of the input string. 209 uint64_t Len = GetStringLength(Src); 210 if (Len) 211 annotateDereferenceableBytes(CI, 1, Len); 212 else 213 return nullptr; 214 --Len; // Unbias length. 215 216 // Handle the simple, do-nothing case: strcat(x, "") -> x 217 if (Len == 0) 218 return Dst; 219 220 return emitStrLenMemCpy(Src, Dst, Len, B); 221 } 222 223 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 224 IRBuilderBase &B) { 225 // We need to find the end of the destination string. That's where the 226 // memory is to be moved to. We just generate a call to strlen. 227 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 228 if (!DstLen) 229 return nullptr; 230 231 // Now that we have the destination's length, we must index into the 232 // destination's pointer to get the actual memcpy destination (end of 233 // the string .. we're concatenating). 234 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 235 236 // We have enough information to now generate the memcpy call to do the 237 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 238 B.CreateMemCpy( 239 CpyDst, Align(1), Src, Align(1), 240 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 241 return Dst; 242 } 243 244 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 245 // Extract some information from the instruction. 246 Value *Dst = CI->getArgOperand(0); 247 Value *Src = CI->getArgOperand(1); 248 Value *Size = CI->getArgOperand(2); 249 uint64_t Len; 250 annotateNonNullNoUndefBasedOnAccess(CI, 0); 251 if (isKnownNonZero(Size, DL)) 252 annotateNonNullNoUndefBasedOnAccess(CI, 1); 253 254 // We don't do anything if length is not constant. 255 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 256 if (LengthArg) { 257 Len = LengthArg->getZExtValue(); 258 // strncat(x, c, 0) -> x 259 if (!Len) 260 return Dst; 261 } else { 262 return nullptr; 263 } 264 265 // See if we can get the length of the input string. 266 uint64_t SrcLen = GetStringLength(Src); 267 if (SrcLen) { 268 annotateDereferenceableBytes(CI, 1, SrcLen); 269 --SrcLen; // Unbias length. 270 } else { 271 return nullptr; 272 } 273 274 // strncat(x, "", c) -> x 275 if (SrcLen == 0) 276 return Dst; 277 278 // We don't optimize this case. 279 if (Len < SrcLen) 280 return nullptr; 281 282 // strncat(x, s, c) -> strcat(x, s) 283 // s is constant so the strcat can be optimized further. 284 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 285 } 286 287 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 288 Function *Callee = CI->getCalledFunction(); 289 FunctionType *FT = Callee->getFunctionType(); 290 Value *SrcStr = CI->getArgOperand(0); 291 annotateNonNullNoUndefBasedOnAccess(CI, 0); 292 293 // If the second operand is non-constant, see if we can compute the length 294 // of the input string and turn this into memchr. 295 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 296 if (!CharC) { 297 uint64_t Len = GetStringLength(SrcStr); 298 if (Len) 299 annotateDereferenceableBytes(CI, 0, Len); 300 else 301 return nullptr; 302 if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 303 return nullptr; 304 305 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 306 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 307 B, DL, TLI); 308 } 309 310 // Otherwise, the character is a constant, see if the first argument is 311 // a string literal. If so, we can constant fold. 312 StringRef Str; 313 if (!getConstantStringInfo(SrcStr, Str)) { 314 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 315 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 316 return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 317 return nullptr; 318 } 319 320 // Compute the offset, make sure to handle the case when we're searching for 321 // zero (a weird way to spell strlen). 322 size_t I = (0xFF & CharC->getSExtValue()) == 0 323 ? Str.size() 324 : Str.find(CharC->getSExtValue()); 325 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 326 return Constant::getNullValue(CI->getType()); 327 328 // strchr(s+n,c) -> gep(s+n+i,c) 329 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 330 } 331 332 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 333 Value *SrcStr = CI->getArgOperand(0); 334 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 335 annotateNonNullNoUndefBasedOnAccess(CI, 0); 336 337 // Cannot fold anything if we're not looking for a constant. 338 if (!CharC) 339 return nullptr; 340 341 StringRef Str; 342 if (!getConstantStringInfo(SrcStr, Str)) { 343 // strrchr(s, 0) -> strchr(s, 0) 344 if (CharC->isZero()) 345 return emitStrChr(SrcStr, '\0', B, TLI); 346 return nullptr; 347 } 348 349 // Compute the offset. 350 size_t I = (0xFF & CharC->getSExtValue()) == 0 351 ? Str.size() 352 : Str.rfind(CharC->getSExtValue()); 353 if (I == StringRef::npos) // Didn't find the char. Return null. 354 return Constant::getNullValue(CI->getType()); 355 356 // strrchr(s+n,c) -> gep(s+n+i,c) 357 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 358 } 359 360 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 361 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 362 if (Str1P == Str2P) // strcmp(x,x) -> 0 363 return ConstantInt::get(CI->getType(), 0); 364 365 StringRef Str1, Str2; 366 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 367 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 368 369 // strcmp(x, y) -> cnst (if both x and y are constant strings) 370 if (HasStr1 && HasStr2) 371 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 372 373 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 374 return B.CreateNeg(B.CreateZExt( 375 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 376 377 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 378 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 379 CI->getType()); 380 381 // strcmp(P, "x") -> memcmp(P, "x", 2) 382 uint64_t Len1 = GetStringLength(Str1P); 383 if (Len1) 384 annotateDereferenceableBytes(CI, 0, Len1); 385 uint64_t Len2 = GetStringLength(Str2P); 386 if (Len2) 387 annotateDereferenceableBytes(CI, 1, Len2); 388 389 if (Len1 && Len2) { 390 return emitMemCmp(Str1P, Str2P, 391 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 392 std::min(Len1, Len2)), 393 B, DL, TLI); 394 } 395 396 // strcmp to memcmp 397 if (!HasStr1 && HasStr2) { 398 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 399 return emitMemCmp( 400 Str1P, Str2P, 401 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 402 TLI); 403 } else if (HasStr1 && !HasStr2) { 404 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 405 return emitMemCmp( 406 Str1P, Str2P, 407 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 408 TLI); 409 } 410 411 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 412 return nullptr; 413 } 414 415 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 416 Value *Str1P = CI->getArgOperand(0); 417 Value *Str2P = CI->getArgOperand(1); 418 Value *Size = CI->getArgOperand(2); 419 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 420 return ConstantInt::get(CI->getType(), 0); 421 422 if (isKnownNonZero(Size, DL)) 423 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 424 // Get the length argument if it is constant. 425 uint64_t Length; 426 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 427 Length = LengthArg->getZExtValue(); 428 else 429 return nullptr; 430 431 if (Length == 0) // strncmp(x,y,0) -> 0 432 return ConstantInt::get(CI->getType(), 0); 433 434 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 435 return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI); 436 437 StringRef Str1, Str2; 438 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 439 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 440 441 // strncmp(x, y) -> cnst (if both x and y are constant strings) 442 if (HasStr1 && HasStr2) { 443 StringRef SubStr1 = Str1.substr(0, Length); 444 StringRef SubStr2 = Str2.substr(0, Length); 445 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 446 } 447 448 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 449 return B.CreateNeg(B.CreateZExt( 450 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 451 452 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 453 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 454 CI->getType()); 455 456 uint64_t Len1 = GetStringLength(Str1P); 457 if (Len1) 458 annotateDereferenceableBytes(CI, 0, Len1); 459 uint64_t Len2 = GetStringLength(Str2P); 460 if (Len2) 461 annotateDereferenceableBytes(CI, 1, Len2); 462 463 // strncmp to memcmp 464 if (!HasStr1 && HasStr2) { 465 Len2 = std::min(Len2, Length); 466 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 467 return emitMemCmp( 468 Str1P, Str2P, 469 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 470 TLI); 471 } else if (HasStr1 && !HasStr2) { 472 Len1 = std::min(Len1, Length); 473 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 474 return emitMemCmp( 475 Str1P, Str2P, 476 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 477 TLI); 478 } 479 480 return nullptr; 481 } 482 483 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 484 Value *Src = CI->getArgOperand(0); 485 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 486 uint64_t SrcLen = GetStringLength(Src); 487 if (SrcLen && Size) { 488 annotateDereferenceableBytes(CI, 0, SrcLen); 489 if (SrcLen <= Size->getZExtValue() + 1) 490 return emitStrDup(Src, B, TLI); 491 } 492 493 return nullptr; 494 } 495 496 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 497 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 498 if (Dst == Src) // strcpy(x,x) -> x 499 return Src; 500 501 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 502 // See if we can get the length of the input string. 503 uint64_t Len = GetStringLength(Src); 504 if (Len) 505 annotateDereferenceableBytes(CI, 1, Len); 506 else 507 return nullptr; 508 509 // We have enough information to now generate the memcpy call to do the 510 // copy for us. Make a memcpy to copy the nul byte with align = 1. 511 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 512 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 513 return Dst; 514 } 515 516 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 517 Function *Callee = CI->getCalledFunction(); 518 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 519 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 520 Value *StrLen = emitStrLen(Src, B, DL, TLI); 521 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 522 } 523 524 // See if we can get the length of the input string. 525 uint64_t Len = GetStringLength(Src); 526 if (Len) 527 annotateDereferenceableBytes(CI, 1, Len); 528 else 529 return nullptr; 530 531 Type *PT = Callee->getFunctionType()->getParamType(0); 532 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 533 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 534 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 535 536 // We have enough information to now generate the memcpy call to do the 537 // copy for us. Make a memcpy to copy the nul byte with align = 1. 538 B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 539 return DstEnd; 540 } 541 542 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) { 543 Function *Callee = CI->getCalledFunction(); 544 Value *Dst = CI->getArgOperand(0); 545 Value *Src = CI->getArgOperand(1); 546 Value *Size = CI->getArgOperand(2); 547 annotateNonNullNoUndefBasedOnAccess(CI, 0); 548 if (isKnownNonZero(Size, DL)) 549 annotateNonNullNoUndefBasedOnAccess(CI, 1); 550 551 uint64_t Len; 552 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 553 Len = LengthArg->getZExtValue(); 554 else 555 return nullptr; 556 557 // strncpy(x, y, 0) -> x 558 if (Len == 0) 559 return Dst; 560 561 // See if we can get the length of the input string. 562 uint64_t SrcLen = GetStringLength(Src); 563 if (SrcLen) { 564 annotateDereferenceableBytes(CI, 1, SrcLen); 565 --SrcLen; // Unbias length. 566 } else { 567 return nullptr; 568 } 569 570 if (SrcLen == 0) { 571 // strncpy(x, "", y) -> memset(x, '\0', y) 572 Align MemSetAlign = 573 CI->getAttributes().getParamAttributes(0).getAlignment().valueOrOne(); 574 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign); 575 AttrBuilder ArgAttrs(CI->getAttributes().getParamAttributes(0)); 576 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 577 CI->getContext(), 0, ArgAttrs)); 578 return Dst; 579 } 580 581 // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4) 582 if (Len > SrcLen + 1) { 583 if (Len <= 128) { 584 StringRef Str; 585 if (!getConstantStringInfo(Src, Str)) 586 return nullptr; 587 std::string SrcStr = Str.str(); 588 SrcStr.resize(Len, '\0'); 589 Src = B.CreateGlobalString(SrcStr, "str"); 590 } else { 591 return nullptr; 592 } 593 } 594 595 Type *PT = Callee->getFunctionType()->getParamType(0); 596 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 597 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 598 ConstantInt::get(DL.getIntPtrType(PT), Len)); 599 return Dst; 600 } 601 602 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 603 unsigned CharSize) { 604 Value *Src = CI->getArgOperand(0); 605 606 // Constant folding: strlen("xyz") -> 3 607 if (uint64_t Len = GetStringLength(Src, CharSize)) 608 return ConstantInt::get(CI->getType(), Len - 1); 609 610 // If s is a constant pointer pointing to a string literal, we can fold 611 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 612 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 613 // We only try to simplify strlen when the pointer s points to an array 614 // of i8. Otherwise, we would need to scale the offset x before doing the 615 // subtraction. This will make the optimization more complex, and it's not 616 // very useful because calling strlen for a pointer of other types is 617 // very uncommon. 618 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 619 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 620 return nullptr; 621 622 ConstantDataArraySlice Slice; 623 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 624 uint64_t NullTermIdx; 625 if (Slice.Array == nullptr) { 626 NullTermIdx = 0; 627 } else { 628 NullTermIdx = ~((uint64_t)0); 629 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 630 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 631 NullTermIdx = I; 632 break; 633 } 634 } 635 // If the string does not have '\0', leave it to strlen to compute 636 // its length. 637 if (NullTermIdx == ~((uint64_t)0)) 638 return nullptr; 639 } 640 641 Value *Offset = GEP->getOperand(2); 642 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 643 Known.Zero.flipAllBits(); 644 uint64_t ArrSize = 645 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 646 647 // KnownZero's bits are flipped, so zeros in KnownZero now represent 648 // bits known to be zeros in Offset, and ones in KnowZero represent 649 // bits unknown in Offset. Therefore, Offset is known to be in range 650 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 651 // unsigned-less-than NullTermIdx. 652 // 653 // If Offset is not provably in the range [0, NullTermIdx], we can still 654 // optimize if we can prove that the program has undefined behavior when 655 // Offset is outside that range. That is the case when GEP->getOperand(0) 656 // is a pointer to an object whose memory extent is NullTermIdx+1. 657 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 658 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 659 NullTermIdx == ArrSize - 1)) { 660 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 661 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 662 Offset); 663 } 664 } 665 } 666 667 // strlen(x?"foo":"bars") --> x ? 3 : 4 668 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 669 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 670 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 671 if (LenTrue && LenFalse) { 672 ORE.emit([&]() { 673 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 674 << "folded strlen(select) to select of constants"; 675 }); 676 return B.CreateSelect(SI->getCondition(), 677 ConstantInt::get(CI->getType(), LenTrue - 1), 678 ConstantInt::get(CI->getType(), LenFalse - 1)); 679 } 680 } 681 682 // strlen(x) != 0 --> *x != 0 683 // strlen(x) == 0 --> *x == 0 684 if (isOnlyUsedInZeroEqualityComparison(CI)) 685 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), 686 CI->getType()); 687 688 return nullptr; 689 } 690 691 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 692 if (Value *V = optimizeStringLength(CI, B, 8)) 693 return V; 694 annotateNonNullNoUndefBasedOnAccess(CI, 0); 695 return nullptr; 696 } 697 698 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 699 Module &M = *CI->getModule(); 700 unsigned WCharSize = TLI->getWCharSize(M) * 8; 701 // We cannot perform this optimization without wchar_size metadata. 702 if (WCharSize == 0) 703 return nullptr; 704 705 return optimizeStringLength(CI, B, WCharSize); 706 } 707 708 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 709 StringRef S1, S2; 710 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 711 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 712 713 // strpbrk(s, "") -> nullptr 714 // strpbrk("", s) -> nullptr 715 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 716 return Constant::getNullValue(CI->getType()); 717 718 // Constant folding. 719 if (HasS1 && HasS2) { 720 size_t I = S1.find_first_of(S2); 721 if (I == StringRef::npos) // No match. 722 return Constant::getNullValue(CI->getType()); 723 724 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 725 "strpbrk"); 726 } 727 728 // strpbrk(s, "a") -> strchr(s, 'a') 729 if (HasS2 && S2.size() == 1) 730 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 731 732 return nullptr; 733 } 734 735 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 736 Value *EndPtr = CI->getArgOperand(1); 737 if (isa<ConstantPointerNull>(EndPtr)) { 738 // With a null EndPtr, this function won't capture the main argument. 739 // It would be readonly too, except that it still may write to errno. 740 CI->addParamAttr(0, Attribute::NoCapture); 741 } 742 743 return nullptr; 744 } 745 746 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 747 StringRef S1, S2; 748 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 749 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 750 751 // strspn(s, "") -> 0 752 // strspn("", s) -> 0 753 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 754 return Constant::getNullValue(CI->getType()); 755 756 // Constant folding. 757 if (HasS1 && HasS2) { 758 size_t Pos = S1.find_first_not_of(S2); 759 if (Pos == StringRef::npos) 760 Pos = S1.size(); 761 return ConstantInt::get(CI->getType(), Pos); 762 } 763 764 return nullptr; 765 } 766 767 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 768 StringRef S1, S2; 769 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 770 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 771 772 // strcspn("", s) -> 0 773 if (HasS1 && S1.empty()) 774 return Constant::getNullValue(CI->getType()); 775 776 // Constant folding. 777 if (HasS1 && HasS2) { 778 size_t Pos = S1.find_first_of(S2); 779 if (Pos == StringRef::npos) 780 Pos = S1.size(); 781 return ConstantInt::get(CI->getType(), Pos); 782 } 783 784 // strcspn(s, "") -> strlen(s) 785 if (HasS2 && S2.empty()) 786 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 787 788 return nullptr; 789 } 790 791 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 792 // fold strstr(x, x) -> x. 793 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 794 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 795 796 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 797 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 798 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 799 if (!StrLen) 800 return nullptr; 801 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 802 StrLen, B, DL, TLI); 803 if (!StrNCmp) 804 return nullptr; 805 for (User *U : llvm::make_early_inc_range(CI->users())) { 806 ICmpInst *Old = cast<ICmpInst>(U); 807 Value *Cmp = 808 B.CreateICmp(Old->getPredicate(), StrNCmp, 809 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 810 replaceAllUsesWith(Old, Cmp); 811 } 812 return CI; 813 } 814 815 // See if either input string is a constant string. 816 StringRef SearchStr, ToFindStr; 817 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 818 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 819 820 // fold strstr(x, "") -> x. 821 if (HasStr2 && ToFindStr.empty()) 822 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 823 824 // If both strings are known, constant fold it. 825 if (HasStr1 && HasStr2) { 826 size_t Offset = SearchStr.find(ToFindStr); 827 828 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 829 return Constant::getNullValue(CI->getType()); 830 831 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 832 Value *Result = castToCStr(CI->getArgOperand(0), B); 833 Result = 834 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 835 return B.CreateBitCast(Result, CI->getType()); 836 } 837 838 // fold strstr(x, "y") -> strchr(x, 'y'). 839 if (HasStr2 && ToFindStr.size() == 1) { 840 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 841 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 842 } 843 844 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 845 return nullptr; 846 } 847 848 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 849 if (isKnownNonZero(CI->getOperand(2), DL)) 850 annotateNonNullNoUndefBasedOnAccess(CI, 0); 851 return nullptr; 852 } 853 854 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 855 Value *SrcStr = CI->getArgOperand(0); 856 Value *Size = CI->getArgOperand(2); 857 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 858 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 859 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 860 861 // memchr(x, y, 0) -> null 862 if (LenC) { 863 if (LenC->isZero()) 864 return Constant::getNullValue(CI->getType()); 865 } else { 866 // From now on we need at least constant length and string. 867 return nullptr; 868 } 869 870 StringRef Str; 871 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 872 return nullptr; 873 874 // Truncate the string to LenC. If Str is smaller than LenC we will still only 875 // scan the string, as reading past the end of it is undefined and we can just 876 // return null if we don't find the char. 877 Str = Str.substr(0, LenC->getZExtValue()); 878 879 // If the char is variable but the input str and length are not we can turn 880 // this memchr call into a simple bit field test. Of course this only works 881 // when the return value is only checked against null. 882 // 883 // It would be really nice to reuse switch lowering here but we can't change 884 // the CFG at this point. 885 // 886 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 887 // != 0 888 // after bounds check. 889 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 890 unsigned char Max = 891 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 892 reinterpret_cast<const unsigned char *>(Str.end())); 893 894 // Make sure the bit field we're about to create fits in a register on the 895 // target. 896 // FIXME: On a 64 bit architecture this prevents us from using the 897 // interesting range of alpha ascii chars. We could do better by emitting 898 // two bitfields or shifting the range by 64 if no lower chars are used. 899 if (!DL.fitsInLegalInteger(Max + 1)) 900 return nullptr; 901 902 // For the bit field use a power-of-2 type with at least 8 bits to avoid 903 // creating unnecessary illegal types. 904 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 905 906 // Now build the bit field. 907 APInt Bitfield(Width, 0); 908 for (char C : Str) 909 Bitfield.setBit((unsigned char)C); 910 Value *BitfieldC = B.getInt(Bitfield); 911 912 // Adjust width of "C" to the bitfield width, then mask off the high bits. 913 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 914 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 915 916 // First check that the bit field access is within bounds. 917 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 918 "memchr.bounds"); 919 920 // Create code that checks if the given bit is set in the field. 921 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 922 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 923 924 // Finally merge both checks and cast to pointer type. The inttoptr 925 // implicitly zexts the i1 to intptr type. 926 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 927 } 928 929 // Check if all arguments are constants. If so, we can constant fold. 930 if (!CharC) 931 return nullptr; 932 933 // Compute the offset. 934 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 935 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 936 return Constant::getNullValue(CI->getType()); 937 938 // memchr(s+n,c,l) -> gep(s+n+i,c) 939 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 940 } 941 942 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 943 uint64_t Len, IRBuilderBase &B, 944 const DataLayout &DL) { 945 if (Len == 0) // memcmp(s1,s2,0) -> 0 946 return Constant::getNullValue(CI->getType()); 947 948 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 949 if (Len == 1) { 950 Value *LHSV = 951 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 952 CI->getType(), "lhsv"); 953 Value *RHSV = 954 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 955 CI->getType(), "rhsv"); 956 return B.CreateSub(LHSV, RHSV, "chardiff"); 957 } 958 959 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 960 // TODO: The case where both inputs are constants does not need to be limited 961 // to legal integers or equality comparison. See block below this. 962 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 963 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 964 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 965 966 // First, see if we can fold either argument to a constant. 967 Value *LHSV = nullptr; 968 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 969 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 970 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 971 } 972 Value *RHSV = nullptr; 973 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 974 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 975 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 976 } 977 978 // Don't generate unaligned loads. If either source is constant data, 979 // alignment doesn't matter for that source because there is no load. 980 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 981 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 982 if (!LHSV) { 983 Type *LHSPtrTy = 984 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 985 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 986 } 987 if (!RHSV) { 988 Type *RHSPtrTy = 989 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 990 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 991 } 992 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 993 } 994 } 995 996 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 997 // TODO: This is limited to i8 arrays. 998 StringRef LHSStr, RHSStr; 999 if (getConstantStringInfo(LHS, LHSStr) && 1000 getConstantStringInfo(RHS, RHSStr)) { 1001 // Make sure we're not reading out-of-bounds memory. 1002 if (Len > LHSStr.size() || Len > RHSStr.size()) 1003 return nullptr; 1004 // Fold the memcmp and normalize the result. This way we get consistent 1005 // results across multiple platforms. 1006 uint64_t Ret = 0; 1007 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 1008 if (Cmp < 0) 1009 Ret = -1; 1010 else if (Cmp > 0) 1011 Ret = 1; 1012 return ConstantInt::get(CI->getType(), Ret); 1013 } 1014 1015 return nullptr; 1016 } 1017 1018 // Most simplifications for memcmp also apply to bcmp. 1019 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1020 IRBuilderBase &B) { 1021 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1022 Value *Size = CI->getArgOperand(2); 1023 1024 if (LHS == RHS) // memcmp(s,s,x) -> 0 1025 return Constant::getNullValue(CI->getType()); 1026 1027 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1028 // Handle constant lengths. 1029 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1030 if (!LenC) 1031 return nullptr; 1032 1033 // memcmp(d,s,0) -> 0 1034 if (LenC->getZExtValue() == 0) 1035 return Constant::getNullValue(CI->getType()); 1036 1037 if (Value *Res = 1038 optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL)) 1039 return Res; 1040 return nullptr; 1041 } 1042 1043 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1044 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1045 return V; 1046 1047 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1048 // bcmp can be more efficient than memcmp because it only has to know that 1049 // there is a difference, not how different one is to the other. 1050 if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) { 1051 Value *LHS = CI->getArgOperand(0); 1052 Value *RHS = CI->getArgOperand(1); 1053 Value *Size = CI->getArgOperand(2); 1054 return emitBCmp(LHS, RHS, Size, B, DL, TLI); 1055 } 1056 1057 return nullptr; 1058 } 1059 1060 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1061 return optimizeMemCmpBCmpCommon(CI, B); 1062 } 1063 1064 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1065 Value *Size = CI->getArgOperand(2); 1066 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1067 if (isa<IntrinsicInst>(CI)) 1068 return nullptr; 1069 1070 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1071 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), Align(1), 1072 Size); 1073 return CI->getArgOperand(0); 1074 } 1075 1076 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1077 Value *Dst = CI->getArgOperand(0); 1078 Value *Src = CI->getArgOperand(1); 1079 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1080 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1081 StringRef SrcStr; 1082 if (CI->use_empty() && Dst == Src) 1083 return Dst; 1084 // memccpy(d, s, c, 0) -> nullptr 1085 if (N) { 1086 if (N->isNullValue()) 1087 return Constant::getNullValue(CI->getType()); 1088 if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0, 1089 /*TrimAtNul=*/false) || 1090 !StopChar) 1091 return nullptr; 1092 } else { 1093 return nullptr; 1094 } 1095 1096 // Wrap arg 'c' of type int to char 1097 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1098 if (Pos == StringRef::npos) { 1099 if (N->getZExtValue() <= SrcStr.size()) { 1100 B.CreateMemCpy(Dst, Align(1), Src, Align(1), CI->getArgOperand(3)); 1101 return Constant::getNullValue(CI->getType()); 1102 } 1103 return nullptr; 1104 } 1105 1106 Value *NewN = 1107 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1108 // memccpy -> llvm.memcpy 1109 B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN); 1110 return Pos + 1 <= N->getZExtValue() 1111 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1112 : Constant::getNullValue(CI->getType()); 1113 } 1114 1115 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1116 Value *Dst = CI->getArgOperand(0); 1117 Value *N = CI->getArgOperand(2); 1118 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1119 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1120 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1121 } 1122 1123 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1124 Value *Size = CI->getArgOperand(2); 1125 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1126 if (isa<IntrinsicInst>(CI)) 1127 return nullptr; 1128 1129 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1130 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1131 CI->getArgOperand(1), Align(1), Size); 1132 NewCI->setAttributes(CI->getAttributes()); 1133 NewCI->removeAttributes(AttributeList::ReturnIndex, 1134 AttributeFuncs::typeIncompatible(NewCI->getType())); 1135 return CI->getArgOperand(0); 1136 } 1137 1138 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 1139 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilderBase &B) { 1140 // This has to be a memset of zeros (bzero). 1141 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 1142 if (!FillValue || FillValue->getZExtValue() != 0) 1143 return nullptr; 1144 1145 // TODO: We should handle the case where the malloc has more than one use. 1146 // This is necessary to optimize common patterns such as when the result of 1147 // the malloc is checked against null or when a memset intrinsic is used in 1148 // place of a memset library call. 1149 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 1150 if (!Malloc || !Malloc->hasOneUse()) 1151 return nullptr; 1152 1153 // Is the inner call really malloc()? 1154 Function *InnerCallee = Malloc->getCalledFunction(); 1155 if (!InnerCallee) 1156 return nullptr; 1157 1158 LibFunc Func; 1159 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 1160 Func != LibFunc_malloc) 1161 return nullptr; 1162 1163 // The memset must cover the same number of bytes that are malloc'd. 1164 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 1165 return nullptr; 1166 1167 // Replace the malloc with a calloc. We need the data layout to know what the 1168 // actual size of a 'size_t' parameter is. 1169 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 1170 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 1171 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 1172 if (Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 1173 Malloc->getArgOperand(0), 1174 Malloc->getAttributes(), B, *TLI)) { 1175 substituteInParent(Malloc, Calloc); 1176 return Calloc; 1177 } 1178 1179 return nullptr; 1180 } 1181 1182 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1183 Value *Size = CI->getArgOperand(2); 1184 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1185 if (isa<IntrinsicInst>(CI)) 1186 return nullptr; 1187 1188 if (auto *Calloc = foldMallocMemset(CI, B)) 1189 return Calloc; 1190 1191 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1192 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1193 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1194 NewCI->setAttributes(CI->getAttributes()); 1195 NewCI->removeAttributes(AttributeList::ReturnIndex, 1196 AttributeFuncs::typeIncompatible(NewCI->getType())); 1197 return CI->getArgOperand(0); 1198 } 1199 1200 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1201 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1202 return emitMalloc(CI->getArgOperand(1), B, DL, TLI); 1203 1204 return nullptr; 1205 } 1206 1207 //===----------------------------------------------------------------------===// 1208 // Math Library Optimizations 1209 //===----------------------------------------------------------------------===// 1210 1211 // Replace a libcall \p CI with a call to intrinsic \p IID 1212 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1213 Intrinsic::ID IID) { 1214 // Propagate fast-math flags from the existing call to the new call. 1215 IRBuilderBase::FastMathFlagGuard Guard(B); 1216 B.setFastMathFlags(CI->getFastMathFlags()); 1217 1218 Module *M = CI->getModule(); 1219 Value *V = CI->getArgOperand(0); 1220 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1221 CallInst *NewCall = B.CreateCall(F, V); 1222 NewCall->takeName(CI); 1223 return NewCall; 1224 } 1225 1226 /// Return a variant of Val with float type. 1227 /// Currently this works in two cases: If Val is an FPExtension of a float 1228 /// value to something bigger, simply return the operand. 1229 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1230 /// loss of precision do so. 1231 static Value *valueHasFloatPrecision(Value *Val) { 1232 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1233 Value *Op = Cast->getOperand(0); 1234 if (Op->getType()->isFloatTy()) 1235 return Op; 1236 } 1237 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1238 APFloat F = Const->getValueAPF(); 1239 bool losesInfo; 1240 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1241 &losesInfo); 1242 if (!losesInfo) 1243 return ConstantFP::get(Const->getContext(), F); 1244 } 1245 return nullptr; 1246 } 1247 1248 /// Shrink double -> float functions. 1249 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1250 bool isBinary, bool isPrecise = false) { 1251 Function *CalleeFn = CI->getCalledFunction(); 1252 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1253 return nullptr; 1254 1255 // If not all the uses of the function are converted to float, then bail out. 1256 // This matters if the precision of the result is more important than the 1257 // precision of the arguments. 1258 if (isPrecise) 1259 for (User *U : CI->users()) { 1260 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1261 if (!Cast || !Cast->getType()->isFloatTy()) 1262 return nullptr; 1263 } 1264 1265 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1266 Value *V[2]; 1267 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1268 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1269 if (!V[0] || (isBinary && !V[1])) 1270 return nullptr; 1271 1272 // If call isn't an intrinsic, check that it isn't within a function with the 1273 // same name as the float version of this call, otherwise the result is an 1274 // infinite loop. For example, from MinGW-w64: 1275 // 1276 // float expf(float val) { return (float) exp((double) val); } 1277 StringRef CalleeName = CalleeFn->getName(); 1278 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1279 if (!IsIntrinsic) { 1280 StringRef CallerName = CI->getFunction()->getName(); 1281 if (!CallerName.empty() && CallerName.back() == 'f' && 1282 CallerName.size() == (CalleeName.size() + 1) && 1283 CallerName.startswith(CalleeName)) 1284 return nullptr; 1285 } 1286 1287 // Propagate the math semantics from the current function to the new function. 1288 IRBuilderBase::FastMathFlagGuard Guard(B); 1289 B.setFastMathFlags(CI->getFastMathFlags()); 1290 1291 // g((double) float) -> (double) gf(float) 1292 Value *R; 1293 if (IsIntrinsic) { 1294 Module *M = CI->getModule(); 1295 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1296 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1297 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1298 } else { 1299 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1300 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs) 1301 : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs); 1302 } 1303 return B.CreateFPExt(R, B.getDoubleTy()); 1304 } 1305 1306 /// Shrink double -> float for unary functions. 1307 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1308 bool isPrecise = false) { 1309 return optimizeDoubleFP(CI, B, false, isPrecise); 1310 } 1311 1312 /// Shrink double -> float for binary functions. 1313 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1314 bool isPrecise = false) { 1315 return optimizeDoubleFP(CI, B, true, isPrecise); 1316 } 1317 1318 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1319 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1320 if (!CI->isFast()) 1321 return nullptr; 1322 1323 // Propagate fast-math flags from the existing call to new instructions. 1324 IRBuilderBase::FastMathFlagGuard Guard(B); 1325 B.setFastMathFlags(CI->getFastMathFlags()); 1326 1327 Value *Real, *Imag; 1328 if (CI->getNumArgOperands() == 1) { 1329 Value *Op = CI->getArgOperand(0); 1330 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1331 Real = B.CreateExtractValue(Op, 0, "real"); 1332 Imag = B.CreateExtractValue(Op, 1, "imag"); 1333 } else { 1334 assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); 1335 Real = CI->getArgOperand(0); 1336 Imag = CI->getArgOperand(1); 1337 } 1338 1339 Value *RealReal = B.CreateFMul(Real, Real); 1340 Value *ImagImag = B.CreateFMul(Imag, Imag); 1341 1342 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1343 CI->getType()); 1344 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); 1345 } 1346 1347 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1348 IRBuilderBase &B) { 1349 if (!isa<FPMathOperator>(Call)) 1350 return nullptr; 1351 1352 IRBuilderBase::FastMathFlagGuard Guard(B); 1353 B.setFastMathFlags(Call->getFastMathFlags()); 1354 1355 // TODO: Can this be shared to also handle LLVM intrinsics? 1356 Value *X; 1357 switch (Func) { 1358 case LibFunc_sin: 1359 case LibFunc_sinf: 1360 case LibFunc_sinl: 1361 case LibFunc_tan: 1362 case LibFunc_tanf: 1363 case LibFunc_tanl: 1364 // sin(-X) --> -sin(X) 1365 // tan(-X) --> -tan(X) 1366 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1367 return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X)); 1368 break; 1369 case LibFunc_cos: 1370 case LibFunc_cosf: 1371 case LibFunc_cosl: 1372 // cos(-X) --> cos(X) 1373 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1374 return B.CreateCall(Call->getCalledFunction(), X, "cos"); 1375 break; 1376 default: 1377 break; 1378 } 1379 return nullptr; 1380 } 1381 1382 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) { 1383 // Multiplications calculated using Addition Chains. 1384 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1385 1386 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1387 1388 if (InnerChain[Exp]) 1389 return InnerChain[Exp]; 1390 1391 static const unsigned AddChain[33][2] = { 1392 {0, 0}, // Unused. 1393 {0, 0}, // Unused (base case = pow1). 1394 {1, 1}, // Unused (pre-computed). 1395 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1396 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1397 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1398 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1399 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1400 }; 1401 1402 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1403 getPow(InnerChain, AddChain[Exp][1], B)); 1404 return InnerChain[Exp]; 1405 } 1406 1407 // Return a properly extended integer (DstWidth bits wide) if the operation is 1408 // an itofp. 1409 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) { 1410 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1411 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1412 // Make sure that the exponent fits inside an "int" of size DstWidth, 1413 // thus avoiding any range issues that FP has not. 1414 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); 1415 if (BitWidth < DstWidth || 1416 (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) 1417 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth)) 1418 : B.CreateZExt(Op, B.getIntNTy(DstWidth)); 1419 } 1420 1421 return nullptr; 1422 } 1423 1424 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1425 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 1426 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 1427 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 1428 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1429 AttributeList Attrs; // Attributes are only meaningful on the original call 1430 Module *Mod = Pow->getModule(); 1431 Type *Ty = Pow->getType(); 1432 bool Ignored; 1433 1434 // Evaluate special cases related to a nested function as the base. 1435 1436 // pow(exp(x), y) -> exp(x * y) 1437 // pow(exp2(x), y) -> exp2(x * y) 1438 // If exp{,2}() is used only once, it is better to fold two transcendental 1439 // math functions into one. If used again, exp{,2}() would still have to be 1440 // called with the original argument, then keep both original transcendental 1441 // functions. However, this transformation is only safe with fully relaxed 1442 // math semantics, since, besides rounding differences, it changes overflow 1443 // and underflow behavior quite dramatically. For example: 1444 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1445 // Whereas: 1446 // exp(1000 * 0.001) = exp(1) 1447 // TODO: Loosen the requirement for fully relaxed math semantics. 1448 // TODO: Handle exp10() when more targets have it available. 1449 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1450 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1451 LibFunc LibFn; 1452 1453 Function *CalleeFn = BaseFn->getCalledFunction(); 1454 if (CalleeFn && 1455 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1456 StringRef ExpName; 1457 Intrinsic::ID ID; 1458 Value *ExpFn; 1459 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 1460 1461 switch (LibFn) { 1462 default: 1463 return nullptr; 1464 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1465 ExpName = TLI->getName(LibFunc_exp); 1466 ID = Intrinsic::exp; 1467 LibFnFloat = LibFunc_expf; 1468 LibFnDouble = LibFunc_exp; 1469 LibFnLongDouble = LibFunc_expl; 1470 break; 1471 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1472 ExpName = TLI->getName(LibFunc_exp2); 1473 ID = Intrinsic::exp2; 1474 LibFnFloat = LibFunc_exp2f; 1475 LibFnDouble = LibFunc_exp2; 1476 LibFnLongDouble = LibFunc_exp2l; 1477 break; 1478 } 1479 1480 // Create new exp{,2}() with the product as its argument. 1481 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1482 ExpFn = BaseFn->doesNotAccessMemory() 1483 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1484 FMul, ExpName) 1485 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1486 LibFnLongDouble, B, 1487 BaseFn->getAttributes()); 1488 1489 // Since the new exp{,2}() is different from the original one, dead code 1490 // elimination cannot be trusted to remove it, since it may have side 1491 // effects (e.g., errno). When the only consumer for the original 1492 // exp{,2}() is pow(), then it has to be explicitly erased. 1493 substituteInParent(BaseFn, ExpFn); 1494 return ExpFn; 1495 } 1496 } 1497 1498 // Evaluate special cases related to a constant base. 1499 1500 const APFloat *BaseF; 1501 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1502 return nullptr; 1503 1504 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 1505 if (match(Base, m_SpecificFP(2.0)) && 1506 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 1507 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1508 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1509 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI, 1510 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1511 B, Attrs); 1512 } 1513 1514 // pow(2.0 ** n, x) -> exp2(n * x) 1515 if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1516 APFloat BaseR = APFloat(1.0); 1517 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1518 BaseR = BaseR / *BaseF; 1519 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1520 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1521 APSInt NI(64, false); 1522 if ((IsInteger || IsReciprocal) && 1523 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1524 APFloat::opOK && 1525 NI > 1 && NI.isPowerOf2()) { 1526 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1527 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1528 if (Pow->doesNotAccessMemory()) 1529 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1530 FMul, "exp2"); 1531 else 1532 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1533 LibFunc_exp2l, B, Attrs); 1534 } 1535 } 1536 1537 // pow(10.0, x) -> exp10(x) 1538 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1539 if (match(Base, m_SpecificFP(10.0)) && 1540 hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1541 return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f, 1542 LibFunc_exp10l, B, Attrs); 1543 1544 // pow(x, y) -> exp2(log2(x) * y) 1545 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 1546 !BaseF->isNegative()) { 1547 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 1548 // Luckily optimizePow has already handled the x == 1 case. 1549 assert(!match(Base, m_FPOne()) && 1550 "pow(1.0, y) should have been simplified earlier!"); 1551 1552 Value *Log = nullptr; 1553 if (Ty->isFloatTy()) 1554 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 1555 else if (Ty->isDoubleTy()) 1556 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 1557 1558 if (Log) { 1559 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 1560 if (Pow->doesNotAccessMemory()) 1561 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1562 FMul, "exp2"); 1563 else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) 1564 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1565 LibFunc_exp2l, B, Attrs); 1566 } 1567 } 1568 1569 return nullptr; 1570 } 1571 1572 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1573 Module *M, IRBuilderBase &B, 1574 const TargetLibraryInfo *TLI) { 1575 // If errno is never set, then use the intrinsic for sqrt(). 1576 if (NoErrno) { 1577 Function *SqrtFn = 1578 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1579 return B.CreateCall(SqrtFn, V, "sqrt"); 1580 } 1581 1582 // Otherwise, use the libcall for sqrt(). 1583 if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) 1584 // TODO: We also should check that the target can in fact lower the sqrt() 1585 // libcall. We currently have no way to ask this question, so we ask if 1586 // the target has a sqrt() libcall, which is not exactly the same. 1587 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1588 LibFunc_sqrtl, B, Attrs); 1589 1590 return nullptr; 1591 } 1592 1593 /// Use square root in place of pow(x, +/-0.5). 1594 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 1595 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1596 AttributeList Attrs; // Attributes are only meaningful on the original call 1597 Module *Mod = Pow->getModule(); 1598 Type *Ty = Pow->getType(); 1599 1600 const APFloat *ExpoF; 1601 if (!match(Expo, m_APFloat(ExpoF)) || 1602 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1603 return nullptr; 1604 1605 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 1606 // so that requires fast-math-flags (afn or reassoc). 1607 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 1608 return nullptr; 1609 1610 // If we have a pow() library call (accesses memory) and we can't guarantee 1611 // that the base is not an infinity, give up: 1612 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 1613 // errno), but sqrt(-Inf) is required by various standards to set errno. 1614 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 1615 !isKnownNeverInfinity(Base, TLI)) 1616 return nullptr; 1617 1618 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1619 if (!Sqrt) 1620 return nullptr; 1621 1622 // Handle signed zero base by expanding to fabs(sqrt(x)). 1623 if (!Pow->hasNoSignedZeros()) { 1624 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1625 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1626 } 1627 1628 // Handle non finite base by expanding to 1629 // (x == -infinity ? +infinity : sqrt(x)). 1630 if (!Pow->hasNoInfs()) { 1631 Value *PosInf = ConstantFP::getInfinity(Ty), 1632 *NegInf = ConstantFP::getInfinity(Ty, true); 1633 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1634 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1635 } 1636 1637 // If the exponent is negative, then get the reciprocal. 1638 if (ExpoF->isNegative()) 1639 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1640 1641 return Sqrt; 1642 } 1643 1644 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1645 IRBuilderBase &B) { 1646 Value *Args[] = {Base, Expo}; 1647 Type *Types[] = {Base->getType(), Expo->getType()}; 1648 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types); 1649 return B.CreateCall(F, Args); 1650 } 1651 1652 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 1653 Value *Base = Pow->getArgOperand(0); 1654 Value *Expo = Pow->getArgOperand(1); 1655 Function *Callee = Pow->getCalledFunction(); 1656 StringRef Name = Callee->getName(); 1657 Type *Ty = Pow->getType(); 1658 Module *M = Pow->getModule(); 1659 bool AllowApprox = Pow->hasApproxFunc(); 1660 bool Ignored; 1661 1662 // Propagate the math semantics from the call to any created instructions. 1663 IRBuilderBase::FastMathFlagGuard Guard(B); 1664 B.setFastMathFlags(Pow->getFastMathFlags()); 1665 // Evaluate special cases related to the base. 1666 1667 // pow(1.0, x) -> 1.0 1668 if (match(Base, m_FPOne())) 1669 return Base; 1670 1671 if (Value *Exp = replacePowWithExp(Pow, B)) 1672 return Exp; 1673 1674 // Evaluate special cases related to the exponent. 1675 1676 // pow(x, -1.0) -> 1.0 / x 1677 if (match(Expo, m_SpecificFP(-1.0))) 1678 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1679 1680 // pow(x, +/-0.0) -> 1.0 1681 if (match(Expo, m_AnyZeroFP())) 1682 return ConstantFP::get(Ty, 1.0); 1683 1684 // pow(x, 1.0) -> x 1685 if (match(Expo, m_FPOne())) 1686 return Base; 1687 1688 // pow(x, 2.0) -> x * x 1689 if (match(Expo, m_SpecificFP(2.0))) 1690 return B.CreateFMul(Base, Base, "square"); 1691 1692 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1693 return Sqrt; 1694 1695 // pow(x, n) -> x * x * x * ... 1696 const APFloat *ExpoF; 1697 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 1698 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 1699 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1700 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1701 // additional fmul. 1702 // TODO: This whole transformation should be backend specific (e.g. some 1703 // backends might prefer libcalls or the limit for the exponent might 1704 // be different) and it should also consider optimizing for size. 1705 APFloat LimF(ExpoF->getSemantics(), 33), 1706 ExpoA(abs(*ExpoF)); 1707 if (ExpoA < LimF) { 1708 // This transformation applies to integer or integer+0.5 exponents only. 1709 // For integer+0.5, we create a sqrt(Base) call. 1710 Value *Sqrt = nullptr; 1711 if (!ExpoA.isInteger()) { 1712 APFloat Expo2 = ExpoA; 1713 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1714 // is no floating point exception and the result is an integer, then 1715 // ExpoA == integer + 0.5 1716 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1717 return nullptr; 1718 1719 if (!Expo2.isInteger()) 1720 return nullptr; 1721 1722 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1723 Pow->doesNotAccessMemory(), M, B, TLI); 1724 if (!Sqrt) 1725 return nullptr; 1726 } 1727 1728 // We will memoize intermediate products of the Addition Chain. 1729 Value *InnerChain[33] = {nullptr}; 1730 InnerChain[1] = Base; 1731 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1732 1733 // We cannot readily convert a non-double type (like float) to a double. 1734 // So we first convert it to something which could be converted to double. 1735 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1736 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1737 1738 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1739 if (Sqrt) 1740 FMul = B.CreateFMul(FMul, Sqrt); 1741 1742 // If the exponent is negative, then get the reciprocal. 1743 if (ExpoF->isNegative()) 1744 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1745 1746 return FMul; 1747 } 1748 1749 APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false); 1750 // powf(x, n) -> powi(x, n) if n is a constant signed integer value 1751 if (ExpoF->isInteger() && 1752 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 1753 APFloat::opOK) { 1754 return createPowWithIntegerExponent( 1755 Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo), M, B); 1756 } 1757 } 1758 1759 // powf(x, itofp(y)) -> powi(x, y) 1760 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 1761 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1762 return createPowWithIntegerExponent(Base, ExpoI, M, B); 1763 } 1764 1765 // Shrink pow() to powf() if the arguments are single precision, 1766 // unless the result is expected to be double precision. 1767 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 1768 hasFloatVersion(Name)) { 1769 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, true)) 1770 return Shrunk; 1771 } 1772 1773 return nullptr; 1774 } 1775 1776 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 1777 Function *Callee = CI->getCalledFunction(); 1778 AttributeList Attrs; // Attributes are only meaningful on the original call 1779 StringRef Name = Callee->getName(); 1780 Value *Ret = nullptr; 1781 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 1782 hasFloatVersion(Name)) 1783 Ret = optimizeUnaryDoubleFP(CI, B, true); 1784 1785 Type *Ty = CI->getType(); 1786 Value *Op = CI->getArgOperand(0); 1787 1788 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize 1789 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize 1790 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 1791 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1792 if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) 1793 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 1794 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1795 B, Attrs); 1796 } 1797 1798 return Ret; 1799 } 1800 1801 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 1802 // If we can shrink the call to a float function rather than a double 1803 // function, do that first. 1804 Function *Callee = CI->getCalledFunction(); 1805 StringRef Name = Callee->getName(); 1806 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1807 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1808 return Ret; 1809 1810 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 1811 // the intrinsics for improved optimization (for example, vectorization). 1812 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 1813 // From the C standard draft WG14/N1256: 1814 // "Ideally, fmax would be sensitive to the sign of zero, for example 1815 // fmax(-0.0, +0.0) would return +0; however, implementation in software 1816 // might be impractical." 1817 IRBuilderBase::FastMathFlagGuard Guard(B); 1818 FastMathFlags FMF = CI->getFastMathFlags(); 1819 FMF.setNoSignedZeros(); 1820 B.setFastMathFlags(FMF); 1821 1822 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 1823 : Intrinsic::maxnum; 1824 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 1825 return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) }); 1826 } 1827 1828 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 1829 Function *LogFn = Log->getCalledFunction(); 1830 AttributeList Attrs; // Attributes are only meaningful on the original call 1831 StringRef LogNm = LogFn->getName(); 1832 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 1833 Module *Mod = Log->getModule(); 1834 Type *Ty = Log->getType(); 1835 Value *Ret = nullptr; 1836 1837 if (UnsafeFPShrink && hasFloatVersion(LogNm)) 1838 Ret = optimizeUnaryDoubleFP(Log, B, true); 1839 1840 // The earlier call must also be 'fast' in order to do these transforms. 1841 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 1842 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 1843 return Ret; 1844 1845 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 1846 1847 // This is only applicable to log(), log2(), log10(). 1848 if (TLI->getLibFunc(LogNm, LogLb)) 1849 switch (LogLb) { 1850 case LibFunc_logf: 1851 LogID = Intrinsic::log; 1852 ExpLb = LibFunc_expf; 1853 Exp2Lb = LibFunc_exp2f; 1854 Exp10Lb = LibFunc_exp10f; 1855 PowLb = LibFunc_powf; 1856 break; 1857 case LibFunc_log: 1858 LogID = Intrinsic::log; 1859 ExpLb = LibFunc_exp; 1860 Exp2Lb = LibFunc_exp2; 1861 Exp10Lb = LibFunc_exp10; 1862 PowLb = LibFunc_pow; 1863 break; 1864 case LibFunc_logl: 1865 LogID = Intrinsic::log; 1866 ExpLb = LibFunc_expl; 1867 Exp2Lb = LibFunc_exp2l; 1868 Exp10Lb = LibFunc_exp10l; 1869 PowLb = LibFunc_powl; 1870 break; 1871 case LibFunc_log2f: 1872 LogID = Intrinsic::log2; 1873 ExpLb = LibFunc_expf; 1874 Exp2Lb = LibFunc_exp2f; 1875 Exp10Lb = LibFunc_exp10f; 1876 PowLb = LibFunc_powf; 1877 break; 1878 case LibFunc_log2: 1879 LogID = Intrinsic::log2; 1880 ExpLb = LibFunc_exp; 1881 Exp2Lb = LibFunc_exp2; 1882 Exp10Lb = LibFunc_exp10; 1883 PowLb = LibFunc_pow; 1884 break; 1885 case LibFunc_log2l: 1886 LogID = Intrinsic::log2; 1887 ExpLb = LibFunc_expl; 1888 Exp2Lb = LibFunc_exp2l; 1889 Exp10Lb = LibFunc_exp10l; 1890 PowLb = LibFunc_powl; 1891 break; 1892 case LibFunc_log10f: 1893 LogID = Intrinsic::log10; 1894 ExpLb = LibFunc_expf; 1895 Exp2Lb = LibFunc_exp2f; 1896 Exp10Lb = LibFunc_exp10f; 1897 PowLb = LibFunc_powf; 1898 break; 1899 case LibFunc_log10: 1900 LogID = Intrinsic::log10; 1901 ExpLb = LibFunc_exp; 1902 Exp2Lb = LibFunc_exp2; 1903 Exp10Lb = LibFunc_exp10; 1904 PowLb = LibFunc_pow; 1905 break; 1906 case LibFunc_log10l: 1907 LogID = Intrinsic::log10; 1908 ExpLb = LibFunc_expl; 1909 Exp2Lb = LibFunc_exp2l; 1910 Exp10Lb = LibFunc_exp10l; 1911 PowLb = LibFunc_powl; 1912 break; 1913 default: 1914 return Ret; 1915 } 1916 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 1917 LogID == Intrinsic::log10) { 1918 if (Ty->getScalarType()->isFloatTy()) { 1919 ExpLb = LibFunc_expf; 1920 Exp2Lb = LibFunc_exp2f; 1921 Exp10Lb = LibFunc_exp10f; 1922 PowLb = LibFunc_powf; 1923 } else if (Ty->getScalarType()->isDoubleTy()) { 1924 ExpLb = LibFunc_exp; 1925 Exp2Lb = LibFunc_exp2; 1926 Exp10Lb = LibFunc_exp10; 1927 PowLb = LibFunc_pow; 1928 } else 1929 return Ret; 1930 } else 1931 return Ret; 1932 1933 IRBuilderBase::FastMathFlagGuard Guard(B); 1934 B.setFastMathFlags(FastMathFlags::getFast()); 1935 1936 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 1937 LibFunc ArgLb = NotLibFunc; 1938 TLI->getLibFunc(*Arg, ArgLb); 1939 1940 // log(pow(x,y)) -> y*log(x) 1941 if (ArgLb == PowLb || ArgID == Intrinsic::pow) { 1942 Value *LogX = 1943 Log->doesNotAccessMemory() 1944 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 1945 Arg->getOperand(0), "log") 1946 : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs); 1947 Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul"); 1948 // Since pow() may have side effects, e.g. errno, 1949 // dead code elimination may not be trusted to remove it. 1950 substituteInParent(Arg, MulY); 1951 return MulY; 1952 } 1953 1954 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 1955 // TODO: There is no exp10() intrinsic yet. 1956 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 1957 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 1958 Constant *Eul; 1959 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 1960 // FIXME: Add more precise value of e for long double. 1961 Eul = ConstantFP::get(Log->getType(), numbers::e); 1962 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 1963 Eul = ConstantFP::get(Log->getType(), 2.0); 1964 else 1965 Eul = ConstantFP::get(Log->getType(), 10.0); 1966 Value *LogE = Log->doesNotAccessMemory() 1967 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 1968 Eul, "log") 1969 : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs); 1970 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 1971 // Since exp() may have side effects, e.g. errno, 1972 // dead code elimination may not be trusted to remove it. 1973 substituteInParent(Arg, MulY); 1974 return MulY; 1975 } 1976 1977 return Ret; 1978 } 1979 1980 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 1981 Function *Callee = CI->getCalledFunction(); 1982 Value *Ret = nullptr; 1983 // TODO: Once we have a way (other than checking for the existince of the 1984 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 1985 // condition below. 1986 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 1987 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1988 Ret = optimizeUnaryDoubleFP(CI, B, true); 1989 1990 if (!CI->isFast()) 1991 return Ret; 1992 1993 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1994 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 1995 return Ret; 1996 1997 // We're looking for a repeated factor in a multiplication tree, 1998 // so we can do this fold: sqrt(x * x) -> fabs(x); 1999 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 2000 Value *Op0 = I->getOperand(0); 2001 Value *Op1 = I->getOperand(1); 2002 Value *RepeatOp = nullptr; 2003 Value *OtherOp = nullptr; 2004 if (Op0 == Op1) { 2005 // Simple match: the operands of the multiply are identical. 2006 RepeatOp = Op0; 2007 } else { 2008 // Look for a more complicated pattern: one of the operands is itself 2009 // a multiply, so search for a common factor in that multiply. 2010 // Note: We don't bother looking any deeper than this first level or for 2011 // variations of this pattern because instcombine's visitFMUL and/or the 2012 // reassociation pass should give us this form. 2013 Value *OtherMul0, *OtherMul1; 2014 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 2015 // Pattern: sqrt((x * y) * z) 2016 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 2017 // Matched: sqrt((x * x) * z) 2018 RepeatOp = OtherMul0; 2019 OtherOp = Op1; 2020 } 2021 } 2022 } 2023 if (!RepeatOp) 2024 return Ret; 2025 2026 // Fast math flags for any created instructions should match the sqrt 2027 // and multiply. 2028 IRBuilderBase::FastMathFlagGuard Guard(B); 2029 B.setFastMathFlags(I->getFastMathFlags()); 2030 2031 // If we found a repeated factor, hoist it out of the square root and 2032 // replace it with the fabs of that factor. 2033 Module *M = Callee->getParent(); 2034 Type *ArgType = I->getType(); 2035 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 2036 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 2037 if (OtherOp) { 2038 // If we found a non-repeated factor, we still need to get its square 2039 // root. We then multiply that by the value that was simplified out 2040 // of the square root calculation. 2041 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 2042 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 2043 return B.CreateFMul(FabsCall, SqrtCall); 2044 } 2045 return FabsCall; 2046 } 2047 2048 // TODO: Generalize to handle any trig function and its inverse. 2049 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) { 2050 Function *Callee = CI->getCalledFunction(); 2051 Value *Ret = nullptr; 2052 StringRef Name = Callee->getName(); 2053 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 2054 Ret = optimizeUnaryDoubleFP(CI, B, true); 2055 2056 Value *Op1 = CI->getArgOperand(0); 2057 auto *OpC = dyn_cast<CallInst>(Op1); 2058 if (!OpC) 2059 return Ret; 2060 2061 // Both calls must be 'fast' in order to remove them. 2062 if (!CI->isFast() || !OpC->isFast()) 2063 return Ret; 2064 2065 // tan(atan(x)) -> x 2066 // tanf(atanf(x)) -> x 2067 // tanl(atanl(x)) -> x 2068 LibFunc Func; 2069 Function *F = OpC->getCalledFunction(); 2070 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 2071 ((Func == LibFunc_atan && Callee->getName() == "tan") || 2072 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 2073 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 2074 Ret = OpC->getArgOperand(0); 2075 return Ret; 2076 } 2077 2078 static bool isTrigLibCall(CallInst *CI) { 2079 // We can only hope to do anything useful if we can ignore things like errno 2080 // and floating-point exceptions. 2081 // We already checked the prototype. 2082 return CI->hasFnAttr(Attribute::NoUnwind) && 2083 CI->hasFnAttr(Attribute::ReadNone); 2084 } 2085 2086 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2087 bool UseFloat, Value *&Sin, Value *&Cos, 2088 Value *&SinCos) { 2089 Type *ArgTy = Arg->getType(); 2090 Type *ResTy; 2091 StringRef Name; 2092 2093 Triple T(OrigCallee->getParent()->getTargetTriple()); 2094 if (UseFloat) { 2095 Name = "__sincospif_stret"; 2096 2097 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2098 // x86_64 can't use {float, float} since that would be returned in both 2099 // xmm0 and xmm1, which isn't what a real struct would do. 2100 ResTy = T.getArch() == Triple::x86_64 2101 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2102 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2103 } else { 2104 Name = "__sincospi_stret"; 2105 ResTy = StructType::get(ArgTy, ArgTy); 2106 } 2107 2108 Module *M = OrigCallee->getParent(); 2109 FunctionCallee Callee = 2110 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); 2111 2112 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2113 // If the argument is an instruction, it must dominate all uses so put our 2114 // sincos call there. 2115 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2116 } else { 2117 // Otherwise (e.g. for a constant) the beginning of the function is as 2118 // good a place as any. 2119 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2120 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2121 } 2122 2123 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2124 2125 if (SinCos->getType()->isStructTy()) { 2126 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2127 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2128 } else { 2129 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2130 "sinpi"); 2131 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2132 "cospi"); 2133 } 2134 } 2135 2136 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) { 2137 // Make sure the prototype is as expected, otherwise the rest of the 2138 // function is probably invalid and likely to abort. 2139 if (!isTrigLibCall(CI)) 2140 return nullptr; 2141 2142 Value *Arg = CI->getArgOperand(0); 2143 SmallVector<CallInst *, 1> SinCalls; 2144 SmallVector<CallInst *, 1> CosCalls; 2145 SmallVector<CallInst *, 1> SinCosCalls; 2146 2147 bool IsFloat = Arg->getType()->isFloatTy(); 2148 2149 // Look for all compatible sinpi, cospi and sincospi calls with the same 2150 // argument. If there are enough (in some sense) we can make the 2151 // substitution. 2152 Function *F = CI->getFunction(); 2153 for (User *U : Arg->users()) 2154 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2155 2156 // It's only worthwhile if both sinpi and cospi are actually used. 2157 if (SinCalls.empty() || CosCalls.empty()) 2158 return nullptr; 2159 2160 Value *Sin, *Cos, *SinCos; 2161 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 2162 2163 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2164 Value *Res) { 2165 for (CallInst *C : Calls) 2166 replaceAllUsesWith(C, Res); 2167 }; 2168 2169 replaceTrigInsts(SinCalls, Sin); 2170 replaceTrigInsts(CosCalls, Cos); 2171 replaceTrigInsts(SinCosCalls, SinCos); 2172 2173 return nullptr; 2174 } 2175 2176 void LibCallSimplifier::classifyArgUse( 2177 Value *Val, Function *F, bool IsFloat, 2178 SmallVectorImpl<CallInst *> &SinCalls, 2179 SmallVectorImpl<CallInst *> &CosCalls, 2180 SmallVectorImpl<CallInst *> &SinCosCalls) { 2181 CallInst *CI = dyn_cast<CallInst>(Val); 2182 2183 if (!CI || CI->use_empty()) 2184 return; 2185 2186 // Don't consider calls in other functions. 2187 if (CI->getFunction() != F) 2188 return; 2189 2190 Function *Callee = CI->getCalledFunction(); 2191 LibFunc Func; 2192 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 2193 !isTrigLibCall(CI)) 2194 return; 2195 2196 if (IsFloat) { 2197 if (Func == LibFunc_sinpif) 2198 SinCalls.push_back(CI); 2199 else if (Func == LibFunc_cospif) 2200 CosCalls.push_back(CI); 2201 else if (Func == LibFunc_sincospif_stret) 2202 SinCosCalls.push_back(CI); 2203 } else { 2204 if (Func == LibFunc_sinpi) 2205 SinCalls.push_back(CI); 2206 else if (Func == LibFunc_cospi) 2207 CosCalls.push_back(CI); 2208 else if (Func == LibFunc_sincospi_stret) 2209 SinCosCalls.push_back(CI); 2210 } 2211 } 2212 2213 //===----------------------------------------------------------------------===// 2214 // Integer Library Call Optimizations 2215 //===----------------------------------------------------------------------===// 2216 2217 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 2218 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 2219 Value *Op = CI->getArgOperand(0); 2220 Type *ArgType = Op->getType(); 2221 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2222 Intrinsic::cttz, ArgType); 2223 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 2224 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 2225 V = B.CreateIntCast(V, B.getInt32Ty(), false); 2226 2227 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 2228 return B.CreateSelect(Cond, V, B.getInt32(0)); 2229 } 2230 2231 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 2232 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 2233 Value *Op = CI->getArgOperand(0); 2234 Type *ArgType = Op->getType(); 2235 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2236 Intrinsic::ctlz, ArgType); 2237 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 2238 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 2239 V); 2240 return B.CreateIntCast(V, CI->getType(), false); 2241 } 2242 2243 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 2244 // abs(x) -> x <s 0 ? -x : x 2245 // The negation has 'nsw' because abs of INT_MIN is undefined. 2246 Value *X = CI->getArgOperand(0); 2247 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 2248 Value *NegX = B.CreateNSWNeg(X, "neg"); 2249 return B.CreateSelect(IsNeg, NegX, X); 2250 } 2251 2252 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 2253 // isdigit(c) -> (c-'0') <u 10 2254 Value *Op = CI->getArgOperand(0); 2255 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 2256 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 2257 return B.CreateZExt(Op, CI->getType()); 2258 } 2259 2260 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 2261 // isascii(c) -> c <u 128 2262 Value *Op = CI->getArgOperand(0); 2263 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 2264 return B.CreateZExt(Op, CI->getType()); 2265 } 2266 2267 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 2268 // toascii(c) -> c & 0x7f 2269 return B.CreateAnd(CI->getArgOperand(0), 2270 ConstantInt::get(CI->getType(), 0x7F)); 2271 } 2272 2273 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 2274 StringRef Str; 2275 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2276 return nullptr; 2277 2278 return convertStrToNumber(CI, Str, 10); 2279 } 2280 2281 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) { 2282 StringRef Str; 2283 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2284 return nullptr; 2285 2286 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 2287 return nullptr; 2288 2289 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2290 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 2291 } 2292 2293 return nullptr; 2294 } 2295 2296 //===----------------------------------------------------------------------===// 2297 // Formatting and IO Library Call Optimizations 2298 //===----------------------------------------------------------------------===// 2299 2300 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2301 2302 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 2303 int StreamArg) { 2304 Function *Callee = CI->getCalledFunction(); 2305 // Error reporting calls should be cold, mark them as such. 2306 // This applies even to non-builtin calls: it is only a hint and applies to 2307 // functions that the frontend might not understand as builtins. 2308 2309 // This heuristic was suggested in: 2310 // Improving Static Branch Prediction in a Compiler 2311 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2312 // Proceedings of PACT'98, Oct. 1998, IEEE 2313 if (!CI->hasFnAttr(Attribute::Cold) && 2314 isReportingError(Callee, CI, StreamArg)) { 2315 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 2316 } 2317 2318 return nullptr; 2319 } 2320 2321 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2322 if (!Callee || !Callee->isDeclaration()) 2323 return false; 2324 2325 if (StreamArg < 0) 2326 return true; 2327 2328 // These functions might be considered cold, but only if their stream 2329 // argument is stderr. 2330 2331 if (StreamArg >= (int)CI->getNumArgOperands()) 2332 return false; 2333 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2334 if (!LI) 2335 return false; 2336 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2337 if (!GV || !GV->isDeclaration()) 2338 return false; 2339 return GV->getName() == "stderr"; 2340 } 2341 2342 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 2343 // Check for a fixed format string. 2344 StringRef FormatStr; 2345 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2346 return nullptr; 2347 2348 // Empty format string -> noop. 2349 if (FormatStr.empty()) // Tolerate printf's declared void. 2350 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2351 2352 // Do not do any of the following transformations if the printf return value 2353 // is used, in general the printf return value is not compatible with either 2354 // putchar() or puts(). 2355 if (!CI->use_empty()) 2356 return nullptr; 2357 2358 // printf("x") -> putchar('x'), even for "%" and "%%". 2359 if (FormatStr.size() == 1 || FormatStr == "%%") 2360 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 2361 2362 // Try to remove call or emit putchar/puts. 2363 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 2364 StringRef OperandStr; 2365 if (!getConstantStringInfo(CI->getOperand(1), OperandStr)) 2366 return nullptr; 2367 // printf("%s", "") --> NOP 2368 if (OperandStr.empty()) 2369 return (Value *)CI; 2370 // printf("%s", "a") --> putchar('a') 2371 if (OperandStr.size() == 1) 2372 return emitPutChar(B.getInt32(OperandStr[0]), B, TLI); 2373 // printf("%s", str"\n") --> puts(str) 2374 if (OperandStr.back() == '\n') { 2375 OperandStr = OperandStr.drop_back(); 2376 Value *GV = B.CreateGlobalString(OperandStr, "str"); 2377 return emitPutS(GV, B, TLI); 2378 } 2379 return nullptr; 2380 } 2381 2382 // printf("foo\n") --> puts("foo") 2383 if (FormatStr.back() == '\n' && 2384 FormatStr.find('%') == StringRef::npos) { // No format characters. 2385 // Create a string literal with no \n on it. We expect the constant merge 2386 // pass to be run after this pass, to merge duplicate strings. 2387 FormatStr = FormatStr.drop_back(); 2388 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2389 return emitPutS(GV, B, TLI); 2390 } 2391 2392 // Optimize specific format strings. 2393 // printf("%c", chr) --> putchar(chr) 2394 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 2395 CI->getArgOperand(1)->getType()->isIntegerTy()) 2396 return emitPutChar(CI->getArgOperand(1), B, TLI); 2397 2398 // printf("%s\n", str) --> puts(str) 2399 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 2400 CI->getArgOperand(1)->getType()->isPointerTy()) 2401 return emitPutS(CI->getArgOperand(1), B, TLI); 2402 return nullptr; 2403 } 2404 2405 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 2406 2407 Function *Callee = CI->getCalledFunction(); 2408 FunctionType *FT = Callee->getFunctionType(); 2409 if (Value *V = optimizePrintFString(CI, B)) { 2410 return V; 2411 } 2412 2413 // printf(format, ...) -> iprintf(format, ...) if no floating point 2414 // arguments. 2415 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2416 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2417 FunctionCallee IPrintFFn = 2418 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2419 CallInst *New = cast<CallInst>(CI->clone()); 2420 New->setCalledFunction(IPrintFFn); 2421 B.Insert(New); 2422 return New; 2423 } 2424 2425 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2426 // arguments. 2427 if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) { 2428 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2429 auto SmallPrintFFn = 2430 M->getOrInsertFunction(TLI->getName(LibFunc_small_printf), 2431 FT, Callee->getAttributes()); 2432 CallInst *New = cast<CallInst>(CI->clone()); 2433 New->setCalledFunction(SmallPrintFFn); 2434 B.Insert(New); 2435 return New; 2436 } 2437 2438 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2439 return nullptr; 2440 } 2441 2442 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 2443 IRBuilderBase &B) { 2444 // Check for a fixed format string. 2445 StringRef FormatStr; 2446 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2447 return nullptr; 2448 2449 // If we just have a format string (nothing else crazy) transform it. 2450 if (CI->getNumArgOperands() == 2) { 2451 // Make sure there's no % in the constant array. We could try to handle 2452 // %% -> % in the future if we cared. 2453 if (FormatStr.find('%') != StringRef::npos) 2454 return nullptr; // we found a format specifier, bail out. 2455 2456 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2457 B.CreateMemCpy( 2458 CI->getArgOperand(0), Align(1), CI->getArgOperand(1), Align(1), 2459 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2460 FormatStr.size() + 1)); // Copy the null byte. 2461 return ConstantInt::get(CI->getType(), FormatStr.size()); 2462 } 2463 2464 // The remaining optimizations require the format string to be "%s" or "%c" 2465 // and have an extra operand. 2466 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2467 CI->getNumArgOperands() < 3) 2468 return nullptr; 2469 2470 // Decode the second character of the format string. 2471 if (FormatStr[1] == 'c') { 2472 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2473 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2474 return nullptr; 2475 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2476 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2477 B.CreateStore(V, Ptr); 2478 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2479 B.CreateStore(B.getInt8(0), Ptr); 2480 2481 return ConstantInt::get(CI->getType(), 1); 2482 } 2483 2484 if (FormatStr[1] == 's') { 2485 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2486 // strlen(str)+1) 2487 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2488 return nullptr; 2489 2490 if (CI->use_empty()) 2491 // sprintf(dest, "%s", str) -> strcpy(dest, str) 2492 return emitStrCpy(CI->getArgOperand(0), CI->getArgOperand(2), B, TLI); 2493 2494 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 2495 if (SrcLen) { 2496 B.CreateMemCpy( 2497 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2498 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 2499 // Returns total number of characters written without null-character. 2500 return ConstantInt::get(CI->getType(), SrcLen - 1); 2501 } else if (Value *V = emitStpCpy(CI->getArgOperand(0), CI->getArgOperand(2), 2502 B, TLI)) { 2503 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 2504 Value *PtrDiff = B.CreatePtrDiff(V, CI->getArgOperand(0)); 2505 return B.CreateIntCast(PtrDiff, CI->getType(), false); 2506 } 2507 2508 bool OptForSize = CI->getFunction()->hasOptSize() || 2509 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2510 PGSOQueryType::IRPass); 2511 if (OptForSize) 2512 return nullptr; 2513 2514 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2515 if (!Len) 2516 return nullptr; 2517 Value *IncLen = 2518 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2519 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(2), 2520 Align(1), IncLen); 2521 2522 // The sprintf result is the unincremented number of bytes in the string. 2523 return B.CreateIntCast(Len, CI->getType(), false); 2524 } 2525 return nullptr; 2526 } 2527 2528 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 2529 Function *Callee = CI->getCalledFunction(); 2530 FunctionType *FT = Callee->getFunctionType(); 2531 if (Value *V = optimizeSPrintFString(CI, B)) { 2532 return V; 2533 } 2534 2535 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2536 // point arguments. 2537 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2538 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2539 FunctionCallee SIPrintFFn = 2540 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2541 CallInst *New = cast<CallInst>(CI->clone()); 2542 New->setCalledFunction(SIPrintFFn); 2543 B.Insert(New); 2544 return New; 2545 } 2546 2547 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2548 // floating point arguments. 2549 if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) { 2550 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2551 auto SmallSPrintFFn = 2552 M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf), 2553 FT, Callee->getAttributes()); 2554 CallInst *New = cast<CallInst>(CI->clone()); 2555 New->setCalledFunction(SmallSPrintFFn); 2556 B.Insert(New); 2557 return New; 2558 } 2559 2560 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 2561 return nullptr; 2562 } 2563 2564 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 2565 IRBuilderBase &B) { 2566 // Check for size 2567 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2568 if (!Size) 2569 return nullptr; 2570 2571 uint64_t N = Size->getZExtValue(); 2572 // Check for a fixed format string. 2573 StringRef FormatStr; 2574 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2575 return nullptr; 2576 2577 // If we just have a format string (nothing else crazy) transform it. 2578 if (CI->getNumArgOperands() == 3) { 2579 // Make sure there's no % in the constant array. We could try to handle 2580 // %% -> % in the future if we cared. 2581 if (FormatStr.find('%') != StringRef::npos) 2582 return nullptr; // we found a format specifier, bail out. 2583 2584 if (N == 0) 2585 return ConstantInt::get(CI->getType(), FormatStr.size()); 2586 else if (N < FormatStr.size() + 1) 2587 return nullptr; 2588 2589 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2590 // strlen(fmt)+1) 2591 B.CreateMemCpy( 2592 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2593 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2594 FormatStr.size() + 1)); // Copy the null byte. 2595 return ConstantInt::get(CI->getType(), FormatStr.size()); 2596 } 2597 2598 // The remaining optimizations require the format string to be "%s" or "%c" 2599 // and have an extra operand. 2600 if (FormatStr.size() == 2 && FormatStr[0] == '%' && 2601 CI->getNumArgOperands() == 4) { 2602 2603 // Decode the second character of the format string. 2604 if (FormatStr[1] == 'c') { 2605 if (N == 0) 2606 return ConstantInt::get(CI->getType(), 1); 2607 else if (N == 1) 2608 return nullptr; 2609 2610 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2611 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2612 return nullptr; 2613 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2614 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2615 B.CreateStore(V, Ptr); 2616 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2617 B.CreateStore(B.getInt8(0), Ptr); 2618 2619 return ConstantInt::get(CI->getType(), 1); 2620 } 2621 2622 if (FormatStr[1] == 's') { 2623 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2624 StringRef Str; 2625 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2626 return nullptr; 2627 2628 if (N == 0) 2629 return ConstantInt::get(CI->getType(), Str.size()); 2630 else if (N < Str.size() + 1) 2631 return nullptr; 2632 2633 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(3), 2634 Align(1), ConstantInt::get(CI->getType(), Str.size() + 1)); 2635 2636 // The snprintf result is the unincremented number of bytes in the string. 2637 return ConstantInt::get(CI->getType(), Str.size()); 2638 } 2639 } 2640 return nullptr; 2641 } 2642 2643 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 2644 if (Value *V = optimizeSnPrintFString(CI, B)) { 2645 return V; 2646 } 2647 2648 if (isKnownNonZero(CI->getOperand(1), DL)) 2649 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2650 return nullptr; 2651 } 2652 2653 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 2654 IRBuilderBase &B) { 2655 optimizeErrorReporting(CI, B, 0); 2656 2657 // All the optimizations depend on the format string. 2658 StringRef FormatStr; 2659 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2660 return nullptr; 2661 2662 // Do not do any of the following transformations if the fprintf return 2663 // value is used, in general the fprintf return value is not compatible 2664 // with fwrite(), fputc() or fputs(). 2665 if (!CI->use_empty()) 2666 return nullptr; 2667 2668 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2669 if (CI->getNumArgOperands() == 2) { 2670 // Could handle %% -> % if we cared. 2671 if (FormatStr.find('%') != StringRef::npos) 2672 return nullptr; // We found a format specifier. 2673 2674 return emitFWrite( 2675 CI->getArgOperand(1), 2676 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 2677 CI->getArgOperand(0), B, DL, TLI); 2678 } 2679 2680 // The remaining optimizations require the format string to be "%s" or "%c" 2681 // and have an extra operand. 2682 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2683 CI->getNumArgOperands() < 3) 2684 return nullptr; 2685 2686 // Decode the second character of the format string. 2687 if (FormatStr[1] == 'c') { 2688 // fprintf(F, "%c", chr) --> fputc(chr, F) 2689 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2690 return nullptr; 2691 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2692 } 2693 2694 if (FormatStr[1] == 's') { 2695 // fprintf(F, "%s", str) --> fputs(str, F) 2696 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2697 return nullptr; 2698 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2699 } 2700 return nullptr; 2701 } 2702 2703 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 2704 Function *Callee = CI->getCalledFunction(); 2705 FunctionType *FT = Callee->getFunctionType(); 2706 if (Value *V = optimizeFPrintFString(CI, B)) { 2707 return V; 2708 } 2709 2710 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2711 // floating point arguments. 2712 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2713 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2714 FunctionCallee FIPrintFFn = 2715 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2716 CallInst *New = cast<CallInst>(CI->clone()); 2717 New->setCalledFunction(FIPrintFFn); 2718 B.Insert(New); 2719 return New; 2720 } 2721 2722 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2723 // 128-bit floating point arguments. 2724 if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) { 2725 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2726 auto SmallFPrintFFn = 2727 M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf), 2728 FT, Callee->getAttributes()); 2729 CallInst *New = cast<CallInst>(CI->clone()); 2730 New->setCalledFunction(SmallFPrintFFn); 2731 B.Insert(New); 2732 return New; 2733 } 2734 2735 return nullptr; 2736 } 2737 2738 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 2739 optimizeErrorReporting(CI, B, 3); 2740 2741 // Get the element size and count. 2742 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2743 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2744 if (SizeC && CountC) { 2745 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2746 2747 // If this is writing zero records, remove the call (it's a noop). 2748 if (Bytes == 0) 2749 return ConstantInt::get(CI->getType(), 0); 2750 2751 // If this is writing one byte, turn it into fputc. 2752 // This optimisation is only valid, if the return value is unused. 2753 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2754 Value *Char = B.CreateLoad(B.getInt8Ty(), 2755 castToCStr(CI->getArgOperand(0), B), "char"); 2756 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2757 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2758 } 2759 } 2760 2761 return nullptr; 2762 } 2763 2764 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 2765 optimizeErrorReporting(CI, B, 1); 2766 2767 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2768 // requires more arguments and thus extra MOVs are required. 2769 bool OptForSize = CI->getFunction()->hasOptSize() || 2770 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2771 PGSOQueryType::IRPass); 2772 if (OptForSize) 2773 return nullptr; 2774 2775 // We can't optimize if return value is used. 2776 if (!CI->use_empty()) 2777 return nullptr; 2778 2779 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2780 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2781 if (!Len) 2782 return nullptr; 2783 2784 // Known to have no uses (see above). 2785 return emitFWrite( 2786 CI->getArgOperand(0), 2787 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2788 CI->getArgOperand(1), B, DL, TLI); 2789 } 2790 2791 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 2792 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2793 if (!CI->use_empty()) 2794 return nullptr; 2795 2796 // Check for a constant string. 2797 // puts("") -> putchar('\n') 2798 StringRef Str; 2799 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 2800 return emitPutChar(B.getInt32('\n'), B, TLI); 2801 2802 return nullptr; 2803 } 2804 2805 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 2806 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 2807 return B.CreateMemMove(CI->getArgOperand(1), Align(1), CI->getArgOperand(0), 2808 Align(1), CI->getArgOperand(2)); 2809 } 2810 2811 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2812 LibFunc Func; 2813 SmallString<20> FloatFuncName = FuncName; 2814 FloatFuncName += 'f'; 2815 if (TLI->getLibFunc(FloatFuncName, Func)) 2816 return TLI->has(Func); 2817 return false; 2818 } 2819 2820 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2821 IRBuilderBase &Builder) { 2822 LibFunc Func; 2823 Function *Callee = CI->getCalledFunction(); 2824 // Check for string/memory library functions. 2825 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2826 // Make sure we never change the calling convention. 2827 assert( 2828 (ignoreCallingConv(Func) || 2829 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) && 2830 "Optimizing string/memory libcall would change the calling convention"); 2831 switch (Func) { 2832 case LibFunc_strcat: 2833 return optimizeStrCat(CI, Builder); 2834 case LibFunc_strncat: 2835 return optimizeStrNCat(CI, Builder); 2836 case LibFunc_strchr: 2837 return optimizeStrChr(CI, Builder); 2838 case LibFunc_strrchr: 2839 return optimizeStrRChr(CI, Builder); 2840 case LibFunc_strcmp: 2841 return optimizeStrCmp(CI, Builder); 2842 case LibFunc_strncmp: 2843 return optimizeStrNCmp(CI, Builder); 2844 case LibFunc_strcpy: 2845 return optimizeStrCpy(CI, Builder); 2846 case LibFunc_stpcpy: 2847 return optimizeStpCpy(CI, Builder); 2848 case LibFunc_strncpy: 2849 return optimizeStrNCpy(CI, Builder); 2850 case LibFunc_strlen: 2851 return optimizeStrLen(CI, Builder); 2852 case LibFunc_strpbrk: 2853 return optimizeStrPBrk(CI, Builder); 2854 case LibFunc_strndup: 2855 return optimizeStrNDup(CI, Builder); 2856 case LibFunc_strtol: 2857 case LibFunc_strtod: 2858 case LibFunc_strtof: 2859 case LibFunc_strtoul: 2860 case LibFunc_strtoll: 2861 case LibFunc_strtold: 2862 case LibFunc_strtoull: 2863 return optimizeStrTo(CI, Builder); 2864 case LibFunc_strspn: 2865 return optimizeStrSpn(CI, Builder); 2866 case LibFunc_strcspn: 2867 return optimizeStrCSpn(CI, Builder); 2868 case LibFunc_strstr: 2869 return optimizeStrStr(CI, Builder); 2870 case LibFunc_memchr: 2871 return optimizeMemChr(CI, Builder); 2872 case LibFunc_memrchr: 2873 return optimizeMemRChr(CI, Builder); 2874 case LibFunc_bcmp: 2875 return optimizeBCmp(CI, Builder); 2876 case LibFunc_memcmp: 2877 return optimizeMemCmp(CI, Builder); 2878 case LibFunc_memcpy: 2879 return optimizeMemCpy(CI, Builder); 2880 case LibFunc_memccpy: 2881 return optimizeMemCCpy(CI, Builder); 2882 case LibFunc_mempcpy: 2883 return optimizeMemPCpy(CI, Builder); 2884 case LibFunc_memmove: 2885 return optimizeMemMove(CI, Builder); 2886 case LibFunc_memset: 2887 return optimizeMemSet(CI, Builder); 2888 case LibFunc_realloc: 2889 return optimizeRealloc(CI, Builder); 2890 case LibFunc_wcslen: 2891 return optimizeWcslen(CI, Builder); 2892 case LibFunc_bcopy: 2893 return optimizeBCopy(CI, Builder); 2894 default: 2895 break; 2896 } 2897 } 2898 return nullptr; 2899 } 2900 2901 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2902 LibFunc Func, 2903 IRBuilderBase &Builder) { 2904 // Don't optimize calls that require strict floating point semantics. 2905 if (CI->isStrictFP()) 2906 return nullptr; 2907 2908 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 2909 return V; 2910 2911 switch (Func) { 2912 case LibFunc_sinpif: 2913 case LibFunc_sinpi: 2914 case LibFunc_cospif: 2915 case LibFunc_cospi: 2916 return optimizeSinCosPi(CI, Builder); 2917 case LibFunc_powf: 2918 case LibFunc_pow: 2919 case LibFunc_powl: 2920 return optimizePow(CI, Builder); 2921 case LibFunc_exp2l: 2922 case LibFunc_exp2: 2923 case LibFunc_exp2f: 2924 return optimizeExp2(CI, Builder); 2925 case LibFunc_fabsf: 2926 case LibFunc_fabs: 2927 case LibFunc_fabsl: 2928 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2929 case LibFunc_sqrtf: 2930 case LibFunc_sqrt: 2931 case LibFunc_sqrtl: 2932 return optimizeSqrt(CI, Builder); 2933 case LibFunc_logf: 2934 case LibFunc_log: 2935 case LibFunc_logl: 2936 case LibFunc_log10f: 2937 case LibFunc_log10: 2938 case LibFunc_log10l: 2939 case LibFunc_log1pf: 2940 case LibFunc_log1p: 2941 case LibFunc_log1pl: 2942 case LibFunc_log2f: 2943 case LibFunc_log2: 2944 case LibFunc_log2l: 2945 case LibFunc_logbf: 2946 case LibFunc_logb: 2947 case LibFunc_logbl: 2948 return optimizeLog(CI, Builder); 2949 case LibFunc_tan: 2950 case LibFunc_tanf: 2951 case LibFunc_tanl: 2952 return optimizeTan(CI, Builder); 2953 case LibFunc_ceil: 2954 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2955 case LibFunc_floor: 2956 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2957 case LibFunc_round: 2958 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2959 case LibFunc_roundeven: 2960 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 2961 case LibFunc_nearbyint: 2962 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2963 case LibFunc_rint: 2964 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2965 case LibFunc_trunc: 2966 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2967 case LibFunc_acos: 2968 case LibFunc_acosh: 2969 case LibFunc_asin: 2970 case LibFunc_asinh: 2971 case LibFunc_atan: 2972 case LibFunc_atanh: 2973 case LibFunc_cbrt: 2974 case LibFunc_cosh: 2975 case LibFunc_exp: 2976 case LibFunc_exp10: 2977 case LibFunc_expm1: 2978 case LibFunc_cos: 2979 case LibFunc_sin: 2980 case LibFunc_sinh: 2981 case LibFunc_tanh: 2982 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 2983 return optimizeUnaryDoubleFP(CI, Builder, true); 2984 return nullptr; 2985 case LibFunc_copysign: 2986 if (hasFloatVersion(CI->getCalledFunction()->getName())) 2987 return optimizeBinaryDoubleFP(CI, Builder); 2988 return nullptr; 2989 case LibFunc_fminf: 2990 case LibFunc_fmin: 2991 case LibFunc_fminl: 2992 case LibFunc_fmaxf: 2993 case LibFunc_fmax: 2994 case LibFunc_fmaxl: 2995 return optimizeFMinFMax(CI, Builder); 2996 case LibFunc_cabs: 2997 case LibFunc_cabsf: 2998 case LibFunc_cabsl: 2999 return optimizeCAbs(CI, Builder); 3000 default: 3001 return nullptr; 3002 } 3003 } 3004 3005 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 3006 // TODO: Split out the code below that operates on FP calls so that 3007 // we can all non-FP calls with the StrictFP attribute to be 3008 // optimized. 3009 if (CI->isNoBuiltin()) 3010 return nullptr; 3011 3012 LibFunc Func; 3013 Function *Callee = CI->getCalledFunction(); 3014 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3015 3016 SmallVector<OperandBundleDef, 2> OpBundles; 3017 CI->getOperandBundlesAsDefs(OpBundles); 3018 3019 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3020 Builder.setDefaultOperandBundles(OpBundles); 3021 3022 // Command-line parameter overrides instruction attribute. 3023 // This can't be moved to optimizeFloatingPointLibCall() because it may be 3024 // used by the intrinsic optimizations. 3025 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 3026 UnsafeFPShrink = EnableUnsafeFPShrink; 3027 else if (isa<FPMathOperator>(CI) && CI->isFast()) 3028 UnsafeFPShrink = true; 3029 3030 // First, check for intrinsics. 3031 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 3032 if (!IsCallingConvC) 3033 return nullptr; 3034 // The FP intrinsics have corresponding constrained versions so we don't 3035 // need to check for the StrictFP attribute here. 3036 switch (II->getIntrinsicID()) { 3037 case Intrinsic::pow: 3038 return optimizePow(CI, Builder); 3039 case Intrinsic::exp2: 3040 return optimizeExp2(CI, Builder); 3041 case Intrinsic::log: 3042 case Intrinsic::log2: 3043 case Intrinsic::log10: 3044 return optimizeLog(CI, Builder); 3045 case Intrinsic::sqrt: 3046 return optimizeSqrt(CI, Builder); 3047 // TODO: Use foldMallocMemset() with memset intrinsic. 3048 case Intrinsic::memset: 3049 return optimizeMemSet(CI, Builder); 3050 case Intrinsic::memcpy: 3051 return optimizeMemCpy(CI, Builder); 3052 case Intrinsic::memmove: 3053 return optimizeMemMove(CI, Builder); 3054 default: 3055 return nullptr; 3056 } 3057 } 3058 3059 // Also try to simplify calls to fortified library functions. 3060 if (Value *SimplifiedFortifiedCI = 3061 FortifiedSimplifier.optimizeCall(CI, Builder)) { 3062 // Try to further simplify the result. 3063 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 3064 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 3065 // Ensure that SimplifiedCI's uses are complete, since some calls have 3066 // their uses analyzed. 3067 replaceAllUsesWith(CI, SimplifiedCI); 3068 3069 // Set insertion point to SimplifiedCI to guarantee we reach all uses 3070 // we might replace later on. 3071 IRBuilderBase::InsertPointGuard Guard(Builder); 3072 Builder.SetInsertPoint(SimplifiedCI); 3073 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) { 3074 // If we were able to further simplify, remove the now redundant call. 3075 substituteInParent(SimplifiedCI, V); 3076 return V; 3077 } 3078 } 3079 return SimplifiedFortifiedCI; 3080 } 3081 3082 // Then check for known library functions. 3083 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 3084 // We never change the calling convention. 3085 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3086 return nullptr; 3087 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 3088 return V; 3089 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 3090 return V; 3091 switch (Func) { 3092 case LibFunc_ffs: 3093 case LibFunc_ffsl: 3094 case LibFunc_ffsll: 3095 return optimizeFFS(CI, Builder); 3096 case LibFunc_fls: 3097 case LibFunc_flsl: 3098 case LibFunc_flsll: 3099 return optimizeFls(CI, Builder); 3100 case LibFunc_abs: 3101 case LibFunc_labs: 3102 case LibFunc_llabs: 3103 return optimizeAbs(CI, Builder); 3104 case LibFunc_isdigit: 3105 return optimizeIsDigit(CI, Builder); 3106 case LibFunc_isascii: 3107 return optimizeIsAscii(CI, Builder); 3108 case LibFunc_toascii: 3109 return optimizeToAscii(CI, Builder); 3110 case LibFunc_atoi: 3111 case LibFunc_atol: 3112 case LibFunc_atoll: 3113 return optimizeAtoi(CI, Builder); 3114 case LibFunc_strtol: 3115 case LibFunc_strtoll: 3116 return optimizeStrtol(CI, Builder); 3117 case LibFunc_printf: 3118 return optimizePrintF(CI, Builder); 3119 case LibFunc_sprintf: 3120 return optimizeSPrintF(CI, Builder); 3121 case LibFunc_snprintf: 3122 return optimizeSnPrintF(CI, Builder); 3123 case LibFunc_fprintf: 3124 return optimizeFPrintF(CI, Builder); 3125 case LibFunc_fwrite: 3126 return optimizeFWrite(CI, Builder); 3127 case LibFunc_fputs: 3128 return optimizeFPuts(CI, Builder); 3129 case LibFunc_puts: 3130 return optimizePuts(CI, Builder); 3131 case LibFunc_perror: 3132 return optimizeErrorReporting(CI, Builder); 3133 case LibFunc_vfprintf: 3134 case LibFunc_fiprintf: 3135 return optimizeErrorReporting(CI, Builder, 0); 3136 default: 3137 return nullptr; 3138 } 3139 } 3140 return nullptr; 3141 } 3142 3143 LibCallSimplifier::LibCallSimplifier( 3144 const DataLayout &DL, const TargetLibraryInfo *TLI, 3145 OptimizationRemarkEmitter &ORE, 3146 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 3147 function_ref<void(Instruction *, Value *)> Replacer, 3148 function_ref<void(Instruction *)> Eraser) 3149 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 3150 UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {} 3151 3152 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 3153 // Indirect through the replacer used in this instance. 3154 Replacer(I, With); 3155 } 3156 3157 void LibCallSimplifier::eraseFromParent(Instruction *I) { 3158 Eraser(I); 3159 } 3160 3161 // TODO: 3162 // Additional cases that we need to add to this file: 3163 // 3164 // cbrt: 3165 // * cbrt(expN(X)) -> expN(x/3) 3166 // * cbrt(sqrt(x)) -> pow(x,1/6) 3167 // * cbrt(cbrt(x)) -> pow(x,1/9) 3168 // 3169 // exp, expf, expl: 3170 // * exp(log(x)) -> x 3171 // 3172 // log, logf, logl: 3173 // * log(exp(x)) -> x 3174 // * log(exp(y)) -> y*log(e) 3175 // * log(exp10(y)) -> y*log(10) 3176 // * log(sqrt(x)) -> 0.5*log(x) 3177 // 3178 // pow, powf, powl: 3179 // * pow(sqrt(x),y) -> pow(x,y*0.5) 3180 // * pow(pow(x,y),z)-> pow(x,y*z) 3181 // 3182 // signbit: 3183 // * signbit(cnst) -> cnst' 3184 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 3185 // 3186 // sqrt, sqrtf, sqrtl: 3187 // * sqrt(expN(x)) -> expN(x*0.5) 3188 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 3189 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 3190 // 3191 3192 //===----------------------------------------------------------------------===// 3193 // Fortified Library Call Optimizations 3194 //===----------------------------------------------------------------------===// 3195 3196 bool 3197 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 3198 unsigned ObjSizeOp, 3199 Optional<unsigned> SizeOp, 3200 Optional<unsigned> StrOp, 3201 Optional<unsigned> FlagOp) { 3202 // If this function takes a flag argument, the implementation may use it to 3203 // perform extra checks. Don't fold into the non-checking variant. 3204 if (FlagOp) { 3205 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 3206 if (!Flag || !Flag->isZero()) 3207 return false; 3208 } 3209 3210 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 3211 return true; 3212 3213 if (ConstantInt *ObjSizeCI = 3214 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 3215 if (ObjSizeCI->isMinusOne()) 3216 return true; 3217 // If the object size wasn't -1 (unknown), bail out if we were asked to. 3218 if (OnlyLowerUnknownSize) 3219 return false; 3220 if (StrOp) { 3221 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 3222 // If the length is 0 we don't know how long it is and so we can't 3223 // remove the check. 3224 if (Len) 3225 annotateDereferenceableBytes(CI, *StrOp, Len); 3226 else 3227 return false; 3228 return ObjSizeCI->getZExtValue() >= Len; 3229 } 3230 3231 if (SizeOp) { 3232 if (ConstantInt *SizeCI = 3233 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 3234 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 3235 } 3236 } 3237 return false; 3238 } 3239 3240 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 3241 IRBuilderBase &B) { 3242 if (isFortifiedCallFoldable(CI, 3, 2)) { 3243 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3244 Align(1), CI->getArgOperand(2)); 3245 return CI->getArgOperand(0); 3246 } 3247 return nullptr; 3248 } 3249 3250 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 3251 IRBuilderBase &B) { 3252 if (isFortifiedCallFoldable(CI, 3, 2)) { 3253 CallInst *NewCI = 3254 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3255 Align(1), CI->getArgOperand(2)); 3256 NewCI->setAttributes(CI->getAttributes()); 3257 NewCI->removeAttributes(AttributeList::ReturnIndex, 3258 AttributeFuncs::typeIncompatible(NewCI->getType())); 3259 return CI->getArgOperand(0); 3260 } 3261 return nullptr; 3262 } 3263 3264 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 3265 IRBuilderBase &B) { 3266 // TODO: Try foldMallocMemset() here. 3267 3268 if (isFortifiedCallFoldable(CI, 3, 2)) { 3269 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 3270 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 3271 CI->getArgOperand(2), Align(1)); 3272 NewCI->setAttributes(CI->getAttributes()); 3273 NewCI->removeAttributes(AttributeList::ReturnIndex, 3274 AttributeFuncs::typeIncompatible(NewCI->getType())); 3275 return CI->getArgOperand(0); 3276 } 3277 return nullptr; 3278 } 3279 3280 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 3281 IRBuilderBase &B) { 3282 const DataLayout &DL = CI->getModule()->getDataLayout(); 3283 if (isFortifiedCallFoldable(CI, 3, 2)) 3284 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3285 CI->getArgOperand(2), B, DL, TLI)) { 3286 CallInst *NewCI = cast<CallInst>(Call); 3287 NewCI->setAttributes(CI->getAttributes()); 3288 NewCI->removeAttributes( 3289 AttributeList::ReturnIndex, 3290 AttributeFuncs::typeIncompatible(NewCI->getType())); 3291 return NewCI; 3292 } 3293 return nullptr; 3294 } 3295 3296 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 3297 IRBuilderBase &B, 3298 LibFunc Func) { 3299 const DataLayout &DL = CI->getModule()->getDataLayout(); 3300 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 3301 *ObjSize = CI->getArgOperand(2); 3302 3303 // __stpcpy_chk(x,x,...) -> x+strlen(x) 3304 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 3305 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3306 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3307 } 3308 3309 // If a) we don't have any length information, or b) we know this will 3310 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3311 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3312 // TODO: It might be nice to get a maximum length out of the possible 3313 // string lengths for varying. 3314 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 3315 if (Func == LibFunc_strcpy_chk) 3316 return emitStrCpy(Dst, Src, B, TLI); 3317 else 3318 return emitStpCpy(Dst, Src, B, TLI); 3319 } 3320 3321 if (OnlyLowerUnknownSize) 3322 return nullptr; 3323 3324 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3325 uint64_t Len = GetStringLength(Src); 3326 if (Len) 3327 annotateDereferenceableBytes(CI, 1, Len); 3328 else 3329 return nullptr; 3330 3331 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 3332 Value *LenV = ConstantInt::get(SizeTTy, Len); 3333 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 3334 // If the function was an __stpcpy_chk, and we were able to fold it into 3335 // a __memcpy_chk, we still need to return the correct end pointer. 3336 if (Ret && Func == LibFunc_stpcpy_chk) 3337 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 3338 return Ret; 3339 } 3340 3341 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 3342 IRBuilderBase &B) { 3343 if (isFortifiedCallFoldable(CI, 1, None, 0)) 3344 return emitStrLen(CI->getArgOperand(0), B, CI->getModule()->getDataLayout(), 3345 TLI); 3346 return nullptr; 3347 } 3348 3349 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 3350 IRBuilderBase &B, 3351 LibFunc Func) { 3352 if (isFortifiedCallFoldable(CI, 3, 2)) { 3353 if (Func == LibFunc_strncpy_chk) 3354 return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3355 CI->getArgOperand(2), B, TLI); 3356 else 3357 return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3358 CI->getArgOperand(2), B, TLI); 3359 } 3360 3361 return nullptr; 3362 } 3363 3364 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 3365 IRBuilderBase &B) { 3366 if (isFortifiedCallFoldable(CI, 4, 3)) 3367 return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3368 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI); 3369 3370 return nullptr; 3371 } 3372 3373 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 3374 IRBuilderBase &B) { 3375 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 3376 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 3377 return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3378 CI->getArgOperand(4), VariadicArgs, B, TLI); 3379 } 3380 3381 return nullptr; 3382 } 3383 3384 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3385 IRBuilderBase &B) { 3386 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3387 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 3388 return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs, 3389 B, TLI); 3390 } 3391 3392 return nullptr; 3393 } 3394 3395 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3396 IRBuilderBase &B) { 3397 if (isFortifiedCallFoldable(CI, 2)) 3398 return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI); 3399 3400 return nullptr; 3401 } 3402 3403 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3404 IRBuilderBase &B) { 3405 if (isFortifiedCallFoldable(CI, 3)) 3406 return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3407 CI->getArgOperand(2), B, TLI); 3408 3409 return nullptr; 3410 } 3411 3412 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3413 IRBuilderBase &B) { 3414 if (isFortifiedCallFoldable(CI, 3)) 3415 return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3416 CI->getArgOperand(2), B, TLI); 3417 3418 return nullptr; 3419 } 3420 3421 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3422 IRBuilderBase &B) { 3423 if (isFortifiedCallFoldable(CI, 3)) 3424 return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3425 CI->getArgOperand(2), B, TLI); 3426 3427 return nullptr; 3428 } 3429 3430 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3431 IRBuilderBase &B) { 3432 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3433 return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3434 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI); 3435 3436 return nullptr; 3437 } 3438 3439 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3440 IRBuilderBase &B) { 3441 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3442 return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3443 CI->getArgOperand(4), B, TLI); 3444 3445 return nullptr; 3446 } 3447 3448 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 3449 IRBuilderBase &Builder) { 3450 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3451 // Some clang users checked for _chk libcall availability using: 3452 // __has_builtin(__builtin___memcpy_chk) 3453 // When compiling with -fno-builtin, this is always true. 3454 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3455 // end up with fortified libcalls, which isn't acceptable in a freestanding 3456 // environment which only provides their non-fortified counterparts. 3457 // 3458 // Until we change clang and/or teach external users to check for availability 3459 // differently, disregard the "nobuiltin" attribute and TLI::has. 3460 // 3461 // PR23093. 3462 3463 LibFunc Func; 3464 Function *Callee = CI->getCalledFunction(); 3465 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3466 3467 SmallVector<OperandBundleDef, 2> OpBundles; 3468 CI->getOperandBundlesAsDefs(OpBundles); 3469 3470 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3471 Builder.setDefaultOperandBundles(OpBundles); 3472 3473 // First, check that this is a known library functions and that the prototype 3474 // is correct. 3475 if (!TLI->getLibFunc(*Callee, Func)) 3476 return nullptr; 3477 3478 // We never change the calling convention. 3479 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3480 return nullptr; 3481 3482 switch (Func) { 3483 case LibFunc_memcpy_chk: 3484 return optimizeMemCpyChk(CI, Builder); 3485 case LibFunc_mempcpy_chk: 3486 return optimizeMemPCpyChk(CI, Builder); 3487 case LibFunc_memmove_chk: 3488 return optimizeMemMoveChk(CI, Builder); 3489 case LibFunc_memset_chk: 3490 return optimizeMemSetChk(CI, Builder); 3491 case LibFunc_stpcpy_chk: 3492 case LibFunc_strcpy_chk: 3493 return optimizeStrpCpyChk(CI, Builder, Func); 3494 case LibFunc_strlen_chk: 3495 return optimizeStrLenChk(CI, Builder); 3496 case LibFunc_stpncpy_chk: 3497 case LibFunc_strncpy_chk: 3498 return optimizeStrpNCpyChk(CI, Builder, Func); 3499 case LibFunc_memccpy_chk: 3500 return optimizeMemCCpyChk(CI, Builder); 3501 case LibFunc_snprintf_chk: 3502 return optimizeSNPrintfChk(CI, Builder); 3503 case LibFunc_sprintf_chk: 3504 return optimizeSPrintfChk(CI, Builder); 3505 case LibFunc_strcat_chk: 3506 return optimizeStrCatChk(CI, Builder); 3507 case LibFunc_strlcat_chk: 3508 return optimizeStrLCat(CI, Builder); 3509 case LibFunc_strncat_chk: 3510 return optimizeStrNCatChk(CI, Builder); 3511 case LibFunc_strlcpy_chk: 3512 return optimizeStrLCpyChk(CI, Builder); 3513 case LibFunc_vsnprintf_chk: 3514 return optimizeVSNPrintfChk(CI, Builder); 3515 case LibFunc_vsprintf_chk: 3516 return optimizeVSPrintfChk(CI, Builder); 3517 default: 3518 break; 3519 } 3520 return nullptr; 3521 } 3522 3523 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3524 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3525 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 3526