1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Analysis/BlockFrequencyInfo.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ProfileSummaryInfo.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Transforms/Utils/Local.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/CaptureTracking.h" 27 #include "llvm/Analysis/Loads.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Transforms/Utils/BuildLibCalls.h" 39 #include "llvm/Transforms/Utils/SizeOpts.h" 40 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 static cl::opt<bool> 45 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 46 cl::init(false), 47 cl::desc("Enable unsafe double to float " 48 "shrinking for math lib calls")); 49 50 51 //===----------------------------------------------------------------------===// 52 // Helper Functions 53 //===----------------------------------------------------------------------===// 54 55 static bool ignoreCallingConv(LibFunc Func) { 56 return Func == LibFunc_abs || Func == LibFunc_labs || 57 Func == LibFunc_llabs || Func == LibFunc_strlen; 58 } 59 60 static bool isCallingConvCCompatible(CallInst *CI) { 61 switch(CI->getCallingConv()) { 62 default: 63 return false; 64 case llvm::CallingConv::C: 65 return true; 66 case llvm::CallingConv::ARM_APCS: 67 case llvm::CallingConv::ARM_AAPCS: 68 case llvm::CallingConv::ARM_AAPCS_VFP: { 69 70 // The iOS ABI diverges from the standard in some cases, so for now don't 71 // try to simplify those calls. 72 if (Triple(CI->getModule()->getTargetTriple()).isiOS()) 73 return false; 74 75 auto *FuncTy = CI->getFunctionType(); 76 77 if (!FuncTy->getReturnType()->isPointerTy() && 78 !FuncTy->getReturnType()->isIntegerTy() && 79 !FuncTy->getReturnType()->isVoidTy()) 80 return false; 81 82 for (auto Param : FuncTy->params()) { 83 if (!Param->isPointerTy() && !Param->isIntegerTy()) 84 return false; 85 } 86 return true; 87 } 88 } 89 return false; 90 } 91 92 /// Return true if it is only used in equality comparisons with With. 93 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 94 for (User *U : V->users()) { 95 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 96 if (IC->isEquality() && IC->getOperand(1) == With) 97 continue; 98 // Unknown instruction. 99 return false; 100 } 101 return true; 102 } 103 104 static bool callHasFloatingPointArgument(const CallInst *CI) { 105 return any_of(CI->operands(), [](const Use &OI) { 106 return OI->getType()->isFloatingPointTy(); 107 }); 108 } 109 110 static bool callHasFP128Argument(const CallInst *CI) { 111 return any_of(CI->operands(), [](const Use &OI) { 112 return OI->getType()->isFP128Ty(); 113 }); 114 } 115 116 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 117 if (Base < 2 || Base > 36) 118 // handle special zero base 119 if (Base != 0) 120 return nullptr; 121 122 char *End; 123 std::string nptr = Str.str(); 124 errno = 0; 125 long long int Result = strtoll(nptr.c_str(), &End, Base); 126 if (errno) 127 return nullptr; 128 129 // if we assume all possible target locales are ASCII supersets, 130 // then if strtoll successfully parses a number on the host, 131 // it will also successfully parse the same way on the target 132 if (*End != '\0') 133 return nullptr; 134 135 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 136 return nullptr; 137 138 return ConstantInt::get(CI->getType(), Result); 139 } 140 141 static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B, 142 const TargetLibraryInfo *TLI) { 143 CallInst *FOpen = dyn_cast<CallInst>(File); 144 if (!FOpen) 145 return false; 146 147 Function *InnerCallee = FOpen->getCalledFunction(); 148 if (!InnerCallee) 149 return false; 150 151 LibFunc Func; 152 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 153 Func != LibFunc_fopen) 154 return false; 155 156 inferLibFuncAttributes(*CI->getCalledFunction(), *TLI); 157 if (PointerMayBeCaptured(File, true, true)) 158 return false; 159 160 return true; 161 } 162 163 static bool isOnlyUsedInComparisonWithZero(Value *V) { 164 for (User *U : V->users()) { 165 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 166 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 167 if (C->isNullValue()) 168 continue; 169 // Unknown instruction. 170 return false; 171 } 172 return true; 173 } 174 175 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 176 const DataLayout &DL) { 177 if (!isOnlyUsedInComparisonWithZero(CI)) 178 return false; 179 180 if (!isDereferenceableAndAlignedPointer(Str, 1, APInt(64, Len), DL)) 181 return false; 182 183 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 184 return false; 185 186 return true; 187 } 188 189 static void annotateDereferenceableBytes(CallInst *CI, 190 ArrayRef<unsigned> ArgNos, 191 uint64_t DereferenceableBytes) { 192 for (unsigned ArgNo : ArgNos) { 193 uint64_t DerefBytes = std::max( 194 CI->getDereferenceableOrNullBytes(ArgNo + AttributeList::FirstArgIndex), 195 DereferenceableBytes); 196 197 if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) < 198 DerefBytes) { 199 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 200 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 201 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 202 CI->getContext(), DerefBytes)); 203 } 204 } 205 } 206 207 //===----------------------------------------------------------------------===// 208 // String and Memory Library Call Optimizations 209 //===----------------------------------------------------------------------===// 210 211 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { 212 // Extract some information from the instruction 213 Value *Dst = CI->getArgOperand(0); 214 Value *Src = CI->getArgOperand(1); 215 216 // See if we can get the length of the input string. 217 uint64_t Len = GetStringLength(Src); 218 if (Len == 0) 219 return nullptr; 220 --Len; // Unbias length. 221 222 // Handle the simple, do-nothing case: strcat(x, "") -> x 223 if (Len == 0) 224 return Dst; 225 226 return emitStrLenMemCpy(Src, Dst, Len, B); 227 } 228 229 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 230 IRBuilder<> &B) { 231 // We need to find the end of the destination string. That's where the 232 // memory is to be moved to. We just generate a call to strlen. 233 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 234 if (!DstLen) 235 return nullptr; 236 237 // Now that we have the destination's length, we must index into the 238 // destination's pointer to get the actual memcpy destination (end of 239 // the string .. we're concatenating). 240 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 241 242 // We have enough information to now generate the memcpy call to do the 243 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 244 B.CreateMemCpy(CpyDst, 1, Src, 1, 245 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 246 return Dst; 247 } 248 249 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { 250 // Extract some information from the instruction. 251 Value *Dst = CI->getArgOperand(0); 252 Value *Src = CI->getArgOperand(1); 253 uint64_t Len; 254 255 // We don't do anything if length is not constant. 256 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 257 Len = LengthArg->getZExtValue(); 258 else 259 return nullptr; 260 261 // See if we can get the length of the input string. 262 uint64_t SrcLen = GetStringLength(Src); 263 if (SrcLen == 0) 264 return nullptr; 265 --SrcLen; // Unbias length. 266 267 // Handle the simple, do-nothing cases: 268 // strncat(x, "", c) -> x 269 // strncat(x, c, 0) -> x 270 if (SrcLen == 0 || Len == 0) 271 return Dst; 272 273 // We don't optimize this case. 274 if (Len < SrcLen) 275 return nullptr; 276 277 // strncat(x, s, c) -> strcat(x, s) 278 // s is constant so the strcat can be optimized further. 279 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 280 } 281 282 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { 283 Function *Callee = CI->getCalledFunction(); 284 FunctionType *FT = Callee->getFunctionType(); 285 Value *SrcStr = CI->getArgOperand(0); 286 287 // If the second operand is non-constant, see if we can compute the length 288 // of the input string and turn this into memchr. 289 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 290 if (!CharC) { 291 uint64_t Len = GetStringLength(SrcStr); 292 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 293 return nullptr; 294 295 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 296 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 297 B, DL, TLI); 298 } 299 300 // Otherwise, the character is a constant, see if the first argument is 301 // a string literal. If so, we can constant fold. 302 StringRef Str; 303 if (!getConstantStringInfo(SrcStr, Str)) { 304 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 305 return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI), 306 "strchr"); 307 return nullptr; 308 } 309 310 // Compute the offset, make sure to handle the case when we're searching for 311 // zero (a weird way to spell strlen). 312 size_t I = (0xFF & CharC->getSExtValue()) == 0 313 ? Str.size() 314 : Str.find(CharC->getSExtValue()); 315 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 316 return Constant::getNullValue(CI->getType()); 317 318 // strchr(s+n,c) -> gep(s+n+i,c) 319 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 320 } 321 322 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { 323 Value *SrcStr = CI->getArgOperand(0); 324 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 325 326 // Cannot fold anything if we're not looking for a constant. 327 if (!CharC) 328 return nullptr; 329 330 StringRef Str; 331 if (!getConstantStringInfo(SrcStr, Str)) { 332 // strrchr(s, 0) -> strchr(s, 0) 333 if (CharC->isZero()) 334 return emitStrChr(SrcStr, '\0', B, TLI); 335 return nullptr; 336 } 337 338 // Compute the offset. 339 size_t I = (0xFF & CharC->getSExtValue()) == 0 340 ? Str.size() 341 : Str.rfind(CharC->getSExtValue()); 342 if (I == StringRef::npos) // Didn't find the char. Return null. 343 return Constant::getNullValue(CI->getType()); 344 345 // strrchr(s+n,c) -> gep(s+n+i,c) 346 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 347 } 348 349 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { 350 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 351 if (Str1P == Str2P) // strcmp(x,x) -> 0 352 return ConstantInt::get(CI->getType(), 0); 353 354 StringRef Str1, Str2; 355 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 356 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 357 358 // strcmp(x, y) -> cnst (if both x and y are constant strings) 359 if (HasStr1 && HasStr2) 360 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 361 362 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 363 return B.CreateNeg(B.CreateZExt( 364 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 365 366 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 367 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 368 CI->getType()); 369 370 // strcmp(P, "x") -> memcmp(P, "x", 2) 371 uint64_t Len1 = GetStringLength(Str1P); 372 uint64_t Len2 = GetStringLength(Str2P); 373 if (Len1 && Len2) { 374 return emitMemCmp(Str1P, Str2P, 375 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 376 std::min(Len1, Len2)), 377 B, DL, TLI); 378 } 379 380 // strcmp to memcmp 381 if (!HasStr1 && HasStr2) { 382 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 383 return emitMemCmp( 384 Str1P, Str2P, 385 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 386 TLI); 387 } else if (HasStr1 && !HasStr2) { 388 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 389 return emitMemCmp( 390 Str1P, Str2P, 391 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 392 TLI); 393 } 394 395 return nullptr; 396 } 397 398 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { 399 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 400 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 401 return ConstantInt::get(CI->getType(), 0); 402 403 // Get the length argument if it is constant. 404 uint64_t Length; 405 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) 406 Length = LengthArg->getZExtValue(); 407 else 408 return nullptr; 409 410 if (Length == 0) // strncmp(x,y,0) -> 0 411 return ConstantInt::get(CI->getType(), 0); 412 413 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 414 return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); 415 416 StringRef Str1, Str2; 417 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 418 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 419 420 // strncmp(x, y) -> cnst (if both x and y are constant strings) 421 if (HasStr1 && HasStr2) { 422 StringRef SubStr1 = Str1.substr(0, Length); 423 StringRef SubStr2 = Str2.substr(0, Length); 424 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 425 } 426 427 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 428 return B.CreateNeg(B.CreateZExt( 429 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 430 431 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 432 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 433 CI->getType()); 434 435 uint64_t Len1 = GetStringLength(Str1P); 436 uint64_t Len2 = GetStringLength(Str2P); 437 438 // strncmp to memcmp 439 if (!HasStr1 && HasStr2) { 440 Len2 = std::min(Len2, Length); 441 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 442 return emitMemCmp( 443 Str1P, Str2P, 444 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 445 TLI); 446 } else if (HasStr1 && !HasStr2) { 447 Len1 = std::min(Len1, Length); 448 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 449 return emitMemCmp( 450 Str1P, Str2P, 451 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 452 TLI); 453 } 454 455 return nullptr; 456 } 457 458 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { 459 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 460 if (Dst == Src) // strcpy(x,x) -> x 461 return Src; 462 463 CI->addParamAttr(0, Attribute::NoAlias); 464 CI->addParamAttr(1, Attribute::NoAlias); 465 466 // See if we can get the length of the input string. 467 uint64_t Len = GetStringLength(Src); 468 if (Len == 0) 469 return nullptr; 470 471 // We have enough information to now generate the memcpy call to do the 472 // copy for us. Make a memcpy to copy the nul byte with align = 1. 473 B.CreateMemCpy(Dst, 1, Src, 1, 474 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 475 return Dst; 476 } 477 478 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { 479 Function *Callee = CI->getCalledFunction(); 480 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 481 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 482 Value *StrLen = emitStrLen(Src, B, DL, TLI); 483 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 484 } 485 486 // See if we can get the length of the input string. 487 uint64_t Len = GetStringLength(Src); 488 if (Len == 0) 489 return nullptr; 490 491 Type *PT = Callee->getFunctionType()->getParamType(0); 492 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 493 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 494 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 495 496 // We have enough information to now generate the memcpy call to do the 497 // copy for us. Make a memcpy to copy the nul byte with align = 1. 498 B.CreateMemCpy(Dst, 1, Src, 1, LenV); 499 return DstEnd; 500 } 501 502 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { 503 Function *Callee = CI->getCalledFunction(); 504 Value *Dst = CI->getArgOperand(0); 505 Value *Src = CI->getArgOperand(1); 506 Value *LenOp = CI->getArgOperand(2); 507 508 CI->addParamAttr(0, Attribute::NoAlias); 509 CI->addParamAttr(1, Attribute::NoAlias); 510 511 // See if we can get the length of the input string. 512 uint64_t SrcLen = GetStringLength(Src); 513 if (SrcLen == 0) 514 return nullptr; 515 --SrcLen; 516 517 if (SrcLen == 0) { 518 // strncpy(x, "", y) -> memset(align 1 x, '\0', y) 519 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); 520 return Dst; 521 } 522 523 uint64_t Len; 524 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) 525 Len = LengthArg->getZExtValue(); 526 else 527 return nullptr; 528 529 if (Len == 0) 530 return Dst; // strncpy(x, y, 0) -> x 531 532 // Let strncpy handle the zero padding 533 if (Len > SrcLen + 1) 534 return nullptr; 535 536 Type *PT = Callee->getFunctionType()->getParamType(0); 537 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 538 B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len)); 539 540 return Dst; 541 } 542 543 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B, 544 unsigned CharSize) { 545 Value *Src = CI->getArgOperand(0); 546 547 // Constant folding: strlen("xyz") -> 3 548 if (uint64_t Len = GetStringLength(Src, CharSize)) 549 return ConstantInt::get(CI->getType(), Len - 1); 550 551 // If s is a constant pointer pointing to a string literal, we can fold 552 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 553 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 554 // We only try to simplify strlen when the pointer s points to an array 555 // of i8. Otherwise, we would need to scale the offset x before doing the 556 // subtraction. This will make the optimization more complex, and it's not 557 // very useful because calling strlen for a pointer of other types is 558 // very uncommon. 559 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 560 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 561 return nullptr; 562 563 ConstantDataArraySlice Slice; 564 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 565 uint64_t NullTermIdx; 566 if (Slice.Array == nullptr) { 567 NullTermIdx = 0; 568 } else { 569 NullTermIdx = ~((uint64_t)0); 570 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 571 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 572 NullTermIdx = I; 573 break; 574 } 575 } 576 // If the string does not have '\0', leave it to strlen to compute 577 // its length. 578 if (NullTermIdx == ~((uint64_t)0)) 579 return nullptr; 580 } 581 582 Value *Offset = GEP->getOperand(2); 583 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 584 Known.Zero.flipAllBits(); 585 uint64_t ArrSize = 586 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 587 588 // KnownZero's bits are flipped, so zeros in KnownZero now represent 589 // bits known to be zeros in Offset, and ones in KnowZero represent 590 // bits unknown in Offset. Therefore, Offset is known to be in range 591 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 592 // unsigned-less-than NullTermIdx. 593 // 594 // If Offset is not provably in the range [0, NullTermIdx], we can still 595 // optimize if we can prove that the program has undefined behavior when 596 // Offset is outside that range. That is the case when GEP->getOperand(0) 597 // is a pointer to an object whose memory extent is NullTermIdx+1. 598 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 599 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 600 NullTermIdx == ArrSize - 1)) { 601 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 602 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 603 Offset); 604 } 605 } 606 607 return nullptr; 608 } 609 610 // strlen(x?"foo":"bars") --> x ? 3 : 4 611 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 612 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 613 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 614 if (LenTrue && LenFalse) { 615 ORE.emit([&]() { 616 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 617 << "folded strlen(select) to select of constants"; 618 }); 619 return B.CreateSelect(SI->getCondition(), 620 ConstantInt::get(CI->getType(), LenTrue - 1), 621 ConstantInt::get(CI->getType(), LenFalse - 1)); 622 } 623 } 624 625 // strlen(x) != 0 --> *x != 0 626 // strlen(x) == 0 --> *x == 0 627 if (isOnlyUsedInZeroEqualityComparison(CI)) 628 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), 629 CI->getType()); 630 631 return nullptr; 632 } 633 634 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { 635 return optimizeStringLength(CI, B, 8); 636 } 637 638 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) { 639 Module &M = *CI->getModule(); 640 unsigned WCharSize = TLI->getWCharSize(M) * 8; 641 // We cannot perform this optimization without wchar_size metadata. 642 if (WCharSize == 0) 643 return nullptr; 644 645 return optimizeStringLength(CI, B, WCharSize); 646 } 647 648 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { 649 StringRef S1, S2; 650 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 651 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 652 653 // strpbrk(s, "") -> nullptr 654 // strpbrk("", s) -> nullptr 655 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 656 return Constant::getNullValue(CI->getType()); 657 658 // Constant folding. 659 if (HasS1 && HasS2) { 660 size_t I = S1.find_first_of(S2); 661 if (I == StringRef::npos) // No match. 662 return Constant::getNullValue(CI->getType()); 663 664 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 665 "strpbrk"); 666 } 667 668 // strpbrk(s, "a") -> strchr(s, 'a') 669 if (HasS2 && S2.size() == 1) 670 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 671 672 return nullptr; 673 } 674 675 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { 676 Value *EndPtr = CI->getArgOperand(1); 677 if (isa<ConstantPointerNull>(EndPtr)) { 678 // With a null EndPtr, this function won't capture the main argument. 679 // It would be readonly too, except that it still may write to errno. 680 CI->addParamAttr(0, Attribute::NoCapture); 681 } 682 683 return nullptr; 684 } 685 686 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { 687 StringRef S1, S2; 688 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 689 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 690 691 // strspn(s, "") -> 0 692 // strspn("", s) -> 0 693 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 694 return Constant::getNullValue(CI->getType()); 695 696 // Constant folding. 697 if (HasS1 && HasS2) { 698 size_t Pos = S1.find_first_not_of(S2); 699 if (Pos == StringRef::npos) 700 Pos = S1.size(); 701 return ConstantInt::get(CI->getType(), Pos); 702 } 703 704 return nullptr; 705 } 706 707 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { 708 StringRef S1, S2; 709 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 710 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 711 712 // strcspn("", s) -> 0 713 if (HasS1 && S1.empty()) 714 return Constant::getNullValue(CI->getType()); 715 716 // Constant folding. 717 if (HasS1 && HasS2) { 718 size_t Pos = S1.find_first_of(S2); 719 if (Pos == StringRef::npos) 720 Pos = S1.size(); 721 return ConstantInt::get(CI->getType(), Pos); 722 } 723 724 // strcspn(s, "") -> strlen(s) 725 if (HasS2 && S2.empty()) 726 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 727 728 return nullptr; 729 } 730 731 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { 732 // fold strstr(x, x) -> x. 733 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 734 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 735 736 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 737 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 738 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 739 if (!StrLen) 740 return nullptr; 741 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 742 StrLen, B, DL, TLI); 743 if (!StrNCmp) 744 return nullptr; 745 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { 746 ICmpInst *Old = cast<ICmpInst>(*UI++); 747 Value *Cmp = 748 B.CreateICmp(Old->getPredicate(), StrNCmp, 749 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 750 replaceAllUsesWith(Old, Cmp); 751 } 752 return CI; 753 } 754 755 // See if either input string is a constant string. 756 StringRef SearchStr, ToFindStr; 757 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 758 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 759 760 // fold strstr(x, "") -> x. 761 if (HasStr2 && ToFindStr.empty()) 762 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 763 764 // If both strings are known, constant fold it. 765 if (HasStr1 && HasStr2) { 766 size_t Offset = SearchStr.find(ToFindStr); 767 768 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 769 return Constant::getNullValue(CI->getType()); 770 771 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 772 Value *Result = castToCStr(CI->getArgOperand(0), B); 773 Result = 774 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 775 return B.CreateBitCast(Result, CI->getType()); 776 } 777 778 // fold strstr(x, "y") -> strchr(x, 'y'). 779 if (HasStr2 && ToFindStr.size() == 1) { 780 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 781 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 782 } 783 return nullptr; 784 } 785 786 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { 787 Value *SrcStr = CI->getArgOperand(0); 788 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 789 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 790 791 // memchr(x, y, 0) -> null 792 if (LenC) { 793 if (LenC->isZero()) 794 return Constant::getNullValue(CI->getType()); 795 annotateDereferenceableBytes(CI, {0}, LenC->getZExtValue()); 796 } 797 // From now on we need at least constant length and string. 798 StringRef Str; 799 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 800 return nullptr; 801 802 // Truncate the string to LenC. If Str is smaller than LenC we will still only 803 // scan the string, as reading past the end of it is undefined and we can just 804 // return null if we don't find the char. 805 Str = Str.substr(0, LenC->getZExtValue()); 806 807 // If the char is variable but the input str and length are not we can turn 808 // this memchr call into a simple bit field test. Of course this only works 809 // when the return value is only checked against null. 810 // 811 // It would be really nice to reuse switch lowering here but we can't change 812 // the CFG at this point. 813 // 814 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 815 // != 0 816 // after bounds check. 817 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 818 unsigned char Max = 819 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 820 reinterpret_cast<const unsigned char *>(Str.end())); 821 822 // Make sure the bit field we're about to create fits in a register on the 823 // target. 824 // FIXME: On a 64 bit architecture this prevents us from using the 825 // interesting range of alpha ascii chars. We could do better by emitting 826 // two bitfields or shifting the range by 64 if no lower chars are used. 827 if (!DL.fitsInLegalInteger(Max + 1)) 828 return nullptr; 829 830 // For the bit field use a power-of-2 type with at least 8 bits to avoid 831 // creating unnecessary illegal types. 832 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 833 834 // Now build the bit field. 835 APInt Bitfield(Width, 0); 836 for (char C : Str) 837 Bitfield.setBit((unsigned char)C); 838 Value *BitfieldC = B.getInt(Bitfield); 839 840 // Adjust width of "C" to the bitfield width, then mask off the high bits. 841 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 842 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 843 844 // First check that the bit field access is within bounds. 845 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 846 "memchr.bounds"); 847 848 // Create code that checks if the given bit is set in the field. 849 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 850 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 851 852 // Finally merge both checks and cast to pointer type. The inttoptr 853 // implicitly zexts the i1 to intptr type. 854 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 855 } 856 857 // Check if all arguments are constants. If so, we can constant fold. 858 if (!CharC) 859 return nullptr; 860 861 // Compute the offset. 862 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 863 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 864 return Constant::getNullValue(CI->getType()); 865 866 // memchr(s+n,c,l) -> gep(s+n+i,c) 867 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 868 } 869 870 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 871 uint64_t Len, IRBuilder<> &B, 872 const DataLayout &DL) { 873 if (Len == 0) // memcmp(s1,s2,0) -> 0 874 return Constant::getNullValue(CI->getType()); 875 876 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 877 if (Len == 1) { 878 Value *LHSV = 879 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 880 CI->getType(), "lhsv"); 881 Value *RHSV = 882 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 883 CI->getType(), "rhsv"); 884 return B.CreateSub(LHSV, RHSV, "chardiff"); 885 } 886 887 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 888 // TODO: The case where both inputs are constants does not need to be limited 889 // to legal integers or equality comparison. See block below this. 890 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 891 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 892 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 893 894 // First, see if we can fold either argument to a constant. 895 Value *LHSV = nullptr; 896 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 897 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 898 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 899 } 900 Value *RHSV = nullptr; 901 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 902 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 903 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 904 } 905 906 // Don't generate unaligned loads. If either source is constant data, 907 // alignment doesn't matter for that source because there is no load. 908 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 909 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 910 if (!LHSV) { 911 Type *LHSPtrTy = 912 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 913 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 914 } 915 if (!RHSV) { 916 Type *RHSPtrTy = 917 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 918 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 919 } 920 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 921 } 922 } 923 924 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 925 // TODO: This is limited to i8 arrays. 926 StringRef LHSStr, RHSStr; 927 if (getConstantStringInfo(LHS, LHSStr) && 928 getConstantStringInfo(RHS, RHSStr)) { 929 // Make sure we're not reading out-of-bounds memory. 930 if (Len > LHSStr.size() || Len > RHSStr.size()) 931 return nullptr; 932 // Fold the memcmp and normalize the result. This way we get consistent 933 // results across multiple platforms. 934 uint64_t Ret = 0; 935 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 936 if (Cmp < 0) 937 Ret = -1; 938 else if (Cmp > 0) 939 Ret = 1; 940 return ConstantInt::get(CI->getType(), Ret); 941 } 942 return nullptr; 943 } 944 945 // Most simplifications for memcmp also apply to bcmp. 946 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 947 IRBuilder<> &B) { 948 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 949 Value *Size = CI->getArgOperand(2); 950 951 if (LHS == RHS) // memcmp(s,s,x) -> 0 952 return Constant::getNullValue(CI->getType()); 953 954 // Handle constant lengths. 955 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 956 if (Value *Res = optimizeMemCmpConstantSize(CI, LHS, RHS, 957 LenC->getZExtValue(), B, DL)) 958 return Res; 959 annotateDereferenceableBytes(CI, {0, 1}, LenC->getZExtValue()); 960 } 961 962 return nullptr; 963 } 964 965 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { 966 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 967 return V; 968 969 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 970 // bcmp can be more efficient than memcmp because it only has to know that 971 // there is a difference, not how different one is to the other. 972 if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) { 973 Value *LHS = CI->getArgOperand(0); 974 Value *RHS = CI->getArgOperand(1); 975 Value *Size = CI->getArgOperand(2); 976 return emitBCmp(LHS, RHS, Size, B, DL, TLI); 977 } 978 979 return nullptr; 980 } 981 982 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilder<> &B) { 983 return optimizeMemCmpBCmpCommon(CI, B); 984 } 985 986 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B, 987 bool isIntrinsic) { 988 Value *Size = CI->getArgOperand(2); 989 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) 990 annotateDereferenceableBytes(CI, {0, 1}, LenC->getZExtValue()); 991 992 CI->addParamAttr(0, Attribute::NoAlias); 993 CI->addParamAttr(1, Attribute::NoAlias); 994 995 if (isIntrinsic) 996 return nullptr; 997 998 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 999 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, Size); 1000 return CI->getArgOperand(0); 1001 } 1002 1003 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B, bool isIntrinsic) { 1004 Value *Size = CI->getArgOperand(2); 1005 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) 1006 annotateDereferenceableBytes(CI, {0, 1}, LenC->getZExtValue()); 1007 1008 if (isIntrinsic) 1009 return nullptr; 1010 1011 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1012 B.CreateMemMove( CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, Size); 1013 return CI->getArgOperand(0); 1014 } 1015 1016 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 1017 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilder<> &B) { 1018 // This has to be a memset of zeros (bzero). 1019 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 1020 if (!FillValue || FillValue->getZExtValue() != 0) 1021 return nullptr; 1022 1023 // TODO: We should handle the case where the malloc has more than one use. 1024 // This is necessary to optimize common patterns such as when the result of 1025 // the malloc is checked against null or when a memset intrinsic is used in 1026 // place of a memset library call. 1027 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 1028 if (!Malloc || !Malloc->hasOneUse()) 1029 return nullptr; 1030 1031 // Is the inner call really malloc()? 1032 Function *InnerCallee = Malloc->getCalledFunction(); 1033 if (!InnerCallee) 1034 return nullptr; 1035 1036 LibFunc Func; 1037 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 1038 Func != LibFunc_malloc) 1039 return nullptr; 1040 1041 // The memset must cover the same number of bytes that are malloc'd. 1042 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 1043 return nullptr; 1044 1045 // Replace the malloc with a calloc. We need the data layout to know what the 1046 // actual size of a 'size_t' parameter is. 1047 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 1048 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 1049 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 1050 Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 1051 Malloc->getArgOperand(0), Malloc->getAttributes(), 1052 B, *TLI); 1053 if (!Calloc) 1054 return nullptr; 1055 1056 Malloc->replaceAllUsesWith(Calloc); 1057 eraseFromParent(Malloc); 1058 1059 return Calloc; 1060 } 1061 1062 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B, 1063 bool isIntrinsic) { 1064 Value *Size = CI->getArgOperand(2); 1065 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) 1066 annotateDereferenceableBytes(CI, {0}, LenC->getZExtValue()); 1067 1068 if (isIntrinsic) 1069 return nullptr; 1070 1071 if (auto *Calloc = foldMallocMemset(CI, B)) 1072 return Calloc; 1073 1074 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1075 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1076 B.CreateMemSet(CI->getArgOperand(0), Val, Size, 1); 1077 return CI->getArgOperand(0); 1078 } 1079 1080 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) { 1081 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1082 return emitMalloc(CI->getArgOperand(1), B, DL, TLI); 1083 1084 return nullptr; 1085 } 1086 1087 //===----------------------------------------------------------------------===// 1088 // Math Library Optimizations 1089 //===----------------------------------------------------------------------===// 1090 1091 // Replace a libcall \p CI with a call to intrinsic \p IID 1092 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) { 1093 // Propagate fast-math flags from the existing call to the new call. 1094 IRBuilder<>::FastMathFlagGuard Guard(B); 1095 B.setFastMathFlags(CI->getFastMathFlags()); 1096 1097 Module *M = CI->getModule(); 1098 Value *V = CI->getArgOperand(0); 1099 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1100 CallInst *NewCall = B.CreateCall(F, V); 1101 NewCall->takeName(CI); 1102 return NewCall; 1103 } 1104 1105 /// Return a variant of Val with float type. 1106 /// Currently this works in two cases: If Val is an FPExtension of a float 1107 /// value to something bigger, simply return the operand. 1108 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1109 /// loss of precision do so. 1110 static Value *valueHasFloatPrecision(Value *Val) { 1111 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1112 Value *Op = Cast->getOperand(0); 1113 if (Op->getType()->isFloatTy()) 1114 return Op; 1115 } 1116 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1117 APFloat F = Const->getValueAPF(); 1118 bool losesInfo; 1119 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1120 &losesInfo); 1121 if (!losesInfo) 1122 return ConstantFP::get(Const->getContext(), F); 1123 } 1124 return nullptr; 1125 } 1126 1127 /// Shrink double -> float functions. 1128 static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B, 1129 bool isBinary, bool isPrecise = false) { 1130 Function *CalleeFn = CI->getCalledFunction(); 1131 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1132 return nullptr; 1133 1134 // If not all the uses of the function are converted to float, then bail out. 1135 // This matters if the precision of the result is more important than the 1136 // precision of the arguments. 1137 if (isPrecise) 1138 for (User *U : CI->users()) { 1139 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1140 if (!Cast || !Cast->getType()->isFloatTy()) 1141 return nullptr; 1142 } 1143 1144 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1145 Value *V[2]; 1146 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1147 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1148 if (!V[0] || (isBinary && !V[1])) 1149 return nullptr; 1150 1151 StringRef CalleeNm = CalleeFn->getName(); 1152 AttributeList CalleeAt = CalleeFn->getAttributes(); 1153 bool CalleeIn = CalleeFn->isIntrinsic(); 1154 1155 // If call isn't an intrinsic, check that it isn't within a function with the 1156 // same name as the float version of this call, otherwise the result is an 1157 // infinite loop. For example, from MinGW-w64: 1158 // 1159 // float expf(float val) { return (float) exp((double) val); } 1160 if (!CalleeIn) { 1161 const Function *Fn = CI->getFunction(); 1162 StringRef FnName = Fn->getName(); 1163 if (FnName.back() == 'f' && 1164 FnName.size() == (CalleeNm.size() + 1) && 1165 FnName.startswith(CalleeNm)) 1166 return nullptr; 1167 } 1168 1169 // Propagate the math semantics from the current function to the new function. 1170 IRBuilder<>::FastMathFlagGuard Guard(B); 1171 B.setFastMathFlags(CI->getFastMathFlags()); 1172 1173 // g((double) float) -> (double) gf(float) 1174 Value *R; 1175 if (CalleeIn) { 1176 Module *M = CI->getModule(); 1177 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1178 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1179 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1180 } 1181 else 1182 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeNm, B, CalleeAt) 1183 : emitUnaryFloatFnCall(V[0], CalleeNm, B, CalleeAt); 1184 1185 return B.CreateFPExt(R, B.getDoubleTy()); 1186 } 1187 1188 /// Shrink double -> float for unary functions. 1189 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1190 bool isPrecise = false) { 1191 return optimizeDoubleFP(CI, B, false, isPrecise); 1192 } 1193 1194 /// Shrink double -> float for binary functions. 1195 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B, 1196 bool isPrecise = false) { 1197 return optimizeDoubleFP(CI, B, true, isPrecise); 1198 } 1199 1200 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1201 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) { 1202 if (!CI->isFast()) 1203 return nullptr; 1204 1205 // Propagate fast-math flags from the existing call to new instructions. 1206 IRBuilder<>::FastMathFlagGuard Guard(B); 1207 B.setFastMathFlags(CI->getFastMathFlags()); 1208 1209 Value *Real, *Imag; 1210 if (CI->getNumArgOperands() == 1) { 1211 Value *Op = CI->getArgOperand(0); 1212 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1213 Real = B.CreateExtractValue(Op, 0, "real"); 1214 Imag = B.CreateExtractValue(Op, 1, "imag"); 1215 } else { 1216 assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); 1217 Real = CI->getArgOperand(0); 1218 Imag = CI->getArgOperand(1); 1219 } 1220 1221 Value *RealReal = B.CreateFMul(Real, Real); 1222 Value *ImagImag = B.CreateFMul(Imag, Imag); 1223 1224 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1225 CI->getType()); 1226 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); 1227 } 1228 1229 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1230 IRBuilder<> &B) { 1231 if (!isa<FPMathOperator>(Call)) 1232 return nullptr; 1233 1234 IRBuilder<>::FastMathFlagGuard Guard(B); 1235 B.setFastMathFlags(Call->getFastMathFlags()); 1236 1237 // TODO: Can this be shared to also handle LLVM intrinsics? 1238 Value *X; 1239 switch (Func) { 1240 case LibFunc_sin: 1241 case LibFunc_sinf: 1242 case LibFunc_sinl: 1243 case LibFunc_tan: 1244 case LibFunc_tanf: 1245 case LibFunc_tanl: 1246 // sin(-X) --> -sin(X) 1247 // tan(-X) --> -tan(X) 1248 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1249 return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X)); 1250 break; 1251 case LibFunc_cos: 1252 case LibFunc_cosf: 1253 case LibFunc_cosl: 1254 // cos(-X) --> cos(X) 1255 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1256 return B.CreateCall(Call->getCalledFunction(), X, "cos"); 1257 break; 1258 default: 1259 break; 1260 } 1261 return nullptr; 1262 } 1263 1264 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) { 1265 // Multiplications calculated using Addition Chains. 1266 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1267 1268 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1269 1270 if (InnerChain[Exp]) 1271 return InnerChain[Exp]; 1272 1273 static const unsigned AddChain[33][2] = { 1274 {0, 0}, // Unused. 1275 {0, 0}, // Unused (base case = pow1). 1276 {1, 1}, // Unused (pre-computed). 1277 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1278 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1279 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1280 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1281 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1282 }; 1283 1284 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1285 getPow(InnerChain, AddChain[Exp][1], B)); 1286 return InnerChain[Exp]; 1287 } 1288 1289 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1290 /// exp2(n * x) for pow(2.0 ** n, x); exp10(x) for pow(10.0, x); 1291 /// exp2(log2(n) * x) for pow(n, x). 1292 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) { 1293 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1294 AttributeList Attrs = Pow->getCalledFunction()->getAttributes(); 1295 Module *Mod = Pow->getModule(); 1296 Type *Ty = Pow->getType(); 1297 bool Ignored; 1298 1299 // Evaluate special cases related to a nested function as the base. 1300 1301 // pow(exp(x), y) -> exp(x * y) 1302 // pow(exp2(x), y) -> exp2(x * y) 1303 // If exp{,2}() is used only once, it is better to fold two transcendental 1304 // math functions into one. If used again, exp{,2}() would still have to be 1305 // called with the original argument, then keep both original transcendental 1306 // functions. However, this transformation is only safe with fully relaxed 1307 // math semantics, since, besides rounding differences, it changes overflow 1308 // and underflow behavior quite dramatically. For example: 1309 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1310 // Whereas: 1311 // exp(1000 * 0.001) = exp(1) 1312 // TODO: Loosen the requirement for fully relaxed math semantics. 1313 // TODO: Handle exp10() when more targets have it available. 1314 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1315 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1316 LibFunc LibFn; 1317 1318 Function *CalleeFn = BaseFn->getCalledFunction(); 1319 if (CalleeFn && 1320 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1321 StringRef ExpName; 1322 Intrinsic::ID ID; 1323 Value *ExpFn; 1324 LibFunc LibFnFloat; 1325 LibFunc LibFnDouble; 1326 LibFunc LibFnLongDouble; 1327 1328 switch (LibFn) { 1329 default: 1330 return nullptr; 1331 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1332 ExpName = TLI->getName(LibFunc_exp); 1333 ID = Intrinsic::exp; 1334 LibFnFloat = LibFunc_expf; 1335 LibFnDouble = LibFunc_exp; 1336 LibFnLongDouble = LibFunc_expl; 1337 break; 1338 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1339 ExpName = TLI->getName(LibFunc_exp2); 1340 ID = Intrinsic::exp2; 1341 LibFnFloat = LibFunc_exp2f; 1342 LibFnDouble = LibFunc_exp2; 1343 LibFnLongDouble = LibFunc_exp2l; 1344 break; 1345 } 1346 1347 // Create new exp{,2}() with the product as its argument. 1348 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1349 ExpFn = BaseFn->doesNotAccessMemory() 1350 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1351 FMul, ExpName) 1352 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1353 LibFnLongDouble, B, 1354 BaseFn->getAttributes()); 1355 1356 // Since the new exp{,2}() is different from the original one, dead code 1357 // elimination cannot be trusted to remove it, since it may have side 1358 // effects (e.g., errno). When the only consumer for the original 1359 // exp{,2}() is pow(), then it has to be explicitly erased. 1360 BaseFn->replaceAllUsesWith(ExpFn); 1361 eraseFromParent(BaseFn); 1362 1363 return ExpFn; 1364 } 1365 } 1366 1367 // Evaluate special cases related to a constant base. 1368 1369 const APFloat *BaseF; 1370 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1371 return nullptr; 1372 1373 // pow(2.0 ** n, x) -> exp2(n * x) 1374 if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1375 APFloat BaseR = APFloat(1.0); 1376 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1377 BaseR = BaseR / *BaseF; 1378 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1379 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1380 APSInt NI(64, false); 1381 if ((IsInteger || IsReciprocal) && 1382 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1383 APFloat::opOK && 1384 NI > 1 && NI.isPowerOf2()) { 1385 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1386 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1387 if (Pow->doesNotAccessMemory()) 1388 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1389 FMul, "exp2"); 1390 else 1391 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1392 LibFunc_exp2l, B, Attrs); 1393 } 1394 } 1395 1396 // pow(10.0, x) -> exp10(x) 1397 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1398 if (match(Base, m_SpecificFP(10.0)) && 1399 hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1400 return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f, 1401 LibFunc_exp10l, B, Attrs); 1402 1403 // pow(n, x) -> exp2(log2(n) * x) 1404 if (Pow->hasOneUse() && Pow->hasApproxFunc() && Pow->hasNoNaNs() && 1405 Pow->hasNoInfs() && BaseF->isNormal() && !BaseF->isNegative()) { 1406 Value *Log = nullptr; 1407 if (Ty->isFloatTy()) 1408 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 1409 else if (Ty->isDoubleTy()) 1410 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 1411 1412 if (Log) { 1413 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 1414 if (Pow->doesNotAccessMemory()) 1415 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1416 FMul, "exp2"); 1417 else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) 1418 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1419 LibFunc_exp2l, B, Attrs); 1420 } 1421 } 1422 1423 return nullptr; 1424 } 1425 1426 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1427 Module *M, IRBuilder<> &B, 1428 const TargetLibraryInfo *TLI) { 1429 // If errno is never set, then use the intrinsic for sqrt(). 1430 if (NoErrno) { 1431 Function *SqrtFn = 1432 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1433 return B.CreateCall(SqrtFn, V, "sqrt"); 1434 } 1435 1436 // Otherwise, use the libcall for sqrt(). 1437 if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) 1438 // TODO: We also should check that the target can in fact lower the sqrt() 1439 // libcall. We currently have no way to ask this question, so we ask if 1440 // the target has a sqrt() libcall, which is not exactly the same. 1441 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1442 LibFunc_sqrtl, B, Attrs); 1443 1444 return nullptr; 1445 } 1446 1447 /// Use square root in place of pow(x, +/-0.5). 1448 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) { 1449 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1450 AttributeList Attrs = Pow->getCalledFunction()->getAttributes(); 1451 Module *Mod = Pow->getModule(); 1452 Type *Ty = Pow->getType(); 1453 1454 const APFloat *ExpoF; 1455 if (!match(Expo, m_APFloat(ExpoF)) || 1456 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1457 return nullptr; 1458 1459 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1460 if (!Sqrt) 1461 return nullptr; 1462 1463 // Handle signed zero base by expanding to fabs(sqrt(x)). 1464 if (!Pow->hasNoSignedZeros()) { 1465 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1466 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1467 } 1468 1469 // Handle non finite base by expanding to 1470 // (x == -infinity ? +infinity : sqrt(x)). 1471 if (!Pow->hasNoInfs()) { 1472 Value *PosInf = ConstantFP::getInfinity(Ty), 1473 *NegInf = ConstantFP::getInfinity(Ty, true); 1474 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1475 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1476 } 1477 1478 // If the exponent is negative, then get the reciprocal. 1479 if (ExpoF->isNegative()) 1480 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1481 1482 return Sqrt; 1483 } 1484 1485 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1486 IRBuilder<> &B) { 1487 Value *Args[] = {Base, Expo}; 1488 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType()); 1489 return B.CreateCall(F, Args); 1490 } 1491 1492 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) { 1493 Value *Base = Pow->getArgOperand(0); 1494 Value *Expo = Pow->getArgOperand(1); 1495 Function *Callee = Pow->getCalledFunction(); 1496 StringRef Name = Callee->getName(); 1497 Type *Ty = Pow->getType(); 1498 Module *M = Pow->getModule(); 1499 Value *Shrunk = nullptr; 1500 bool AllowApprox = Pow->hasApproxFunc(); 1501 bool Ignored; 1502 1503 // Bail out if simplifying libcalls to pow() is disabled. 1504 if (!hasFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl)) 1505 return nullptr; 1506 1507 // Propagate the math semantics from the call to any created instructions. 1508 IRBuilder<>::FastMathFlagGuard Guard(B); 1509 B.setFastMathFlags(Pow->getFastMathFlags()); 1510 1511 // Shrink pow() to powf() if the arguments are single precision, 1512 // unless the result is expected to be double precision. 1513 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 1514 hasFloatVersion(Name)) 1515 Shrunk = optimizeBinaryDoubleFP(Pow, B, true); 1516 1517 // Evaluate special cases related to the base. 1518 1519 // pow(1.0, x) -> 1.0 1520 if (match(Base, m_FPOne())) 1521 return Base; 1522 1523 if (Value *Exp = replacePowWithExp(Pow, B)) 1524 return Exp; 1525 1526 // Evaluate special cases related to the exponent. 1527 1528 // pow(x, -1.0) -> 1.0 / x 1529 if (match(Expo, m_SpecificFP(-1.0))) 1530 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1531 1532 // pow(x, 0.0) -> 1.0 1533 if (match(Expo, m_SpecificFP(0.0))) 1534 return ConstantFP::get(Ty, 1.0); 1535 1536 // pow(x, 1.0) -> x 1537 if (match(Expo, m_FPOne())) 1538 return Base; 1539 1540 // pow(x, 2.0) -> x * x 1541 if (match(Expo, m_SpecificFP(2.0))) 1542 return B.CreateFMul(Base, Base, "square"); 1543 1544 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1545 return Sqrt; 1546 1547 // pow(x, n) -> x * x * x * ... 1548 const APFloat *ExpoF; 1549 if (AllowApprox && match(Expo, m_APFloat(ExpoF))) { 1550 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1551 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1552 // additional fmul. 1553 // TODO: This whole transformation should be backend specific (e.g. some 1554 // backends might prefer libcalls or the limit for the exponent might 1555 // be different) and it should also consider optimizing for size. 1556 APFloat LimF(ExpoF->getSemantics(), 33.0), 1557 ExpoA(abs(*ExpoF)); 1558 if (ExpoA.compare(LimF) == APFloat::cmpLessThan) { 1559 // This transformation applies to integer or integer+0.5 exponents only. 1560 // For integer+0.5, we create a sqrt(Base) call. 1561 Value *Sqrt = nullptr; 1562 if (!ExpoA.isInteger()) { 1563 APFloat Expo2 = ExpoA; 1564 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1565 // is no floating point exception and the result is an integer, then 1566 // ExpoA == integer + 0.5 1567 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1568 return nullptr; 1569 1570 if (!Expo2.isInteger()) 1571 return nullptr; 1572 1573 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1574 Pow->doesNotAccessMemory(), M, B, TLI); 1575 } 1576 1577 // We will memoize intermediate products of the Addition Chain. 1578 Value *InnerChain[33] = {nullptr}; 1579 InnerChain[1] = Base; 1580 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1581 1582 // We cannot readily convert a non-double type (like float) to a double. 1583 // So we first convert it to something which could be converted to double. 1584 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1585 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1586 1587 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1588 if (Sqrt) 1589 FMul = B.CreateFMul(FMul, Sqrt); 1590 1591 // If the exponent is negative, then get the reciprocal. 1592 if (ExpoF->isNegative()) 1593 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1594 1595 return FMul; 1596 } 1597 1598 APSInt IntExpo(32, /*isUnsigned=*/false); 1599 // powf(x, n) -> powi(x, n) if n is a constant signed integer value 1600 if (ExpoF->isInteger() && 1601 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 1602 APFloat::opOK) { 1603 return createPowWithIntegerExponent( 1604 Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B); 1605 } 1606 } 1607 1608 // powf(x, itofp(y)) -> powi(x, y) 1609 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 1610 Value *IntExpo = cast<Instruction>(Expo)->getOperand(0); 1611 Value *NewExpo = nullptr; 1612 unsigned BitWidth = IntExpo->getType()->getPrimitiveSizeInBits(); 1613 if (isa<SIToFPInst>(Expo) && BitWidth == 32) 1614 NewExpo = IntExpo; 1615 else if (BitWidth < 32) 1616 NewExpo = isa<SIToFPInst>(Expo) ? B.CreateSExt(IntExpo, B.getInt32Ty()) 1617 : B.CreateZExt(IntExpo, B.getInt32Ty()); 1618 if (NewExpo) 1619 return createPowWithIntegerExponent(Base, NewExpo, M, B); 1620 } 1621 1622 return Shrunk; 1623 } 1624 1625 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { 1626 Function *Callee = CI->getCalledFunction(); 1627 StringRef Name = Callee->getName(); 1628 Value *Ret = nullptr; 1629 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 1630 hasFloatVersion(Name)) 1631 Ret = optimizeUnaryDoubleFP(CI, B, true); 1632 1633 Type *Ty = CI->getType(); 1634 Value *Op = CI->getArgOperand(0); 1635 1636 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 1637 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 1638 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 1639 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1640 Instruction *OpC = cast<Instruction>(Op); 1641 Value *Exp = OpC->getOperand(0); 1642 unsigned BitWidth = Exp->getType()->getPrimitiveSizeInBits(); 1643 1644 if (BitWidth < 32 || 1645 (BitWidth == 32 && isa<SIToFPInst>(Op))) { 1646 Exp = isa<SIToFPInst>(Op) ? B.CreateSExt(Exp, B.getInt32Ty()) 1647 : B.CreateZExt(Exp, B.getInt32Ty()); 1648 1649 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 1650 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1651 B, CI->getCalledFunction()->getAttributes()); 1652 } 1653 } 1654 return Ret; 1655 } 1656 1657 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { 1658 // If we can shrink the call to a float function rather than a double 1659 // function, do that first. 1660 Function *Callee = CI->getCalledFunction(); 1661 StringRef Name = Callee->getName(); 1662 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1663 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1664 return Ret; 1665 1666 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 1667 // the intrinsics for improved optimization (for example, vectorization). 1668 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 1669 // From the C standard draft WG14/N1256: 1670 // "Ideally, fmax would be sensitive to the sign of zero, for example 1671 // fmax(-0.0, +0.0) would return +0; however, implementation in software 1672 // might be impractical." 1673 IRBuilder<>::FastMathFlagGuard Guard(B); 1674 FastMathFlags FMF = CI->getFastMathFlags(); 1675 FMF.setNoSignedZeros(); 1676 B.setFastMathFlags(FMF); 1677 1678 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 1679 : Intrinsic::maxnum; 1680 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 1681 return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) }); 1682 } 1683 1684 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { 1685 Function *Callee = CI->getCalledFunction(); 1686 Value *Ret = nullptr; 1687 StringRef Name = Callee->getName(); 1688 if (UnsafeFPShrink && hasFloatVersion(Name)) 1689 Ret = optimizeUnaryDoubleFP(CI, B, true); 1690 1691 if (!CI->isFast()) 1692 return Ret; 1693 Value *Op1 = CI->getArgOperand(0); 1694 auto *OpC = dyn_cast<CallInst>(Op1); 1695 1696 // The earlier call must also be 'fast' in order to do these transforms. 1697 if (!OpC || !OpC->isFast()) 1698 return Ret; 1699 1700 // log(pow(x,y)) -> y*log(x) 1701 // This is only applicable to log, log2, log10. 1702 if (Name != "log" && Name != "log2" && Name != "log10") 1703 return Ret; 1704 1705 IRBuilder<>::FastMathFlagGuard Guard(B); 1706 FastMathFlags FMF; 1707 FMF.setFast(); 1708 B.setFastMathFlags(FMF); 1709 1710 LibFunc Func; 1711 Function *F = OpC->getCalledFunction(); 1712 if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1713 Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow)) 1714 return B.CreateFMul(OpC->getArgOperand(1), 1715 emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, 1716 Callee->getAttributes()), "mul"); 1717 1718 // log(exp2(y)) -> y*log(2) 1719 if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && 1720 TLI->has(Func) && Func == LibFunc_exp2) 1721 return B.CreateFMul( 1722 OpC->getArgOperand(0), 1723 emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), 1724 Callee->getName(), B, Callee->getAttributes()), 1725 "logmul"); 1726 return Ret; 1727 } 1728 1729 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { 1730 Function *Callee = CI->getCalledFunction(); 1731 Value *Ret = nullptr; 1732 // TODO: Once we have a way (other than checking for the existince of the 1733 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 1734 // condition below. 1735 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 1736 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1737 Ret = optimizeUnaryDoubleFP(CI, B, true); 1738 1739 if (!CI->isFast()) 1740 return Ret; 1741 1742 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1743 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 1744 return Ret; 1745 1746 // We're looking for a repeated factor in a multiplication tree, 1747 // so we can do this fold: sqrt(x * x) -> fabs(x); 1748 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 1749 Value *Op0 = I->getOperand(0); 1750 Value *Op1 = I->getOperand(1); 1751 Value *RepeatOp = nullptr; 1752 Value *OtherOp = nullptr; 1753 if (Op0 == Op1) { 1754 // Simple match: the operands of the multiply are identical. 1755 RepeatOp = Op0; 1756 } else { 1757 // Look for a more complicated pattern: one of the operands is itself 1758 // a multiply, so search for a common factor in that multiply. 1759 // Note: We don't bother looking any deeper than this first level or for 1760 // variations of this pattern because instcombine's visitFMUL and/or the 1761 // reassociation pass should give us this form. 1762 Value *OtherMul0, *OtherMul1; 1763 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1764 // Pattern: sqrt((x * y) * z) 1765 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 1766 // Matched: sqrt((x * x) * z) 1767 RepeatOp = OtherMul0; 1768 OtherOp = Op1; 1769 } 1770 } 1771 } 1772 if (!RepeatOp) 1773 return Ret; 1774 1775 // Fast math flags for any created instructions should match the sqrt 1776 // and multiply. 1777 IRBuilder<>::FastMathFlagGuard Guard(B); 1778 B.setFastMathFlags(I->getFastMathFlags()); 1779 1780 // If we found a repeated factor, hoist it out of the square root and 1781 // replace it with the fabs of that factor. 1782 Module *M = Callee->getParent(); 1783 Type *ArgType = I->getType(); 1784 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 1785 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 1786 if (OtherOp) { 1787 // If we found a non-repeated factor, we still need to get its square 1788 // root. We then multiply that by the value that was simplified out 1789 // of the square root calculation. 1790 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 1791 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 1792 return B.CreateFMul(FabsCall, SqrtCall); 1793 } 1794 return FabsCall; 1795 } 1796 1797 // TODO: Generalize to handle any trig function and its inverse. 1798 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { 1799 Function *Callee = CI->getCalledFunction(); 1800 Value *Ret = nullptr; 1801 StringRef Name = Callee->getName(); 1802 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 1803 Ret = optimizeUnaryDoubleFP(CI, B, true); 1804 1805 Value *Op1 = CI->getArgOperand(0); 1806 auto *OpC = dyn_cast<CallInst>(Op1); 1807 if (!OpC) 1808 return Ret; 1809 1810 // Both calls must be 'fast' in order to remove them. 1811 if (!CI->isFast() || !OpC->isFast()) 1812 return Ret; 1813 1814 // tan(atan(x)) -> x 1815 // tanf(atanf(x)) -> x 1816 // tanl(atanl(x)) -> x 1817 LibFunc Func; 1818 Function *F = OpC->getCalledFunction(); 1819 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 1820 ((Func == LibFunc_atan && Callee->getName() == "tan") || 1821 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 1822 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 1823 Ret = OpC->getArgOperand(0); 1824 return Ret; 1825 } 1826 1827 static bool isTrigLibCall(CallInst *CI) { 1828 // We can only hope to do anything useful if we can ignore things like errno 1829 // and floating-point exceptions. 1830 // We already checked the prototype. 1831 return CI->hasFnAttr(Attribute::NoUnwind) && 1832 CI->hasFnAttr(Attribute::ReadNone); 1833 } 1834 1835 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, 1836 bool UseFloat, Value *&Sin, Value *&Cos, 1837 Value *&SinCos) { 1838 Type *ArgTy = Arg->getType(); 1839 Type *ResTy; 1840 StringRef Name; 1841 1842 Triple T(OrigCallee->getParent()->getTargetTriple()); 1843 if (UseFloat) { 1844 Name = "__sincospif_stret"; 1845 1846 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 1847 // x86_64 can't use {float, float} since that would be returned in both 1848 // xmm0 and xmm1, which isn't what a real struct would do. 1849 ResTy = T.getArch() == Triple::x86_64 1850 ? static_cast<Type *>(VectorType::get(ArgTy, 2)) 1851 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 1852 } else { 1853 Name = "__sincospi_stret"; 1854 ResTy = StructType::get(ArgTy, ArgTy); 1855 } 1856 1857 Module *M = OrigCallee->getParent(); 1858 FunctionCallee Callee = 1859 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); 1860 1861 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 1862 // If the argument is an instruction, it must dominate all uses so put our 1863 // sincos call there. 1864 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 1865 } else { 1866 // Otherwise (e.g. for a constant) the beginning of the function is as 1867 // good a place as any. 1868 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 1869 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 1870 } 1871 1872 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 1873 1874 if (SinCos->getType()->isStructTy()) { 1875 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 1876 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 1877 } else { 1878 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 1879 "sinpi"); 1880 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 1881 "cospi"); 1882 } 1883 } 1884 1885 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { 1886 // Make sure the prototype is as expected, otherwise the rest of the 1887 // function is probably invalid and likely to abort. 1888 if (!isTrigLibCall(CI)) 1889 return nullptr; 1890 1891 Value *Arg = CI->getArgOperand(0); 1892 SmallVector<CallInst *, 1> SinCalls; 1893 SmallVector<CallInst *, 1> CosCalls; 1894 SmallVector<CallInst *, 1> SinCosCalls; 1895 1896 bool IsFloat = Arg->getType()->isFloatTy(); 1897 1898 // Look for all compatible sinpi, cospi and sincospi calls with the same 1899 // argument. If there are enough (in some sense) we can make the 1900 // substitution. 1901 Function *F = CI->getFunction(); 1902 for (User *U : Arg->users()) 1903 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 1904 1905 // It's only worthwhile if both sinpi and cospi are actually used. 1906 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) 1907 return nullptr; 1908 1909 Value *Sin, *Cos, *SinCos; 1910 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 1911 1912 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 1913 Value *Res) { 1914 for (CallInst *C : Calls) 1915 replaceAllUsesWith(C, Res); 1916 }; 1917 1918 replaceTrigInsts(SinCalls, Sin); 1919 replaceTrigInsts(CosCalls, Cos); 1920 replaceTrigInsts(SinCosCalls, SinCos); 1921 1922 return nullptr; 1923 } 1924 1925 void LibCallSimplifier::classifyArgUse( 1926 Value *Val, Function *F, bool IsFloat, 1927 SmallVectorImpl<CallInst *> &SinCalls, 1928 SmallVectorImpl<CallInst *> &CosCalls, 1929 SmallVectorImpl<CallInst *> &SinCosCalls) { 1930 CallInst *CI = dyn_cast<CallInst>(Val); 1931 1932 if (!CI) 1933 return; 1934 1935 // Don't consider calls in other functions. 1936 if (CI->getFunction() != F) 1937 return; 1938 1939 Function *Callee = CI->getCalledFunction(); 1940 LibFunc Func; 1941 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 1942 !isTrigLibCall(CI)) 1943 return; 1944 1945 if (IsFloat) { 1946 if (Func == LibFunc_sinpif) 1947 SinCalls.push_back(CI); 1948 else if (Func == LibFunc_cospif) 1949 CosCalls.push_back(CI); 1950 else if (Func == LibFunc_sincospif_stret) 1951 SinCosCalls.push_back(CI); 1952 } else { 1953 if (Func == LibFunc_sinpi) 1954 SinCalls.push_back(CI); 1955 else if (Func == LibFunc_cospi) 1956 CosCalls.push_back(CI); 1957 else if (Func == LibFunc_sincospi_stret) 1958 SinCosCalls.push_back(CI); 1959 } 1960 } 1961 1962 //===----------------------------------------------------------------------===// 1963 // Integer Library Call Optimizations 1964 //===----------------------------------------------------------------------===// 1965 1966 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { 1967 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 1968 Value *Op = CI->getArgOperand(0); 1969 Type *ArgType = Op->getType(); 1970 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1971 Intrinsic::cttz, ArgType); 1972 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 1973 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 1974 V = B.CreateIntCast(V, B.getInt32Ty(), false); 1975 1976 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 1977 return B.CreateSelect(Cond, V, B.getInt32(0)); 1978 } 1979 1980 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) { 1981 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 1982 Value *Op = CI->getArgOperand(0); 1983 Type *ArgType = Op->getType(); 1984 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 1985 Intrinsic::ctlz, ArgType); 1986 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 1987 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 1988 V); 1989 return B.CreateIntCast(V, CI->getType(), false); 1990 } 1991 1992 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { 1993 // abs(x) -> x <s 0 ? -x : x 1994 // The negation has 'nsw' because abs of INT_MIN is undefined. 1995 Value *X = CI->getArgOperand(0); 1996 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 1997 Value *NegX = B.CreateNSWNeg(X, "neg"); 1998 return B.CreateSelect(IsNeg, NegX, X); 1999 } 2000 2001 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { 2002 // isdigit(c) -> (c-'0') <u 10 2003 Value *Op = CI->getArgOperand(0); 2004 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 2005 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 2006 return B.CreateZExt(Op, CI->getType()); 2007 } 2008 2009 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { 2010 // isascii(c) -> c <u 128 2011 Value *Op = CI->getArgOperand(0); 2012 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 2013 return B.CreateZExt(Op, CI->getType()); 2014 } 2015 2016 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { 2017 // toascii(c) -> c & 0x7f 2018 return B.CreateAnd(CI->getArgOperand(0), 2019 ConstantInt::get(CI->getType(), 0x7F)); 2020 } 2021 2022 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) { 2023 StringRef Str; 2024 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2025 return nullptr; 2026 2027 return convertStrToNumber(CI, Str, 10); 2028 } 2029 2030 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) { 2031 StringRef Str; 2032 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2033 return nullptr; 2034 2035 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 2036 return nullptr; 2037 2038 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2039 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 2040 } 2041 2042 return nullptr; 2043 } 2044 2045 //===----------------------------------------------------------------------===// 2046 // Formatting and IO Library Call Optimizations 2047 //===----------------------------------------------------------------------===// 2048 2049 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2050 2051 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, 2052 int StreamArg) { 2053 Function *Callee = CI->getCalledFunction(); 2054 // Error reporting calls should be cold, mark them as such. 2055 // This applies even to non-builtin calls: it is only a hint and applies to 2056 // functions that the frontend might not understand as builtins. 2057 2058 // This heuristic was suggested in: 2059 // Improving Static Branch Prediction in a Compiler 2060 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2061 // Proceedings of PACT'98, Oct. 1998, IEEE 2062 if (!CI->hasFnAttr(Attribute::Cold) && 2063 isReportingError(Callee, CI, StreamArg)) { 2064 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 2065 } 2066 2067 return nullptr; 2068 } 2069 2070 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2071 if (!Callee || !Callee->isDeclaration()) 2072 return false; 2073 2074 if (StreamArg < 0) 2075 return true; 2076 2077 // These functions might be considered cold, but only if their stream 2078 // argument is stderr. 2079 2080 if (StreamArg >= (int)CI->getNumArgOperands()) 2081 return false; 2082 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2083 if (!LI) 2084 return false; 2085 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2086 if (!GV || !GV->isDeclaration()) 2087 return false; 2088 return GV->getName() == "stderr"; 2089 } 2090 2091 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { 2092 // Check for a fixed format string. 2093 StringRef FormatStr; 2094 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2095 return nullptr; 2096 2097 // Empty format string -> noop. 2098 if (FormatStr.empty()) // Tolerate printf's declared void. 2099 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2100 2101 // Do not do any of the following transformations if the printf return value 2102 // is used, in general the printf return value is not compatible with either 2103 // putchar() or puts(). 2104 if (!CI->use_empty()) 2105 return nullptr; 2106 2107 // printf("x") -> putchar('x'), even for "%" and "%%". 2108 if (FormatStr.size() == 1 || FormatStr == "%%") 2109 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 2110 2111 // printf("%s", "a") --> putchar('a') 2112 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 2113 StringRef ChrStr; 2114 if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) 2115 return nullptr; 2116 if (ChrStr.size() != 1) 2117 return nullptr; 2118 return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); 2119 } 2120 2121 // printf("foo\n") --> puts("foo") 2122 if (FormatStr[FormatStr.size() - 1] == '\n' && 2123 FormatStr.find('%') == StringRef::npos) { // No format characters. 2124 // Create a string literal with no \n on it. We expect the constant merge 2125 // pass to be run after this pass, to merge duplicate strings. 2126 FormatStr = FormatStr.drop_back(); 2127 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2128 return emitPutS(GV, B, TLI); 2129 } 2130 2131 // Optimize specific format strings. 2132 // printf("%c", chr) --> putchar(chr) 2133 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 2134 CI->getArgOperand(1)->getType()->isIntegerTy()) 2135 return emitPutChar(CI->getArgOperand(1), B, TLI); 2136 2137 // printf("%s\n", str) --> puts(str) 2138 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 2139 CI->getArgOperand(1)->getType()->isPointerTy()) 2140 return emitPutS(CI->getArgOperand(1), B, TLI); 2141 return nullptr; 2142 } 2143 2144 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { 2145 2146 Function *Callee = CI->getCalledFunction(); 2147 FunctionType *FT = Callee->getFunctionType(); 2148 if (Value *V = optimizePrintFString(CI, B)) { 2149 return V; 2150 } 2151 2152 // printf(format, ...) -> iprintf(format, ...) if no floating point 2153 // arguments. 2154 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2155 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2156 FunctionCallee IPrintFFn = 2157 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2158 CallInst *New = cast<CallInst>(CI->clone()); 2159 New->setCalledFunction(IPrintFFn); 2160 B.Insert(New); 2161 return New; 2162 } 2163 2164 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2165 // arguments. 2166 if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) { 2167 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2168 auto SmallPrintFFn = 2169 M->getOrInsertFunction(TLI->getName(LibFunc_small_printf), 2170 FT, Callee->getAttributes()); 2171 CallInst *New = cast<CallInst>(CI->clone()); 2172 New->setCalledFunction(SmallPrintFFn); 2173 B.Insert(New); 2174 return New; 2175 } 2176 2177 return nullptr; 2178 } 2179 2180 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { 2181 // Check for a fixed format string. 2182 StringRef FormatStr; 2183 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2184 return nullptr; 2185 2186 // If we just have a format string (nothing else crazy) transform it. 2187 if (CI->getNumArgOperands() == 2) { 2188 // Make sure there's no % in the constant array. We could try to handle 2189 // %% -> % in the future if we cared. 2190 if (FormatStr.find('%') != StringRef::npos) 2191 return nullptr; // we found a format specifier, bail out. 2192 2193 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2194 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2195 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2196 FormatStr.size() + 1)); // Copy the null byte. 2197 return ConstantInt::get(CI->getType(), FormatStr.size()); 2198 } 2199 2200 // The remaining optimizations require the format string to be "%s" or "%c" 2201 // and have an extra operand. 2202 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2203 CI->getNumArgOperands() < 3) 2204 return nullptr; 2205 2206 // Decode the second character of the format string. 2207 if (FormatStr[1] == 'c') { 2208 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2209 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2210 return nullptr; 2211 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2212 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2213 B.CreateStore(V, Ptr); 2214 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2215 B.CreateStore(B.getInt8(0), Ptr); 2216 2217 return ConstantInt::get(CI->getType(), 1); 2218 } 2219 2220 if (FormatStr[1] == 's') { 2221 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2222 // strlen(str)+1) 2223 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2224 return nullptr; 2225 2226 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2227 if (!Len) 2228 return nullptr; 2229 Value *IncLen = 2230 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2231 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen); 2232 2233 // The sprintf result is the unincremented number of bytes in the string. 2234 return B.CreateIntCast(Len, CI->getType(), false); 2235 } 2236 return nullptr; 2237 } 2238 2239 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { 2240 Function *Callee = CI->getCalledFunction(); 2241 FunctionType *FT = Callee->getFunctionType(); 2242 if (Value *V = optimizeSPrintFString(CI, B)) { 2243 return V; 2244 } 2245 2246 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2247 // point arguments. 2248 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2249 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2250 FunctionCallee SIPrintFFn = 2251 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2252 CallInst *New = cast<CallInst>(CI->clone()); 2253 New->setCalledFunction(SIPrintFFn); 2254 B.Insert(New); 2255 return New; 2256 } 2257 2258 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2259 // floating point arguments. 2260 if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) { 2261 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2262 auto SmallSPrintFFn = 2263 M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf), 2264 FT, Callee->getAttributes()); 2265 CallInst *New = cast<CallInst>(CI->clone()); 2266 New->setCalledFunction(SmallSPrintFFn); 2267 B.Insert(New); 2268 return New; 2269 } 2270 2271 return nullptr; 2272 } 2273 2274 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) { 2275 // Check for a fixed format string. 2276 StringRef FormatStr; 2277 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2278 return nullptr; 2279 2280 // Check for size 2281 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2282 if (!Size) 2283 return nullptr; 2284 2285 uint64_t N = Size->getZExtValue(); 2286 2287 // If we just have a format string (nothing else crazy) transform it. 2288 if (CI->getNumArgOperands() == 3) { 2289 // Make sure there's no % in the constant array. We could try to handle 2290 // %% -> % in the future if we cared. 2291 if (FormatStr.find('%') != StringRef::npos) 2292 return nullptr; // we found a format specifier, bail out. 2293 2294 if (N == 0) 2295 return ConstantInt::get(CI->getType(), FormatStr.size()); 2296 else if (N < FormatStr.size() + 1) 2297 return nullptr; 2298 2299 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2300 // strlen(fmt)+1) 2301 B.CreateMemCpy( 2302 CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, 2303 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2304 FormatStr.size() + 1)); // Copy the null byte. 2305 return ConstantInt::get(CI->getType(), FormatStr.size()); 2306 } 2307 2308 // The remaining optimizations require the format string to be "%s" or "%c" 2309 // and have an extra operand. 2310 if (FormatStr.size() == 2 && FormatStr[0] == '%' && 2311 CI->getNumArgOperands() == 4) { 2312 2313 // Decode the second character of the format string. 2314 if (FormatStr[1] == 'c') { 2315 if (N == 0) 2316 return ConstantInt::get(CI->getType(), 1); 2317 else if (N == 1) 2318 return nullptr; 2319 2320 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2321 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2322 return nullptr; 2323 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2324 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2325 B.CreateStore(V, Ptr); 2326 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2327 B.CreateStore(B.getInt8(0), Ptr); 2328 2329 return ConstantInt::get(CI->getType(), 1); 2330 } 2331 2332 if (FormatStr[1] == 's') { 2333 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2334 StringRef Str; 2335 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2336 return nullptr; 2337 2338 if (N == 0) 2339 return ConstantInt::get(CI->getType(), Str.size()); 2340 else if (N < Str.size() + 1) 2341 return nullptr; 2342 2343 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(3), 1, 2344 ConstantInt::get(CI->getType(), Str.size() + 1)); 2345 2346 // The snprintf result is the unincremented number of bytes in the string. 2347 return ConstantInt::get(CI->getType(), Str.size()); 2348 } 2349 } 2350 return nullptr; 2351 } 2352 2353 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) { 2354 if (Value *V = optimizeSnPrintFString(CI, B)) { 2355 return V; 2356 } 2357 2358 return nullptr; 2359 } 2360 2361 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { 2362 optimizeErrorReporting(CI, B, 0); 2363 2364 // All the optimizations depend on the format string. 2365 StringRef FormatStr; 2366 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2367 return nullptr; 2368 2369 // Do not do any of the following transformations if the fprintf return 2370 // value is used, in general the fprintf return value is not compatible 2371 // with fwrite(), fputc() or fputs(). 2372 if (!CI->use_empty()) 2373 return nullptr; 2374 2375 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2376 if (CI->getNumArgOperands() == 2) { 2377 // Could handle %% -> % if we cared. 2378 if (FormatStr.find('%') != StringRef::npos) 2379 return nullptr; // We found a format specifier. 2380 2381 return emitFWrite( 2382 CI->getArgOperand(1), 2383 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 2384 CI->getArgOperand(0), B, DL, TLI); 2385 } 2386 2387 // The remaining optimizations require the format string to be "%s" or "%c" 2388 // and have an extra operand. 2389 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2390 CI->getNumArgOperands() < 3) 2391 return nullptr; 2392 2393 // Decode the second character of the format string. 2394 if (FormatStr[1] == 'c') { 2395 // fprintf(F, "%c", chr) --> fputc(chr, F) 2396 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2397 return nullptr; 2398 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2399 } 2400 2401 if (FormatStr[1] == 's') { 2402 // fprintf(F, "%s", str) --> fputs(str, F) 2403 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2404 return nullptr; 2405 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2406 } 2407 return nullptr; 2408 } 2409 2410 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { 2411 Function *Callee = CI->getCalledFunction(); 2412 FunctionType *FT = Callee->getFunctionType(); 2413 if (Value *V = optimizeFPrintFString(CI, B)) { 2414 return V; 2415 } 2416 2417 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2418 // floating point arguments. 2419 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2420 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2421 FunctionCallee FIPrintFFn = 2422 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2423 CallInst *New = cast<CallInst>(CI->clone()); 2424 New->setCalledFunction(FIPrintFFn); 2425 B.Insert(New); 2426 return New; 2427 } 2428 2429 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2430 // 128-bit floating point arguments. 2431 if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) { 2432 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2433 auto SmallFPrintFFn = 2434 M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf), 2435 FT, Callee->getAttributes()); 2436 CallInst *New = cast<CallInst>(CI->clone()); 2437 New->setCalledFunction(SmallFPrintFFn); 2438 B.Insert(New); 2439 return New; 2440 } 2441 2442 return nullptr; 2443 } 2444 2445 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { 2446 optimizeErrorReporting(CI, B, 3); 2447 2448 // Get the element size and count. 2449 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2450 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2451 if (SizeC && CountC) { 2452 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2453 2454 // If this is writing zero records, remove the call (it's a noop). 2455 if (Bytes == 0) 2456 return ConstantInt::get(CI->getType(), 0); 2457 2458 // If this is writing one byte, turn it into fputc. 2459 // This optimisation is only valid, if the return value is unused. 2460 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2461 Value *Char = B.CreateLoad(B.getInt8Ty(), 2462 castToCStr(CI->getArgOperand(0), B), "char"); 2463 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2464 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2465 } 2466 } 2467 2468 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) 2469 return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2470 CI->getArgOperand(2), CI->getArgOperand(3), B, DL, 2471 TLI); 2472 2473 return nullptr; 2474 } 2475 2476 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { 2477 optimizeErrorReporting(CI, B, 1); 2478 2479 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2480 // requires more arguments and thus extra MOVs are required. 2481 bool OptForSize = CI->getFunction()->hasOptSize() || 2482 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 2483 if (OptForSize) 2484 return nullptr; 2485 2486 // Check if has any use 2487 if (!CI->use_empty()) { 2488 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) 2489 return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, 2490 TLI); 2491 else 2492 // We can't optimize if return value is used. 2493 return nullptr; 2494 } 2495 2496 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2497 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2498 if (!Len) 2499 return nullptr; 2500 2501 // Known to have no uses (see above). 2502 return emitFWrite( 2503 CI->getArgOperand(0), 2504 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2505 CI->getArgOperand(1), B, DL, TLI); 2506 } 2507 2508 Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) { 2509 optimizeErrorReporting(CI, B, 1); 2510 2511 if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) 2512 return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, 2513 TLI); 2514 2515 return nullptr; 2516 } 2517 2518 Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) { 2519 if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI)) 2520 return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI); 2521 2522 return nullptr; 2523 } 2524 2525 Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) { 2526 if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI)) 2527 return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2528 CI->getArgOperand(2), B, TLI); 2529 2530 return nullptr; 2531 } 2532 2533 Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) { 2534 if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) 2535 return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), 2536 CI->getArgOperand(2), CI->getArgOperand(3), B, DL, 2537 TLI); 2538 2539 return nullptr; 2540 } 2541 2542 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { 2543 if (!CI->use_empty()) 2544 return nullptr; 2545 2546 // Check for a constant string. 2547 // puts("") -> putchar('\n') 2548 StringRef Str; 2549 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 2550 return emitPutChar(B.getInt32('\n'), B, TLI); 2551 2552 return nullptr; 2553 } 2554 2555 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2556 LibFunc Func; 2557 SmallString<20> FloatFuncName = FuncName; 2558 FloatFuncName += 'f'; 2559 if (TLI->getLibFunc(FloatFuncName, Func)) 2560 return TLI->has(Func); 2561 return false; 2562 } 2563 2564 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2565 IRBuilder<> &Builder) { 2566 LibFunc Func; 2567 Function *Callee = CI->getCalledFunction(); 2568 // Check for string/memory library functions. 2569 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2570 // Make sure we never change the calling convention. 2571 assert((ignoreCallingConv(Func) || 2572 isCallingConvCCompatible(CI)) && 2573 "Optimizing string/memory libcall would change the calling convention"); 2574 switch (Func) { 2575 case LibFunc_strcat: 2576 return optimizeStrCat(CI, Builder); 2577 case LibFunc_strncat: 2578 return optimizeStrNCat(CI, Builder); 2579 case LibFunc_strchr: 2580 return optimizeStrChr(CI, Builder); 2581 case LibFunc_strrchr: 2582 return optimizeStrRChr(CI, Builder); 2583 case LibFunc_strcmp: 2584 return optimizeStrCmp(CI, Builder); 2585 case LibFunc_strncmp: 2586 return optimizeStrNCmp(CI, Builder); 2587 case LibFunc_strcpy: 2588 return optimizeStrCpy(CI, Builder); 2589 case LibFunc_stpcpy: 2590 return optimizeStpCpy(CI, Builder); 2591 case LibFunc_strncpy: 2592 return optimizeStrNCpy(CI, Builder); 2593 case LibFunc_strlen: 2594 return optimizeStrLen(CI, Builder); 2595 case LibFunc_strpbrk: 2596 return optimizeStrPBrk(CI, Builder); 2597 case LibFunc_strtol: 2598 case LibFunc_strtod: 2599 case LibFunc_strtof: 2600 case LibFunc_strtoul: 2601 case LibFunc_strtoll: 2602 case LibFunc_strtold: 2603 case LibFunc_strtoull: 2604 return optimizeStrTo(CI, Builder); 2605 case LibFunc_strspn: 2606 return optimizeStrSpn(CI, Builder); 2607 case LibFunc_strcspn: 2608 return optimizeStrCSpn(CI, Builder); 2609 case LibFunc_strstr: 2610 return optimizeStrStr(CI, Builder); 2611 case LibFunc_memchr: 2612 return optimizeMemChr(CI, Builder); 2613 case LibFunc_bcmp: 2614 return optimizeBCmp(CI, Builder); 2615 case LibFunc_memcmp: 2616 return optimizeMemCmp(CI, Builder); 2617 case LibFunc_memcpy: 2618 return optimizeMemCpy(CI, Builder); 2619 case LibFunc_memmove: 2620 return optimizeMemMove(CI, Builder); 2621 case LibFunc_memset: 2622 return optimizeMemSet(CI, Builder); 2623 case LibFunc_realloc: 2624 return optimizeRealloc(CI, Builder); 2625 case LibFunc_wcslen: 2626 return optimizeWcslen(CI, Builder); 2627 default: 2628 break; 2629 } 2630 } 2631 return nullptr; 2632 } 2633 2634 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2635 LibFunc Func, 2636 IRBuilder<> &Builder) { 2637 // Don't optimize calls that require strict floating point semantics. 2638 if (CI->isStrictFP()) 2639 return nullptr; 2640 2641 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 2642 return V; 2643 2644 switch (Func) { 2645 case LibFunc_sinpif: 2646 case LibFunc_sinpi: 2647 case LibFunc_cospif: 2648 case LibFunc_cospi: 2649 return optimizeSinCosPi(CI, Builder); 2650 case LibFunc_powf: 2651 case LibFunc_pow: 2652 case LibFunc_powl: 2653 return optimizePow(CI, Builder); 2654 case LibFunc_exp2l: 2655 case LibFunc_exp2: 2656 case LibFunc_exp2f: 2657 return optimizeExp2(CI, Builder); 2658 case LibFunc_fabsf: 2659 case LibFunc_fabs: 2660 case LibFunc_fabsl: 2661 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2662 case LibFunc_sqrtf: 2663 case LibFunc_sqrt: 2664 case LibFunc_sqrtl: 2665 return optimizeSqrt(CI, Builder); 2666 case LibFunc_log: 2667 case LibFunc_log10: 2668 case LibFunc_log1p: 2669 case LibFunc_log2: 2670 case LibFunc_logb: 2671 return optimizeLog(CI, Builder); 2672 case LibFunc_tan: 2673 case LibFunc_tanf: 2674 case LibFunc_tanl: 2675 return optimizeTan(CI, Builder); 2676 case LibFunc_ceil: 2677 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2678 case LibFunc_floor: 2679 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2680 case LibFunc_round: 2681 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2682 case LibFunc_nearbyint: 2683 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2684 case LibFunc_rint: 2685 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2686 case LibFunc_trunc: 2687 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2688 case LibFunc_acos: 2689 case LibFunc_acosh: 2690 case LibFunc_asin: 2691 case LibFunc_asinh: 2692 case LibFunc_atan: 2693 case LibFunc_atanh: 2694 case LibFunc_cbrt: 2695 case LibFunc_cosh: 2696 case LibFunc_exp: 2697 case LibFunc_exp10: 2698 case LibFunc_expm1: 2699 case LibFunc_cos: 2700 case LibFunc_sin: 2701 case LibFunc_sinh: 2702 case LibFunc_tanh: 2703 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 2704 return optimizeUnaryDoubleFP(CI, Builder, true); 2705 return nullptr; 2706 case LibFunc_copysign: 2707 if (hasFloatVersion(CI->getCalledFunction()->getName())) 2708 return optimizeBinaryDoubleFP(CI, Builder); 2709 return nullptr; 2710 case LibFunc_fminf: 2711 case LibFunc_fmin: 2712 case LibFunc_fminl: 2713 case LibFunc_fmaxf: 2714 case LibFunc_fmax: 2715 case LibFunc_fmaxl: 2716 return optimizeFMinFMax(CI, Builder); 2717 case LibFunc_cabs: 2718 case LibFunc_cabsf: 2719 case LibFunc_cabsl: 2720 return optimizeCAbs(CI, Builder); 2721 default: 2722 return nullptr; 2723 } 2724 } 2725 2726 Value *LibCallSimplifier::optimizeCall(CallInst *CI) { 2727 // TODO: Split out the code below that operates on FP calls so that 2728 // we can all non-FP calls with the StrictFP attribute to be 2729 // optimized. 2730 if (CI->isNoBuiltin()) 2731 return nullptr; 2732 2733 LibFunc Func; 2734 Function *Callee = CI->getCalledFunction(); 2735 2736 SmallVector<OperandBundleDef, 2> OpBundles; 2737 CI->getOperandBundlesAsDefs(OpBundles); 2738 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 2739 bool isCallingConvC = isCallingConvCCompatible(CI); 2740 2741 // Command-line parameter overrides instruction attribute. 2742 // This can't be moved to optimizeFloatingPointLibCall() because it may be 2743 // used by the intrinsic optimizations. 2744 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2745 UnsafeFPShrink = EnableUnsafeFPShrink; 2746 else if (isa<FPMathOperator>(CI) && CI->isFast()) 2747 UnsafeFPShrink = true; 2748 2749 // First, check for intrinsics. 2750 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 2751 if (!isCallingConvC) 2752 return nullptr; 2753 // The FP intrinsics have corresponding constrained versions so we don't 2754 // need to check for the StrictFP attribute here. 2755 switch (II->getIntrinsicID()) { 2756 case Intrinsic::pow: 2757 return optimizePow(CI, Builder); 2758 case Intrinsic::exp2: 2759 return optimizeExp2(CI, Builder); 2760 case Intrinsic::log: 2761 return optimizeLog(CI, Builder); 2762 case Intrinsic::sqrt: 2763 return optimizeSqrt(CI, Builder); 2764 // TODO: Use foldMallocMemset() with memset intrinsic. 2765 case Intrinsic::memset: 2766 return optimizeMemSet(CI, Builder, true); 2767 case Intrinsic::memcpy: 2768 return optimizeMemCpy(CI, Builder, true); 2769 case Intrinsic::memmove: 2770 return optimizeMemMove(CI, Builder, true); 2771 default: 2772 return nullptr; 2773 } 2774 } 2775 2776 // Also try to simplify calls to fortified library functions. 2777 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { 2778 // Try to further simplify the result. 2779 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 2780 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 2781 // Use an IR Builder from SimplifiedCI if available instead of CI 2782 // to guarantee we reach all uses we might replace later on. 2783 IRBuilder<> TmpBuilder(SimplifiedCI); 2784 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { 2785 // If we were able to further simplify, remove the now redundant call. 2786 SimplifiedCI->replaceAllUsesWith(V); 2787 eraseFromParent(SimplifiedCI); 2788 return V; 2789 } 2790 } 2791 return SimplifiedFortifiedCI; 2792 } 2793 2794 // Then check for known library functions. 2795 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2796 // We never change the calling convention. 2797 if (!ignoreCallingConv(Func) && !isCallingConvC) 2798 return nullptr; 2799 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 2800 return V; 2801 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 2802 return V; 2803 switch (Func) { 2804 case LibFunc_ffs: 2805 case LibFunc_ffsl: 2806 case LibFunc_ffsll: 2807 return optimizeFFS(CI, Builder); 2808 case LibFunc_fls: 2809 case LibFunc_flsl: 2810 case LibFunc_flsll: 2811 return optimizeFls(CI, Builder); 2812 case LibFunc_abs: 2813 case LibFunc_labs: 2814 case LibFunc_llabs: 2815 return optimizeAbs(CI, Builder); 2816 case LibFunc_isdigit: 2817 return optimizeIsDigit(CI, Builder); 2818 case LibFunc_isascii: 2819 return optimizeIsAscii(CI, Builder); 2820 case LibFunc_toascii: 2821 return optimizeToAscii(CI, Builder); 2822 case LibFunc_atoi: 2823 case LibFunc_atol: 2824 case LibFunc_atoll: 2825 return optimizeAtoi(CI, Builder); 2826 case LibFunc_strtol: 2827 case LibFunc_strtoll: 2828 return optimizeStrtol(CI, Builder); 2829 case LibFunc_printf: 2830 return optimizePrintF(CI, Builder); 2831 case LibFunc_sprintf: 2832 return optimizeSPrintF(CI, Builder); 2833 case LibFunc_snprintf: 2834 return optimizeSnPrintF(CI, Builder); 2835 case LibFunc_fprintf: 2836 return optimizeFPrintF(CI, Builder); 2837 case LibFunc_fwrite: 2838 return optimizeFWrite(CI, Builder); 2839 case LibFunc_fread: 2840 return optimizeFRead(CI, Builder); 2841 case LibFunc_fputs: 2842 return optimizeFPuts(CI, Builder); 2843 case LibFunc_fgets: 2844 return optimizeFGets(CI, Builder); 2845 case LibFunc_fputc: 2846 return optimizeFPutc(CI, Builder); 2847 case LibFunc_fgetc: 2848 return optimizeFGetc(CI, Builder); 2849 case LibFunc_puts: 2850 return optimizePuts(CI, Builder); 2851 case LibFunc_perror: 2852 return optimizeErrorReporting(CI, Builder); 2853 case LibFunc_vfprintf: 2854 case LibFunc_fiprintf: 2855 return optimizeErrorReporting(CI, Builder, 0); 2856 default: 2857 return nullptr; 2858 } 2859 } 2860 return nullptr; 2861 } 2862 2863 LibCallSimplifier::LibCallSimplifier( 2864 const DataLayout &DL, const TargetLibraryInfo *TLI, 2865 OptimizationRemarkEmitter &ORE, 2866 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 2867 function_ref<void(Instruction *, Value *)> Replacer, 2868 function_ref<void(Instruction *)> Eraser) 2869 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 2870 UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {} 2871 2872 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 2873 // Indirect through the replacer used in this instance. 2874 Replacer(I, With); 2875 } 2876 2877 void LibCallSimplifier::eraseFromParent(Instruction *I) { 2878 Eraser(I); 2879 } 2880 2881 // TODO: 2882 // Additional cases that we need to add to this file: 2883 // 2884 // cbrt: 2885 // * cbrt(expN(X)) -> expN(x/3) 2886 // * cbrt(sqrt(x)) -> pow(x,1/6) 2887 // * cbrt(cbrt(x)) -> pow(x,1/9) 2888 // 2889 // exp, expf, expl: 2890 // * exp(log(x)) -> x 2891 // 2892 // log, logf, logl: 2893 // * log(exp(x)) -> x 2894 // * log(exp(y)) -> y*log(e) 2895 // * log(exp10(y)) -> y*log(10) 2896 // * log(sqrt(x)) -> 0.5*log(x) 2897 // 2898 // pow, powf, powl: 2899 // * pow(sqrt(x),y) -> pow(x,y*0.5) 2900 // * pow(pow(x,y),z)-> pow(x,y*z) 2901 // 2902 // signbit: 2903 // * signbit(cnst) -> cnst' 2904 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 2905 // 2906 // sqrt, sqrtf, sqrtl: 2907 // * sqrt(expN(x)) -> expN(x*0.5) 2908 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 2909 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 2910 // 2911 2912 //===----------------------------------------------------------------------===// 2913 // Fortified Library Call Optimizations 2914 //===----------------------------------------------------------------------===// 2915 2916 bool 2917 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 2918 unsigned ObjSizeOp, 2919 Optional<unsigned> SizeOp, 2920 Optional<unsigned> StrOp, 2921 Optional<unsigned> FlagOp) { 2922 // If this function takes a flag argument, the implementation may use it to 2923 // perform extra checks. Don't fold into the non-checking variant. 2924 if (FlagOp) { 2925 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 2926 if (!Flag || !Flag->isZero()) 2927 return false; 2928 } 2929 2930 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 2931 return true; 2932 2933 if (ConstantInt *ObjSizeCI = 2934 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 2935 if (ObjSizeCI->isMinusOne()) 2936 return true; 2937 // If the object size wasn't -1 (unknown), bail out if we were asked to. 2938 if (OnlyLowerUnknownSize) 2939 return false; 2940 if (StrOp) { 2941 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 2942 // If the length is 0 we don't know how long it is and so we can't 2943 // remove the check. 2944 if (Len == 0) 2945 return false; 2946 return ObjSizeCI->getZExtValue() >= Len; 2947 } 2948 2949 if (SizeOp) { 2950 if (ConstantInt *SizeCI = 2951 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 2952 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 2953 } 2954 } 2955 return false; 2956 } 2957 2958 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 2959 IRBuilder<> &B) { 2960 if (isFortifiedCallFoldable(CI, 3, 2)) { 2961 B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2962 CI->getArgOperand(2)); 2963 return CI->getArgOperand(0); 2964 } 2965 return nullptr; 2966 } 2967 2968 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 2969 IRBuilder<> &B) { 2970 if (isFortifiedCallFoldable(CI, 3, 2)) { 2971 B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, 2972 CI->getArgOperand(2)); 2973 return CI->getArgOperand(0); 2974 } 2975 return nullptr; 2976 } 2977 2978 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 2979 IRBuilder<> &B) { 2980 // TODO: Try foldMallocMemset() here. 2981 2982 if (isFortifiedCallFoldable(CI, 3, 2)) { 2983 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 2984 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); 2985 return CI->getArgOperand(0); 2986 } 2987 return nullptr; 2988 } 2989 2990 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 2991 IRBuilder<> &B, 2992 LibFunc Func) { 2993 const DataLayout &DL = CI->getModule()->getDataLayout(); 2994 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 2995 *ObjSize = CI->getArgOperand(2); 2996 2997 // __stpcpy_chk(x,x,...) -> x+strlen(x) 2998 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 2999 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3000 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3001 } 3002 3003 // If a) we don't have any length information, or b) we know this will 3004 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3005 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3006 // TODO: It might be nice to get a maximum length out of the possible 3007 // string lengths for varying. 3008 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 3009 if (Func == LibFunc_strcpy_chk) 3010 return emitStrCpy(Dst, Src, B, TLI); 3011 else 3012 return emitStpCpy(Dst, Src, B, TLI); 3013 } 3014 3015 if (OnlyLowerUnknownSize) 3016 return nullptr; 3017 3018 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3019 uint64_t Len = GetStringLength(Src); 3020 if (Len == 0) 3021 return nullptr; 3022 3023 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 3024 Value *LenV = ConstantInt::get(SizeTTy, Len); 3025 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 3026 // If the function was an __stpcpy_chk, and we were able to fold it into 3027 // a __memcpy_chk, we still need to return the correct end pointer. 3028 if (Ret && Func == LibFunc_stpcpy_chk) 3029 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 3030 return Ret; 3031 } 3032 3033 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 3034 IRBuilder<> &B, 3035 LibFunc Func) { 3036 if (isFortifiedCallFoldable(CI, 3, 2)) { 3037 if (Func == LibFunc_strncpy_chk) 3038 return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3039 CI->getArgOperand(2), B, TLI); 3040 else 3041 return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3042 CI->getArgOperand(2), B, TLI); 3043 } 3044 3045 return nullptr; 3046 } 3047 3048 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 3049 IRBuilder<> &B) { 3050 if (isFortifiedCallFoldable(CI, 4, 3)) 3051 return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3052 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI); 3053 3054 return nullptr; 3055 } 3056 3057 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 3058 IRBuilder<> &B) { 3059 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 3060 SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 5, CI->arg_end()); 3061 return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3062 CI->getArgOperand(4), VariadicArgs, B, TLI); 3063 } 3064 3065 return nullptr; 3066 } 3067 3068 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3069 IRBuilder<> &B) { 3070 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3071 SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 4, CI->arg_end()); 3072 return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs, 3073 B, TLI); 3074 } 3075 3076 return nullptr; 3077 } 3078 3079 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3080 IRBuilder<> &B) { 3081 if (isFortifiedCallFoldable(CI, 2)) 3082 return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI); 3083 3084 return nullptr; 3085 } 3086 3087 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3088 IRBuilder<> &B) { 3089 if (isFortifiedCallFoldable(CI, 3)) 3090 return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3091 CI->getArgOperand(2), B, TLI); 3092 3093 return nullptr; 3094 } 3095 3096 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3097 IRBuilder<> &B) { 3098 if (isFortifiedCallFoldable(CI, 3)) 3099 return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3100 CI->getArgOperand(2), B, TLI); 3101 3102 return nullptr; 3103 } 3104 3105 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3106 IRBuilder<> &B) { 3107 if (isFortifiedCallFoldable(CI, 3)) 3108 return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3109 CI->getArgOperand(2), B, TLI); 3110 3111 return nullptr; 3112 } 3113 3114 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3115 IRBuilder<> &B) { 3116 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3117 return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3118 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI); 3119 3120 return nullptr; 3121 } 3122 3123 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3124 IRBuilder<> &B) { 3125 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3126 return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3127 CI->getArgOperand(4), B, TLI); 3128 3129 return nullptr; 3130 } 3131 3132 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { 3133 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3134 // Some clang users checked for _chk libcall availability using: 3135 // __has_builtin(__builtin___memcpy_chk) 3136 // When compiling with -fno-builtin, this is always true. 3137 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3138 // end up with fortified libcalls, which isn't acceptable in a freestanding 3139 // environment which only provides their non-fortified counterparts. 3140 // 3141 // Until we change clang and/or teach external users to check for availability 3142 // differently, disregard the "nobuiltin" attribute and TLI::has. 3143 // 3144 // PR23093. 3145 3146 LibFunc Func; 3147 Function *Callee = CI->getCalledFunction(); 3148 3149 SmallVector<OperandBundleDef, 2> OpBundles; 3150 CI->getOperandBundlesAsDefs(OpBundles); 3151 IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); 3152 bool isCallingConvC = isCallingConvCCompatible(CI); 3153 3154 // First, check that this is a known library functions and that the prototype 3155 // is correct. 3156 if (!TLI->getLibFunc(*Callee, Func)) 3157 return nullptr; 3158 3159 // We never change the calling convention. 3160 if (!ignoreCallingConv(Func) && !isCallingConvC) 3161 return nullptr; 3162 3163 switch (Func) { 3164 case LibFunc_memcpy_chk: 3165 return optimizeMemCpyChk(CI, Builder); 3166 case LibFunc_memmove_chk: 3167 return optimizeMemMoveChk(CI, Builder); 3168 case LibFunc_memset_chk: 3169 return optimizeMemSetChk(CI, Builder); 3170 case LibFunc_stpcpy_chk: 3171 case LibFunc_strcpy_chk: 3172 return optimizeStrpCpyChk(CI, Builder, Func); 3173 case LibFunc_stpncpy_chk: 3174 case LibFunc_strncpy_chk: 3175 return optimizeStrpNCpyChk(CI, Builder, Func); 3176 case LibFunc_memccpy_chk: 3177 return optimizeMemCCpyChk(CI, Builder); 3178 case LibFunc_snprintf_chk: 3179 return optimizeSNPrintfChk(CI, Builder); 3180 case LibFunc_sprintf_chk: 3181 return optimizeSPrintfChk(CI, Builder); 3182 case LibFunc_strcat_chk: 3183 return optimizeStrCatChk(CI, Builder); 3184 case LibFunc_strlcat_chk: 3185 return optimizeStrLCat(CI, Builder); 3186 case LibFunc_strncat_chk: 3187 return optimizeStrNCatChk(CI, Builder); 3188 case LibFunc_strlcpy_chk: 3189 return optimizeStrLCpyChk(CI, Builder); 3190 case LibFunc_vsnprintf_chk: 3191 return optimizeVSNPrintfChk(CI, Builder); 3192 case LibFunc_vsprintf_chk: 3193 return optimizeVSPrintfChk(CI, Builder); 3194 default: 3195 break; 3196 } 3197 return nullptr; 3198 } 3199 3200 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3201 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3202 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 3203