1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Analysis/BlockFrequencyInfo.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ProfileSummaryInfo.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/KnownBits.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Transforms/Utils/BuildLibCalls.h" 39 #include "llvm/Transforms/Utils/SizeOpts.h" 40 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 static cl::opt<bool> 45 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 46 cl::init(false), 47 cl::desc("Enable unsafe double to float " 48 "shrinking for math lib calls")); 49 50 //===----------------------------------------------------------------------===// 51 // Helper Functions 52 //===----------------------------------------------------------------------===// 53 54 static bool ignoreCallingConv(LibFunc Func) { 55 return Func == LibFunc_abs || Func == LibFunc_labs || 56 Func == LibFunc_llabs || Func == LibFunc_strlen; 57 } 58 59 /// Return true if it is only used in equality comparisons with With. 60 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 61 for (User *U : V->users()) { 62 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 63 if (IC->isEquality() && IC->getOperand(1) == With) 64 continue; 65 // Unknown instruction. 66 return false; 67 } 68 return true; 69 } 70 71 static bool callHasFloatingPointArgument(const CallInst *CI) { 72 return any_of(CI->operands(), [](const Use &OI) { 73 return OI->getType()->isFloatingPointTy(); 74 }); 75 } 76 77 static bool callHasFP128Argument(const CallInst *CI) { 78 return any_of(CI->operands(), [](const Use &OI) { 79 return OI->getType()->isFP128Ty(); 80 }); 81 } 82 83 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 84 if (Base < 2 || Base > 36) 85 // handle special zero base 86 if (Base != 0) 87 return nullptr; 88 89 char *End; 90 std::string nptr = Str.str(); 91 errno = 0; 92 long long int Result = strtoll(nptr.c_str(), &End, Base); 93 if (errno) 94 return nullptr; 95 96 // if we assume all possible target locales are ASCII supersets, 97 // then if strtoll successfully parses a number on the host, 98 // it will also successfully parse the same way on the target 99 if (*End != '\0') 100 return nullptr; 101 102 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 103 return nullptr; 104 105 return ConstantInt::get(CI->getType(), Result); 106 } 107 108 static bool isOnlyUsedInComparisonWithZero(Value *V) { 109 for (User *U : V->users()) { 110 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 111 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 112 if (C->isNullValue()) 113 continue; 114 // Unknown instruction. 115 return false; 116 } 117 return true; 118 } 119 120 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 121 const DataLayout &DL) { 122 if (!isOnlyUsedInComparisonWithZero(CI)) 123 return false; 124 125 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 126 return false; 127 128 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 129 return false; 130 131 return true; 132 } 133 134 static void annotateDereferenceableBytes(CallInst *CI, 135 ArrayRef<unsigned> ArgNos, 136 uint64_t DereferenceableBytes) { 137 const Function *F = CI->getCaller(); 138 if (!F) 139 return; 140 for (unsigned ArgNo : ArgNos) { 141 uint64_t DerefBytes = DereferenceableBytes; 142 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 143 if (!llvm::NullPointerIsDefined(F, AS) || 144 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 145 DerefBytes = std::max(CI->getDereferenceableOrNullBytes( 146 ArgNo + AttributeList::FirstArgIndex), 147 DereferenceableBytes); 148 149 if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) < 150 DerefBytes) { 151 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 152 if (!llvm::NullPointerIsDefined(F, AS) || 153 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 154 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 155 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 156 CI->getContext(), DerefBytes)); 157 } 158 } 159 } 160 161 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, 162 ArrayRef<unsigned> ArgNos) { 163 Function *F = CI->getCaller(); 164 if (!F) 165 return; 166 167 for (unsigned ArgNo : ArgNos) { 168 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef)) 169 CI->addParamAttr(ArgNo, Attribute::NoUndef); 170 171 if (CI->paramHasAttr(ArgNo, Attribute::NonNull)) 172 continue; 173 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 174 if (llvm::NullPointerIsDefined(F, AS)) 175 continue; 176 177 CI->addParamAttr(ArgNo, Attribute::NonNull); 178 annotateDereferenceableBytes(CI, ArgNo, 1); 179 } 180 } 181 182 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 183 Value *Size, const DataLayout &DL) { 184 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 185 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 186 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 187 } else if (isKnownNonZero(Size, DL)) { 188 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 189 const APInt *X, *Y; 190 uint64_t DerefMin = 1; 191 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 192 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 193 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 194 } 195 } 196 } 197 198 //===----------------------------------------------------------------------===// 199 // String and Memory Library Call Optimizations 200 //===----------------------------------------------------------------------===// 201 202 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 203 // Extract some information from the instruction 204 Value *Dst = CI->getArgOperand(0); 205 Value *Src = CI->getArgOperand(1); 206 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 207 208 // See if we can get the length of the input string. 209 uint64_t Len = GetStringLength(Src); 210 if (Len) 211 annotateDereferenceableBytes(CI, 1, Len); 212 else 213 return nullptr; 214 --Len; // Unbias length. 215 216 // Handle the simple, do-nothing case: strcat(x, "") -> x 217 if (Len == 0) 218 return Dst; 219 220 return emitStrLenMemCpy(Src, Dst, Len, B); 221 } 222 223 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 224 IRBuilderBase &B) { 225 // We need to find the end of the destination string. That's where the 226 // memory is to be moved to. We just generate a call to strlen. 227 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 228 if (!DstLen) 229 return nullptr; 230 231 // Now that we have the destination's length, we must index into the 232 // destination's pointer to get the actual memcpy destination (end of 233 // the string .. we're concatenating). 234 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 235 236 // We have enough information to now generate the memcpy call to do the 237 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 238 B.CreateMemCpy( 239 CpyDst, Align(1), Src, Align(1), 240 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 241 return Dst; 242 } 243 244 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 245 // Extract some information from the instruction. 246 Value *Dst = CI->getArgOperand(0); 247 Value *Src = CI->getArgOperand(1); 248 Value *Size = CI->getArgOperand(2); 249 uint64_t Len; 250 annotateNonNullNoUndefBasedOnAccess(CI, 0); 251 if (isKnownNonZero(Size, DL)) 252 annotateNonNullNoUndefBasedOnAccess(CI, 1); 253 254 // We don't do anything if length is not constant. 255 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 256 if (LengthArg) { 257 Len = LengthArg->getZExtValue(); 258 // strncat(x, c, 0) -> x 259 if (!Len) 260 return Dst; 261 } else { 262 return nullptr; 263 } 264 265 // See if we can get the length of the input string. 266 uint64_t SrcLen = GetStringLength(Src); 267 if (SrcLen) { 268 annotateDereferenceableBytes(CI, 1, SrcLen); 269 --SrcLen; // Unbias length. 270 } else { 271 return nullptr; 272 } 273 274 // strncat(x, "", c) -> x 275 if (SrcLen == 0) 276 return Dst; 277 278 // We don't optimize this case. 279 if (Len < SrcLen) 280 return nullptr; 281 282 // strncat(x, s, c) -> strcat(x, s) 283 // s is constant so the strcat can be optimized further. 284 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 285 } 286 287 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 288 Function *Callee = CI->getCalledFunction(); 289 FunctionType *FT = Callee->getFunctionType(); 290 Value *SrcStr = CI->getArgOperand(0); 291 annotateNonNullNoUndefBasedOnAccess(CI, 0); 292 293 // If the second operand is non-constant, see if we can compute the length 294 // of the input string and turn this into memchr. 295 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 296 if (!CharC) { 297 uint64_t Len = GetStringLength(SrcStr); 298 if (Len) 299 annotateDereferenceableBytes(CI, 0, Len); 300 else 301 return nullptr; 302 if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 303 return nullptr; 304 305 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 306 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 307 B, DL, TLI); 308 } 309 310 // Otherwise, the character is a constant, see if the first argument is 311 // a string literal. If so, we can constant fold. 312 StringRef Str; 313 if (!getConstantStringInfo(SrcStr, Str)) { 314 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 315 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 316 return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 317 return nullptr; 318 } 319 320 // Compute the offset, make sure to handle the case when we're searching for 321 // zero (a weird way to spell strlen). 322 size_t I = (0xFF & CharC->getSExtValue()) == 0 323 ? Str.size() 324 : Str.find(CharC->getSExtValue()); 325 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 326 return Constant::getNullValue(CI->getType()); 327 328 // strchr(s+n,c) -> gep(s+n+i,c) 329 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 330 } 331 332 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 333 Value *SrcStr = CI->getArgOperand(0); 334 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 335 annotateNonNullNoUndefBasedOnAccess(CI, 0); 336 337 // Cannot fold anything if we're not looking for a constant. 338 if (!CharC) 339 return nullptr; 340 341 StringRef Str; 342 if (!getConstantStringInfo(SrcStr, Str)) { 343 // strrchr(s, 0) -> strchr(s, 0) 344 if (CharC->isZero()) 345 return emitStrChr(SrcStr, '\0', B, TLI); 346 return nullptr; 347 } 348 349 // Compute the offset. 350 size_t I = (0xFF & CharC->getSExtValue()) == 0 351 ? Str.size() 352 : Str.rfind(CharC->getSExtValue()); 353 if (I == StringRef::npos) // Didn't find the char. Return null. 354 return Constant::getNullValue(CI->getType()); 355 356 // strrchr(s+n,c) -> gep(s+n+i,c) 357 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 358 } 359 360 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 361 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 362 if (Str1P == Str2P) // strcmp(x,x) -> 0 363 return ConstantInt::get(CI->getType(), 0); 364 365 StringRef Str1, Str2; 366 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 367 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 368 369 // strcmp(x, y) -> cnst (if both x and y are constant strings) 370 if (HasStr1 && HasStr2) 371 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 372 373 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 374 return B.CreateNeg(B.CreateZExt( 375 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 376 377 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 378 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 379 CI->getType()); 380 381 // strcmp(P, "x") -> memcmp(P, "x", 2) 382 uint64_t Len1 = GetStringLength(Str1P); 383 if (Len1) 384 annotateDereferenceableBytes(CI, 0, Len1); 385 uint64_t Len2 = GetStringLength(Str2P); 386 if (Len2) 387 annotateDereferenceableBytes(CI, 1, Len2); 388 389 if (Len1 && Len2) { 390 return emitMemCmp(Str1P, Str2P, 391 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 392 std::min(Len1, Len2)), 393 B, DL, TLI); 394 } 395 396 // strcmp to memcmp 397 if (!HasStr1 && HasStr2) { 398 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 399 return emitMemCmp( 400 Str1P, Str2P, 401 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 402 TLI); 403 } else if (HasStr1 && !HasStr2) { 404 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 405 return emitMemCmp( 406 Str1P, Str2P, 407 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 408 TLI); 409 } 410 411 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 412 return nullptr; 413 } 414 415 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 416 Value *Str1P = CI->getArgOperand(0); 417 Value *Str2P = CI->getArgOperand(1); 418 Value *Size = CI->getArgOperand(2); 419 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 420 return ConstantInt::get(CI->getType(), 0); 421 422 if (isKnownNonZero(Size, DL)) 423 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 424 // Get the length argument if it is constant. 425 uint64_t Length; 426 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 427 Length = LengthArg->getZExtValue(); 428 else 429 return nullptr; 430 431 if (Length == 0) // strncmp(x,y,0) -> 0 432 return ConstantInt::get(CI->getType(), 0); 433 434 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 435 return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI); 436 437 StringRef Str1, Str2; 438 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 439 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 440 441 // strncmp(x, y) -> cnst (if both x and y are constant strings) 442 if (HasStr1 && HasStr2) { 443 StringRef SubStr1 = Str1.substr(0, Length); 444 StringRef SubStr2 = Str2.substr(0, Length); 445 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 446 } 447 448 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 449 return B.CreateNeg(B.CreateZExt( 450 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 451 452 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 453 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 454 CI->getType()); 455 456 uint64_t Len1 = GetStringLength(Str1P); 457 if (Len1) 458 annotateDereferenceableBytes(CI, 0, Len1); 459 uint64_t Len2 = GetStringLength(Str2P); 460 if (Len2) 461 annotateDereferenceableBytes(CI, 1, Len2); 462 463 // strncmp to memcmp 464 if (!HasStr1 && HasStr2) { 465 Len2 = std::min(Len2, Length); 466 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 467 return emitMemCmp( 468 Str1P, Str2P, 469 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 470 TLI); 471 } else if (HasStr1 && !HasStr2) { 472 Len1 = std::min(Len1, Length); 473 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 474 return emitMemCmp( 475 Str1P, Str2P, 476 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 477 TLI); 478 } 479 480 return nullptr; 481 } 482 483 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 484 Value *Src = CI->getArgOperand(0); 485 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 486 uint64_t SrcLen = GetStringLength(Src); 487 if (SrcLen && Size) { 488 annotateDereferenceableBytes(CI, 0, SrcLen); 489 if (SrcLen <= Size->getZExtValue() + 1) 490 return emitStrDup(Src, B, TLI); 491 } 492 493 return nullptr; 494 } 495 496 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 497 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 498 if (Dst == Src) // strcpy(x,x) -> x 499 return Src; 500 501 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 502 // See if we can get the length of the input string. 503 uint64_t Len = GetStringLength(Src); 504 if (Len) 505 annotateDereferenceableBytes(CI, 1, Len); 506 else 507 return nullptr; 508 509 // We have enough information to now generate the memcpy call to do the 510 // copy for us. Make a memcpy to copy the nul byte with align = 1. 511 CallInst *NewCI = 512 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 513 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 514 NewCI->setAttributes(CI->getAttributes()); 515 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 516 return Dst; 517 } 518 519 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 520 Function *Callee = CI->getCalledFunction(); 521 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 522 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 523 Value *StrLen = emitStrLen(Src, B, DL, TLI); 524 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 525 } 526 527 // See if we can get the length of the input string. 528 uint64_t Len = GetStringLength(Src); 529 if (Len) 530 annotateDereferenceableBytes(CI, 1, Len); 531 else 532 return nullptr; 533 534 Type *PT = Callee->getFunctionType()->getParamType(0); 535 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 536 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 537 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 538 539 // We have enough information to now generate the memcpy call to do the 540 // copy for us. Make a memcpy to copy the nul byte with align = 1. 541 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 542 NewCI->setAttributes(CI->getAttributes()); 543 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 544 return DstEnd; 545 } 546 547 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) { 548 Function *Callee = CI->getCalledFunction(); 549 Value *Dst = CI->getArgOperand(0); 550 Value *Src = CI->getArgOperand(1); 551 Value *Size = CI->getArgOperand(2); 552 annotateNonNullNoUndefBasedOnAccess(CI, 0); 553 if (isKnownNonZero(Size, DL)) 554 annotateNonNullNoUndefBasedOnAccess(CI, 1); 555 556 uint64_t Len; 557 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 558 Len = LengthArg->getZExtValue(); 559 else 560 return nullptr; 561 562 // strncpy(x, y, 0) -> x 563 if (Len == 0) 564 return Dst; 565 566 // See if we can get the length of the input string. 567 uint64_t SrcLen = GetStringLength(Src); 568 if (SrcLen) { 569 annotateDereferenceableBytes(CI, 1, SrcLen); 570 --SrcLen; // Unbias length. 571 } else { 572 return nullptr; 573 } 574 575 if (SrcLen == 0) { 576 // strncpy(x, "", y) -> memset(x, '\0', y) 577 Align MemSetAlign = 578 CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne(); 579 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign); 580 AttrBuilder ArgAttrs(CI->getAttributes().getParamAttrs(0)); 581 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 582 CI->getContext(), 0, ArgAttrs)); 583 return Dst; 584 } 585 586 // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4) 587 if (Len > SrcLen + 1) { 588 if (Len <= 128) { 589 StringRef Str; 590 if (!getConstantStringInfo(Src, Str)) 591 return nullptr; 592 std::string SrcStr = Str.str(); 593 SrcStr.resize(Len, '\0'); 594 Src = B.CreateGlobalString(SrcStr, "str"); 595 } else { 596 return nullptr; 597 } 598 } 599 600 Type *PT = Callee->getFunctionType()->getParamType(0); 601 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 602 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 603 ConstantInt::get(DL.getIntPtrType(PT), Len)); 604 NewCI->setAttributes(CI->getAttributes()); 605 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 606 return Dst; 607 } 608 609 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 610 unsigned CharSize) { 611 Value *Src = CI->getArgOperand(0); 612 613 // Constant folding: strlen("xyz") -> 3 614 if (uint64_t Len = GetStringLength(Src, CharSize)) 615 return ConstantInt::get(CI->getType(), Len - 1); 616 617 // If s is a constant pointer pointing to a string literal, we can fold 618 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 619 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 620 // We only try to simplify strlen when the pointer s points to an array 621 // of i8. Otherwise, we would need to scale the offset x before doing the 622 // subtraction. This will make the optimization more complex, and it's not 623 // very useful because calling strlen for a pointer of other types is 624 // very uncommon. 625 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 626 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 627 return nullptr; 628 629 ConstantDataArraySlice Slice; 630 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 631 uint64_t NullTermIdx; 632 if (Slice.Array == nullptr) { 633 NullTermIdx = 0; 634 } else { 635 NullTermIdx = ~((uint64_t)0); 636 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 637 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 638 NullTermIdx = I; 639 break; 640 } 641 } 642 // If the string does not have '\0', leave it to strlen to compute 643 // its length. 644 if (NullTermIdx == ~((uint64_t)0)) 645 return nullptr; 646 } 647 648 Value *Offset = GEP->getOperand(2); 649 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 650 Known.Zero.flipAllBits(); 651 uint64_t ArrSize = 652 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 653 654 // KnownZero's bits are flipped, so zeros in KnownZero now represent 655 // bits known to be zeros in Offset, and ones in KnowZero represent 656 // bits unknown in Offset. Therefore, Offset is known to be in range 657 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 658 // unsigned-less-than NullTermIdx. 659 // 660 // If Offset is not provably in the range [0, NullTermIdx], we can still 661 // optimize if we can prove that the program has undefined behavior when 662 // Offset is outside that range. That is the case when GEP->getOperand(0) 663 // is a pointer to an object whose memory extent is NullTermIdx+1. 664 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 665 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 666 NullTermIdx == ArrSize - 1)) { 667 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 668 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 669 Offset); 670 } 671 } 672 } 673 674 // strlen(x?"foo":"bars") --> x ? 3 : 4 675 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 676 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 677 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 678 if (LenTrue && LenFalse) { 679 ORE.emit([&]() { 680 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 681 << "folded strlen(select) to select of constants"; 682 }); 683 return B.CreateSelect(SI->getCondition(), 684 ConstantInt::get(CI->getType(), LenTrue - 1), 685 ConstantInt::get(CI->getType(), LenFalse - 1)); 686 } 687 } 688 689 // strlen(x) != 0 --> *x != 0 690 // strlen(x) == 0 --> *x == 0 691 if (isOnlyUsedInZeroEqualityComparison(CI)) 692 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), 693 CI->getType()); 694 695 return nullptr; 696 } 697 698 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 699 if (Value *V = optimizeStringLength(CI, B, 8)) 700 return V; 701 annotateNonNullNoUndefBasedOnAccess(CI, 0); 702 return nullptr; 703 } 704 705 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 706 Module &M = *CI->getModule(); 707 unsigned WCharSize = TLI->getWCharSize(M) * 8; 708 // We cannot perform this optimization without wchar_size metadata. 709 if (WCharSize == 0) 710 return nullptr; 711 712 return optimizeStringLength(CI, B, WCharSize); 713 } 714 715 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 716 StringRef S1, S2; 717 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 718 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 719 720 // strpbrk(s, "") -> nullptr 721 // strpbrk("", s) -> nullptr 722 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 723 return Constant::getNullValue(CI->getType()); 724 725 // Constant folding. 726 if (HasS1 && HasS2) { 727 size_t I = S1.find_first_of(S2); 728 if (I == StringRef::npos) // No match. 729 return Constant::getNullValue(CI->getType()); 730 731 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 732 "strpbrk"); 733 } 734 735 // strpbrk(s, "a") -> strchr(s, 'a') 736 if (HasS2 && S2.size() == 1) 737 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 738 739 return nullptr; 740 } 741 742 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 743 Value *EndPtr = CI->getArgOperand(1); 744 if (isa<ConstantPointerNull>(EndPtr)) { 745 // With a null EndPtr, this function won't capture the main argument. 746 // It would be readonly too, except that it still may write to errno. 747 CI->addParamAttr(0, Attribute::NoCapture); 748 } 749 750 return nullptr; 751 } 752 753 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 754 StringRef S1, S2; 755 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 756 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 757 758 // strspn(s, "") -> 0 759 // strspn("", s) -> 0 760 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 761 return Constant::getNullValue(CI->getType()); 762 763 // Constant folding. 764 if (HasS1 && HasS2) { 765 size_t Pos = S1.find_first_not_of(S2); 766 if (Pos == StringRef::npos) 767 Pos = S1.size(); 768 return ConstantInt::get(CI->getType(), Pos); 769 } 770 771 return nullptr; 772 } 773 774 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 775 StringRef S1, S2; 776 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 777 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 778 779 // strcspn("", s) -> 0 780 if (HasS1 && S1.empty()) 781 return Constant::getNullValue(CI->getType()); 782 783 // Constant folding. 784 if (HasS1 && HasS2) { 785 size_t Pos = S1.find_first_of(S2); 786 if (Pos == StringRef::npos) 787 Pos = S1.size(); 788 return ConstantInt::get(CI->getType(), Pos); 789 } 790 791 // strcspn(s, "") -> strlen(s) 792 if (HasS2 && S2.empty()) 793 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 794 795 return nullptr; 796 } 797 798 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 799 // fold strstr(x, x) -> x. 800 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 801 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 802 803 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 804 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 805 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 806 if (!StrLen) 807 return nullptr; 808 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 809 StrLen, B, DL, TLI); 810 if (!StrNCmp) 811 return nullptr; 812 for (User *U : llvm::make_early_inc_range(CI->users())) { 813 ICmpInst *Old = cast<ICmpInst>(U); 814 Value *Cmp = 815 B.CreateICmp(Old->getPredicate(), StrNCmp, 816 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 817 replaceAllUsesWith(Old, Cmp); 818 } 819 return CI; 820 } 821 822 // See if either input string is a constant string. 823 StringRef SearchStr, ToFindStr; 824 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 825 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 826 827 // fold strstr(x, "") -> x. 828 if (HasStr2 && ToFindStr.empty()) 829 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 830 831 // If both strings are known, constant fold it. 832 if (HasStr1 && HasStr2) { 833 size_t Offset = SearchStr.find(ToFindStr); 834 835 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 836 return Constant::getNullValue(CI->getType()); 837 838 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 839 Value *Result = castToCStr(CI->getArgOperand(0), B); 840 Result = 841 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 842 return B.CreateBitCast(Result, CI->getType()); 843 } 844 845 // fold strstr(x, "y") -> strchr(x, 'y'). 846 if (HasStr2 && ToFindStr.size() == 1) { 847 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 848 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 849 } 850 851 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 852 return nullptr; 853 } 854 855 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 856 if (isKnownNonZero(CI->getOperand(2), DL)) 857 annotateNonNullNoUndefBasedOnAccess(CI, 0); 858 return nullptr; 859 } 860 861 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 862 Value *SrcStr = CI->getArgOperand(0); 863 Value *Size = CI->getArgOperand(2); 864 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 865 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 866 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 867 868 // memchr(x, y, 0) -> null 869 if (LenC) { 870 if (LenC->isZero()) 871 return Constant::getNullValue(CI->getType()); 872 } else { 873 // From now on we need at least constant length and string. 874 return nullptr; 875 } 876 877 StringRef Str; 878 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 879 return nullptr; 880 881 // Truncate the string to LenC. If Str is smaller than LenC we will still only 882 // scan the string, as reading past the end of it is undefined and we can just 883 // return null if we don't find the char. 884 Str = Str.substr(0, LenC->getZExtValue()); 885 886 // If the char is variable but the input str and length are not we can turn 887 // this memchr call into a simple bit field test. Of course this only works 888 // when the return value is only checked against null. 889 // 890 // It would be really nice to reuse switch lowering here but we can't change 891 // the CFG at this point. 892 // 893 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 894 // != 0 895 // after bounds check. 896 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 897 unsigned char Max = 898 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 899 reinterpret_cast<const unsigned char *>(Str.end())); 900 901 // Make sure the bit field we're about to create fits in a register on the 902 // target. 903 // FIXME: On a 64 bit architecture this prevents us from using the 904 // interesting range of alpha ascii chars. We could do better by emitting 905 // two bitfields or shifting the range by 64 if no lower chars are used. 906 if (!DL.fitsInLegalInteger(Max + 1)) 907 return nullptr; 908 909 // For the bit field use a power-of-2 type with at least 8 bits to avoid 910 // creating unnecessary illegal types. 911 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 912 913 // Now build the bit field. 914 APInt Bitfield(Width, 0); 915 for (char C : Str) 916 Bitfield.setBit((unsigned char)C); 917 Value *BitfieldC = B.getInt(Bitfield); 918 919 // Adjust width of "C" to the bitfield width, then mask off the high bits. 920 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 921 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 922 923 // First check that the bit field access is within bounds. 924 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 925 "memchr.bounds"); 926 927 // Create code that checks if the given bit is set in the field. 928 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 929 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 930 931 // Finally merge both checks and cast to pointer type. The inttoptr 932 // implicitly zexts the i1 to intptr type. 933 return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"), 934 CI->getType()); 935 } 936 937 // Check if all arguments are constants. If so, we can constant fold. 938 if (!CharC) 939 return nullptr; 940 941 // Compute the offset. 942 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 943 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 944 return Constant::getNullValue(CI->getType()); 945 946 // memchr(s+n,c,l) -> gep(s+n+i,c) 947 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 948 } 949 950 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 951 uint64_t Len, IRBuilderBase &B, 952 const DataLayout &DL) { 953 if (Len == 0) // memcmp(s1,s2,0) -> 0 954 return Constant::getNullValue(CI->getType()); 955 956 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 957 if (Len == 1) { 958 Value *LHSV = 959 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 960 CI->getType(), "lhsv"); 961 Value *RHSV = 962 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 963 CI->getType(), "rhsv"); 964 return B.CreateSub(LHSV, RHSV, "chardiff"); 965 } 966 967 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 968 // TODO: The case where both inputs are constants does not need to be limited 969 // to legal integers or equality comparison. See block below this. 970 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 971 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 972 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 973 974 // First, see if we can fold either argument to a constant. 975 Value *LHSV = nullptr; 976 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 977 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 978 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 979 } 980 Value *RHSV = nullptr; 981 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 982 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 983 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 984 } 985 986 // Don't generate unaligned loads. If either source is constant data, 987 // alignment doesn't matter for that source because there is no load. 988 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 989 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 990 if (!LHSV) { 991 Type *LHSPtrTy = 992 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 993 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 994 } 995 if (!RHSV) { 996 Type *RHSPtrTy = 997 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 998 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 999 } 1000 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1001 } 1002 } 1003 1004 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 1005 // TODO: This is limited to i8 arrays. 1006 StringRef LHSStr, RHSStr; 1007 if (getConstantStringInfo(LHS, LHSStr) && 1008 getConstantStringInfo(RHS, RHSStr)) { 1009 // Make sure we're not reading out-of-bounds memory. 1010 if (Len > LHSStr.size() || Len > RHSStr.size()) 1011 return nullptr; 1012 // Fold the memcmp and normalize the result. This way we get consistent 1013 // results across multiple platforms. 1014 uint64_t Ret = 0; 1015 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 1016 if (Cmp < 0) 1017 Ret = -1; 1018 else if (Cmp > 0) 1019 Ret = 1; 1020 return ConstantInt::get(CI->getType(), Ret); 1021 } 1022 1023 return nullptr; 1024 } 1025 1026 // Most simplifications for memcmp also apply to bcmp. 1027 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1028 IRBuilderBase &B) { 1029 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1030 Value *Size = CI->getArgOperand(2); 1031 1032 if (LHS == RHS) // memcmp(s,s,x) -> 0 1033 return Constant::getNullValue(CI->getType()); 1034 1035 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1036 // Handle constant lengths. 1037 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1038 if (!LenC) 1039 return nullptr; 1040 1041 // memcmp(d,s,0) -> 0 1042 if (LenC->getZExtValue() == 0) 1043 return Constant::getNullValue(CI->getType()); 1044 1045 if (Value *Res = 1046 optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL)) 1047 return Res; 1048 return nullptr; 1049 } 1050 1051 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1052 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1053 return V; 1054 1055 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1056 // bcmp can be more efficient than memcmp because it only has to know that 1057 // there is a difference, not how different one is to the other. 1058 if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) { 1059 Value *LHS = CI->getArgOperand(0); 1060 Value *RHS = CI->getArgOperand(1); 1061 Value *Size = CI->getArgOperand(2); 1062 return emitBCmp(LHS, RHS, Size, B, DL, TLI); 1063 } 1064 1065 return nullptr; 1066 } 1067 1068 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1069 return optimizeMemCmpBCmpCommon(CI, B); 1070 } 1071 1072 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1073 Value *Size = CI->getArgOperand(2); 1074 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1075 if (isa<IntrinsicInst>(CI)) 1076 return nullptr; 1077 1078 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1079 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1080 CI->getArgOperand(1), Align(1), Size); 1081 NewCI->setAttributes(CI->getAttributes()); 1082 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1083 return CI->getArgOperand(0); 1084 } 1085 1086 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1087 Value *Dst = CI->getArgOperand(0); 1088 Value *Src = CI->getArgOperand(1); 1089 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1090 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1091 StringRef SrcStr; 1092 if (CI->use_empty() && Dst == Src) 1093 return Dst; 1094 // memccpy(d, s, c, 0) -> nullptr 1095 if (N) { 1096 if (N->isNullValue()) 1097 return Constant::getNullValue(CI->getType()); 1098 if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0, 1099 /*TrimAtNul=*/false) || 1100 !StopChar) 1101 return nullptr; 1102 } else { 1103 return nullptr; 1104 } 1105 1106 // Wrap arg 'c' of type int to char 1107 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1108 if (Pos == StringRef::npos) { 1109 if (N->getZExtValue() <= SrcStr.size()) { 1110 B.CreateMemCpy(Dst, Align(1), Src, Align(1), CI->getArgOperand(3)); 1111 return Constant::getNullValue(CI->getType()); 1112 } 1113 return nullptr; 1114 } 1115 1116 Value *NewN = 1117 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1118 // memccpy -> llvm.memcpy 1119 B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN); 1120 return Pos + 1 <= N->getZExtValue() 1121 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1122 : Constant::getNullValue(CI->getType()); 1123 } 1124 1125 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1126 Value *Dst = CI->getArgOperand(0); 1127 Value *N = CI->getArgOperand(2); 1128 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1129 CallInst *NewCI = 1130 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1131 // Propagate attributes, but memcpy has no return value, so make sure that 1132 // any return attributes are compliant. 1133 // TODO: Attach return value attributes to the 1st operand to preserve them? 1134 NewCI->setAttributes(CI->getAttributes()); 1135 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1136 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1137 } 1138 1139 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1140 Value *Size = CI->getArgOperand(2); 1141 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1142 if (isa<IntrinsicInst>(CI)) 1143 return nullptr; 1144 1145 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1146 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1147 CI->getArgOperand(1), Align(1), Size); 1148 NewCI->setAttributes(CI->getAttributes()); 1149 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1150 return CI->getArgOperand(0); 1151 } 1152 1153 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1154 Value *Size = CI->getArgOperand(2); 1155 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1156 if (isa<IntrinsicInst>(CI)) 1157 return nullptr; 1158 1159 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1160 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1161 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1162 NewCI->setAttributes(CI->getAttributes()); 1163 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1164 return CI->getArgOperand(0); 1165 } 1166 1167 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1168 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1169 return emitMalloc(CI->getArgOperand(1), B, DL, TLI); 1170 1171 return nullptr; 1172 } 1173 1174 //===----------------------------------------------------------------------===// 1175 // Math Library Optimizations 1176 //===----------------------------------------------------------------------===// 1177 1178 // Replace a libcall \p CI with a call to intrinsic \p IID 1179 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1180 Intrinsic::ID IID) { 1181 // Propagate fast-math flags from the existing call to the new call. 1182 IRBuilderBase::FastMathFlagGuard Guard(B); 1183 B.setFastMathFlags(CI->getFastMathFlags()); 1184 1185 Module *M = CI->getModule(); 1186 Value *V = CI->getArgOperand(0); 1187 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1188 CallInst *NewCall = B.CreateCall(F, V); 1189 NewCall->takeName(CI); 1190 return NewCall; 1191 } 1192 1193 /// Return a variant of Val with float type. 1194 /// Currently this works in two cases: If Val is an FPExtension of a float 1195 /// value to something bigger, simply return the operand. 1196 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1197 /// loss of precision do so. 1198 static Value *valueHasFloatPrecision(Value *Val) { 1199 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1200 Value *Op = Cast->getOperand(0); 1201 if (Op->getType()->isFloatTy()) 1202 return Op; 1203 } 1204 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1205 APFloat F = Const->getValueAPF(); 1206 bool losesInfo; 1207 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1208 &losesInfo); 1209 if (!losesInfo) 1210 return ConstantFP::get(Const->getContext(), F); 1211 } 1212 return nullptr; 1213 } 1214 1215 /// Shrink double -> float functions. 1216 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1217 bool isBinary, bool isPrecise = false) { 1218 Function *CalleeFn = CI->getCalledFunction(); 1219 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1220 return nullptr; 1221 1222 // If not all the uses of the function are converted to float, then bail out. 1223 // This matters if the precision of the result is more important than the 1224 // precision of the arguments. 1225 if (isPrecise) 1226 for (User *U : CI->users()) { 1227 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1228 if (!Cast || !Cast->getType()->isFloatTy()) 1229 return nullptr; 1230 } 1231 1232 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1233 Value *V[2]; 1234 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1235 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1236 if (!V[0] || (isBinary && !V[1])) 1237 return nullptr; 1238 1239 // If call isn't an intrinsic, check that it isn't within a function with the 1240 // same name as the float version of this call, otherwise the result is an 1241 // infinite loop. For example, from MinGW-w64: 1242 // 1243 // float expf(float val) { return (float) exp((double) val); } 1244 StringRef CalleeName = CalleeFn->getName(); 1245 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1246 if (!IsIntrinsic) { 1247 StringRef CallerName = CI->getFunction()->getName(); 1248 if (!CallerName.empty() && CallerName.back() == 'f' && 1249 CallerName.size() == (CalleeName.size() + 1) && 1250 CallerName.startswith(CalleeName)) 1251 return nullptr; 1252 } 1253 1254 // Propagate the math semantics from the current function to the new function. 1255 IRBuilderBase::FastMathFlagGuard Guard(B); 1256 B.setFastMathFlags(CI->getFastMathFlags()); 1257 1258 // g((double) float) -> (double) gf(float) 1259 Value *R; 1260 if (IsIntrinsic) { 1261 Module *M = CI->getModule(); 1262 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1263 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1264 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1265 } else { 1266 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1267 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs) 1268 : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs); 1269 } 1270 return B.CreateFPExt(R, B.getDoubleTy()); 1271 } 1272 1273 /// Shrink double -> float for unary functions. 1274 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1275 bool isPrecise = false) { 1276 return optimizeDoubleFP(CI, B, false, isPrecise); 1277 } 1278 1279 /// Shrink double -> float for binary functions. 1280 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1281 bool isPrecise = false) { 1282 return optimizeDoubleFP(CI, B, true, isPrecise); 1283 } 1284 1285 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1286 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1287 if (!CI->isFast()) 1288 return nullptr; 1289 1290 // Propagate fast-math flags from the existing call to new instructions. 1291 IRBuilderBase::FastMathFlagGuard Guard(B); 1292 B.setFastMathFlags(CI->getFastMathFlags()); 1293 1294 Value *Real, *Imag; 1295 if (CI->getNumArgOperands() == 1) { 1296 Value *Op = CI->getArgOperand(0); 1297 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1298 Real = B.CreateExtractValue(Op, 0, "real"); 1299 Imag = B.CreateExtractValue(Op, 1, "imag"); 1300 } else { 1301 assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); 1302 Real = CI->getArgOperand(0); 1303 Imag = CI->getArgOperand(1); 1304 } 1305 1306 Value *RealReal = B.CreateFMul(Real, Real); 1307 Value *ImagImag = B.CreateFMul(Imag, Imag); 1308 1309 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1310 CI->getType()); 1311 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); 1312 } 1313 1314 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1315 IRBuilderBase &B) { 1316 if (!isa<FPMathOperator>(Call)) 1317 return nullptr; 1318 1319 IRBuilderBase::FastMathFlagGuard Guard(B); 1320 B.setFastMathFlags(Call->getFastMathFlags()); 1321 1322 // TODO: Can this be shared to also handle LLVM intrinsics? 1323 Value *X; 1324 switch (Func) { 1325 case LibFunc_sin: 1326 case LibFunc_sinf: 1327 case LibFunc_sinl: 1328 case LibFunc_tan: 1329 case LibFunc_tanf: 1330 case LibFunc_tanl: 1331 // sin(-X) --> -sin(X) 1332 // tan(-X) --> -tan(X) 1333 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1334 return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X)); 1335 break; 1336 case LibFunc_cos: 1337 case LibFunc_cosf: 1338 case LibFunc_cosl: 1339 // cos(-X) --> cos(X) 1340 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1341 return B.CreateCall(Call->getCalledFunction(), X, "cos"); 1342 break; 1343 default: 1344 break; 1345 } 1346 return nullptr; 1347 } 1348 1349 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) { 1350 // Multiplications calculated using Addition Chains. 1351 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1352 1353 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1354 1355 if (InnerChain[Exp]) 1356 return InnerChain[Exp]; 1357 1358 static const unsigned AddChain[33][2] = { 1359 {0, 0}, // Unused. 1360 {0, 0}, // Unused (base case = pow1). 1361 {1, 1}, // Unused (pre-computed). 1362 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1363 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1364 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1365 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1366 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1367 }; 1368 1369 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1370 getPow(InnerChain, AddChain[Exp][1], B)); 1371 return InnerChain[Exp]; 1372 } 1373 1374 // Return a properly extended integer (DstWidth bits wide) if the operation is 1375 // an itofp. 1376 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) { 1377 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1378 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1379 // Make sure that the exponent fits inside an "int" of size DstWidth, 1380 // thus avoiding any range issues that FP has not. 1381 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); 1382 if (BitWidth < DstWidth || 1383 (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) 1384 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth)) 1385 : B.CreateZExt(Op, B.getIntNTy(DstWidth)); 1386 } 1387 1388 return nullptr; 1389 } 1390 1391 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1392 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 1393 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 1394 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 1395 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1396 AttributeList Attrs; // Attributes are only meaningful on the original call 1397 Module *Mod = Pow->getModule(); 1398 Type *Ty = Pow->getType(); 1399 bool Ignored; 1400 1401 // Evaluate special cases related to a nested function as the base. 1402 1403 // pow(exp(x), y) -> exp(x * y) 1404 // pow(exp2(x), y) -> exp2(x * y) 1405 // If exp{,2}() is used only once, it is better to fold two transcendental 1406 // math functions into one. If used again, exp{,2}() would still have to be 1407 // called with the original argument, then keep both original transcendental 1408 // functions. However, this transformation is only safe with fully relaxed 1409 // math semantics, since, besides rounding differences, it changes overflow 1410 // and underflow behavior quite dramatically. For example: 1411 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1412 // Whereas: 1413 // exp(1000 * 0.001) = exp(1) 1414 // TODO: Loosen the requirement for fully relaxed math semantics. 1415 // TODO: Handle exp10() when more targets have it available. 1416 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1417 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1418 LibFunc LibFn; 1419 1420 Function *CalleeFn = BaseFn->getCalledFunction(); 1421 if (CalleeFn && 1422 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1423 StringRef ExpName; 1424 Intrinsic::ID ID; 1425 Value *ExpFn; 1426 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 1427 1428 switch (LibFn) { 1429 default: 1430 return nullptr; 1431 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1432 ExpName = TLI->getName(LibFunc_exp); 1433 ID = Intrinsic::exp; 1434 LibFnFloat = LibFunc_expf; 1435 LibFnDouble = LibFunc_exp; 1436 LibFnLongDouble = LibFunc_expl; 1437 break; 1438 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1439 ExpName = TLI->getName(LibFunc_exp2); 1440 ID = Intrinsic::exp2; 1441 LibFnFloat = LibFunc_exp2f; 1442 LibFnDouble = LibFunc_exp2; 1443 LibFnLongDouble = LibFunc_exp2l; 1444 break; 1445 } 1446 1447 // Create new exp{,2}() with the product as its argument. 1448 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1449 ExpFn = BaseFn->doesNotAccessMemory() 1450 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1451 FMul, ExpName) 1452 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1453 LibFnLongDouble, B, 1454 BaseFn->getAttributes()); 1455 1456 // Since the new exp{,2}() is different from the original one, dead code 1457 // elimination cannot be trusted to remove it, since it may have side 1458 // effects (e.g., errno). When the only consumer for the original 1459 // exp{,2}() is pow(), then it has to be explicitly erased. 1460 substituteInParent(BaseFn, ExpFn); 1461 return ExpFn; 1462 } 1463 } 1464 1465 // Evaluate special cases related to a constant base. 1466 1467 const APFloat *BaseF; 1468 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1469 return nullptr; 1470 1471 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 1472 if (match(Base, m_SpecificFP(2.0)) && 1473 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 1474 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1475 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1476 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI, 1477 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1478 B, Attrs); 1479 } 1480 1481 // pow(2.0 ** n, x) -> exp2(n * x) 1482 if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1483 APFloat BaseR = APFloat(1.0); 1484 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1485 BaseR = BaseR / *BaseF; 1486 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1487 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1488 APSInt NI(64, false); 1489 if ((IsInteger || IsReciprocal) && 1490 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1491 APFloat::opOK && 1492 NI > 1 && NI.isPowerOf2()) { 1493 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1494 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1495 if (Pow->doesNotAccessMemory()) 1496 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1497 FMul, "exp2"); 1498 else 1499 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1500 LibFunc_exp2l, B, Attrs); 1501 } 1502 } 1503 1504 // pow(10.0, x) -> exp10(x) 1505 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1506 if (match(Base, m_SpecificFP(10.0)) && 1507 hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1508 return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f, 1509 LibFunc_exp10l, B, Attrs); 1510 1511 // pow(x, y) -> exp2(log2(x) * y) 1512 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 1513 !BaseF->isNegative()) { 1514 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 1515 // Luckily optimizePow has already handled the x == 1 case. 1516 assert(!match(Base, m_FPOne()) && 1517 "pow(1.0, y) should have been simplified earlier!"); 1518 1519 Value *Log = nullptr; 1520 if (Ty->isFloatTy()) 1521 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 1522 else if (Ty->isDoubleTy()) 1523 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 1524 1525 if (Log) { 1526 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 1527 if (Pow->doesNotAccessMemory()) 1528 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1529 FMul, "exp2"); 1530 else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) 1531 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1532 LibFunc_exp2l, B, Attrs); 1533 } 1534 } 1535 1536 return nullptr; 1537 } 1538 1539 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1540 Module *M, IRBuilderBase &B, 1541 const TargetLibraryInfo *TLI) { 1542 // If errno is never set, then use the intrinsic for sqrt(). 1543 if (NoErrno) { 1544 Function *SqrtFn = 1545 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1546 return B.CreateCall(SqrtFn, V, "sqrt"); 1547 } 1548 1549 // Otherwise, use the libcall for sqrt(). 1550 if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) 1551 // TODO: We also should check that the target can in fact lower the sqrt() 1552 // libcall. We currently have no way to ask this question, so we ask if 1553 // the target has a sqrt() libcall, which is not exactly the same. 1554 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1555 LibFunc_sqrtl, B, Attrs); 1556 1557 return nullptr; 1558 } 1559 1560 /// Use square root in place of pow(x, +/-0.5). 1561 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 1562 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1563 AttributeList Attrs; // Attributes are only meaningful on the original call 1564 Module *Mod = Pow->getModule(); 1565 Type *Ty = Pow->getType(); 1566 1567 const APFloat *ExpoF; 1568 if (!match(Expo, m_APFloat(ExpoF)) || 1569 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1570 return nullptr; 1571 1572 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 1573 // so that requires fast-math-flags (afn or reassoc). 1574 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 1575 return nullptr; 1576 1577 // If we have a pow() library call (accesses memory) and we can't guarantee 1578 // that the base is not an infinity, give up: 1579 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 1580 // errno), but sqrt(-Inf) is required by various standards to set errno. 1581 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 1582 !isKnownNeverInfinity(Base, TLI)) 1583 return nullptr; 1584 1585 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1586 if (!Sqrt) 1587 return nullptr; 1588 1589 // Handle signed zero base by expanding to fabs(sqrt(x)). 1590 if (!Pow->hasNoSignedZeros()) { 1591 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1592 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1593 } 1594 1595 // Handle non finite base by expanding to 1596 // (x == -infinity ? +infinity : sqrt(x)). 1597 if (!Pow->hasNoInfs()) { 1598 Value *PosInf = ConstantFP::getInfinity(Ty), 1599 *NegInf = ConstantFP::getInfinity(Ty, true); 1600 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1601 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1602 } 1603 1604 // If the exponent is negative, then get the reciprocal. 1605 if (ExpoF->isNegative()) 1606 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1607 1608 return Sqrt; 1609 } 1610 1611 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1612 IRBuilderBase &B) { 1613 Value *Args[] = {Base, Expo}; 1614 Type *Types[] = {Base->getType(), Expo->getType()}; 1615 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types); 1616 return B.CreateCall(F, Args); 1617 } 1618 1619 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 1620 Value *Base = Pow->getArgOperand(0); 1621 Value *Expo = Pow->getArgOperand(1); 1622 Function *Callee = Pow->getCalledFunction(); 1623 StringRef Name = Callee->getName(); 1624 Type *Ty = Pow->getType(); 1625 Module *M = Pow->getModule(); 1626 bool AllowApprox = Pow->hasApproxFunc(); 1627 bool Ignored; 1628 1629 // Propagate the math semantics from the call to any created instructions. 1630 IRBuilderBase::FastMathFlagGuard Guard(B); 1631 B.setFastMathFlags(Pow->getFastMathFlags()); 1632 // Evaluate special cases related to the base. 1633 1634 // pow(1.0, x) -> 1.0 1635 if (match(Base, m_FPOne())) 1636 return Base; 1637 1638 if (Value *Exp = replacePowWithExp(Pow, B)) 1639 return Exp; 1640 1641 // Evaluate special cases related to the exponent. 1642 1643 // pow(x, -1.0) -> 1.0 / x 1644 if (match(Expo, m_SpecificFP(-1.0))) 1645 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1646 1647 // pow(x, +/-0.0) -> 1.0 1648 if (match(Expo, m_AnyZeroFP())) 1649 return ConstantFP::get(Ty, 1.0); 1650 1651 // pow(x, 1.0) -> x 1652 if (match(Expo, m_FPOne())) 1653 return Base; 1654 1655 // pow(x, 2.0) -> x * x 1656 if (match(Expo, m_SpecificFP(2.0))) 1657 return B.CreateFMul(Base, Base, "square"); 1658 1659 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1660 return Sqrt; 1661 1662 // pow(x, n) -> x * x * x * ... 1663 const APFloat *ExpoF; 1664 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 1665 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 1666 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1667 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1668 // additional fmul. 1669 // TODO: This whole transformation should be backend specific (e.g. some 1670 // backends might prefer libcalls or the limit for the exponent might 1671 // be different) and it should also consider optimizing for size. 1672 APFloat LimF(ExpoF->getSemantics(), 33), 1673 ExpoA(abs(*ExpoF)); 1674 if (ExpoA < LimF) { 1675 // This transformation applies to integer or integer+0.5 exponents only. 1676 // For integer+0.5, we create a sqrt(Base) call. 1677 Value *Sqrt = nullptr; 1678 if (!ExpoA.isInteger()) { 1679 APFloat Expo2 = ExpoA; 1680 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1681 // is no floating point exception and the result is an integer, then 1682 // ExpoA == integer + 0.5 1683 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1684 return nullptr; 1685 1686 if (!Expo2.isInteger()) 1687 return nullptr; 1688 1689 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1690 Pow->doesNotAccessMemory(), M, B, TLI); 1691 if (!Sqrt) 1692 return nullptr; 1693 } 1694 1695 // We will memoize intermediate products of the Addition Chain. 1696 Value *InnerChain[33] = {nullptr}; 1697 InnerChain[1] = Base; 1698 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1699 1700 // We cannot readily convert a non-double type (like float) to a double. 1701 // So we first convert it to something which could be converted to double. 1702 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1703 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1704 1705 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1706 if (Sqrt) 1707 FMul = B.CreateFMul(FMul, Sqrt); 1708 1709 // If the exponent is negative, then get the reciprocal. 1710 if (ExpoF->isNegative()) 1711 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1712 1713 return FMul; 1714 } 1715 1716 APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false); 1717 // powf(x, n) -> powi(x, n) if n is a constant signed integer value 1718 if (ExpoF->isInteger() && 1719 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 1720 APFloat::opOK) { 1721 return createPowWithIntegerExponent( 1722 Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo), M, B); 1723 } 1724 } 1725 1726 // powf(x, itofp(y)) -> powi(x, y) 1727 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 1728 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1729 return createPowWithIntegerExponent(Base, ExpoI, M, B); 1730 } 1731 1732 // Shrink pow() to powf() if the arguments are single precision, 1733 // unless the result is expected to be double precision. 1734 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 1735 hasFloatVersion(Name)) { 1736 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, true)) 1737 return Shrunk; 1738 } 1739 1740 return nullptr; 1741 } 1742 1743 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 1744 Function *Callee = CI->getCalledFunction(); 1745 AttributeList Attrs; // Attributes are only meaningful on the original call 1746 StringRef Name = Callee->getName(); 1747 Value *Ret = nullptr; 1748 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 1749 hasFloatVersion(Name)) 1750 Ret = optimizeUnaryDoubleFP(CI, B, true); 1751 1752 Type *Ty = CI->getType(); 1753 Value *Op = CI->getArgOperand(0); 1754 1755 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize 1756 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize 1757 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 1758 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1759 if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) 1760 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 1761 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1762 B, Attrs); 1763 } 1764 1765 return Ret; 1766 } 1767 1768 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 1769 // If we can shrink the call to a float function rather than a double 1770 // function, do that first. 1771 Function *Callee = CI->getCalledFunction(); 1772 StringRef Name = Callee->getName(); 1773 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1774 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1775 return Ret; 1776 1777 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 1778 // the intrinsics for improved optimization (for example, vectorization). 1779 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 1780 // From the C standard draft WG14/N1256: 1781 // "Ideally, fmax would be sensitive to the sign of zero, for example 1782 // fmax(-0.0, +0.0) would return +0; however, implementation in software 1783 // might be impractical." 1784 IRBuilderBase::FastMathFlagGuard Guard(B); 1785 FastMathFlags FMF = CI->getFastMathFlags(); 1786 FMF.setNoSignedZeros(); 1787 B.setFastMathFlags(FMF); 1788 1789 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 1790 : Intrinsic::maxnum; 1791 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 1792 return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) }); 1793 } 1794 1795 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 1796 Function *LogFn = Log->getCalledFunction(); 1797 AttributeList Attrs; // Attributes are only meaningful on the original call 1798 StringRef LogNm = LogFn->getName(); 1799 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 1800 Module *Mod = Log->getModule(); 1801 Type *Ty = Log->getType(); 1802 Value *Ret = nullptr; 1803 1804 if (UnsafeFPShrink && hasFloatVersion(LogNm)) 1805 Ret = optimizeUnaryDoubleFP(Log, B, true); 1806 1807 // The earlier call must also be 'fast' in order to do these transforms. 1808 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 1809 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 1810 return Ret; 1811 1812 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 1813 1814 // This is only applicable to log(), log2(), log10(). 1815 if (TLI->getLibFunc(LogNm, LogLb)) 1816 switch (LogLb) { 1817 case LibFunc_logf: 1818 LogID = Intrinsic::log; 1819 ExpLb = LibFunc_expf; 1820 Exp2Lb = LibFunc_exp2f; 1821 Exp10Lb = LibFunc_exp10f; 1822 PowLb = LibFunc_powf; 1823 break; 1824 case LibFunc_log: 1825 LogID = Intrinsic::log; 1826 ExpLb = LibFunc_exp; 1827 Exp2Lb = LibFunc_exp2; 1828 Exp10Lb = LibFunc_exp10; 1829 PowLb = LibFunc_pow; 1830 break; 1831 case LibFunc_logl: 1832 LogID = Intrinsic::log; 1833 ExpLb = LibFunc_expl; 1834 Exp2Lb = LibFunc_exp2l; 1835 Exp10Lb = LibFunc_exp10l; 1836 PowLb = LibFunc_powl; 1837 break; 1838 case LibFunc_log2f: 1839 LogID = Intrinsic::log2; 1840 ExpLb = LibFunc_expf; 1841 Exp2Lb = LibFunc_exp2f; 1842 Exp10Lb = LibFunc_exp10f; 1843 PowLb = LibFunc_powf; 1844 break; 1845 case LibFunc_log2: 1846 LogID = Intrinsic::log2; 1847 ExpLb = LibFunc_exp; 1848 Exp2Lb = LibFunc_exp2; 1849 Exp10Lb = LibFunc_exp10; 1850 PowLb = LibFunc_pow; 1851 break; 1852 case LibFunc_log2l: 1853 LogID = Intrinsic::log2; 1854 ExpLb = LibFunc_expl; 1855 Exp2Lb = LibFunc_exp2l; 1856 Exp10Lb = LibFunc_exp10l; 1857 PowLb = LibFunc_powl; 1858 break; 1859 case LibFunc_log10f: 1860 LogID = Intrinsic::log10; 1861 ExpLb = LibFunc_expf; 1862 Exp2Lb = LibFunc_exp2f; 1863 Exp10Lb = LibFunc_exp10f; 1864 PowLb = LibFunc_powf; 1865 break; 1866 case LibFunc_log10: 1867 LogID = Intrinsic::log10; 1868 ExpLb = LibFunc_exp; 1869 Exp2Lb = LibFunc_exp2; 1870 Exp10Lb = LibFunc_exp10; 1871 PowLb = LibFunc_pow; 1872 break; 1873 case LibFunc_log10l: 1874 LogID = Intrinsic::log10; 1875 ExpLb = LibFunc_expl; 1876 Exp2Lb = LibFunc_exp2l; 1877 Exp10Lb = LibFunc_exp10l; 1878 PowLb = LibFunc_powl; 1879 break; 1880 default: 1881 return Ret; 1882 } 1883 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 1884 LogID == Intrinsic::log10) { 1885 if (Ty->getScalarType()->isFloatTy()) { 1886 ExpLb = LibFunc_expf; 1887 Exp2Lb = LibFunc_exp2f; 1888 Exp10Lb = LibFunc_exp10f; 1889 PowLb = LibFunc_powf; 1890 } else if (Ty->getScalarType()->isDoubleTy()) { 1891 ExpLb = LibFunc_exp; 1892 Exp2Lb = LibFunc_exp2; 1893 Exp10Lb = LibFunc_exp10; 1894 PowLb = LibFunc_pow; 1895 } else 1896 return Ret; 1897 } else 1898 return Ret; 1899 1900 IRBuilderBase::FastMathFlagGuard Guard(B); 1901 B.setFastMathFlags(FastMathFlags::getFast()); 1902 1903 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 1904 LibFunc ArgLb = NotLibFunc; 1905 TLI->getLibFunc(*Arg, ArgLb); 1906 1907 // log(pow(x,y)) -> y*log(x) 1908 if (ArgLb == PowLb || ArgID == Intrinsic::pow) { 1909 Value *LogX = 1910 Log->doesNotAccessMemory() 1911 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 1912 Arg->getOperand(0), "log") 1913 : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs); 1914 Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul"); 1915 // Since pow() may have side effects, e.g. errno, 1916 // dead code elimination may not be trusted to remove it. 1917 substituteInParent(Arg, MulY); 1918 return MulY; 1919 } 1920 1921 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 1922 // TODO: There is no exp10() intrinsic yet. 1923 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 1924 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 1925 Constant *Eul; 1926 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 1927 // FIXME: Add more precise value of e for long double. 1928 Eul = ConstantFP::get(Log->getType(), numbers::e); 1929 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 1930 Eul = ConstantFP::get(Log->getType(), 2.0); 1931 else 1932 Eul = ConstantFP::get(Log->getType(), 10.0); 1933 Value *LogE = Log->doesNotAccessMemory() 1934 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 1935 Eul, "log") 1936 : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs); 1937 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 1938 // Since exp() may have side effects, e.g. errno, 1939 // dead code elimination may not be trusted to remove it. 1940 substituteInParent(Arg, MulY); 1941 return MulY; 1942 } 1943 1944 return Ret; 1945 } 1946 1947 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 1948 Function *Callee = CI->getCalledFunction(); 1949 Value *Ret = nullptr; 1950 // TODO: Once we have a way (other than checking for the existince of the 1951 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 1952 // condition below. 1953 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 1954 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1955 Ret = optimizeUnaryDoubleFP(CI, B, true); 1956 1957 if (!CI->isFast()) 1958 return Ret; 1959 1960 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1961 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 1962 return Ret; 1963 1964 // We're looking for a repeated factor in a multiplication tree, 1965 // so we can do this fold: sqrt(x * x) -> fabs(x); 1966 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 1967 Value *Op0 = I->getOperand(0); 1968 Value *Op1 = I->getOperand(1); 1969 Value *RepeatOp = nullptr; 1970 Value *OtherOp = nullptr; 1971 if (Op0 == Op1) { 1972 // Simple match: the operands of the multiply are identical. 1973 RepeatOp = Op0; 1974 } else { 1975 // Look for a more complicated pattern: one of the operands is itself 1976 // a multiply, so search for a common factor in that multiply. 1977 // Note: We don't bother looking any deeper than this first level or for 1978 // variations of this pattern because instcombine's visitFMUL and/or the 1979 // reassociation pass should give us this form. 1980 Value *OtherMul0, *OtherMul1; 1981 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1982 // Pattern: sqrt((x * y) * z) 1983 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 1984 // Matched: sqrt((x * x) * z) 1985 RepeatOp = OtherMul0; 1986 OtherOp = Op1; 1987 } 1988 } 1989 } 1990 if (!RepeatOp) 1991 return Ret; 1992 1993 // Fast math flags for any created instructions should match the sqrt 1994 // and multiply. 1995 IRBuilderBase::FastMathFlagGuard Guard(B); 1996 B.setFastMathFlags(I->getFastMathFlags()); 1997 1998 // If we found a repeated factor, hoist it out of the square root and 1999 // replace it with the fabs of that factor. 2000 Module *M = Callee->getParent(); 2001 Type *ArgType = I->getType(); 2002 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 2003 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 2004 if (OtherOp) { 2005 // If we found a non-repeated factor, we still need to get its square 2006 // root. We then multiply that by the value that was simplified out 2007 // of the square root calculation. 2008 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 2009 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 2010 return B.CreateFMul(FabsCall, SqrtCall); 2011 } 2012 return FabsCall; 2013 } 2014 2015 // TODO: Generalize to handle any trig function and its inverse. 2016 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) { 2017 Function *Callee = CI->getCalledFunction(); 2018 Value *Ret = nullptr; 2019 StringRef Name = Callee->getName(); 2020 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 2021 Ret = optimizeUnaryDoubleFP(CI, B, true); 2022 2023 Value *Op1 = CI->getArgOperand(0); 2024 auto *OpC = dyn_cast<CallInst>(Op1); 2025 if (!OpC) 2026 return Ret; 2027 2028 // Both calls must be 'fast' in order to remove them. 2029 if (!CI->isFast() || !OpC->isFast()) 2030 return Ret; 2031 2032 // tan(atan(x)) -> x 2033 // tanf(atanf(x)) -> x 2034 // tanl(atanl(x)) -> x 2035 LibFunc Func; 2036 Function *F = OpC->getCalledFunction(); 2037 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 2038 ((Func == LibFunc_atan && Callee->getName() == "tan") || 2039 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 2040 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 2041 Ret = OpC->getArgOperand(0); 2042 return Ret; 2043 } 2044 2045 static bool isTrigLibCall(CallInst *CI) { 2046 // We can only hope to do anything useful if we can ignore things like errno 2047 // and floating-point exceptions. 2048 // We already checked the prototype. 2049 return CI->hasFnAttr(Attribute::NoUnwind) && 2050 CI->hasFnAttr(Attribute::ReadNone); 2051 } 2052 2053 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2054 bool UseFloat, Value *&Sin, Value *&Cos, 2055 Value *&SinCos) { 2056 Type *ArgTy = Arg->getType(); 2057 Type *ResTy; 2058 StringRef Name; 2059 2060 Triple T(OrigCallee->getParent()->getTargetTriple()); 2061 if (UseFloat) { 2062 Name = "__sincospif_stret"; 2063 2064 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2065 // x86_64 can't use {float, float} since that would be returned in both 2066 // xmm0 and xmm1, which isn't what a real struct would do. 2067 ResTy = T.getArch() == Triple::x86_64 2068 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2069 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2070 } else { 2071 Name = "__sincospi_stret"; 2072 ResTy = StructType::get(ArgTy, ArgTy); 2073 } 2074 2075 Module *M = OrigCallee->getParent(); 2076 FunctionCallee Callee = 2077 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); 2078 2079 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2080 // If the argument is an instruction, it must dominate all uses so put our 2081 // sincos call there. 2082 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2083 } else { 2084 // Otherwise (e.g. for a constant) the beginning of the function is as 2085 // good a place as any. 2086 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2087 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2088 } 2089 2090 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2091 2092 if (SinCos->getType()->isStructTy()) { 2093 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2094 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2095 } else { 2096 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2097 "sinpi"); 2098 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2099 "cospi"); 2100 } 2101 } 2102 2103 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) { 2104 // Make sure the prototype is as expected, otherwise the rest of the 2105 // function is probably invalid and likely to abort. 2106 if (!isTrigLibCall(CI)) 2107 return nullptr; 2108 2109 Value *Arg = CI->getArgOperand(0); 2110 SmallVector<CallInst *, 1> SinCalls; 2111 SmallVector<CallInst *, 1> CosCalls; 2112 SmallVector<CallInst *, 1> SinCosCalls; 2113 2114 bool IsFloat = Arg->getType()->isFloatTy(); 2115 2116 // Look for all compatible sinpi, cospi and sincospi calls with the same 2117 // argument. If there are enough (in some sense) we can make the 2118 // substitution. 2119 Function *F = CI->getFunction(); 2120 for (User *U : Arg->users()) 2121 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2122 2123 // It's only worthwhile if both sinpi and cospi are actually used. 2124 if (SinCalls.empty() || CosCalls.empty()) 2125 return nullptr; 2126 2127 Value *Sin, *Cos, *SinCos; 2128 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 2129 2130 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2131 Value *Res) { 2132 for (CallInst *C : Calls) 2133 replaceAllUsesWith(C, Res); 2134 }; 2135 2136 replaceTrigInsts(SinCalls, Sin); 2137 replaceTrigInsts(CosCalls, Cos); 2138 replaceTrigInsts(SinCosCalls, SinCos); 2139 2140 return nullptr; 2141 } 2142 2143 void LibCallSimplifier::classifyArgUse( 2144 Value *Val, Function *F, bool IsFloat, 2145 SmallVectorImpl<CallInst *> &SinCalls, 2146 SmallVectorImpl<CallInst *> &CosCalls, 2147 SmallVectorImpl<CallInst *> &SinCosCalls) { 2148 CallInst *CI = dyn_cast<CallInst>(Val); 2149 2150 if (!CI || CI->use_empty()) 2151 return; 2152 2153 // Don't consider calls in other functions. 2154 if (CI->getFunction() != F) 2155 return; 2156 2157 Function *Callee = CI->getCalledFunction(); 2158 LibFunc Func; 2159 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 2160 !isTrigLibCall(CI)) 2161 return; 2162 2163 if (IsFloat) { 2164 if (Func == LibFunc_sinpif) 2165 SinCalls.push_back(CI); 2166 else if (Func == LibFunc_cospif) 2167 CosCalls.push_back(CI); 2168 else if (Func == LibFunc_sincospif_stret) 2169 SinCosCalls.push_back(CI); 2170 } else { 2171 if (Func == LibFunc_sinpi) 2172 SinCalls.push_back(CI); 2173 else if (Func == LibFunc_cospi) 2174 CosCalls.push_back(CI); 2175 else if (Func == LibFunc_sincospi_stret) 2176 SinCosCalls.push_back(CI); 2177 } 2178 } 2179 2180 //===----------------------------------------------------------------------===// 2181 // Integer Library Call Optimizations 2182 //===----------------------------------------------------------------------===// 2183 2184 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 2185 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 2186 Value *Op = CI->getArgOperand(0); 2187 Type *ArgType = Op->getType(); 2188 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2189 Intrinsic::cttz, ArgType); 2190 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 2191 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 2192 V = B.CreateIntCast(V, B.getInt32Ty(), false); 2193 2194 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 2195 return B.CreateSelect(Cond, V, B.getInt32(0)); 2196 } 2197 2198 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 2199 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 2200 Value *Op = CI->getArgOperand(0); 2201 Type *ArgType = Op->getType(); 2202 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2203 Intrinsic::ctlz, ArgType); 2204 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 2205 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 2206 V); 2207 return B.CreateIntCast(V, CI->getType(), false); 2208 } 2209 2210 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 2211 // abs(x) -> x <s 0 ? -x : x 2212 // The negation has 'nsw' because abs of INT_MIN is undefined. 2213 Value *X = CI->getArgOperand(0); 2214 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 2215 Value *NegX = B.CreateNSWNeg(X, "neg"); 2216 return B.CreateSelect(IsNeg, NegX, X); 2217 } 2218 2219 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 2220 // isdigit(c) -> (c-'0') <u 10 2221 Value *Op = CI->getArgOperand(0); 2222 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 2223 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 2224 return B.CreateZExt(Op, CI->getType()); 2225 } 2226 2227 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 2228 // isascii(c) -> c <u 128 2229 Value *Op = CI->getArgOperand(0); 2230 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 2231 return B.CreateZExt(Op, CI->getType()); 2232 } 2233 2234 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 2235 // toascii(c) -> c & 0x7f 2236 return B.CreateAnd(CI->getArgOperand(0), 2237 ConstantInt::get(CI->getType(), 0x7F)); 2238 } 2239 2240 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 2241 StringRef Str; 2242 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2243 return nullptr; 2244 2245 return convertStrToNumber(CI, Str, 10); 2246 } 2247 2248 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) { 2249 StringRef Str; 2250 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2251 return nullptr; 2252 2253 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 2254 return nullptr; 2255 2256 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2257 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 2258 } 2259 2260 return nullptr; 2261 } 2262 2263 //===----------------------------------------------------------------------===// 2264 // Formatting and IO Library Call Optimizations 2265 //===----------------------------------------------------------------------===// 2266 2267 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2268 2269 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 2270 int StreamArg) { 2271 Function *Callee = CI->getCalledFunction(); 2272 // Error reporting calls should be cold, mark them as such. 2273 // This applies even to non-builtin calls: it is only a hint and applies to 2274 // functions that the frontend might not understand as builtins. 2275 2276 // This heuristic was suggested in: 2277 // Improving Static Branch Prediction in a Compiler 2278 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2279 // Proceedings of PACT'98, Oct. 1998, IEEE 2280 if (!CI->hasFnAttr(Attribute::Cold) && 2281 isReportingError(Callee, CI, StreamArg)) { 2282 CI->addFnAttr(Attribute::Cold); 2283 } 2284 2285 return nullptr; 2286 } 2287 2288 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2289 if (!Callee || !Callee->isDeclaration()) 2290 return false; 2291 2292 if (StreamArg < 0) 2293 return true; 2294 2295 // These functions might be considered cold, but only if their stream 2296 // argument is stderr. 2297 2298 if (StreamArg >= (int)CI->getNumArgOperands()) 2299 return false; 2300 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2301 if (!LI) 2302 return false; 2303 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2304 if (!GV || !GV->isDeclaration()) 2305 return false; 2306 return GV->getName() == "stderr"; 2307 } 2308 2309 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 2310 // Check for a fixed format string. 2311 StringRef FormatStr; 2312 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2313 return nullptr; 2314 2315 // Empty format string -> noop. 2316 if (FormatStr.empty()) // Tolerate printf's declared void. 2317 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2318 2319 // Do not do any of the following transformations if the printf return value 2320 // is used, in general the printf return value is not compatible with either 2321 // putchar() or puts(). 2322 if (!CI->use_empty()) 2323 return nullptr; 2324 2325 // printf("x") -> putchar('x'), even for "%" and "%%". 2326 if (FormatStr.size() == 1 || FormatStr == "%%") 2327 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 2328 2329 // Try to remove call or emit putchar/puts. 2330 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 2331 StringRef OperandStr; 2332 if (!getConstantStringInfo(CI->getOperand(1), OperandStr)) 2333 return nullptr; 2334 // printf("%s", "") --> NOP 2335 if (OperandStr.empty()) 2336 return (Value *)CI; 2337 // printf("%s", "a") --> putchar('a') 2338 if (OperandStr.size() == 1) 2339 return emitPutChar(B.getInt32(OperandStr[0]), B, TLI); 2340 // printf("%s", str"\n") --> puts(str) 2341 if (OperandStr.back() == '\n') { 2342 OperandStr = OperandStr.drop_back(); 2343 Value *GV = B.CreateGlobalString(OperandStr, "str"); 2344 return emitPutS(GV, B, TLI); 2345 } 2346 return nullptr; 2347 } 2348 2349 // printf("foo\n") --> puts("foo") 2350 if (FormatStr.back() == '\n' && 2351 FormatStr.find('%') == StringRef::npos) { // No format characters. 2352 // Create a string literal with no \n on it. We expect the constant merge 2353 // pass to be run after this pass, to merge duplicate strings. 2354 FormatStr = FormatStr.drop_back(); 2355 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2356 return emitPutS(GV, B, TLI); 2357 } 2358 2359 // Optimize specific format strings. 2360 // printf("%c", chr) --> putchar(chr) 2361 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 2362 CI->getArgOperand(1)->getType()->isIntegerTy()) 2363 return emitPutChar(CI->getArgOperand(1), B, TLI); 2364 2365 // printf("%s\n", str) --> puts(str) 2366 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 2367 CI->getArgOperand(1)->getType()->isPointerTy()) 2368 return emitPutS(CI->getArgOperand(1), B, TLI); 2369 return nullptr; 2370 } 2371 2372 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 2373 2374 Function *Callee = CI->getCalledFunction(); 2375 FunctionType *FT = Callee->getFunctionType(); 2376 if (Value *V = optimizePrintFString(CI, B)) { 2377 return V; 2378 } 2379 2380 // printf(format, ...) -> iprintf(format, ...) if no floating point 2381 // arguments. 2382 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2383 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2384 FunctionCallee IPrintFFn = 2385 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2386 CallInst *New = cast<CallInst>(CI->clone()); 2387 New->setCalledFunction(IPrintFFn); 2388 B.Insert(New); 2389 return New; 2390 } 2391 2392 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2393 // arguments. 2394 if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) { 2395 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2396 auto SmallPrintFFn = 2397 M->getOrInsertFunction(TLI->getName(LibFunc_small_printf), 2398 FT, Callee->getAttributes()); 2399 CallInst *New = cast<CallInst>(CI->clone()); 2400 New->setCalledFunction(SmallPrintFFn); 2401 B.Insert(New); 2402 return New; 2403 } 2404 2405 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2406 return nullptr; 2407 } 2408 2409 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 2410 IRBuilderBase &B) { 2411 // Check for a fixed format string. 2412 StringRef FormatStr; 2413 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2414 return nullptr; 2415 2416 // If we just have a format string (nothing else crazy) transform it. 2417 Value *Dest = CI->getArgOperand(0); 2418 if (CI->getNumArgOperands() == 2) { 2419 // Make sure there's no % in the constant array. We could try to handle 2420 // %% -> % in the future if we cared. 2421 if (FormatStr.find('%') != StringRef::npos) 2422 return nullptr; // we found a format specifier, bail out. 2423 2424 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2425 B.CreateMemCpy( 2426 Dest, Align(1), CI->getArgOperand(1), Align(1), 2427 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2428 FormatStr.size() + 1)); // Copy the null byte. 2429 return ConstantInt::get(CI->getType(), FormatStr.size()); 2430 } 2431 2432 // The remaining optimizations require the format string to be "%s" or "%c" 2433 // and have an extra operand. 2434 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2435 CI->getNumArgOperands() < 3) 2436 return nullptr; 2437 2438 // Decode the second character of the format string. 2439 if (FormatStr[1] == 'c') { 2440 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2441 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2442 return nullptr; 2443 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2444 Value *Ptr = castToCStr(Dest, B); 2445 B.CreateStore(V, Ptr); 2446 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2447 B.CreateStore(B.getInt8(0), Ptr); 2448 2449 return ConstantInt::get(CI->getType(), 1); 2450 } 2451 2452 if (FormatStr[1] == 's') { 2453 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2454 // strlen(str)+1) 2455 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2456 return nullptr; 2457 2458 if (CI->use_empty()) 2459 // sprintf(dest, "%s", str) -> strcpy(dest, str) 2460 return emitStrCpy(Dest, CI->getArgOperand(2), B, TLI); 2461 2462 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 2463 if (SrcLen) { 2464 B.CreateMemCpy( 2465 Dest, Align(1), CI->getArgOperand(2), Align(1), 2466 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 2467 // Returns total number of characters written without null-character. 2468 return ConstantInt::get(CI->getType(), SrcLen - 1); 2469 } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) { 2470 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 2471 // Handle mismatched pointer types (goes away with typeless pointers?). 2472 V = B.CreatePointerCast(V, Dest->getType()); 2473 Value *PtrDiff = B.CreatePtrDiff(V, Dest); 2474 return B.CreateIntCast(PtrDiff, CI->getType(), false); 2475 } 2476 2477 bool OptForSize = CI->getFunction()->hasOptSize() || 2478 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2479 PGSOQueryType::IRPass); 2480 if (OptForSize) 2481 return nullptr; 2482 2483 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2484 if (!Len) 2485 return nullptr; 2486 Value *IncLen = 2487 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2488 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen); 2489 2490 // The sprintf result is the unincremented number of bytes in the string. 2491 return B.CreateIntCast(Len, CI->getType(), false); 2492 } 2493 return nullptr; 2494 } 2495 2496 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 2497 Function *Callee = CI->getCalledFunction(); 2498 FunctionType *FT = Callee->getFunctionType(); 2499 if (Value *V = optimizeSPrintFString(CI, B)) { 2500 return V; 2501 } 2502 2503 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2504 // point arguments. 2505 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2506 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2507 FunctionCallee SIPrintFFn = 2508 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2509 CallInst *New = cast<CallInst>(CI->clone()); 2510 New->setCalledFunction(SIPrintFFn); 2511 B.Insert(New); 2512 return New; 2513 } 2514 2515 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2516 // floating point arguments. 2517 if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) { 2518 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2519 auto SmallSPrintFFn = 2520 M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf), 2521 FT, Callee->getAttributes()); 2522 CallInst *New = cast<CallInst>(CI->clone()); 2523 New->setCalledFunction(SmallSPrintFFn); 2524 B.Insert(New); 2525 return New; 2526 } 2527 2528 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 2529 return nullptr; 2530 } 2531 2532 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 2533 IRBuilderBase &B) { 2534 // Check for size 2535 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2536 if (!Size) 2537 return nullptr; 2538 2539 uint64_t N = Size->getZExtValue(); 2540 // Check for a fixed format string. 2541 StringRef FormatStr; 2542 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2543 return nullptr; 2544 2545 // If we just have a format string (nothing else crazy) transform it. 2546 if (CI->getNumArgOperands() == 3) { 2547 // Make sure there's no % in the constant array. We could try to handle 2548 // %% -> % in the future if we cared. 2549 if (FormatStr.find('%') != StringRef::npos) 2550 return nullptr; // we found a format specifier, bail out. 2551 2552 if (N == 0) 2553 return ConstantInt::get(CI->getType(), FormatStr.size()); 2554 else if (N < FormatStr.size() + 1) 2555 return nullptr; 2556 2557 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2558 // strlen(fmt)+1) 2559 B.CreateMemCpy( 2560 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2561 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2562 FormatStr.size() + 1)); // Copy the null byte. 2563 return ConstantInt::get(CI->getType(), FormatStr.size()); 2564 } 2565 2566 // The remaining optimizations require the format string to be "%s" or "%c" 2567 // and have an extra operand. 2568 if (FormatStr.size() == 2 && FormatStr[0] == '%' && 2569 CI->getNumArgOperands() == 4) { 2570 2571 // Decode the second character of the format string. 2572 if (FormatStr[1] == 'c') { 2573 if (N == 0) 2574 return ConstantInt::get(CI->getType(), 1); 2575 else if (N == 1) 2576 return nullptr; 2577 2578 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2579 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2580 return nullptr; 2581 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2582 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2583 B.CreateStore(V, Ptr); 2584 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2585 B.CreateStore(B.getInt8(0), Ptr); 2586 2587 return ConstantInt::get(CI->getType(), 1); 2588 } 2589 2590 if (FormatStr[1] == 's') { 2591 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2592 StringRef Str; 2593 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2594 return nullptr; 2595 2596 if (N == 0) 2597 return ConstantInt::get(CI->getType(), Str.size()); 2598 else if (N < Str.size() + 1) 2599 return nullptr; 2600 2601 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(3), 2602 Align(1), ConstantInt::get(CI->getType(), Str.size() + 1)); 2603 2604 // The snprintf result is the unincremented number of bytes in the string. 2605 return ConstantInt::get(CI->getType(), Str.size()); 2606 } 2607 } 2608 return nullptr; 2609 } 2610 2611 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 2612 if (Value *V = optimizeSnPrintFString(CI, B)) { 2613 return V; 2614 } 2615 2616 if (isKnownNonZero(CI->getOperand(1), DL)) 2617 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2618 return nullptr; 2619 } 2620 2621 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 2622 IRBuilderBase &B) { 2623 optimizeErrorReporting(CI, B, 0); 2624 2625 // All the optimizations depend on the format string. 2626 StringRef FormatStr; 2627 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2628 return nullptr; 2629 2630 // Do not do any of the following transformations if the fprintf return 2631 // value is used, in general the fprintf return value is not compatible 2632 // with fwrite(), fputc() or fputs(). 2633 if (!CI->use_empty()) 2634 return nullptr; 2635 2636 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2637 if (CI->getNumArgOperands() == 2) { 2638 // Could handle %% -> % if we cared. 2639 if (FormatStr.find('%') != StringRef::npos) 2640 return nullptr; // We found a format specifier. 2641 2642 return emitFWrite( 2643 CI->getArgOperand(1), 2644 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 2645 CI->getArgOperand(0), B, DL, TLI); 2646 } 2647 2648 // The remaining optimizations require the format string to be "%s" or "%c" 2649 // and have an extra operand. 2650 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2651 CI->getNumArgOperands() < 3) 2652 return nullptr; 2653 2654 // Decode the second character of the format string. 2655 if (FormatStr[1] == 'c') { 2656 // fprintf(F, "%c", chr) --> fputc(chr, F) 2657 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2658 return nullptr; 2659 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2660 } 2661 2662 if (FormatStr[1] == 's') { 2663 // fprintf(F, "%s", str) --> fputs(str, F) 2664 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2665 return nullptr; 2666 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2667 } 2668 return nullptr; 2669 } 2670 2671 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 2672 Function *Callee = CI->getCalledFunction(); 2673 FunctionType *FT = Callee->getFunctionType(); 2674 if (Value *V = optimizeFPrintFString(CI, B)) { 2675 return V; 2676 } 2677 2678 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2679 // floating point arguments. 2680 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2681 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2682 FunctionCallee FIPrintFFn = 2683 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2684 CallInst *New = cast<CallInst>(CI->clone()); 2685 New->setCalledFunction(FIPrintFFn); 2686 B.Insert(New); 2687 return New; 2688 } 2689 2690 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2691 // 128-bit floating point arguments. 2692 if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) { 2693 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2694 auto SmallFPrintFFn = 2695 M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf), 2696 FT, Callee->getAttributes()); 2697 CallInst *New = cast<CallInst>(CI->clone()); 2698 New->setCalledFunction(SmallFPrintFFn); 2699 B.Insert(New); 2700 return New; 2701 } 2702 2703 return nullptr; 2704 } 2705 2706 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 2707 optimizeErrorReporting(CI, B, 3); 2708 2709 // Get the element size and count. 2710 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2711 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2712 if (SizeC && CountC) { 2713 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2714 2715 // If this is writing zero records, remove the call (it's a noop). 2716 if (Bytes == 0) 2717 return ConstantInt::get(CI->getType(), 0); 2718 2719 // If this is writing one byte, turn it into fputc. 2720 // This optimisation is only valid, if the return value is unused. 2721 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2722 Value *Char = B.CreateLoad(B.getInt8Ty(), 2723 castToCStr(CI->getArgOperand(0), B), "char"); 2724 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2725 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2726 } 2727 } 2728 2729 return nullptr; 2730 } 2731 2732 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 2733 optimizeErrorReporting(CI, B, 1); 2734 2735 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2736 // requires more arguments and thus extra MOVs are required. 2737 bool OptForSize = CI->getFunction()->hasOptSize() || 2738 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2739 PGSOQueryType::IRPass); 2740 if (OptForSize) 2741 return nullptr; 2742 2743 // We can't optimize if return value is used. 2744 if (!CI->use_empty()) 2745 return nullptr; 2746 2747 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2748 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2749 if (!Len) 2750 return nullptr; 2751 2752 // Known to have no uses (see above). 2753 return emitFWrite( 2754 CI->getArgOperand(0), 2755 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2756 CI->getArgOperand(1), B, DL, TLI); 2757 } 2758 2759 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 2760 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2761 if (!CI->use_empty()) 2762 return nullptr; 2763 2764 // Check for a constant string. 2765 // puts("") -> putchar('\n') 2766 StringRef Str; 2767 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 2768 return emitPutChar(B.getInt32('\n'), B, TLI); 2769 2770 return nullptr; 2771 } 2772 2773 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 2774 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 2775 return B.CreateMemMove(CI->getArgOperand(1), Align(1), CI->getArgOperand(0), 2776 Align(1), CI->getArgOperand(2)); 2777 } 2778 2779 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2780 LibFunc Func; 2781 SmallString<20> FloatFuncName = FuncName; 2782 FloatFuncName += 'f'; 2783 if (TLI->getLibFunc(FloatFuncName, Func)) 2784 return TLI->has(Func); 2785 return false; 2786 } 2787 2788 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2789 IRBuilderBase &Builder) { 2790 LibFunc Func; 2791 Function *Callee = CI->getCalledFunction(); 2792 // Check for string/memory library functions. 2793 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2794 // Make sure we never change the calling convention. 2795 assert( 2796 (ignoreCallingConv(Func) || 2797 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) && 2798 "Optimizing string/memory libcall would change the calling convention"); 2799 switch (Func) { 2800 case LibFunc_strcat: 2801 return optimizeStrCat(CI, Builder); 2802 case LibFunc_strncat: 2803 return optimizeStrNCat(CI, Builder); 2804 case LibFunc_strchr: 2805 return optimizeStrChr(CI, Builder); 2806 case LibFunc_strrchr: 2807 return optimizeStrRChr(CI, Builder); 2808 case LibFunc_strcmp: 2809 return optimizeStrCmp(CI, Builder); 2810 case LibFunc_strncmp: 2811 return optimizeStrNCmp(CI, Builder); 2812 case LibFunc_strcpy: 2813 return optimizeStrCpy(CI, Builder); 2814 case LibFunc_stpcpy: 2815 return optimizeStpCpy(CI, Builder); 2816 case LibFunc_strncpy: 2817 return optimizeStrNCpy(CI, Builder); 2818 case LibFunc_strlen: 2819 return optimizeStrLen(CI, Builder); 2820 case LibFunc_strpbrk: 2821 return optimizeStrPBrk(CI, Builder); 2822 case LibFunc_strndup: 2823 return optimizeStrNDup(CI, Builder); 2824 case LibFunc_strtol: 2825 case LibFunc_strtod: 2826 case LibFunc_strtof: 2827 case LibFunc_strtoul: 2828 case LibFunc_strtoll: 2829 case LibFunc_strtold: 2830 case LibFunc_strtoull: 2831 return optimizeStrTo(CI, Builder); 2832 case LibFunc_strspn: 2833 return optimizeStrSpn(CI, Builder); 2834 case LibFunc_strcspn: 2835 return optimizeStrCSpn(CI, Builder); 2836 case LibFunc_strstr: 2837 return optimizeStrStr(CI, Builder); 2838 case LibFunc_memchr: 2839 return optimizeMemChr(CI, Builder); 2840 case LibFunc_memrchr: 2841 return optimizeMemRChr(CI, Builder); 2842 case LibFunc_bcmp: 2843 return optimizeBCmp(CI, Builder); 2844 case LibFunc_memcmp: 2845 return optimizeMemCmp(CI, Builder); 2846 case LibFunc_memcpy: 2847 return optimizeMemCpy(CI, Builder); 2848 case LibFunc_memccpy: 2849 return optimizeMemCCpy(CI, Builder); 2850 case LibFunc_mempcpy: 2851 return optimizeMemPCpy(CI, Builder); 2852 case LibFunc_memmove: 2853 return optimizeMemMove(CI, Builder); 2854 case LibFunc_memset: 2855 return optimizeMemSet(CI, Builder); 2856 case LibFunc_realloc: 2857 return optimizeRealloc(CI, Builder); 2858 case LibFunc_wcslen: 2859 return optimizeWcslen(CI, Builder); 2860 case LibFunc_bcopy: 2861 return optimizeBCopy(CI, Builder); 2862 default: 2863 break; 2864 } 2865 } 2866 return nullptr; 2867 } 2868 2869 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2870 LibFunc Func, 2871 IRBuilderBase &Builder) { 2872 // Don't optimize calls that require strict floating point semantics. 2873 if (CI->isStrictFP()) 2874 return nullptr; 2875 2876 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 2877 return V; 2878 2879 switch (Func) { 2880 case LibFunc_sinpif: 2881 case LibFunc_sinpi: 2882 case LibFunc_cospif: 2883 case LibFunc_cospi: 2884 return optimizeSinCosPi(CI, Builder); 2885 case LibFunc_powf: 2886 case LibFunc_pow: 2887 case LibFunc_powl: 2888 return optimizePow(CI, Builder); 2889 case LibFunc_exp2l: 2890 case LibFunc_exp2: 2891 case LibFunc_exp2f: 2892 return optimizeExp2(CI, Builder); 2893 case LibFunc_fabsf: 2894 case LibFunc_fabs: 2895 case LibFunc_fabsl: 2896 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2897 case LibFunc_sqrtf: 2898 case LibFunc_sqrt: 2899 case LibFunc_sqrtl: 2900 return optimizeSqrt(CI, Builder); 2901 case LibFunc_logf: 2902 case LibFunc_log: 2903 case LibFunc_logl: 2904 case LibFunc_log10f: 2905 case LibFunc_log10: 2906 case LibFunc_log10l: 2907 case LibFunc_log1pf: 2908 case LibFunc_log1p: 2909 case LibFunc_log1pl: 2910 case LibFunc_log2f: 2911 case LibFunc_log2: 2912 case LibFunc_log2l: 2913 case LibFunc_logbf: 2914 case LibFunc_logb: 2915 case LibFunc_logbl: 2916 return optimizeLog(CI, Builder); 2917 case LibFunc_tan: 2918 case LibFunc_tanf: 2919 case LibFunc_tanl: 2920 return optimizeTan(CI, Builder); 2921 case LibFunc_ceil: 2922 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2923 case LibFunc_floor: 2924 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2925 case LibFunc_round: 2926 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2927 case LibFunc_roundeven: 2928 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 2929 case LibFunc_nearbyint: 2930 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2931 case LibFunc_rint: 2932 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2933 case LibFunc_trunc: 2934 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2935 case LibFunc_acos: 2936 case LibFunc_acosh: 2937 case LibFunc_asin: 2938 case LibFunc_asinh: 2939 case LibFunc_atan: 2940 case LibFunc_atanh: 2941 case LibFunc_cbrt: 2942 case LibFunc_cosh: 2943 case LibFunc_exp: 2944 case LibFunc_exp10: 2945 case LibFunc_expm1: 2946 case LibFunc_cos: 2947 case LibFunc_sin: 2948 case LibFunc_sinh: 2949 case LibFunc_tanh: 2950 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 2951 return optimizeUnaryDoubleFP(CI, Builder, true); 2952 return nullptr; 2953 case LibFunc_copysign: 2954 if (hasFloatVersion(CI->getCalledFunction()->getName())) 2955 return optimizeBinaryDoubleFP(CI, Builder); 2956 return nullptr; 2957 case LibFunc_fminf: 2958 case LibFunc_fmin: 2959 case LibFunc_fminl: 2960 case LibFunc_fmaxf: 2961 case LibFunc_fmax: 2962 case LibFunc_fmaxl: 2963 return optimizeFMinFMax(CI, Builder); 2964 case LibFunc_cabs: 2965 case LibFunc_cabsf: 2966 case LibFunc_cabsl: 2967 return optimizeCAbs(CI, Builder); 2968 default: 2969 return nullptr; 2970 } 2971 } 2972 2973 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 2974 // TODO: Split out the code below that operates on FP calls so that 2975 // we can all non-FP calls with the StrictFP attribute to be 2976 // optimized. 2977 if (CI->isNoBuiltin()) 2978 return nullptr; 2979 2980 LibFunc Func; 2981 Function *Callee = CI->getCalledFunction(); 2982 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 2983 2984 SmallVector<OperandBundleDef, 2> OpBundles; 2985 CI->getOperandBundlesAsDefs(OpBundles); 2986 2987 IRBuilderBase::OperandBundlesGuard Guard(Builder); 2988 Builder.setDefaultOperandBundles(OpBundles); 2989 2990 // Command-line parameter overrides instruction attribute. 2991 // This can't be moved to optimizeFloatingPointLibCall() because it may be 2992 // used by the intrinsic optimizations. 2993 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2994 UnsafeFPShrink = EnableUnsafeFPShrink; 2995 else if (isa<FPMathOperator>(CI) && CI->isFast()) 2996 UnsafeFPShrink = true; 2997 2998 // First, check for intrinsics. 2999 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 3000 if (!IsCallingConvC) 3001 return nullptr; 3002 // The FP intrinsics have corresponding constrained versions so we don't 3003 // need to check for the StrictFP attribute here. 3004 switch (II->getIntrinsicID()) { 3005 case Intrinsic::pow: 3006 return optimizePow(CI, Builder); 3007 case Intrinsic::exp2: 3008 return optimizeExp2(CI, Builder); 3009 case Intrinsic::log: 3010 case Intrinsic::log2: 3011 case Intrinsic::log10: 3012 return optimizeLog(CI, Builder); 3013 case Intrinsic::sqrt: 3014 return optimizeSqrt(CI, Builder); 3015 case Intrinsic::memset: 3016 return optimizeMemSet(CI, Builder); 3017 case Intrinsic::memcpy: 3018 return optimizeMemCpy(CI, Builder); 3019 case Intrinsic::memmove: 3020 return optimizeMemMove(CI, Builder); 3021 default: 3022 return nullptr; 3023 } 3024 } 3025 3026 // Also try to simplify calls to fortified library functions. 3027 if (Value *SimplifiedFortifiedCI = 3028 FortifiedSimplifier.optimizeCall(CI, Builder)) { 3029 // Try to further simplify the result. 3030 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 3031 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 3032 // Ensure that SimplifiedCI's uses are complete, since some calls have 3033 // their uses analyzed. 3034 replaceAllUsesWith(CI, SimplifiedCI); 3035 3036 // Set insertion point to SimplifiedCI to guarantee we reach all uses 3037 // we might replace later on. 3038 IRBuilderBase::InsertPointGuard Guard(Builder); 3039 Builder.SetInsertPoint(SimplifiedCI); 3040 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) { 3041 // If we were able to further simplify, remove the now redundant call. 3042 substituteInParent(SimplifiedCI, V); 3043 return V; 3044 } 3045 } 3046 return SimplifiedFortifiedCI; 3047 } 3048 3049 // Then check for known library functions. 3050 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 3051 // We never change the calling convention. 3052 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3053 return nullptr; 3054 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 3055 return V; 3056 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 3057 return V; 3058 switch (Func) { 3059 case LibFunc_ffs: 3060 case LibFunc_ffsl: 3061 case LibFunc_ffsll: 3062 return optimizeFFS(CI, Builder); 3063 case LibFunc_fls: 3064 case LibFunc_flsl: 3065 case LibFunc_flsll: 3066 return optimizeFls(CI, Builder); 3067 case LibFunc_abs: 3068 case LibFunc_labs: 3069 case LibFunc_llabs: 3070 return optimizeAbs(CI, Builder); 3071 case LibFunc_isdigit: 3072 return optimizeIsDigit(CI, Builder); 3073 case LibFunc_isascii: 3074 return optimizeIsAscii(CI, Builder); 3075 case LibFunc_toascii: 3076 return optimizeToAscii(CI, Builder); 3077 case LibFunc_atoi: 3078 case LibFunc_atol: 3079 case LibFunc_atoll: 3080 return optimizeAtoi(CI, Builder); 3081 case LibFunc_strtol: 3082 case LibFunc_strtoll: 3083 return optimizeStrtol(CI, Builder); 3084 case LibFunc_printf: 3085 return optimizePrintF(CI, Builder); 3086 case LibFunc_sprintf: 3087 return optimizeSPrintF(CI, Builder); 3088 case LibFunc_snprintf: 3089 return optimizeSnPrintF(CI, Builder); 3090 case LibFunc_fprintf: 3091 return optimizeFPrintF(CI, Builder); 3092 case LibFunc_fwrite: 3093 return optimizeFWrite(CI, Builder); 3094 case LibFunc_fputs: 3095 return optimizeFPuts(CI, Builder); 3096 case LibFunc_puts: 3097 return optimizePuts(CI, Builder); 3098 case LibFunc_perror: 3099 return optimizeErrorReporting(CI, Builder); 3100 case LibFunc_vfprintf: 3101 case LibFunc_fiprintf: 3102 return optimizeErrorReporting(CI, Builder, 0); 3103 default: 3104 return nullptr; 3105 } 3106 } 3107 return nullptr; 3108 } 3109 3110 LibCallSimplifier::LibCallSimplifier( 3111 const DataLayout &DL, const TargetLibraryInfo *TLI, 3112 OptimizationRemarkEmitter &ORE, 3113 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 3114 function_ref<void(Instruction *, Value *)> Replacer, 3115 function_ref<void(Instruction *)> Eraser) 3116 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 3117 UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {} 3118 3119 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 3120 // Indirect through the replacer used in this instance. 3121 Replacer(I, With); 3122 } 3123 3124 void LibCallSimplifier::eraseFromParent(Instruction *I) { 3125 Eraser(I); 3126 } 3127 3128 // TODO: 3129 // Additional cases that we need to add to this file: 3130 // 3131 // cbrt: 3132 // * cbrt(expN(X)) -> expN(x/3) 3133 // * cbrt(sqrt(x)) -> pow(x,1/6) 3134 // * cbrt(cbrt(x)) -> pow(x,1/9) 3135 // 3136 // exp, expf, expl: 3137 // * exp(log(x)) -> x 3138 // 3139 // log, logf, logl: 3140 // * log(exp(x)) -> x 3141 // * log(exp(y)) -> y*log(e) 3142 // * log(exp10(y)) -> y*log(10) 3143 // * log(sqrt(x)) -> 0.5*log(x) 3144 // 3145 // pow, powf, powl: 3146 // * pow(sqrt(x),y) -> pow(x,y*0.5) 3147 // * pow(pow(x,y),z)-> pow(x,y*z) 3148 // 3149 // signbit: 3150 // * signbit(cnst) -> cnst' 3151 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 3152 // 3153 // sqrt, sqrtf, sqrtl: 3154 // * sqrt(expN(x)) -> expN(x*0.5) 3155 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 3156 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 3157 // 3158 3159 //===----------------------------------------------------------------------===// 3160 // Fortified Library Call Optimizations 3161 //===----------------------------------------------------------------------===// 3162 3163 bool 3164 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 3165 unsigned ObjSizeOp, 3166 Optional<unsigned> SizeOp, 3167 Optional<unsigned> StrOp, 3168 Optional<unsigned> FlagOp) { 3169 // If this function takes a flag argument, the implementation may use it to 3170 // perform extra checks. Don't fold into the non-checking variant. 3171 if (FlagOp) { 3172 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 3173 if (!Flag || !Flag->isZero()) 3174 return false; 3175 } 3176 3177 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 3178 return true; 3179 3180 if (ConstantInt *ObjSizeCI = 3181 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 3182 if (ObjSizeCI->isMinusOne()) 3183 return true; 3184 // If the object size wasn't -1 (unknown), bail out if we were asked to. 3185 if (OnlyLowerUnknownSize) 3186 return false; 3187 if (StrOp) { 3188 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 3189 // If the length is 0 we don't know how long it is and so we can't 3190 // remove the check. 3191 if (Len) 3192 annotateDereferenceableBytes(CI, *StrOp, Len); 3193 else 3194 return false; 3195 return ObjSizeCI->getZExtValue() >= Len; 3196 } 3197 3198 if (SizeOp) { 3199 if (ConstantInt *SizeCI = 3200 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 3201 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 3202 } 3203 } 3204 return false; 3205 } 3206 3207 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 3208 IRBuilderBase &B) { 3209 if (isFortifiedCallFoldable(CI, 3, 2)) { 3210 CallInst *NewCI = 3211 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3212 Align(1), CI->getArgOperand(2)); 3213 NewCI->setAttributes(CI->getAttributes()); 3214 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3215 return CI->getArgOperand(0); 3216 } 3217 return nullptr; 3218 } 3219 3220 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 3221 IRBuilderBase &B) { 3222 if (isFortifiedCallFoldable(CI, 3, 2)) { 3223 CallInst *NewCI = 3224 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3225 Align(1), CI->getArgOperand(2)); 3226 NewCI->setAttributes(CI->getAttributes()); 3227 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3228 return CI->getArgOperand(0); 3229 } 3230 return nullptr; 3231 } 3232 3233 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 3234 IRBuilderBase &B) { 3235 if (isFortifiedCallFoldable(CI, 3, 2)) { 3236 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 3237 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 3238 CI->getArgOperand(2), Align(1)); 3239 NewCI->setAttributes(CI->getAttributes()); 3240 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3241 return CI->getArgOperand(0); 3242 } 3243 return nullptr; 3244 } 3245 3246 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 3247 IRBuilderBase &B) { 3248 const DataLayout &DL = CI->getModule()->getDataLayout(); 3249 if (isFortifiedCallFoldable(CI, 3, 2)) 3250 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3251 CI->getArgOperand(2), B, DL, TLI)) { 3252 CallInst *NewCI = cast<CallInst>(Call); 3253 NewCI->setAttributes(CI->getAttributes()); 3254 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3255 return NewCI; 3256 } 3257 return nullptr; 3258 } 3259 3260 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 3261 IRBuilderBase &B, 3262 LibFunc Func) { 3263 const DataLayout &DL = CI->getModule()->getDataLayout(); 3264 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 3265 *ObjSize = CI->getArgOperand(2); 3266 3267 // __stpcpy_chk(x,x,...) -> x+strlen(x) 3268 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 3269 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3270 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3271 } 3272 3273 // If a) we don't have any length information, or b) we know this will 3274 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3275 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3276 // TODO: It might be nice to get a maximum length out of the possible 3277 // string lengths for varying. 3278 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 3279 if (Func == LibFunc_strcpy_chk) 3280 return emitStrCpy(Dst, Src, B, TLI); 3281 else 3282 return emitStpCpy(Dst, Src, B, TLI); 3283 } 3284 3285 if (OnlyLowerUnknownSize) 3286 return nullptr; 3287 3288 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3289 uint64_t Len = GetStringLength(Src); 3290 if (Len) 3291 annotateDereferenceableBytes(CI, 1, Len); 3292 else 3293 return nullptr; 3294 3295 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 3296 Value *LenV = ConstantInt::get(SizeTTy, Len); 3297 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 3298 // If the function was an __stpcpy_chk, and we were able to fold it into 3299 // a __memcpy_chk, we still need to return the correct end pointer. 3300 if (Ret && Func == LibFunc_stpcpy_chk) 3301 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 3302 return Ret; 3303 } 3304 3305 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 3306 IRBuilderBase &B) { 3307 if (isFortifiedCallFoldable(CI, 1, None, 0)) 3308 return emitStrLen(CI->getArgOperand(0), B, CI->getModule()->getDataLayout(), 3309 TLI); 3310 return nullptr; 3311 } 3312 3313 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 3314 IRBuilderBase &B, 3315 LibFunc Func) { 3316 if (isFortifiedCallFoldable(CI, 3, 2)) { 3317 if (Func == LibFunc_strncpy_chk) 3318 return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3319 CI->getArgOperand(2), B, TLI); 3320 else 3321 return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3322 CI->getArgOperand(2), B, TLI); 3323 } 3324 3325 return nullptr; 3326 } 3327 3328 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 3329 IRBuilderBase &B) { 3330 if (isFortifiedCallFoldable(CI, 4, 3)) 3331 return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3332 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI); 3333 3334 return nullptr; 3335 } 3336 3337 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 3338 IRBuilderBase &B) { 3339 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 3340 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 3341 return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3342 CI->getArgOperand(4), VariadicArgs, B, TLI); 3343 } 3344 3345 return nullptr; 3346 } 3347 3348 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3349 IRBuilderBase &B) { 3350 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3351 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 3352 return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs, 3353 B, TLI); 3354 } 3355 3356 return nullptr; 3357 } 3358 3359 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3360 IRBuilderBase &B) { 3361 if (isFortifiedCallFoldable(CI, 2)) 3362 return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI); 3363 3364 return nullptr; 3365 } 3366 3367 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3368 IRBuilderBase &B) { 3369 if (isFortifiedCallFoldable(CI, 3)) 3370 return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3371 CI->getArgOperand(2), B, TLI); 3372 3373 return nullptr; 3374 } 3375 3376 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3377 IRBuilderBase &B) { 3378 if (isFortifiedCallFoldable(CI, 3)) 3379 return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3380 CI->getArgOperand(2), B, TLI); 3381 3382 return nullptr; 3383 } 3384 3385 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3386 IRBuilderBase &B) { 3387 if (isFortifiedCallFoldable(CI, 3)) 3388 return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3389 CI->getArgOperand(2), B, TLI); 3390 3391 return nullptr; 3392 } 3393 3394 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3395 IRBuilderBase &B) { 3396 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3397 return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3398 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI); 3399 3400 return nullptr; 3401 } 3402 3403 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3404 IRBuilderBase &B) { 3405 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3406 return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3407 CI->getArgOperand(4), B, TLI); 3408 3409 return nullptr; 3410 } 3411 3412 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 3413 IRBuilderBase &Builder) { 3414 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3415 // Some clang users checked for _chk libcall availability using: 3416 // __has_builtin(__builtin___memcpy_chk) 3417 // When compiling with -fno-builtin, this is always true. 3418 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3419 // end up with fortified libcalls, which isn't acceptable in a freestanding 3420 // environment which only provides their non-fortified counterparts. 3421 // 3422 // Until we change clang and/or teach external users to check for availability 3423 // differently, disregard the "nobuiltin" attribute and TLI::has. 3424 // 3425 // PR23093. 3426 3427 LibFunc Func; 3428 Function *Callee = CI->getCalledFunction(); 3429 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3430 3431 SmallVector<OperandBundleDef, 2> OpBundles; 3432 CI->getOperandBundlesAsDefs(OpBundles); 3433 3434 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3435 Builder.setDefaultOperandBundles(OpBundles); 3436 3437 // First, check that this is a known library functions and that the prototype 3438 // is correct. 3439 if (!TLI->getLibFunc(*Callee, Func)) 3440 return nullptr; 3441 3442 // We never change the calling convention. 3443 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3444 return nullptr; 3445 3446 switch (Func) { 3447 case LibFunc_memcpy_chk: 3448 return optimizeMemCpyChk(CI, Builder); 3449 case LibFunc_mempcpy_chk: 3450 return optimizeMemPCpyChk(CI, Builder); 3451 case LibFunc_memmove_chk: 3452 return optimizeMemMoveChk(CI, Builder); 3453 case LibFunc_memset_chk: 3454 return optimizeMemSetChk(CI, Builder); 3455 case LibFunc_stpcpy_chk: 3456 case LibFunc_strcpy_chk: 3457 return optimizeStrpCpyChk(CI, Builder, Func); 3458 case LibFunc_strlen_chk: 3459 return optimizeStrLenChk(CI, Builder); 3460 case LibFunc_stpncpy_chk: 3461 case LibFunc_strncpy_chk: 3462 return optimizeStrpNCpyChk(CI, Builder, Func); 3463 case LibFunc_memccpy_chk: 3464 return optimizeMemCCpyChk(CI, Builder); 3465 case LibFunc_snprintf_chk: 3466 return optimizeSNPrintfChk(CI, Builder); 3467 case LibFunc_sprintf_chk: 3468 return optimizeSPrintfChk(CI, Builder); 3469 case LibFunc_strcat_chk: 3470 return optimizeStrCatChk(CI, Builder); 3471 case LibFunc_strlcat_chk: 3472 return optimizeStrLCat(CI, Builder); 3473 case LibFunc_strncat_chk: 3474 return optimizeStrNCatChk(CI, Builder); 3475 case LibFunc_strlcpy_chk: 3476 return optimizeStrLCpyChk(CI, Builder); 3477 case LibFunc_vsnprintf_chk: 3478 return optimizeVSNPrintfChk(CI, Builder); 3479 case LibFunc_vsprintf_chk: 3480 return optimizeVSPrintfChk(CI, Builder); 3481 default: 3482 break; 3483 } 3484 return nullptr; 3485 } 3486 3487 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3488 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3489 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 3490