1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is a utility pass used for testing the InstructionSimplify analysis. 11 // The analysis is applied to every instruction, and if it simplifies then the 12 // instruction is replaced by the simplification. If you are looking for a pass 13 // that performs serious instruction folding, use the instcombine pass instead. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DiagnosticInfo.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/KnownBits.h" 34 #include "llvm/Transforms/Utils/BuildLibCalls.h" 35 #include "llvm/Transforms/Utils/Local.h" 36 37 using namespace llvm; 38 using namespace PatternMatch; 39 40 static cl::opt<bool> 41 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 42 cl::init(false), 43 cl::desc("Enable unsafe double to float " 44 "shrinking for math lib calls")); 45 46 47 //===----------------------------------------------------------------------===// 48 // Helper Functions 49 //===----------------------------------------------------------------------===// 50 51 static bool ignoreCallingConv(LibFunc Func) { 52 return Func == LibFunc_abs || Func == LibFunc_labs || 53 Func == LibFunc_llabs || Func == LibFunc_strlen; 54 } 55 56 static bool isCallingConvCCompatible(CallInst *CI) { 57 switch(CI->getCallingConv()) { 58 default: 59 return false; 60 case llvm::CallingConv::C: 61 return true; 62 case llvm::CallingConv::ARM_APCS: 63 case llvm::CallingConv::ARM_AAPCS: 64 case llvm::CallingConv::ARM_AAPCS_VFP: { 65 66 // The iOS ABI diverges from the standard in some cases, so for now don't 67 // try to simplify those calls. 68 if (Triple(CI->getModule()->getTargetTriple()).isiOS()) 69 return false; 70 71 auto *FuncTy = CI->getFunctionType(); 72 73 if (!FuncTy->getReturnType()->isPointerTy() && 74 !FuncTy->getReturnType()->isIntegerTy() && 75 !FuncTy->getReturnType()->isVoidTy()) 76 return false; 77 78 for (auto Param : FuncTy->params()) { 79 if (!Param->isPointerTy() && !Param->isIntegerTy()) 80 return false; 81 } 82 return true; 83 } 84 } 85 return false; 86 } 87 88 /// Return true if it only matters that the value is equal or not-equal to zero. 89 static bool isOnlyUsedInZeroEqualityComparison(Value *V) { 90 for (User *U : V->users()) { 91 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 92 if (IC->isEquality()) 93 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 94 if (C->isNullValue()) 95 continue; 96 // Unknown instruction. 97 return false; 98 } 99 return true; 100 } 101 102 /// Return true if it is only used in equality comparisons with With. 103 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 104 for (User *U : V->users()) { 105 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 106 if (IC->isEquality() && IC->getOperand(1) == With) 107 continue; 108 // Unknown instruction. 109 return false; 110 } 111 return true; 112 } 113 114 static bool callHasFloatingPointArgument(const CallInst *CI) { 115 return any_of(CI->operands(), [](const Use &OI) { 116 return OI->getType()->isFloatingPointTy(); 117 }); 118 } 119 120 /// \brief Check whether the overloaded unary floating point function 121 /// corresponding to \a Ty is available. 122 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty, 123 LibFunc DoubleFn, LibFunc FloatFn, 124 LibFunc LongDoubleFn) { 125 switch (Ty->getTypeID()) { 126 case Type::FloatTyID: 127 return TLI->has(FloatFn); 128 case Type::DoubleTyID: 129 return TLI->has(DoubleFn); 130 default: 131 return TLI->has(LongDoubleFn); 132 } 133 } 134 135 //===----------------------------------------------------------------------===// 136 // String and Memory Library Call Optimizations 137 //===----------------------------------------------------------------------===// 138 139 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 140 // Extract some information from the instruction 141 Value *Dst = CI->getArgOperand(0); 142 Value *Src = CI->getArgOperand(1); 143 144 // See if we can get the length of the input string. 145 uint64_t Len = GetStringLength(Src); 146 if (Len == 0) 147 return nullptr; 148 --Len; // Unbias length. 149 150 // Handle the simple, do-nothing case: strcat(x, "") -> x 151 if (Len == 0) 152 return Dst; 153 154 return emitStrLenMemCpy(Src, Dst, Len, B); 155 } 156 157 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 158 IRBuilder<> &B) { 159 // We need to find the end of the destination string. That's where the 160 // memory is to be moved to. We just generate a call to strlen. 161 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 162 if (!DstLen) 163 return nullptr; 164 165 // Now that we have the destination's length, we must index into the 166 // destination's pointer to get the actual memcpy destination (end of 167 // the string .. we're concatenating). 168 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 169 170 // We have enough information to now generate the memcpy call to do the 171 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 172 B.CreateMemCpy(CpyDst, Src, 173 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1), 174 1); 175 return Dst; 176 } 177 178 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 179 // Extract some information from the instruction. 180 Value *Dst = CI->getArgOperand(0); 181 Value *Src = CI->getArgOperand(1); 182 uint64_t Len; 183 184 // We don't do anything if length is not constant. 185 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 186 Len = LengthArg->getZExtValue(); 187 else 188 return nullptr; 189 190 // See if we can get the length of the input string. 191 uint64_t SrcLen = GetStringLength(Src); 192 if (SrcLen == 0) 193 return nullptr; 194 --SrcLen; // Unbias length. 195 196 // Handle the simple, do-nothing cases: 197 // strncat(x, "", c) -> x 198 // strncat(x, c, 0) -> x 199 if (SrcLen == 0 || Len == 0) 200 return Dst; 201 202 // We don't optimize this case. 203 if (Len < SrcLen) 204 return nullptr; 205 206 // strncat(x, s, c) -> strcat(x, s) 207 // s is constant so the strcat can be optimized further. 208 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 209 } 210 211 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 212 Function *Callee = CI->getCalledFunction(); 213 FunctionType *FT = Callee->getFunctionType(); 214 Value *SrcStr = CI->getArgOperand(0); 215 216 // If the second operand is non-constant, see if we can compute the length 217 // of the input string and turn this into memchr. 218 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 219 if (!CharC) { 220 uint64_t Len = GetStringLength(SrcStr); 221 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 222 return nullptr; 223 224 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 225 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 226 B, DL, TLI); 227 } 228 229 // Otherwise, the character is a constant, see if the first argument is 230 // a string literal. If so, we can constant fold. 231 StringRef Str; 232 if (!getConstantStringInfo(SrcStr, Str)) { 233 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 234 return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI), 235 "strchr"); 236 return nullptr; 237 } 238 239 // Compute the offset, make sure to handle the case when we're searching for 240 // zero (a weird way to spell strlen). 241 size_t I = (0xFF & CharC->getSExtValue()) == 0 242 ? Str.size() 243 : Str.find(CharC->getSExtValue()); 244 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 245 return Constant::getNullValue(CI->getType()); 246 247 // strchr(s+n,c) -> gep(s+n+i,c) 248 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 249 } 250 251 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 252 Value *SrcStr = CI->getArgOperand(0); 253 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 254 255 // Cannot fold anything if we're not looking for a constant. 256 if (!CharC) 257 return nullptr; 258 259 StringRef Str; 260 if (!getConstantStringInfo(SrcStr, Str)) { 261 // strrchr(s, 0) -> strchr(s, 0) 262 if (CharC->isZero()) 263 return emitStrChr(SrcStr, '\0', B, TLI); 264 return nullptr; 265 } 266 267 // Compute the offset. 268 size_t I = (0xFF & CharC->getSExtValue()) == 0 269 ? Str.size() 270 : Str.rfind(CharC->getSExtValue()); 271 if (I == StringRef::npos) // Didn't find the char. Return null. 272 return Constant::getNullValue(CI->getType()); 273 274 // strrchr(s+n,c) -> gep(s+n+i,c) 275 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 276 } 277 278 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 279 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 280 if (Str1P == Str2P) // strcmp(x,x) -> 0 281 return ConstantInt::get(CI->getType(), 0); 282 283 StringRef Str1, Str2; 284 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 285 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 286 287 // strcmp(x, y) -> cnst (if both x and y are constant strings) 288 if (HasStr1 && HasStr2) 289 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 290 291 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 292 return B.CreateNeg( 293 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 294 295 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 296 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 297 298 // strcmp(P, "x") -> memcmp(P, "x", 2) 299 uint64_t Len1 = GetStringLength(Str1P); 300 uint64_t Len2 = GetStringLength(Str2P); 301 if (Len1 && Len2) { 302 return emitMemCmp(Str1P, Str2P, 303 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 304 std::min(Len1, Len2)), 305 B, DL, TLI); 306 } 307 308 return nullptr; 309 } 310 311 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 312 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 313 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 314 return ConstantInt::get(CI->getType(), 0); 315 316 // Get the length argument if it is constant. 317 uint64_t Length; 318 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 319 Length = LengthArg->getZExtValue(); 320 else 321 return nullptr; 322 323 if (Length == 0) // strncmp(x,y,0) -> 0 324 return ConstantInt::get(CI->getType(), 0); 325 326 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 327 return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 328 329 StringRef Str1, Str2; 330 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 331 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 332 333 // strncmp(x, y) -> cnst (if both x and y are constant strings) 334 if (HasStr1 && HasStr2) { 335 StringRef SubStr1 = Str1.substr(0, Length); 336 StringRef SubStr2 = Str2.substr(0, Length); 337 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 338 } 339 340 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 341 return B.CreateNeg( 342 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 343 344 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 345 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 346 347 return nullptr; 348 } 349 350 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 351 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 352 if (Dst == Src) // strcpy(x,x) -> x 353 return Src; 354 355 // See if we can get the length of the input string. 356 uint64_t Len = GetStringLength(Src); 357 if (Len == 0) 358 return nullptr; 359 360 // We have enough information to now generate the memcpy call to do the 361 // copy for us. Make a memcpy to copy the nul byte with align = 1. 362 B.CreateMemCpy(Dst, Src, 363 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1); 364 return Dst; 365 } 366 367 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 368 Function *Callee = CI->getCalledFunction(); 369 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 370 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 371 Value *StrLen = emitStrLen(Src, B, DL, TLI); 372 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 373 } 374 375 // See if we can get the length of the input string. 376 uint64_t Len = GetStringLength(Src); 377 if (Len == 0) 378 return nullptr; 379 380 Type *PT = Callee->getFunctionType()->getParamType(0); 381 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 382 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 383 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 384 385 // We have enough information to now generate the memcpy call to do the 386 // copy for us. Make a memcpy to copy the nul byte with align = 1. 387 B.CreateMemCpy(Dst, Src, LenV, 1); 388 return DstEnd; 389 } 390 391 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 392 Function *Callee = CI->getCalledFunction(); 393 Value *Dst = CI->getArgOperand(0); 394 Value *Src = CI->getArgOperand(1); 395 Value *LenOp = CI->getArgOperand(2); 396 397 // See if we can get the length of the input string. 398 uint64_t SrcLen = GetStringLength(Src); 399 if (SrcLen == 0) 400 return nullptr; 401 --SrcLen; 402 403 if (SrcLen == 0) { 404 // strncpy(x, "", y) -> memset(x, '\0', y, 1) 405 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 406 return Dst; 407 } 408 409 uint64_t Len; 410 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 411 Len = LengthArg->getZExtValue(); 412 else 413 return nullptr; 414 415 if (Len == 0) 416 return Dst; // strncpy(x, y, 0) -> x 417 418 // Let strncpy handle the zero padding 419 if (Len > SrcLen + 1) 420 return nullptr; 421 422 Type *PT = Callee->getFunctionType()->getParamType(0); 423 // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] 424 B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1); 425 426 return Dst; 427 } 428 429 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 430 Value *Src = CI->getArgOperand(0); 431 432 // Constant folding: strlen("xyz") -> 3 433 if (uint64_t Len = GetStringLength(Src)) 434 return ConstantInt::get(CI->getType(), Len - 1); 435 436 // If s is a constant pointer pointing to a string literal, we can fold 437 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 438 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 439 // We only try to simplify strlen when the pointer s points to an array 440 // of i8. Otherwise, we would need to scale the offset x before doing the 441 // subtraction. This will make the optimization more complex, and it's not 442 // very useful because calling strlen for a pointer of other types is 443 // very uncommon. 444 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 445 if (!isGEPBasedOnPointerToString(GEP)) 446 return nullptr; 447 448 StringRef Str; 449 if (getConstantStringInfo(GEP->getOperand(0), Str, 0, false)) { 450 size_t NullTermIdx = Str.find('\0'); 451 452 // If the string does not have '\0', leave it to strlen to compute 453 // its length. 454 if (NullTermIdx == StringRef::npos) 455 return nullptr; 456 457 Value *Offset = GEP->getOperand(2); 458 unsigned BitWidth = Offset->getType()->getIntegerBitWidth(); 459 KnownBits Known(BitWidth); 460 computeKnownBits(Offset, Known, DL, 0, nullptr, CI, nullptr); 461 Known.Zero.flipAllBits(); 462 size_t ArrSize = 463 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 464 465 // KnownZero's bits are flipped, so zeros in KnownZero now represent 466 // bits known to be zeros in Offset, and ones in KnowZero represent 467 // bits unknown in Offset. Therefore, Offset is known to be in range 468 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 469 // unsigned-less-than NullTermIdx. 470 // 471 // If Offset is not provably in the range [0, NullTermIdx], we can still 472 // optimize if we can prove that the program has undefined behavior when 473 // Offset is outside that range. That is the case when GEP->getOperand(0) 474 // is a pointer to an object whose memory extent is NullTermIdx+1. 475 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 476 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 477 NullTermIdx == ArrSize - 1)) 478 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 479 Offset); 480 } 481 482 return nullptr; 483 } 484 485 // strlen(x?"foo":"bars") --> x ? 3 : 4 486 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 487 uint64_t LenTrue = GetStringLength(SI->getTrueValue()); 488 uint64_t LenFalse = GetStringLength(SI->getFalseValue()); 489 if (LenTrue && LenFalse) { 490 Function *Caller = CI->getParent()->getParent(); 491 emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller, 492 SI->getDebugLoc(), 493 "folded strlen(select) to select of constants"); 494 return B.CreateSelect(SI->getCondition(), 495 ConstantInt::get(CI->getType(), LenTrue - 1), 496 ConstantInt::get(CI->getType(), LenFalse - 1)); 497 } 498 } 499 500 // strlen(x) != 0 --> *x != 0 501 // strlen(x) == 0 --> *x == 0 502 if (isOnlyUsedInZeroEqualityComparison(CI)) 503 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); 504 505 return nullptr; 506 } 507 508 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 509 StringRef S1, S2; 510 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 511 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 512 513 // strpbrk(s, "") -> nullptr 514 // strpbrk("", s) -> nullptr 515 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 516 return Constant::getNullValue(CI->getType()); 517 518 // Constant folding. 519 if (HasS1 && HasS2) { 520 size_t I = S1.find_first_of(S2); 521 if (I == StringRef::npos) // No match. 522 return Constant::getNullValue(CI->getType()); 523 524 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 525 "strpbrk"); 526 } 527 528 // strpbrk(s, "a") -> strchr(s, 'a') 529 if (HasS2 && S2.size() == 1) 530 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 531 532 return nullptr; 533 } 534 535 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 536 Value *EndPtr = CI->getArgOperand(1); 537 if (isa<ConstantPointerNull>(EndPtr)) { 538 // With a null EndPtr, this function won't capture the main argument. 539 // It would be readonly too, except that it still may write to errno. 540 CI->addParamAttr(0, Attribute::NoCapture); 541 } 542 543 return nullptr; 544 } 545 546 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 547 StringRef S1, S2; 548 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 549 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 550 551 // strspn(s, "") -> 0 552 // strspn("", s) -> 0 553 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 554 return Constant::getNullValue(CI->getType()); 555 556 // Constant folding. 557 if (HasS1 && HasS2) { 558 size_t Pos = S1.find_first_not_of(S2); 559 if (Pos == StringRef::npos) 560 Pos = S1.size(); 561 return ConstantInt::get(CI->getType(), Pos); 562 } 563 564 return nullptr; 565 } 566 567 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 568 StringRef S1, S2; 569 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 570 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 571 572 // strcspn("", s) -> 0 573 if (HasS1 && S1.empty()) 574 return Constant::getNullValue(CI->getType()); 575 576 // Constant folding. 577 if (HasS1 && HasS2) { 578 size_t Pos = S1.find_first_of(S2); 579 if (Pos == StringRef::npos) 580 Pos = S1.size(); 581 return ConstantInt::get(CI->getType(), Pos); 582 } 583 584 // strcspn(s, "") -> strlen(s) 585 if (HasS2 && S2.empty()) 586 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 587 588 return nullptr; 589 } 590 591 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 592 // fold strstr(x, x) -> x. 593 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 594 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 595 596 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 597 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 598 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 599 if (!StrLen) 600 return nullptr; 601 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 602 StrLen, B, DL, TLI); 603 if (!StrNCmp) 604 return nullptr; 605 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 606 ICmpInst *Old = cast<ICmpInst>(*UI++); 607 Value *Cmp = 608 B.CreateICmp(Old->getPredicate(), StrNCmp, 609 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 610 replaceAllUsesWith(Old, Cmp); 611 } 612 return CI; 613 } 614 615 // See if either input string is a constant string. 616 StringRef SearchStr, ToFindStr; 617 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 618 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 619 620 // fold strstr(x, "") -> x. 621 if (HasStr2 && ToFindStr.empty()) 622 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 623 624 // If both strings are known, constant fold it. 625 if (HasStr1 && HasStr2) { 626 size_t Offset = SearchStr.find(ToFindStr); 627 628 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 629 return Constant::getNullValue(CI->getType()); 630 631 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 632 Value *Result = castToCStr(CI->getArgOperand(0), B); 633 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); 634 return B.CreateBitCast(Result, CI->getType()); 635 } 636 637 // fold strstr(x, "y") -> strchr(x, 'y'). 638 if (HasStr2 && ToFindStr.size() == 1) { 639 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 640 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 641 } 642 return nullptr; 643 } 644 645 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { 646 Value *SrcStr = CI->getArgOperand(0); 647 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 648 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 649 650 // memchr(x, y, 0) -> null 651 if (LenC && LenC->isNullValue()) 652 return Constant::getNullValue(CI->getType()); 653 654 // From now on we need at least constant length and string. 655 StringRef Str; 656 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 657 return nullptr; 658 659 // Truncate the string to LenC. If Str is smaller than LenC we will still only 660 // scan the string, as reading past the end of it is undefined and we can just 661 // return null if we don't find the char. 662 Str = Str.substr(0, LenC->getZExtValue()); 663 664 // If the char is variable but the input str and length are not we can turn 665 // this memchr call into a simple bit field test. Of course this only works 666 // when the return value is only checked against null. 667 // 668 // It would be really nice to reuse switch lowering here but we can't change 669 // the CFG at this point. 670 // 671 // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0 672 // after bounds check. 673 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 674 unsigned char Max = 675 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 676 reinterpret_cast<const unsigned char *>(Str.end())); 677 678 // Make sure the bit field we're about to create fits in a register on the 679 // target. 680 // FIXME: On a 64 bit architecture this prevents us from using the 681 // interesting range of alpha ascii chars. We could do better by emitting 682 // two bitfields or shifting the range by 64 if no lower chars are used. 683 if (!DL.fitsInLegalInteger(Max + 1)) 684 return nullptr; 685 686 // For the bit field use a power-of-2 type with at least 8 bits to avoid 687 // creating unnecessary illegal types. 688 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 689 690 // Now build the bit field. 691 APInt Bitfield(Width, 0); 692 for (char C : Str) 693 Bitfield.setBit((unsigned char)C); 694 Value *BitfieldC = B.getInt(Bitfield); 695 696 // First check that the bit field access is within bounds. 697 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 698 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 699 "memchr.bounds"); 700 701 // Create code that checks if the given bit is set in the field. 702 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 703 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 704 705 // Finally merge both checks and cast to pointer type. The inttoptr 706 // implicitly zexts the i1 to intptr type. 707 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 708 } 709 710 // Check if all arguments are constants. If so, we can constant fold. 711 if (!CharC) 712 return nullptr; 713 714 // Compute the offset. 715 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 716 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 717 return Constant::getNullValue(CI->getType()); 718 719 // memchr(s+n,c,l) -> gep(s+n+i,c) 720 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 721 } 722 723 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 724 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 725 726 if (LHS == RHS) // memcmp(s,s,x) -> 0 727 return Constant::getNullValue(CI->getType()); 728 729 // Make sure we have a constant length. 730 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 731 if (!LenC) 732 return nullptr; 733 uint64_t Len = LenC->getZExtValue(); 734 735 if (Len == 0) // memcmp(s1,s2,0) -> 0 736 return Constant::getNullValue(CI->getType()); 737 738 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 739 if (Len == 1) { 740 Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"), 741 CI->getType(), "lhsv"); 742 Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"), 743 CI->getType(), "rhsv"); 744 return B.CreateSub(LHSV, RHSV, "chardiff"); 745 } 746 747 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 748 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 749 750 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 751 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 752 753 if (getKnownAlignment(LHS, DL, CI) >= PrefAlignment && 754 getKnownAlignment(RHS, DL, CI) >= PrefAlignment) { 755 756 Type *LHSPtrTy = 757 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 758 Type *RHSPtrTy = 759 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 760 761 Value *LHSV = 762 B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy, "lhsc"), "lhsv"); 763 Value *RHSV = 764 B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy, "rhsc"), "rhsv"); 765 766 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 767 } 768 } 769 770 // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant) 771 StringRef LHSStr, RHSStr; 772 if (getConstantStringInfo(LHS, LHSStr) && 773 getConstantStringInfo(RHS, RHSStr)) { 774 // Make sure we're not reading out-of-bounds memory. 775 if (Len > LHSStr.size() || Len > RHSStr.size()) 776 return nullptr; 777 // Fold the memcmp and normalize the result. This way we get consistent 778 // results across multiple platforms. 779 uint64_t Ret = 0; 780 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 781 if (Cmp < 0) 782 Ret = -1; 783 else if (Cmp > 0) 784 Ret = 1; 785 return ConstantInt::get(CI->getType(), Ret); 786 } 787 788 return nullptr; 789 } 790 791 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { 792 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) 793 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 794 CI->getArgOperand(2), 1); 795 return CI->getArgOperand(0); 796 } 797 798 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { 799 // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) 800 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 801 CI->getArgOperand(2), 1); 802 return CI->getArgOperand(0); 803 } 804 805 // TODO: Does this belong in BuildLibCalls or should all of those similar 806 // functions be moved here? 807 static Value *emitCalloc(Value *Num, Value *Size, const AttributeList &Attrs, 808 IRBuilder<> &B, const TargetLibraryInfo &TLI) { 809 LibFunc Func; 810 if (!TLI.getLibFunc("calloc", Func) || !TLI.has(Func)) 811 return nullptr; 812 813 Module *M = B.GetInsertBlock()->getModule(); 814 const DataLayout &DL = M->getDataLayout(); 815 IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext())); 816 Value *Calloc = M->getOrInsertFunction("calloc", Attrs, B.getInt8PtrTy(), 817 PtrType, PtrType); 818 CallInst *CI = B.CreateCall(Calloc, { Num, Size }, "calloc"); 819 820 if (const auto *F = dyn_cast<Function>(Calloc->stripPointerCasts())) 821 CI->setCallingConv(F->getCallingConv()); 822 823 return CI; 824 } 825 826 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 827 static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B, 828 const TargetLibraryInfo &TLI) { 829 // This has to be a memset of zeros (bzero). 830 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 831 if (!FillValue || FillValue->getZExtValue() != 0) 832 return nullptr; 833 834 // TODO: We should handle the case where the malloc has more than one use. 835 // This is necessary to optimize common patterns such as when the result of 836 // the malloc is checked against null or when a memset intrinsic is used in 837 // place of a memset library call. 838 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 839 if (!Malloc || !Malloc->hasOneUse()) 840 return nullptr; 841 842 // Is the inner call really malloc()? 843 Function *InnerCallee = Malloc->getCalledFunction(); 844 if (!InnerCallee) 845 return nullptr; 846 847 LibFunc Func; 848 if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) || 849 Func != LibFunc_malloc) 850 return nullptr; 851 852 // The memset must cover the same number of bytes that are malloc'd. 853 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 854 return nullptr; 855 856 // Replace the malloc with a calloc. We need the data layout to know what the 857 // actual size of a 'size_t' parameter is. 858 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 859 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 860 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 861 Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 862 Malloc->getArgOperand(0), Malloc->getAttributes(), 863 B, TLI); 864 if (!Calloc) 865 return nullptr; 866 867 Malloc->replaceAllUsesWith(Calloc); 868 Malloc->eraseFromParent(); 869 870 return Calloc; 871 } 872 873 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { 874 if (auto *Calloc = foldMallocMemset(CI, B, *TLI)) 875 return Calloc; 876 877 // memset(p, v, n) -> llvm.memset(p, v, n, 1) 878 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 879 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 880 return CI->getArgOperand(0); 881 } 882 883 //===----------------------------------------------------------------------===// 884 // Math Library Optimizations 885 //===----------------------------------------------------------------------===// 886 887 /// Return a variant of Val with float type. 888 /// Currently this works in two cases: If Val is an FPExtension of a float 889 /// value to something bigger, simply return the operand. 890 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 891 /// loss of precision do so. 892 static Value *valueHasFloatPrecision(Value *Val) { 893 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 894 Value *Op = Cast->getOperand(0); 895 if (Op->getType()->isFloatTy()) 896 return Op; 897 } 898 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 899 APFloat F = Const->getValueAPF(); 900 bool losesInfo; 901 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 902 &losesInfo); 903 if (!losesInfo) 904 return ConstantFP::get(Const->getContext(), F); 905 } 906 return nullptr; 907 } 908 909 /// Shrink double -> float for unary functions like 'floor'. 910 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 911 bool CheckRetType) { 912 Function *Callee = CI->getCalledFunction(); 913 // We know this libcall has a valid prototype, but we don't know which. 914 if (!CI->getType()->isDoubleTy()) 915 return nullptr; 916 917 if (CheckRetType) { 918 // Check if all the uses for function like 'sin' are converted to float. 919 for (User *U : CI->users()) { 920 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 921 if (!Cast || !Cast->getType()->isFloatTy()) 922 return nullptr; 923 } 924 } 925 926 // If this is something like 'floor((double)floatval)', convert to floorf. 927 Value *V = valueHasFloatPrecision(CI->getArgOperand(0)); 928 if (V == nullptr) 929 return nullptr; 930 931 // If call isn't an intrinsic, check that it isn't within a function with the 932 // same name as the float version of this call. 933 // 934 // e.g. inline float expf(float val) { return (float) exp((double) val); } 935 // 936 // A similar such definition exists in the MinGW-w64 math.h header file which 937 // when compiled with -O2 -ffast-math causes the generation of infinite loops 938 // where expf is called. 939 if (!Callee->isIntrinsic()) { 940 const Function *F = CI->getFunction(); 941 StringRef FName = F->getName(); 942 StringRef CalleeName = Callee->getName(); 943 if ((FName.size() == (CalleeName.size() + 1)) && 944 (FName.back() == 'f') && 945 FName.startswith(CalleeName)) 946 return nullptr; 947 } 948 949 // Propagate fast-math flags from the existing call to the new call. 950 IRBuilder<>::FastMathFlagGuard Guard(B); 951 B.setFastMathFlags(CI->getFastMathFlags()); 952 953 // floor((double)floatval) -> (double)floorf(floatval) 954 if (Callee->isIntrinsic()) { 955 Module *M = CI->getModule(); 956 Intrinsic::ID IID = Callee->getIntrinsicID(); 957 Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 958 V = B.CreateCall(F, V); 959 } else { 960 // The call is a library call rather than an intrinsic. 961 V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes()); 962 } 963 964 return B.CreateFPExt(V, B.getDoubleTy()); 965 } 966 967 // Replace a libcall \p CI with a call to intrinsic \p IID 968 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) { 969 // Propagate fast-math flags from the existing call to the new call. 970 IRBuilder<>::FastMathFlagGuard Guard(B); 971 B.setFastMathFlags(CI->getFastMathFlags()); 972 973 Module *M = CI->getModule(); 974 Value *V = CI->getArgOperand(0); 975 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 976 CallInst *NewCall = B.CreateCall(F, V); 977 NewCall->takeName(CI); 978 return NewCall; 979 } 980 981 /// Shrink double -> float for binary functions like 'fmin/fmax'. 982 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) { 983 Function *Callee = CI->getCalledFunction(); 984 // We know this libcall has a valid prototype, but we don't know which. 985 if (!CI->getType()->isDoubleTy()) 986 return nullptr; 987 988 // If this is something like 'fmin((double)floatval1, (double)floatval2)', 989 // or fmin(1.0, (double)floatval), then we convert it to fminf. 990 Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0)); 991 if (V1 == nullptr) 992 return nullptr; 993 Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1)); 994 if (V2 == nullptr) 995 return nullptr; 996 997 // Propagate fast-math flags from the existing call to the new call. 998 IRBuilder<>::FastMathFlagGuard Guard(B); 999 B.setFastMathFlags(CI->getFastMathFlags()); 1000 1001 // fmin((double)floatval1, (double)floatval2) 1002 // -> (double)fminf(floatval1, floatval2) 1003 // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP(). 1004 Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B, 1005 Callee->getAttributes()); 1006 return B.CreateFPExt(V, B.getDoubleTy()); 1007 } 1008 1009 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) { 1010 Function *Callee = CI->getCalledFunction(); 1011 Value *Ret = nullptr; 1012 StringRef Name = Callee->getName(); 1013 if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name)) 1014 Ret = optimizeUnaryDoubleFP(CI, B, true); 1015 1016 // cos(-x) -> cos(x) 1017 Value *Op1 = CI->getArgOperand(0); 1018 if (BinaryOperator::isFNeg(Op1)) { 1019 BinaryOperator *BinExpr = cast<BinaryOperator>(Op1); 1020 return B.CreateCall(Callee, BinExpr->getOperand(1), "cos"); 1021 } 1022 return Ret; 1023 } 1024 1025 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) { 1026 // Multiplications calculated using Addition Chains. 1027 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1028 1029 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1030 1031 if (InnerChain[Exp]) 1032 return InnerChain[Exp]; 1033 1034 static const unsigned AddChain[33][2] = { 1035 {0, 0}, // Unused. 1036 {0, 0}, // Unused (base case = pow1). 1037 {1, 1}, // Unused (pre-computed). 1038 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1039 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1040 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1041 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1042 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1043 }; 1044 1045 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1046 getPow(InnerChain, AddChain[Exp][1], B)); 1047 return InnerChain[Exp]; 1048 } 1049 1050 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) { 1051 Function *Callee = CI->getCalledFunction(); 1052 Value *Ret = nullptr; 1053 StringRef Name = Callee->getName(); 1054 if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name)) 1055 Ret = optimizeUnaryDoubleFP(CI, B, true); 1056 1057 Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1); 1058 1059 // pow(1.0, x) -> 1.0 1060 if (match(Op1, m_SpecificFP(1.0))) 1061 return Op1; 1062 // pow(2.0, x) -> llvm.exp2(x) 1063 if (match(Op1, m_SpecificFP(2.0))) { 1064 Value *Exp2 = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::exp2, 1065 CI->getType()); 1066 return B.CreateCall(Exp2, Op2, "exp2"); 1067 } 1068 1069 // There's no llvm.exp10 intrinsic yet, but, maybe, some day there will 1070 // be one. 1071 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { 1072 // pow(10.0, x) -> exp10(x) 1073 if (Op1C->isExactlyValue(10.0) && 1074 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc_exp10, LibFunc_exp10f, 1075 LibFunc_exp10l)) 1076 return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc_exp10), B, 1077 Callee->getAttributes()); 1078 } 1079 1080 // pow(exp(x), y) -> exp(x * y) 1081 // pow(exp2(x), y) -> exp2(x * y) 1082 // We enable these only with fast-math. Besides rounding differences, the 1083 // transformation changes overflow and underflow behavior quite dramatically. 1084 // Example: x = 1000, y = 0.001. 1085 // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1). 1086 auto *OpC = dyn_cast<CallInst>(Op1); 1087 if (OpC && OpC->hasUnsafeAlgebra() && CI->hasUnsafeAlgebra()) { 1088 LibFunc Func; 1089 Function *OpCCallee = OpC->getCalledFunction(); 1090 if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) && 1091 TLI->has(Func) && (Func == LibFunc_exp || Func == LibFunc_exp2)) { 1092 IRBuilder<>::FastMathFlagGuard Guard(B); 1093 B.setFastMathFlags(CI->getFastMathFlags()); 1094 Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul"); 1095 return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B, 1096 OpCCallee->getAttributes()); 1097 } 1098 } 1099 1100 ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2); 1101 if (!Op2C) 1102 return Ret; 1103 1104 if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 1105 return ConstantFP::get(CI->getType(), 1.0); 1106 1107 if (Op2C->isExactlyValue(-0.5) && 1108 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf, 1109 LibFunc_sqrtl)) { 1110 // If -ffast-math: 1111 // pow(x, -0.5) -> 1.0 / sqrt(x) 1112 if (CI->hasUnsafeAlgebra()) { 1113 IRBuilder<>::FastMathFlagGuard Guard(B); 1114 B.setFastMathFlags(CI->getFastMathFlags()); 1115 1116 // TODO: If the pow call is an intrinsic, we should lower to the sqrt 1117 // intrinsic, so we match errno semantics. We also should check that the 1118 // target can in fact lower the sqrt intrinsic -- we currently have no way 1119 // to ask this question other than asking whether the target has a sqrt 1120 // libcall, which is a sufficient but not necessary condition. 1121 Value *Sqrt = emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc_sqrt), B, 1122 Callee->getAttributes()); 1123 1124 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Sqrt, "sqrtrecip"); 1125 } 1126 } 1127 1128 if (Op2C->isExactlyValue(0.5) && 1129 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf, 1130 LibFunc_sqrtl)) { 1131 1132 // In -ffast-math, pow(x, 0.5) -> sqrt(x). 1133 if (CI->hasUnsafeAlgebra()) { 1134 IRBuilder<>::FastMathFlagGuard Guard(B); 1135 B.setFastMathFlags(CI->getFastMathFlags()); 1136 1137 // TODO: As above, we should lower to the sqrt intrinsic if the pow is an 1138 // intrinsic, to match errno semantics. 1139 return emitUnaryFloatFnCall(Op1, TLI->getName(LibFunc_sqrt), B, 1140 Callee->getAttributes()); 1141 } 1142 1143 // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). 1144 // This is faster than calling pow, and still handles negative zero 1145 // and negative infinity correctly. 1146 // TODO: In finite-only mode, this could be just fabs(sqrt(x)). 1147 Value *Inf = ConstantFP::getInfinity(CI->getType()); 1148 Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); 1149 1150 // TODO: As above, we should lower to the sqrt intrinsic if the pow is an 1151 // intrinsic, to match errno semantics. 1152 Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes()); 1153 1154 Module *M = Callee->getParent(); 1155 Function *FabsF = Intrinsic::getDeclaration(M, Intrinsic::fabs, 1156 CI->getType()); 1157 Value *FAbs = B.CreateCall(FabsF, Sqrt); 1158 1159 Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf); 1160 Value *Sel = B.CreateSelect(FCmp, Inf, FAbs); 1161 return Sel; 1162 } 1163 1164 if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x 1165 return Op1; 1166 if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x 1167 return B.CreateFMul(Op1, Op1, "pow2"); 1168 if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x 1169 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip"); 1170 1171 // In -ffast-math, generate repeated fmul instead of generating pow(x, n). 1172 if (CI->hasUnsafeAlgebra()) { 1173 APFloat V = abs(Op2C->getValueAPF()); 1174 // We limit to a max of 7 fmul(s). Thus max exponent is 32. 1175 // This transformation applies to integer exponents only. 1176 if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan || 1177 !V.isInteger()) 1178 return nullptr; 1179 1180 // Propagate fast math flags. 1181 IRBuilder<>::FastMathFlagGuard Guard(B); 1182 B.setFastMathFlags(CI->getFastMathFlags()); 1183 1184 // We will memoize intermediate products of the Addition Chain. 1185 Value *InnerChain[33] = {nullptr}; 1186 InnerChain[1] = Op1; 1187 InnerChain[2] = B.CreateFMul(Op1, Op1); 1188 1189 // We cannot readily convert a non-double type (like float) to a double. 1190 // So we first convert V to something which could be converted to double. 1191 bool ignored; 1192 V.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &ignored); 1193 1194 Value *FMul = getPow(InnerChain, V.convertToDouble(), B); 1195 // For negative exponents simply compute the reciprocal. 1196 if (Op2C->isNegative()) 1197 FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul); 1198 return FMul; 1199 } 1200 1201 return nullptr; 1202 } 1203 1204 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1205 Function *Callee = CI->getCalledFunction(); 1206 Value *Ret = nullptr; 1207 StringRef Name = Callee->getName(); 1208 if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name)) 1209 Ret = optimizeUnaryDoubleFP(CI, B, true); 1210 1211 Value *Op = CI->getArgOperand(0); 1212 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1213 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1214 LibFunc LdExp = LibFunc_ldexpl; 1215 if (Op->getType()->isFloatTy()) 1216 LdExp = LibFunc_ldexpf; 1217 else if (Op->getType()->isDoubleTy()) 1218 LdExp = LibFunc_ldexp; 1219 1220 if (TLI->has(LdExp)) { 1221 Value *LdExpArg = nullptr; 1222 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 1223 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 1224 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 1225 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 1226 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 1227 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 1228 } 1229 1230 if (LdExpArg) { 1231 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); 1232 if (!Op->getType()->isFloatTy()) 1233 One = ConstantExpr::getFPExtend(One, Op->getType()); 1234 1235 Module *M = CI->getModule(); 1236 Value *NewCallee = 1237 M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), 1238 Op->getType(), B.getInt32Ty()); 1239 CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg}); 1240 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 1241 CI->setCallingConv(F->getCallingConv()); 1242 1243 return CI; 1244 } 1245 } 1246 return Ret; 1247 } 1248 1249 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { 1250 Function *Callee = CI->getCalledFunction(); 1251 // If we can shrink the call to a float function rather than a double 1252 // function, do that first. 1253 StringRef Name = Callee->getName(); 1254 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1255 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1256 return Ret; 1257 1258 IRBuilder<>::FastMathFlagGuard Guard(B); 1259 FastMathFlags FMF; 1260 if (CI->hasUnsafeAlgebra()) { 1261 // Unsafe algebra sets all fast-math-flags to true. 1262 FMF.setUnsafeAlgebra(); 1263 } else { 1264 // At a minimum, no-nans-fp-math must be true. 1265 if (!CI->hasNoNaNs()) 1266 return nullptr; 1267 // No-signed-zeros is implied by the definitions of fmax/fmin themselves: 1268 // "Ideally, fmax would be sensitive to the sign of zero, for example 1269 // fmax(-0. 0, +0. 0) would return +0; however, implementation in software 1270 // might be impractical." 1271 FMF.setNoSignedZeros(); 1272 FMF.setNoNaNs(); 1273 } 1274 B.setFastMathFlags(FMF); 1275 1276 // We have a relaxed floating-point environment. We can ignore NaN-handling 1277 // and transform to a compare and select. We do not have to consider errno or 1278 // exceptions, because fmin/fmax do not have those. 1279 Value *Op0 = CI->getArgOperand(0); 1280 Value *Op1 = CI->getArgOperand(1); 1281 Value *Cmp = Callee->getName().startswith("fmin") ? 1282 B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1); 1283 return B.CreateSelect(Cmp, Op0, Op1); 1284 } 1285 1286 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { 1287 Function *Callee = CI->getCalledFunction(); 1288 Value *Ret = nullptr; 1289 StringRef Name = Callee->getName(); 1290 if (UnsafeFPShrink && hasFloatVersion(Name)) 1291 Ret = optimizeUnaryDoubleFP(CI, B, true); 1292 1293 if (!CI->hasUnsafeAlgebra()) 1294 return Ret; 1295 Value *Op1 = CI->getArgOperand(0); 1296 auto *OpC = dyn_cast<CallInst>(Op1); 1297 1298 // The earlier call must also be unsafe in order to do these transforms. 1299 if (!OpC || !OpC->hasUnsafeAlgebra()) 1300 return Ret; 1301 1302 // log(pow(x,y)) -> y*log(x) 1303 // This is only applicable to log, log2, log10. 1304 if (Name != "log" && Name != "log2" && Name != "log10") 1305 return Ret; 1306 1307 IRBuilder<>::FastMathFlagGuard Guard(B); 1308 FastMathFlags FMF; 1309 FMF.setUnsafeAlgebra(); 1310 B.setFastMathFlags(FMF); 1311 1312 LibFunc Func; 1313 Function *F = OpC->getCalledFunction(); 1314 if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1315 Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow)) 1316 return B.CreateFMul(OpC->getArgOperand(1), 1317 emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, 1318 Callee->getAttributes()), "mul"); 1319 1320 // log(exp2(y)) -> y*log(2) 1321 if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && 1322 TLI->has(Func) && Func == LibFunc_exp2) 1323 return B.CreateFMul( 1324 OpC->getArgOperand(0), 1325 emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), 1326 Callee->getName(), B, Callee->getAttributes()), 1327 "logmul"); 1328 return Ret; 1329 } 1330 1331 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1332 Function *Callee = CI->getCalledFunction(); 1333 Value *Ret = nullptr; 1334 // TODO: Once we have a way (other than checking for the existince of the 1335 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 1336 // condition below. 1337 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 1338 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1339 Ret = optimizeUnaryDoubleFP(CI, B, true); 1340 1341 if (!CI->hasUnsafeAlgebra()) 1342 return Ret; 1343 1344 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1345 if (!I || I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra()) 1346 return Ret; 1347 1348 // We're looking for a repeated factor in a multiplication tree, 1349 // so we can do this fold: sqrt(x * x) -> fabs(x); 1350 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 1351 Value *Op0 = I->getOperand(0); 1352 Value *Op1 = I->getOperand(1); 1353 Value *RepeatOp = nullptr; 1354 Value *OtherOp = nullptr; 1355 if (Op0 == Op1) { 1356 // Simple match: the operands of the multiply are identical. 1357 RepeatOp = Op0; 1358 } else { 1359 // Look for a more complicated pattern: one of the operands is itself 1360 // a multiply, so search for a common factor in that multiply. 1361 // Note: We don't bother looking any deeper than this first level or for 1362 // variations of this pattern because instcombine's visitFMUL and/or the 1363 // reassociation pass should give us this form. 1364 Value *OtherMul0, *OtherMul1; 1365 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1366 // Pattern: sqrt((x * y) * z) 1367 if (OtherMul0 == OtherMul1 && 1368 cast<Instruction>(Op0)->hasUnsafeAlgebra()) { 1369 // Matched: sqrt((x * x) * z) 1370 RepeatOp = OtherMul0; 1371 OtherOp = Op1; 1372 } 1373 } 1374 } 1375 if (!RepeatOp) 1376 return Ret; 1377 1378 // Fast math flags for any created instructions should match the sqrt 1379 // and multiply. 1380 IRBuilder<>::FastMathFlagGuard Guard(B); 1381 B.setFastMathFlags(I->getFastMathFlags()); 1382 1383 // If we found a repeated factor, hoist it out of the square root and 1384 // replace it with the fabs of that factor. 1385 Module *M = Callee->getParent(); 1386 Type *ArgType = I->getType(); 1387 Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1388 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1389 if (OtherOp) { 1390 // If we found a non-repeated factor, we still need to get its square 1391 // root. We then multiply that by the value that was simplified out 1392 // of the square root calculation. 1393 Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1394 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1395 return B.CreateFMul(FabsCall, SqrtCall); 1396 } 1397 return FabsCall; 1398 } 1399 1400 // TODO: Generalize to handle any trig function and its inverse. 1401 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { 1402 Function *Callee = CI->getCalledFunction(); 1403 Value *Ret = nullptr; 1404 StringRef Name = Callee->getName(); 1405 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 1406 Ret = optimizeUnaryDoubleFP(CI, B, true); 1407 1408 Value *Op1 = CI->getArgOperand(0); 1409 auto *OpC = dyn_cast<CallInst>(Op1); 1410 if (!OpC) 1411 return Ret; 1412 1413 // Both calls must allow unsafe optimizations in order to remove them. 1414 if (!CI->hasUnsafeAlgebra() || !OpC->hasUnsafeAlgebra()) 1415 return Ret; 1416 1417 // tan(atan(x)) -> x 1418 // tanf(atanf(x)) -> x 1419 // tanl(atanl(x)) -> x 1420 LibFunc Func; 1421 Function *F = OpC->getCalledFunction(); 1422 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1423 ((Func == LibFunc_atan && Callee->getName() == "tan") || 1424 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 1425 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 1426 Ret = OpC->getArgOperand(0); 1427 return Ret; 1428 } 1429 1430 static bool isTrigLibCall(CallInst *CI) { 1431 // We can only hope to do anything useful if we can ignore things like errno 1432 // and floating-point exceptions. 1433 // We already checked the prototype. 1434 return CI->hasFnAttr(Attribute::NoUnwind) && 1435 CI->hasFnAttr(Attribute::ReadNone); 1436 } 1437 1438 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1439 bool UseFloat, Value *&Sin, Value *&Cos, 1440 Value *&SinCos) { 1441 Type *ArgTy = Arg->getType(); 1442 Type *ResTy; 1443 StringRef Name; 1444 1445 Triple T(OrigCallee->getParent()->getTargetTriple()); 1446 if (UseFloat) { 1447 Name = "__sincospif_stret"; 1448 1449 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1450 // x86_64 can't use {float, float} since that would be returned in both 1451 // xmm0 and xmm1, which isn't what a real struct would do. 1452 ResTy = T.getArch() == Triple::x86_64 1453 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1454 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 1455 } else { 1456 Name = "__sincospi_stret"; 1457 ResTy = StructType::get(ArgTy, ArgTy); 1458 } 1459 1460 Module *M = OrigCallee->getParent(); 1461 Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), 1462 ResTy, ArgTy); 1463 1464 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1465 // If the argument is an instruction, it must dominate all uses so put our 1466 // sincos call there. 1467 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1468 } else { 1469 // Otherwise (e.g. for a constant) the beginning of the function is as 1470 // good a place as any. 1471 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1472 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1473 } 1474 1475 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1476 1477 if (SinCos->getType()->isStructTy()) { 1478 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1479 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1480 } else { 1481 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1482 "sinpi"); 1483 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1484 "cospi"); 1485 } 1486 } 1487 1488 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1489 // Make sure the prototype is as expected, otherwise the rest of the 1490 // function is probably invalid and likely to abort. 1491 if (!isTrigLibCall(CI)) 1492 return nullptr; 1493 1494 Value *Arg = CI->getArgOperand(0); 1495 SmallVector<CallInst *, 1> SinCalls; 1496 SmallVector<CallInst *, 1> CosCalls; 1497 SmallVector<CallInst *, 1> SinCosCalls; 1498 1499 bool IsFloat = Arg->getType()->isFloatTy(); 1500 1501 // Look for all compatible sinpi, cospi and sincospi calls with the same 1502 // argument. If there are enough (in some sense) we can make the 1503 // substitution. 1504 Function *F = CI->getFunction(); 1505 for (User *U : Arg->users()) 1506 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 1507 1508 // It's only worthwhile if both sinpi and cospi are actually used. 1509 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1510 return nullptr; 1511 1512 Value *Sin, *Cos, *SinCos; 1513 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1514 1515 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 1516 Value *Res) { 1517 for (CallInst *C : Calls) 1518 replaceAllUsesWith(C, Res); 1519 }; 1520 1521 replaceTrigInsts(SinCalls, Sin); 1522 replaceTrigInsts(CosCalls, Cos); 1523 replaceTrigInsts(SinCosCalls, SinCos); 1524 1525 return nullptr; 1526 } 1527 1528 void LibCallSimplifier::classifyArgUse( 1529 Value *Val, Function *F, bool IsFloat, 1530 SmallVectorImpl<CallInst *> &SinCalls, 1531 SmallVectorImpl<CallInst *> &CosCalls, 1532 SmallVectorImpl<CallInst *> &SinCosCalls) { 1533 CallInst *CI = dyn_cast<CallInst>(Val); 1534 1535 if (!CI) 1536 return; 1537 1538 // Don't consider calls in other functions. 1539 if (CI->getFunction() != F) 1540 return; 1541 1542 Function *Callee = CI->getCalledFunction(); 1543 LibFunc Func; 1544 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 1545 !isTrigLibCall(CI)) 1546 return; 1547 1548 if (IsFloat) { 1549 if (Func == LibFunc_sinpif) 1550 SinCalls.push_back(CI); 1551 else if (Func == LibFunc_cospif) 1552 CosCalls.push_back(CI); 1553 else if (Func == LibFunc_sincospif_stret) 1554 SinCosCalls.push_back(CI); 1555 } else { 1556 if (Func == LibFunc_sinpi) 1557 SinCalls.push_back(CI); 1558 else if (Func == LibFunc_cospi) 1559 CosCalls.push_back(CI); 1560 else if (Func == LibFunc_sincospi_stret) 1561 SinCosCalls.push_back(CI); 1562 } 1563 } 1564 1565 //===----------------------------------------------------------------------===// 1566 // Integer Library Call Optimizations 1567 //===----------------------------------------------------------------------===// 1568 1569 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1570 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1571 Value *Op = CI->getArgOperand(0); 1572 Type *ArgType = Op->getType(); 1573 Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1574 Intrinsic::cttz, ArgType); 1575 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 1576 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1577 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1578 1579 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1580 return B.CreateSelect(Cond, V, B.getInt32(0)); 1581 } 1582 1583 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) { 1584 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 1585 Value *Op = CI->getArgOperand(0); 1586 Type *ArgType = Op->getType(); 1587 Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1588 Intrinsic::ctlz, ArgType); 1589 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 1590 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 1591 V); 1592 return B.CreateIntCast(V, CI->getType(), false); 1593 } 1594 1595 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1596 // abs(x) -> x >s -1 ? x : -x 1597 Value *Op = CI->getArgOperand(0); 1598 Value *Pos = 1599 B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos"); 1600 Value *Neg = B.CreateNeg(Op, "neg"); 1601 return B.CreateSelect(Pos, Op, Neg); 1602 } 1603 1604 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 1605 // isdigit(c) -> (c-'0') <u 10 1606 Value *Op = CI->getArgOperand(0); 1607 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1608 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1609 return B.CreateZExt(Op, CI->getType()); 1610 } 1611 1612 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 1613 // isascii(c) -> c <u 128 1614 Value *Op = CI->getArgOperand(0); 1615 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1616 return B.CreateZExt(Op, CI->getType()); 1617 } 1618 1619 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 1620 // toascii(c) -> c & 0x7f 1621 return B.CreateAnd(CI->getArgOperand(0), 1622 ConstantInt::get(CI->getType(), 0x7F)); 1623 } 1624 1625 //===----------------------------------------------------------------------===// 1626 // Formatting and IO Library Call Optimizations 1627 //===----------------------------------------------------------------------===// 1628 1629 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 1630 1631 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 1632 int StreamArg) { 1633 Function *Callee = CI->getCalledFunction(); 1634 // Error reporting calls should be cold, mark them as such. 1635 // This applies even to non-builtin calls: it is only a hint and applies to 1636 // functions that the frontend might not understand as builtins. 1637 1638 // This heuristic was suggested in: 1639 // Improving Static Branch Prediction in a Compiler 1640 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 1641 // Proceedings of PACT'98, Oct. 1998, IEEE 1642 if (!CI->hasFnAttr(Attribute::Cold) && 1643 isReportingError(Callee, CI, StreamArg)) { 1644 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 1645 } 1646 1647 return nullptr; 1648 } 1649 1650 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 1651 if (!Callee || !Callee->isDeclaration()) 1652 return false; 1653 1654 if (StreamArg < 0) 1655 return true; 1656 1657 // These functions might be considered cold, but only if their stream 1658 // argument is stderr. 1659 1660 if (StreamArg >= (int)CI->getNumArgOperands()) 1661 return false; 1662 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 1663 if (!LI) 1664 return false; 1665 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 1666 if (!GV || !GV->isDeclaration()) 1667 return false; 1668 return GV->getName() == "stderr"; 1669 } 1670 1671 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 1672 // Check for a fixed format string. 1673 StringRef FormatStr; 1674 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 1675 return nullptr; 1676 1677 // Empty format string -> noop. 1678 if (FormatStr.empty()) // Tolerate printf's declared void. 1679 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 1680 1681 // Do not do any of the following transformations if the printf return value 1682 // is used, in general the printf return value is not compatible with either 1683 // putchar() or puts(). 1684 if (!CI->use_empty()) 1685 return nullptr; 1686 1687 // printf("x") -> putchar('x'), even for "%" and "%%". 1688 if (FormatStr.size() == 1 || FormatStr == "%%") 1689 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 1690 1691 // printf("%s", "a") --> putchar('a') 1692 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 1693 StringRef ChrStr; 1694 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 1695 return nullptr; 1696 if (ChrStr.size() != 1) 1697 return nullptr; 1698 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 1699 } 1700 1701 // printf("foo\n") --> puts("foo") 1702 if (FormatStr[FormatStr.size() - 1] == '\n' && 1703 FormatStr.find('%') == StringRef::npos) { // No format characters. 1704 // Create a string literal with no \n on it. We expect the constant merge 1705 // pass to be run after this pass, to merge duplicate strings. 1706 FormatStr = FormatStr.drop_back(); 1707 Value *GV = B.CreateGlobalString(FormatStr, "str"); 1708 return emitPutS(GV, B, TLI); 1709 } 1710 1711 // Optimize specific format strings. 1712 // printf("%c", chr) --> putchar(chr) 1713 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 1714 CI->getArgOperand(1)->getType()->isIntegerTy()) 1715 return emitPutChar(CI->getArgOperand(1), B, TLI); 1716 1717 // printf("%s\n", str) --> puts(str) 1718 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 1719 CI->getArgOperand(1)->getType()->isPointerTy()) 1720 return emitPutS(CI->getArgOperand(1), B, TLI); 1721 return nullptr; 1722 } 1723 1724 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 1725 1726 Function *Callee = CI->getCalledFunction(); 1727 FunctionType *FT = Callee->getFunctionType(); 1728 if (Value *V = optimizePrintFString(CI, B)) { 1729 return V; 1730 } 1731 1732 // printf(format, ...) -> iprintf(format, ...) if no floating point 1733 // arguments. 1734 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 1735 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1736 Constant *IPrintFFn = 1737 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 1738 CallInst *New = cast<CallInst>(CI->clone()); 1739 New->setCalledFunction(IPrintFFn); 1740 B.Insert(New); 1741 return New; 1742 } 1743 return nullptr; 1744 } 1745 1746 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 1747 // Check for a fixed format string. 1748 StringRef FormatStr; 1749 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1750 return nullptr; 1751 1752 // If we just have a format string (nothing else crazy) transform it. 1753 if (CI->getNumArgOperands() == 2) { 1754 // Make sure there's no % in the constant array. We could try to handle 1755 // %% -> % in the future if we cared. 1756 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1757 if (FormatStr[i] == '%') 1758 return nullptr; // we found a format specifier, bail out. 1759 1760 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) 1761 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 1762 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 1763 FormatStr.size() + 1), 1764 1); // Copy the null byte. 1765 return ConstantInt::get(CI->getType(), FormatStr.size()); 1766 } 1767 1768 // The remaining optimizations require the format string to be "%s" or "%c" 1769 // and have an extra operand. 1770 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1771 CI->getNumArgOperands() < 3) 1772 return nullptr; 1773 1774 // Decode the second character of the format string. 1775 if (FormatStr[1] == 'c') { 1776 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 1777 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1778 return nullptr; 1779 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 1780 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 1781 B.CreateStore(V, Ptr); 1782 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 1783 B.CreateStore(B.getInt8(0), Ptr); 1784 1785 return ConstantInt::get(CI->getType(), 1); 1786 } 1787 1788 if (FormatStr[1] == 's') { 1789 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) 1790 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1791 return nullptr; 1792 1793 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 1794 if (!Len) 1795 return nullptr; 1796 Value *IncLen = 1797 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 1798 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1); 1799 1800 // The sprintf result is the unincremented number of bytes in the string. 1801 return B.CreateIntCast(Len, CI->getType(), false); 1802 } 1803 return nullptr; 1804 } 1805 1806 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 1807 Function *Callee = CI->getCalledFunction(); 1808 FunctionType *FT = Callee->getFunctionType(); 1809 if (Value *V = optimizeSPrintFString(CI, B)) { 1810 return V; 1811 } 1812 1813 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 1814 // point arguments. 1815 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 1816 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1817 Constant *SIPrintFFn = 1818 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 1819 CallInst *New = cast<CallInst>(CI->clone()); 1820 New->setCalledFunction(SIPrintFFn); 1821 B.Insert(New); 1822 return New; 1823 } 1824 return nullptr; 1825 } 1826 1827 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 1828 optimizeErrorReporting(CI, B, 0); 1829 1830 // All the optimizations depend on the format string. 1831 StringRef FormatStr; 1832 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1833 return nullptr; 1834 1835 // Do not do any of the following transformations if the fprintf return 1836 // value is used, in general the fprintf return value is not compatible 1837 // with fwrite(), fputc() or fputs(). 1838 if (!CI->use_empty()) 1839 return nullptr; 1840 1841 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 1842 if (CI->getNumArgOperands() == 2) { 1843 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1844 if (FormatStr[i] == '%') // Could handle %% -> % if we cared. 1845 return nullptr; // We found a format specifier. 1846 1847 return emitFWrite( 1848 CI->getArgOperand(1), 1849 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 1850 CI->getArgOperand(0), B, DL, TLI); 1851 } 1852 1853 // The remaining optimizations require the format string to be "%s" or "%c" 1854 // and have an extra operand. 1855 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1856 CI->getNumArgOperands() < 3) 1857 return nullptr; 1858 1859 // Decode the second character of the format string. 1860 if (FormatStr[1] == 'c') { 1861 // fprintf(F, "%c", chr) --> fputc(chr, F) 1862 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1863 return nullptr; 1864 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 1865 } 1866 1867 if (FormatStr[1] == 's') { 1868 // fprintf(F, "%s", str) --> fputs(str, F) 1869 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1870 return nullptr; 1871 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 1872 } 1873 return nullptr; 1874 } 1875 1876 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 1877 Function *Callee = CI->getCalledFunction(); 1878 FunctionType *FT = Callee->getFunctionType(); 1879 if (Value *V = optimizeFPrintFString(CI, B)) { 1880 return V; 1881 } 1882 1883 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 1884 // floating point arguments. 1885 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 1886 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1887 Constant *FIPrintFFn = 1888 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 1889 CallInst *New = cast<CallInst>(CI->clone()); 1890 New->setCalledFunction(FIPrintFFn); 1891 B.Insert(New); 1892 return New; 1893 } 1894 return nullptr; 1895 } 1896 1897 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 1898 optimizeErrorReporting(CI, B, 3); 1899 1900 // Get the element size and count. 1901 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 1902 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1903 if (!SizeC || !CountC) 1904 return nullptr; 1905 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 1906 1907 // If this is writing zero records, remove the call (it's a noop). 1908 if (Bytes == 0) 1909 return ConstantInt::get(CI->getType(), 0); 1910 1911 // If this is writing one byte, turn it into fputc. 1912 // This optimisation is only valid, if the return value is unused. 1913 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 1914 Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char"); 1915 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 1916 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 1917 } 1918 1919 return nullptr; 1920 } 1921 1922 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 1923 optimizeErrorReporting(CI, B, 1); 1924 1925 // Don't rewrite fputs to fwrite when optimising for size because fwrite 1926 // requires more arguments and thus extra MOVs are required. 1927 if (CI->getParent()->getParent()->optForSize()) 1928 return nullptr; 1929 1930 // We can't optimize if return value is used. 1931 if (!CI->use_empty()) 1932 return nullptr; 1933 1934 // fputs(s,F) --> fwrite(s,1,strlen(s),F) 1935 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 1936 if (!Len) 1937 return nullptr; 1938 1939 // Known to have no uses (see above). 1940 return emitFWrite( 1941 CI->getArgOperand(0), 1942 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 1943 CI->getArgOperand(1), B, DL, TLI); 1944 } 1945 1946 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 1947 // Check for a constant string. 1948 StringRef Str; 1949 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1950 return nullptr; 1951 1952 if (Str.empty() && CI->use_empty()) { 1953 // puts("") -> putchar('\n') 1954 Value *Res = emitPutChar(B.getInt32('\n'), B, TLI); 1955 if (CI->use_empty() || !Res) 1956 return Res; 1957 return B.CreateIntCast(Res, CI->getType(), true); 1958 } 1959 1960 return nullptr; 1961 } 1962 1963 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 1964 LibFunc Func; 1965 SmallString<20> FloatFuncName = FuncName; 1966 FloatFuncName += 'f'; 1967 if (TLI->getLibFunc(FloatFuncName, Func)) 1968 return TLI->has(Func); 1969 return false; 1970 } 1971 1972 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 1973 IRBuilder<> &Builder) { 1974 LibFunc Func; 1975 Function *Callee = CI->getCalledFunction(); 1976 // Check for string/memory library functions. 1977 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 1978 // Make sure we never change the calling convention. 1979 assert((ignoreCallingConv(Func) || 1980 isCallingConvCCompatible(CI)) && 1981 "Optimizing string/memory libcall would change the calling convention"); 1982 switch (Func) { 1983 case LibFunc_strcat: 1984 return optimizeStrCat(CI, Builder); 1985 case LibFunc_strncat: 1986 return optimizeStrNCat(CI, Builder); 1987 case LibFunc_strchr: 1988 return optimizeStrChr(CI, Builder); 1989 case LibFunc_strrchr: 1990 return optimizeStrRChr(CI, Builder); 1991 case LibFunc_strcmp: 1992 return optimizeStrCmp(CI, Builder); 1993 case LibFunc_strncmp: 1994 return optimizeStrNCmp(CI, Builder); 1995 case LibFunc_strcpy: 1996 return optimizeStrCpy(CI, Builder); 1997 case LibFunc_stpcpy: 1998 return optimizeStpCpy(CI, Builder); 1999 case LibFunc_strncpy: 2000 return optimizeStrNCpy(CI, Builder); 2001 case LibFunc_strlen: 2002 return optimizeStrLen(CI, Builder); 2003 case LibFunc_strpbrk: 2004 return optimizeStrPBrk(CI, Builder); 2005 case LibFunc_strtol: 2006 case LibFunc_strtod: 2007 case LibFunc_strtof: 2008 case LibFunc_strtoul: 2009 case LibFunc_strtoll: 2010 case LibFunc_strtold: 2011 case LibFunc_strtoull: 2012 return optimizeStrTo(CI, Builder); 2013 case LibFunc_strspn: 2014 return optimizeStrSpn(CI, Builder); 2015 case LibFunc_strcspn: 2016 return optimizeStrCSpn(CI, Builder); 2017 case LibFunc_strstr: 2018 return optimizeStrStr(CI, Builder); 2019 case LibFunc_memchr: 2020 return optimizeMemChr(CI, Builder); 2021 case LibFunc_memcmp: 2022 return optimizeMemCmp(CI, Builder); 2023 case LibFunc_memcpy: 2024 return optimizeMemCpy(CI, Builder); 2025 case LibFunc_memmove: 2026 return optimizeMemMove(CI, Builder); 2027 case LibFunc_memset: 2028 return optimizeMemSet(CI, Builder); 2029 default: 2030 break; 2031 } 2032 } 2033 return nullptr; 2034 } 2035 2036 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 2037 if (CI->isNoBuiltin()) 2038 return nullptr; 2039 2040 LibFunc Func; 2041 Function *Callee = CI->getCalledFunction(); 2042 StringRef FuncName = Callee->getName(); 2043 2044 SmallVector<OperandBundleDef, 2> OpBundles; 2045 CI->getOperandBundlesAsDefs(OpBundles); 2046 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2047 bool isCallingConvC = isCallingConvCCompatible(CI); 2048 2049 // Command-line parameter overrides instruction attribute. 2050 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2051 UnsafeFPShrink = EnableUnsafeFPShrink; 2052 else if (isa<FPMathOperator>(CI) && CI->hasUnsafeAlgebra()) 2053 UnsafeFPShrink = true; 2054 2055 // First, check for intrinsics. 2056 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2057 if (!isCallingConvC) 2058 return nullptr; 2059 switch (II->getIntrinsicID()) { 2060 case Intrinsic::pow: 2061 return optimizePow(CI, Builder); 2062 case Intrinsic::exp2: 2063 return optimizeExp2(CI, Builder); 2064 case Intrinsic::log: 2065 return optimizeLog(CI, Builder); 2066 case Intrinsic::sqrt: 2067 return optimizeSqrt(CI, Builder); 2068 // TODO: Use foldMallocMemset() with memset intrinsic. 2069 default: 2070 return nullptr; 2071 } 2072 } 2073 2074 // Also try to simplify calls to fortified library functions. 2075 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 2076 // Try to further simplify the result. 2077 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 2078 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 2079 // Use an IR Builder from SimplifiedCI if available instead of CI 2080 // to guarantee we reach all uses we might replace later on. 2081 IRBuilder<> TmpBuilder(SimplifiedCI); 2082 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { 2083 // If we were able to further simplify, remove the now redundant call. 2084 SimplifiedCI->replaceAllUsesWith(V); 2085 SimplifiedCI->eraseFromParent(); 2086 return V; 2087 } 2088 } 2089 return SimplifiedFortifiedCI; 2090 } 2091 2092 // Then check for known library functions. 2093 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2094 // We never change the calling convention. 2095 if (!ignoreCallingConv(Func) && !isCallingConvC) 2096 return nullptr; 2097 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 2098 return V; 2099 switch (Func) { 2100 case LibFunc_cosf: 2101 case LibFunc_cos: 2102 case LibFunc_cosl: 2103 return optimizeCos(CI, Builder); 2104 case LibFunc_sinpif: 2105 case LibFunc_sinpi: 2106 case LibFunc_cospif: 2107 case LibFunc_cospi: 2108 return optimizeSinCosPi(CI, Builder); 2109 case LibFunc_powf: 2110 case LibFunc_pow: 2111 case LibFunc_powl: 2112 return optimizePow(CI, Builder); 2113 case LibFunc_exp2l: 2114 case LibFunc_exp2: 2115 case LibFunc_exp2f: 2116 return optimizeExp2(CI, Builder); 2117 case LibFunc_fabsf: 2118 case LibFunc_fabs: 2119 case LibFunc_fabsl: 2120 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2121 case LibFunc_sqrtf: 2122 case LibFunc_sqrt: 2123 case LibFunc_sqrtl: 2124 return optimizeSqrt(CI, Builder); 2125 case LibFunc_ffs: 2126 case LibFunc_ffsl: 2127 case LibFunc_ffsll: 2128 return optimizeFFS(CI, Builder); 2129 case LibFunc_fls: 2130 case LibFunc_flsl: 2131 case LibFunc_flsll: 2132 return optimizeFls(CI, Builder); 2133 case LibFunc_abs: 2134 case LibFunc_labs: 2135 case LibFunc_llabs: 2136 return optimizeAbs(CI, Builder); 2137 case LibFunc_isdigit: 2138 return optimizeIsDigit(CI, Builder); 2139 case LibFunc_isascii: 2140 return optimizeIsAscii(CI, Builder); 2141 case LibFunc_toascii: 2142 return optimizeToAscii(CI, Builder); 2143 case LibFunc_printf: 2144 return optimizePrintF(CI, Builder); 2145 case LibFunc_sprintf: 2146 return optimizeSPrintF(CI, Builder); 2147 case LibFunc_fprintf: 2148 return optimizeFPrintF(CI, Builder); 2149 case LibFunc_fwrite: 2150 return optimizeFWrite(CI, Builder); 2151 case LibFunc_fputs: 2152 return optimizeFPuts(CI, Builder); 2153 case LibFunc_log: 2154 case LibFunc_log10: 2155 case LibFunc_log1p: 2156 case LibFunc_log2: 2157 case LibFunc_logb: 2158 return optimizeLog(CI, Builder); 2159 case LibFunc_puts: 2160 return optimizePuts(CI, Builder); 2161 case LibFunc_tan: 2162 case LibFunc_tanf: 2163 case LibFunc_tanl: 2164 return optimizeTan(CI, Builder); 2165 case LibFunc_perror: 2166 return optimizeErrorReporting(CI, Builder); 2167 case LibFunc_vfprintf: 2168 case LibFunc_fiprintf: 2169 return optimizeErrorReporting(CI, Builder, 0); 2170 case LibFunc_fputc: 2171 return optimizeErrorReporting(CI, Builder, 1); 2172 case LibFunc_ceil: 2173 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2174 case LibFunc_floor: 2175 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2176 case LibFunc_round: 2177 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2178 case LibFunc_nearbyint: 2179 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2180 case LibFunc_rint: 2181 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2182 case LibFunc_trunc: 2183 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2184 case LibFunc_acos: 2185 case LibFunc_acosh: 2186 case LibFunc_asin: 2187 case LibFunc_asinh: 2188 case LibFunc_atan: 2189 case LibFunc_atanh: 2190 case LibFunc_cbrt: 2191 case LibFunc_cosh: 2192 case LibFunc_exp: 2193 case LibFunc_exp10: 2194 case LibFunc_expm1: 2195 case LibFunc_sin: 2196 case LibFunc_sinh: 2197 case LibFunc_tanh: 2198 if (UnsafeFPShrink && hasFloatVersion(FuncName)) 2199 return optimizeUnaryDoubleFP(CI, Builder, true); 2200 return nullptr; 2201 case LibFunc_copysign: 2202 if (hasFloatVersion(FuncName)) 2203 return optimizeBinaryDoubleFP(CI, Builder); 2204 return nullptr; 2205 case LibFunc_fminf: 2206 case LibFunc_fmin: 2207 case LibFunc_fminl: 2208 case LibFunc_fmaxf: 2209 case LibFunc_fmax: 2210 case LibFunc_fmaxl: 2211 return optimizeFMinFMax(CI, Builder); 2212 default: 2213 return nullptr; 2214 } 2215 } 2216 return nullptr; 2217 } 2218 2219 LibCallSimplifier::LibCallSimplifier( 2220 const DataLayout &DL, const TargetLibraryInfo *TLI, 2221 function_ref<void(Instruction *, Value *)> Replacer) 2222 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), UnsafeFPShrink(false), 2223 Replacer(Replacer) {} 2224 2225 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 2226 // Indirect through the replacer used in this instance. 2227 Replacer(I, With); 2228 } 2229 2230 // TODO: 2231 // Additional cases that we need to add to this file: 2232 // 2233 // cbrt: 2234 // * cbrt(expN(X)) -> expN(x/3) 2235 // * cbrt(sqrt(x)) -> pow(x,1/6) 2236 // * cbrt(cbrt(x)) -> pow(x,1/9) 2237 // 2238 // exp, expf, expl: 2239 // * exp(log(x)) -> x 2240 // 2241 // log, logf, logl: 2242 // * log(exp(x)) -> x 2243 // * log(exp(y)) -> y*log(e) 2244 // * log(exp10(y)) -> y*log(10) 2245 // * log(sqrt(x)) -> 0.5*log(x) 2246 // 2247 // pow, powf, powl: 2248 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2249 // * pow(pow(x,y),z)-> pow(x,y*z) 2250 // 2251 // signbit: 2252 // * signbit(cnst) -> cnst' 2253 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2254 // 2255 // sqrt, sqrtf, sqrtl: 2256 // * sqrt(expN(x)) -> expN(x*0.5) 2257 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2258 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2259 // 2260 2261 //===----------------------------------------------------------------------===// 2262 // Fortified Library Call Optimizations 2263 //===----------------------------------------------------------------------===// 2264 2265 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2266 unsigned ObjSizeOp, 2267 unsigned SizeOp, 2268 bool isString) { 2269 if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp)) 2270 return true; 2271 if (ConstantInt *ObjSizeCI = 2272 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2273 if (ObjSizeCI->isAllOnesValue()) 2274 return true; 2275 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2276 if (OnlyLowerUnknownSize) 2277 return false; 2278 if (isString) { 2279 uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp)); 2280 // If the length is 0 we don't know how long it is and so we can't 2281 // remove the check. 2282 if (Len == 0) 2283 return false; 2284 return ObjSizeCI->getZExtValue() >= Len; 2285 } 2286 if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp))) 2287 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2288 } 2289 return false; 2290 } 2291 2292 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 2293 IRBuilder<> &B) { 2294 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2295 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2296 CI->getArgOperand(2), 1); 2297 return CI->getArgOperand(0); 2298 } 2299 return nullptr; 2300 } 2301 2302 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 2303 IRBuilder<> &B) { 2304 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2305 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 2306 CI->getArgOperand(2), 1); 2307 return CI->getArgOperand(0); 2308 } 2309 return nullptr; 2310 } 2311 2312 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 2313 IRBuilder<> &B) { 2314 // TODO: Try foldMallocMemset() here. 2315 2316 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2317 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2318 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2319 return CI->getArgOperand(0); 2320 } 2321 return nullptr; 2322 } 2323 2324 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 2325 IRBuilder<> &B, 2326 LibFunc Func) { 2327 Function *Callee = CI->getCalledFunction(); 2328 StringRef Name = Callee->getName(); 2329 const DataLayout &DL = CI->getModule()->getDataLayout(); 2330 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 2331 *ObjSize = CI->getArgOperand(2); 2332 2333 // __stpcpy_chk(x,x,...) -> x+strlen(x) 2334 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 2335 Value *StrLen = emitStrLen(Src, B, DL, TLI); 2336 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 2337 } 2338 2339 // If a) we don't have any length information, or b) we know this will 2340 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 2341 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 2342 // TODO: It might be nice to get a maximum length out of the possible 2343 // string lengths for varying. 2344 if (isFortifiedCallFoldable(CI, 2, 1, true)) 2345 return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6)); 2346 2347 if (OnlyLowerUnknownSize) 2348 return nullptr; 2349 2350 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 2351 uint64_t Len = GetStringLength(Src); 2352 if (Len == 0) 2353 return nullptr; 2354 2355 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 2356 Value *LenV = ConstantInt::get(SizeTTy, Len); 2357 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 2358 // If the function was an __stpcpy_chk, and we were able to fold it into 2359 // a __memcpy_chk, we still need to return the correct end pointer. 2360 if (Ret && Func == LibFunc_stpcpy_chk) 2361 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 2362 return Ret; 2363 } 2364 2365 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 2366 IRBuilder<> &B, 2367 LibFunc Func) { 2368 Function *Callee = CI->getCalledFunction(); 2369 StringRef Name = Callee->getName(); 2370 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 2371 Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 2372 CI->getArgOperand(2), B, TLI, Name.substr(2, 7)); 2373 return Ret; 2374 } 2375 return nullptr; 2376 } 2377 2378 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 2379 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 2380 // Some clang users checked for _chk libcall availability using: 2381 // __has_builtin(__builtin___memcpy_chk) 2382 // When compiling with -fno-builtin, this is always true. 2383 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 2384 // end up with fortified libcalls, which isn't acceptable in a freestanding 2385 // environment which only provides their non-fortified counterparts. 2386 // 2387 // Until we change clang and/or teach external users to check for availability 2388 // differently, disregard the "nobuiltin" attribute and TLI::has. 2389 // 2390 // PR23093. 2391 2392 LibFunc Func; 2393 Function *Callee = CI->getCalledFunction(); 2394 2395 SmallVector<OperandBundleDef, 2> OpBundles; 2396 CI->getOperandBundlesAsDefs(OpBundles); 2397 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2398 bool isCallingConvC = isCallingConvCCompatible(CI); 2399 2400 // First, check that this is a known library functions and that the prototype 2401 // is correct. 2402 if (!TLI->getLibFunc(*Callee, Func)) 2403 return nullptr; 2404 2405 // We never change the calling convention. 2406 if (!ignoreCallingConv(Func) && !isCallingConvC) 2407 return nullptr; 2408 2409 switch (Func) { 2410 case LibFunc_memcpy_chk: 2411 return optimizeMemCpyChk(CI, Builder); 2412 case LibFunc_memmove_chk: 2413 return optimizeMemMoveChk(CI, Builder); 2414 case LibFunc_memset_chk: 2415 return optimizeMemSetChk(CI, Builder); 2416 case LibFunc_stpcpy_chk: 2417 case LibFunc_strcpy_chk: 2418 return optimizeStrpCpyChk(CI, Builder, Func); 2419 case LibFunc_stpncpy_chk: 2420 case LibFunc_strncpy_chk: 2421 return optimizeStrpNCpyChk(CI, Builder, Func); 2422 default: 2423 break; 2424 } 2425 return nullptr; 2426 } 2427 2428 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 2429 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 2430 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 2431