1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the library calls simplifier. It does not implement
11 // any pass, but can't be used by other passes to do simplifications.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/KnownBits.h"
33 #include "llvm/Transforms/Utils/BuildLibCalls.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 static cl::opt<bool>
40     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
41                          cl::init(false),
42                          cl::desc("Enable unsafe double to float "
43                                   "shrinking for math lib calls"));
44 
45 
46 //===----------------------------------------------------------------------===//
47 // Helper Functions
48 //===----------------------------------------------------------------------===//
49 
50 static bool ignoreCallingConv(LibFunc Func) {
51   return Func == LibFunc_abs || Func == LibFunc_labs ||
52          Func == LibFunc_llabs || Func == LibFunc_strlen;
53 }
54 
55 static bool isCallingConvCCompatible(CallInst *CI) {
56   switch(CI->getCallingConv()) {
57   default:
58     return false;
59   case llvm::CallingConv::C:
60     return true;
61   case llvm::CallingConv::ARM_APCS:
62   case llvm::CallingConv::ARM_AAPCS:
63   case llvm::CallingConv::ARM_AAPCS_VFP: {
64 
65     // The iOS ABI diverges from the standard in some cases, so for now don't
66     // try to simplify those calls.
67     if (Triple(CI->getModule()->getTargetTriple()).isiOS())
68       return false;
69 
70     auto *FuncTy = CI->getFunctionType();
71 
72     if (!FuncTy->getReturnType()->isPointerTy() &&
73         !FuncTy->getReturnType()->isIntegerTy() &&
74         !FuncTy->getReturnType()->isVoidTy())
75       return false;
76 
77     for (auto Param : FuncTy->params()) {
78       if (!Param->isPointerTy() && !Param->isIntegerTy())
79         return false;
80     }
81     return true;
82   }
83   }
84   return false;
85 }
86 
87 /// Return true if it is only used in equality comparisons with With.
88 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
89   for (User *U : V->users()) {
90     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
91       if (IC->isEquality() && IC->getOperand(1) == With)
92         continue;
93     // Unknown instruction.
94     return false;
95   }
96   return true;
97 }
98 
99 static bool callHasFloatingPointArgument(const CallInst *CI) {
100   return any_of(CI->operands(), [](const Use &OI) {
101     return OI->getType()->isFloatingPointTy();
102   });
103 }
104 
105 //===----------------------------------------------------------------------===//
106 // String and Memory Library Call Optimizations
107 //===----------------------------------------------------------------------===//
108 
109 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
110   // Extract some information from the instruction
111   Value *Dst = CI->getArgOperand(0);
112   Value *Src = CI->getArgOperand(1);
113 
114   // See if we can get the length of the input string.
115   uint64_t Len = GetStringLength(Src);
116   if (Len == 0)
117     return nullptr;
118   --Len; // Unbias length.
119 
120   // Handle the simple, do-nothing case: strcat(x, "") -> x
121   if (Len == 0)
122     return Dst;
123 
124   return emitStrLenMemCpy(Src, Dst, Len, B);
125 }
126 
127 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
128                                            IRBuilder<> &B) {
129   // We need to find the end of the destination string.  That's where the
130   // memory is to be moved to. We just generate a call to strlen.
131   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
132   if (!DstLen)
133     return nullptr;
134 
135   // Now that we have the destination's length, we must index into the
136   // destination's pointer to get the actual memcpy destination (end of
137   // the string .. we're concatenating).
138   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
139 
140   // We have enough information to now generate the memcpy call to do the
141   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
142   B.CreateMemCpy(CpyDst, 1, Src, 1,
143                  ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
144   return Dst;
145 }
146 
147 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
148   // Extract some information from the instruction.
149   Value *Dst = CI->getArgOperand(0);
150   Value *Src = CI->getArgOperand(1);
151   uint64_t Len;
152 
153   // We don't do anything if length is not constant.
154   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
155     Len = LengthArg->getZExtValue();
156   else
157     return nullptr;
158 
159   // See if we can get the length of the input string.
160   uint64_t SrcLen = GetStringLength(Src);
161   if (SrcLen == 0)
162     return nullptr;
163   --SrcLen; // Unbias length.
164 
165   // Handle the simple, do-nothing cases:
166   // strncat(x, "", c) -> x
167   // strncat(x,  c, 0) -> x
168   if (SrcLen == 0 || Len == 0)
169     return Dst;
170 
171   // We don't optimize this case.
172   if (Len < SrcLen)
173     return nullptr;
174 
175   // strncat(x, s, c) -> strcat(x, s)
176   // s is constant so the strcat can be optimized further.
177   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
178 }
179 
180 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
181   Function *Callee = CI->getCalledFunction();
182   FunctionType *FT = Callee->getFunctionType();
183   Value *SrcStr = CI->getArgOperand(0);
184 
185   // If the second operand is non-constant, see if we can compute the length
186   // of the input string and turn this into memchr.
187   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
188   if (!CharC) {
189     uint64_t Len = GetStringLength(SrcStr);
190     if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
191       return nullptr;
192 
193     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
194                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
195                       B, DL, TLI);
196   }
197 
198   // Otherwise, the character is a constant, see if the first argument is
199   // a string literal.  If so, we can constant fold.
200   StringRef Str;
201   if (!getConstantStringInfo(SrcStr, Str)) {
202     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
203       return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI),
204                          "strchr");
205     return nullptr;
206   }
207 
208   // Compute the offset, make sure to handle the case when we're searching for
209   // zero (a weird way to spell strlen).
210   size_t I = (0xFF & CharC->getSExtValue()) == 0
211                  ? Str.size()
212                  : Str.find(CharC->getSExtValue());
213   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
214     return Constant::getNullValue(CI->getType());
215 
216   // strchr(s+n,c)  -> gep(s+n+i,c)
217   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
218 }
219 
220 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
221   Value *SrcStr = CI->getArgOperand(0);
222   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
223 
224   // Cannot fold anything if we're not looking for a constant.
225   if (!CharC)
226     return nullptr;
227 
228   StringRef Str;
229   if (!getConstantStringInfo(SrcStr, Str)) {
230     // strrchr(s, 0) -> strchr(s, 0)
231     if (CharC->isZero())
232       return emitStrChr(SrcStr, '\0', B, TLI);
233     return nullptr;
234   }
235 
236   // Compute the offset.
237   size_t I = (0xFF & CharC->getSExtValue()) == 0
238                  ? Str.size()
239                  : Str.rfind(CharC->getSExtValue());
240   if (I == StringRef::npos) // Didn't find the char. Return null.
241     return Constant::getNullValue(CI->getType());
242 
243   // strrchr(s+n,c) -> gep(s+n+i,c)
244   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
245 }
246 
247 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
248   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
249   if (Str1P == Str2P) // strcmp(x,x)  -> 0
250     return ConstantInt::get(CI->getType(), 0);
251 
252   StringRef Str1, Str2;
253   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
254   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
255 
256   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
257   if (HasStr1 && HasStr2)
258     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
259 
260   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
261     return B.CreateNeg(
262         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
263 
264   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
265     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
266 
267   // strcmp(P, "x") -> memcmp(P, "x", 2)
268   uint64_t Len1 = GetStringLength(Str1P);
269   uint64_t Len2 = GetStringLength(Str2P);
270   if (Len1 && Len2) {
271     return emitMemCmp(Str1P, Str2P,
272                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
273                                        std::min(Len1, Len2)),
274                       B, DL, TLI);
275   }
276 
277   return nullptr;
278 }
279 
280 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
281   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
282   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
283     return ConstantInt::get(CI->getType(), 0);
284 
285   // Get the length argument if it is constant.
286   uint64_t Length;
287   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
288     Length = LengthArg->getZExtValue();
289   else
290     return nullptr;
291 
292   if (Length == 0) // strncmp(x,y,0)   -> 0
293     return ConstantInt::get(CI->getType(), 0);
294 
295   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
296     return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
297 
298   StringRef Str1, Str2;
299   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
300   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
301 
302   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
303   if (HasStr1 && HasStr2) {
304     StringRef SubStr1 = Str1.substr(0, Length);
305     StringRef SubStr2 = Str2.substr(0, Length);
306     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
307   }
308 
309   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
310     return B.CreateNeg(
311         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
312 
313   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
314     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
315 
316   return nullptr;
317 }
318 
319 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
320   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
321   if (Dst == Src) // strcpy(x,x)  -> x
322     return Src;
323 
324   // See if we can get the length of the input string.
325   uint64_t Len = GetStringLength(Src);
326   if (Len == 0)
327     return nullptr;
328 
329   // We have enough information to now generate the memcpy call to do the
330   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
331   B.CreateMemCpy(Dst, 1, Src, 1,
332                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
333   return Dst;
334 }
335 
336 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
337   Function *Callee = CI->getCalledFunction();
338   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
339   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
340     Value *StrLen = emitStrLen(Src, B, DL, TLI);
341     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
342   }
343 
344   // See if we can get the length of the input string.
345   uint64_t Len = GetStringLength(Src);
346   if (Len == 0)
347     return nullptr;
348 
349   Type *PT = Callee->getFunctionType()->getParamType(0);
350   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
351   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
352                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
353 
354   // We have enough information to now generate the memcpy call to do the
355   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
356   B.CreateMemCpy(Dst, 1, Src, 1, LenV);
357   return DstEnd;
358 }
359 
360 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
361   Function *Callee = CI->getCalledFunction();
362   Value *Dst = CI->getArgOperand(0);
363   Value *Src = CI->getArgOperand(1);
364   Value *LenOp = CI->getArgOperand(2);
365 
366   // See if we can get the length of the input string.
367   uint64_t SrcLen = GetStringLength(Src);
368   if (SrcLen == 0)
369     return nullptr;
370   --SrcLen;
371 
372   if (SrcLen == 0) {
373     // strncpy(x, "", y) -> memset(align 1 x, '\0', y)
374     B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
375     return Dst;
376   }
377 
378   uint64_t Len;
379   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
380     Len = LengthArg->getZExtValue();
381   else
382     return nullptr;
383 
384   if (Len == 0)
385     return Dst; // strncpy(x, y, 0) -> x
386 
387   // Let strncpy handle the zero padding
388   if (Len > SrcLen + 1)
389     return nullptr;
390 
391   Type *PT = Callee->getFunctionType()->getParamType(0);
392   // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
393   B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len));
394 
395   return Dst;
396 }
397 
398 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B,
399                                                unsigned CharSize) {
400   Value *Src = CI->getArgOperand(0);
401 
402   // Constant folding: strlen("xyz") -> 3
403   if (uint64_t Len = GetStringLength(Src, CharSize))
404     return ConstantInt::get(CI->getType(), Len - 1);
405 
406   // If s is a constant pointer pointing to a string literal, we can fold
407   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
408   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
409   // We only try to simplify strlen when the pointer s points to an array
410   // of i8. Otherwise, we would need to scale the offset x before doing the
411   // subtraction. This will make the optimization more complex, and it's not
412   // very useful because calling strlen for a pointer of other types is
413   // very uncommon.
414   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
415     if (!isGEPBasedOnPointerToString(GEP, CharSize))
416       return nullptr;
417 
418     ConstantDataArraySlice Slice;
419     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
420       uint64_t NullTermIdx;
421       if (Slice.Array == nullptr) {
422         NullTermIdx = 0;
423       } else {
424         NullTermIdx = ~((uint64_t)0);
425         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
426           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
427             NullTermIdx = I;
428             break;
429           }
430         }
431         // If the string does not have '\0', leave it to strlen to compute
432         // its length.
433         if (NullTermIdx == ~((uint64_t)0))
434           return nullptr;
435       }
436 
437       Value *Offset = GEP->getOperand(2);
438       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
439       Known.Zero.flipAllBits();
440       uint64_t ArrSize =
441              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
442 
443       // KnownZero's bits are flipped, so zeros in KnownZero now represent
444       // bits known to be zeros in Offset, and ones in KnowZero represent
445       // bits unknown in Offset. Therefore, Offset is known to be in range
446       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
447       // unsigned-less-than NullTermIdx.
448       //
449       // If Offset is not provably in the range [0, NullTermIdx], we can still
450       // optimize if we can prove that the program has undefined behavior when
451       // Offset is outside that range. That is the case when GEP->getOperand(0)
452       // is a pointer to an object whose memory extent is NullTermIdx+1.
453       if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
454           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
455            NullTermIdx == ArrSize - 1)) {
456         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
457         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
458                            Offset);
459       }
460     }
461 
462     return nullptr;
463   }
464 
465   // strlen(x?"foo":"bars") --> x ? 3 : 4
466   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
467     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
468     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
469     if (LenTrue && LenFalse) {
470       ORE.emit([&]() {
471         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
472                << "folded strlen(select) to select of constants";
473       });
474       return B.CreateSelect(SI->getCondition(),
475                             ConstantInt::get(CI->getType(), LenTrue - 1),
476                             ConstantInt::get(CI->getType(), LenFalse - 1));
477     }
478   }
479 
480   // strlen(x) != 0 --> *x != 0
481   // strlen(x) == 0 --> *x == 0
482   if (isOnlyUsedInZeroEqualityComparison(CI))
483     return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
484 
485   return nullptr;
486 }
487 
488 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
489   return optimizeStringLength(CI, B, 8);
490 }
491 
492 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) {
493   Module &M = *CI->getParent()->getParent()->getParent();
494   unsigned WCharSize = TLI->getWCharSize(M) * 8;
495   // We cannot perform this optimization without wchar_size metadata.
496   if (WCharSize == 0)
497     return nullptr;
498 
499   return optimizeStringLength(CI, B, WCharSize);
500 }
501 
502 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
503   StringRef S1, S2;
504   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
505   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
506 
507   // strpbrk(s, "") -> nullptr
508   // strpbrk("", s) -> nullptr
509   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
510     return Constant::getNullValue(CI->getType());
511 
512   // Constant folding.
513   if (HasS1 && HasS2) {
514     size_t I = S1.find_first_of(S2);
515     if (I == StringRef::npos) // No match.
516       return Constant::getNullValue(CI->getType());
517 
518     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
519                        "strpbrk");
520   }
521 
522   // strpbrk(s, "a") -> strchr(s, 'a')
523   if (HasS2 && S2.size() == 1)
524     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
525 
526   return nullptr;
527 }
528 
529 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
530   Value *EndPtr = CI->getArgOperand(1);
531   if (isa<ConstantPointerNull>(EndPtr)) {
532     // With a null EndPtr, this function won't capture the main argument.
533     // It would be readonly too, except that it still may write to errno.
534     CI->addParamAttr(0, Attribute::NoCapture);
535   }
536 
537   return nullptr;
538 }
539 
540 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
541   StringRef S1, S2;
542   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
543   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
544 
545   // strspn(s, "") -> 0
546   // strspn("", s) -> 0
547   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
548     return Constant::getNullValue(CI->getType());
549 
550   // Constant folding.
551   if (HasS1 && HasS2) {
552     size_t Pos = S1.find_first_not_of(S2);
553     if (Pos == StringRef::npos)
554       Pos = S1.size();
555     return ConstantInt::get(CI->getType(), Pos);
556   }
557 
558   return nullptr;
559 }
560 
561 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
562   StringRef S1, S2;
563   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
564   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
565 
566   // strcspn("", s) -> 0
567   if (HasS1 && S1.empty())
568     return Constant::getNullValue(CI->getType());
569 
570   // Constant folding.
571   if (HasS1 && HasS2) {
572     size_t Pos = S1.find_first_of(S2);
573     if (Pos == StringRef::npos)
574       Pos = S1.size();
575     return ConstantInt::get(CI->getType(), Pos);
576   }
577 
578   // strcspn(s, "") -> strlen(s)
579   if (HasS2 && S2.empty())
580     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
581 
582   return nullptr;
583 }
584 
585 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
586   // fold strstr(x, x) -> x.
587   if (CI->getArgOperand(0) == CI->getArgOperand(1))
588     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
589 
590   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
591   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
592     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
593     if (!StrLen)
594       return nullptr;
595     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
596                                  StrLen, B, DL, TLI);
597     if (!StrNCmp)
598       return nullptr;
599     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
600       ICmpInst *Old = cast<ICmpInst>(*UI++);
601       Value *Cmp =
602           B.CreateICmp(Old->getPredicate(), StrNCmp,
603                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
604       replaceAllUsesWith(Old, Cmp);
605     }
606     return CI;
607   }
608 
609   // See if either input string is a constant string.
610   StringRef SearchStr, ToFindStr;
611   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
612   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
613 
614   // fold strstr(x, "") -> x.
615   if (HasStr2 && ToFindStr.empty())
616     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
617 
618   // If both strings are known, constant fold it.
619   if (HasStr1 && HasStr2) {
620     size_t Offset = SearchStr.find(ToFindStr);
621 
622     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
623       return Constant::getNullValue(CI->getType());
624 
625     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
626     Value *Result = castToCStr(CI->getArgOperand(0), B);
627     Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
628     return B.CreateBitCast(Result, CI->getType());
629   }
630 
631   // fold strstr(x, "y") -> strchr(x, 'y').
632   if (HasStr2 && ToFindStr.size() == 1) {
633     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
634     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
635   }
636   return nullptr;
637 }
638 
639 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
640   Value *SrcStr = CI->getArgOperand(0);
641   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
642   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
643 
644   // memchr(x, y, 0) -> null
645   if (LenC && LenC->isZero())
646     return Constant::getNullValue(CI->getType());
647 
648   // From now on we need at least constant length and string.
649   StringRef Str;
650   if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
651     return nullptr;
652 
653   // Truncate the string to LenC. If Str is smaller than LenC we will still only
654   // scan the string, as reading past the end of it is undefined and we can just
655   // return null if we don't find the char.
656   Str = Str.substr(0, LenC->getZExtValue());
657 
658   // If the char is variable but the input str and length are not we can turn
659   // this memchr call into a simple bit field test. Of course this only works
660   // when the return value is only checked against null.
661   //
662   // It would be really nice to reuse switch lowering here but we can't change
663   // the CFG at this point.
664   //
665   // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
666   //   after bounds check.
667   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
668     unsigned char Max =
669         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
670                           reinterpret_cast<const unsigned char *>(Str.end()));
671 
672     // Make sure the bit field we're about to create fits in a register on the
673     // target.
674     // FIXME: On a 64 bit architecture this prevents us from using the
675     // interesting range of alpha ascii chars. We could do better by emitting
676     // two bitfields or shifting the range by 64 if no lower chars are used.
677     if (!DL.fitsInLegalInteger(Max + 1))
678       return nullptr;
679 
680     // For the bit field use a power-of-2 type with at least 8 bits to avoid
681     // creating unnecessary illegal types.
682     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
683 
684     // Now build the bit field.
685     APInt Bitfield(Width, 0);
686     for (char C : Str)
687       Bitfield.setBit((unsigned char)C);
688     Value *BitfieldC = B.getInt(Bitfield);
689 
690     // First check that the bit field access is within bounds.
691     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
692     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
693                                  "memchr.bounds");
694 
695     // Create code that checks if the given bit is set in the field.
696     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
697     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
698 
699     // Finally merge both checks and cast to pointer type. The inttoptr
700     // implicitly zexts the i1 to intptr type.
701     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
702   }
703 
704   // Check if all arguments are constants.  If so, we can constant fold.
705   if (!CharC)
706     return nullptr;
707 
708   // Compute the offset.
709   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
710   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
711     return Constant::getNullValue(CI->getType());
712 
713   // memchr(s+n,c,l) -> gep(s+n+i,c)
714   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
715 }
716 
717 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
718   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
719 
720   if (LHS == RHS) // memcmp(s,s,x) -> 0
721     return Constant::getNullValue(CI->getType());
722 
723   // Make sure we have a constant length.
724   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
725   if (!LenC)
726     return nullptr;
727 
728   uint64_t Len = LenC->getZExtValue();
729   if (Len == 0) // memcmp(s1,s2,0) -> 0
730     return Constant::getNullValue(CI->getType());
731 
732   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
733   if (Len == 1) {
734     Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"),
735                                CI->getType(), "lhsv");
736     Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"),
737                                CI->getType(), "rhsv");
738     return B.CreateSub(LHSV, RHSV, "chardiff");
739   }
740 
741   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
742   // TODO: The case where both inputs are constants does not need to be limited
743   // to legal integers or equality comparison. See block below this.
744   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
745     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
746     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
747 
748     // First, see if we can fold either argument to a constant.
749     Value *LHSV = nullptr;
750     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
751       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
752       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
753     }
754     Value *RHSV = nullptr;
755     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
756       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
757       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
758     }
759 
760     // Don't generate unaligned loads. If either source is constant data,
761     // alignment doesn't matter for that source because there is no load.
762     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
763         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
764       if (!LHSV) {
765         Type *LHSPtrTy =
766             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
767         LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
768       }
769       if (!RHSV) {
770         Type *RHSPtrTy =
771             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
772         RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
773       }
774       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
775     }
776   }
777 
778   // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
779   // TODO: This is limited to i8 arrays.
780   StringRef LHSStr, RHSStr;
781   if (getConstantStringInfo(LHS, LHSStr) &&
782       getConstantStringInfo(RHS, RHSStr)) {
783     // Make sure we're not reading out-of-bounds memory.
784     if (Len > LHSStr.size() || Len > RHSStr.size())
785       return nullptr;
786     // Fold the memcmp and normalize the result.  This way we get consistent
787     // results across multiple platforms.
788     uint64_t Ret = 0;
789     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
790     if (Cmp < 0)
791       Ret = -1;
792     else if (Cmp > 0)
793       Ret = 1;
794     return ConstantInt::get(CI->getType(), Ret);
795   }
796 
797   return nullptr;
798 }
799 
800 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
801   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
802   B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
803                  CI->getArgOperand(2));
804   return CI->getArgOperand(0);
805 }
806 
807 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
808   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
809   B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
810                   CI->getArgOperand(2));
811   return CI->getArgOperand(0);
812 }
813 
814 // TODO: Does this belong in BuildLibCalls or should all of those similar
815 // functions be moved here?
816 static Value *emitCalloc(Value *Num, Value *Size, const AttributeList &Attrs,
817                          IRBuilder<> &B, const TargetLibraryInfo &TLI) {
818   LibFunc Func;
819   if (!TLI.getLibFunc("calloc", Func) || !TLI.has(Func))
820     return nullptr;
821 
822   Module *M = B.GetInsertBlock()->getModule();
823   const DataLayout &DL = M->getDataLayout();
824   IntegerType *PtrType = DL.getIntPtrType((B.GetInsertBlock()->getContext()));
825   Value *Calloc = M->getOrInsertFunction("calloc", Attrs, B.getInt8PtrTy(),
826                                          PtrType, PtrType);
827   CallInst *CI = B.CreateCall(Calloc, { Num, Size }, "calloc");
828 
829   if (const auto *F = dyn_cast<Function>(Calloc->stripPointerCasts()))
830     CI->setCallingConv(F->getCallingConv());
831 
832   return CI;
833 }
834 
835 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
836 static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B,
837                                const TargetLibraryInfo &TLI) {
838   // This has to be a memset of zeros (bzero).
839   auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
840   if (!FillValue || FillValue->getZExtValue() != 0)
841     return nullptr;
842 
843   // TODO: We should handle the case where the malloc has more than one use.
844   // This is necessary to optimize common patterns such as when the result of
845   // the malloc is checked against null or when a memset intrinsic is used in
846   // place of a memset library call.
847   auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
848   if (!Malloc || !Malloc->hasOneUse())
849     return nullptr;
850 
851   // Is the inner call really malloc()?
852   Function *InnerCallee = Malloc->getCalledFunction();
853   if (!InnerCallee)
854     return nullptr;
855 
856   LibFunc Func;
857   if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
858       Func != LibFunc_malloc)
859     return nullptr;
860 
861   // The memset must cover the same number of bytes that are malloc'd.
862   if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
863     return nullptr;
864 
865   // Replace the malloc with a calloc. We need the data layout to know what the
866   // actual size of a 'size_t' parameter is.
867   B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
868   const DataLayout &DL = Malloc->getModule()->getDataLayout();
869   IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
870   Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
871                              Malloc->getArgOperand(0), Malloc->getAttributes(),
872                              B, TLI);
873   if (!Calloc)
874     return nullptr;
875 
876   Malloc->replaceAllUsesWith(Calloc);
877   Malloc->eraseFromParent();
878 
879   return Calloc;
880 }
881 
882 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
883   if (auto *Calloc = foldMallocMemset(CI, B, *TLI))
884     return Calloc;
885 
886   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
887   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
888   B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
889   return CI->getArgOperand(0);
890 }
891 
892 //===----------------------------------------------------------------------===//
893 // Math Library Optimizations
894 //===----------------------------------------------------------------------===//
895 
896 /// Return a variant of Val with float type.
897 /// Currently this works in two cases: If Val is an FPExtension of a float
898 /// value to something bigger, simply return the operand.
899 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
900 /// loss of precision do so.
901 static Value *valueHasFloatPrecision(Value *Val) {
902   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
903     Value *Op = Cast->getOperand(0);
904     if (Op->getType()->isFloatTy())
905       return Op;
906   }
907   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
908     APFloat F = Const->getValueAPF();
909     bool losesInfo;
910     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
911                     &losesInfo);
912     if (!losesInfo)
913       return ConstantFP::get(Const->getContext(), F);
914   }
915   return nullptr;
916 }
917 
918 /// Shrink double -> float for unary functions like 'floor'.
919 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
920                                     bool CheckRetType) {
921   Function *Callee = CI->getCalledFunction();
922   // We know this libcall has a valid prototype, but we don't know which.
923   if (!CI->getType()->isDoubleTy())
924     return nullptr;
925 
926   if (CheckRetType) {
927     // Check if all the uses for function like 'sin' are converted to float.
928     for (User *U : CI->users()) {
929       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
930       if (!Cast || !Cast->getType()->isFloatTy())
931         return nullptr;
932     }
933   }
934 
935   // If this is something like 'floor((double)floatval)', convert to floorf.
936   Value *V = valueHasFloatPrecision(CI->getArgOperand(0));
937   if (V == nullptr)
938     return nullptr;
939 
940   // If call isn't an intrinsic, check that it isn't within a function with the
941   // same name as the float version of this call.
942   //
943   // e.g. inline float expf(float val) { return (float) exp((double) val); }
944   //
945   // A similar such definition exists in the MinGW-w64 math.h header file which
946   // when compiled with -O2 -ffast-math causes the generation of infinite loops
947   // where expf is called.
948   if (!Callee->isIntrinsic()) {
949     const Function *F = CI->getFunction();
950     StringRef FName = F->getName();
951     StringRef CalleeName = Callee->getName();
952     if ((FName.size() == (CalleeName.size() + 1)) &&
953         (FName.back() == 'f') &&
954         FName.startswith(CalleeName))
955       return nullptr;
956   }
957 
958   // Propagate fast-math flags from the existing call to the new call.
959   IRBuilder<>::FastMathFlagGuard Guard(B);
960   B.setFastMathFlags(CI->getFastMathFlags());
961 
962   // floor((double)floatval) -> (double)floorf(floatval)
963   if (Callee->isIntrinsic()) {
964     Module *M = CI->getModule();
965     Intrinsic::ID IID = Callee->getIntrinsicID();
966     Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
967     V = B.CreateCall(F, V);
968   } else {
969     // The call is a library call rather than an intrinsic.
970     V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
971   }
972 
973   return B.CreateFPExt(V, B.getDoubleTy());
974 }
975 
976 // Replace a libcall \p CI with a call to intrinsic \p IID
977 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) {
978   // Propagate fast-math flags from the existing call to the new call.
979   IRBuilder<>::FastMathFlagGuard Guard(B);
980   B.setFastMathFlags(CI->getFastMathFlags());
981 
982   Module *M = CI->getModule();
983   Value *V = CI->getArgOperand(0);
984   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
985   CallInst *NewCall = B.CreateCall(F, V);
986   NewCall->takeName(CI);
987   return NewCall;
988 }
989 
990 /// Shrink double -> float for binary functions like 'fmin/fmax'.
991 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
992   Function *Callee = CI->getCalledFunction();
993   // We know this libcall has a valid prototype, but we don't know which.
994   if (!CI->getType()->isDoubleTy())
995     return nullptr;
996 
997   // If this is something like 'fmin((double)floatval1, (double)floatval2)',
998   // or fmin(1.0, (double)floatval), then we convert it to fminf.
999   Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0));
1000   if (V1 == nullptr)
1001     return nullptr;
1002   Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1));
1003   if (V2 == nullptr)
1004     return nullptr;
1005 
1006   // Propagate fast-math flags from the existing call to the new call.
1007   IRBuilder<>::FastMathFlagGuard Guard(B);
1008   B.setFastMathFlags(CI->getFastMathFlags());
1009 
1010   // fmin((double)floatval1, (double)floatval2)
1011   //                      -> (double)fminf(floatval1, floatval2)
1012   // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP().
1013   Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
1014                                    Callee->getAttributes());
1015   return B.CreateFPExt(V, B.getDoubleTy());
1016 }
1017 
1018 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1019 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) {
1020   if (!CI->isFast())
1021     return nullptr;
1022 
1023   // Propagate fast-math flags from the existing call to new instructions.
1024   IRBuilder<>::FastMathFlagGuard Guard(B);
1025   B.setFastMathFlags(CI->getFastMathFlags());
1026 
1027   Value *Real, *Imag;
1028   if (CI->getNumArgOperands() == 1) {
1029     Value *Op = CI->getArgOperand(0);
1030     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1031     Real = B.CreateExtractValue(Op, 0, "real");
1032     Imag = B.CreateExtractValue(Op, 1, "imag");
1033   } else {
1034     assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
1035     Real = CI->getArgOperand(0);
1036     Imag = CI->getArgOperand(1);
1037   }
1038 
1039   Value *RealReal = B.CreateFMul(Real, Real);
1040   Value *ImagImag = B.CreateFMul(Imag, Imag);
1041 
1042   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1043                                               CI->getType());
1044   return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
1045 }
1046 
1047 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
1048   Function *Callee = CI->getCalledFunction();
1049   Value *Ret = nullptr;
1050   StringRef Name = Callee->getName();
1051   if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name))
1052     Ret = optimizeUnaryDoubleFP(CI, B, true);
1053 
1054   // cos(-x) -> cos(x)
1055   Value *Op1 = CI->getArgOperand(0);
1056   if (BinaryOperator::isFNeg(Op1)) {
1057     BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
1058     return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
1059   }
1060   return Ret;
1061 }
1062 
1063 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
1064   // Multiplications calculated using Addition Chains.
1065   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1066 
1067   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1068 
1069   if (InnerChain[Exp])
1070     return InnerChain[Exp];
1071 
1072   static const unsigned AddChain[33][2] = {
1073       {0, 0}, // Unused.
1074       {0, 0}, // Unused (base case = pow1).
1075       {1, 1}, // Unused (pre-computed).
1076       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1077       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1078       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1079       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1080       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1081   };
1082 
1083   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1084                                  getPow(InnerChain, AddChain[Exp][1], B));
1085   return InnerChain[Exp];
1086 }
1087 
1088 /// Use square root in place of pow(x, +/-0.5).
1089 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) {
1090   // TODO: There is some subset of 'fast' under which these transforms should
1091   // be allowed.
1092   if (!Pow->isFast())
1093     return nullptr;
1094 
1095   const APFloat *Arg1C;
1096   if (!match(Pow->getArgOperand(1), m_APFloat(Arg1C)))
1097     return nullptr;
1098   if (!Arg1C->isExactlyValue(0.5) && !Arg1C->isExactlyValue(-0.5))
1099     return nullptr;
1100 
1101   // Fast-math flags from the pow() are propagated to all replacement ops.
1102   IRBuilder<>::FastMathFlagGuard Guard(B);
1103   B.setFastMathFlags(Pow->getFastMathFlags());
1104   Type *Ty = Pow->getType();
1105   Value *Sqrt;
1106   if (Pow->hasFnAttr(Attribute::ReadNone)) {
1107     // We know that errno is never set, so replace with an intrinsic:
1108     // pow(x, 0.5) --> llvm.sqrt(x)
1109     // llvm.pow(x, 0.5) --> llvm.sqrt(x)
1110     auto *F = Intrinsic::getDeclaration(Pow->getModule(), Intrinsic::sqrt, Ty);
1111     Sqrt = B.CreateCall(F, Pow->getArgOperand(0));
1112   } else if (hasUnaryFloatFn(TLI, Ty, LibFunc_sqrt, LibFunc_sqrtf,
1113                              LibFunc_sqrtl)) {
1114     // Errno could be set, so we must use a sqrt libcall.
1115     // TODO: We also should check that the target can in fact lower the sqrt
1116     // libcall. We currently have no way to ask this question, so we ask
1117     // whether the target has a sqrt libcall which is not exactly the same.
1118     Sqrt = emitUnaryFloatFnCall(Pow->getArgOperand(0),
1119                                 TLI->getName(LibFunc_sqrt), B,
1120                                 Pow->getCalledFunction()->getAttributes());
1121   } else {
1122     // We can't replace with an intrinsic or a libcall.
1123     return nullptr;
1124   }
1125 
1126   // If this is pow(x, -0.5), get the reciprocal.
1127   if (Arg1C->isExactlyValue(-0.5))
1128     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt);
1129 
1130   return Sqrt;
1131 }
1132 
1133 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
1134   Function *Callee = CI->getCalledFunction();
1135   Value *Ret = nullptr;
1136   StringRef Name = Callee->getName();
1137   if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name))
1138     Ret = optimizeUnaryDoubleFP(CI, B, true);
1139 
1140   Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
1141 
1142   // pow(1.0, x) -> 1.0
1143   if (match(Op1, m_SpecificFP(1.0)))
1144     return Op1;
1145   // pow(2.0, x) -> llvm.exp2(x)
1146   if (match(Op1, m_SpecificFP(2.0))) {
1147     Value *Exp2 = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::exp2,
1148                                             CI->getType());
1149     return B.CreateCall(Exp2, Op2, "exp2");
1150   }
1151 
1152   // There's no llvm.exp10 intrinsic yet, but, maybe, some day there will
1153   // be one.
1154   if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
1155     // pow(10.0, x) -> exp10(x)
1156     if (Op1C->isExactlyValue(10.0) &&
1157         hasUnaryFloatFn(TLI, Op1->getType(), LibFunc_exp10, LibFunc_exp10f,
1158                         LibFunc_exp10l))
1159       return emitUnaryFloatFnCall(Op2, TLI->getName(LibFunc_exp10), B,
1160                                   Callee->getAttributes());
1161   }
1162 
1163   // pow(exp(x), y) -> exp(x * y)
1164   // pow(exp2(x), y) -> exp2(x * y)
1165   // We enable these only with fast-math. Besides rounding differences, the
1166   // transformation changes overflow and underflow behavior quite dramatically.
1167   // Example: x = 1000, y = 0.001.
1168   // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1).
1169   auto *OpC = dyn_cast<CallInst>(Op1);
1170   if (OpC && OpC->isFast() && CI->isFast()) {
1171     LibFunc Func;
1172     Function *OpCCallee = OpC->getCalledFunction();
1173     if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) &&
1174         TLI->has(Func) && (Func == LibFunc_exp || Func == LibFunc_exp2)) {
1175       IRBuilder<>::FastMathFlagGuard Guard(B);
1176       B.setFastMathFlags(CI->getFastMathFlags());
1177       Value *FMul = B.CreateFMul(OpC->getArgOperand(0), Op2, "mul");
1178       return emitUnaryFloatFnCall(FMul, OpCCallee->getName(), B,
1179                                   OpCCallee->getAttributes());
1180     }
1181   }
1182 
1183   if (Value *Sqrt = replacePowWithSqrt(CI, B))
1184     return Sqrt;
1185 
1186   ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
1187   if (!Op2C)
1188     return Ret;
1189 
1190   if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
1191     return ConstantFP::get(CI->getType(), 1.0);
1192 
1193   // FIXME: Correct the transforms and pull this into replacePowWithSqrt().
1194   if (Op2C->isExactlyValue(0.5) &&
1195       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc_sqrt, LibFunc_sqrtf,
1196                       LibFunc_sqrtl)) {
1197     // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
1198     // This is faster than calling pow, and still handles negative zero
1199     // and negative infinity correctly.
1200     // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
1201     Value *Inf = ConstantFP::getInfinity(CI->getType());
1202     Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
1203 
1204     // TODO: As above, we should lower to the sqrt intrinsic if the pow is an
1205     // intrinsic, to match errno semantics.
1206     Value *Sqrt = emitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes());
1207 
1208     Module *M = Callee->getParent();
1209     Function *FabsF = Intrinsic::getDeclaration(M, Intrinsic::fabs,
1210                                                 CI->getType());
1211     Value *FAbs = B.CreateCall(FabsF, Sqrt);
1212 
1213     Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
1214     Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
1215     return Sel;
1216   }
1217 
1218   // Propagate fast-math-flags from the call to any created instructions.
1219   IRBuilder<>::FastMathFlagGuard Guard(B);
1220   B.setFastMathFlags(CI->getFastMathFlags());
1221   // pow(x, 1.0) --> x
1222   if (Op2C->isExactlyValue(1.0))
1223     return Op1;
1224   // pow(x, 2.0) --> x * x
1225   if (Op2C->isExactlyValue(2.0))
1226     return B.CreateFMul(Op1, Op1, "pow2");
1227   // pow(x, -1.0) --> 1.0 / x
1228   if (Op2C->isExactlyValue(-1.0))
1229     return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
1230 
1231   // In -ffast-math, generate repeated fmul instead of generating pow(x, n).
1232   if (CI->isFast()) {
1233     APFloat V = abs(Op2C->getValueAPF());
1234     // We limit to a max of 7 fmul(s). Thus max exponent is 32.
1235     // This transformation applies to integer exponents only.
1236     if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan ||
1237         !V.isInteger())
1238       return nullptr;
1239 
1240     // We will memoize intermediate products of the Addition Chain.
1241     Value *InnerChain[33] = {nullptr};
1242     InnerChain[1] = Op1;
1243     InnerChain[2] = B.CreateFMul(Op1, Op1);
1244 
1245     // We cannot readily convert a non-double type (like float) to a double.
1246     // So we first convert V to something which could be converted to double.
1247     bool Ignored;
1248     V.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1249 
1250     Value *FMul = getPow(InnerChain, V.convertToDouble(), B);
1251     // For negative exponents simply compute the reciprocal.
1252     if (Op2C->isNegative())
1253       FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul);
1254     return FMul;
1255   }
1256 
1257   return nullptr;
1258 }
1259 
1260 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1261   Function *Callee = CI->getCalledFunction();
1262   Value *Ret = nullptr;
1263   StringRef Name = Callee->getName();
1264   if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name))
1265     Ret = optimizeUnaryDoubleFP(CI, B, true);
1266 
1267   Value *Op = CI->getArgOperand(0);
1268   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1269   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1270   LibFunc LdExp = LibFunc_ldexpl;
1271   if (Op->getType()->isFloatTy())
1272     LdExp = LibFunc_ldexpf;
1273   else if (Op->getType()->isDoubleTy())
1274     LdExp = LibFunc_ldexp;
1275 
1276   if (TLI->has(LdExp)) {
1277     Value *LdExpArg = nullptr;
1278     if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
1279       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
1280         LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
1281     } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
1282       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
1283         LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
1284     }
1285 
1286     if (LdExpArg) {
1287       Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
1288       if (!Op->getType()->isFloatTy())
1289         One = ConstantExpr::getFPExtend(One, Op->getType());
1290 
1291       Module *M = CI->getModule();
1292       Value *NewCallee =
1293           M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
1294                                  Op->getType(), B.getInt32Ty());
1295       CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg});
1296       if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
1297         CI->setCallingConv(F->getCallingConv());
1298 
1299       return CI;
1300     }
1301   }
1302   return Ret;
1303 }
1304 
1305 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1306   Function *Callee = CI->getCalledFunction();
1307   // If we can shrink the call to a float function rather than a double
1308   // function, do that first.
1309   StringRef Name = Callee->getName();
1310   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1311     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1312       return Ret;
1313 
1314   IRBuilder<>::FastMathFlagGuard Guard(B);
1315   FastMathFlags FMF;
1316   if (CI->isFast()) {
1317     // If the call is 'fast', then anything we create here will also be 'fast'.
1318     FMF.setFast();
1319   } else {
1320     // At a minimum, no-nans-fp-math must be true.
1321     if (!CI->hasNoNaNs())
1322       return nullptr;
1323     // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
1324     // "Ideally, fmax would be sensitive to the sign of zero, for example
1325     // fmax(-0. 0, +0. 0) would return +0; however, implementation in software
1326     // might be impractical."
1327     FMF.setNoSignedZeros();
1328     FMF.setNoNaNs();
1329   }
1330   B.setFastMathFlags(FMF);
1331 
1332   // We have a relaxed floating-point environment. We can ignore NaN-handling
1333   // and transform to a compare and select. We do not have to consider errno or
1334   // exceptions, because fmin/fmax do not have those.
1335   Value *Op0 = CI->getArgOperand(0);
1336   Value *Op1 = CI->getArgOperand(1);
1337   Value *Cmp = Callee->getName().startswith("fmin") ?
1338     B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
1339   return B.CreateSelect(Cmp, Op0, Op1);
1340 }
1341 
1342 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
1343   Function *Callee = CI->getCalledFunction();
1344   Value *Ret = nullptr;
1345   StringRef Name = Callee->getName();
1346   if (UnsafeFPShrink && hasFloatVersion(Name))
1347     Ret = optimizeUnaryDoubleFP(CI, B, true);
1348 
1349   if (!CI->isFast())
1350     return Ret;
1351   Value *Op1 = CI->getArgOperand(0);
1352   auto *OpC = dyn_cast<CallInst>(Op1);
1353 
1354   // The earlier call must also be 'fast' in order to do these transforms.
1355   if (!OpC || !OpC->isFast())
1356     return Ret;
1357 
1358   // log(pow(x,y)) -> y*log(x)
1359   // This is only applicable to log, log2, log10.
1360   if (Name != "log" && Name != "log2" && Name != "log10")
1361     return Ret;
1362 
1363   IRBuilder<>::FastMathFlagGuard Guard(B);
1364   FastMathFlags FMF;
1365   FMF.setFast();
1366   B.setFastMathFlags(FMF);
1367 
1368   LibFunc Func;
1369   Function *F = OpC->getCalledFunction();
1370   if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1371       Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow))
1372     return B.CreateFMul(OpC->getArgOperand(1),
1373       emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B,
1374                            Callee->getAttributes()), "mul");
1375 
1376   // log(exp2(y)) -> y*log(2)
1377   if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) &&
1378       TLI->has(Func) && Func == LibFunc_exp2)
1379     return B.CreateFMul(
1380         OpC->getArgOperand(0),
1381         emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0),
1382                              Callee->getName(), B, Callee->getAttributes()),
1383         "logmul");
1384   return Ret;
1385 }
1386 
1387 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
1388   Function *Callee = CI->getCalledFunction();
1389   Value *Ret = nullptr;
1390   // TODO: Once we have a way (other than checking for the existince of the
1391   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
1392   // condition below.
1393   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
1394                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
1395     Ret = optimizeUnaryDoubleFP(CI, B, true);
1396 
1397   if (!CI->isFast())
1398     return Ret;
1399 
1400   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
1401   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
1402     return Ret;
1403 
1404   // We're looking for a repeated factor in a multiplication tree,
1405   // so we can do this fold: sqrt(x * x) -> fabs(x);
1406   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
1407   Value *Op0 = I->getOperand(0);
1408   Value *Op1 = I->getOperand(1);
1409   Value *RepeatOp = nullptr;
1410   Value *OtherOp = nullptr;
1411   if (Op0 == Op1) {
1412     // Simple match: the operands of the multiply are identical.
1413     RepeatOp = Op0;
1414   } else {
1415     // Look for a more complicated pattern: one of the operands is itself
1416     // a multiply, so search for a common factor in that multiply.
1417     // Note: We don't bother looking any deeper than this first level or for
1418     // variations of this pattern because instcombine's visitFMUL and/or the
1419     // reassociation pass should give us this form.
1420     Value *OtherMul0, *OtherMul1;
1421     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
1422       // Pattern: sqrt((x * y) * z)
1423       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
1424         // Matched: sqrt((x * x) * z)
1425         RepeatOp = OtherMul0;
1426         OtherOp = Op1;
1427       }
1428     }
1429   }
1430   if (!RepeatOp)
1431     return Ret;
1432 
1433   // Fast math flags for any created instructions should match the sqrt
1434   // and multiply.
1435   IRBuilder<>::FastMathFlagGuard Guard(B);
1436   B.setFastMathFlags(I->getFastMathFlags());
1437 
1438   // If we found a repeated factor, hoist it out of the square root and
1439   // replace it with the fabs of that factor.
1440   Module *M = Callee->getParent();
1441   Type *ArgType = I->getType();
1442   Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
1443   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
1444   if (OtherOp) {
1445     // If we found a non-repeated factor, we still need to get its square
1446     // root. We then multiply that by the value that was simplified out
1447     // of the square root calculation.
1448     Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
1449     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
1450     return B.CreateFMul(FabsCall, SqrtCall);
1451   }
1452   return FabsCall;
1453 }
1454 
1455 // TODO: Generalize to handle any trig function and its inverse.
1456 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
1457   Function *Callee = CI->getCalledFunction();
1458   Value *Ret = nullptr;
1459   StringRef Name = Callee->getName();
1460   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
1461     Ret = optimizeUnaryDoubleFP(CI, B, true);
1462 
1463   Value *Op1 = CI->getArgOperand(0);
1464   auto *OpC = dyn_cast<CallInst>(Op1);
1465   if (!OpC)
1466     return Ret;
1467 
1468   // Both calls must be 'fast' in order to remove them.
1469   if (!CI->isFast() || !OpC->isFast())
1470     return Ret;
1471 
1472   // tan(atan(x)) -> x
1473   // tanf(atanf(x)) -> x
1474   // tanl(atanl(x)) -> x
1475   LibFunc Func;
1476   Function *F = OpC->getCalledFunction();
1477   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1478       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
1479        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
1480        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
1481     Ret = OpC->getArgOperand(0);
1482   return Ret;
1483 }
1484 
1485 static bool isTrigLibCall(CallInst *CI) {
1486   // We can only hope to do anything useful if we can ignore things like errno
1487   // and floating-point exceptions.
1488   // We already checked the prototype.
1489   return CI->hasFnAttr(Attribute::NoUnwind) &&
1490          CI->hasFnAttr(Attribute::ReadNone);
1491 }
1492 
1493 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
1494                              bool UseFloat, Value *&Sin, Value *&Cos,
1495                              Value *&SinCos) {
1496   Type *ArgTy = Arg->getType();
1497   Type *ResTy;
1498   StringRef Name;
1499 
1500   Triple T(OrigCallee->getParent()->getTargetTriple());
1501   if (UseFloat) {
1502     Name = "__sincospif_stret";
1503 
1504     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
1505     // x86_64 can't use {float, float} since that would be returned in both
1506     // xmm0 and xmm1, which isn't what a real struct would do.
1507     ResTy = T.getArch() == Triple::x86_64
1508                 ? static_cast<Type *>(VectorType::get(ArgTy, 2))
1509                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
1510   } else {
1511     Name = "__sincospi_stret";
1512     ResTy = StructType::get(ArgTy, ArgTy);
1513   }
1514 
1515   Module *M = OrigCallee->getParent();
1516   Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
1517                                          ResTy, ArgTy);
1518 
1519   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
1520     // If the argument is an instruction, it must dominate all uses so put our
1521     // sincos call there.
1522     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
1523   } else {
1524     // Otherwise (e.g. for a constant) the beginning of the function is as
1525     // good a place as any.
1526     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
1527     B.SetInsertPoint(&EntryBB, EntryBB.begin());
1528   }
1529 
1530   SinCos = B.CreateCall(Callee, Arg, "sincospi");
1531 
1532   if (SinCos->getType()->isStructTy()) {
1533     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
1534     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
1535   } else {
1536     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
1537                                  "sinpi");
1538     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
1539                                  "cospi");
1540   }
1541 }
1542 
1543 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
1544   // Make sure the prototype is as expected, otherwise the rest of the
1545   // function is probably invalid and likely to abort.
1546   if (!isTrigLibCall(CI))
1547     return nullptr;
1548 
1549   Value *Arg = CI->getArgOperand(0);
1550   SmallVector<CallInst *, 1> SinCalls;
1551   SmallVector<CallInst *, 1> CosCalls;
1552   SmallVector<CallInst *, 1> SinCosCalls;
1553 
1554   bool IsFloat = Arg->getType()->isFloatTy();
1555 
1556   // Look for all compatible sinpi, cospi and sincospi calls with the same
1557   // argument. If there are enough (in some sense) we can make the
1558   // substitution.
1559   Function *F = CI->getFunction();
1560   for (User *U : Arg->users())
1561     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
1562 
1563   // It's only worthwhile if both sinpi and cospi are actually used.
1564   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
1565     return nullptr;
1566 
1567   Value *Sin, *Cos, *SinCos;
1568   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
1569 
1570   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
1571                                  Value *Res) {
1572     for (CallInst *C : Calls)
1573       replaceAllUsesWith(C, Res);
1574   };
1575 
1576   replaceTrigInsts(SinCalls, Sin);
1577   replaceTrigInsts(CosCalls, Cos);
1578   replaceTrigInsts(SinCosCalls, SinCos);
1579 
1580   return nullptr;
1581 }
1582 
1583 void LibCallSimplifier::classifyArgUse(
1584     Value *Val, Function *F, bool IsFloat,
1585     SmallVectorImpl<CallInst *> &SinCalls,
1586     SmallVectorImpl<CallInst *> &CosCalls,
1587     SmallVectorImpl<CallInst *> &SinCosCalls) {
1588   CallInst *CI = dyn_cast<CallInst>(Val);
1589 
1590   if (!CI)
1591     return;
1592 
1593   // Don't consider calls in other functions.
1594   if (CI->getFunction() != F)
1595     return;
1596 
1597   Function *Callee = CI->getCalledFunction();
1598   LibFunc Func;
1599   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
1600       !isTrigLibCall(CI))
1601     return;
1602 
1603   if (IsFloat) {
1604     if (Func == LibFunc_sinpif)
1605       SinCalls.push_back(CI);
1606     else if (Func == LibFunc_cospif)
1607       CosCalls.push_back(CI);
1608     else if (Func == LibFunc_sincospif_stret)
1609       SinCosCalls.push_back(CI);
1610   } else {
1611     if (Func == LibFunc_sinpi)
1612       SinCalls.push_back(CI);
1613     else if (Func == LibFunc_cospi)
1614       CosCalls.push_back(CI);
1615     else if (Func == LibFunc_sincospi_stret)
1616       SinCosCalls.push_back(CI);
1617   }
1618 }
1619 
1620 //===----------------------------------------------------------------------===//
1621 // Integer Library Call Optimizations
1622 //===----------------------------------------------------------------------===//
1623 
1624 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
1625   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
1626   Value *Op = CI->getArgOperand(0);
1627   Type *ArgType = Op->getType();
1628   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1629                                        Intrinsic::cttz, ArgType);
1630   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
1631   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
1632   V = B.CreateIntCast(V, B.getInt32Ty(), false);
1633 
1634   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
1635   return B.CreateSelect(Cond, V, B.getInt32(0));
1636 }
1637 
1638 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
1639   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
1640   Value *Op = CI->getArgOperand(0);
1641   Type *ArgType = Op->getType();
1642   Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
1643                                        Intrinsic::ctlz, ArgType);
1644   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
1645   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
1646                   V);
1647   return B.CreateIntCast(V, CI->getType(), false);
1648 }
1649 
1650 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
1651   // abs(x) -> x >s -1 ? x : -x
1652   Value *Op = CI->getArgOperand(0);
1653   Value *Pos =
1654       B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos");
1655   Value *Neg = B.CreateNeg(Op, "neg");
1656   return B.CreateSelect(Pos, Op, Neg);
1657 }
1658 
1659 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
1660   // isdigit(c) -> (c-'0') <u 10
1661   Value *Op = CI->getArgOperand(0);
1662   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
1663   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
1664   return B.CreateZExt(Op, CI->getType());
1665 }
1666 
1667 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
1668   // isascii(c) -> c <u 128
1669   Value *Op = CI->getArgOperand(0);
1670   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
1671   return B.CreateZExt(Op, CI->getType());
1672 }
1673 
1674 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
1675   // toascii(c) -> c & 0x7f
1676   return B.CreateAnd(CI->getArgOperand(0),
1677                      ConstantInt::get(CI->getType(), 0x7F));
1678 }
1679 
1680 //===----------------------------------------------------------------------===//
1681 // Formatting and IO Library Call Optimizations
1682 //===----------------------------------------------------------------------===//
1683 
1684 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
1685 
1686 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
1687                                                  int StreamArg) {
1688   Function *Callee = CI->getCalledFunction();
1689   // Error reporting calls should be cold, mark them as such.
1690   // This applies even to non-builtin calls: it is only a hint and applies to
1691   // functions that the frontend might not understand as builtins.
1692 
1693   // This heuristic was suggested in:
1694   // Improving Static Branch Prediction in a Compiler
1695   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
1696   // Proceedings of PACT'98, Oct. 1998, IEEE
1697   if (!CI->hasFnAttr(Attribute::Cold) &&
1698       isReportingError(Callee, CI, StreamArg)) {
1699     CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
1700   }
1701 
1702   return nullptr;
1703 }
1704 
1705 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
1706   if (!Callee || !Callee->isDeclaration())
1707     return false;
1708 
1709   if (StreamArg < 0)
1710     return true;
1711 
1712   // These functions might be considered cold, but only if their stream
1713   // argument is stderr.
1714 
1715   if (StreamArg >= (int)CI->getNumArgOperands())
1716     return false;
1717   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
1718   if (!LI)
1719     return false;
1720   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
1721   if (!GV || !GV->isDeclaration())
1722     return false;
1723   return GV->getName() == "stderr";
1724 }
1725 
1726 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
1727   // Check for a fixed format string.
1728   StringRef FormatStr;
1729   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
1730     return nullptr;
1731 
1732   // Empty format string -> noop.
1733   if (FormatStr.empty()) // Tolerate printf's declared void.
1734     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
1735 
1736   // Do not do any of the following transformations if the printf return value
1737   // is used, in general the printf return value is not compatible with either
1738   // putchar() or puts().
1739   if (!CI->use_empty())
1740     return nullptr;
1741 
1742   // printf("x") -> putchar('x'), even for "%" and "%%".
1743   if (FormatStr.size() == 1 || FormatStr == "%%")
1744     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
1745 
1746   // printf("%s", "a") --> putchar('a')
1747   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
1748     StringRef ChrStr;
1749     if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
1750       return nullptr;
1751     if (ChrStr.size() != 1)
1752       return nullptr;
1753     return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
1754   }
1755 
1756   // printf("foo\n") --> puts("foo")
1757   if (FormatStr[FormatStr.size() - 1] == '\n' &&
1758       FormatStr.find('%') == StringRef::npos) { // No format characters.
1759     // Create a string literal with no \n on it.  We expect the constant merge
1760     // pass to be run after this pass, to merge duplicate strings.
1761     FormatStr = FormatStr.drop_back();
1762     Value *GV = B.CreateGlobalString(FormatStr, "str");
1763     return emitPutS(GV, B, TLI);
1764   }
1765 
1766   // Optimize specific format strings.
1767   // printf("%c", chr) --> putchar(chr)
1768   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
1769       CI->getArgOperand(1)->getType()->isIntegerTy())
1770     return emitPutChar(CI->getArgOperand(1), B, TLI);
1771 
1772   // printf("%s\n", str) --> puts(str)
1773   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
1774       CI->getArgOperand(1)->getType()->isPointerTy())
1775     return emitPutS(CI->getArgOperand(1), B, TLI);
1776   return nullptr;
1777 }
1778 
1779 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
1780 
1781   Function *Callee = CI->getCalledFunction();
1782   FunctionType *FT = Callee->getFunctionType();
1783   if (Value *V = optimizePrintFString(CI, B)) {
1784     return V;
1785   }
1786 
1787   // printf(format, ...) -> iprintf(format, ...) if no floating point
1788   // arguments.
1789   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
1790     Module *M = B.GetInsertBlock()->getParent()->getParent();
1791     Constant *IPrintFFn =
1792         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
1793     CallInst *New = cast<CallInst>(CI->clone());
1794     New->setCalledFunction(IPrintFFn);
1795     B.Insert(New);
1796     return New;
1797   }
1798   return nullptr;
1799 }
1800 
1801 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
1802   // Check for a fixed format string.
1803   StringRef FormatStr;
1804   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1805     return nullptr;
1806 
1807   // If we just have a format string (nothing else crazy) transform it.
1808   if (CI->getNumArgOperands() == 2) {
1809     // Make sure there's no % in the constant array.  We could try to handle
1810     // %% -> % in the future if we cared.
1811     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1812       if (FormatStr[i] == '%')
1813         return nullptr; // we found a format specifier, bail out.
1814 
1815     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
1816     B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
1817                    ConstantInt::get(DL.getIntPtrType(CI->getContext()),
1818                                     FormatStr.size() + 1)); // Copy the null byte.
1819     return ConstantInt::get(CI->getType(), FormatStr.size());
1820   }
1821 
1822   // The remaining optimizations require the format string to be "%s" or "%c"
1823   // and have an extra operand.
1824   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1825       CI->getNumArgOperands() < 3)
1826     return nullptr;
1827 
1828   // Decode the second character of the format string.
1829   if (FormatStr[1] == 'c') {
1830     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
1831     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1832       return nullptr;
1833     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
1834     Value *Ptr = castToCStr(CI->getArgOperand(0), B);
1835     B.CreateStore(V, Ptr);
1836     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
1837     B.CreateStore(B.getInt8(0), Ptr);
1838 
1839     return ConstantInt::get(CI->getType(), 1);
1840   }
1841 
1842   if (FormatStr[1] == 's') {
1843     // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1844     if (!CI->getArgOperand(2)->getType()->isPointerTy())
1845       return nullptr;
1846 
1847     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
1848     if (!Len)
1849       return nullptr;
1850     Value *IncLen =
1851         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
1852     B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen);
1853 
1854     // The sprintf result is the unincremented number of bytes in the string.
1855     return B.CreateIntCast(Len, CI->getType(), false);
1856   }
1857   return nullptr;
1858 }
1859 
1860 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
1861   Function *Callee = CI->getCalledFunction();
1862   FunctionType *FT = Callee->getFunctionType();
1863   if (Value *V = optimizeSPrintFString(CI, B)) {
1864     return V;
1865   }
1866 
1867   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
1868   // point arguments.
1869   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
1870     Module *M = B.GetInsertBlock()->getParent()->getParent();
1871     Constant *SIPrintFFn =
1872         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
1873     CallInst *New = cast<CallInst>(CI->clone());
1874     New->setCalledFunction(SIPrintFFn);
1875     B.Insert(New);
1876     return New;
1877   }
1878   return nullptr;
1879 }
1880 
1881 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
1882   optimizeErrorReporting(CI, B, 0);
1883 
1884   // All the optimizations depend on the format string.
1885   StringRef FormatStr;
1886   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1887     return nullptr;
1888 
1889   // Do not do any of the following transformations if the fprintf return
1890   // value is used, in general the fprintf return value is not compatible
1891   // with fwrite(), fputc() or fputs().
1892   if (!CI->use_empty())
1893     return nullptr;
1894 
1895   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
1896   if (CI->getNumArgOperands() == 2) {
1897     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1898       if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
1899         return nullptr;        // We found a format specifier.
1900 
1901     return emitFWrite(
1902         CI->getArgOperand(1),
1903         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
1904         CI->getArgOperand(0), B, DL, TLI);
1905   }
1906 
1907   // The remaining optimizations require the format string to be "%s" or "%c"
1908   // and have an extra operand.
1909   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1910       CI->getNumArgOperands() < 3)
1911     return nullptr;
1912 
1913   // Decode the second character of the format string.
1914   if (FormatStr[1] == 'c') {
1915     // fprintf(F, "%c", chr) --> fputc(chr, F)
1916     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1917       return nullptr;
1918     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1919   }
1920 
1921   if (FormatStr[1] == 's') {
1922     // fprintf(F, "%s", str) --> fputs(str, F)
1923     if (!CI->getArgOperand(2)->getType()->isPointerTy())
1924       return nullptr;
1925     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1926   }
1927   return nullptr;
1928 }
1929 
1930 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
1931   Function *Callee = CI->getCalledFunction();
1932   FunctionType *FT = Callee->getFunctionType();
1933   if (Value *V = optimizeFPrintFString(CI, B)) {
1934     return V;
1935   }
1936 
1937   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
1938   // floating point arguments.
1939   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
1940     Module *M = B.GetInsertBlock()->getParent()->getParent();
1941     Constant *FIPrintFFn =
1942         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
1943     CallInst *New = cast<CallInst>(CI->clone());
1944     New->setCalledFunction(FIPrintFFn);
1945     B.Insert(New);
1946     return New;
1947   }
1948   return nullptr;
1949 }
1950 
1951 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
1952   optimizeErrorReporting(CI, B, 3);
1953 
1954   // Get the element size and count.
1955   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
1956   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1957   if (!SizeC || !CountC)
1958     return nullptr;
1959   uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
1960 
1961   // If this is writing zero records, remove the call (it's a noop).
1962   if (Bytes == 0)
1963     return ConstantInt::get(CI->getType(), 0);
1964 
1965   // If this is writing one byte, turn it into fputc.
1966   // This optimisation is only valid, if the return value is unused.
1967   if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
1968     Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char");
1969     Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
1970     return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
1971   }
1972 
1973   return nullptr;
1974 }
1975 
1976 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
1977   optimizeErrorReporting(CI, B, 1);
1978 
1979   // Don't rewrite fputs to fwrite when optimising for size because fwrite
1980   // requires more arguments and thus extra MOVs are required.
1981   if (CI->getParent()->getParent()->optForSize())
1982     return nullptr;
1983 
1984   // We can't optimize if return value is used.
1985   if (!CI->use_empty())
1986     return nullptr;
1987 
1988   // fputs(s,F) --> fwrite(s,1,strlen(s),F)
1989   uint64_t Len = GetStringLength(CI->getArgOperand(0));
1990   if (!Len)
1991     return nullptr;
1992 
1993   // Known to have no uses (see above).
1994   return emitFWrite(
1995       CI->getArgOperand(0),
1996       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
1997       CI->getArgOperand(1), B, DL, TLI);
1998 }
1999 
2000 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
2001   // Check for a constant string.
2002   StringRef Str;
2003   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2004     return nullptr;
2005 
2006   if (Str.empty() && CI->use_empty()) {
2007     // puts("") -> putchar('\n')
2008     Value *Res = emitPutChar(B.getInt32('\n'), B, TLI);
2009     if (CI->use_empty() || !Res)
2010       return Res;
2011     return B.CreateIntCast(Res, CI->getType(), true);
2012   }
2013 
2014   return nullptr;
2015 }
2016 
2017 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2018   LibFunc Func;
2019   SmallString<20> FloatFuncName = FuncName;
2020   FloatFuncName += 'f';
2021   if (TLI->getLibFunc(FloatFuncName, Func))
2022     return TLI->has(Func);
2023   return false;
2024 }
2025 
2026 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2027                                                       IRBuilder<> &Builder) {
2028   LibFunc Func;
2029   Function *Callee = CI->getCalledFunction();
2030   // Check for string/memory library functions.
2031   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2032     // Make sure we never change the calling convention.
2033     assert((ignoreCallingConv(Func) ||
2034             isCallingConvCCompatible(CI)) &&
2035       "Optimizing string/memory libcall would change the calling convention");
2036     switch (Func) {
2037     case LibFunc_strcat:
2038       return optimizeStrCat(CI, Builder);
2039     case LibFunc_strncat:
2040       return optimizeStrNCat(CI, Builder);
2041     case LibFunc_strchr:
2042       return optimizeStrChr(CI, Builder);
2043     case LibFunc_strrchr:
2044       return optimizeStrRChr(CI, Builder);
2045     case LibFunc_strcmp:
2046       return optimizeStrCmp(CI, Builder);
2047     case LibFunc_strncmp:
2048       return optimizeStrNCmp(CI, Builder);
2049     case LibFunc_strcpy:
2050       return optimizeStrCpy(CI, Builder);
2051     case LibFunc_stpcpy:
2052       return optimizeStpCpy(CI, Builder);
2053     case LibFunc_strncpy:
2054       return optimizeStrNCpy(CI, Builder);
2055     case LibFunc_strlen:
2056       return optimizeStrLen(CI, Builder);
2057     case LibFunc_strpbrk:
2058       return optimizeStrPBrk(CI, Builder);
2059     case LibFunc_strtol:
2060     case LibFunc_strtod:
2061     case LibFunc_strtof:
2062     case LibFunc_strtoul:
2063     case LibFunc_strtoll:
2064     case LibFunc_strtold:
2065     case LibFunc_strtoull:
2066       return optimizeStrTo(CI, Builder);
2067     case LibFunc_strspn:
2068       return optimizeStrSpn(CI, Builder);
2069     case LibFunc_strcspn:
2070       return optimizeStrCSpn(CI, Builder);
2071     case LibFunc_strstr:
2072       return optimizeStrStr(CI, Builder);
2073     case LibFunc_memchr:
2074       return optimizeMemChr(CI, Builder);
2075     case LibFunc_memcmp:
2076       return optimizeMemCmp(CI, Builder);
2077     case LibFunc_memcpy:
2078       return optimizeMemCpy(CI, Builder);
2079     case LibFunc_memmove:
2080       return optimizeMemMove(CI, Builder);
2081     case LibFunc_memset:
2082       return optimizeMemSet(CI, Builder);
2083     case LibFunc_wcslen:
2084       return optimizeWcslen(CI, Builder);
2085     default:
2086       break;
2087     }
2088   }
2089   return nullptr;
2090 }
2091 
2092 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2093                                                        LibFunc Func,
2094                                                        IRBuilder<> &Builder) {
2095   // Don't optimize calls that require strict floating point semantics.
2096   if (CI->isStrictFP())
2097     return nullptr;
2098 
2099   switch (Func) {
2100   case LibFunc_cosf:
2101   case LibFunc_cos:
2102   case LibFunc_cosl:
2103     return optimizeCos(CI, Builder);
2104   case LibFunc_sinpif:
2105   case LibFunc_sinpi:
2106   case LibFunc_cospif:
2107   case LibFunc_cospi:
2108     return optimizeSinCosPi(CI, Builder);
2109   case LibFunc_powf:
2110   case LibFunc_pow:
2111   case LibFunc_powl:
2112     return optimizePow(CI, Builder);
2113   case LibFunc_exp2l:
2114   case LibFunc_exp2:
2115   case LibFunc_exp2f:
2116     return optimizeExp2(CI, Builder);
2117   case LibFunc_fabsf:
2118   case LibFunc_fabs:
2119   case LibFunc_fabsl:
2120     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2121   case LibFunc_sqrtf:
2122   case LibFunc_sqrt:
2123   case LibFunc_sqrtl:
2124     return optimizeSqrt(CI, Builder);
2125   case LibFunc_log:
2126   case LibFunc_log10:
2127   case LibFunc_log1p:
2128   case LibFunc_log2:
2129   case LibFunc_logb:
2130     return optimizeLog(CI, Builder);
2131   case LibFunc_tan:
2132   case LibFunc_tanf:
2133   case LibFunc_tanl:
2134     return optimizeTan(CI, Builder);
2135   case LibFunc_ceil:
2136     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2137   case LibFunc_floor:
2138     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2139   case LibFunc_round:
2140     return replaceUnaryCall(CI, Builder, Intrinsic::round);
2141   case LibFunc_nearbyint:
2142     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2143   case LibFunc_rint:
2144     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2145   case LibFunc_trunc:
2146     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
2147   case LibFunc_acos:
2148   case LibFunc_acosh:
2149   case LibFunc_asin:
2150   case LibFunc_asinh:
2151   case LibFunc_atan:
2152   case LibFunc_atanh:
2153   case LibFunc_cbrt:
2154   case LibFunc_cosh:
2155   case LibFunc_exp:
2156   case LibFunc_exp10:
2157   case LibFunc_expm1:
2158   case LibFunc_sin:
2159   case LibFunc_sinh:
2160   case LibFunc_tanh:
2161     if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
2162       return optimizeUnaryDoubleFP(CI, Builder, true);
2163     return nullptr;
2164   case LibFunc_copysign:
2165     if (hasFloatVersion(CI->getCalledFunction()->getName()))
2166       return optimizeBinaryDoubleFP(CI, Builder);
2167     return nullptr;
2168   case LibFunc_fminf:
2169   case LibFunc_fmin:
2170   case LibFunc_fminl:
2171   case LibFunc_fmaxf:
2172   case LibFunc_fmax:
2173   case LibFunc_fmaxl:
2174     return optimizeFMinFMax(CI, Builder);
2175   case LibFunc_cabs:
2176   case LibFunc_cabsf:
2177   case LibFunc_cabsl:
2178     return optimizeCAbs(CI, Builder);
2179   default:
2180     return nullptr;
2181   }
2182 }
2183 
2184 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
2185   // TODO: Split out the code below that operates on FP calls so that
2186   //       we can all non-FP calls with the StrictFP attribute to be
2187   //       optimized.
2188   if (CI->isNoBuiltin())
2189     return nullptr;
2190 
2191   LibFunc Func;
2192   Function *Callee = CI->getCalledFunction();
2193 
2194   SmallVector<OperandBundleDef, 2> OpBundles;
2195   CI->getOperandBundlesAsDefs(OpBundles);
2196   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2197   bool isCallingConvC = isCallingConvCCompatible(CI);
2198 
2199   // Command-line parameter overrides instruction attribute.
2200   // This can't be moved to optimizeFloatingPointLibCall() because it may be
2201   // used by the intrinsic optimizations.
2202   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
2203     UnsafeFPShrink = EnableUnsafeFPShrink;
2204   else if (isa<FPMathOperator>(CI) && CI->isFast())
2205     UnsafeFPShrink = true;
2206 
2207   // First, check for intrinsics.
2208   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
2209     if (!isCallingConvC)
2210       return nullptr;
2211     // The FP intrinsics have corresponding constrained versions so we don't
2212     // need to check for the StrictFP attribute here.
2213     switch (II->getIntrinsicID()) {
2214     case Intrinsic::pow:
2215       return optimizePow(CI, Builder);
2216     case Intrinsic::exp2:
2217       return optimizeExp2(CI, Builder);
2218     case Intrinsic::log:
2219       return optimizeLog(CI, Builder);
2220     case Intrinsic::sqrt:
2221       return optimizeSqrt(CI, Builder);
2222     // TODO: Use foldMallocMemset() with memset intrinsic.
2223     default:
2224       return nullptr;
2225     }
2226   }
2227 
2228   // Also try to simplify calls to fortified library functions.
2229   if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
2230     // Try to further simplify the result.
2231     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
2232     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
2233       // Use an IR Builder from SimplifiedCI if available instead of CI
2234       // to guarantee we reach all uses we might replace later on.
2235       IRBuilder<> TmpBuilder(SimplifiedCI);
2236       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
2237         // If we were able to further simplify, remove the now redundant call.
2238         SimplifiedCI->replaceAllUsesWith(V);
2239         SimplifiedCI->eraseFromParent();
2240         return V;
2241       }
2242     }
2243     return SimplifiedFortifiedCI;
2244   }
2245 
2246   // Then check for known library functions.
2247   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2248     // We never change the calling convention.
2249     if (!ignoreCallingConv(Func) && !isCallingConvC)
2250       return nullptr;
2251     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
2252       return V;
2253     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
2254       return V;
2255     switch (Func) {
2256     case LibFunc_ffs:
2257     case LibFunc_ffsl:
2258     case LibFunc_ffsll:
2259       return optimizeFFS(CI, Builder);
2260     case LibFunc_fls:
2261     case LibFunc_flsl:
2262     case LibFunc_flsll:
2263       return optimizeFls(CI, Builder);
2264     case LibFunc_abs:
2265     case LibFunc_labs:
2266     case LibFunc_llabs:
2267       return optimizeAbs(CI, Builder);
2268     case LibFunc_isdigit:
2269       return optimizeIsDigit(CI, Builder);
2270     case LibFunc_isascii:
2271       return optimizeIsAscii(CI, Builder);
2272     case LibFunc_toascii:
2273       return optimizeToAscii(CI, Builder);
2274     case LibFunc_printf:
2275       return optimizePrintF(CI, Builder);
2276     case LibFunc_sprintf:
2277       return optimizeSPrintF(CI, Builder);
2278     case LibFunc_fprintf:
2279       return optimizeFPrintF(CI, Builder);
2280     case LibFunc_fwrite:
2281       return optimizeFWrite(CI, Builder);
2282     case LibFunc_fputs:
2283       return optimizeFPuts(CI, Builder);
2284     case LibFunc_puts:
2285       return optimizePuts(CI, Builder);
2286     case LibFunc_perror:
2287       return optimizeErrorReporting(CI, Builder);
2288     case LibFunc_vfprintf:
2289     case LibFunc_fiprintf:
2290       return optimizeErrorReporting(CI, Builder, 0);
2291     case LibFunc_fputc:
2292       return optimizeErrorReporting(CI, Builder, 1);
2293     default:
2294       return nullptr;
2295     }
2296   }
2297   return nullptr;
2298 }
2299 
2300 LibCallSimplifier::LibCallSimplifier(
2301     const DataLayout &DL, const TargetLibraryInfo *TLI,
2302     OptimizationRemarkEmitter &ORE,
2303     function_ref<void(Instruction *, Value *)> Replacer)
2304     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE),
2305       UnsafeFPShrink(false), Replacer(Replacer) {}
2306 
2307 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
2308   // Indirect through the replacer used in this instance.
2309   Replacer(I, With);
2310 }
2311 
2312 // TODO:
2313 //   Additional cases that we need to add to this file:
2314 //
2315 // cbrt:
2316 //   * cbrt(expN(X))  -> expN(x/3)
2317 //   * cbrt(sqrt(x))  -> pow(x,1/6)
2318 //   * cbrt(cbrt(x))  -> pow(x,1/9)
2319 //
2320 // exp, expf, expl:
2321 //   * exp(log(x))  -> x
2322 //
2323 // log, logf, logl:
2324 //   * log(exp(x))   -> x
2325 //   * log(exp(y))   -> y*log(e)
2326 //   * log(exp10(y)) -> y*log(10)
2327 //   * log(sqrt(x))  -> 0.5*log(x)
2328 //
2329 // pow, powf, powl:
2330 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
2331 //   * pow(pow(x,y),z)-> pow(x,y*z)
2332 //
2333 // signbit:
2334 //   * signbit(cnst) -> cnst'
2335 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2336 //
2337 // sqrt, sqrtf, sqrtl:
2338 //   * sqrt(expN(x))  -> expN(x*0.5)
2339 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2340 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2341 //
2342 
2343 //===----------------------------------------------------------------------===//
2344 // Fortified Library Call Optimizations
2345 //===----------------------------------------------------------------------===//
2346 
2347 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
2348                                                          unsigned ObjSizeOp,
2349                                                          unsigned SizeOp,
2350                                                          bool isString) {
2351   if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
2352     return true;
2353   if (ConstantInt *ObjSizeCI =
2354           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
2355     if (ObjSizeCI->isMinusOne())
2356       return true;
2357     // If the object size wasn't -1 (unknown), bail out if we were asked to.
2358     if (OnlyLowerUnknownSize)
2359       return false;
2360     if (isString) {
2361       uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
2362       // If the length is 0 we don't know how long it is and so we can't
2363       // remove the check.
2364       if (Len == 0)
2365         return false;
2366       return ObjSizeCI->getZExtValue() >= Len;
2367     }
2368     if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
2369       return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
2370   }
2371   return false;
2372 }
2373 
2374 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
2375                                                      IRBuilder<> &B) {
2376   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2377     B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
2378                    CI->getArgOperand(2));
2379     return CI->getArgOperand(0);
2380   }
2381   return nullptr;
2382 }
2383 
2384 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
2385                                                       IRBuilder<> &B) {
2386   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2387     B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
2388                     CI->getArgOperand(2));
2389     return CI->getArgOperand(0);
2390   }
2391   return nullptr;
2392 }
2393 
2394 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
2395                                                      IRBuilder<> &B) {
2396   // TODO: Try foldMallocMemset() here.
2397 
2398   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2399     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
2400     B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
2401     return CI->getArgOperand(0);
2402   }
2403   return nullptr;
2404 }
2405 
2406 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
2407                                                       IRBuilder<> &B,
2408                                                       LibFunc Func) {
2409   Function *Callee = CI->getCalledFunction();
2410   StringRef Name = Callee->getName();
2411   const DataLayout &DL = CI->getModule()->getDataLayout();
2412   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
2413         *ObjSize = CI->getArgOperand(2);
2414 
2415   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
2416   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
2417     Value *StrLen = emitStrLen(Src, B, DL, TLI);
2418     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
2419   }
2420 
2421   // If a) we don't have any length information, or b) we know this will
2422   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
2423   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
2424   // TODO: It might be nice to get a maximum length out of the possible
2425   // string lengths for varying.
2426   if (isFortifiedCallFoldable(CI, 2, 1, true))
2427     return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
2428 
2429   if (OnlyLowerUnknownSize)
2430     return nullptr;
2431 
2432   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
2433   uint64_t Len = GetStringLength(Src);
2434   if (Len == 0)
2435     return nullptr;
2436 
2437   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
2438   Value *LenV = ConstantInt::get(SizeTTy, Len);
2439   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
2440   // If the function was an __stpcpy_chk, and we were able to fold it into
2441   // a __memcpy_chk, we still need to return the correct end pointer.
2442   if (Ret && Func == LibFunc_stpcpy_chk)
2443     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
2444   return Ret;
2445 }
2446 
2447 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
2448                                                        IRBuilder<> &B,
2449                                                        LibFunc Func) {
2450   Function *Callee = CI->getCalledFunction();
2451   StringRef Name = Callee->getName();
2452   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2453     Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2454                              CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
2455     return Ret;
2456   }
2457   return nullptr;
2458 }
2459 
2460 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
2461   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
2462   // Some clang users checked for _chk libcall availability using:
2463   //   __has_builtin(__builtin___memcpy_chk)
2464   // When compiling with -fno-builtin, this is always true.
2465   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
2466   // end up with fortified libcalls, which isn't acceptable in a freestanding
2467   // environment which only provides their non-fortified counterparts.
2468   //
2469   // Until we change clang and/or teach external users to check for availability
2470   // differently, disregard the "nobuiltin" attribute and TLI::has.
2471   //
2472   // PR23093.
2473 
2474   LibFunc Func;
2475   Function *Callee = CI->getCalledFunction();
2476 
2477   SmallVector<OperandBundleDef, 2> OpBundles;
2478   CI->getOperandBundlesAsDefs(OpBundles);
2479   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
2480   bool isCallingConvC = isCallingConvCCompatible(CI);
2481 
2482   // First, check that this is a known library functions and that the prototype
2483   // is correct.
2484   if (!TLI->getLibFunc(*Callee, Func))
2485     return nullptr;
2486 
2487   // We never change the calling convention.
2488   if (!ignoreCallingConv(Func) && !isCallingConvC)
2489     return nullptr;
2490 
2491   switch (Func) {
2492   case LibFunc_memcpy_chk:
2493     return optimizeMemCpyChk(CI, Builder);
2494   case LibFunc_memmove_chk:
2495     return optimizeMemMoveChk(CI, Builder);
2496   case LibFunc_memset_chk:
2497     return optimizeMemSetChk(CI, Builder);
2498   case LibFunc_stpcpy_chk:
2499   case LibFunc_strcpy_chk:
2500     return optimizeStrpCpyChk(CI, Builder, Func);
2501   case LibFunc_stpncpy_chk:
2502   case LibFunc_strncpy_chk:
2503     return optimizeStrpNCpyChk(CI, Builder, Func);
2504   default:
2505     break;
2506   }
2507   return nullptr;
2508 }
2509 
2510 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
2511     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
2512     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
2513