1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Analysis/BlockFrequencyInfo.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ProfileSummaryInfo.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/KnownBits.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Transforms/Utils/BuildLibCalls.h" 39 #include "llvm/Transforms/Utils/SizeOpts.h" 40 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 static cl::opt<bool> 45 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 46 cl::init(false), 47 cl::desc("Enable unsafe double to float " 48 "shrinking for math lib calls")); 49 50 //===----------------------------------------------------------------------===// 51 // Helper Functions 52 //===----------------------------------------------------------------------===// 53 54 static bool ignoreCallingConv(LibFunc Func) { 55 return Func == LibFunc_abs || Func == LibFunc_labs || 56 Func == LibFunc_llabs || Func == LibFunc_strlen; 57 } 58 59 /// Return true if it is only used in equality comparisons with With. 60 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 61 for (User *U : V->users()) { 62 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 63 if (IC->isEquality() && IC->getOperand(1) == With) 64 continue; 65 // Unknown instruction. 66 return false; 67 } 68 return true; 69 } 70 71 static bool callHasFloatingPointArgument(const CallInst *CI) { 72 return any_of(CI->operands(), [](const Use &OI) { 73 return OI->getType()->isFloatingPointTy(); 74 }); 75 } 76 77 static bool callHasFP128Argument(const CallInst *CI) { 78 return any_of(CI->operands(), [](const Use &OI) { 79 return OI->getType()->isFP128Ty(); 80 }); 81 } 82 83 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 84 if (Base < 2 || Base > 36) 85 // handle special zero base 86 if (Base != 0) 87 return nullptr; 88 89 char *End; 90 std::string nptr = Str.str(); 91 errno = 0; 92 long long int Result = strtoll(nptr.c_str(), &End, Base); 93 if (errno) 94 return nullptr; 95 96 // if we assume all possible target locales are ASCII supersets, 97 // then if strtoll successfully parses a number on the host, 98 // it will also successfully parse the same way on the target 99 if (*End != '\0') 100 return nullptr; 101 102 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 103 return nullptr; 104 105 return ConstantInt::get(CI->getType(), Result); 106 } 107 108 static bool isOnlyUsedInComparisonWithZero(Value *V) { 109 for (User *U : V->users()) { 110 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 111 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 112 if (C->isNullValue()) 113 continue; 114 // Unknown instruction. 115 return false; 116 } 117 return true; 118 } 119 120 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 121 const DataLayout &DL) { 122 if (!isOnlyUsedInComparisonWithZero(CI)) 123 return false; 124 125 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 126 return false; 127 128 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 129 return false; 130 131 return true; 132 } 133 134 static void annotateDereferenceableBytes(CallInst *CI, 135 ArrayRef<unsigned> ArgNos, 136 uint64_t DereferenceableBytes) { 137 const Function *F = CI->getCaller(); 138 if (!F) 139 return; 140 for (unsigned ArgNo : ArgNos) { 141 uint64_t DerefBytes = DereferenceableBytes; 142 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 143 if (!llvm::NullPointerIsDefined(F, AS) || 144 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 145 DerefBytes = std::max(CI->getDereferenceableOrNullBytes( 146 ArgNo + AttributeList::FirstArgIndex), 147 DereferenceableBytes); 148 149 if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) < 150 DerefBytes) { 151 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 152 if (!llvm::NullPointerIsDefined(F, AS) || 153 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 154 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 155 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 156 CI->getContext(), DerefBytes)); 157 } 158 } 159 } 160 161 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, 162 ArrayRef<unsigned> ArgNos) { 163 Function *F = CI->getCaller(); 164 if (!F) 165 return; 166 167 for (unsigned ArgNo : ArgNos) { 168 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef)) 169 CI->addParamAttr(ArgNo, Attribute::NoUndef); 170 171 if (CI->paramHasAttr(ArgNo, Attribute::NonNull)) 172 continue; 173 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 174 if (llvm::NullPointerIsDefined(F, AS)) 175 continue; 176 177 CI->addParamAttr(ArgNo, Attribute::NonNull); 178 annotateDereferenceableBytes(CI, ArgNo, 1); 179 } 180 } 181 182 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 183 Value *Size, const DataLayout &DL) { 184 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 185 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 186 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 187 } else if (isKnownNonZero(Size, DL)) { 188 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 189 const APInt *X, *Y; 190 uint64_t DerefMin = 1; 191 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 192 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 193 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 194 } 195 } 196 } 197 198 //===----------------------------------------------------------------------===// 199 // String and Memory Library Call Optimizations 200 //===----------------------------------------------------------------------===// 201 202 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 203 // Extract some information from the instruction 204 Value *Dst = CI->getArgOperand(0); 205 Value *Src = CI->getArgOperand(1); 206 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 207 208 // See if we can get the length of the input string. 209 uint64_t Len = GetStringLength(Src); 210 if (Len) 211 annotateDereferenceableBytes(CI, 1, Len); 212 else 213 return nullptr; 214 --Len; // Unbias length. 215 216 // Handle the simple, do-nothing case: strcat(x, "") -> x 217 if (Len == 0) 218 return Dst; 219 220 return emitStrLenMemCpy(Src, Dst, Len, B); 221 } 222 223 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 224 IRBuilderBase &B) { 225 // We need to find the end of the destination string. That's where the 226 // memory is to be moved to. We just generate a call to strlen. 227 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 228 if (!DstLen) 229 return nullptr; 230 231 // Now that we have the destination's length, we must index into the 232 // destination's pointer to get the actual memcpy destination (end of 233 // the string .. we're concatenating). 234 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 235 236 // We have enough information to now generate the memcpy call to do the 237 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 238 B.CreateMemCpy( 239 CpyDst, Align(1), Src, Align(1), 240 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 241 return Dst; 242 } 243 244 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 245 // Extract some information from the instruction. 246 Value *Dst = CI->getArgOperand(0); 247 Value *Src = CI->getArgOperand(1); 248 Value *Size = CI->getArgOperand(2); 249 uint64_t Len; 250 annotateNonNullNoUndefBasedOnAccess(CI, 0); 251 if (isKnownNonZero(Size, DL)) 252 annotateNonNullNoUndefBasedOnAccess(CI, 1); 253 254 // We don't do anything if length is not constant. 255 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 256 if (LengthArg) { 257 Len = LengthArg->getZExtValue(); 258 // strncat(x, c, 0) -> x 259 if (!Len) 260 return Dst; 261 } else { 262 return nullptr; 263 } 264 265 // See if we can get the length of the input string. 266 uint64_t SrcLen = GetStringLength(Src); 267 if (SrcLen) { 268 annotateDereferenceableBytes(CI, 1, SrcLen); 269 --SrcLen; // Unbias length. 270 } else { 271 return nullptr; 272 } 273 274 // strncat(x, "", c) -> x 275 if (SrcLen == 0) 276 return Dst; 277 278 // We don't optimize this case. 279 if (Len < SrcLen) 280 return nullptr; 281 282 // strncat(x, s, c) -> strcat(x, s) 283 // s is constant so the strcat can be optimized further. 284 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 285 } 286 287 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 288 Function *Callee = CI->getCalledFunction(); 289 FunctionType *FT = Callee->getFunctionType(); 290 Value *SrcStr = CI->getArgOperand(0); 291 annotateNonNullNoUndefBasedOnAccess(CI, 0); 292 293 // If the second operand is non-constant, see if we can compute the length 294 // of the input string and turn this into memchr. 295 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 296 if (!CharC) { 297 uint64_t Len = GetStringLength(SrcStr); 298 if (Len) 299 annotateDereferenceableBytes(CI, 0, Len); 300 else 301 return nullptr; 302 if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 303 return nullptr; 304 305 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 306 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 307 B, DL, TLI); 308 } 309 310 // Otherwise, the character is a constant, see if the first argument is 311 // a string literal. If so, we can constant fold. 312 StringRef Str; 313 if (!getConstantStringInfo(SrcStr, Str)) { 314 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 315 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 316 return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 317 return nullptr; 318 } 319 320 // Compute the offset, make sure to handle the case when we're searching for 321 // zero (a weird way to spell strlen). 322 size_t I = (0xFF & CharC->getSExtValue()) == 0 323 ? Str.size() 324 : Str.find(CharC->getSExtValue()); 325 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 326 return Constant::getNullValue(CI->getType()); 327 328 // strchr(s+n,c) -> gep(s+n+i,c) 329 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 330 } 331 332 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 333 Value *SrcStr = CI->getArgOperand(0); 334 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 335 annotateNonNullNoUndefBasedOnAccess(CI, 0); 336 337 // Cannot fold anything if we're not looking for a constant. 338 if (!CharC) 339 return nullptr; 340 341 StringRef Str; 342 if (!getConstantStringInfo(SrcStr, Str)) { 343 // strrchr(s, 0) -> strchr(s, 0) 344 if (CharC->isZero()) 345 return emitStrChr(SrcStr, '\0', B, TLI); 346 return nullptr; 347 } 348 349 // Compute the offset. 350 size_t I = (0xFF & CharC->getSExtValue()) == 0 351 ? Str.size() 352 : Str.rfind(CharC->getSExtValue()); 353 if (I == StringRef::npos) // Didn't find the char. Return null. 354 return Constant::getNullValue(CI->getType()); 355 356 // strrchr(s+n,c) -> gep(s+n+i,c) 357 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 358 } 359 360 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 361 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 362 if (Str1P == Str2P) // strcmp(x,x) -> 0 363 return ConstantInt::get(CI->getType(), 0); 364 365 StringRef Str1, Str2; 366 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 367 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 368 369 // strcmp(x, y) -> cnst (if both x and y are constant strings) 370 if (HasStr1 && HasStr2) 371 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 372 373 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 374 return B.CreateNeg(B.CreateZExt( 375 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 376 377 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 378 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 379 CI->getType()); 380 381 // strcmp(P, "x") -> memcmp(P, "x", 2) 382 uint64_t Len1 = GetStringLength(Str1P); 383 if (Len1) 384 annotateDereferenceableBytes(CI, 0, Len1); 385 uint64_t Len2 = GetStringLength(Str2P); 386 if (Len2) 387 annotateDereferenceableBytes(CI, 1, Len2); 388 389 if (Len1 && Len2) { 390 return emitMemCmp(Str1P, Str2P, 391 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 392 std::min(Len1, Len2)), 393 B, DL, TLI); 394 } 395 396 // strcmp to memcmp 397 if (!HasStr1 && HasStr2) { 398 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 399 return emitMemCmp( 400 Str1P, Str2P, 401 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 402 TLI); 403 } else if (HasStr1 && !HasStr2) { 404 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 405 return emitMemCmp( 406 Str1P, Str2P, 407 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 408 TLI); 409 } 410 411 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 412 return nullptr; 413 } 414 415 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 416 Value *Str1P = CI->getArgOperand(0); 417 Value *Str2P = CI->getArgOperand(1); 418 Value *Size = CI->getArgOperand(2); 419 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 420 return ConstantInt::get(CI->getType(), 0); 421 422 if (isKnownNonZero(Size, DL)) 423 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 424 // Get the length argument if it is constant. 425 uint64_t Length; 426 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 427 Length = LengthArg->getZExtValue(); 428 else 429 return nullptr; 430 431 if (Length == 0) // strncmp(x,y,0) -> 0 432 return ConstantInt::get(CI->getType(), 0); 433 434 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 435 return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI); 436 437 StringRef Str1, Str2; 438 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 439 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 440 441 // strncmp(x, y) -> cnst (if both x and y are constant strings) 442 if (HasStr1 && HasStr2) { 443 StringRef SubStr1 = Str1.substr(0, Length); 444 StringRef SubStr2 = Str2.substr(0, Length); 445 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 446 } 447 448 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 449 return B.CreateNeg(B.CreateZExt( 450 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 451 452 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 453 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 454 CI->getType()); 455 456 uint64_t Len1 = GetStringLength(Str1P); 457 if (Len1) 458 annotateDereferenceableBytes(CI, 0, Len1); 459 uint64_t Len2 = GetStringLength(Str2P); 460 if (Len2) 461 annotateDereferenceableBytes(CI, 1, Len2); 462 463 // strncmp to memcmp 464 if (!HasStr1 && HasStr2) { 465 Len2 = std::min(Len2, Length); 466 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 467 return emitMemCmp( 468 Str1P, Str2P, 469 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 470 TLI); 471 } else if (HasStr1 && !HasStr2) { 472 Len1 = std::min(Len1, Length); 473 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 474 return emitMemCmp( 475 Str1P, Str2P, 476 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 477 TLI); 478 } 479 480 return nullptr; 481 } 482 483 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 484 Value *Src = CI->getArgOperand(0); 485 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 486 uint64_t SrcLen = GetStringLength(Src); 487 if (SrcLen && Size) { 488 annotateDereferenceableBytes(CI, 0, SrcLen); 489 if (SrcLen <= Size->getZExtValue() + 1) 490 return emitStrDup(Src, B, TLI); 491 } 492 493 return nullptr; 494 } 495 496 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 497 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 498 if (Dst == Src) // strcpy(x,x) -> x 499 return Src; 500 501 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 502 // See if we can get the length of the input string. 503 uint64_t Len = GetStringLength(Src); 504 if (Len) 505 annotateDereferenceableBytes(CI, 1, Len); 506 else 507 return nullptr; 508 509 // We have enough information to now generate the memcpy call to do the 510 // copy for us. Make a memcpy to copy the nul byte with align = 1. 511 CallInst *NewCI = 512 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 513 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 514 NewCI->setAttributes(CI->getAttributes()); 515 NewCI->removeAttributes(AttributeList::ReturnIndex, 516 AttributeFuncs::typeIncompatible(NewCI->getType())); 517 return Dst; 518 } 519 520 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 521 Function *Callee = CI->getCalledFunction(); 522 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 523 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 524 Value *StrLen = emitStrLen(Src, B, DL, TLI); 525 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 526 } 527 528 // See if we can get the length of the input string. 529 uint64_t Len = GetStringLength(Src); 530 if (Len) 531 annotateDereferenceableBytes(CI, 1, Len); 532 else 533 return nullptr; 534 535 Type *PT = Callee->getFunctionType()->getParamType(0); 536 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 537 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 538 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 539 540 // We have enough information to now generate the memcpy call to do the 541 // copy for us. Make a memcpy to copy the nul byte with align = 1. 542 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 543 NewCI->setAttributes(CI->getAttributes()); 544 NewCI->removeAttributes(AttributeList::ReturnIndex, 545 AttributeFuncs::typeIncompatible(NewCI->getType())); 546 return DstEnd; 547 } 548 549 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) { 550 Function *Callee = CI->getCalledFunction(); 551 Value *Dst = CI->getArgOperand(0); 552 Value *Src = CI->getArgOperand(1); 553 Value *Size = CI->getArgOperand(2); 554 annotateNonNullNoUndefBasedOnAccess(CI, 0); 555 if (isKnownNonZero(Size, DL)) 556 annotateNonNullNoUndefBasedOnAccess(CI, 1); 557 558 uint64_t Len; 559 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 560 Len = LengthArg->getZExtValue(); 561 else 562 return nullptr; 563 564 // strncpy(x, y, 0) -> x 565 if (Len == 0) 566 return Dst; 567 568 // See if we can get the length of the input string. 569 uint64_t SrcLen = GetStringLength(Src); 570 if (SrcLen) { 571 annotateDereferenceableBytes(CI, 1, SrcLen); 572 --SrcLen; // Unbias length. 573 } else { 574 return nullptr; 575 } 576 577 if (SrcLen == 0) { 578 // strncpy(x, "", y) -> memset(x, '\0', y) 579 Align MemSetAlign = 580 CI->getAttributes().getParamAttributes(0).getAlignment().valueOrOne(); 581 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign); 582 AttrBuilder ArgAttrs(CI->getAttributes().getParamAttributes(0)); 583 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 584 CI->getContext(), 0, ArgAttrs)); 585 return Dst; 586 } 587 588 // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4) 589 if (Len > SrcLen + 1) { 590 if (Len <= 128) { 591 StringRef Str; 592 if (!getConstantStringInfo(Src, Str)) 593 return nullptr; 594 std::string SrcStr = Str.str(); 595 SrcStr.resize(Len, '\0'); 596 Src = B.CreateGlobalString(SrcStr, "str"); 597 } else { 598 return nullptr; 599 } 600 } 601 602 Type *PT = Callee->getFunctionType()->getParamType(0); 603 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 604 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 605 ConstantInt::get(DL.getIntPtrType(PT), Len)); 606 NewCI->setAttributes(CI->getAttributes()); 607 NewCI->removeAttributes(AttributeList::ReturnIndex, 608 AttributeFuncs::typeIncompatible(NewCI->getType())); 609 return Dst; 610 } 611 612 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 613 unsigned CharSize) { 614 Value *Src = CI->getArgOperand(0); 615 616 // Constant folding: strlen("xyz") -> 3 617 if (uint64_t Len = GetStringLength(Src, CharSize)) 618 return ConstantInt::get(CI->getType(), Len - 1); 619 620 // If s is a constant pointer pointing to a string literal, we can fold 621 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 622 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 623 // We only try to simplify strlen when the pointer s points to an array 624 // of i8. Otherwise, we would need to scale the offset x before doing the 625 // subtraction. This will make the optimization more complex, and it's not 626 // very useful because calling strlen for a pointer of other types is 627 // very uncommon. 628 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 629 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 630 return nullptr; 631 632 ConstantDataArraySlice Slice; 633 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 634 uint64_t NullTermIdx; 635 if (Slice.Array == nullptr) { 636 NullTermIdx = 0; 637 } else { 638 NullTermIdx = ~((uint64_t)0); 639 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 640 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 641 NullTermIdx = I; 642 break; 643 } 644 } 645 // If the string does not have '\0', leave it to strlen to compute 646 // its length. 647 if (NullTermIdx == ~((uint64_t)0)) 648 return nullptr; 649 } 650 651 Value *Offset = GEP->getOperand(2); 652 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 653 Known.Zero.flipAllBits(); 654 uint64_t ArrSize = 655 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 656 657 // KnownZero's bits are flipped, so zeros in KnownZero now represent 658 // bits known to be zeros in Offset, and ones in KnowZero represent 659 // bits unknown in Offset. Therefore, Offset is known to be in range 660 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 661 // unsigned-less-than NullTermIdx. 662 // 663 // If Offset is not provably in the range [0, NullTermIdx], we can still 664 // optimize if we can prove that the program has undefined behavior when 665 // Offset is outside that range. That is the case when GEP->getOperand(0) 666 // is a pointer to an object whose memory extent is NullTermIdx+1. 667 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 668 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 669 NullTermIdx == ArrSize - 1)) { 670 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 671 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 672 Offset); 673 } 674 } 675 } 676 677 // strlen(x?"foo":"bars") --> x ? 3 : 4 678 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 679 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 680 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 681 if (LenTrue && LenFalse) { 682 ORE.emit([&]() { 683 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 684 << "folded strlen(select) to select of constants"; 685 }); 686 return B.CreateSelect(SI->getCondition(), 687 ConstantInt::get(CI->getType(), LenTrue - 1), 688 ConstantInt::get(CI->getType(), LenFalse - 1)); 689 } 690 } 691 692 // strlen(x) != 0 --> *x != 0 693 // strlen(x) == 0 --> *x == 0 694 if (isOnlyUsedInZeroEqualityComparison(CI)) 695 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), 696 CI->getType()); 697 698 return nullptr; 699 } 700 701 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 702 if (Value *V = optimizeStringLength(CI, B, 8)) 703 return V; 704 annotateNonNullNoUndefBasedOnAccess(CI, 0); 705 return nullptr; 706 } 707 708 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 709 Module &M = *CI->getModule(); 710 unsigned WCharSize = TLI->getWCharSize(M) * 8; 711 // We cannot perform this optimization without wchar_size metadata. 712 if (WCharSize == 0) 713 return nullptr; 714 715 return optimizeStringLength(CI, B, WCharSize); 716 } 717 718 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 719 StringRef S1, S2; 720 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 721 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 722 723 // strpbrk(s, "") -> nullptr 724 // strpbrk("", s) -> nullptr 725 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 726 return Constant::getNullValue(CI->getType()); 727 728 // Constant folding. 729 if (HasS1 && HasS2) { 730 size_t I = S1.find_first_of(S2); 731 if (I == StringRef::npos) // No match. 732 return Constant::getNullValue(CI->getType()); 733 734 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 735 "strpbrk"); 736 } 737 738 // strpbrk(s, "a") -> strchr(s, 'a') 739 if (HasS2 && S2.size() == 1) 740 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 741 742 return nullptr; 743 } 744 745 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 746 Value *EndPtr = CI->getArgOperand(1); 747 if (isa<ConstantPointerNull>(EndPtr)) { 748 // With a null EndPtr, this function won't capture the main argument. 749 // It would be readonly too, except that it still may write to errno. 750 CI->addParamAttr(0, Attribute::NoCapture); 751 } 752 753 return nullptr; 754 } 755 756 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 757 StringRef S1, S2; 758 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 759 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 760 761 // strspn(s, "") -> 0 762 // strspn("", s) -> 0 763 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 764 return Constant::getNullValue(CI->getType()); 765 766 // Constant folding. 767 if (HasS1 && HasS2) { 768 size_t Pos = S1.find_first_not_of(S2); 769 if (Pos == StringRef::npos) 770 Pos = S1.size(); 771 return ConstantInt::get(CI->getType(), Pos); 772 } 773 774 return nullptr; 775 } 776 777 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 778 StringRef S1, S2; 779 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 780 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 781 782 // strcspn("", s) -> 0 783 if (HasS1 && S1.empty()) 784 return Constant::getNullValue(CI->getType()); 785 786 // Constant folding. 787 if (HasS1 && HasS2) { 788 size_t Pos = S1.find_first_of(S2); 789 if (Pos == StringRef::npos) 790 Pos = S1.size(); 791 return ConstantInt::get(CI->getType(), Pos); 792 } 793 794 // strcspn(s, "") -> strlen(s) 795 if (HasS2 && S2.empty()) 796 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 797 798 return nullptr; 799 } 800 801 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 802 // fold strstr(x, x) -> x. 803 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 804 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 805 806 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 807 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 808 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 809 if (!StrLen) 810 return nullptr; 811 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 812 StrLen, B, DL, TLI); 813 if (!StrNCmp) 814 return nullptr; 815 for (User *U : llvm::make_early_inc_range(CI->users())) { 816 ICmpInst *Old = cast<ICmpInst>(U); 817 Value *Cmp = 818 B.CreateICmp(Old->getPredicate(), StrNCmp, 819 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 820 replaceAllUsesWith(Old, Cmp); 821 } 822 return CI; 823 } 824 825 // See if either input string is a constant string. 826 StringRef SearchStr, ToFindStr; 827 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 828 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 829 830 // fold strstr(x, "") -> x. 831 if (HasStr2 && ToFindStr.empty()) 832 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 833 834 // If both strings are known, constant fold it. 835 if (HasStr1 && HasStr2) { 836 size_t Offset = SearchStr.find(ToFindStr); 837 838 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 839 return Constant::getNullValue(CI->getType()); 840 841 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 842 Value *Result = castToCStr(CI->getArgOperand(0), B); 843 Result = 844 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 845 return B.CreateBitCast(Result, CI->getType()); 846 } 847 848 // fold strstr(x, "y") -> strchr(x, 'y'). 849 if (HasStr2 && ToFindStr.size() == 1) { 850 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 851 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 852 } 853 854 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 855 return nullptr; 856 } 857 858 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 859 if (isKnownNonZero(CI->getOperand(2), DL)) 860 annotateNonNullNoUndefBasedOnAccess(CI, 0); 861 return nullptr; 862 } 863 864 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 865 Value *SrcStr = CI->getArgOperand(0); 866 Value *Size = CI->getArgOperand(2); 867 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 868 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 869 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 870 871 // memchr(x, y, 0) -> null 872 if (LenC) { 873 if (LenC->isZero()) 874 return Constant::getNullValue(CI->getType()); 875 } else { 876 // From now on we need at least constant length and string. 877 return nullptr; 878 } 879 880 StringRef Str; 881 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 882 return nullptr; 883 884 // Truncate the string to LenC. If Str is smaller than LenC we will still only 885 // scan the string, as reading past the end of it is undefined and we can just 886 // return null if we don't find the char. 887 Str = Str.substr(0, LenC->getZExtValue()); 888 889 // If the char is variable but the input str and length are not we can turn 890 // this memchr call into a simple bit field test. Of course this only works 891 // when the return value is only checked against null. 892 // 893 // It would be really nice to reuse switch lowering here but we can't change 894 // the CFG at this point. 895 // 896 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 897 // != 0 898 // after bounds check. 899 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 900 unsigned char Max = 901 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 902 reinterpret_cast<const unsigned char *>(Str.end())); 903 904 // Make sure the bit field we're about to create fits in a register on the 905 // target. 906 // FIXME: On a 64 bit architecture this prevents us from using the 907 // interesting range of alpha ascii chars. We could do better by emitting 908 // two bitfields or shifting the range by 64 if no lower chars are used. 909 if (!DL.fitsInLegalInteger(Max + 1)) 910 return nullptr; 911 912 // For the bit field use a power-of-2 type with at least 8 bits to avoid 913 // creating unnecessary illegal types. 914 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 915 916 // Now build the bit field. 917 APInt Bitfield(Width, 0); 918 for (char C : Str) 919 Bitfield.setBit((unsigned char)C); 920 Value *BitfieldC = B.getInt(Bitfield); 921 922 // Adjust width of "C" to the bitfield width, then mask off the high bits. 923 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 924 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 925 926 // First check that the bit field access is within bounds. 927 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 928 "memchr.bounds"); 929 930 // Create code that checks if the given bit is set in the field. 931 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 932 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 933 934 // Finally merge both checks and cast to pointer type. The inttoptr 935 // implicitly zexts the i1 to intptr type. 936 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); 937 } 938 939 // Check if all arguments are constants. If so, we can constant fold. 940 if (!CharC) 941 return nullptr; 942 943 // Compute the offset. 944 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 945 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 946 return Constant::getNullValue(CI->getType()); 947 948 // memchr(s+n,c,l) -> gep(s+n+i,c) 949 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 950 } 951 952 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 953 uint64_t Len, IRBuilderBase &B, 954 const DataLayout &DL) { 955 if (Len == 0) // memcmp(s1,s2,0) -> 0 956 return Constant::getNullValue(CI->getType()); 957 958 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 959 if (Len == 1) { 960 Value *LHSV = 961 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 962 CI->getType(), "lhsv"); 963 Value *RHSV = 964 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 965 CI->getType(), "rhsv"); 966 return B.CreateSub(LHSV, RHSV, "chardiff"); 967 } 968 969 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 970 // TODO: The case where both inputs are constants does not need to be limited 971 // to legal integers or equality comparison. See block below this. 972 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 973 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 974 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 975 976 // First, see if we can fold either argument to a constant. 977 Value *LHSV = nullptr; 978 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 979 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 980 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 981 } 982 Value *RHSV = nullptr; 983 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 984 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 985 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 986 } 987 988 // Don't generate unaligned loads. If either source is constant data, 989 // alignment doesn't matter for that source because there is no load. 990 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 991 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 992 if (!LHSV) { 993 Type *LHSPtrTy = 994 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 995 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 996 } 997 if (!RHSV) { 998 Type *RHSPtrTy = 999 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 1000 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 1001 } 1002 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1003 } 1004 } 1005 1006 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 1007 // TODO: This is limited to i8 arrays. 1008 StringRef LHSStr, RHSStr; 1009 if (getConstantStringInfo(LHS, LHSStr) && 1010 getConstantStringInfo(RHS, RHSStr)) { 1011 // Make sure we're not reading out-of-bounds memory. 1012 if (Len > LHSStr.size() || Len > RHSStr.size()) 1013 return nullptr; 1014 // Fold the memcmp and normalize the result. This way we get consistent 1015 // results across multiple platforms. 1016 uint64_t Ret = 0; 1017 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 1018 if (Cmp < 0) 1019 Ret = -1; 1020 else if (Cmp > 0) 1021 Ret = 1; 1022 return ConstantInt::get(CI->getType(), Ret); 1023 } 1024 1025 return nullptr; 1026 } 1027 1028 // Most simplifications for memcmp also apply to bcmp. 1029 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1030 IRBuilderBase &B) { 1031 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1032 Value *Size = CI->getArgOperand(2); 1033 1034 if (LHS == RHS) // memcmp(s,s,x) -> 0 1035 return Constant::getNullValue(CI->getType()); 1036 1037 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1038 // Handle constant lengths. 1039 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1040 if (!LenC) 1041 return nullptr; 1042 1043 // memcmp(d,s,0) -> 0 1044 if (LenC->getZExtValue() == 0) 1045 return Constant::getNullValue(CI->getType()); 1046 1047 if (Value *Res = 1048 optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL)) 1049 return Res; 1050 return nullptr; 1051 } 1052 1053 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1054 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1055 return V; 1056 1057 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1058 // bcmp can be more efficient than memcmp because it only has to know that 1059 // there is a difference, not how different one is to the other. 1060 if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) { 1061 Value *LHS = CI->getArgOperand(0); 1062 Value *RHS = CI->getArgOperand(1); 1063 Value *Size = CI->getArgOperand(2); 1064 return emitBCmp(LHS, RHS, Size, B, DL, TLI); 1065 } 1066 1067 return nullptr; 1068 } 1069 1070 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1071 return optimizeMemCmpBCmpCommon(CI, B); 1072 } 1073 1074 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1075 Value *Size = CI->getArgOperand(2); 1076 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1077 if (isa<IntrinsicInst>(CI)) 1078 return nullptr; 1079 1080 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1081 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1082 CI->getArgOperand(1), Align(1), Size); 1083 NewCI->setAttributes(CI->getAttributes()); 1084 NewCI->removeAttributes(AttributeList::ReturnIndex, 1085 AttributeFuncs::typeIncompatible(NewCI->getType())); 1086 return CI->getArgOperand(0); 1087 } 1088 1089 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1090 Value *Dst = CI->getArgOperand(0); 1091 Value *Src = CI->getArgOperand(1); 1092 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1093 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1094 StringRef SrcStr; 1095 if (CI->use_empty() && Dst == Src) 1096 return Dst; 1097 // memccpy(d, s, c, 0) -> nullptr 1098 if (N) { 1099 if (N->isNullValue()) 1100 return Constant::getNullValue(CI->getType()); 1101 if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0, 1102 /*TrimAtNul=*/false) || 1103 !StopChar) 1104 return nullptr; 1105 } else { 1106 return nullptr; 1107 } 1108 1109 // Wrap arg 'c' of type int to char 1110 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1111 if (Pos == StringRef::npos) { 1112 if (N->getZExtValue() <= SrcStr.size()) { 1113 B.CreateMemCpy(Dst, Align(1), Src, Align(1), CI->getArgOperand(3)); 1114 return Constant::getNullValue(CI->getType()); 1115 } 1116 return nullptr; 1117 } 1118 1119 Value *NewN = 1120 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1121 // memccpy -> llvm.memcpy 1122 B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN); 1123 return Pos + 1 <= N->getZExtValue() 1124 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1125 : Constant::getNullValue(CI->getType()); 1126 } 1127 1128 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1129 Value *Dst = CI->getArgOperand(0); 1130 Value *N = CI->getArgOperand(2); 1131 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1132 CallInst *NewCI = 1133 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1134 // Propagate attributes, but memcpy has no return value, so make sure that 1135 // any return attributes are compliant. 1136 // TODO: Attach return value attributes to the 1st operand to preserve them? 1137 NewCI->setAttributes(CI->getAttributes()); 1138 NewCI->removeAttributes(AttributeList::ReturnIndex, 1139 AttributeFuncs::typeIncompatible(NewCI->getType())); 1140 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1141 } 1142 1143 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1144 Value *Size = CI->getArgOperand(2); 1145 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1146 if (isa<IntrinsicInst>(CI)) 1147 return nullptr; 1148 1149 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1150 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1151 CI->getArgOperand(1), Align(1), Size); 1152 NewCI->setAttributes(CI->getAttributes()); 1153 NewCI->removeAttributes(AttributeList::ReturnIndex, 1154 AttributeFuncs::typeIncompatible(NewCI->getType())); 1155 return CI->getArgOperand(0); 1156 } 1157 1158 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). 1159 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilderBase &B) { 1160 // This has to be a memset of zeros (bzero). 1161 auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); 1162 if (!FillValue || FillValue->getZExtValue() != 0) 1163 return nullptr; 1164 1165 // TODO: We should handle the case where the malloc has more than one use. 1166 // This is necessary to optimize common patterns such as when the result of 1167 // the malloc is checked against null or when a memset intrinsic is used in 1168 // place of a memset library call. 1169 auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); 1170 if (!Malloc || !Malloc->hasOneUse()) 1171 return nullptr; 1172 1173 // Is the inner call really malloc()? 1174 Function *InnerCallee = Malloc->getCalledFunction(); 1175 if (!InnerCallee) 1176 return nullptr; 1177 1178 LibFunc Func; 1179 if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || 1180 Func != LibFunc_malloc) 1181 return nullptr; 1182 1183 // The memset must cover the same number of bytes that are malloc'd. 1184 if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) 1185 return nullptr; 1186 1187 // Replace the malloc with a calloc. We need the data layout to know what the 1188 // actual size of a 'size_t' parameter is. 1189 B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); 1190 const DataLayout &DL = Malloc->getModule()->getDataLayout(); 1191 IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); 1192 if (Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), 1193 Malloc->getArgOperand(0), 1194 Malloc->getAttributes(), B, *TLI)) { 1195 substituteInParent(Malloc, Calloc); 1196 return Calloc; 1197 } 1198 1199 return nullptr; 1200 } 1201 1202 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1203 Value *Size = CI->getArgOperand(2); 1204 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1205 if (isa<IntrinsicInst>(CI)) 1206 return nullptr; 1207 1208 if (auto *Calloc = foldMallocMemset(CI, B)) 1209 return Calloc; 1210 1211 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1212 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1213 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1214 NewCI->setAttributes(CI->getAttributes()); 1215 NewCI->removeAttributes(AttributeList::ReturnIndex, 1216 AttributeFuncs::typeIncompatible(NewCI->getType())); 1217 return CI->getArgOperand(0); 1218 } 1219 1220 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1221 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1222 return emitMalloc(CI->getArgOperand(1), B, DL, TLI); 1223 1224 return nullptr; 1225 } 1226 1227 //===----------------------------------------------------------------------===// 1228 // Math Library Optimizations 1229 //===----------------------------------------------------------------------===// 1230 1231 // Replace a libcall \p CI with a call to intrinsic \p IID 1232 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1233 Intrinsic::ID IID) { 1234 // Propagate fast-math flags from the existing call to the new call. 1235 IRBuilderBase::FastMathFlagGuard Guard(B); 1236 B.setFastMathFlags(CI->getFastMathFlags()); 1237 1238 Module *M = CI->getModule(); 1239 Value *V = CI->getArgOperand(0); 1240 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1241 CallInst *NewCall = B.CreateCall(F, V); 1242 NewCall->takeName(CI); 1243 return NewCall; 1244 } 1245 1246 /// Return a variant of Val with float type. 1247 /// Currently this works in two cases: If Val is an FPExtension of a float 1248 /// value to something bigger, simply return the operand. 1249 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1250 /// loss of precision do so. 1251 static Value *valueHasFloatPrecision(Value *Val) { 1252 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1253 Value *Op = Cast->getOperand(0); 1254 if (Op->getType()->isFloatTy()) 1255 return Op; 1256 } 1257 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1258 APFloat F = Const->getValueAPF(); 1259 bool losesInfo; 1260 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1261 &losesInfo); 1262 if (!losesInfo) 1263 return ConstantFP::get(Const->getContext(), F); 1264 } 1265 return nullptr; 1266 } 1267 1268 /// Shrink double -> float functions. 1269 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1270 bool isBinary, bool isPrecise = false) { 1271 Function *CalleeFn = CI->getCalledFunction(); 1272 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1273 return nullptr; 1274 1275 // If not all the uses of the function are converted to float, then bail out. 1276 // This matters if the precision of the result is more important than the 1277 // precision of the arguments. 1278 if (isPrecise) 1279 for (User *U : CI->users()) { 1280 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1281 if (!Cast || !Cast->getType()->isFloatTy()) 1282 return nullptr; 1283 } 1284 1285 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1286 Value *V[2]; 1287 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1288 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1289 if (!V[0] || (isBinary && !V[1])) 1290 return nullptr; 1291 1292 // If call isn't an intrinsic, check that it isn't within a function with the 1293 // same name as the float version of this call, otherwise the result is an 1294 // infinite loop. For example, from MinGW-w64: 1295 // 1296 // float expf(float val) { return (float) exp((double) val); } 1297 StringRef CalleeName = CalleeFn->getName(); 1298 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1299 if (!IsIntrinsic) { 1300 StringRef CallerName = CI->getFunction()->getName(); 1301 if (!CallerName.empty() && CallerName.back() == 'f' && 1302 CallerName.size() == (CalleeName.size() + 1) && 1303 CallerName.startswith(CalleeName)) 1304 return nullptr; 1305 } 1306 1307 // Propagate the math semantics from the current function to the new function. 1308 IRBuilderBase::FastMathFlagGuard Guard(B); 1309 B.setFastMathFlags(CI->getFastMathFlags()); 1310 1311 // g((double) float) -> (double) gf(float) 1312 Value *R; 1313 if (IsIntrinsic) { 1314 Module *M = CI->getModule(); 1315 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1316 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1317 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1318 } else { 1319 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1320 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs) 1321 : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs); 1322 } 1323 return B.CreateFPExt(R, B.getDoubleTy()); 1324 } 1325 1326 /// Shrink double -> float for unary functions. 1327 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1328 bool isPrecise = false) { 1329 return optimizeDoubleFP(CI, B, false, isPrecise); 1330 } 1331 1332 /// Shrink double -> float for binary functions. 1333 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1334 bool isPrecise = false) { 1335 return optimizeDoubleFP(CI, B, true, isPrecise); 1336 } 1337 1338 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1339 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1340 if (!CI->isFast()) 1341 return nullptr; 1342 1343 // Propagate fast-math flags from the existing call to new instructions. 1344 IRBuilderBase::FastMathFlagGuard Guard(B); 1345 B.setFastMathFlags(CI->getFastMathFlags()); 1346 1347 Value *Real, *Imag; 1348 if (CI->getNumArgOperands() == 1) { 1349 Value *Op = CI->getArgOperand(0); 1350 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1351 Real = B.CreateExtractValue(Op, 0, "real"); 1352 Imag = B.CreateExtractValue(Op, 1, "imag"); 1353 } else { 1354 assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); 1355 Real = CI->getArgOperand(0); 1356 Imag = CI->getArgOperand(1); 1357 } 1358 1359 Value *RealReal = B.CreateFMul(Real, Real); 1360 Value *ImagImag = B.CreateFMul(Imag, Imag); 1361 1362 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1363 CI->getType()); 1364 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); 1365 } 1366 1367 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1368 IRBuilderBase &B) { 1369 if (!isa<FPMathOperator>(Call)) 1370 return nullptr; 1371 1372 IRBuilderBase::FastMathFlagGuard Guard(B); 1373 B.setFastMathFlags(Call->getFastMathFlags()); 1374 1375 // TODO: Can this be shared to also handle LLVM intrinsics? 1376 Value *X; 1377 switch (Func) { 1378 case LibFunc_sin: 1379 case LibFunc_sinf: 1380 case LibFunc_sinl: 1381 case LibFunc_tan: 1382 case LibFunc_tanf: 1383 case LibFunc_tanl: 1384 // sin(-X) --> -sin(X) 1385 // tan(-X) --> -tan(X) 1386 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1387 return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X)); 1388 break; 1389 case LibFunc_cos: 1390 case LibFunc_cosf: 1391 case LibFunc_cosl: 1392 // cos(-X) --> cos(X) 1393 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1394 return B.CreateCall(Call->getCalledFunction(), X, "cos"); 1395 break; 1396 default: 1397 break; 1398 } 1399 return nullptr; 1400 } 1401 1402 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) { 1403 // Multiplications calculated using Addition Chains. 1404 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1405 1406 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1407 1408 if (InnerChain[Exp]) 1409 return InnerChain[Exp]; 1410 1411 static const unsigned AddChain[33][2] = { 1412 {0, 0}, // Unused. 1413 {0, 0}, // Unused (base case = pow1). 1414 {1, 1}, // Unused (pre-computed). 1415 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1416 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1417 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1418 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1419 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1420 }; 1421 1422 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1423 getPow(InnerChain, AddChain[Exp][1], B)); 1424 return InnerChain[Exp]; 1425 } 1426 1427 // Return a properly extended integer (DstWidth bits wide) if the operation is 1428 // an itofp. 1429 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) { 1430 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1431 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1432 // Make sure that the exponent fits inside an "int" of size DstWidth, 1433 // thus avoiding any range issues that FP has not. 1434 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); 1435 if (BitWidth < DstWidth || 1436 (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) 1437 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth)) 1438 : B.CreateZExt(Op, B.getIntNTy(DstWidth)); 1439 } 1440 1441 return nullptr; 1442 } 1443 1444 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1445 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 1446 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 1447 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 1448 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1449 AttributeList Attrs; // Attributes are only meaningful on the original call 1450 Module *Mod = Pow->getModule(); 1451 Type *Ty = Pow->getType(); 1452 bool Ignored; 1453 1454 // Evaluate special cases related to a nested function as the base. 1455 1456 // pow(exp(x), y) -> exp(x * y) 1457 // pow(exp2(x), y) -> exp2(x * y) 1458 // If exp{,2}() is used only once, it is better to fold two transcendental 1459 // math functions into one. If used again, exp{,2}() would still have to be 1460 // called with the original argument, then keep both original transcendental 1461 // functions. However, this transformation is only safe with fully relaxed 1462 // math semantics, since, besides rounding differences, it changes overflow 1463 // and underflow behavior quite dramatically. For example: 1464 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1465 // Whereas: 1466 // exp(1000 * 0.001) = exp(1) 1467 // TODO: Loosen the requirement for fully relaxed math semantics. 1468 // TODO: Handle exp10() when more targets have it available. 1469 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1470 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1471 LibFunc LibFn; 1472 1473 Function *CalleeFn = BaseFn->getCalledFunction(); 1474 if (CalleeFn && 1475 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1476 StringRef ExpName; 1477 Intrinsic::ID ID; 1478 Value *ExpFn; 1479 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 1480 1481 switch (LibFn) { 1482 default: 1483 return nullptr; 1484 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1485 ExpName = TLI->getName(LibFunc_exp); 1486 ID = Intrinsic::exp; 1487 LibFnFloat = LibFunc_expf; 1488 LibFnDouble = LibFunc_exp; 1489 LibFnLongDouble = LibFunc_expl; 1490 break; 1491 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1492 ExpName = TLI->getName(LibFunc_exp2); 1493 ID = Intrinsic::exp2; 1494 LibFnFloat = LibFunc_exp2f; 1495 LibFnDouble = LibFunc_exp2; 1496 LibFnLongDouble = LibFunc_exp2l; 1497 break; 1498 } 1499 1500 // Create new exp{,2}() with the product as its argument. 1501 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1502 ExpFn = BaseFn->doesNotAccessMemory() 1503 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1504 FMul, ExpName) 1505 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1506 LibFnLongDouble, B, 1507 BaseFn->getAttributes()); 1508 1509 // Since the new exp{,2}() is different from the original one, dead code 1510 // elimination cannot be trusted to remove it, since it may have side 1511 // effects (e.g., errno). When the only consumer for the original 1512 // exp{,2}() is pow(), then it has to be explicitly erased. 1513 substituteInParent(BaseFn, ExpFn); 1514 return ExpFn; 1515 } 1516 } 1517 1518 // Evaluate special cases related to a constant base. 1519 1520 const APFloat *BaseF; 1521 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1522 return nullptr; 1523 1524 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 1525 if (match(Base, m_SpecificFP(2.0)) && 1526 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 1527 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1528 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1529 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI, 1530 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1531 B, Attrs); 1532 } 1533 1534 // pow(2.0 ** n, x) -> exp2(n * x) 1535 if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1536 APFloat BaseR = APFloat(1.0); 1537 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1538 BaseR = BaseR / *BaseF; 1539 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1540 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1541 APSInt NI(64, false); 1542 if ((IsInteger || IsReciprocal) && 1543 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1544 APFloat::opOK && 1545 NI > 1 && NI.isPowerOf2()) { 1546 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1547 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1548 if (Pow->doesNotAccessMemory()) 1549 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1550 FMul, "exp2"); 1551 else 1552 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1553 LibFunc_exp2l, B, Attrs); 1554 } 1555 } 1556 1557 // pow(10.0, x) -> exp10(x) 1558 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1559 if (match(Base, m_SpecificFP(10.0)) && 1560 hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1561 return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f, 1562 LibFunc_exp10l, B, Attrs); 1563 1564 // pow(x, y) -> exp2(log2(x) * y) 1565 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 1566 !BaseF->isNegative()) { 1567 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 1568 // Luckily optimizePow has already handled the x == 1 case. 1569 assert(!match(Base, m_FPOne()) && 1570 "pow(1.0, y) should have been simplified earlier!"); 1571 1572 Value *Log = nullptr; 1573 if (Ty->isFloatTy()) 1574 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 1575 else if (Ty->isDoubleTy()) 1576 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 1577 1578 if (Log) { 1579 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 1580 if (Pow->doesNotAccessMemory()) 1581 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1582 FMul, "exp2"); 1583 else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) 1584 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1585 LibFunc_exp2l, B, Attrs); 1586 } 1587 } 1588 1589 return nullptr; 1590 } 1591 1592 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1593 Module *M, IRBuilderBase &B, 1594 const TargetLibraryInfo *TLI) { 1595 // If errno is never set, then use the intrinsic for sqrt(). 1596 if (NoErrno) { 1597 Function *SqrtFn = 1598 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1599 return B.CreateCall(SqrtFn, V, "sqrt"); 1600 } 1601 1602 // Otherwise, use the libcall for sqrt(). 1603 if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) 1604 // TODO: We also should check that the target can in fact lower the sqrt() 1605 // libcall. We currently have no way to ask this question, so we ask if 1606 // the target has a sqrt() libcall, which is not exactly the same. 1607 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1608 LibFunc_sqrtl, B, Attrs); 1609 1610 return nullptr; 1611 } 1612 1613 /// Use square root in place of pow(x, +/-0.5). 1614 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 1615 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1616 AttributeList Attrs; // Attributes are only meaningful on the original call 1617 Module *Mod = Pow->getModule(); 1618 Type *Ty = Pow->getType(); 1619 1620 const APFloat *ExpoF; 1621 if (!match(Expo, m_APFloat(ExpoF)) || 1622 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1623 return nullptr; 1624 1625 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 1626 // so that requires fast-math-flags (afn or reassoc). 1627 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 1628 return nullptr; 1629 1630 // If we have a pow() library call (accesses memory) and we can't guarantee 1631 // that the base is not an infinity, give up: 1632 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 1633 // errno), but sqrt(-Inf) is required by various standards to set errno. 1634 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 1635 !isKnownNeverInfinity(Base, TLI)) 1636 return nullptr; 1637 1638 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1639 if (!Sqrt) 1640 return nullptr; 1641 1642 // Handle signed zero base by expanding to fabs(sqrt(x)). 1643 if (!Pow->hasNoSignedZeros()) { 1644 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1645 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1646 } 1647 1648 // Handle non finite base by expanding to 1649 // (x == -infinity ? +infinity : sqrt(x)). 1650 if (!Pow->hasNoInfs()) { 1651 Value *PosInf = ConstantFP::getInfinity(Ty), 1652 *NegInf = ConstantFP::getInfinity(Ty, true); 1653 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1654 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1655 } 1656 1657 // If the exponent is negative, then get the reciprocal. 1658 if (ExpoF->isNegative()) 1659 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1660 1661 return Sqrt; 1662 } 1663 1664 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1665 IRBuilderBase &B) { 1666 Value *Args[] = {Base, Expo}; 1667 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType()); 1668 return B.CreateCall(F, Args); 1669 } 1670 1671 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 1672 Value *Base = Pow->getArgOperand(0); 1673 Value *Expo = Pow->getArgOperand(1); 1674 Function *Callee = Pow->getCalledFunction(); 1675 StringRef Name = Callee->getName(); 1676 Type *Ty = Pow->getType(); 1677 Module *M = Pow->getModule(); 1678 bool AllowApprox = Pow->hasApproxFunc(); 1679 bool Ignored; 1680 1681 // Propagate the math semantics from the call to any created instructions. 1682 IRBuilderBase::FastMathFlagGuard Guard(B); 1683 B.setFastMathFlags(Pow->getFastMathFlags()); 1684 // Evaluate special cases related to the base. 1685 1686 // pow(1.0, x) -> 1.0 1687 if (match(Base, m_FPOne())) 1688 return Base; 1689 1690 if (Value *Exp = replacePowWithExp(Pow, B)) 1691 return Exp; 1692 1693 // Evaluate special cases related to the exponent. 1694 1695 // pow(x, -1.0) -> 1.0 / x 1696 if (match(Expo, m_SpecificFP(-1.0))) 1697 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1698 1699 // pow(x, +/-0.0) -> 1.0 1700 if (match(Expo, m_AnyZeroFP())) 1701 return ConstantFP::get(Ty, 1.0); 1702 1703 // pow(x, 1.0) -> x 1704 if (match(Expo, m_FPOne())) 1705 return Base; 1706 1707 // pow(x, 2.0) -> x * x 1708 if (match(Expo, m_SpecificFP(2.0))) 1709 return B.CreateFMul(Base, Base, "square"); 1710 1711 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1712 return Sqrt; 1713 1714 // pow(x, n) -> x * x * x * ... 1715 const APFloat *ExpoF; 1716 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 1717 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 1718 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1719 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1720 // additional fmul. 1721 // TODO: This whole transformation should be backend specific (e.g. some 1722 // backends might prefer libcalls or the limit for the exponent might 1723 // be different) and it should also consider optimizing for size. 1724 APFloat LimF(ExpoF->getSemantics(), 33), 1725 ExpoA(abs(*ExpoF)); 1726 if (ExpoA < LimF) { 1727 // This transformation applies to integer or integer+0.5 exponents only. 1728 // For integer+0.5, we create a sqrt(Base) call. 1729 Value *Sqrt = nullptr; 1730 if (!ExpoA.isInteger()) { 1731 APFloat Expo2 = ExpoA; 1732 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1733 // is no floating point exception and the result is an integer, then 1734 // ExpoA == integer + 0.5 1735 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1736 return nullptr; 1737 1738 if (!Expo2.isInteger()) 1739 return nullptr; 1740 1741 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1742 Pow->doesNotAccessMemory(), M, B, TLI); 1743 if (!Sqrt) 1744 return nullptr; 1745 } 1746 1747 // We will memoize intermediate products of the Addition Chain. 1748 Value *InnerChain[33] = {nullptr}; 1749 InnerChain[1] = Base; 1750 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1751 1752 // We cannot readily convert a non-double type (like float) to a double. 1753 // So we first convert it to something which could be converted to double. 1754 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1755 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1756 1757 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1758 if (Sqrt) 1759 FMul = B.CreateFMul(FMul, Sqrt); 1760 1761 // If the exponent is negative, then get the reciprocal. 1762 if (ExpoF->isNegative()) 1763 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1764 1765 return FMul; 1766 } 1767 1768 APSInt IntExpo(32, /*isUnsigned=*/false); 1769 // powf(x, n) -> powi(x, n) if n is a constant signed integer value 1770 if (ExpoF->isInteger() && 1771 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 1772 APFloat::opOK) { 1773 return createPowWithIntegerExponent( 1774 Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B); 1775 } 1776 } 1777 1778 // powf(x, itofp(y)) -> powi(x, y) 1779 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 1780 // FIXME: Currently we always use 32 bits for the exponent in llvm.powi. In 1781 // the future we want to use the target dependent "size of int", or 1782 // otherwise we could end up using the wrong type for the exponent when 1783 // mapping llvm.powi back to an rtlib call. See 1784 // https://reviews.llvm.org/D99439 for such a fix. 1785 if (Value *ExpoI = getIntToFPVal(Expo, B, 32)) 1786 return createPowWithIntegerExponent(Base, ExpoI, M, B); 1787 } 1788 1789 // Shrink pow() to powf() if the arguments are single precision, 1790 // unless the result is expected to be double precision. 1791 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 1792 hasFloatVersion(Name)) { 1793 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, true)) 1794 return Shrunk; 1795 } 1796 1797 return nullptr; 1798 } 1799 1800 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 1801 Function *Callee = CI->getCalledFunction(); 1802 AttributeList Attrs; // Attributes are only meaningful on the original call 1803 StringRef Name = Callee->getName(); 1804 Value *Ret = nullptr; 1805 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 1806 hasFloatVersion(Name)) 1807 Ret = optimizeUnaryDoubleFP(CI, B, true); 1808 1809 Type *Ty = CI->getType(); 1810 Value *Op = CI->getArgOperand(0); 1811 1812 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize 1813 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize 1814 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 1815 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1816 if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) 1817 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 1818 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1819 B, Attrs); 1820 } 1821 1822 return Ret; 1823 } 1824 1825 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 1826 // If we can shrink the call to a float function rather than a double 1827 // function, do that first. 1828 Function *Callee = CI->getCalledFunction(); 1829 StringRef Name = Callee->getName(); 1830 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1831 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1832 return Ret; 1833 1834 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 1835 // the intrinsics for improved optimization (for example, vectorization). 1836 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 1837 // From the C standard draft WG14/N1256: 1838 // "Ideally, fmax would be sensitive to the sign of zero, for example 1839 // fmax(-0.0, +0.0) would return +0; however, implementation in software 1840 // might be impractical." 1841 IRBuilderBase::FastMathFlagGuard Guard(B); 1842 FastMathFlags FMF = CI->getFastMathFlags(); 1843 FMF.setNoSignedZeros(); 1844 B.setFastMathFlags(FMF); 1845 1846 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 1847 : Intrinsic::maxnum; 1848 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 1849 return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) }); 1850 } 1851 1852 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 1853 Function *LogFn = Log->getCalledFunction(); 1854 AttributeList Attrs; // Attributes are only meaningful on the original call 1855 StringRef LogNm = LogFn->getName(); 1856 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 1857 Module *Mod = Log->getModule(); 1858 Type *Ty = Log->getType(); 1859 Value *Ret = nullptr; 1860 1861 if (UnsafeFPShrink && hasFloatVersion(LogNm)) 1862 Ret = optimizeUnaryDoubleFP(Log, B, true); 1863 1864 // The earlier call must also be 'fast' in order to do these transforms. 1865 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 1866 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 1867 return Ret; 1868 1869 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 1870 1871 // This is only applicable to log(), log2(), log10(). 1872 if (TLI->getLibFunc(LogNm, LogLb)) 1873 switch (LogLb) { 1874 case LibFunc_logf: 1875 LogID = Intrinsic::log; 1876 ExpLb = LibFunc_expf; 1877 Exp2Lb = LibFunc_exp2f; 1878 Exp10Lb = LibFunc_exp10f; 1879 PowLb = LibFunc_powf; 1880 break; 1881 case LibFunc_log: 1882 LogID = Intrinsic::log; 1883 ExpLb = LibFunc_exp; 1884 Exp2Lb = LibFunc_exp2; 1885 Exp10Lb = LibFunc_exp10; 1886 PowLb = LibFunc_pow; 1887 break; 1888 case LibFunc_logl: 1889 LogID = Intrinsic::log; 1890 ExpLb = LibFunc_expl; 1891 Exp2Lb = LibFunc_exp2l; 1892 Exp10Lb = LibFunc_exp10l; 1893 PowLb = LibFunc_powl; 1894 break; 1895 case LibFunc_log2f: 1896 LogID = Intrinsic::log2; 1897 ExpLb = LibFunc_expf; 1898 Exp2Lb = LibFunc_exp2f; 1899 Exp10Lb = LibFunc_exp10f; 1900 PowLb = LibFunc_powf; 1901 break; 1902 case LibFunc_log2: 1903 LogID = Intrinsic::log2; 1904 ExpLb = LibFunc_exp; 1905 Exp2Lb = LibFunc_exp2; 1906 Exp10Lb = LibFunc_exp10; 1907 PowLb = LibFunc_pow; 1908 break; 1909 case LibFunc_log2l: 1910 LogID = Intrinsic::log2; 1911 ExpLb = LibFunc_expl; 1912 Exp2Lb = LibFunc_exp2l; 1913 Exp10Lb = LibFunc_exp10l; 1914 PowLb = LibFunc_powl; 1915 break; 1916 case LibFunc_log10f: 1917 LogID = Intrinsic::log10; 1918 ExpLb = LibFunc_expf; 1919 Exp2Lb = LibFunc_exp2f; 1920 Exp10Lb = LibFunc_exp10f; 1921 PowLb = LibFunc_powf; 1922 break; 1923 case LibFunc_log10: 1924 LogID = Intrinsic::log10; 1925 ExpLb = LibFunc_exp; 1926 Exp2Lb = LibFunc_exp2; 1927 Exp10Lb = LibFunc_exp10; 1928 PowLb = LibFunc_pow; 1929 break; 1930 case LibFunc_log10l: 1931 LogID = Intrinsic::log10; 1932 ExpLb = LibFunc_expl; 1933 Exp2Lb = LibFunc_exp2l; 1934 Exp10Lb = LibFunc_exp10l; 1935 PowLb = LibFunc_powl; 1936 break; 1937 default: 1938 return Ret; 1939 } 1940 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 1941 LogID == Intrinsic::log10) { 1942 if (Ty->getScalarType()->isFloatTy()) { 1943 ExpLb = LibFunc_expf; 1944 Exp2Lb = LibFunc_exp2f; 1945 Exp10Lb = LibFunc_exp10f; 1946 PowLb = LibFunc_powf; 1947 } else if (Ty->getScalarType()->isDoubleTy()) { 1948 ExpLb = LibFunc_exp; 1949 Exp2Lb = LibFunc_exp2; 1950 Exp10Lb = LibFunc_exp10; 1951 PowLb = LibFunc_pow; 1952 } else 1953 return Ret; 1954 } else 1955 return Ret; 1956 1957 IRBuilderBase::FastMathFlagGuard Guard(B); 1958 B.setFastMathFlags(FastMathFlags::getFast()); 1959 1960 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 1961 LibFunc ArgLb = NotLibFunc; 1962 TLI->getLibFunc(*Arg, ArgLb); 1963 1964 // log(pow(x,y)) -> y*log(x) 1965 if (ArgLb == PowLb || ArgID == Intrinsic::pow) { 1966 Value *LogX = 1967 Log->doesNotAccessMemory() 1968 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 1969 Arg->getOperand(0), "log") 1970 : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs); 1971 Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul"); 1972 // Since pow() may have side effects, e.g. errno, 1973 // dead code elimination may not be trusted to remove it. 1974 substituteInParent(Arg, MulY); 1975 return MulY; 1976 } 1977 1978 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 1979 // TODO: There is no exp10() intrinsic yet. 1980 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 1981 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 1982 Constant *Eul; 1983 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 1984 // FIXME: Add more precise value of e for long double. 1985 Eul = ConstantFP::get(Log->getType(), numbers::e); 1986 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 1987 Eul = ConstantFP::get(Log->getType(), 2.0); 1988 else 1989 Eul = ConstantFP::get(Log->getType(), 10.0); 1990 Value *LogE = Log->doesNotAccessMemory() 1991 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 1992 Eul, "log") 1993 : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs); 1994 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 1995 // Since exp() may have side effects, e.g. errno, 1996 // dead code elimination may not be trusted to remove it. 1997 substituteInParent(Arg, MulY); 1998 return MulY; 1999 } 2000 2001 return Ret; 2002 } 2003 2004 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 2005 Function *Callee = CI->getCalledFunction(); 2006 Value *Ret = nullptr; 2007 // TODO: Once we have a way (other than checking for the existince of the 2008 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 2009 // condition below. 2010 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 2011 Callee->getIntrinsicID() == Intrinsic::sqrt)) 2012 Ret = optimizeUnaryDoubleFP(CI, B, true); 2013 2014 if (!CI->isFast()) 2015 return Ret; 2016 2017 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 2018 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 2019 return Ret; 2020 2021 // We're looking for a repeated factor in a multiplication tree, 2022 // so we can do this fold: sqrt(x * x) -> fabs(x); 2023 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 2024 Value *Op0 = I->getOperand(0); 2025 Value *Op1 = I->getOperand(1); 2026 Value *RepeatOp = nullptr; 2027 Value *OtherOp = nullptr; 2028 if (Op0 == Op1) { 2029 // Simple match: the operands of the multiply are identical. 2030 RepeatOp = Op0; 2031 } else { 2032 // Look for a more complicated pattern: one of the operands is itself 2033 // a multiply, so search for a common factor in that multiply. 2034 // Note: We don't bother looking any deeper than this first level or for 2035 // variations of this pattern because instcombine's visitFMUL and/or the 2036 // reassociation pass should give us this form. 2037 Value *OtherMul0, *OtherMul1; 2038 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 2039 // Pattern: sqrt((x * y) * z) 2040 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 2041 // Matched: sqrt((x * x) * z) 2042 RepeatOp = OtherMul0; 2043 OtherOp = Op1; 2044 } 2045 } 2046 } 2047 if (!RepeatOp) 2048 return Ret; 2049 2050 // Fast math flags for any created instructions should match the sqrt 2051 // and multiply. 2052 IRBuilderBase::FastMathFlagGuard Guard(B); 2053 B.setFastMathFlags(I->getFastMathFlags()); 2054 2055 // If we found a repeated factor, hoist it out of the square root and 2056 // replace it with the fabs of that factor. 2057 Module *M = Callee->getParent(); 2058 Type *ArgType = I->getType(); 2059 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 2060 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 2061 if (OtherOp) { 2062 // If we found a non-repeated factor, we still need to get its square 2063 // root. We then multiply that by the value that was simplified out 2064 // of the square root calculation. 2065 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 2066 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 2067 return B.CreateFMul(FabsCall, SqrtCall); 2068 } 2069 return FabsCall; 2070 } 2071 2072 // TODO: Generalize to handle any trig function and its inverse. 2073 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) { 2074 Function *Callee = CI->getCalledFunction(); 2075 Value *Ret = nullptr; 2076 StringRef Name = Callee->getName(); 2077 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 2078 Ret = optimizeUnaryDoubleFP(CI, B, true); 2079 2080 Value *Op1 = CI->getArgOperand(0); 2081 auto *OpC = dyn_cast<CallInst>(Op1); 2082 if (!OpC) 2083 return Ret; 2084 2085 // Both calls must be 'fast' in order to remove them. 2086 if (!CI->isFast() || !OpC->isFast()) 2087 return Ret; 2088 2089 // tan(atan(x)) -> x 2090 // tanf(atanf(x)) -> x 2091 // tanl(atanl(x)) -> x 2092 LibFunc Func; 2093 Function *F = OpC->getCalledFunction(); 2094 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 2095 ((Func == LibFunc_atan && Callee->getName() == "tan") || 2096 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 2097 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 2098 Ret = OpC->getArgOperand(0); 2099 return Ret; 2100 } 2101 2102 static bool isTrigLibCall(CallInst *CI) { 2103 // We can only hope to do anything useful if we can ignore things like errno 2104 // and floating-point exceptions. 2105 // We already checked the prototype. 2106 return CI->hasFnAttr(Attribute::NoUnwind) && 2107 CI->hasFnAttr(Attribute::ReadNone); 2108 } 2109 2110 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2111 bool UseFloat, Value *&Sin, Value *&Cos, 2112 Value *&SinCos) { 2113 Type *ArgTy = Arg->getType(); 2114 Type *ResTy; 2115 StringRef Name; 2116 2117 Triple T(OrigCallee->getParent()->getTargetTriple()); 2118 if (UseFloat) { 2119 Name = "__sincospif_stret"; 2120 2121 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2122 // x86_64 can't use {float, float} since that would be returned in both 2123 // xmm0 and xmm1, which isn't what a real struct would do. 2124 ResTy = T.getArch() == Triple::x86_64 2125 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2126 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2127 } else { 2128 Name = "__sincospi_stret"; 2129 ResTy = StructType::get(ArgTy, ArgTy); 2130 } 2131 2132 Module *M = OrigCallee->getParent(); 2133 FunctionCallee Callee = 2134 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); 2135 2136 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2137 // If the argument is an instruction, it must dominate all uses so put our 2138 // sincos call there. 2139 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2140 } else { 2141 // Otherwise (e.g. for a constant) the beginning of the function is as 2142 // good a place as any. 2143 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2144 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2145 } 2146 2147 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2148 2149 if (SinCos->getType()->isStructTy()) { 2150 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2151 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2152 } else { 2153 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2154 "sinpi"); 2155 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2156 "cospi"); 2157 } 2158 } 2159 2160 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) { 2161 // Make sure the prototype is as expected, otherwise the rest of the 2162 // function is probably invalid and likely to abort. 2163 if (!isTrigLibCall(CI)) 2164 return nullptr; 2165 2166 Value *Arg = CI->getArgOperand(0); 2167 SmallVector<CallInst *, 1> SinCalls; 2168 SmallVector<CallInst *, 1> CosCalls; 2169 SmallVector<CallInst *, 1> SinCosCalls; 2170 2171 bool IsFloat = Arg->getType()->isFloatTy(); 2172 2173 // Look for all compatible sinpi, cospi and sincospi calls with the same 2174 // argument. If there are enough (in some sense) we can make the 2175 // substitution. 2176 Function *F = CI->getFunction(); 2177 for (User *U : Arg->users()) 2178 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2179 2180 // It's only worthwhile if both sinpi and cospi are actually used. 2181 if (SinCalls.empty() || CosCalls.empty()) 2182 return nullptr; 2183 2184 Value *Sin, *Cos, *SinCos; 2185 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 2186 2187 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2188 Value *Res) { 2189 for (CallInst *C : Calls) 2190 replaceAllUsesWith(C, Res); 2191 }; 2192 2193 replaceTrigInsts(SinCalls, Sin); 2194 replaceTrigInsts(CosCalls, Cos); 2195 replaceTrigInsts(SinCosCalls, SinCos); 2196 2197 return nullptr; 2198 } 2199 2200 void LibCallSimplifier::classifyArgUse( 2201 Value *Val, Function *F, bool IsFloat, 2202 SmallVectorImpl<CallInst *> &SinCalls, 2203 SmallVectorImpl<CallInst *> &CosCalls, 2204 SmallVectorImpl<CallInst *> &SinCosCalls) { 2205 CallInst *CI = dyn_cast<CallInst>(Val); 2206 2207 if (!CI || CI->use_empty()) 2208 return; 2209 2210 // Don't consider calls in other functions. 2211 if (CI->getFunction() != F) 2212 return; 2213 2214 Function *Callee = CI->getCalledFunction(); 2215 LibFunc Func; 2216 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 2217 !isTrigLibCall(CI)) 2218 return; 2219 2220 if (IsFloat) { 2221 if (Func == LibFunc_sinpif) 2222 SinCalls.push_back(CI); 2223 else if (Func == LibFunc_cospif) 2224 CosCalls.push_back(CI); 2225 else if (Func == LibFunc_sincospif_stret) 2226 SinCosCalls.push_back(CI); 2227 } else { 2228 if (Func == LibFunc_sinpi) 2229 SinCalls.push_back(CI); 2230 else if (Func == LibFunc_cospi) 2231 CosCalls.push_back(CI); 2232 else if (Func == LibFunc_sincospi_stret) 2233 SinCosCalls.push_back(CI); 2234 } 2235 } 2236 2237 //===----------------------------------------------------------------------===// 2238 // Integer Library Call Optimizations 2239 //===----------------------------------------------------------------------===// 2240 2241 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 2242 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 2243 Value *Op = CI->getArgOperand(0); 2244 Type *ArgType = Op->getType(); 2245 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2246 Intrinsic::cttz, ArgType); 2247 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 2248 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 2249 V = B.CreateIntCast(V, B.getInt32Ty(), false); 2250 2251 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 2252 return B.CreateSelect(Cond, V, B.getInt32(0)); 2253 } 2254 2255 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 2256 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 2257 Value *Op = CI->getArgOperand(0); 2258 Type *ArgType = Op->getType(); 2259 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2260 Intrinsic::ctlz, ArgType); 2261 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 2262 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 2263 V); 2264 return B.CreateIntCast(V, CI->getType(), false); 2265 } 2266 2267 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 2268 // abs(x) -> x <s 0 ? -x : x 2269 // The negation has 'nsw' because abs of INT_MIN is undefined. 2270 Value *X = CI->getArgOperand(0); 2271 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 2272 Value *NegX = B.CreateNSWNeg(X, "neg"); 2273 return B.CreateSelect(IsNeg, NegX, X); 2274 } 2275 2276 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 2277 // isdigit(c) -> (c-'0') <u 10 2278 Value *Op = CI->getArgOperand(0); 2279 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 2280 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 2281 return B.CreateZExt(Op, CI->getType()); 2282 } 2283 2284 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 2285 // isascii(c) -> c <u 128 2286 Value *Op = CI->getArgOperand(0); 2287 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 2288 return B.CreateZExt(Op, CI->getType()); 2289 } 2290 2291 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 2292 // toascii(c) -> c & 0x7f 2293 return B.CreateAnd(CI->getArgOperand(0), 2294 ConstantInt::get(CI->getType(), 0x7F)); 2295 } 2296 2297 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 2298 StringRef Str; 2299 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2300 return nullptr; 2301 2302 return convertStrToNumber(CI, Str, 10); 2303 } 2304 2305 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) { 2306 StringRef Str; 2307 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2308 return nullptr; 2309 2310 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 2311 return nullptr; 2312 2313 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2314 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 2315 } 2316 2317 return nullptr; 2318 } 2319 2320 //===----------------------------------------------------------------------===// 2321 // Formatting and IO Library Call Optimizations 2322 //===----------------------------------------------------------------------===// 2323 2324 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2325 2326 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 2327 int StreamArg) { 2328 Function *Callee = CI->getCalledFunction(); 2329 // Error reporting calls should be cold, mark them as such. 2330 // This applies even to non-builtin calls: it is only a hint and applies to 2331 // functions that the frontend might not understand as builtins. 2332 2333 // This heuristic was suggested in: 2334 // Improving Static Branch Prediction in a Compiler 2335 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2336 // Proceedings of PACT'98, Oct. 1998, IEEE 2337 if (!CI->hasFnAttr(Attribute::Cold) && 2338 isReportingError(Callee, CI, StreamArg)) { 2339 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); 2340 } 2341 2342 return nullptr; 2343 } 2344 2345 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2346 if (!Callee || !Callee->isDeclaration()) 2347 return false; 2348 2349 if (StreamArg < 0) 2350 return true; 2351 2352 // These functions might be considered cold, but only if their stream 2353 // argument is stderr. 2354 2355 if (StreamArg >= (int)CI->getNumArgOperands()) 2356 return false; 2357 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2358 if (!LI) 2359 return false; 2360 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2361 if (!GV || !GV->isDeclaration()) 2362 return false; 2363 return GV->getName() == "stderr"; 2364 } 2365 2366 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 2367 // Check for a fixed format string. 2368 StringRef FormatStr; 2369 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2370 return nullptr; 2371 2372 // Empty format string -> noop. 2373 if (FormatStr.empty()) // Tolerate printf's declared void. 2374 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2375 2376 // Do not do any of the following transformations if the printf return value 2377 // is used, in general the printf return value is not compatible with either 2378 // putchar() or puts(). 2379 if (!CI->use_empty()) 2380 return nullptr; 2381 2382 // printf("x") -> putchar('x'), even for "%" and "%%". 2383 if (FormatStr.size() == 1 || FormatStr == "%%") 2384 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 2385 2386 // Try to remove call or emit putchar/puts. 2387 if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { 2388 StringRef OperandStr; 2389 if (!getConstantStringInfo(CI->getOperand(1), OperandStr)) 2390 return nullptr; 2391 // printf("%s", "") --> NOP 2392 if (OperandStr.empty()) 2393 return (Value *)CI; 2394 // printf("%s", "a") --> putchar('a') 2395 if (OperandStr.size() == 1) 2396 return emitPutChar(B.getInt32(OperandStr[0]), B, TLI); 2397 // printf("%s", str"\n") --> puts(str) 2398 if (OperandStr.back() == '\n') { 2399 OperandStr = OperandStr.drop_back(); 2400 Value *GV = B.CreateGlobalString(OperandStr, "str"); 2401 return emitPutS(GV, B, TLI); 2402 } 2403 return nullptr; 2404 } 2405 2406 // printf("foo\n") --> puts("foo") 2407 if (FormatStr.back() == '\n' && 2408 FormatStr.find('%') == StringRef::npos) { // No format characters. 2409 // Create a string literal with no \n on it. We expect the constant merge 2410 // pass to be run after this pass, to merge duplicate strings. 2411 FormatStr = FormatStr.drop_back(); 2412 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2413 return emitPutS(GV, B, TLI); 2414 } 2415 2416 // Optimize specific format strings. 2417 // printf("%c", chr) --> putchar(chr) 2418 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && 2419 CI->getArgOperand(1)->getType()->isIntegerTy()) 2420 return emitPutChar(CI->getArgOperand(1), B, TLI); 2421 2422 // printf("%s\n", str) --> puts(str) 2423 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && 2424 CI->getArgOperand(1)->getType()->isPointerTy()) 2425 return emitPutS(CI->getArgOperand(1), B, TLI); 2426 return nullptr; 2427 } 2428 2429 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 2430 2431 Function *Callee = CI->getCalledFunction(); 2432 FunctionType *FT = Callee->getFunctionType(); 2433 if (Value *V = optimizePrintFString(CI, B)) { 2434 return V; 2435 } 2436 2437 // printf(format, ...) -> iprintf(format, ...) if no floating point 2438 // arguments. 2439 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2440 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2441 FunctionCallee IPrintFFn = 2442 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2443 CallInst *New = cast<CallInst>(CI->clone()); 2444 New->setCalledFunction(IPrintFFn); 2445 B.Insert(New); 2446 return New; 2447 } 2448 2449 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2450 // arguments. 2451 if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) { 2452 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2453 auto SmallPrintFFn = 2454 M->getOrInsertFunction(TLI->getName(LibFunc_small_printf), 2455 FT, Callee->getAttributes()); 2456 CallInst *New = cast<CallInst>(CI->clone()); 2457 New->setCalledFunction(SmallPrintFFn); 2458 B.Insert(New); 2459 return New; 2460 } 2461 2462 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2463 return nullptr; 2464 } 2465 2466 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 2467 IRBuilderBase &B) { 2468 // Check for a fixed format string. 2469 StringRef FormatStr; 2470 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2471 return nullptr; 2472 2473 // If we just have a format string (nothing else crazy) transform it. 2474 if (CI->getNumArgOperands() == 2) { 2475 // Make sure there's no % in the constant array. We could try to handle 2476 // %% -> % in the future if we cared. 2477 if (FormatStr.find('%') != StringRef::npos) 2478 return nullptr; // we found a format specifier, bail out. 2479 2480 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2481 B.CreateMemCpy( 2482 CI->getArgOperand(0), Align(1), CI->getArgOperand(1), Align(1), 2483 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2484 FormatStr.size() + 1)); // Copy the null byte. 2485 return ConstantInt::get(CI->getType(), FormatStr.size()); 2486 } 2487 2488 // The remaining optimizations require the format string to be "%s" or "%c" 2489 // and have an extra operand. 2490 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2491 CI->getNumArgOperands() < 3) 2492 return nullptr; 2493 2494 // Decode the second character of the format string. 2495 if (FormatStr[1] == 'c') { 2496 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2497 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2498 return nullptr; 2499 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2500 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2501 B.CreateStore(V, Ptr); 2502 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2503 B.CreateStore(B.getInt8(0), Ptr); 2504 2505 return ConstantInt::get(CI->getType(), 1); 2506 } 2507 2508 if (FormatStr[1] == 's') { 2509 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2510 // strlen(str)+1) 2511 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2512 return nullptr; 2513 2514 if (CI->use_empty()) 2515 // sprintf(dest, "%s", str) -> strcpy(dest, str) 2516 return emitStrCpy(CI->getArgOperand(0), CI->getArgOperand(2), B, TLI); 2517 2518 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 2519 if (SrcLen) { 2520 B.CreateMemCpy( 2521 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2522 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 2523 // Returns total number of characters written without null-character. 2524 return ConstantInt::get(CI->getType(), SrcLen - 1); 2525 } else if (Value *V = emitStpCpy(CI->getArgOperand(0), CI->getArgOperand(2), 2526 B, TLI)) { 2527 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 2528 Value *PtrDiff = B.CreatePtrDiff(V, CI->getArgOperand(0)); 2529 return B.CreateIntCast(PtrDiff, CI->getType(), false); 2530 } 2531 2532 bool OptForSize = CI->getFunction()->hasOptSize() || 2533 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2534 PGSOQueryType::IRPass); 2535 if (OptForSize) 2536 return nullptr; 2537 2538 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2539 if (!Len) 2540 return nullptr; 2541 Value *IncLen = 2542 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2543 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(2), 2544 Align(1), IncLen); 2545 2546 // The sprintf result is the unincremented number of bytes in the string. 2547 return B.CreateIntCast(Len, CI->getType(), false); 2548 } 2549 return nullptr; 2550 } 2551 2552 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 2553 Function *Callee = CI->getCalledFunction(); 2554 FunctionType *FT = Callee->getFunctionType(); 2555 if (Value *V = optimizeSPrintFString(CI, B)) { 2556 return V; 2557 } 2558 2559 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2560 // point arguments. 2561 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2562 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2563 FunctionCallee SIPrintFFn = 2564 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2565 CallInst *New = cast<CallInst>(CI->clone()); 2566 New->setCalledFunction(SIPrintFFn); 2567 B.Insert(New); 2568 return New; 2569 } 2570 2571 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2572 // floating point arguments. 2573 if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) { 2574 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2575 auto SmallSPrintFFn = 2576 M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf), 2577 FT, Callee->getAttributes()); 2578 CallInst *New = cast<CallInst>(CI->clone()); 2579 New->setCalledFunction(SmallSPrintFFn); 2580 B.Insert(New); 2581 return New; 2582 } 2583 2584 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 2585 return nullptr; 2586 } 2587 2588 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 2589 IRBuilderBase &B) { 2590 // Check for size 2591 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2592 if (!Size) 2593 return nullptr; 2594 2595 uint64_t N = Size->getZExtValue(); 2596 // Check for a fixed format string. 2597 StringRef FormatStr; 2598 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2599 return nullptr; 2600 2601 // If we just have a format string (nothing else crazy) transform it. 2602 if (CI->getNumArgOperands() == 3) { 2603 // Make sure there's no % in the constant array. We could try to handle 2604 // %% -> % in the future if we cared. 2605 if (FormatStr.find('%') != StringRef::npos) 2606 return nullptr; // we found a format specifier, bail out. 2607 2608 if (N == 0) 2609 return ConstantInt::get(CI->getType(), FormatStr.size()); 2610 else if (N < FormatStr.size() + 1) 2611 return nullptr; 2612 2613 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2614 // strlen(fmt)+1) 2615 B.CreateMemCpy( 2616 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2617 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2618 FormatStr.size() + 1)); // Copy the null byte. 2619 return ConstantInt::get(CI->getType(), FormatStr.size()); 2620 } 2621 2622 // The remaining optimizations require the format string to be "%s" or "%c" 2623 // and have an extra operand. 2624 if (FormatStr.size() == 2 && FormatStr[0] == '%' && 2625 CI->getNumArgOperands() == 4) { 2626 2627 // Decode the second character of the format string. 2628 if (FormatStr[1] == 'c') { 2629 if (N == 0) 2630 return ConstantInt::get(CI->getType(), 1); 2631 else if (N == 1) 2632 return nullptr; 2633 2634 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2635 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2636 return nullptr; 2637 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2638 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2639 B.CreateStore(V, Ptr); 2640 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2641 B.CreateStore(B.getInt8(0), Ptr); 2642 2643 return ConstantInt::get(CI->getType(), 1); 2644 } 2645 2646 if (FormatStr[1] == 's') { 2647 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2648 StringRef Str; 2649 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2650 return nullptr; 2651 2652 if (N == 0) 2653 return ConstantInt::get(CI->getType(), Str.size()); 2654 else if (N < Str.size() + 1) 2655 return nullptr; 2656 2657 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(3), 2658 Align(1), ConstantInt::get(CI->getType(), Str.size() + 1)); 2659 2660 // The snprintf result is the unincremented number of bytes in the string. 2661 return ConstantInt::get(CI->getType(), Str.size()); 2662 } 2663 } 2664 return nullptr; 2665 } 2666 2667 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 2668 if (Value *V = optimizeSnPrintFString(CI, B)) { 2669 return V; 2670 } 2671 2672 if (isKnownNonZero(CI->getOperand(1), DL)) 2673 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2674 return nullptr; 2675 } 2676 2677 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 2678 IRBuilderBase &B) { 2679 optimizeErrorReporting(CI, B, 0); 2680 2681 // All the optimizations depend on the format string. 2682 StringRef FormatStr; 2683 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2684 return nullptr; 2685 2686 // Do not do any of the following transformations if the fprintf return 2687 // value is used, in general the fprintf return value is not compatible 2688 // with fwrite(), fputc() or fputs(). 2689 if (!CI->use_empty()) 2690 return nullptr; 2691 2692 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2693 if (CI->getNumArgOperands() == 2) { 2694 // Could handle %% -> % if we cared. 2695 if (FormatStr.find('%') != StringRef::npos) 2696 return nullptr; // We found a format specifier. 2697 2698 return emitFWrite( 2699 CI->getArgOperand(1), 2700 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 2701 CI->getArgOperand(0), B, DL, TLI); 2702 } 2703 2704 // The remaining optimizations require the format string to be "%s" or "%c" 2705 // and have an extra operand. 2706 if (FormatStr.size() != 2 || FormatStr[0] != '%' || 2707 CI->getNumArgOperands() < 3) 2708 return nullptr; 2709 2710 // Decode the second character of the format string. 2711 if (FormatStr[1] == 'c') { 2712 // fprintf(F, "%c", chr) --> fputc(chr, F) 2713 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2714 return nullptr; 2715 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2716 } 2717 2718 if (FormatStr[1] == 's') { 2719 // fprintf(F, "%s", str) --> fputs(str, F) 2720 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2721 return nullptr; 2722 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2723 } 2724 return nullptr; 2725 } 2726 2727 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 2728 Function *Callee = CI->getCalledFunction(); 2729 FunctionType *FT = Callee->getFunctionType(); 2730 if (Value *V = optimizeFPrintFString(CI, B)) { 2731 return V; 2732 } 2733 2734 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2735 // floating point arguments. 2736 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2737 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2738 FunctionCallee FIPrintFFn = 2739 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2740 CallInst *New = cast<CallInst>(CI->clone()); 2741 New->setCalledFunction(FIPrintFFn); 2742 B.Insert(New); 2743 return New; 2744 } 2745 2746 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2747 // 128-bit floating point arguments. 2748 if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) { 2749 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2750 auto SmallFPrintFFn = 2751 M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf), 2752 FT, Callee->getAttributes()); 2753 CallInst *New = cast<CallInst>(CI->clone()); 2754 New->setCalledFunction(SmallFPrintFFn); 2755 B.Insert(New); 2756 return New; 2757 } 2758 2759 return nullptr; 2760 } 2761 2762 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 2763 optimizeErrorReporting(CI, B, 3); 2764 2765 // Get the element size and count. 2766 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2767 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2768 if (SizeC && CountC) { 2769 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2770 2771 // If this is writing zero records, remove the call (it's a noop). 2772 if (Bytes == 0) 2773 return ConstantInt::get(CI->getType(), 0); 2774 2775 // If this is writing one byte, turn it into fputc. 2776 // This optimisation is only valid, if the return value is unused. 2777 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2778 Value *Char = B.CreateLoad(B.getInt8Ty(), 2779 castToCStr(CI->getArgOperand(0), B), "char"); 2780 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2781 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2782 } 2783 } 2784 2785 return nullptr; 2786 } 2787 2788 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 2789 optimizeErrorReporting(CI, B, 1); 2790 2791 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2792 // requires more arguments and thus extra MOVs are required. 2793 bool OptForSize = CI->getFunction()->hasOptSize() || 2794 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2795 PGSOQueryType::IRPass); 2796 if (OptForSize) 2797 return nullptr; 2798 2799 // We can't optimize if return value is used. 2800 if (!CI->use_empty()) 2801 return nullptr; 2802 2803 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2804 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2805 if (!Len) 2806 return nullptr; 2807 2808 // Known to have no uses (see above). 2809 return emitFWrite( 2810 CI->getArgOperand(0), 2811 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2812 CI->getArgOperand(1), B, DL, TLI); 2813 } 2814 2815 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 2816 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2817 if (!CI->use_empty()) 2818 return nullptr; 2819 2820 // Check for a constant string. 2821 // puts("") -> putchar('\n') 2822 StringRef Str; 2823 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 2824 return emitPutChar(B.getInt32('\n'), B, TLI); 2825 2826 return nullptr; 2827 } 2828 2829 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 2830 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 2831 return B.CreateMemMove(CI->getArgOperand(1), Align(1), CI->getArgOperand(0), 2832 Align(1), CI->getArgOperand(2)); 2833 } 2834 2835 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2836 LibFunc Func; 2837 SmallString<20> FloatFuncName = FuncName; 2838 FloatFuncName += 'f'; 2839 if (TLI->getLibFunc(FloatFuncName, Func)) 2840 return TLI->has(Func); 2841 return false; 2842 } 2843 2844 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2845 IRBuilderBase &Builder) { 2846 LibFunc Func; 2847 Function *Callee = CI->getCalledFunction(); 2848 // Check for string/memory library functions. 2849 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2850 // Make sure we never change the calling convention. 2851 assert( 2852 (ignoreCallingConv(Func) || 2853 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) && 2854 "Optimizing string/memory libcall would change the calling convention"); 2855 switch (Func) { 2856 case LibFunc_strcat: 2857 return optimizeStrCat(CI, Builder); 2858 case LibFunc_strncat: 2859 return optimizeStrNCat(CI, Builder); 2860 case LibFunc_strchr: 2861 return optimizeStrChr(CI, Builder); 2862 case LibFunc_strrchr: 2863 return optimizeStrRChr(CI, Builder); 2864 case LibFunc_strcmp: 2865 return optimizeStrCmp(CI, Builder); 2866 case LibFunc_strncmp: 2867 return optimizeStrNCmp(CI, Builder); 2868 case LibFunc_strcpy: 2869 return optimizeStrCpy(CI, Builder); 2870 case LibFunc_stpcpy: 2871 return optimizeStpCpy(CI, Builder); 2872 case LibFunc_strncpy: 2873 return optimizeStrNCpy(CI, Builder); 2874 case LibFunc_strlen: 2875 return optimizeStrLen(CI, Builder); 2876 case LibFunc_strpbrk: 2877 return optimizeStrPBrk(CI, Builder); 2878 case LibFunc_strndup: 2879 return optimizeStrNDup(CI, Builder); 2880 case LibFunc_strtol: 2881 case LibFunc_strtod: 2882 case LibFunc_strtof: 2883 case LibFunc_strtoul: 2884 case LibFunc_strtoll: 2885 case LibFunc_strtold: 2886 case LibFunc_strtoull: 2887 return optimizeStrTo(CI, Builder); 2888 case LibFunc_strspn: 2889 return optimizeStrSpn(CI, Builder); 2890 case LibFunc_strcspn: 2891 return optimizeStrCSpn(CI, Builder); 2892 case LibFunc_strstr: 2893 return optimizeStrStr(CI, Builder); 2894 case LibFunc_memchr: 2895 return optimizeMemChr(CI, Builder); 2896 case LibFunc_memrchr: 2897 return optimizeMemRChr(CI, Builder); 2898 case LibFunc_bcmp: 2899 return optimizeBCmp(CI, Builder); 2900 case LibFunc_memcmp: 2901 return optimizeMemCmp(CI, Builder); 2902 case LibFunc_memcpy: 2903 return optimizeMemCpy(CI, Builder); 2904 case LibFunc_memccpy: 2905 return optimizeMemCCpy(CI, Builder); 2906 case LibFunc_mempcpy: 2907 return optimizeMemPCpy(CI, Builder); 2908 case LibFunc_memmove: 2909 return optimizeMemMove(CI, Builder); 2910 case LibFunc_memset: 2911 return optimizeMemSet(CI, Builder); 2912 case LibFunc_realloc: 2913 return optimizeRealloc(CI, Builder); 2914 case LibFunc_wcslen: 2915 return optimizeWcslen(CI, Builder); 2916 case LibFunc_bcopy: 2917 return optimizeBCopy(CI, Builder); 2918 default: 2919 break; 2920 } 2921 } 2922 return nullptr; 2923 } 2924 2925 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2926 LibFunc Func, 2927 IRBuilderBase &Builder) { 2928 // Don't optimize calls that require strict floating point semantics. 2929 if (CI->isStrictFP()) 2930 return nullptr; 2931 2932 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 2933 return V; 2934 2935 switch (Func) { 2936 case LibFunc_sinpif: 2937 case LibFunc_sinpi: 2938 case LibFunc_cospif: 2939 case LibFunc_cospi: 2940 return optimizeSinCosPi(CI, Builder); 2941 case LibFunc_powf: 2942 case LibFunc_pow: 2943 case LibFunc_powl: 2944 return optimizePow(CI, Builder); 2945 case LibFunc_exp2l: 2946 case LibFunc_exp2: 2947 case LibFunc_exp2f: 2948 return optimizeExp2(CI, Builder); 2949 case LibFunc_fabsf: 2950 case LibFunc_fabs: 2951 case LibFunc_fabsl: 2952 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2953 case LibFunc_sqrtf: 2954 case LibFunc_sqrt: 2955 case LibFunc_sqrtl: 2956 return optimizeSqrt(CI, Builder); 2957 case LibFunc_logf: 2958 case LibFunc_log: 2959 case LibFunc_logl: 2960 case LibFunc_log10f: 2961 case LibFunc_log10: 2962 case LibFunc_log10l: 2963 case LibFunc_log1pf: 2964 case LibFunc_log1p: 2965 case LibFunc_log1pl: 2966 case LibFunc_log2f: 2967 case LibFunc_log2: 2968 case LibFunc_log2l: 2969 case LibFunc_logbf: 2970 case LibFunc_logb: 2971 case LibFunc_logbl: 2972 return optimizeLog(CI, Builder); 2973 case LibFunc_tan: 2974 case LibFunc_tanf: 2975 case LibFunc_tanl: 2976 return optimizeTan(CI, Builder); 2977 case LibFunc_ceil: 2978 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2979 case LibFunc_floor: 2980 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2981 case LibFunc_round: 2982 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2983 case LibFunc_roundeven: 2984 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 2985 case LibFunc_nearbyint: 2986 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2987 case LibFunc_rint: 2988 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2989 case LibFunc_trunc: 2990 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2991 case LibFunc_acos: 2992 case LibFunc_acosh: 2993 case LibFunc_asin: 2994 case LibFunc_asinh: 2995 case LibFunc_atan: 2996 case LibFunc_atanh: 2997 case LibFunc_cbrt: 2998 case LibFunc_cosh: 2999 case LibFunc_exp: 3000 case LibFunc_exp10: 3001 case LibFunc_expm1: 3002 case LibFunc_cos: 3003 case LibFunc_sin: 3004 case LibFunc_sinh: 3005 case LibFunc_tanh: 3006 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 3007 return optimizeUnaryDoubleFP(CI, Builder, true); 3008 return nullptr; 3009 case LibFunc_copysign: 3010 if (hasFloatVersion(CI->getCalledFunction()->getName())) 3011 return optimizeBinaryDoubleFP(CI, Builder); 3012 return nullptr; 3013 case LibFunc_fminf: 3014 case LibFunc_fmin: 3015 case LibFunc_fminl: 3016 case LibFunc_fmaxf: 3017 case LibFunc_fmax: 3018 case LibFunc_fmaxl: 3019 return optimizeFMinFMax(CI, Builder); 3020 case LibFunc_cabs: 3021 case LibFunc_cabsf: 3022 case LibFunc_cabsl: 3023 return optimizeCAbs(CI, Builder); 3024 default: 3025 return nullptr; 3026 } 3027 } 3028 3029 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 3030 // TODO: Split out the code below that operates on FP calls so that 3031 // we can all non-FP calls with the StrictFP attribute to be 3032 // optimized. 3033 if (CI->isNoBuiltin()) 3034 return nullptr; 3035 3036 LibFunc Func; 3037 Function *Callee = CI->getCalledFunction(); 3038 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3039 3040 SmallVector<OperandBundleDef, 2> OpBundles; 3041 CI->getOperandBundlesAsDefs(OpBundles); 3042 3043 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3044 Builder.setDefaultOperandBundles(OpBundles); 3045 3046 // Command-line parameter overrides instruction attribute. 3047 // This can't be moved to optimizeFloatingPointLibCall() because it may be 3048 // used by the intrinsic optimizations. 3049 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 3050 UnsafeFPShrink = EnableUnsafeFPShrink; 3051 else if (isa<FPMathOperator>(CI) && CI->isFast()) 3052 UnsafeFPShrink = true; 3053 3054 // First, check for intrinsics. 3055 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 3056 if (!IsCallingConvC) 3057 return nullptr; 3058 // The FP intrinsics have corresponding constrained versions so we don't 3059 // need to check for the StrictFP attribute here. 3060 switch (II->getIntrinsicID()) { 3061 case Intrinsic::pow: 3062 return optimizePow(CI, Builder); 3063 case Intrinsic::exp2: 3064 return optimizeExp2(CI, Builder); 3065 case Intrinsic::log: 3066 case Intrinsic::log2: 3067 case Intrinsic::log10: 3068 return optimizeLog(CI, Builder); 3069 case Intrinsic::sqrt: 3070 return optimizeSqrt(CI, Builder); 3071 // TODO: Use foldMallocMemset() with memset intrinsic. 3072 case Intrinsic::memset: 3073 return optimizeMemSet(CI, Builder); 3074 case Intrinsic::memcpy: 3075 return optimizeMemCpy(CI, Builder); 3076 case Intrinsic::memmove: 3077 return optimizeMemMove(CI, Builder); 3078 default: 3079 return nullptr; 3080 } 3081 } 3082 3083 // Also try to simplify calls to fortified library functions. 3084 if (Value *SimplifiedFortifiedCI = 3085 FortifiedSimplifier.optimizeCall(CI, Builder)) { 3086 // Try to further simplify the result. 3087 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 3088 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 3089 // Ensure that SimplifiedCI's uses are complete, since some calls have 3090 // their uses analyzed. 3091 replaceAllUsesWith(CI, SimplifiedCI); 3092 3093 // Set insertion point to SimplifiedCI to guarantee we reach all uses 3094 // we might replace later on. 3095 IRBuilderBase::InsertPointGuard Guard(Builder); 3096 Builder.SetInsertPoint(SimplifiedCI); 3097 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) { 3098 // If we were able to further simplify, remove the now redundant call. 3099 substituteInParent(SimplifiedCI, V); 3100 return V; 3101 } 3102 } 3103 return SimplifiedFortifiedCI; 3104 } 3105 3106 // Then check for known library functions. 3107 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 3108 // We never change the calling convention. 3109 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3110 return nullptr; 3111 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 3112 return V; 3113 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 3114 return V; 3115 switch (Func) { 3116 case LibFunc_ffs: 3117 case LibFunc_ffsl: 3118 case LibFunc_ffsll: 3119 return optimizeFFS(CI, Builder); 3120 case LibFunc_fls: 3121 case LibFunc_flsl: 3122 case LibFunc_flsll: 3123 return optimizeFls(CI, Builder); 3124 case LibFunc_abs: 3125 case LibFunc_labs: 3126 case LibFunc_llabs: 3127 return optimizeAbs(CI, Builder); 3128 case LibFunc_isdigit: 3129 return optimizeIsDigit(CI, Builder); 3130 case LibFunc_isascii: 3131 return optimizeIsAscii(CI, Builder); 3132 case LibFunc_toascii: 3133 return optimizeToAscii(CI, Builder); 3134 case LibFunc_atoi: 3135 case LibFunc_atol: 3136 case LibFunc_atoll: 3137 return optimizeAtoi(CI, Builder); 3138 case LibFunc_strtol: 3139 case LibFunc_strtoll: 3140 return optimizeStrtol(CI, Builder); 3141 case LibFunc_printf: 3142 return optimizePrintF(CI, Builder); 3143 case LibFunc_sprintf: 3144 return optimizeSPrintF(CI, Builder); 3145 case LibFunc_snprintf: 3146 return optimizeSnPrintF(CI, Builder); 3147 case LibFunc_fprintf: 3148 return optimizeFPrintF(CI, Builder); 3149 case LibFunc_fwrite: 3150 return optimizeFWrite(CI, Builder); 3151 case LibFunc_fputs: 3152 return optimizeFPuts(CI, Builder); 3153 case LibFunc_puts: 3154 return optimizePuts(CI, Builder); 3155 case LibFunc_perror: 3156 return optimizeErrorReporting(CI, Builder); 3157 case LibFunc_vfprintf: 3158 case LibFunc_fiprintf: 3159 return optimizeErrorReporting(CI, Builder, 0); 3160 default: 3161 return nullptr; 3162 } 3163 } 3164 return nullptr; 3165 } 3166 3167 LibCallSimplifier::LibCallSimplifier( 3168 const DataLayout &DL, const TargetLibraryInfo *TLI, 3169 OptimizationRemarkEmitter &ORE, 3170 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 3171 function_ref<void(Instruction *, Value *)> Replacer, 3172 function_ref<void(Instruction *)> Eraser) 3173 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 3174 UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {} 3175 3176 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 3177 // Indirect through the replacer used in this instance. 3178 Replacer(I, With); 3179 } 3180 3181 void LibCallSimplifier::eraseFromParent(Instruction *I) { 3182 Eraser(I); 3183 } 3184 3185 // TODO: 3186 // Additional cases that we need to add to this file: 3187 // 3188 // cbrt: 3189 // * cbrt(expN(X)) -> expN(x/3) 3190 // * cbrt(sqrt(x)) -> pow(x,1/6) 3191 // * cbrt(cbrt(x)) -> pow(x,1/9) 3192 // 3193 // exp, expf, expl: 3194 // * exp(log(x)) -> x 3195 // 3196 // log, logf, logl: 3197 // * log(exp(x)) -> x 3198 // * log(exp(y)) -> y*log(e) 3199 // * log(exp10(y)) -> y*log(10) 3200 // * log(sqrt(x)) -> 0.5*log(x) 3201 // 3202 // pow, powf, powl: 3203 // * pow(sqrt(x),y) -> pow(x,y*0.5) 3204 // * pow(pow(x,y),z)-> pow(x,y*z) 3205 // 3206 // signbit: 3207 // * signbit(cnst) -> cnst' 3208 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 3209 // 3210 // sqrt, sqrtf, sqrtl: 3211 // * sqrt(expN(x)) -> expN(x*0.5) 3212 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 3213 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 3214 // 3215 3216 //===----------------------------------------------------------------------===// 3217 // Fortified Library Call Optimizations 3218 //===----------------------------------------------------------------------===// 3219 3220 bool 3221 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 3222 unsigned ObjSizeOp, 3223 Optional<unsigned> SizeOp, 3224 Optional<unsigned> StrOp, 3225 Optional<unsigned> FlagOp) { 3226 // If this function takes a flag argument, the implementation may use it to 3227 // perform extra checks. Don't fold into the non-checking variant. 3228 if (FlagOp) { 3229 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 3230 if (!Flag || !Flag->isZero()) 3231 return false; 3232 } 3233 3234 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 3235 return true; 3236 3237 if (ConstantInt *ObjSizeCI = 3238 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 3239 if (ObjSizeCI->isMinusOne()) 3240 return true; 3241 // If the object size wasn't -1 (unknown), bail out if we were asked to. 3242 if (OnlyLowerUnknownSize) 3243 return false; 3244 if (StrOp) { 3245 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 3246 // If the length is 0 we don't know how long it is and so we can't 3247 // remove the check. 3248 if (Len) 3249 annotateDereferenceableBytes(CI, *StrOp, Len); 3250 else 3251 return false; 3252 return ObjSizeCI->getZExtValue() >= Len; 3253 } 3254 3255 if (SizeOp) { 3256 if (ConstantInt *SizeCI = 3257 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 3258 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 3259 } 3260 } 3261 return false; 3262 } 3263 3264 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 3265 IRBuilderBase &B) { 3266 if (isFortifiedCallFoldable(CI, 3, 2)) { 3267 CallInst *NewCI = 3268 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3269 Align(1), CI->getArgOperand(2)); 3270 NewCI->setAttributes(CI->getAttributes()); 3271 NewCI->removeAttributes(AttributeList::ReturnIndex, 3272 AttributeFuncs::typeIncompatible(NewCI->getType())); 3273 return CI->getArgOperand(0); 3274 } 3275 return nullptr; 3276 } 3277 3278 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 3279 IRBuilderBase &B) { 3280 if (isFortifiedCallFoldable(CI, 3, 2)) { 3281 CallInst *NewCI = 3282 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3283 Align(1), CI->getArgOperand(2)); 3284 NewCI->setAttributes(CI->getAttributes()); 3285 NewCI->removeAttributes(AttributeList::ReturnIndex, 3286 AttributeFuncs::typeIncompatible(NewCI->getType())); 3287 return CI->getArgOperand(0); 3288 } 3289 return nullptr; 3290 } 3291 3292 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 3293 IRBuilderBase &B) { 3294 // TODO: Try foldMallocMemset() here. 3295 3296 if (isFortifiedCallFoldable(CI, 3, 2)) { 3297 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 3298 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 3299 CI->getArgOperand(2), Align(1)); 3300 NewCI->setAttributes(CI->getAttributes()); 3301 NewCI->removeAttributes(AttributeList::ReturnIndex, 3302 AttributeFuncs::typeIncompatible(NewCI->getType())); 3303 return CI->getArgOperand(0); 3304 } 3305 return nullptr; 3306 } 3307 3308 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 3309 IRBuilderBase &B) { 3310 const DataLayout &DL = CI->getModule()->getDataLayout(); 3311 if (isFortifiedCallFoldable(CI, 3, 2)) 3312 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3313 CI->getArgOperand(2), B, DL, TLI)) { 3314 CallInst *NewCI = cast<CallInst>(Call); 3315 NewCI->setAttributes(CI->getAttributes()); 3316 NewCI->removeAttributes( 3317 AttributeList::ReturnIndex, 3318 AttributeFuncs::typeIncompatible(NewCI->getType())); 3319 return NewCI; 3320 } 3321 return nullptr; 3322 } 3323 3324 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 3325 IRBuilderBase &B, 3326 LibFunc Func) { 3327 const DataLayout &DL = CI->getModule()->getDataLayout(); 3328 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 3329 *ObjSize = CI->getArgOperand(2); 3330 3331 // __stpcpy_chk(x,x,...) -> x+strlen(x) 3332 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 3333 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3334 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3335 } 3336 3337 // If a) we don't have any length information, or b) we know this will 3338 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3339 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3340 // TODO: It might be nice to get a maximum length out of the possible 3341 // string lengths for varying. 3342 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 3343 if (Func == LibFunc_strcpy_chk) 3344 return emitStrCpy(Dst, Src, B, TLI); 3345 else 3346 return emitStpCpy(Dst, Src, B, TLI); 3347 } 3348 3349 if (OnlyLowerUnknownSize) 3350 return nullptr; 3351 3352 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3353 uint64_t Len = GetStringLength(Src); 3354 if (Len) 3355 annotateDereferenceableBytes(CI, 1, Len); 3356 else 3357 return nullptr; 3358 3359 Type *SizeTTy = DL.getIntPtrType(CI->getContext()); 3360 Value *LenV = ConstantInt::get(SizeTTy, Len); 3361 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 3362 // If the function was an __stpcpy_chk, and we were able to fold it into 3363 // a __memcpy_chk, we still need to return the correct end pointer. 3364 if (Ret && Func == LibFunc_stpcpy_chk) 3365 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 3366 return Ret; 3367 } 3368 3369 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 3370 IRBuilderBase &B) { 3371 if (isFortifiedCallFoldable(CI, 1, None, 0)) 3372 return emitStrLen(CI->getArgOperand(0), B, CI->getModule()->getDataLayout(), 3373 TLI); 3374 return nullptr; 3375 } 3376 3377 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 3378 IRBuilderBase &B, 3379 LibFunc Func) { 3380 if (isFortifiedCallFoldable(CI, 3, 2)) { 3381 if (Func == LibFunc_strncpy_chk) 3382 return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3383 CI->getArgOperand(2), B, TLI); 3384 else 3385 return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3386 CI->getArgOperand(2), B, TLI); 3387 } 3388 3389 return nullptr; 3390 } 3391 3392 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 3393 IRBuilderBase &B) { 3394 if (isFortifiedCallFoldable(CI, 4, 3)) 3395 return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3396 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI); 3397 3398 return nullptr; 3399 } 3400 3401 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 3402 IRBuilderBase &B) { 3403 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 3404 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 3405 return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3406 CI->getArgOperand(4), VariadicArgs, B, TLI); 3407 } 3408 3409 return nullptr; 3410 } 3411 3412 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3413 IRBuilderBase &B) { 3414 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3415 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 3416 return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs, 3417 B, TLI); 3418 } 3419 3420 return nullptr; 3421 } 3422 3423 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3424 IRBuilderBase &B) { 3425 if (isFortifiedCallFoldable(CI, 2)) 3426 return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI); 3427 3428 return nullptr; 3429 } 3430 3431 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3432 IRBuilderBase &B) { 3433 if (isFortifiedCallFoldable(CI, 3)) 3434 return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3435 CI->getArgOperand(2), B, TLI); 3436 3437 return nullptr; 3438 } 3439 3440 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3441 IRBuilderBase &B) { 3442 if (isFortifiedCallFoldable(CI, 3)) 3443 return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3444 CI->getArgOperand(2), B, TLI); 3445 3446 return nullptr; 3447 } 3448 3449 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3450 IRBuilderBase &B) { 3451 if (isFortifiedCallFoldable(CI, 3)) 3452 return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3453 CI->getArgOperand(2), B, TLI); 3454 3455 return nullptr; 3456 } 3457 3458 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3459 IRBuilderBase &B) { 3460 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3461 return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3462 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI); 3463 3464 return nullptr; 3465 } 3466 3467 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3468 IRBuilderBase &B) { 3469 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3470 return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3471 CI->getArgOperand(4), B, TLI); 3472 3473 return nullptr; 3474 } 3475 3476 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 3477 IRBuilderBase &Builder) { 3478 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3479 // Some clang users checked for _chk libcall availability using: 3480 // __has_builtin(__builtin___memcpy_chk) 3481 // When compiling with -fno-builtin, this is always true. 3482 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3483 // end up with fortified libcalls, which isn't acceptable in a freestanding 3484 // environment which only provides their non-fortified counterparts. 3485 // 3486 // Until we change clang and/or teach external users to check for availability 3487 // differently, disregard the "nobuiltin" attribute and TLI::has. 3488 // 3489 // PR23093. 3490 3491 LibFunc Func; 3492 Function *Callee = CI->getCalledFunction(); 3493 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3494 3495 SmallVector<OperandBundleDef, 2> OpBundles; 3496 CI->getOperandBundlesAsDefs(OpBundles); 3497 3498 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3499 Builder.setDefaultOperandBundles(OpBundles); 3500 3501 // First, check that this is a known library functions and that the prototype 3502 // is correct. 3503 if (!TLI->getLibFunc(*Callee, Func)) 3504 return nullptr; 3505 3506 // We never change the calling convention. 3507 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3508 return nullptr; 3509 3510 switch (Func) { 3511 case LibFunc_memcpy_chk: 3512 return optimizeMemCpyChk(CI, Builder); 3513 case LibFunc_mempcpy_chk: 3514 return optimizeMemPCpyChk(CI, Builder); 3515 case LibFunc_memmove_chk: 3516 return optimizeMemMoveChk(CI, Builder); 3517 case LibFunc_memset_chk: 3518 return optimizeMemSetChk(CI, Builder); 3519 case LibFunc_stpcpy_chk: 3520 case LibFunc_strcpy_chk: 3521 return optimizeStrpCpyChk(CI, Builder, Func); 3522 case LibFunc_strlen_chk: 3523 return optimizeStrLenChk(CI, Builder); 3524 case LibFunc_stpncpy_chk: 3525 case LibFunc_strncpy_chk: 3526 return optimizeStrpNCpyChk(CI, Builder, Func); 3527 case LibFunc_memccpy_chk: 3528 return optimizeMemCCpyChk(CI, Builder); 3529 case LibFunc_snprintf_chk: 3530 return optimizeSNPrintfChk(CI, Builder); 3531 case LibFunc_sprintf_chk: 3532 return optimizeSPrintfChk(CI, Builder); 3533 case LibFunc_strcat_chk: 3534 return optimizeStrCatChk(CI, Builder); 3535 case LibFunc_strlcat_chk: 3536 return optimizeStrLCat(CI, Builder); 3537 case LibFunc_strncat_chk: 3538 return optimizeStrNCatChk(CI, Builder); 3539 case LibFunc_strlcpy_chk: 3540 return optimizeStrLCpyChk(CI, Builder); 3541 case LibFunc_vsnprintf_chk: 3542 return optimizeVSNPrintfChk(CI, Builder); 3543 case LibFunc_vsprintf_chk: 3544 return optimizeVSPrintfChk(CI, Builder); 3545 default: 3546 break; 3547 } 3548 return nullptr; 3549 } 3550 3551 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3552 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3553 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 3554