1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is a utility pass used for testing the InstructionSimplify analysis. 11 // The analysis is applied to every instruction, and if it simplifies then the 12 // instruction is replaced by the simplification. If you are looking for a pass 13 // that performs serious instruction folding, use the instcombine pass instead. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/StringMap.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DiagnosticInfo.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/PatternMatch.h" 31 #include "llvm/Support/Allocator.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Target/TargetLibraryInfo.h" 34 #include "llvm/Transforms/Utils/BuildLibCalls.h" 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 static cl::opt<bool> 40 ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden, 41 cl::desc("Treat error-reporting calls as cold")); 42 43 static cl::opt<bool> 44 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 45 cl::init(false), 46 cl::desc("Enable unsafe double to float " 47 "shrinking for math lib calls")); 48 49 50 //===----------------------------------------------------------------------===// 51 // Helper Functions 52 //===----------------------------------------------------------------------===// 53 54 static bool ignoreCallingConv(LibFunc::Func Func) { 55 switch (Func) { 56 case LibFunc::abs: 57 case LibFunc::labs: 58 case LibFunc::llabs: 59 case LibFunc::strlen: 60 return true; 61 default: 62 return false; 63 } 64 llvm_unreachable("All cases should be covered in the switch."); 65 } 66 67 /// isOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 68 /// value is equal or not-equal to zero. 69 static bool isOnlyUsedInZeroEqualityComparison(Value *V) { 70 for (User *U : V->users()) { 71 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 72 if (IC->isEquality()) 73 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 74 if (C->isNullValue()) 75 continue; 76 // Unknown instruction. 77 return false; 78 } 79 return true; 80 } 81 82 /// isOnlyUsedInEqualityComparison - Return true if it is only used in equality 83 /// comparisons with With. 84 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 85 for (User *U : V->users()) { 86 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 87 if (IC->isEquality() && IC->getOperand(1) == With) 88 continue; 89 // Unknown instruction. 90 return false; 91 } 92 return true; 93 } 94 95 static bool callHasFloatingPointArgument(const CallInst *CI) { 96 for (CallInst::const_op_iterator it = CI->op_begin(), e = CI->op_end(); 97 it != e; ++it) { 98 if ((*it)->getType()->isFloatingPointTy()) 99 return true; 100 } 101 return false; 102 } 103 104 /// \brief Check whether the overloaded unary floating point function 105 /// corresponing to \a Ty is available. 106 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty, 107 LibFunc::Func DoubleFn, LibFunc::Func FloatFn, 108 LibFunc::Func LongDoubleFn) { 109 switch (Ty->getTypeID()) { 110 case Type::FloatTyID: 111 return TLI->has(FloatFn); 112 case Type::DoubleTyID: 113 return TLI->has(DoubleFn); 114 default: 115 return TLI->has(LongDoubleFn); 116 } 117 } 118 119 //===----------------------------------------------------------------------===// 120 // Fortified Library Call Optimizations 121 //===----------------------------------------------------------------------===// 122 123 static bool isFortifiedCallFoldable(CallInst *CI, unsigned SizeCIOp, unsigned SizeArgOp, 124 bool isString) { 125 if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp)) 126 return true; 127 if (ConstantInt *SizeCI = 128 dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) { 129 if (SizeCI->isAllOnesValue()) 130 return true; 131 if (isString) { 132 uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp)); 133 // If the length is 0 we don't know how long it is and so we can't 134 // remove the check. 135 if (Len == 0) 136 return false; 137 return SizeCI->getZExtValue() >= Len; 138 } 139 if (ConstantInt *Arg = dyn_cast<ConstantInt>(CI->getArgOperand(SizeArgOp))) 140 return SizeCI->getZExtValue() >= Arg->getZExtValue(); 141 } 142 return false; 143 } 144 145 Value *LibCallSimplifier::optimizeMemCpyChk(CallInst *CI, IRBuilder<> &B) { 146 Function *Callee = CI->getCalledFunction(); 147 FunctionType *FT = Callee->getFunctionType(); 148 LLVMContext &Context = CI->getContext(); 149 150 // Check if this has the right signature. 151 if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || 152 !FT->getParamType(0)->isPointerTy() || 153 !FT->getParamType(1)->isPointerTy() || 154 FT->getParamType(2) != DL->getIntPtrType(Context) || 155 FT->getParamType(3) != DL->getIntPtrType(Context)) 156 return nullptr; 157 158 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 159 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 160 CI->getArgOperand(2), 1); 161 return CI->getArgOperand(0); 162 } 163 return nullptr; 164 } 165 166 Value *LibCallSimplifier::optimizeMemMoveChk(CallInst *CI, IRBuilder<> &B) { 167 Function *Callee = CI->getCalledFunction(); 168 FunctionType *FT = Callee->getFunctionType(); 169 LLVMContext &Context = CI->getContext(); 170 171 // Check if this has the right signature. 172 if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || 173 !FT->getParamType(0)->isPointerTy() || 174 !FT->getParamType(1)->isPointerTy() || 175 FT->getParamType(2) != DL->getIntPtrType(Context) || 176 FT->getParamType(3) != DL->getIntPtrType(Context)) 177 return nullptr; 178 179 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 180 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 181 CI->getArgOperand(2), 1); 182 return CI->getArgOperand(0); 183 } 184 return nullptr; 185 } 186 187 Value *LibCallSimplifier::optimizeMemSetChk(CallInst *CI, IRBuilder<> &B) { 188 Function *Callee = CI->getCalledFunction(); 189 FunctionType *FT = Callee->getFunctionType(); 190 LLVMContext &Context = CI->getContext(); 191 192 // Check if this has the right signature. 193 if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || 194 !FT->getParamType(0)->isPointerTy() || 195 !FT->getParamType(1)->isIntegerTy() || 196 FT->getParamType(2) != DL->getIntPtrType(Context) || 197 FT->getParamType(3) != DL->getIntPtrType(Context)) 198 return nullptr; 199 200 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 201 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 202 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 203 return CI->getArgOperand(0); 204 } 205 return nullptr; 206 } 207 208 Value *LibCallSimplifier::optimizeStrCpyChk(CallInst *CI, IRBuilder<> &B) { 209 Function *Callee = CI->getCalledFunction(); 210 StringRef Name = Callee->getName(); 211 FunctionType *FT = Callee->getFunctionType(); 212 LLVMContext &Context = CI->getContext(); 213 214 // Check if this has the right signature. 215 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || 216 FT->getParamType(0) != FT->getParamType(1) || 217 FT->getParamType(0) != Type::getInt8PtrTy(Context) || 218 FT->getParamType(2) != DL->getIntPtrType(Context)) 219 return nullptr; 220 221 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 222 if (Dst == Src) // __strcpy_chk(x,x) -> x 223 return Src; 224 225 // If a) we don't have any length information, or b) we know this will 226 // fit then just lower to a plain strcpy. Otherwise we'll keep our 227 // strcpy_chk call which may fail at runtime if the size is too long. 228 // TODO: It might be nice to get a maximum length out of the possible 229 // string lengths for varying. 230 if (isFortifiedCallFoldable(CI, 2, 1, true)) { 231 Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6)); 232 return Ret; 233 } else { 234 // Maybe we can stil fold __strcpy_chk to __memcpy_chk. 235 uint64_t Len = GetStringLength(Src); 236 if (Len == 0) 237 return nullptr; 238 239 // This optimization require DataLayout. 240 if (!DL) 241 return nullptr; 242 243 Value *Ret = EmitMemCpyChk( 244 Dst, Src, ConstantInt::get(DL->getIntPtrType(Context), Len), 245 CI->getArgOperand(2), B, DL, TLI); 246 return Ret; 247 } 248 return nullptr; 249 } 250 251 Value *LibCallSimplifier::optimizeStpCpyChk(CallInst *CI, IRBuilder<> &B) { 252 Function *Callee = CI->getCalledFunction(); 253 StringRef Name = Callee->getName(); 254 FunctionType *FT = Callee->getFunctionType(); 255 LLVMContext &Context = CI->getContext(); 256 257 // Check if this has the right signature. 258 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || 259 FT->getParamType(0) != FT->getParamType(1) || 260 FT->getParamType(0) != Type::getInt8PtrTy(Context) || 261 FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0))) 262 return nullptr; 263 264 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 265 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 266 Value *StrLen = EmitStrLen(Src, B, DL, TLI); 267 return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr; 268 } 269 270 // If a) we don't have any length information, or b) we know this will 271 // fit then just lower to a plain stpcpy. Otherwise we'll keep our 272 // stpcpy_chk call which may fail at runtime if the size is too long. 273 // TODO: It might be nice to get a maximum length out of the possible 274 // string lengths for varying. 275 if (isFortifiedCallFoldable(CI, 2, 1, true)) { 276 Value *Ret = EmitStrCpy(Dst, Src, B, DL, TLI, Name.substr(2, 6)); 277 return Ret; 278 } else { 279 // Maybe we can stil fold __stpcpy_chk to __memcpy_chk. 280 uint64_t Len = GetStringLength(Src); 281 if (Len == 0) 282 return nullptr; 283 284 // This optimization require DataLayout. 285 if (!DL) 286 return nullptr; 287 288 Type *PT = FT->getParamType(0); 289 Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len); 290 Value *DstEnd = 291 B.CreateGEP(Dst, ConstantInt::get(DL->getIntPtrType(PT), Len - 1)); 292 if (!EmitMemCpyChk(Dst, Src, LenV, CI->getArgOperand(2), B, DL, TLI)) 293 return nullptr; 294 return DstEnd; 295 } 296 return nullptr; 297 } 298 299 Value *LibCallSimplifier::optimizeStrNCpyChk(CallInst *CI, IRBuilder<> &B) { 300 Function *Callee = CI->getCalledFunction(); 301 StringRef Name = Callee->getName(); 302 FunctionType *FT = Callee->getFunctionType(); 303 LLVMContext &Context = CI->getContext(); 304 305 // Check if this has the right signature. 306 if (FT->getNumParams() != 4 || FT->getReturnType() != FT->getParamType(0) || 307 FT->getParamType(0) != FT->getParamType(1) || 308 FT->getParamType(0) != Type::getInt8PtrTy(Context) || 309 !FT->getParamType(2)->isIntegerTy() || 310 FT->getParamType(3) != DL->getIntPtrType(Context)) 311 return nullptr; 312 313 if (isFortifiedCallFoldable(CI, 3, 2, false)) { 314 Value *Ret = 315 EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 316 CI->getArgOperand(2), B, DL, TLI, Name.substr(2, 7)); 317 return Ret; 318 } 319 return nullptr; 320 } 321 322 //===----------------------------------------------------------------------===// 323 // String and Memory Library Call Optimizations 324 //===----------------------------------------------------------------------===// 325 326 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 327 Function *Callee = CI->getCalledFunction(); 328 // Verify the "strcat" function prototype. 329 FunctionType *FT = Callee->getFunctionType(); 330 if (FT->getNumParams() != 2|| 331 FT->getReturnType() != B.getInt8PtrTy() || 332 FT->getParamType(0) != FT->getReturnType() || 333 FT->getParamType(1) != FT->getReturnType()) 334 return nullptr; 335 336 // Extract some information from the instruction 337 Value *Dst = CI->getArgOperand(0); 338 Value *Src = CI->getArgOperand(1); 339 340 // See if we can get the length of the input string. 341 uint64_t Len = GetStringLength(Src); 342 if (Len == 0) 343 return nullptr; 344 --Len; // Unbias length. 345 346 // Handle the simple, do-nothing case: strcat(x, "") -> x 347 if (Len == 0) 348 return Dst; 349 350 // These optimizations require DataLayout. 351 if (!DL) 352 return nullptr; 353 354 return emitStrLenMemCpy(Src, Dst, Len, B); 355 } 356 357 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 358 IRBuilder<> &B) { 359 // We need to find the end of the destination string. That's where the 360 // memory is to be moved to. We just generate a call to strlen. 361 Value *DstLen = EmitStrLen(Dst, B, DL, TLI); 362 if (!DstLen) 363 return nullptr; 364 365 // Now that we have the destination's length, we must index into the 366 // destination's pointer to get the actual memcpy destination (end of 367 // the string .. we're concatenating). 368 Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr"); 369 370 // We have enough information to now generate the memcpy call to do the 371 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 372 B.CreateMemCpy( 373 CpyDst, Src, 374 ConstantInt::get(DL->getIntPtrType(Src->getContext()), Len + 1), 1); 375 return Dst; 376 } 377 378 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 379 Function *Callee = CI->getCalledFunction(); 380 // Verify the "strncat" function prototype. 381 FunctionType *FT = Callee->getFunctionType(); 382 if (FT->getNumParams() != 3 || FT->getReturnType() != B.getInt8PtrTy() || 383 FT->getParamType(0) != FT->getReturnType() || 384 FT->getParamType(1) != FT->getReturnType() || 385 !FT->getParamType(2)->isIntegerTy()) 386 return nullptr; 387 388 // Extract some information from the instruction 389 Value *Dst = CI->getArgOperand(0); 390 Value *Src = CI->getArgOperand(1); 391 uint64_t Len; 392 393 // We don't do anything if length is not constant 394 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 395 Len = LengthArg->getZExtValue(); 396 else 397 return nullptr; 398 399 // See if we can get the length of the input string. 400 uint64_t SrcLen = GetStringLength(Src); 401 if (SrcLen == 0) 402 return nullptr; 403 --SrcLen; // Unbias length. 404 405 // Handle the simple, do-nothing cases: 406 // strncat(x, "", c) -> x 407 // strncat(x, c, 0) -> x 408 if (SrcLen == 0 || Len == 0) 409 return Dst; 410 411 // These optimizations require DataLayout. 412 if (!DL) 413 return nullptr; 414 415 // We don't optimize this case 416 if (Len < SrcLen) 417 return nullptr; 418 419 // strncat(x, s, c) -> strcat(x, s) 420 // s is constant so the strcat can be optimized further 421 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 422 } 423 424 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 425 Function *Callee = CI->getCalledFunction(); 426 // Verify the "strchr" function prototype. 427 FunctionType *FT = Callee->getFunctionType(); 428 if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() || 429 FT->getParamType(0) != FT->getReturnType() || 430 !FT->getParamType(1)->isIntegerTy(32)) 431 return nullptr; 432 433 Value *SrcStr = CI->getArgOperand(0); 434 435 // If the second operand is non-constant, see if we can compute the length 436 // of the input string and turn this into memchr. 437 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 438 if (!CharC) { 439 // These optimizations require DataLayout. 440 if (!DL) 441 return nullptr; 442 443 uint64_t Len = GetStringLength(SrcStr); 444 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 445 return nullptr; 446 447 return EmitMemChr( 448 SrcStr, CI->getArgOperand(1), // include nul. 449 ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len), B, DL, TLI); 450 } 451 452 // Otherwise, the character is a constant, see if the first argument is 453 // a string literal. If so, we can constant fold. 454 StringRef Str; 455 if (!getConstantStringInfo(SrcStr, Str)) { 456 if (DL && CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 457 return B.CreateGEP(SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr"); 458 return nullptr; 459 } 460 461 // Compute the offset, make sure to handle the case when we're searching for 462 // zero (a weird way to spell strlen). 463 size_t I = (0xFF & CharC->getSExtValue()) == 0 464 ? Str.size() 465 : Str.find(CharC->getSExtValue()); 466 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 467 return Constant::getNullValue(CI->getType()); 468 469 // strchr(s+n,c) -> gep(s+n+i,c) 470 return B.CreateGEP(SrcStr, B.getInt64(I), "strchr"); 471 } 472 473 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 474 Function *Callee = CI->getCalledFunction(); 475 // Verify the "strrchr" function prototype. 476 FunctionType *FT = Callee->getFunctionType(); 477 if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() || 478 FT->getParamType(0) != FT->getReturnType() || 479 !FT->getParamType(1)->isIntegerTy(32)) 480 return nullptr; 481 482 Value *SrcStr = CI->getArgOperand(0); 483 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 484 485 // Cannot fold anything if we're not looking for a constant. 486 if (!CharC) 487 return nullptr; 488 489 StringRef Str; 490 if (!getConstantStringInfo(SrcStr, Str)) { 491 // strrchr(s, 0) -> strchr(s, 0) 492 if (DL && CharC->isZero()) 493 return EmitStrChr(SrcStr, '\0', B, DL, TLI); 494 return nullptr; 495 } 496 497 // Compute the offset. 498 size_t I = (0xFF & CharC->getSExtValue()) == 0 499 ? Str.size() 500 : Str.rfind(CharC->getSExtValue()); 501 if (I == StringRef::npos) // Didn't find the char. Return null. 502 return Constant::getNullValue(CI->getType()); 503 504 // strrchr(s+n,c) -> gep(s+n+i,c) 505 return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr"); 506 } 507 508 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 509 Function *Callee = CI->getCalledFunction(); 510 // Verify the "strcmp" function prototype. 511 FunctionType *FT = Callee->getFunctionType(); 512 if (FT->getNumParams() != 2 || !FT->getReturnType()->isIntegerTy(32) || 513 FT->getParamType(0) != FT->getParamType(1) || 514 FT->getParamType(0) != B.getInt8PtrTy()) 515 return nullptr; 516 517 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 518 if (Str1P == Str2P) // strcmp(x,x) -> 0 519 return ConstantInt::get(CI->getType(), 0); 520 521 StringRef Str1, Str2; 522 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 523 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 524 525 // strcmp(x, y) -> cnst (if both x and y are constant strings) 526 if (HasStr1 && HasStr2) 527 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 528 529 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 530 return B.CreateNeg( 531 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 532 533 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 534 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 535 536 // strcmp(P, "x") -> memcmp(P, "x", 2) 537 uint64_t Len1 = GetStringLength(Str1P); 538 uint64_t Len2 = GetStringLength(Str2P); 539 if (Len1 && Len2) { 540 // These optimizations require DataLayout. 541 if (!DL) 542 return nullptr; 543 544 return EmitMemCmp(Str1P, Str2P, 545 ConstantInt::get(DL->getIntPtrType(CI->getContext()), 546 std::min(Len1, Len2)), 547 B, DL, TLI); 548 } 549 550 return nullptr; 551 } 552 553 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 554 Function *Callee = CI->getCalledFunction(); 555 // Verify the "strncmp" function prototype. 556 FunctionType *FT = Callee->getFunctionType(); 557 if (FT->getNumParams() != 3 || !FT->getReturnType()->isIntegerTy(32) || 558 FT->getParamType(0) != FT->getParamType(1) || 559 FT->getParamType(0) != B.getInt8PtrTy() || 560 !FT->getParamType(2)->isIntegerTy()) 561 return nullptr; 562 563 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 564 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 565 return ConstantInt::get(CI->getType(), 0); 566 567 // Get the length argument if it is constant. 568 uint64_t Length; 569 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 570 Length = LengthArg->getZExtValue(); 571 else 572 return nullptr; 573 574 if (Length == 0) // strncmp(x,y,0) -> 0 575 return ConstantInt::get(CI->getType(), 0); 576 577 if (DL && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 578 return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 579 580 StringRef Str1, Str2; 581 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 582 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 583 584 // strncmp(x, y) -> cnst (if both x and y are constant strings) 585 if (HasStr1 && HasStr2) { 586 StringRef SubStr1 = Str1.substr(0, Length); 587 StringRef SubStr2 = Str2.substr(0, Length); 588 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 589 } 590 591 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 592 return B.CreateNeg( 593 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); 594 595 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 596 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); 597 598 return nullptr; 599 } 600 601 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 602 Function *Callee = CI->getCalledFunction(); 603 // Verify the "strcpy" function prototype. 604 FunctionType *FT = Callee->getFunctionType(); 605 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || 606 FT->getParamType(0) != FT->getParamType(1) || 607 FT->getParamType(0) != B.getInt8PtrTy()) 608 return nullptr; 609 610 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 611 if (Dst == Src) // strcpy(x,x) -> x 612 return Src; 613 614 // These optimizations require DataLayout. 615 if (!DL) 616 return nullptr; 617 618 // See if we can get the length of the input string. 619 uint64_t Len = GetStringLength(Src); 620 if (Len == 0) 621 return nullptr; 622 623 // We have enough information to now generate the memcpy call to do the 624 // copy for us. Make a memcpy to copy the nul byte with align = 1. 625 B.CreateMemCpy(Dst, Src, 626 ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len), 1); 627 return Dst; 628 } 629 630 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 631 Function *Callee = CI->getCalledFunction(); 632 // Verify the "stpcpy" function prototype. 633 FunctionType *FT = Callee->getFunctionType(); 634 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || 635 FT->getParamType(0) != FT->getParamType(1) || 636 FT->getParamType(0) != B.getInt8PtrTy()) 637 return nullptr; 638 639 // These optimizations require DataLayout. 640 if (!DL) 641 return nullptr; 642 643 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 644 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 645 Value *StrLen = EmitStrLen(Src, B, DL, TLI); 646 return StrLen ? B.CreateInBoundsGEP(Dst, StrLen) : nullptr; 647 } 648 649 // See if we can get the length of the input string. 650 uint64_t Len = GetStringLength(Src); 651 if (Len == 0) 652 return nullptr; 653 654 Type *PT = FT->getParamType(0); 655 Value *LenV = ConstantInt::get(DL->getIntPtrType(PT), Len); 656 Value *DstEnd = 657 B.CreateGEP(Dst, ConstantInt::get(DL->getIntPtrType(PT), Len - 1)); 658 659 // We have enough information to now generate the memcpy call to do the 660 // copy for us. Make a memcpy to copy the nul byte with align = 1. 661 B.CreateMemCpy(Dst, Src, LenV, 1); 662 return DstEnd; 663 } 664 665 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 666 Function *Callee = CI->getCalledFunction(); 667 FunctionType *FT = Callee->getFunctionType(); 668 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || 669 FT->getParamType(0) != FT->getParamType(1) || 670 FT->getParamType(0) != B.getInt8PtrTy() || 671 !FT->getParamType(2)->isIntegerTy()) 672 return nullptr; 673 674 Value *Dst = CI->getArgOperand(0); 675 Value *Src = CI->getArgOperand(1); 676 Value *LenOp = CI->getArgOperand(2); 677 678 // See if we can get the length of the input string. 679 uint64_t SrcLen = GetStringLength(Src); 680 if (SrcLen == 0) 681 return nullptr; 682 --SrcLen; 683 684 if (SrcLen == 0) { 685 // strncpy(x, "", y) -> memset(x, '\0', y, 1) 686 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 687 return Dst; 688 } 689 690 uint64_t Len; 691 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 692 Len = LengthArg->getZExtValue(); 693 else 694 return nullptr; 695 696 if (Len == 0) 697 return Dst; // strncpy(x, y, 0) -> x 698 699 // These optimizations require DataLayout. 700 if (!DL) 701 return nullptr; 702 703 // Let strncpy handle the zero padding 704 if (Len > SrcLen + 1) 705 return nullptr; 706 707 Type *PT = FT->getParamType(0); 708 // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] 709 B.CreateMemCpy(Dst, Src, ConstantInt::get(DL->getIntPtrType(PT), Len), 1); 710 711 return Dst; 712 } 713 714 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 715 Function *Callee = CI->getCalledFunction(); 716 FunctionType *FT = Callee->getFunctionType(); 717 if (FT->getNumParams() != 1 || FT->getParamType(0) != B.getInt8PtrTy() || 718 !FT->getReturnType()->isIntegerTy()) 719 return nullptr; 720 721 Value *Src = CI->getArgOperand(0); 722 723 // Constant folding: strlen("xyz") -> 3 724 if (uint64_t Len = GetStringLength(Src)) 725 return ConstantInt::get(CI->getType(), Len - 1); 726 727 // strlen(x?"foo":"bars") --> x ? 3 : 4 728 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 729 uint64_t LenTrue = GetStringLength(SI->getTrueValue()); 730 uint64_t LenFalse = GetStringLength(SI->getFalseValue()); 731 if (LenTrue && LenFalse) { 732 Function *Caller = CI->getParent()->getParent(); 733 emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller, 734 SI->getDebugLoc(), 735 "folded strlen(select) to select of constants"); 736 return B.CreateSelect(SI->getCondition(), 737 ConstantInt::get(CI->getType(), LenTrue - 1), 738 ConstantInt::get(CI->getType(), LenFalse - 1)); 739 } 740 } 741 742 // strlen(x) != 0 --> *x != 0 743 // strlen(x) == 0 --> *x == 0 744 if (isOnlyUsedInZeroEqualityComparison(CI)) 745 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); 746 747 return nullptr; 748 } 749 750 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 751 Function *Callee = CI->getCalledFunction(); 752 FunctionType *FT = Callee->getFunctionType(); 753 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || 754 FT->getParamType(1) != FT->getParamType(0) || 755 FT->getReturnType() != FT->getParamType(0)) 756 return nullptr; 757 758 StringRef S1, S2; 759 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 760 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 761 762 // strpbrk(s, "") -> nullptr 763 // strpbrk("", s) -> nullptr 764 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 765 return Constant::getNullValue(CI->getType()); 766 767 // Constant folding. 768 if (HasS1 && HasS2) { 769 size_t I = S1.find_first_of(S2); 770 if (I == StringRef::npos) // No match. 771 return Constant::getNullValue(CI->getType()); 772 773 return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk"); 774 } 775 776 // strpbrk(s, "a") -> strchr(s, 'a') 777 if (DL && HasS2 && S2.size() == 1) 778 return EmitStrChr(CI->getArgOperand(0), S2[0], B, DL, TLI); 779 780 return nullptr; 781 } 782 783 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 784 Function *Callee = CI->getCalledFunction(); 785 FunctionType *FT = Callee->getFunctionType(); 786 if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) || 787 !FT->getParamType(0)->isPointerTy() || 788 !FT->getParamType(1)->isPointerTy()) 789 return nullptr; 790 791 Value *EndPtr = CI->getArgOperand(1); 792 if (isa<ConstantPointerNull>(EndPtr)) { 793 // With a null EndPtr, this function won't capture the main argument. 794 // It would be readonly too, except that it still may write to errno. 795 CI->addAttribute(1, Attribute::NoCapture); 796 } 797 798 return nullptr; 799 } 800 801 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 802 Function *Callee = CI->getCalledFunction(); 803 FunctionType *FT = Callee->getFunctionType(); 804 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || 805 FT->getParamType(1) != FT->getParamType(0) || 806 !FT->getReturnType()->isIntegerTy()) 807 return nullptr; 808 809 StringRef S1, S2; 810 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 811 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 812 813 // strspn(s, "") -> 0 814 // strspn("", s) -> 0 815 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 816 return Constant::getNullValue(CI->getType()); 817 818 // Constant folding. 819 if (HasS1 && HasS2) { 820 size_t Pos = S1.find_first_not_of(S2); 821 if (Pos == StringRef::npos) 822 Pos = S1.size(); 823 return ConstantInt::get(CI->getType(), Pos); 824 } 825 826 return nullptr; 827 } 828 829 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 830 Function *Callee = CI->getCalledFunction(); 831 FunctionType *FT = Callee->getFunctionType(); 832 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || 833 FT->getParamType(1) != FT->getParamType(0) || 834 !FT->getReturnType()->isIntegerTy()) 835 return nullptr; 836 837 StringRef S1, S2; 838 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 839 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 840 841 // strcspn("", s) -> 0 842 if (HasS1 && S1.empty()) 843 return Constant::getNullValue(CI->getType()); 844 845 // Constant folding. 846 if (HasS1 && HasS2) { 847 size_t Pos = S1.find_first_of(S2); 848 if (Pos == StringRef::npos) 849 Pos = S1.size(); 850 return ConstantInt::get(CI->getType(), Pos); 851 } 852 853 // strcspn(s, "") -> strlen(s) 854 if (DL && HasS2 && S2.empty()) 855 return EmitStrLen(CI->getArgOperand(0), B, DL, TLI); 856 857 return nullptr; 858 } 859 860 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 861 Function *Callee = CI->getCalledFunction(); 862 FunctionType *FT = Callee->getFunctionType(); 863 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 864 !FT->getParamType(1)->isPointerTy() || 865 !FT->getReturnType()->isPointerTy()) 866 return nullptr; 867 868 // fold strstr(x, x) -> x. 869 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 870 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 871 872 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 873 if (DL && isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 874 Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI); 875 if (!StrLen) 876 return nullptr; 877 Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 878 StrLen, B, DL, TLI); 879 if (!StrNCmp) 880 return nullptr; 881 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 882 ICmpInst *Old = cast<ICmpInst>(*UI++); 883 Value *Cmp = 884 B.CreateICmp(Old->getPredicate(), StrNCmp, 885 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 886 replaceAllUsesWith(Old, Cmp); 887 } 888 return CI; 889 } 890 891 // See if either input string is a constant string. 892 StringRef SearchStr, ToFindStr; 893 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 894 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 895 896 // fold strstr(x, "") -> x. 897 if (HasStr2 && ToFindStr.empty()) 898 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 899 900 // If both strings are known, constant fold it. 901 if (HasStr1 && HasStr2) { 902 size_t Offset = SearchStr.find(ToFindStr); 903 904 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 905 return Constant::getNullValue(CI->getType()); 906 907 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 908 Value *Result = CastToCStr(CI->getArgOperand(0), B); 909 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); 910 return B.CreateBitCast(Result, CI->getType()); 911 } 912 913 // fold strstr(x, "y") -> strchr(x, 'y'). 914 if (HasStr2 && ToFindStr.size() == 1) { 915 Value *StrChr = EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, DL, TLI); 916 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 917 } 918 return nullptr; 919 } 920 921 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 922 Function *Callee = CI->getCalledFunction(); 923 FunctionType *FT = Callee->getFunctionType(); 924 if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() || 925 !FT->getParamType(1)->isPointerTy() || 926 !FT->getReturnType()->isIntegerTy(32)) 927 return nullptr; 928 929 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 930 931 if (LHS == RHS) // memcmp(s,s,x) -> 0 932 return Constant::getNullValue(CI->getType()); 933 934 // Make sure we have a constant length. 935 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 936 if (!LenC) 937 return nullptr; 938 uint64_t Len = LenC->getZExtValue(); 939 940 if (Len == 0) // memcmp(s1,s2,0) -> 0 941 return Constant::getNullValue(CI->getType()); 942 943 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 944 if (Len == 1) { 945 Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"), 946 CI->getType(), "lhsv"); 947 Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"), 948 CI->getType(), "rhsv"); 949 return B.CreateSub(LHSV, RHSV, "chardiff"); 950 } 951 952 // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant) 953 StringRef LHSStr, RHSStr; 954 if (getConstantStringInfo(LHS, LHSStr) && 955 getConstantStringInfo(RHS, RHSStr)) { 956 // Make sure we're not reading out-of-bounds memory. 957 if (Len > LHSStr.size() || Len > RHSStr.size()) 958 return nullptr; 959 // Fold the memcmp and normalize the result. This way we get consistent 960 // results across multiple platforms. 961 uint64_t Ret = 0; 962 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 963 if (Cmp < 0) 964 Ret = -1; 965 else if (Cmp > 0) 966 Ret = 1; 967 return ConstantInt::get(CI->getType(), Ret); 968 } 969 970 return nullptr; 971 } 972 973 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { 974 Function *Callee = CI->getCalledFunction(); 975 // These optimizations require DataLayout. 976 if (!DL) 977 return nullptr; 978 979 FunctionType *FT = Callee->getFunctionType(); 980 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || 981 !FT->getParamType(0)->isPointerTy() || 982 !FT->getParamType(1)->isPointerTy() || 983 FT->getParamType(2) != DL->getIntPtrType(CI->getContext())) 984 return nullptr; 985 986 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) 987 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), 988 CI->getArgOperand(2), 1); 989 return CI->getArgOperand(0); 990 } 991 992 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { 993 Function *Callee = CI->getCalledFunction(); 994 // These optimizations require DataLayout. 995 if (!DL) 996 return nullptr; 997 998 FunctionType *FT = Callee->getFunctionType(); 999 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || 1000 !FT->getParamType(0)->isPointerTy() || 1001 !FT->getParamType(1)->isPointerTy() || 1002 FT->getParamType(2) != DL->getIntPtrType(CI->getContext())) 1003 return nullptr; 1004 1005 // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) 1006 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), 1007 CI->getArgOperand(2), 1); 1008 return CI->getArgOperand(0); 1009 } 1010 1011 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { 1012 Function *Callee = CI->getCalledFunction(); 1013 // These optimizations require DataLayout. 1014 if (!DL) 1015 return nullptr; 1016 1017 FunctionType *FT = Callee->getFunctionType(); 1018 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || 1019 !FT->getParamType(0)->isPointerTy() || 1020 !FT->getParamType(1)->isIntegerTy() || 1021 FT->getParamType(2) != DL->getIntPtrType(FT->getParamType(0))) 1022 return nullptr; 1023 1024 // memset(p, v, n) -> llvm.memset(p, v, n, 1) 1025 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1026 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 1027 return CI->getArgOperand(0); 1028 } 1029 1030 //===----------------------------------------------------------------------===// 1031 // Math Library Optimizations 1032 //===----------------------------------------------------------------------===// 1033 1034 /// Return a variant of Val with float type. 1035 /// Currently this works in two cases: If Val is an FPExtension of a float 1036 /// value to something bigger, simply return the operand. 1037 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1038 /// loss of precision do so. 1039 static Value *valueHasFloatPrecision(Value *Val) { 1040 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1041 Value *Op = Cast->getOperand(0); 1042 if (Op->getType()->isFloatTy()) 1043 return Op; 1044 } 1045 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1046 APFloat F = Const->getValueAPF(); 1047 bool losesInfo; 1048 (void)F.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 1049 &losesInfo); 1050 if (!losesInfo) 1051 return ConstantFP::get(Const->getContext(), F); 1052 } 1053 return nullptr; 1054 } 1055 1056 //===----------------------------------------------------------------------===// 1057 // Double -> Float Shrinking Optimizations for Unary Functions like 'floor' 1058 1059 Value *LibCallSimplifier::optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1060 bool CheckRetType) { 1061 Function *Callee = CI->getCalledFunction(); 1062 FunctionType *FT = Callee->getFunctionType(); 1063 if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() || 1064 !FT->getParamType(0)->isDoubleTy()) 1065 return nullptr; 1066 1067 if (CheckRetType) { 1068 // Check if all the uses for function like 'sin' are converted to float. 1069 for (User *U : CI->users()) { 1070 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1071 if (!Cast || !Cast->getType()->isFloatTy()) 1072 return nullptr; 1073 } 1074 } 1075 1076 // If this is something like 'floor((double)floatval)', convert to floorf. 1077 Value *V = valueHasFloatPrecision(CI->getArgOperand(0)); 1078 if (V == nullptr) 1079 return nullptr; 1080 1081 // floor((double)floatval) -> (double)floorf(floatval) 1082 if (Callee->isIntrinsic()) { 1083 Module *M = CI->getParent()->getParent()->getParent(); 1084 Intrinsic::ID IID = (Intrinsic::ID) Callee->getIntrinsicID(); 1085 Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1086 V = B.CreateCall(F, V); 1087 } else { 1088 // The call is a library call rather than an intrinsic. 1089 V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes()); 1090 } 1091 1092 return B.CreateFPExt(V, B.getDoubleTy()); 1093 } 1094 1095 // Double -> Float Shrinking Optimizations for Binary Functions like 'fmin/fmax' 1096 Value *LibCallSimplifier::optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) { 1097 Function *Callee = CI->getCalledFunction(); 1098 FunctionType *FT = Callee->getFunctionType(); 1099 // Just make sure this has 2 arguments of the same FP type, which match the 1100 // result type. 1101 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || 1102 FT->getParamType(0) != FT->getParamType(1) || 1103 !FT->getParamType(0)->isFloatingPointTy()) 1104 return nullptr; 1105 1106 // If this is something like 'fmin((double)floatval1, (double)floatval2)', 1107 // or fmin(1.0, (double)floatval), then we convert it to fminf. 1108 Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0)); 1109 if (V1 == nullptr) 1110 return nullptr; 1111 Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1)); 1112 if (V2 == nullptr) 1113 return nullptr; 1114 1115 // fmin((double)floatval1, (double)floatval2) 1116 // -> (double)fminf(floatval1, floatval2) 1117 // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP(). 1118 Value *V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B, 1119 Callee->getAttributes()); 1120 return B.CreateFPExt(V, B.getDoubleTy()); 1121 } 1122 1123 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) { 1124 Function *Callee = CI->getCalledFunction(); 1125 Value *Ret = nullptr; 1126 if (UnsafeFPShrink && Callee->getName() == "cos" && TLI->has(LibFunc::cosf)) { 1127 Ret = optimizeUnaryDoubleFP(CI, B, true); 1128 } 1129 1130 FunctionType *FT = Callee->getFunctionType(); 1131 // Just make sure this has 1 argument of FP type, which matches the 1132 // result type. 1133 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1134 !FT->getParamType(0)->isFloatingPointTy()) 1135 return Ret; 1136 1137 // cos(-x) -> cos(x) 1138 Value *Op1 = CI->getArgOperand(0); 1139 if (BinaryOperator::isFNeg(Op1)) { 1140 BinaryOperator *BinExpr = cast<BinaryOperator>(Op1); 1141 return B.CreateCall(Callee, BinExpr->getOperand(1), "cos"); 1142 } 1143 return Ret; 1144 } 1145 1146 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) { 1147 Function *Callee = CI->getCalledFunction(); 1148 1149 Value *Ret = nullptr; 1150 if (UnsafeFPShrink && Callee->getName() == "pow" && TLI->has(LibFunc::powf)) { 1151 Ret = optimizeUnaryDoubleFP(CI, B, true); 1152 } 1153 1154 FunctionType *FT = Callee->getFunctionType(); 1155 // Just make sure this has 2 arguments of the same FP type, which match the 1156 // result type. 1157 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || 1158 FT->getParamType(0) != FT->getParamType(1) || 1159 !FT->getParamType(0)->isFloatingPointTy()) 1160 return Ret; 1161 1162 Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1); 1163 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { 1164 // pow(1.0, x) -> 1.0 1165 if (Op1C->isExactlyValue(1.0)) 1166 return Op1C; 1167 // pow(2.0, x) -> exp2(x) 1168 if (Op1C->isExactlyValue(2.0) && 1169 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f, 1170 LibFunc::exp2l)) 1171 return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes()); 1172 // pow(10.0, x) -> exp10(x) 1173 if (Op1C->isExactlyValue(10.0) && 1174 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f, 1175 LibFunc::exp10l)) 1176 return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B, 1177 Callee->getAttributes()); 1178 } 1179 1180 ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2); 1181 if (!Op2C) 1182 return Ret; 1183 1184 if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 1185 return ConstantFP::get(CI->getType(), 1.0); 1186 1187 if (Op2C->isExactlyValue(0.5) && 1188 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf, 1189 LibFunc::sqrtl) && 1190 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf, 1191 LibFunc::fabsl)) { 1192 // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). 1193 // This is faster than calling pow, and still handles negative zero 1194 // and negative infinity correctly. 1195 // TODO: In fast-math mode, this could be just sqrt(x). 1196 // TODO: In finite-only mode, this could be just fabs(sqrt(x)). 1197 Value *Inf = ConstantFP::getInfinity(CI->getType()); 1198 Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); 1199 Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes()); 1200 Value *FAbs = 1201 EmitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes()); 1202 Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf); 1203 Value *Sel = B.CreateSelect(FCmp, Inf, FAbs); 1204 return Sel; 1205 } 1206 1207 if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x 1208 return Op1; 1209 if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x 1210 return B.CreateFMul(Op1, Op1, "pow2"); 1211 if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x 1212 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip"); 1213 return nullptr; 1214 } 1215 1216 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1217 Function *Callee = CI->getCalledFunction(); 1218 Function *Caller = CI->getParent()->getParent(); 1219 1220 Value *Ret = nullptr; 1221 if (UnsafeFPShrink && Callee->getName() == "exp2" && 1222 TLI->has(LibFunc::exp2f)) { 1223 Ret = optimizeUnaryDoubleFP(CI, B, true); 1224 } 1225 1226 FunctionType *FT = Callee->getFunctionType(); 1227 // Just make sure this has 1 argument of FP type, which matches the 1228 // result type. 1229 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1230 !FT->getParamType(0)->isFloatingPointTy()) 1231 return Ret; 1232 1233 Value *Op = CI->getArgOperand(0); 1234 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1235 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1236 LibFunc::Func LdExp = LibFunc::ldexpl; 1237 if (Op->getType()->isFloatTy()) 1238 LdExp = LibFunc::ldexpf; 1239 else if (Op->getType()->isDoubleTy()) 1240 LdExp = LibFunc::ldexp; 1241 1242 if (TLI->has(LdExp)) { 1243 Value *LdExpArg = nullptr; 1244 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { 1245 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) 1246 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); 1247 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { 1248 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) 1249 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); 1250 } 1251 1252 if (LdExpArg) { 1253 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); 1254 if (!Op->getType()->isFloatTy()) 1255 One = ConstantExpr::getFPExtend(One, Op->getType()); 1256 1257 Module *M = Caller->getParent(); 1258 Value *Callee = 1259 M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(), 1260 Op->getType(), B.getInt32Ty(), nullptr); 1261 CallInst *CI = B.CreateCall2(Callee, One, LdExpArg); 1262 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) 1263 CI->setCallingConv(F->getCallingConv()); 1264 1265 return CI; 1266 } 1267 } 1268 return Ret; 1269 } 1270 1271 Value *LibCallSimplifier::optimizeFabs(CallInst *CI, IRBuilder<> &B) { 1272 Function *Callee = CI->getCalledFunction(); 1273 1274 Value *Ret = nullptr; 1275 if (Callee->getName() == "fabs" && TLI->has(LibFunc::fabsf)) { 1276 Ret = optimizeUnaryDoubleFP(CI, B, false); 1277 } 1278 1279 FunctionType *FT = Callee->getFunctionType(); 1280 // Make sure this has 1 argument of FP type which matches the result type. 1281 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1282 !FT->getParamType(0)->isFloatingPointTy()) 1283 return Ret; 1284 1285 Value *Op = CI->getArgOperand(0); 1286 if (Instruction *I = dyn_cast<Instruction>(Op)) { 1287 // Fold fabs(x * x) -> x * x; any squared FP value must already be positive. 1288 if (I->getOpcode() == Instruction::FMul) 1289 if (I->getOperand(0) == I->getOperand(1)) 1290 return Op; 1291 } 1292 return Ret; 1293 } 1294 1295 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1296 Function *Callee = CI->getCalledFunction(); 1297 1298 Value *Ret = nullptr; 1299 if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" || 1300 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1301 Ret = optimizeUnaryDoubleFP(CI, B, true); 1302 1303 // FIXME: For finer-grain optimization, we need intrinsics to have the same 1304 // fast-math flag decorations that are applied to FP instructions. For now, 1305 // we have to rely on the function-level unsafe-fp-math attribute to do this 1306 // optimization because there's no other way to express that the sqrt can be 1307 // reassociated. 1308 Function *F = CI->getParent()->getParent(); 1309 if (F->hasFnAttribute("unsafe-fp-math")) { 1310 // Check for unsafe-fp-math = true. 1311 Attribute Attr = F->getFnAttribute("unsafe-fp-math"); 1312 if (Attr.getValueAsString() != "true") 1313 return Ret; 1314 } 1315 Value *Op = CI->getArgOperand(0); 1316 if (Instruction *I = dyn_cast<Instruction>(Op)) { 1317 if (I->getOpcode() == Instruction::FMul && I->hasUnsafeAlgebra()) { 1318 // We're looking for a repeated factor in a multiplication tree, 1319 // so we can do this fold: sqrt(x * x) -> fabs(x); 1320 // or this fold: sqrt(x * x * y) -> fabs(x) * sqrt(y). 1321 Value *Op0 = I->getOperand(0); 1322 Value *Op1 = I->getOperand(1); 1323 Value *RepeatOp = nullptr; 1324 Value *OtherOp = nullptr; 1325 if (Op0 == Op1) { 1326 // Simple match: the operands of the multiply are identical. 1327 RepeatOp = Op0; 1328 } else { 1329 // Look for a more complicated pattern: one of the operands is itself 1330 // a multiply, so search for a common factor in that multiply. 1331 // Note: We don't bother looking any deeper than this first level or for 1332 // variations of this pattern because instcombine's visitFMUL and/or the 1333 // reassociation pass should give us this form. 1334 Value *OtherMul0, *OtherMul1; 1335 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1336 // Pattern: sqrt((x * y) * z) 1337 if (OtherMul0 == OtherMul1) { 1338 // Matched: sqrt((x * x) * z) 1339 RepeatOp = OtherMul0; 1340 OtherOp = Op1; 1341 } 1342 } 1343 } 1344 if (RepeatOp) { 1345 // Fast math flags for any created instructions should match the sqrt 1346 // and multiply. 1347 // FIXME: We're not checking the sqrt because it doesn't have 1348 // fast-math-flags (see earlier comment). 1349 IRBuilder<true, ConstantFolder, 1350 IRBuilderDefaultInserter<true> >::FastMathFlagGuard Guard(B); 1351 B.SetFastMathFlags(I->getFastMathFlags()); 1352 // If we found a repeated factor, hoist it out of the square root and 1353 // replace it with the fabs of that factor. 1354 Module *M = Callee->getParent(); 1355 Type *ArgType = Op->getType(); 1356 Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1357 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1358 if (OtherOp) { 1359 // If we found a non-repeated factor, we still need to get its square 1360 // root. We then multiply that by the value that was simplified out 1361 // of the square root calculation. 1362 Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1363 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1364 return B.CreateFMul(FabsCall, SqrtCall); 1365 } 1366 return FabsCall; 1367 } 1368 } 1369 } 1370 return Ret; 1371 } 1372 1373 static bool isTrigLibCall(CallInst *CI); 1374 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1375 bool UseFloat, Value *&Sin, Value *&Cos, 1376 Value *&SinCos); 1377 1378 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1379 1380 // Make sure the prototype is as expected, otherwise the rest of the 1381 // function is probably invalid and likely to abort. 1382 if (!isTrigLibCall(CI)) 1383 return nullptr; 1384 1385 Value *Arg = CI->getArgOperand(0); 1386 SmallVector<CallInst *, 1> SinCalls; 1387 SmallVector<CallInst *, 1> CosCalls; 1388 SmallVector<CallInst *, 1> SinCosCalls; 1389 1390 bool IsFloat = Arg->getType()->isFloatTy(); 1391 1392 // Look for all compatible sinpi, cospi and sincospi calls with the same 1393 // argument. If there are enough (in some sense) we can make the 1394 // substitution. 1395 for (User *U : Arg->users()) 1396 classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls, 1397 SinCosCalls); 1398 1399 // It's only worthwhile if both sinpi and cospi are actually used. 1400 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1401 return nullptr; 1402 1403 Value *Sin, *Cos, *SinCos; 1404 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1405 1406 replaceTrigInsts(SinCalls, Sin); 1407 replaceTrigInsts(CosCalls, Cos); 1408 replaceTrigInsts(SinCosCalls, SinCos); 1409 1410 return nullptr; 1411 } 1412 1413 static bool isTrigLibCall(CallInst *CI) { 1414 Function *Callee = CI->getCalledFunction(); 1415 FunctionType *FT = Callee->getFunctionType(); 1416 1417 // We can only hope to do anything useful if we can ignore things like errno 1418 // and floating-point exceptions. 1419 bool AttributesSafe = 1420 CI->hasFnAttr(Attribute::NoUnwind) && CI->hasFnAttr(Attribute::ReadNone); 1421 1422 // Other than that we need float(float) or double(double) 1423 return AttributesSafe && FT->getNumParams() == 1 && 1424 FT->getReturnType() == FT->getParamType(0) && 1425 (FT->getParamType(0)->isFloatTy() || 1426 FT->getParamType(0)->isDoubleTy()); 1427 } 1428 1429 void 1430 LibCallSimplifier::classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat, 1431 SmallVectorImpl<CallInst *> &SinCalls, 1432 SmallVectorImpl<CallInst *> &CosCalls, 1433 SmallVectorImpl<CallInst *> &SinCosCalls) { 1434 CallInst *CI = dyn_cast<CallInst>(Val); 1435 1436 if (!CI) 1437 return; 1438 1439 Function *Callee = CI->getCalledFunction(); 1440 StringRef FuncName = Callee->getName(); 1441 LibFunc::Func Func; 1442 if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) || !isTrigLibCall(CI)) 1443 return; 1444 1445 if (IsFloat) { 1446 if (Func == LibFunc::sinpif) 1447 SinCalls.push_back(CI); 1448 else if (Func == LibFunc::cospif) 1449 CosCalls.push_back(CI); 1450 else if (Func == LibFunc::sincospif_stret) 1451 SinCosCalls.push_back(CI); 1452 } else { 1453 if (Func == LibFunc::sinpi) 1454 SinCalls.push_back(CI); 1455 else if (Func == LibFunc::cospi) 1456 CosCalls.push_back(CI); 1457 else if (Func == LibFunc::sincospi_stret) 1458 SinCosCalls.push_back(CI); 1459 } 1460 } 1461 1462 void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls, 1463 Value *Res) { 1464 for (SmallVectorImpl<CallInst *>::iterator I = Calls.begin(), E = Calls.end(); 1465 I != E; ++I) { 1466 replaceAllUsesWith(*I, Res); 1467 } 1468 } 1469 1470 void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1471 bool UseFloat, Value *&Sin, Value *&Cos, Value *&SinCos) { 1472 Type *ArgTy = Arg->getType(); 1473 Type *ResTy; 1474 StringRef Name; 1475 1476 Triple T(OrigCallee->getParent()->getTargetTriple()); 1477 if (UseFloat) { 1478 Name = "__sincospif_stret"; 1479 1480 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1481 // x86_64 can't use {float, float} since that would be returned in both 1482 // xmm0 and xmm1, which isn't what a real struct would do. 1483 ResTy = T.getArch() == Triple::x86_64 1484 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1485 : static_cast<Type *>(StructType::get(ArgTy, ArgTy, nullptr)); 1486 } else { 1487 Name = "__sincospi_stret"; 1488 ResTy = StructType::get(ArgTy, ArgTy, nullptr); 1489 } 1490 1491 Module *M = OrigCallee->getParent(); 1492 Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(), 1493 ResTy, ArgTy, nullptr); 1494 1495 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1496 // If the argument is an instruction, it must dominate all uses so put our 1497 // sincos call there. 1498 BasicBlock::iterator Loc = ArgInst; 1499 B.SetInsertPoint(ArgInst->getParent(), ++Loc); 1500 } else { 1501 // Otherwise (e.g. for a constant) the beginning of the function is as 1502 // good a place as any. 1503 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1504 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1505 } 1506 1507 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1508 1509 if (SinCos->getType()->isStructTy()) { 1510 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1511 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1512 } else { 1513 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1514 "sinpi"); 1515 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1516 "cospi"); 1517 } 1518 } 1519 1520 //===----------------------------------------------------------------------===// 1521 // Integer Library Call Optimizations 1522 //===----------------------------------------------------------------------===// 1523 1524 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1525 Function *Callee = CI->getCalledFunction(); 1526 FunctionType *FT = Callee->getFunctionType(); 1527 // Just make sure this has 2 arguments of the same FP type, which match the 1528 // result type. 1529 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy(32) || 1530 !FT->getParamType(0)->isIntegerTy()) 1531 return nullptr; 1532 1533 Value *Op = CI->getArgOperand(0); 1534 1535 // Constant fold. 1536 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1537 if (CI->isZero()) // ffs(0) -> 0. 1538 return B.getInt32(0); 1539 // ffs(c) -> cttz(c)+1 1540 return B.getInt32(CI->getValue().countTrailingZeros() + 1); 1541 } 1542 1543 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1544 Type *ArgType = Op->getType(); 1545 Value *F = 1546 Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType); 1547 Value *V = B.CreateCall2(F, Op, B.getFalse(), "cttz"); 1548 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1549 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1550 1551 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1552 return B.CreateSelect(Cond, V, B.getInt32(0)); 1553 } 1554 1555 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1556 Function *Callee = CI->getCalledFunction(); 1557 FunctionType *FT = Callee->getFunctionType(); 1558 // We require integer(integer) where the types agree. 1559 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || 1560 FT->getParamType(0) != FT->getReturnType()) 1561 return nullptr; 1562 1563 // abs(x) -> x >s -1 ? x : -x 1564 Value *Op = CI->getArgOperand(0); 1565 Value *Pos = 1566 B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos"); 1567 Value *Neg = B.CreateNeg(Op, "neg"); 1568 return B.CreateSelect(Pos, Op, Neg); 1569 } 1570 1571 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 1572 Function *Callee = CI->getCalledFunction(); 1573 FunctionType *FT = Callee->getFunctionType(); 1574 // We require integer(i32) 1575 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || 1576 !FT->getParamType(0)->isIntegerTy(32)) 1577 return nullptr; 1578 1579 // isdigit(c) -> (c-'0') <u 10 1580 Value *Op = CI->getArgOperand(0); 1581 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 1582 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 1583 return B.CreateZExt(Op, CI->getType()); 1584 } 1585 1586 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 1587 Function *Callee = CI->getCalledFunction(); 1588 FunctionType *FT = Callee->getFunctionType(); 1589 // We require integer(i32) 1590 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || 1591 !FT->getParamType(0)->isIntegerTy(32)) 1592 return nullptr; 1593 1594 // isascii(c) -> c <u 128 1595 Value *Op = CI->getArgOperand(0); 1596 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 1597 return B.CreateZExt(Op, CI->getType()); 1598 } 1599 1600 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 1601 Function *Callee = CI->getCalledFunction(); 1602 FunctionType *FT = Callee->getFunctionType(); 1603 // We require i32(i32) 1604 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || 1605 !FT->getParamType(0)->isIntegerTy(32)) 1606 return nullptr; 1607 1608 // toascii(c) -> c & 0x7f 1609 return B.CreateAnd(CI->getArgOperand(0), 1610 ConstantInt::get(CI->getType(), 0x7F)); 1611 } 1612 1613 //===----------------------------------------------------------------------===// 1614 // Formatting and IO Library Call Optimizations 1615 //===----------------------------------------------------------------------===// 1616 1617 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 1618 1619 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 1620 int StreamArg) { 1621 // Error reporting calls should be cold, mark them as such. 1622 // This applies even to non-builtin calls: it is only a hint and applies to 1623 // functions that the frontend might not understand as builtins. 1624 1625 // This heuristic was suggested in: 1626 // Improving Static Branch Prediction in a Compiler 1627 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 1628 // Proceedings of PACT'98, Oct. 1998, IEEE 1629 Function *Callee = CI->getCalledFunction(); 1630 1631 if (!CI->hasFnAttr(Attribute::Cold) && 1632 isReportingError(Callee, CI, StreamArg)) { 1633 CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold); 1634 } 1635 1636 return nullptr; 1637 } 1638 1639 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 1640 if (!ColdErrorCalls) 1641 return false; 1642 1643 if (!Callee || !Callee->isDeclaration()) 1644 return false; 1645 1646 if (StreamArg < 0) 1647 return true; 1648 1649 // These functions might be considered cold, but only if their stream 1650 // argument is stderr. 1651 1652 if (StreamArg >= (int)CI->getNumArgOperands()) 1653 return false; 1654 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 1655 if (!LI) 1656 return false; 1657 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 1658 if (!GV || !GV->isDeclaration()) 1659 return false; 1660 return GV->getName() == "stderr"; 1661 } 1662 1663 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 1664 // Check for a fixed format string. 1665 StringRef FormatStr; 1666 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 1667 return nullptr; 1668 1669 // Empty format string -> noop. 1670 if (FormatStr.empty()) // Tolerate printf's declared void. 1671 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 1672 1673 // Do not do any of the following transformations if the printf return value 1674 // is used, in general the printf return value is not compatible with either 1675 // putchar() or puts(). 1676 if (!CI->use_empty()) 1677 return nullptr; 1678 1679 // printf("x") -> putchar('x'), even for '%'. 1680 if (FormatStr.size() == 1) { 1681 Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, DL, TLI); 1682 if (CI->use_empty() || !Res) 1683 return Res; 1684 return B.CreateIntCast(Res, CI->getType(), true); 1685 } 1686 1687 // printf("foo\n") --> puts("foo") 1688 if (FormatStr[FormatStr.size() - 1] == '\n' && 1689 FormatStr.find('%') == StringRef::npos) { // No format characters. 1690 // Create a string literal with no \n on it. We expect the constant merge 1691 // pass to be run after this pass, to merge duplicate strings. 1692 FormatStr = FormatStr.drop_back(); 1693 Value *GV = B.CreateGlobalString(FormatStr, "str"); 1694 Value *NewCI = EmitPutS(GV, B, DL, TLI); 1695 return (CI->use_empty() || !NewCI) 1696 ? NewCI 1697 : ConstantInt::get(CI->getType(), FormatStr.size() + 1); 1698 } 1699 1700 // Optimize specific format strings. 1701 // printf("%c", chr) --> putchar(chr) 1702 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 1703 CI->getArgOperand(1)->getType()->isIntegerTy()) { 1704 Value *Res = EmitPutChar(CI->getArgOperand(1), B, DL, TLI); 1705 1706 if (CI->use_empty() || !Res) 1707 return Res; 1708 return B.CreateIntCast(Res, CI->getType(), true); 1709 } 1710 1711 // printf("%s\n", str) --> puts(str) 1712 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 1713 CI->getArgOperand(1)->getType()->isPointerTy()) { 1714 return EmitPutS(CI->getArgOperand(1), B, DL, TLI); 1715 } 1716 return nullptr; 1717 } 1718 1719 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 1720 1721 Function *Callee = CI->getCalledFunction(); 1722 // Require one fixed pointer argument and an integer/void result. 1723 FunctionType *FT = Callee->getFunctionType(); 1724 if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || 1725 !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy())) 1726 return nullptr; 1727 1728 if (Value *V = optimizePrintFString(CI, B)) { 1729 return V; 1730 } 1731 1732 // printf(format, ...) -> iprintf(format, ...) if no floating point 1733 // arguments. 1734 if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) { 1735 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1736 Constant *IPrintFFn = 1737 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 1738 CallInst *New = cast<CallInst>(CI->clone()); 1739 New->setCalledFunction(IPrintFFn); 1740 B.Insert(New); 1741 return New; 1742 } 1743 return nullptr; 1744 } 1745 1746 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 1747 // Check for a fixed format string. 1748 StringRef FormatStr; 1749 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1750 return nullptr; 1751 1752 // If we just have a format string (nothing else crazy) transform it. 1753 if (CI->getNumArgOperands() == 2) { 1754 // Make sure there's no % in the constant array. We could try to handle 1755 // %% -> % in the future if we cared. 1756 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1757 if (FormatStr[i] == '%') 1758 return nullptr; // we found a format specifier, bail out. 1759 1760 // These optimizations require DataLayout. 1761 if (!DL) 1762 return nullptr; 1763 1764 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) 1765 B.CreateMemCpy( 1766 CI->getArgOperand(0), CI->getArgOperand(1), 1767 ConstantInt::get(DL->getIntPtrType(CI->getContext()), 1768 FormatStr.size() + 1), 1769 1); // Copy the null byte. 1770 return ConstantInt::get(CI->getType(), FormatStr.size()); 1771 } 1772 1773 // The remaining optimizations require the format string to be "%s" or "%c" 1774 // and have an extra operand. 1775 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1776 CI->getNumArgOperands() < 3) 1777 return nullptr; 1778 1779 // Decode the second character of the format string. 1780 if (FormatStr[1] == 'c') { 1781 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 1782 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1783 return nullptr; 1784 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 1785 Value *Ptr = CastToCStr(CI->getArgOperand(0), B); 1786 B.CreateStore(V, Ptr); 1787 Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul"); 1788 B.CreateStore(B.getInt8(0), Ptr); 1789 1790 return ConstantInt::get(CI->getType(), 1); 1791 } 1792 1793 if (FormatStr[1] == 's') { 1794 // These optimizations require DataLayout. 1795 if (!DL) 1796 return nullptr; 1797 1798 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) 1799 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1800 return nullptr; 1801 1802 Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI); 1803 if (!Len) 1804 return nullptr; 1805 Value *IncLen = 1806 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 1807 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1); 1808 1809 // The sprintf result is the unincremented number of bytes in the string. 1810 return B.CreateIntCast(Len, CI->getType(), false); 1811 } 1812 return nullptr; 1813 } 1814 1815 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 1816 Function *Callee = CI->getCalledFunction(); 1817 // Require two fixed pointer arguments and an integer result. 1818 FunctionType *FT = Callee->getFunctionType(); 1819 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 1820 !FT->getParamType(1)->isPointerTy() || 1821 !FT->getReturnType()->isIntegerTy()) 1822 return nullptr; 1823 1824 if (Value *V = optimizeSPrintFString(CI, B)) { 1825 return V; 1826 } 1827 1828 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 1829 // point arguments. 1830 if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) { 1831 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1832 Constant *SIPrintFFn = 1833 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 1834 CallInst *New = cast<CallInst>(CI->clone()); 1835 New->setCalledFunction(SIPrintFFn); 1836 B.Insert(New); 1837 return New; 1838 } 1839 return nullptr; 1840 } 1841 1842 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 1843 optimizeErrorReporting(CI, B, 0); 1844 1845 // All the optimizations depend on the format string. 1846 StringRef FormatStr; 1847 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 1848 return nullptr; 1849 1850 // Do not do any of the following transformations if the fprintf return 1851 // value is used, in general the fprintf return value is not compatible 1852 // with fwrite(), fputc() or fputs(). 1853 if (!CI->use_empty()) 1854 return nullptr; 1855 1856 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 1857 if (CI->getNumArgOperands() == 2) { 1858 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) 1859 if (FormatStr[i] == '%') // Could handle %% -> % if we cared. 1860 return nullptr; // We found a format specifier. 1861 1862 // These optimizations require DataLayout. 1863 if (!DL) 1864 return nullptr; 1865 1866 return EmitFWrite( 1867 CI->getArgOperand(1), 1868 ConstantInt::get(DL->getIntPtrType(CI->getContext()), FormatStr.size()), 1869 CI->getArgOperand(0), B, DL, TLI); 1870 } 1871 1872 // The remaining optimizations require the format string to be "%s" or "%c" 1873 // and have an extra operand. 1874 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 1875 CI->getNumArgOperands() < 3) 1876 return nullptr; 1877 1878 // Decode the second character of the format string. 1879 if (FormatStr[1] == 'c') { 1880 // fprintf(F, "%c", chr) --> fputc(chr, F) 1881 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 1882 return nullptr; 1883 return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI); 1884 } 1885 1886 if (FormatStr[1] == 's') { 1887 // fprintf(F, "%s", str) --> fputs(str, F) 1888 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 1889 return nullptr; 1890 return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, DL, TLI); 1891 } 1892 return nullptr; 1893 } 1894 1895 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 1896 Function *Callee = CI->getCalledFunction(); 1897 // Require two fixed paramters as pointers and integer result. 1898 FunctionType *FT = Callee->getFunctionType(); 1899 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 1900 !FT->getParamType(1)->isPointerTy() || 1901 !FT->getReturnType()->isIntegerTy()) 1902 return nullptr; 1903 1904 if (Value *V = optimizeFPrintFString(CI, B)) { 1905 return V; 1906 } 1907 1908 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 1909 // floating point arguments. 1910 if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) { 1911 Module *M = B.GetInsertBlock()->getParent()->getParent(); 1912 Constant *FIPrintFFn = 1913 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 1914 CallInst *New = cast<CallInst>(CI->clone()); 1915 New->setCalledFunction(FIPrintFFn); 1916 B.Insert(New); 1917 return New; 1918 } 1919 return nullptr; 1920 } 1921 1922 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 1923 optimizeErrorReporting(CI, B, 3); 1924 1925 Function *Callee = CI->getCalledFunction(); 1926 // Require a pointer, an integer, an integer, a pointer, returning integer. 1927 FunctionType *FT = Callee->getFunctionType(); 1928 if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() || 1929 !FT->getParamType(1)->isIntegerTy() || 1930 !FT->getParamType(2)->isIntegerTy() || 1931 !FT->getParamType(3)->isPointerTy() || 1932 !FT->getReturnType()->isIntegerTy()) 1933 return nullptr; 1934 1935 // Get the element size and count. 1936 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 1937 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1938 if (!SizeC || !CountC) 1939 return nullptr; 1940 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 1941 1942 // If this is writing zero records, remove the call (it's a noop). 1943 if (Bytes == 0) 1944 return ConstantInt::get(CI->getType(), 0); 1945 1946 // If this is writing one byte, turn it into fputc. 1947 // This optimisation is only valid, if the return value is unused. 1948 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 1949 Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char"); 1950 Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, DL, TLI); 1951 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 1952 } 1953 1954 return nullptr; 1955 } 1956 1957 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 1958 optimizeErrorReporting(CI, B, 1); 1959 1960 Function *Callee = CI->getCalledFunction(); 1961 1962 // These optimizations require DataLayout. 1963 if (!DL) 1964 return nullptr; 1965 1966 // Require two pointers. Also, we can't optimize if return value is used. 1967 FunctionType *FT = Callee->getFunctionType(); 1968 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || 1969 !FT->getParamType(1)->isPointerTy() || !CI->use_empty()) 1970 return nullptr; 1971 1972 // fputs(s,F) --> fwrite(s,1,strlen(s),F) 1973 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 1974 if (!Len) 1975 return nullptr; 1976 1977 // Known to have no uses (see above). 1978 return EmitFWrite( 1979 CI->getArgOperand(0), 1980 ConstantInt::get(DL->getIntPtrType(CI->getContext()), Len - 1), 1981 CI->getArgOperand(1), B, DL, TLI); 1982 } 1983 1984 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 1985 Function *Callee = CI->getCalledFunction(); 1986 // Require one fixed pointer argument and an integer/void result. 1987 FunctionType *FT = Callee->getFunctionType(); 1988 if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || 1989 !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy())) 1990 return nullptr; 1991 1992 // Check for a constant string. 1993 StringRef Str; 1994 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 1995 return nullptr; 1996 1997 if (Str.empty() && CI->use_empty()) { 1998 // puts("") -> putchar('\n') 1999 Value *Res = EmitPutChar(B.getInt32('\n'), B, DL, TLI); 2000 if (CI->use_empty() || !Res) 2001 return Res; 2002 return B.CreateIntCast(Res, CI->getType(), true); 2003 } 2004 2005 return nullptr; 2006 } 2007 2008 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2009 LibFunc::Func Func; 2010 SmallString<20> FloatFuncName = FuncName; 2011 FloatFuncName += 'f'; 2012 if (TLI->getLibFunc(FloatFuncName, Func)) 2013 return TLI->has(Func); 2014 return false; 2015 } 2016 2017 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 2018 if (CI->isNoBuiltin()) 2019 return nullptr; 2020 2021 LibFunc::Func Func; 2022 Function *Callee = CI->getCalledFunction(); 2023 StringRef FuncName = Callee->getName(); 2024 IRBuilder<> Builder(CI); 2025 bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C; 2026 2027 // Command-line parameter overrides function attribute. 2028 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2029 UnsafeFPShrink = EnableUnsafeFPShrink; 2030 else if (Callee->hasFnAttribute("unsafe-fp-math")) { 2031 // FIXME: This is the same problem as described in optimizeSqrt(). 2032 // If calls gain access to IR-level FMF, then use that instead of a 2033 // function attribute. 2034 2035 // Check for unsafe-fp-math = true. 2036 Attribute Attr = Callee->getFnAttribute("unsafe-fp-math"); 2037 if (Attr.getValueAsString() == "true") 2038 UnsafeFPShrink = true; 2039 } 2040 2041 // First, check for intrinsics. 2042 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2043 if (!isCallingConvC) 2044 return nullptr; 2045 switch (II->getIntrinsicID()) { 2046 case Intrinsic::pow: 2047 return optimizePow(CI, Builder); 2048 case Intrinsic::exp2: 2049 return optimizeExp2(CI, Builder); 2050 case Intrinsic::fabs: 2051 return optimizeFabs(CI, Builder); 2052 case Intrinsic::sqrt: 2053 return optimizeSqrt(CI, Builder); 2054 default: 2055 return nullptr; 2056 } 2057 } 2058 2059 // Then check for known library functions. 2060 if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) { 2061 // We never change the calling convention. 2062 if (!ignoreCallingConv(Func) && !isCallingConvC) 2063 return nullptr; 2064 switch (Func) { 2065 case LibFunc::strcat: 2066 return optimizeStrCat(CI, Builder); 2067 case LibFunc::strncat: 2068 return optimizeStrNCat(CI, Builder); 2069 case LibFunc::strchr: 2070 return optimizeStrChr(CI, Builder); 2071 case LibFunc::strrchr: 2072 return optimizeStrRChr(CI, Builder); 2073 case LibFunc::strcmp: 2074 return optimizeStrCmp(CI, Builder); 2075 case LibFunc::strncmp: 2076 return optimizeStrNCmp(CI, Builder); 2077 case LibFunc::strcpy: 2078 return optimizeStrCpy(CI, Builder); 2079 case LibFunc::stpcpy: 2080 return optimizeStpCpy(CI, Builder); 2081 case LibFunc::strncpy: 2082 return optimizeStrNCpy(CI, Builder); 2083 case LibFunc::strlen: 2084 return optimizeStrLen(CI, Builder); 2085 case LibFunc::strpbrk: 2086 return optimizeStrPBrk(CI, Builder); 2087 case LibFunc::strtol: 2088 case LibFunc::strtod: 2089 case LibFunc::strtof: 2090 case LibFunc::strtoul: 2091 case LibFunc::strtoll: 2092 case LibFunc::strtold: 2093 case LibFunc::strtoull: 2094 return optimizeStrTo(CI, Builder); 2095 case LibFunc::strspn: 2096 return optimizeStrSpn(CI, Builder); 2097 case LibFunc::strcspn: 2098 return optimizeStrCSpn(CI, Builder); 2099 case LibFunc::strstr: 2100 return optimizeStrStr(CI, Builder); 2101 case LibFunc::memcmp: 2102 return optimizeMemCmp(CI, Builder); 2103 case LibFunc::memcpy: 2104 return optimizeMemCpy(CI, Builder); 2105 case LibFunc::memmove: 2106 return optimizeMemMove(CI, Builder); 2107 case LibFunc::memset: 2108 return optimizeMemSet(CI, Builder); 2109 case LibFunc::cosf: 2110 case LibFunc::cos: 2111 case LibFunc::cosl: 2112 return optimizeCos(CI, Builder); 2113 case LibFunc::sinpif: 2114 case LibFunc::sinpi: 2115 case LibFunc::cospif: 2116 case LibFunc::cospi: 2117 return optimizeSinCosPi(CI, Builder); 2118 case LibFunc::powf: 2119 case LibFunc::pow: 2120 case LibFunc::powl: 2121 return optimizePow(CI, Builder); 2122 case LibFunc::exp2l: 2123 case LibFunc::exp2: 2124 case LibFunc::exp2f: 2125 return optimizeExp2(CI, Builder); 2126 case LibFunc::fabsf: 2127 case LibFunc::fabs: 2128 case LibFunc::fabsl: 2129 return optimizeFabs(CI, Builder); 2130 case LibFunc::sqrtf: 2131 case LibFunc::sqrt: 2132 case LibFunc::sqrtl: 2133 return optimizeSqrt(CI, Builder); 2134 case LibFunc::ffs: 2135 case LibFunc::ffsl: 2136 case LibFunc::ffsll: 2137 return optimizeFFS(CI, Builder); 2138 case LibFunc::abs: 2139 case LibFunc::labs: 2140 case LibFunc::llabs: 2141 return optimizeAbs(CI, Builder); 2142 case LibFunc::isdigit: 2143 return optimizeIsDigit(CI, Builder); 2144 case LibFunc::isascii: 2145 return optimizeIsAscii(CI, Builder); 2146 case LibFunc::toascii: 2147 return optimizeToAscii(CI, Builder); 2148 case LibFunc::printf: 2149 return optimizePrintF(CI, Builder); 2150 case LibFunc::sprintf: 2151 return optimizeSPrintF(CI, Builder); 2152 case LibFunc::fprintf: 2153 return optimizeFPrintF(CI, Builder); 2154 case LibFunc::fwrite: 2155 return optimizeFWrite(CI, Builder); 2156 case LibFunc::fputs: 2157 return optimizeFPuts(CI, Builder); 2158 case LibFunc::puts: 2159 return optimizePuts(CI, Builder); 2160 case LibFunc::perror: 2161 return optimizeErrorReporting(CI, Builder); 2162 case LibFunc::vfprintf: 2163 case LibFunc::fiprintf: 2164 return optimizeErrorReporting(CI, Builder, 0); 2165 case LibFunc::fputc: 2166 return optimizeErrorReporting(CI, Builder, 1); 2167 case LibFunc::ceil: 2168 case LibFunc::floor: 2169 case LibFunc::rint: 2170 case LibFunc::round: 2171 case LibFunc::nearbyint: 2172 case LibFunc::trunc: 2173 if (hasFloatVersion(FuncName)) 2174 return optimizeUnaryDoubleFP(CI, Builder, false); 2175 return nullptr; 2176 case LibFunc::acos: 2177 case LibFunc::acosh: 2178 case LibFunc::asin: 2179 case LibFunc::asinh: 2180 case LibFunc::atan: 2181 case LibFunc::atanh: 2182 case LibFunc::cbrt: 2183 case LibFunc::cosh: 2184 case LibFunc::exp: 2185 case LibFunc::exp10: 2186 case LibFunc::expm1: 2187 case LibFunc::log: 2188 case LibFunc::log10: 2189 case LibFunc::log1p: 2190 case LibFunc::log2: 2191 case LibFunc::logb: 2192 case LibFunc::sin: 2193 case LibFunc::sinh: 2194 case LibFunc::tan: 2195 case LibFunc::tanh: 2196 if (UnsafeFPShrink && hasFloatVersion(FuncName)) 2197 return optimizeUnaryDoubleFP(CI, Builder, true); 2198 return nullptr; 2199 case LibFunc::copysign: 2200 case LibFunc::fmin: 2201 case LibFunc::fmax: 2202 if (hasFloatVersion(FuncName)) 2203 return optimizeBinaryDoubleFP(CI, Builder); 2204 return nullptr; 2205 case LibFunc::memcpy_chk: 2206 return optimizeMemCpyChk(CI, Builder); 2207 case LibFunc::memmove_chk: 2208 return optimizeMemMoveChk(CI, Builder); 2209 case LibFunc::memset_chk: 2210 return optimizeMemSetChk(CI, Builder); 2211 case LibFunc::strcpy_chk: 2212 return optimizeStrCpyChk(CI, Builder); 2213 case LibFunc::stpcpy_chk: 2214 return optimizeStpCpyChk(CI, Builder); 2215 case LibFunc::stpncpy_chk: 2216 case LibFunc::strncpy_chk: 2217 return optimizeStrNCpyChk(CI, Builder); 2218 default: 2219 return nullptr; 2220 } 2221 } 2222 2223 return nullptr; 2224 } 2225 2226 LibCallSimplifier::LibCallSimplifier(const DataLayout *DL, 2227 const TargetLibraryInfo *TLI) : 2228 DL(DL), 2229 TLI(TLI), 2230 UnsafeFPShrink(false) { 2231 } 2232 2233 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) const { 2234 I->replaceAllUsesWith(With); 2235 I->eraseFromParent(); 2236 } 2237 2238 // TODO: 2239 // Additional cases that we need to add to this file: 2240 // 2241 // cbrt: 2242 // * cbrt(expN(X)) -> expN(x/3) 2243 // * cbrt(sqrt(x)) -> pow(x,1/6) 2244 // * cbrt(sqrt(x)) -> pow(x,1/9) 2245 // 2246 // exp, expf, expl: 2247 // * exp(log(x)) -> x 2248 // 2249 // log, logf, logl: 2250 // * log(exp(x)) -> x 2251 // * log(x**y) -> y*log(x) 2252 // * log(exp(y)) -> y*log(e) 2253 // * log(exp2(y)) -> y*log(2) 2254 // * log(exp10(y)) -> y*log(10) 2255 // * log(sqrt(x)) -> 0.5*log(x) 2256 // * log(pow(x,y)) -> y*log(x) 2257 // 2258 // lround, lroundf, lroundl: 2259 // * lround(cnst) -> cnst' 2260 // 2261 // pow, powf, powl: 2262 // * pow(exp(x),y) -> exp(x*y) 2263 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2264 // * pow(pow(x,y),z)-> pow(x,y*z) 2265 // 2266 // round, roundf, roundl: 2267 // * round(cnst) -> cnst' 2268 // 2269 // signbit: 2270 // * signbit(cnst) -> cnst' 2271 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2272 // 2273 // sqrt, sqrtf, sqrtl: 2274 // * sqrt(expN(x)) -> expN(x*0.5) 2275 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2276 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2277 // 2278 // tan, tanf, tanl: 2279 // * tan(atan(x)) -> x 2280 // 2281 // trunc, truncf, truncl: 2282 // * trunc(cnst) -> cnst' 2283 // 2284 // 2285