1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/CaptureTracking.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/KnownBits.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Transforms/Utils/BuildLibCalls.h"
39 #include "llvm/Transforms/Utils/SizeOpts.h"
40 
41 using namespace llvm;
42 using namespace PatternMatch;
43 
44 static cl::opt<bool>
45     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
46                          cl::init(false),
47                          cl::desc("Enable unsafe double to float "
48                                   "shrinking for math lib calls"));
49 
50 //===----------------------------------------------------------------------===//
51 // Helper Functions
52 //===----------------------------------------------------------------------===//
53 
54 static bool ignoreCallingConv(LibFunc Func) {
55   return Func == LibFunc_abs || Func == LibFunc_labs ||
56          Func == LibFunc_llabs || Func == LibFunc_strlen;
57 }
58 
59 /// Return true if it is only used in equality comparisons with With.
60 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
61   for (User *U : V->users()) {
62     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
63       if (IC->isEquality() && IC->getOperand(1) == With)
64         continue;
65     // Unknown instruction.
66     return false;
67   }
68   return true;
69 }
70 
71 static bool callHasFloatingPointArgument(const CallInst *CI) {
72   return any_of(CI->operands(), [](const Use &OI) {
73     return OI->getType()->isFloatingPointTy();
74   });
75 }
76 
77 static bool callHasFP128Argument(const CallInst *CI) {
78   return any_of(CI->operands(), [](const Use &OI) {
79     return OI->getType()->isFP128Ty();
80   });
81 }
82 
83 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
84   if (Base < 2 || Base > 36)
85     // handle special zero base
86     if (Base != 0)
87       return nullptr;
88 
89   char *End;
90   std::string nptr = Str.str();
91   errno = 0;
92   long long int Result = strtoll(nptr.c_str(), &End, Base);
93   if (errno)
94     return nullptr;
95 
96   // if we assume all possible target locales are ASCII supersets,
97   // then if strtoll successfully parses a number on the host,
98   // it will also successfully parse the same way on the target
99   if (*End != '\0')
100     return nullptr;
101 
102   if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
103     return nullptr;
104 
105   return ConstantInt::get(CI->getType(), Result);
106 }
107 
108 static bool isOnlyUsedInComparisonWithZero(Value *V) {
109   for (User *U : V->users()) {
110     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
111       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
112         if (C->isNullValue())
113           continue;
114     // Unknown instruction.
115     return false;
116   }
117   return true;
118 }
119 
120 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
121                                  const DataLayout &DL) {
122   if (!isOnlyUsedInComparisonWithZero(CI))
123     return false;
124 
125   if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL))
126     return false;
127 
128   if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
129     return false;
130 
131   return true;
132 }
133 
134 static void annotateDereferenceableBytes(CallInst *CI,
135                                          ArrayRef<unsigned> ArgNos,
136                                          uint64_t DereferenceableBytes) {
137   const Function *F = CI->getCaller();
138   if (!F)
139     return;
140   for (unsigned ArgNo : ArgNos) {
141     uint64_t DerefBytes = DereferenceableBytes;
142     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
143     if (!llvm::NullPointerIsDefined(F, AS) ||
144         CI->paramHasAttr(ArgNo, Attribute::NonNull))
145       DerefBytes = std::max(CI->getDereferenceableOrNullBytes(
146                                 ArgNo + AttributeList::FirstArgIndex),
147                             DereferenceableBytes);
148 
149     if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) <
150         DerefBytes) {
151       CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
152       if (!llvm::NullPointerIsDefined(F, AS) ||
153           CI->paramHasAttr(ArgNo, Attribute::NonNull))
154         CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
155       CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
156                                   CI->getContext(), DerefBytes));
157     }
158   }
159 }
160 
161 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI,
162                                          ArrayRef<unsigned> ArgNos) {
163   Function *F = CI->getCaller();
164   if (!F)
165     return;
166 
167   for (unsigned ArgNo : ArgNos) {
168     if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef))
169       CI->addParamAttr(ArgNo, Attribute::NoUndef);
170 
171     if (CI->paramHasAttr(ArgNo, Attribute::NonNull))
172       continue;
173     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
174     if (llvm::NullPointerIsDefined(F, AS))
175       continue;
176 
177     CI->addParamAttr(ArgNo, Attribute::NonNull);
178     annotateDereferenceableBytes(CI, ArgNo, 1);
179   }
180 }
181 
182 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
183                                Value *Size, const DataLayout &DL) {
184   if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
185     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
186     annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
187   } else if (isKnownNonZero(Size, DL)) {
188     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
189     const APInt *X, *Y;
190     uint64_t DerefMin = 1;
191     if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
192       DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
193       annotateDereferenceableBytes(CI, ArgNos, DerefMin);
194     }
195   }
196 }
197 
198 //===----------------------------------------------------------------------===//
199 // String and Memory Library Call Optimizations
200 //===----------------------------------------------------------------------===//
201 
202 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) {
203   // Extract some information from the instruction
204   Value *Dst = CI->getArgOperand(0);
205   Value *Src = CI->getArgOperand(1);
206   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
207 
208   // See if we can get the length of the input string.
209   uint64_t Len = GetStringLength(Src);
210   if (Len)
211     annotateDereferenceableBytes(CI, 1, Len);
212   else
213     return nullptr;
214   --Len; // Unbias length.
215 
216   // Handle the simple, do-nothing case: strcat(x, "") -> x
217   if (Len == 0)
218     return Dst;
219 
220   return emitStrLenMemCpy(Src, Dst, Len, B);
221 }
222 
223 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
224                                            IRBuilderBase &B) {
225   // We need to find the end of the destination string.  That's where the
226   // memory is to be moved to. We just generate a call to strlen.
227   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
228   if (!DstLen)
229     return nullptr;
230 
231   // Now that we have the destination's length, we must index into the
232   // destination's pointer to get the actual memcpy destination (end of
233   // the string .. we're concatenating).
234   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
235 
236   // We have enough information to now generate the memcpy call to do the
237   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
238   B.CreateMemCpy(
239       CpyDst, Align(1), Src, Align(1),
240       ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
241   return Dst;
242 }
243 
244 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) {
245   // Extract some information from the instruction.
246   Value *Dst = CI->getArgOperand(0);
247   Value *Src = CI->getArgOperand(1);
248   Value *Size = CI->getArgOperand(2);
249   uint64_t Len;
250   annotateNonNullNoUndefBasedOnAccess(CI, 0);
251   if (isKnownNonZero(Size, DL))
252     annotateNonNullNoUndefBasedOnAccess(CI, 1);
253 
254   // We don't do anything if length is not constant.
255   ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
256   if (LengthArg) {
257     Len = LengthArg->getZExtValue();
258     // strncat(x, c, 0) -> x
259     if (!Len)
260       return Dst;
261   } else {
262     return nullptr;
263   }
264 
265   // See if we can get the length of the input string.
266   uint64_t SrcLen = GetStringLength(Src);
267   if (SrcLen) {
268     annotateDereferenceableBytes(CI, 1, SrcLen);
269     --SrcLen; // Unbias length.
270   } else {
271     return nullptr;
272   }
273 
274   // strncat(x, "", c) -> x
275   if (SrcLen == 0)
276     return Dst;
277 
278   // We don't optimize this case.
279   if (Len < SrcLen)
280     return nullptr;
281 
282   // strncat(x, s, c) -> strcat(x, s)
283   // s is constant so the strcat can be optimized further.
284   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
285 }
286 
287 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) {
288   Function *Callee = CI->getCalledFunction();
289   FunctionType *FT = Callee->getFunctionType();
290   Value *SrcStr = CI->getArgOperand(0);
291   annotateNonNullNoUndefBasedOnAccess(CI, 0);
292 
293   // If the second operand is non-constant, see if we can compute the length
294   // of the input string and turn this into memchr.
295   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
296   if (!CharC) {
297     uint64_t Len = GetStringLength(SrcStr);
298     if (Len)
299       annotateDereferenceableBytes(CI, 0, Len);
300     else
301       return nullptr;
302     if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
303       return nullptr;
304 
305     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
306                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
307                       B, DL, TLI);
308   }
309 
310   // Otherwise, the character is a constant, see if the first argument is
311   // a string literal.  If so, we can constant fold.
312   StringRef Str;
313   if (!getConstantStringInfo(SrcStr, Str)) {
314     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
315       if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
316         return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
317     return nullptr;
318   }
319 
320   // Compute the offset, make sure to handle the case when we're searching for
321   // zero (a weird way to spell strlen).
322   size_t I = (0xFF & CharC->getSExtValue()) == 0
323                  ? Str.size()
324                  : Str.find(CharC->getSExtValue());
325   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
326     return Constant::getNullValue(CI->getType());
327 
328   // strchr(s+n,c)  -> gep(s+n+i,c)
329   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
330 }
331 
332 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) {
333   Value *SrcStr = CI->getArgOperand(0);
334   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
335   annotateNonNullNoUndefBasedOnAccess(CI, 0);
336 
337   // Cannot fold anything if we're not looking for a constant.
338   if (!CharC)
339     return nullptr;
340 
341   StringRef Str;
342   if (!getConstantStringInfo(SrcStr, Str)) {
343     // strrchr(s, 0) -> strchr(s, 0)
344     if (CharC->isZero())
345       return emitStrChr(SrcStr, '\0', B, TLI);
346     return nullptr;
347   }
348 
349   // Compute the offset.
350   size_t I = (0xFF & CharC->getSExtValue()) == 0
351                  ? Str.size()
352                  : Str.rfind(CharC->getSExtValue());
353   if (I == StringRef::npos) // Didn't find the char. Return null.
354     return Constant::getNullValue(CI->getType());
355 
356   // strrchr(s+n,c) -> gep(s+n+i,c)
357   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
358 }
359 
360 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) {
361   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
362   if (Str1P == Str2P) // strcmp(x,x)  -> 0
363     return ConstantInt::get(CI->getType(), 0);
364 
365   StringRef Str1, Str2;
366   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
367   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
368 
369   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
370   if (HasStr1 && HasStr2)
371     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
372 
373   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
374     return B.CreateNeg(B.CreateZExt(
375         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
376 
377   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
378     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
379                         CI->getType());
380 
381   // strcmp(P, "x") -> memcmp(P, "x", 2)
382   uint64_t Len1 = GetStringLength(Str1P);
383   if (Len1)
384     annotateDereferenceableBytes(CI, 0, Len1);
385   uint64_t Len2 = GetStringLength(Str2P);
386   if (Len2)
387     annotateDereferenceableBytes(CI, 1, Len2);
388 
389   if (Len1 && Len2) {
390     return emitMemCmp(Str1P, Str2P,
391                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
392                                        std::min(Len1, Len2)),
393                       B, DL, TLI);
394   }
395 
396   // strcmp to memcmp
397   if (!HasStr1 && HasStr2) {
398     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
399       return emitMemCmp(
400           Str1P, Str2P,
401           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
402           TLI);
403   } else if (HasStr1 && !HasStr2) {
404     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
405       return emitMemCmp(
406           Str1P, Str2P,
407           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
408           TLI);
409   }
410 
411   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
412   return nullptr;
413 }
414 
415 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) {
416   Value *Str1P = CI->getArgOperand(0);
417   Value *Str2P = CI->getArgOperand(1);
418   Value *Size = CI->getArgOperand(2);
419   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
420     return ConstantInt::get(CI->getType(), 0);
421 
422   if (isKnownNonZero(Size, DL))
423     annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
424   // Get the length argument if it is constant.
425   uint64_t Length;
426   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
427     Length = LengthArg->getZExtValue();
428   else
429     return nullptr;
430 
431   if (Length == 0) // strncmp(x,y,0)   -> 0
432     return ConstantInt::get(CI->getType(), 0);
433 
434   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
435     return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI);
436 
437   StringRef Str1, Str2;
438   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
439   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
440 
441   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
442   if (HasStr1 && HasStr2) {
443     StringRef SubStr1 = Str1.substr(0, Length);
444     StringRef SubStr2 = Str2.substr(0, Length);
445     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
446   }
447 
448   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
449     return B.CreateNeg(B.CreateZExt(
450         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
451 
452   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
453     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
454                         CI->getType());
455 
456   uint64_t Len1 = GetStringLength(Str1P);
457   if (Len1)
458     annotateDereferenceableBytes(CI, 0, Len1);
459   uint64_t Len2 = GetStringLength(Str2P);
460   if (Len2)
461     annotateDereferenceableBytes(CI, 1, Len2);
462 
463   // strncmp to memcmp
464   if (!HasStr1 && HasStr2) {
465     Len2 = std::min(Len2, Length);
466     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
467       return emitMemCmp(
468           Str1P, Str2P,
469           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
470           TLI);
471   } else if (HasStr1 && !HasStr2) {
472     Len1 = std::min(Len1, Length);
473     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
474       return emitMemCmp(
475           Str1P, Str2P,
476           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
477           TLI);
478   }
479 
480   return nullptr;
481 }
482 
483 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) {
484   Value *Src = CI->getArgOperand(0);
485   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
486   uint64_t SrcLen = GetStringLength(Src);
487   if (SrcLen && Size) {
488     annotateDereferenceableBytes(CI, 0, SrcLen);
489     if (SrcLen <= Size->getZExtValue() + 1)
490       return emitStrDup(Src, B, TLI);
491   }
492 
493   return nullptr;
494 }
495 
496 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) {
497   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
498   if (Dst == Src) // strcpy(x,x)  -> x
499     return Src;
500 
501   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
502   // See if we can get the length of the input string.
503   uint64_t Len = GetStringLength(Src);
504   if (Len)
505     annotateDereferenceableBytes(CI, 1, Len);
506   else
507     return nullptr;
508 
509   // We have enough information to now generate the memcpy call to do the
510   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
511   CallInst *NewCI =
512       B.CreateMemCpy(Dst, Align(1), Src, Align(1),
513                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
514   NewCI->setAttributes(CI->getAttributes());
515   NewCI->removeAttributes(AttributeList::ReturnIndex,
516                           AttributeFuncs::typeIncompatible(NewCI->getType()));
517   return Dst;
518 }
519 
520 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) {
521   Function *Callee = CI->getCalledFunction();
522   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
523   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
524     Value *StrLen = emitStrLen(Src, B, DL, TLI);
525     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
526   }
527 
528   // See if we can get the length of the input string.
529   uint64_t Len = GetStringLength(Src);
530   if (Len)
531     annotateDereferenceableBytes(CI, 1, Len);
532   else
533     return nullptr;
534 
535   Type *PT = Callee->getFunctionType()->getParamType(0);
536   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
537   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
538                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
539 
540   // We have enough information to now generate the memcpy call to do the
541   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
542   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV);
543   NewCI->setAttributes(CI->getAttributes());
544   NewCI->removeAttributes(AttributeList::ReturnIndex,
545                           AttributeFuncs::typeIncompatible(NewCI->getType()));
546   return DstEnd;
547 }
548 
549 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) {
550   Function *Callee = CI->getCalledFunction();
551   Value *Dst = CI->getArgOperand(0);
552   Value *Src = CI->getArgOperand(1);
553   Value *Size = CI->getArgOperand(2);
554   annotateNonNullNoUndefBasedOnAccess(CI, 0);
555   if (isKnownNonZero(Size, DL))
556     annotateNonNullNoUndefBasedOnAccess(CI, 1);
557 
558   uint64_t Len;
559   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
560     Len = LengthArg->getZExtValue();
561   else
562     return nullptr;
563 
564   // strncpy(x, y, 0) -> x
565   if (Len == 0)
566     return Dst;
567 
568   // See if we can get the length of the input string.
569   uint64_t SrcLen = GetStringLength(Src);
570   if (SrcLen) {
571     annotateDereferenceableBytes(CI, 1, SrcLen);
572     --SrcLen; // Unbias length.
573   } else {
574     return nullptr;
575   }
576 
577   if (SrcLen == 0) {
578     // strncpy(x, "", y) -> memset(x, '\0', y)
579     Align MemSetAlign =
580         CI->getAttributes().getParamAttributes(0).getAlignment().valueOrOne();
581     CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign);
582     AttrBuilder ArgAttrs(CI->getAttributes().getParamAttributes(0));
583     NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
584         CI->getContext(), 0, ArgAttrs));
585     return Dst;
586   }
587 
588   // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4)
589   if (Len > SrcLen + 1) {
590     if (Len <= 128) {
591       StringRef Str;
592       if (!getConstantStringInfo(Src, Str))
593         return nullptr;
594       std::string SrcStr = Str.str();
595       SrcStr.resize(Len, '\0');
596       Src = B.CreateGlobalString(SrcStr, "str");
597     } else {
598       return nullptr;
599     }
600   }
601 
602   Type *PT = Callee->getFunctionType()->getParamType(0);
603   // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
604   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
605                                    ConstantInt::get(DL.getIntPtrType(PT), Len));
606   NewCI->setAttributes(CI->getAttributes());
607   NewCI->removeAttributes(AttributeList::ReturnIndex,
608                           AttributeFuncs::typeIncompatible(NewCI->getType()));
609   return Dst;
610 }
611 
612 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B,
613                                                unsigned CharSize) {
614   Value *Src = CI->getArgOperand(0);
615 
616   // Constant folding: strlen("xyz") -> 3
617   if (uint64_t Len = GetStringLength(Src, CharSize))
618     return ConstantInt::get(CI->getType(), Len - 1);
619 
620   // If s is a constant pointer pointing to a string literal, we can fold
621   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
622   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
623   // We only try to simplify strlen when the pointer s points to an array
624   // of i8. Otherwise, we would need to scale the offset x before doing the
625   // subtraction. This will make the optimization more complex, and it's not
626   // very useful because calling strlen for a pointer of other types is
627   // very uncommon.
628   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
629     if (!isGEPBasedOnPointerToString(GEP, CharSize))
630       return nullptr;
631 
632     ConstantDataArraySlice Slice;
633     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
634       uint64_t NullTermIdx;
635       if (Slice.Array == nullptr) {
636         NullTermIdx = 0;
637       } else {
638         NullTermIdx = ~((uint64_t)0);
639         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
640           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
641             NullTermIdx = I;
642             break;
643           }
644         }
645         // If the string does not have '\0', leave it to strlen to compute
646         // its length.
647         if (NullTermIdx == ~((uint64_t)0))
648           return nullptr;
649       }
650 
651       Value *Offset = GEP->getOperand(2);
652       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
653       Known.Zero.flipAllBits();
654       uint64_t ArrSize =
655              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
656 
657       // KnownZero's bits are flipped, so zeros in KnownZero now represent
658       // bits known to be zeros in Offset, and ones in KnowZero represent
659       // bits unknown in Offset. Therefore, Offset is known to be in range
660       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
661       // unsigned-less-than NullTermIdx.
662       //
663       // If Offset is not provably in the range [0, NullTermIdx], we can still
664       // optimize if we can prove that the program has undefined behavior when
665       // Offset is outside that range. That is the case when GEP->getOperand(0)
666       // is a pointer to an object whose memory extent is NullTermIdx+1.
667       if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
668           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
669            NullTermIdx == ArrSize - 1)) {
670         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
671         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
672                            Offset);
673       }
674     }
675   }
676 
677   // strlen(x?"foo":"bars") --> x ? 3 : 4
678   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
679     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
680     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
681     if (LenTrue && LenFalse) {
682       ORE.emit([&]() {
683         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
684                << "folded strlen(select) to select of constants";
685       });
686       return B.CreateSelect(SI->getCondition(),
687                             ConstantInt::get(CI->getType(), LenTrue - 1),
688                             ConstantInt::get(CI->getType(), LenFalse - 1));
689     }
690   }
691 
692   // strlen(x) != 0 --> *x != 0
693   // strlen(x) == 0 --> *x == 0
694   if (isOnlyUsedInZeroEqualityComparison(CI))
695     return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"),
696                         CI->getType());
697 
698   return nullptr;
699 }
700 
701 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) {
702   if (Value *V = optimizeStringLength(CI, B, 8))
703     return V;
704   annotateNonNullNoUndefBasedOnAccess(CI, 0);
705   return nullptr;
706 }
707 
708 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) {
709   Module &M = *CI->getModule();
710   unsigned WCharSize = TLI->getWCharSize(M) * 8;
711   // We cannot perform this optimization without wchar_size metadata.
712   if (WCharSize == 0)
713     return nullptr;
714 
715   return optimizeStringLength(CI, B, WCharSize);
716 }
717 
718 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) {
719   StringRef S1, S2;
720   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
721   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
722 
723   // strpbrk(s, "") -> nullptr
724   // strpbrk("", s) -> nullptr
725   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
726     return Constant::getNullValue(CI->getType());
727 
728   // Constant folding.
729   if (HasS1 && HasS2) {
730     size_t I = S1.find_first_of(S2);
731     if (I == StringRef::npos) // No match.
732       return Constant::getNullValue(CI->getType());
733 
734     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
735                        "strpbrk");
736   }
737 
738   // strpbrk(s, "a") -> strchr(s, 'a')
739   if (HasS2 && S2.size() == 1)
740     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
741 
742   return nullptr;
743 }
744 
745 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) {
746   Value *EndPtr = CI->getArgOperand(1);
747   if (isa<ConstantPointerNull>(EndPtr)) {
748     // With a null EndPtr, this function won't capture the main argument.
749     // It would be readonly too, except that it still may write to errno.
750     CI->addParamAttr(0, Attribute::NoCapture);
751   }
752 
753   return nullptr;
754 }
755 
756 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) {
757   StringRef S1, S2;
758   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
759   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
760 
761   // strspn(s, "") -> 0
762   // strspn("", s) -> 0
763   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
764     return Constant::getNullValue(CI->getType());
765 
766   // Constant folding.
767   if (HasS1 && HasS2) {
768     size_t Pos = S1.find_first_not_of(S2);
769     if (Pos == StringRef::npos)
770       Pos = S1.size();
771     return ConstantInt::get(CI->getType(), Pos);
772   }
773 
774   return nullptr;
775 }
776 
777 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) {
778   StringRef S1, S2;
779   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
780   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
781 
782   // strcspn("", s) -> 0
783   if (HasS1 && S1.empty())
784     return Constant::getNullValue(CI->getType());
785 
786   // Constant folding.
787   if (HasS1 && HasS2) {
788     size_t Pos = S1.find_first_of(S2);
789     if (Pos == StringRef::npos)
790       Pos = S1.size();
791     return ConstantInt::get(CI->getType(), Pos);
792   }
793 
794   // strcspn(s, "") -> strlen(s)
795   if (HasS2 && S2.empty())
796     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
797 
798   return nullptr;
799 }
800 
801 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) {
802   // fold strstr(x, x) -> x.
803   if (CI->getArgOperand(0) == CI->getArgOperand(1))
804     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
805 
806   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
807   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
808     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
809     if (!StrLen)
810       return nullptr;
811     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
812                                  StrLen, B, DL, TLI);
813     if (!StrNCmp)
814       return nullptr;
815     for (User *U : llvm::make_early_inc_range(CI->users())) {
816       ICmpInst *Old = cast<ICmpInst>(U);
817       Value *Cmp =
818           B.CreateICmp(Old->getPredicate(), StrNCmp,
819                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
820       replaceAllUsesWith(Old, Cmp);
821     }
822     return CI;
823   }
824 
825   // See if either input string is a constant string.
826   StringRef SearchStr, ToFindStr;
827   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
828   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
829 
830   // fold strstr(x, "") -> x.
831   if (HasStr2 && ToFindStr.empty())
832     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
833 
834   // If both strings are known, constant fold it.
835   if (HasStr1 && HasStr2) {
836     size_t Offset = SearchStr.find(ToFindStr);
837 
838     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
839       return Constant::getNullValue(CI->getType());
840 
841     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
842     Value *Result = castToCStr(CI->getArgOperand(0), B);
843     Result =
844         B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
845     return B.CreateBitCast(Result, CI->getType());
846   }
847 
848   // fold strstr(x, "y") -> strchr(x, 'y').
849   if (HasStr2 && ToFindStr.size() == 1) {
850     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
851     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
852   }
853 
854   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
855   return nullptr;
856 }
857 
858 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) {
859   if (isKnownNonZero(CI->getOperand(2), DL))
860     annotateNonNullNoUndefBasedOnAccess(CI, 0);
861   return nullptr;
862 }
863 
864 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) {
865   Value *SrcStr = CI->getArgOperand(0);
866   Value *Size = CI->getArgOperand(2);
867   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
868   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
869   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
870 
871   // memchr(x, y, 0) -> null
872   if (LenC) {
873     if (LenC->isZero())
874       return Constant::getNullValue(CI->getType());
875   } else {
876     // From now on we need at least constant length and string.
877     return nullptr;
878   }
879 
880   StringRef Str;
881   if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
882     return nullptr;
883 
884   // Truncate the string to LenC. If Str is smaller than LenC we will still only
885   // scan the string, as reading past the end of it is undefined and we can just
886   // return null if we don't find the char.
887   Str = Str.substr(0, LenC->getZExtValue());
888 
889   // If the char is variable but the input str and length are not we can turn
890   // this memchr call into a simple bit field test. Of course this only works
891   // when the return value is only checked against null.
892   //
893   // It would be really nice to reuse switch lowering here but we can't change
894   // the CFG at this point.
895   //
896   // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
897   // != 0
898   //   after bounds check.
899   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
900     unsigned char Max =
901         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
902                           reinterpret_cast<const unsigned char *>(Str.end()));
903 
904     // Make sure the bit field we're about to create fits in a register on the
905     // target.
906     // FIXME: On a 64 bit architecture this prevents us from using the
907     // interesting range of alpha ascii chars. We could do better by emitting
908     // two bitfields or shifting the range by 64 if no lower chars are used.
909     if (!DL.fitsInLegalInteger(Max + 1))
910       return nullptr;
911 
912     // For the bit field use a power-of-2 type with at least 8 bits to avoid
913     // creating unnecessary illegal types.
914     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
915 
916     // Now build the bit field.
917     APInt Bitfield(Width, 0);
918     for (char C : Str)
919       Bitfield.setBit((unsigned char)C);
920     Value *BitfieldC = B.getInt(Bitfield);
921 
922     // Adjust width of "C" to the bitfield width, then mask off the high bits.
923     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
924     C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
925 
926     // First check that the bit field access is within bounds.
927     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
928                                  "memchr.bounds");
929 
930     // Create code that checks if the given bit is set in the field.
931     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
932     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
933 
934     // Finally merge both checks and cast to pointer type. The inttoptr
935     // implicitly zexts the i1 to intptr type.
936     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
937   }
938 
939   // Check if all arguments are constants.  If so, we can constant fold.
940   if (!CharC)
941     return nullptr;
942 
943   // Compute the offset.
944   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
945   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
946     return Constant::getNullValue(CI->getType());
947 
948   // memchr(s+n,c,l) -> gep(s+n+i,c)
949   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
950 }
951 
952 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
953                                          uint64_t Len, IRBuilderBase &B,
954                                          const DataLayout &DL) {
955   if (Len == 0) // memcmp(s1,s2,0) -> 0
956     return Constant::getNullValue(CI->getType());
957 
958   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
959   if (Len == 1) {
960     Value *LHSV =
961         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
962                      CI->getType(), "lhsv");
963     Value *RHSV =
964         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
965                      CI->getType(), "rhsv");
966     return B.CreateSub(LHSV, RHSV, "chardiff");
967   }
968 
969   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
970   // TODO: The case where both inputs are constants does not need to be limited
971   // to legal integers or equality comparison. See block below this.
972   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
973     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
974     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
975 
976     // First, see if we can fold either argument to a constant.
977     Value *LHSV = nullptr;
978     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
979       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
980       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
981     }
982     Value *RHSV = nullptr;
983     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
984       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
985       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
986     }
987 
988     // Don't generate unaligned loads. If either source is constant data,
989     // alignment doesn't matter for that source because there is no load.
990     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
991         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
992       if (!LHSV) {
993         Type *LHSPtrTy =
994             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
995         LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
996       }
997       if (!RHSV) {
998         Type *RHSPtrTy =
999             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
1000         RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
1001       }
1002       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1003     }
1004   }
1005 
1006   // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
1007   // TODO: This is limited to i8 arrays.
1008   StringRef LHSStr, RHSStr;
1009   if (getConstantStringInfo(LHS, LHSStr) &&
1010       getConstantStringInfo(RHS, RHSStr)) {
1011     // Make sure we're not reading out-of-bounds memory.
1012     if (Len > LHSStr.size() || Len > RHSStr.size())
1013       return nullptr;
1014     // Fold the memcmp and normalize the result.  This way we get consistent
1015     // results across multiple platforms.
1016     uint64_t Ret = 0;
1017     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
1018     if (Cmp < 0)
1019       Ret = -1;
1020     else if (Cmp > 0)
1021       Ret = 1;
1022     return ConstantInt::get(CI->getType(), Ret);
1023   }
1024 
1025   return nullptr;
1026 }
1027 
1028 // Most simplifications for memcmp also apply to bcmp.
1029 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1030                                                    IRBuilderBase &B) {
1031   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1032   Value *Size = CI->getArgOperand(2);
1033 
1034   if (LHS == RHS) // memcmp(s,s,x) -> 0
1035     return Constant::getNullValue(CI->getType());
1036 
1037   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1038   // Handle constant lengths.
1039   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1040   if (!LenC)
1041     return nullptr;
1042 
1043   // memcmp(d,s,0) -> 0
1044   if (LenC->getZExtValue() == 0)
1045     return Constant::getNullValue(CI->getType());
1046 
1047   if (Value *Res =
1048           optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL))
1049     return Res;
1050   return nullptr;
1051 }
1052 
1053 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
1054   if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1055     return V;
1056 
1057   // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1058   // bcmp can be more efficient than memcmp because it only has to know that
1059   // there is a difference, not how different one is to the other.
1060   if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) {
1061     Value *LHS = CI->getArgOperand(0);
1062     Value *RHS = CI->getArgOperand(1);
1063     Value *Size = CI->getArgOperand(2);
1064     return emitBCmp(LHS, RHS, Size, B, DL, TLI);
1065   }
1066 
1067   return nullptr;
1068 }
1069 
1070 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) {
1071   return optimizeMemCmpBCmpCommon(CI, B);
1072 }
1073 
1074 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) {
1075   Value *Size = CI->getArgOperand(2);
1076   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1077   if (isa<IntrinsicInst>(CI))
1078     return nullptr;
1079 
1080   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1081   CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1),
1082                                    CI->getArgOperand(1), Align(1), Size);
1083   NewCI->setAttributes(CI->getAttributes());
1084   NewCI->removeAttributes(AttributeList::ReturnIndex,
1085                           AttributeFuncs::typeIncompatible(NewCI->getType()));
1086   return CI->getArgOperand(0);
1087 }
1088 
1089 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) {
1090   Value *Dst = CI->getArgOperand(0);
1091   Value *Src = CI->getArgOperand(1);
1092   ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1093   ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1094   StringRef SrcStr;
1095   if (CI->use_empty() && Dst == Src)
1096     return Dst;
1097   // memccpy(d, s, c, 0) -> nullptr
1098   if (N) {
1099     if (N->isNullValue())
1100       return Constant::getNullValue(CI->getType());
1101     if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0,
1102                                /*TrimAtNul=*/false) ||
1103         !StopChar)
1104       return nullptr;
1105   } else {
1106     return nullptr;
1107   }
1108 
1109   // Wrap arg 'c' of type int to char
1110   size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1111   if (Pos == StringRef::npos) {
1112     if (N->getZExtValue() <= SrcStr.size()) {
1113       B.CreateMemCpy(Dst, Align(1), Src, Align(1), CI->getArgOperand(3));
1114       return Constant::getNullValue(CI->getType());
1115     }
1116     return nullptr;
1117   }
1118 
1119   Value *NewN =
1120       ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1121   // memccpy -> llvm.memcpy
1122   B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN);
1123   return Pos + 1 <= N->getZExtValue()
1124              ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1125              : Constant::getNullValue(CI->getType());
1126 }
1127 
1128 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) {
1129   Value *Dst = CI->getArgOperand(0);
1130   Value *N = CI->getArgOperand(2);
1131   // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1132   CallInst *NewCI =
1133       B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N);
1134   // Propagate attributes, but memcpy has no return value, so make sure that
1135   // any return attributes are compliant.
1136   // TODO: Attach return value attributes to the 1st operand to preserve them?
1137   NewCI->setAttributes(CI->getAttributes());
1138   NewCI->removeAttributes(AttributeList::ReturnIndex,
1139                           AttributeFuncs::typeIncompatible(NewCI->getType()));
1140   return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1141 }
1142 
1143 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) {
1144   Value *Size = CI->getArgOperand(2);
1145   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1146   if (isa<IntrinsicInst>(CI))
1147     return nullptr;
1148 
1149   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1150   CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1),
1151                                     CI->getArgOperand(1), Align(1), Size);
1152   NewCI->setAttributes(CI->getAttributes());
1153   NewCI->removeAttributes(AttributeList::ReturnIndex,
1154                           AttributeFuncs::typeIncompatible(NewCI->getType()));
1155   return CI->getArgOperand(0);
1156 }
1157 
1158 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
1159 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilderBase &B) {
1160   // This has to be a memset of zeros (bzero).
1161   auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
1162   if (!FillValue || FillValue->getZExtValue() != 0)
1163     return nullptr;
1164 
1165   // TODO: We should handle the case where the malloc has more than one use.
1166   // This is necessary to optimize common patterns such as when the result of
1167   // the malloc is checked against null or when a memset intrinsic is used in
1168   // place of a memset library call.
1169   auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
1170   if (!Malloc || !Malloc->hasOneUse())
1171     return nullptr;
1172 
1173   // Is the inner call really malloc()?
1174   Function *InnerCallee = Malloc->getCalledFunction();
1175   if (!InnerCallee)
1176     return nullptr;
1177 
1178   LibFunc Func;
1179   if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
1180       Func != LibFunc_malloc)
1181     return nullptr;
1182 
1183   // The memset must cover the same number of bytes that are malloc'd.
1184   if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
1185     return nullptr;
1186 
1187   // Replace the malloc with a calloc. We need the data layout to know what the
1188   // actual size of a 'size_t' parameter is.
1189   B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
1190   const DataLayout &DL = Malloc->getModule()->getDataLayout();
1191   IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
1192   if (Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
1193                                  Malloc->getArgOperand(0),
1194                                  Malloc->getAttributes(), B, *TLI)) {
1195     substituteInParent(Malloc, Calloc);
1196     return Calloc;
1197   }
1198 
1199   return nullptr;
1200 }
1201 
1202 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) {
1203   Value *Size = CI->getArgOperand(2);
1204   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1205   if (isa<IntrinsicInst>(CI))
1206     return nullptr;
1207 
1208   if (auto *Calloc = foldMallocMemset(CI, B))
1209     return Calloc;
1210 
1211   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1212   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1213   CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1));
1214   NewCI->setAttributes(CI->getAttributes());
1215   NewCI->removeAttributes(AttributeList::ReturnIndex,
1216                           AttributeFuncs::typeIncompatible(NewCI->getType()));
1217   return CI->getArgOperand(0);
1218 }
1219 
1220 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) {
1221   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1222     return emitMalloc(CI->getArgOperand(1), B, DL, TLI);
1223 
1224   return nullptr;
1225 }
1226 
1227 //===----------------------------------------------------------------------===//
1228 // Math Library Optimizations
1229 //===----------------------------------------------------------------------===//
1230 
1231 // Replace a libcall \p CI with a call to intrinsic \p IID
1232 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B,
1233                                Intrinsic::ID IID) {
1234   // Propagate fast-math flags from the existing call to the new call.
1235   IRBuilderBase::FastMathFlagGuard Guard(B);
1236   B.setFastMathFlags(CI->getFastMathFlags());
1237 
1238   Module *M = CI->getModule();
1239   Value *V = CI->getArgOperand(0);
1240   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1241   CallInst *NewCall = B.CreateCall(F, V);
1242   NewCall->takeName(CI);
1243   return NewCall;
1244 }
1245 
1246 /// Return a variant of Val with float type.
1247 /// Currently this works in two cases: If Val is an FPExtension of a float
1248 /// value to something bigger, simply return the operand.
1249 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1250 /// loss of precision do so.
1251 static Value *valueHasFloatPrecision(Value *Val) {
1252   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1253     Value *Op = Cast->getOperand(0);
1254     if (Op->getType()->isFloatTy())
1255       return Op;
1256   }
1257   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1258     APFloat F = Const->getValueAPF();
1259     bool losesInfo;
1260     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1261                     &losesInfo);
1262     if (!losesInfo)
1263       return ConstantFP::get(Const->getContext(), F);
1264   }
1265   return nullptr;
1266 }
1267 
1268 /// Shrink double -> float functions.
1269 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
1270                                bool isBinary, bool isPrecise = false) {
1271   Function *CalleeFn = CI->getCalledFunction();
1272   if (!CI->getType()->isDoubleTy() || !CalleeFn)
1273     return nullptr;
1274 
1275   // If not all the uses of the function are converted to float, then bail out.
1276   // This matters if the precision of the result is more important than the
1277   // precision of the arguments.
1278   if (isPrecise)
1279     for (User *U : CI->users()) {
1280       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1281       if (!Cast || !Cast->getType()->isFloatTy())
1282         return nullptr;
1283     }
1284 
1285   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1286   Value *V[2];
1287   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1288   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1289   if (!V[0] || (isBinary && !V[1]))
1290     return nullptr;
1291 
1292   // If call isn't an intrinsic, check that it isn't within a function with the
1293   // same name as the float version of this call, otherwise the result is an
1294   // infinite loop.  For example, from MinGW-w64:
1295   //
1296   // float expf(float val) { return (float) exp((double) val); }
1297   StringRef CalleeName = CalleeFn->getName();
1298   bool IsIntrinsic = CalleeFn->isIntrinsic();
1299   if (!IsIntrinsic) {
1300     StringRef CallerName = CI->getFunction()->getName();
1301     if (!CallerName.empty() && CallerName.back() == 'f' &&
1302         CallerName.size() == (CalleeName.size() + 1) &&
1303         CallerName.startswith(CalleeName))
1304       return nullptr;
1305   }
1306 
1307   // Propagate the math semantics from the current function to the new function.
1308   IRBuilderBase::FastMathFlagGuard Guard(B);
1309   B.setFastMathFlags(CI->getFastMathFlags());
1310 
1311   // g((double) float) -> (double) gf(float)
1312   Value *R;
1313   if (IsIntrinsic) {
1314     Module *M = CI->getModule();
1315     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1316     Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1317     R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1318   } else {
1319     AttributeList CalleeAttrs = CalleeFn->getAttributes();
1320     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs)
1321                  : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs);
1322   }
1323   return B.CreateFPExt(R, B.getDoubleTy());
1324 }
1325 
1326 /// Shrink double -> float for unary functions.
1327 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1328                                     bool isPrecise = false) {
1329   return optimizeDoubleFP(CI, B, false, isPrecise);
1330 }
1331 
1332 /// Shrink double -> float for binary functions.
1333 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1334                                      bool isPrecise = false) {
1335   return optimizeDoubleFP(CI, B, true, isPrecise);
1336 }
1337 
1338 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1339 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) {
1340   if (!CI->isFast())
1341     return nullptr;
1342 
1343   // Propagate fast-math flags from the existing call to new instructions.
1344   IRBuilderBase::FastMathFlagGuard Guard(B);
1345   B.setFastMathFlags(CI->getFastMathFlags());
1346 
1347   Value *Real, *Imag;
1348   if (CI->getNumArgOperands() == 1) {
1349     Value *Op = CI->getArgOperand(0);
1350     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1351     Real = B.CreateExtractValue(Op, 0, "real");
1352     Imag = B.CreateExtractValue(Op, 1, "imag");
1353   } else {
1354     assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
1355     Real = CI->getArgOperand(0);
1356     Imag = CI->getArgOperand(1);
1357   }
1358 
1359   Value *RealReal = B.CreateFMul(Real, Real);
1360   Value *ImagImag = B.CreateFMul(Imag, Imag);
1361 
1362   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1363                                               CI->getType());
1364   return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
1365 }
1366 
1367 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1368                                       IRBuilderBase &B) {
1369   if (!isa<FPMathOperator>(Call))
1370     return nullptr;
1371 
1372   IRBuilderBase::FastMathFlagGuard Guard(B);
1373   B.setFastMathFlags(Call->getFastMathFlags());
1374 
1375   // TODO: Can this be shared to also handle LLVM intrinsics?
1376   Value *X;
1377   switch (Func) {
1378   case LibFunc_sin:
1379   case LibFunc_sinf:
1380   case LibFunc_sinl:
1381   case LibFunc_tan:
1382   case LibFunc_tanf:
1383   case LibFunc_tanl:
1384     // sin(-X) --> -sin(X)
1385     // tan(-X) --> -tan(X)
1386     if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1387       return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X));
1388     break;
1389   case LibFunc_cos:
1390   case LibFunc_cosf:
1391   case LibFunc_cosl:
1392     // cos(-X) --> cos(X)
1393     if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1394       return B.CreateCall(Call->getCalledFunction(), X, "cos");
1395     break;
1396   default:
1397     break;
1398   }
1399   return nullptr;
1400 }
1401 
1402 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) {
1403   // Multiplications calculated using Addition Chains.
1404   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1405 
1406   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1407 
1408   if (InnerChain[Exp])
1409     return InnerChain[Exp];
1410 
1411   static const unsigned AddChain[33][2] = {
1412       {0, 0}, // Unused.
1413       {0, 0}, // Unused (base case = pow1).
1414       {1, 1}, // Unused (pre-computed).
1415       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1416       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1417       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1418       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1419       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1420   };
1421 
1422   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1423                                  getPow(InnerChain, AddChain[Exp][1], B));
1424   return InnerChain[Exp];
1425 }
1426 
1427 // Return a properly extended integer (DstWidth bits wide) if the operation is
1428 // an itofp.
1429 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) {
1430   if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
1431     Value *Op = cast<Instruction>(I2F)->getOperand(0);
1432     // Make sure that the exponent fits inside an "int" of size DstWidth,
1433     // thus avoiding any range issues that FP has not.
1434     unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1435     if (BitWidth < DstWidth ||
1436         (BitWidth == DstWidth && isa<SIToFPInst>(I2F)))
1437       return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth))
1438                                   : B.CreateZExt(Op, B.getIntNTy(DstWidth));
1439   }
1440 
1441   return nullptr;
1442 }
1443 
1444 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1445 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1446 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1447 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
1448   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1449   AttributeList Attrs; // Attributes are only meaningful on the original call
1450   Module *Mod = Pow->getModule();
1451   Type *Ty = Pow->getType();
1452   bool Ignored;
1453 
1454   // Evaluate special cases related to a nested function as the base.
1455 
1456   // pow(exp(x), y) -> exp(x * y)
1457   // pow(exp2(x), y) -> exp2(x * y)
1458   // If exp{,2}() is used only once, it is better to fold two transcendental
1459   // math functions into one.  If used again, exp{,2}() would still have to be
1460   // called with the original argument, then keep both original transcendental
1461   // functions.  However, this transformation is only safe with fully relaxed
1462   // math semantics, since, besides rounding differences, it changes overflow
1463   // and underflow behavior quite dramatically.  For example:
1464   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1465   // Whereas:
1466   //   exp(1000 * 0.001) = exp(1)
1467   // TODO: Loosen the requirement for fully relaxed math semantics.
1468   // TODO: Handle exp10() when more targets have it available.
1469   CallInst *BaseFn = dyn_cast<CallInst>(Base);
1470   if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1471     LibFunc LibFn;
1472 
1473     Function *CalleeFn = BaseFn->getCalledFunction();
1474     if (CalleeFn &&
1475         TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) {
1476       StringRef ExpName;
1477       Intrinsic::ID ID;
1478       Value *ExpFn;
1479       LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
1480 
1481       switch (LibFn) {
1482       default:
1483         return nullptr;
1484       case LibFunc_expf:  case LibFunc_exp:  case LibFunc_expl:
1485         ExpName = TLI->getName(LibFunc_exp);
1486         ID = Intrinsic::exp;
1487         LibFnFloat = LibFunc_expf;
1488         LibFnDouble = LibFunc_exp;
1489         LibFnLongDouble = LibFunc_expl;
1490         break;
1491       case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1492         ExpName = TLI->getName(LibFunc_exp2);
1493         ID = Intrinsic::exp2;
1494         LibFnFloat = LibFunc_exp2f;
1495         LibFnDouble = LibFunc_exp2;
1496         LibFnLongDouble = LibFunc_exp2l;
1497         break;
1498       }
1499 
1500       // Create new exp{,2}() with the product as its argument.
1501       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1502       ExpFn = BaseFn->doesNotAccessMemory()
1503               ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1504                              FMul, ExpName)
1505               : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1506                                      LibFnLongDouble, B,
1507                                      BaseFn->getAttributes());
1508 
1509       // Since the new exp{,2}() is different from the original one, dead code
1510       // elimination cannot be trusted to remove it, since it may have side
1511       // effects (e.g., errno).  When the only consumer for the original
1512       // exp{,2}() is pow(), then it has to be explicitly erased.
1513       substituteInParent(BaseFn, ExpFn);
1514       return ExpFn;
1515     }
1516   }
1517 
1518   // Evaluate special cases related to a constant base.
1519 
1520   const APFloat *BaseF;
1521   if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1522     return nullptr;
1523 
1524   // pow(2.0, itofp(x)) -> ldexp(1.0, x)
1525   if (match(Base, m_SpecificFP(2.0)) &&
1526       (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
1527       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1528     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
1529       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI,
1530                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1531                                    B, Attrs);
1532   }
1533 
1534   // pow(2.0 ** n, x) -> exp2(n * x)
1535   if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1536     APFloat BaseR = APFloat(1.0);
1537     BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1538     BaseR = BaseR / *BaseF;
1539     bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
1540     const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1541     APSInt NI(64, false);
1542     if ((IsInteger || IsReciprocal) &&
1543         NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
1544             APFloat::opOK &&
1545         NI > 1 && NI.isPowerOf2()) {
1546       double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1547       Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1548       if (Pow->doesNotAccessMemory())
1549         return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1550                             FMul, "exp2");
1551       else
1552         return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1553                                     LibFunc_exp2l, B, Attrs);
1554     }
1555   }
1556 
1557   // pow(10.0, x) -> exp10(x)
1558   // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1559   if (match(Base, m_SpecificFP(10.0)) &&
1560       hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1561     return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f,
1562                                 LibFunc_exp10l, B, Attrs);
1563 
1564   // pow(x, y) -> exp2(log2(x) * y)
1565   if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() &&
1566       !BaseF->isNegative()) {
1567     // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
1568     // Luckily optimizePow has already handled the x == 1 case.
1569     assert(!match(Base, m_FPOne()) &&
1570            "pow(1.0, y) should have been simplified earlier!");
1571 
1572     Value *Log = nullptr;
1573     if (Ty->isFloatTy())
1574       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
1575     else if (Ty->isDoubleTy())
1576       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
1577 
1578     if (Log) {
1579       Value *FMul = B.CreateFMul(Log, Expo, "mul");
1580       if (Pow->doesNotAccessMemory())
1581         return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1582                             FMul, "exp2");
1583       else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l))
1584         return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1585                                     LibFunc_exp2l, B, Attrs);
1586     }
1587   }
1588 
1589   return nullptr;
1590 }
1591 
1592 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1593                           Module *M, IRBuilderBase &B,
1594                           const TargetLibraryInfo *TLI) {
1595   // If errno is never set, then use the intrinsic for sqrt().
1596   if (NoErrno) {
1597     Function *SqrtFn =
1598         Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1599     return B.CreateCall(SqrtFn, V, "sqrt");
1600   }
1601 
1602   // Otherwise, use the libcall for sqrt().
1603   if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl))
1604     // TODO: We also should check that the target can in fact lower the sqrt()
1605     // libcall. We currently have no way to ask this question, so we ask if
1606     // the target has a sqrt() libcall, which is not exactly the same.
1607     return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1608                                 LibFunc_sqrtl, B, Attrs);
1609 
1610   return nullptr;
1611 }
1612 
1613 /// Use square root in place of pow(x, +/-0.5).
1614 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) {
1615   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1616   AttributeList Attrs; // Attributes are only meaningful on the original call
1617   Module *Mod = Pow->getModule();
1618   Type *Ty = Pow->getType();
1619 
1620   const APFloat *ExpoF;
1621   if (!match(Expo, m_APFloat(ExpoF)) ||
1622       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1623     return nullptr;
1624 
1625   // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
1626   // so that requires fast-math-flags (afn or reassoc).
1627   if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
1628     return nullptr;
1629 
1630   // If we have a pow() library call (accesses memory) and we can't guarantee
1631   // that the base is not an infinity, give up:
1632   // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting
1633   // errno), but sqrt(-Inf) is required by various standards to set errno.
1634   if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() &&
1635       !isKnownNeverInfinity(Base, TLI))
1636     return nullptr;
1637 
1638   Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1639   if (!Sqrt)
1640     return nullptr;
1641 
1642   // Handle signed zero base by expanding to fabs(sqrt(x)).
1643   if (!Pow->hasNoSignedZeros()) {
1644     Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1645     Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1646   }
1647 
1648   // Handle non finite base by expanding to
1649   // (x == -infinity ? +infinity : sqrt(x)).
1650   if (!Pow->hasNoInfs()) {
1651     Value *PosInf = ConstantFP::getInfinity(Ty),
1652           *NegInf = ConstantFP::getInfinity(Ty, true);
1653     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1654     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1655   }
1656 
1657   // If the exponent is negative, then get the reciprocal.
1658   if (ExpoF->isNegative())
1659     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1660 
1661   return Sqrt;
1662 }
1663 
1664 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
1665                                            IRBuilderBase &B) {
1666   Value *Args[] = {Base, Expo};
1667   Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType());
1668   return B.CreateCall(F, Args);
1669 }
1670 
1671 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
1672   Value *Base = Pow->getArgOperand(0);
1673   Value *Expo = Pow->getArgOperand(1);
1674   Function *Callee = Pow->getCalledFunction();
1675   StringRef Name = Callee->getName();
1676   Type *Ty = Pow->getType();
1677   Module *M = Pow->getModule();
1678   bool AllowApprox = Pow->hasApproxFunc();
1679   bool Ignored;
1680 
1681   // Propagate the math semantics from the call to any created instructions.
1682   IRBuilderBase::FastMathFlagGuard Guard(B);
1683   B.setFastMathFlags(Pow->getFastMathFlags());
1684   // Evaluate special cases related to the base.
1685 
1686   // pow(1.0, x) -> 1.0
1687   if (match(Base, m_FPOne()))
1688     return Base;
1689 
1690   if (Value *Exp = replacePowWithExp(Pow, B))
1691     return Exp;
1692 
1693   // Evaluate special cases related to the exponent.
1694 
1695   // pow(x, -1.0) -> 1.0 / x
1696   if (match(Expo, m_SpecificFP(-1.0)))
1697     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1698 
1699   // pow(x, +/-0.0) -> 1.0
1700   if (match(Expo, m_AnyZeroFP()))
1701     return ConstantFP::get(Ty, 1.0);
1702 
1703   // pow(x, 1.0) -> x
1704   if (match(Expo, m_FPOne()))
1705     return Base;
1706 
1707   // pow(x, 2.0) -> x * x
1708   if (match(Expo, m_SpecificFP(2.0)))
1709     return B.CreateFMul(Base, Base, "square");
1710 
1711   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1712     return Sqrt;
1713 
1714   // pow(x, n) -> x * x * x * ...
1715   const APFloat *ExpoF;
1716   if (AllowApprox && match(Expo, m_APFloat(ExpoF)) &&
1717       !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) {
1718     // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1719     // If the exponent is an integer+0.5 we generate a call to sqrt and an
1720     // additional fmul.
1721     // TODO: This whole transformation should be backend specific (e.g. some
1722     //       backends might prefer libcalls or the limit for the exponent might
1723     //       be different) and it should also consider optimizing for size.
1724     APFloat LimF(ExpoF->getSemantics(), 33),
1725             ExpoA(abs(*ExpoF));
1726     if (ExpoA < LimF) {
1727       // This transformation applies to integer or integer+0.5 exponents only.
1728       // For integer+0.5, we create a sqrt(Base) call.
1729       Value *Sqrt = nullptr;
1730       if (!ExpoA.isInteger()) {
1731         APFloat Expo2 = ExpoA;
1732         // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1733         // is no floating point exception and the result is an integer, then
1734         // ExpoA == integer + 0.5
1735         if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
1736           return nullptr;
1737 
1738         if (!Expo2.isInteger())
1739           return nullptr;
1740 
1741         Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
1742                            Pow->doesNotAccessMemory(), M, B, TLI);
1743         if (!Sqrt)
1744           return nullptr;
1745       }
1746 
1747       // We will memoize intermediate products of the Addition Chain.
1748       Value *InnerChain[33] = {nullptr};
1749       InnerChain[1] = Base;
1750       InnerChain[2] = B.CreateFMul(Base, Base, "square");
1751 
1752       // We cannot readily convert a non-double type (like float) to a double.
1753       // So we first convert it to something which could be converted to double.
1754       ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1755       Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1756 
1757       // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
1758       if (Sqrt)
1759         FMul = B.CreateFMul(FMul, Sqrt);
1760 
1761       // If the exponent is negative, then get the reciprocal.
1762       if (ExpoF->isNegative())
1763         FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1764 
1765       return FMul;
1766     }
1767 
1768     APSInt IntExpo(32, /*isUnsigned=*/false);
1769     // powf(x, n) -> powi(x, n) if n is a constant signed integer value
1770     if (ExpoF->isInteger() &&
1771         ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
1772             APFloat::opOK) {
1773       return createPowWithIntegerExponent(
1774           Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B);
1775     }
1776   }
1777 
1778   // powf(x, itofp(y)) -> powi(x, y)
1779   if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
1780     // FIXME: Currently we always use 32 bits for the exponent in llvm.powi. In
1781     // the future we want to use the target dependent "size of int", or
1782     // otherwise we could end up using the wrong type for the exponent when
1783     // mapping llvm.powi back to an rtlib call. See
1784     // https://reviews.llvm.org/D99439 for such a fix.
1785     if (Value *ExpoI = getIntToFPVal(Expo, B, 32))
1786       return createPowWithIntegerExponent(Base, ExpoI, M, B);
1787   }
1788 
1789   // Shrink pow() to powf() if the arguments are single precision,
1790   // unless the result is expected to be double precision.
1791   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
1792       hasFloatVersion(Name)) {
1793     if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, true))
1794       return Shrunk;
1795   }
1796 
1797   return nullptr;
1798 }
1799 
1800 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
1801   Function *Callee = CI->getCalledFunction();
1802   AttributeList Attrs; // Attributes are only meaningful on the original call
1803   StringRef Name = Callee->getName();
1804   Value *Ret = nullptr;
1805   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
1806       hasFloatVersion(Name))
1807     Ret = optimizeUnaryDoubleFP(CI, B, true);
1808 
1809   Type *Ty = CI->getType();
1810   Value *Op = CI->getArgOperand(0);
1811 
1812   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= IntSize
1813   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < IntSize
1814   if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
1815       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1816     if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize()))
1817       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
1818                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1819                                    B, Attrs);
1820   }
1821 
1822   return Ret;
1823 }
1824 
1825 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
1826   // If we can shrink the call to a float function rather than a double
1827   // function, do that first.
1828   Function *Callee = CI->getCalledFunction();
1829   StringRef Name = Callee->getName();
1830   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1831     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1832       return Ret;
1833 
1834   // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
1835   // the intrinsics for improved optimization (for example, vectorization).
1836   // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
1837   // From the C standard draft WG14/N1256:
1838   // "Ideally, fmax would be sensitive to the sign of zero, for example
1839   // fmax(-0.0, +0.0) would return +0; however, implementation in software
1840   // might be impractical."
1841   IRBuilderBase::FastMathFlagGuard Guard(B);
1842   FastMathFlags FMF = CI->getFastMathFlags();
1843   FMF.setNoSignedZeros();
1844   B.setFastMathFlags(FMF);
1845 
1846   Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
1847                                                            : Intrinsic::maxnum;
1848   Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
1849   return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) });
1850 }
1851 
1852 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
1853   Function *LogFn = Log->getCalledFunction();
1854   AttributeList Attrs; // Attributes are only meaningful on the original call
1855   StringRef LogNm = LogFn->getName();
1856   Intrinsic::ID LogID = LogFn->getIntrinsicID();
1857   Module *Mod = Log->getModule();
1858   Type *Ty = Log->getType();
1859   Value *Ret = nullptr;
1860 
1861   if (UnsafeFPShrink && hasFloatVersion(LogNm))
1862     Ret = optimizeUnaryDoubleFP(Log, B, true);
1863 
1864   // The earlier call must also be 'fast' in order to do these transforms.
1865   CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
1866   if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
1867     return Ret;
1868 
1869   LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
1870 
1871   // This is only applicable to log(), log2(), log10().
1872   if (TLI->getLibFunc(LogNm, LogLb))
1873     switch (LogLb) {
1874     case LibFunc_logf:
1875       LogID = Intrinsic::log;
1876       ExpLb = LibFunc_expf;
1877       Exp2Lb = LibFunc_exp2f;
1878       Exp10Lb = LibFunc_exp10f;
1879       PowLb = LibFunc_powf;
1880       break;
1881     case LibFunc_log:
1882       LogID = Intrinsic::log;
1883       ExpLb = LibFunc_exp;
1884       Exp2Lb = LibFunc_exp2;
1885       Exp10Lb = LibFunc_exp10;
1886       PowLb = LibFunc_pow;
1887       break;
1888     case LibFunc_logl:
1889       LogID = Intrinsic::log;
1890       ExpLb = LibFunc_expl;
1891       Exp2Lb = LibFunc_exp2l;
1892       Exp10Lb = LibFunc_exp10l;
1893       PowLb = LibFunc_powl;
1894       break;
1895     case LibFunc_log2f:
1896       LogID = Intrinsic::log2;
1897       ExpLb = LibFunc_expf;
1898       Exp2Lb = LibFunc_exp2f;
1899       Exp10Lb = LibFunc_exp10f;
1900       PowLb = LibFunc_powf;
1901       break;
1902     case LibFunc_log2:
1903       LogID = Intrinsic::log2;
1904       ExpLb = LibFunc_exp;
1905       Exp2Lb = LibFunc_exp2;
1906       Exp10Lb = LibFunc_exp10;
1907       PowLb = LibFunc_pow;
1908       break;
1909     case LibFunc_log2l:
1910       LogID = Intrinsic::log2;
1911       ExpLb = LibFunc_expl;
1912       Exp2Lb = LibFunc_exp2l;
1913       Exp10Lb = LibFunc_exp10l;
1914       PowLb = LibFunc_powl;
1915       break;
1916     case LibFunc_log10f:
1917       LogID = Intrinsic::log10;
1918       ExpLb = LibFunc_expf;
1919       Exp2Lb = LibFunc_exp2f;
1920       Exp10Lb = LibFunc_exp10f;
1921       PowLb = LibFunc_powf;
1922       break;
1923     case LibFunc_log10:
1924       LogID = Intrinsic::log10;
1925       ExpLb = LibFunc_exp;
1926       Exp2Lb = LibFunc_exp2;
1927       Exp10Lb = LibFunc_exp10;
1928       PowLb = LibFunc_pow;
1929       break;
1930     case LibFunc_log10l:
1931       LogID = Intrinsic::log10;
1932       ExpLb = LibFunc_expl;
1933       Exp2Lb = LibFunc_exp2l;
1934       Exp10Lb = LibFunc_exp10l;
1935       PowLb = LibFunc_powl;
1936       break;
1937     default:
1938       return Ret;
1939     }
1940   else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
1941            LogID == Intrinsic::log10) {
1942     if (Ty->getScalarType()->isFloatTy()) {
1943       ExpLb = LibFunc_expf;
1944       Exp2Lb = LibFunc_exp2f;
1945       Exp10Lb = LibFunc_exp10f;
1946       PowLb = LibFunc_powf;
1947     } else if (Ty->getScalarType()->isDoubleTy()) {
1948       ExpLb = LibFunc_exp;
1949       Exp2Lb = LibFunc_exp2;
1950       Exp10Lb = LibFunc_exp10;
1951       PowLb = LibFunc_pow;
1952     } else
1953       return Ret;
1954   } else
1955     return Ret;
1956 
1957   IRBuilderBase::FastMathFlagGuard Guard(B);
1958   B.setFastMathFlags(FastMathFlags::getFast());
1959 
1960   Intrinsic::ID ArgID = Arg->getIntrinsicID();
1961   LibFunc ArgLb = NotLibFunc;
1962   TLI->getLibFunc(*Arg, ArgLb);
1963 
1964   // log(pow(x,y)) -> y*log(x)
1965   if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
1966     Value *LogX =
1967         Log->doesNotAccessMemory()
1968             ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1969                            Arg->getOperand(0), "log")
1970             : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs);
1971     Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
1972     // Since pow() may have side effects, e.g. errno,
1973     // dead code elimination may not be trusted to remove it.
1974     substituteInParent(Arg, MulY);
1975     return MulY;
1976   }
1977 
1978   // log(exp{,2,10}(y)) -> y*log({e,2,10})
1979   // TODO: There is no exp10() intrinsic yet.
1980   if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
1981            ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
1982     Constant *Eul;
1983     if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
1984       // FIXME: Add more precise value of e for long double.
1985       Eul = ConstantFP::get(Log->getType(), numbers::e);
1986     else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
1987       Eul = ConstantFP::get(Log->getType(), 2.0);
1988     else
1989       Eul = ConstantFP::get(Log->getType(), 10.0);
1990     Value *LogE = Log->doesNotAccessMemory()
1991                       ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1992                                      Eul, "log")
1993                       : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs);
1994     Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
1995     // Since exp() may have side effects, e.g. errno,
1996     // dead code elimination may not be trusted to remove it.
1997     substituteInParent(Arg, MulY);
1998     return MulY;
1999   }
2000 
2001   return Ret;
2002 }
2003 
2004 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
2005   Function *Callee = CI->getCalledFunction();
2006   Value *Ret = nullptr;
2007   // TODO: Once we have a way (other than checking for the existince of the
2008   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
2009   // condition below.
2010   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
2011                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
2012     Ret = optimizeUnaryDoubleFP(CI, B, true);
2013 
2014   if (!CI->isFast())
2015     return Ret;
2016 
2017   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
2018   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
2019     return Ret;
2020 
2021   // We're looking for a repeated factor in a multiplication tree,
2022   // so we can do this fold: sqrt(x * x) -> fabs(x);
2023   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2024   Value *Op0 = I->getOperand(0);
2025   Value *Op1 = I->getOperand(1);
2026   Value *RepeatOp = nullptr;
2027   Value *OtherOp = nullptr;
2028   if (Op0 == Op1) {
2029     // Simple match: the operands of the multiply are identical.
2030     RepeatOp = Op0;
2031   } else {
2032     // Look for a more complicated pattern: one of the operands is itself
2033     // a multiply, so search for a common factor in that multiply.
2034     // Note: We don't bother looking any deeper than this first level or for
2035     // variations of this pattern because instcombine's visitFMUL and/or the
2036     // reassociation pass should give us this form.
2037     Value *OtherMul0, *OtherMul1;
2038     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
2039       // Pattern: sqrt((x * y) * z)
2040       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
2041         // Matched: sqrt((x * x) * z)
2042         RepeatOp = OtherMul0;
2043         OtherOp = Op1;
2044       }
2045     }
2046   }
2047   if (!RepeatOp)
2048     return Ret;
2049 
2050   // Fast math flags for any created instructions should match the sqrt
2051   // and multiply.
2052   IRBuilderBase::FastMathFlagGuard Guard(B);
2053   B.setFastMathFlags(I->getFastMathFlags());
2054 
2055   // If we found a repeated factor, hoist it out of the square root and
2056   // replace it with the fabs of that factor.
2057   Module *M = Callee->getParent();
2058   Type *ArgType = I->getType();
2059   Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
2060   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
2061   if (OtherOp) {
2062     // If we found a non-repeated factor, we still need to get its square
2063     // root. We then multiply that by the value that was simplified out
2064     // of the square root calculation.
2065     Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
2066     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
2067     return B.CreateFMul(FabsCall, SqrtCall);
2068   }
2069   return FabsCall;
2070 }
2071 
2072 // TODO: Generalize to handle any trig function and its inverse.
2073 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) {
2074   Function *Callee = CI->getCalledFunction();
2075   Value *Ret = nullptr;
2076   StringRef Name = Callee->getName();
2077   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
2078     Ret = optimizeUnaryDoubleFP(CI, B, true);
2079 
2080   Value *Op1 = CI->getArgOperand(0);
2081   auto *OpC = dyn_cast<CallInst>(Op1);
2082   if (!OpC)
2083     return Ret;
2084 
2085   // Both calls must be 'fast' in order to remove them.
2086   if (!CI->isFast() || !OpC->isFast())
2087     return Ret;
2088 
2089   // tan(atan(x)) -> x
2090   // tanf(atanf(x)) -> x
2091   // tanl(atanl(x)) -> x
2092   LibFunc Func;
2093   Function *F = OpC->getCalledFunction();
2094   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
2095       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
2096        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
2097        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
2098     Ret = OpC->getArgOperand(0);
2099   return Ret;
2100 }
2101 
2102 static bool isTrigLibCall(CallInst *CI) {
2103   // We can only hope to do anything useful if we can ignore things like errno
2104   // and floating-point exceptions.
2105   // We already checked the prototype.
2106   return CI->hasFnAttr(Attribute::NoUnwind) &&
2107          CI->hasFnAttr(Attribute::ReadNone);
2108 }
2109 
2110 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
2111                              bool UseFloat, Value *&Sin, Value *&Cos,
2112                              Value *&SinCos) {
2113   Type *ArgTy = Arg->getType();
2114   Type *ResTy;
2115   StringRef Name;
2116 
2117   Triple T(OrigCallee->getParent()->getTargetTriple());
2118   if (UseFloat) {
2119     Name = "__sincospif_stret";
2120 
2121     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2122     // x86_64 can't use {float, float} since that would be returned in both
2123     // xmm0 and xmm1, which isn't what a real struct would do.
2124     ResTy = T.getArch() == Triple::x86_64
2125                 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2))
2126                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2127   } else {
2128     Name = "__sincospi_stret";
2129     ResTy = StructType::get(ArgTy, ArgTy);
2130   }
2131 
2132   Module *M = OrigCallee->getParent();
2133   FunctionCallee Callee =
2134       M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy);
2135 
2136   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2137     // If the argument is an instruction, it must dominate all uses so put our
2138     // sincos call there.
2139     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2140   } else {
2141     // Otherwise (e.g. for a constant) the beginning of the function is as
2142     // good a place as any.
2143     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2144     B.SetInsertPoint(&EntryBB, EntryBB.begin());
2145   }
2146 
2147   SinCos = B.CreateCall(Callee, Arg, "sincospi");
2148 
2149   if (SinCos->getType()->isStructTy()) {
2150     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2151     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2152   } else {
2153     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2154                                  "sinpi");
2155     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2156                                  "cospi");
2157   }
2158 }
2159 
2160 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) {
2161   // Make sure the prototype is as expected, otherwise the rest of the
2162   // function is probably invalid and likely to abort.
2163   if (!isTrigLibCall(CI))
2164     return nullptr;
2165 
2166   Value *Arg = CI->getArgOperand(0);
2167   SmallVector<CallInst *, 1> SinCalls;
2168   SmallVector<CallInst *, 1> CosCalls;
2169   SmallVector<CallInst *, 1> SinCosCalls;
2170 
2171   bool IsFloat = Arg->getType()->isFloatTy();
2172 
2173   // Look for all compatible sinpi, cospi and sincospi calls with the same
2174   // argument. If there are enough (in some sense) we can make the
2175   // substitution.
2176   Function *F = CI->getFunction();
2177   for (User *U : Arg->users())
2178     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2179 
2180   // It's only worthwhile if both sinpi and cospi are actually used.
2181   if (SinCalls.empty() || CosCalls.empty())
2182     return nullptr;
2183 
2184   Value *Sin, *Cos, *SinCos;
2185   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
2186 
2187   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2188                                  Value *Res) {
2189     for (CallInst *C : Calls)
2190       replaceAllUsesWith(C, Res);
2191   };
2192 
2193   replaceTrigInsts(SinCalls, Sin);
2194   replaceTrigInsts(CosCalls, Cos);
2195   replaceTrigInsts(SinCosCalls, SinCos);
2196 
2197   return nullptr;
2198 }
2199 
2200 void LibCallSimplifier::classifyArgUse(
2201     Value *Val, Function *F, bool IsFloat,
2202     SmallVectorImpl<CallInst *> &SinCalls,
2203     SmallVectorImpl<CallInst *> &CosCalls,
2204     SmallVectorImpl<CallInst *> &SinCosCalls) {
2205   CallInst *CI = dyn_cast<CallInst>(Val);
2206 
2207   if (!CI || CI->use_empty())
2208     return;
2209 
2210   // Don't consider calls in other functions.
2211   if (CI->getFunction() != F)
2212     return;
2213 
2214   Function *Callee = CI->getCalledFunction();
2215   LibFunc Func;
2216   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
2217       !isTrigLibCall(CI))
2218     return;
2219 
2220   if (IsFloat) {
2221     if (Func == LibFunc_sinpif)
2222       SinCalls.push_back(CI);
2223     else if (Func == LibFunc_cospif)
2224       CosCalls.push_back(CI);
2225     else if (Func == LibFunc_sincospif_stret)
2226       SinCosCalls.push_back(CI);
2227   } else {
2228     if (Func == LibFunc_sinpi)
2229       SinCalls.push_back(CI);
2230     else if (Func == LibFunc_cospi)
2231       CosCalls.push_back(CI);
2232     else if (Func == LibFunc_sincospi_stret)
2233       SinCosCalls.push_back(CI);
2234   }
2235 }
2236 
2237 //===----------------------------------------------------------------------===//
2238 // Integer Library Call Optimizations
2239 //===----------------------------------------------------------------------===//
2240 
2241 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) {
2242   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
2243   Value *Op = CI->getArgOperand(0);
2244   Type *ArgType = Op->getType();
2245   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2246                                           Intrinsic::cttz, ArgType);
2247   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
2248   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
2249   V = B.CreateIntCast(V, B.getInt32Ty(), false);
2250 
2251   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
2252   return B.CreateSelect(Cond, V, B.getInt32(0));
2253 }
2254 
2255 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) {
2256   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
2257   Value *Op = CI->getArgOperand(0);
2258   Type *ArgType = Op->getType();
2259   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2260                                           Intrinsic::ctlz, ArgType);
2261   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
2262   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
2263                   V);
2264   return B.CreateIntCast(V, CI->getType(), false);
2265 }
2266 
2267 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) {
2268   // abs(x) -> x <s 0 ? -x : x
2269   // The negation has 'nsw' because abs of INT_MIN is undefined.
2270   Value *X = CI->getArgOperand(0);
2271   Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
2272   Value *NegX = B.CreateNSWNeg(X, "neg");
2273   return B.CreateSelect(IsNeg, NegX, X);
2274 }
2275 
2276 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) {
2277   // isdigit(c) -> (c-'0') <u 10
2278   Value *Op = CI->getArgOperand(0);
2279   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
2280   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
2281   return B.CreateZExt(Op, CI->getType());
2282 }
2283 
2284 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) {
2285   // isascii(c) -> c <u 128
2286   Value *Op = CI->getArgOperand(0);
2287   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
2288   return B.CreateZExt(Op, CI->getType());
2289 }
2290 
2291 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) {
2292   // toascii(c) -> c & 0x7f
2293   return B.CreateAnd(CI->getArgOperand(0),
2294                      ConstantInt::get(CI->getType(), 0x7F));
2295 }
2296 
2297 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) {
2298   StringRef Str;
2299   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2300     return nullptr;
2301 
2302   return convertStrToNumber(CI, Str, 10);
2303 }
2304 
2305 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) {
2306   StringRef Str;
2307   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2308     return nullptr;
2309 
2310   if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
2311     return nullptr;
2312 
2313   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2314     return convertStrToNumber(CI, Str, CInt->getSExtValue());
2315   }
2316 
2317   return nullptr;
2318 }
2319 
2320 //===----------------------------------------------------------------------===//
2321 // Formatting and IO Library Call Optimizations
2322 //===----------------------------------------------------------------------===//
2323 
2324 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2325 
2326 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B,
2327                                                  int StreamArg) {
2328   Function *Callee = CI->getCalledFunction();
2329   // Error reporting calls should be cold, mark them as such.
2330   // This applies even to non-builtin calls: it is only a hint and applies to
2331   // functions that the frontend might not understand as builtins.
2332 
2333   // This heuristic was suggested in:
2334   // Improving Static Branch Prediction in a Compiler
2335   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2336   // Proceedings of PACT'98, Oct. 1998, IEEE
2337   if (!CI->hasFnAttr(Attribute::Cold) &&
2338       isReportingError(Callee, CI, StreamArg)) {
2339     CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
2340   }
2341 
2342   return nullptr;
2343 }
2344 
2345 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2346   if (!Callee || !Callee->isDeclaration())
2347     return false;
2348 
2349   if (StreamArg < 0)
2350     return true;
2351 
2352   // These functions might be considered cold, but only if their stream
2353   // argument is stderr.
2354 
2355   if (StreamArg >= (int)CI->getNumArgOperands())
2356     return false;
2357   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2358   if (!LI)
2359     return false;
2360   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
2361   if (!GV || !GV->isDeclaration())
2362     return false;
2363   return GV->getName() == "stderr";
2364 }
2365 
2366 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
2367   // Check for a fixed format string.
2368   StringRef FormatStr;
2369   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2370     return nullptr;
2371 
2372   // Empty format string -> noop.
2373   if (FormatStr.empty()) // Tolerate printf's declared void.
2374     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2375 
2376   // Do not do any of the following transformations if the printf return value
2377   // is used, in general the printf return value is not compatible with either
2378   // putchar() or puts().
2379   if (!CI->use_empty())
2380     return nullptr;
2381 
2382   // printf("x") -> putchar('x'), even for "%" and "%%".
2383   if (FormatStr.size() == 1 || FormatStr == "%%")
2384     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
2385 
2386   // Try to remove call or emit putchar/puts.
2387   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
2388     StringRef OperandStr;
2389     if (!getConstantStringInfo(CI->getOperand(1), OperandStr))
2390       return nullptr;
2391     // printf("%s", "") --> NOP
2392     if (OperandStr.empty())
2393       return (Value *)CI;
2394     // printf("%s", "a") --> putchar('a')
2395     if (OperandStr.size() == 1)
2396       return emitPutChar(B.getInt32(OperandStr[0]), B, TLI);
2397     // printf("%s", str"\n") --> puts(str)
2398     if (OperandStr.back() == '\n') {
2399       OperandStr = OperandStr.drop_back();
2400       Value *GV = B.CreateGlobalString(OperandStr, "str");
2401       return emitPutS(GV, B, TLI);
2402     }
2403     return nullptr;
2404   }
2405 
2406   // printf("foo\n") --> puts("foo")
2407   if (FormatStr.back() == '\n' &&
2408       FormatStr.find('%') == StringRef::npos) { // No format characters.
2409     // Create a string literal with no \n on it.  We expect the constant merge
2410     // pass to be run after this pass, to merge duplicate strings.
2411     FormatStr = FormatStr.drop_back();
2412     Value *GV = B.CreateGlobalString(FormatStr, "str");
2413     return emitPutS(GV, B, TLI);
2414   }
2415 
2416   // Optimize specific format strings.
2417   // printf("%c", chr) --> putchar(chr)
2418   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
2419       CI->getArgOperand(1)->getType()->isIntegerTy())
2420     return emitPutChar(CI->getArgOperand(1), B, TLI);
2421 
2422   // printf("%s\n", str) --> puts(str)
2423   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
2424       CI->getArgOperand(1)->getType()->isPointerTy())
2425     return emitPutS(CI->getArgOperand(1), B, TLI);
2426   return nullptr;
2427 }
2428 
2429 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
2430 
2431   Function *Callee = CI->getCalledFunction();
2432   FunctionType *FT = Callee->getFunctionType();
2433   if (Value *V = optimizePrintFString(CI, B)) {
2434     return V;
2435   }
2436 
2437   // printf(format, ...) -> iprintf(format, ...) if no floating point
2438   // arguments.
2439   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
2440     Module *M = B.GetInsertBlock()->getParent()->getParent();
2441     FunctionCallee IPrintFFn =
2442         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
2443     CallInst *New = cast<CallInst>(CI->clone());
2444     New->setCalledFunction(IPrintFFn);
2445     B.Insert(New);
2446     return New;
2447   }
2448 
2449   // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2450   // arguments.
2451   if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) {
2452     Module *M = B.GetInsertBlock()->getParent()->getParent();
2453     auto SmallPrintFFn =
2454         M->getOrInsertFunction(TLI->getName(LibFunc_small_printf),
2455                                FT, Callee->getAttributes());
2456     CallInst *New = cast<CallInst>(CI->clone());
2457     New->setCalledFunction(SmallPrintFFn);
2458     B.Insert(New);
2459     return New;
2460   }
2461 
2462   annotateNonNullNoUndefBasedOnAccess(CI, 0);
2463   return nullptr;
2464 }
2465 
2466 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
2467                                                 IRBuilderBase &B) {
2468   // Check for a fixed format string.
2469   StringRef FormatStr;
2470   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2471     return nullptr;
2472 
2473   // If we just have a format string (nothing else crazy) transform it.
2474   if (CI->getNumArgOperands() == 2) {
2475     // Make sure there's no % in the constant array.  We could try to handle
2476     // %% -> % in the future if we cared.
2477     if (FormatStr.find('%') != StringRef::npos)
2478       return nullptr; // we found a format specifier, bail out.
2479 
2480     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2481     B.CreateMemCpy(
2482         CI->getArgOperand(0), Align(1), CI->getArgOperand(1), Align(1),
2483         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2484                          FormatStr.size() + 1)); // Copy the null byte.
2485     return ConstantInt::get(CI->getType(), FormatStr.size());
2486   }
2487 
2488   // The remaining optimizations require the format string to be "%s" or "%c"
2489   // and have an extra operand.
2490   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2491       CI->getNumArgOperands() < 3)
2492     return nullptr;
2493 
2494   // Decode the second character of the format string.
2495   if (FormatStr[1] == 'c') {
2496     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2497     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2498       return nullptr;
2499     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2500     Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2501     B.CreateStore(V, Ptr);
2502     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2503     B.CreateStore(B.getInt8(0), Ptr);
2504 
2505     return ConstantInt::get(CI->getType(), 1);
2506   }
2507 
2508   if (FormatStr[1] == 's') {
2509     // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2510     // strlen(str)+1)
2511     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2512       return nullptr;
2513 
2514     if (CI->use_empty())
2515       // sprintf(dest, "%s", str) -> strcpy(dest, str)
2516       return emitStrCpy(CI->getArgOperand(0), CI->getArgOperand(2), B, TLI);
2517 
2518     uint64_t SrcLen = GetStringLength(CI->getArgOperand(2));
2519     if (SrcLen) {
2520       B.CreateMemCpy(
2521           CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1),
2522           ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen));
2523       // Returns total number of characters written without null-character.
2524       return ConstantInt::get(CI->getType(), SrcLen - 1);
2525     } else if (Value *V = emitStpCpy(CI->getArgOperand(0), CI->getArgOperand(2),
2526                                      B, TLI)) {
2527       // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest
2528       Value *PtrDiff = B.CreatePtrDiff(V, CI->getArgOperand(0));
2529       return B.CreateIntCast(PtrDiff, CI->getType(), false);
2530     }
2531 
2532     bool OptForSize = CI->getFunction()->hasOptSize() ||
2533                       llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2534                                                   PGSOQueryType::IRPass);
2535     if (OptForSize)
2536       return nullptr;
2537 
2538     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2539     if (!Len)
2540       return nullptr;
2541     Value *IncLen =
2542         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2543     B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(2),
2544                    Align(1), IncLen);
2545 
2546     // The sprintf result is the unincremented number of bytes in the string.
2547     return B.CreateIntCast(Len, CI->getType(), false);
2548   }
2549   return nullptr;
2550 }
2551 
2552 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
2553   Function *Callee = CI->getCalledFunction();
2554   FunctionType *FT = Callee->getFunctionType();
2555   if (Value *V = optimizeSPrintFString(CI, B)) {
2556     return V;
2557   }
2558 
2559   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2560   // point arguments.
2561   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
2562     Module *M = B.GetInsertBlock()->getParent()->getParent();
2563     FunctionCallee SIPrintFFn =
2564         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
2565     CallInst *New = cast<CallInst>(CI->clone());
2566     New->setCalledFunction(SIPrintFFn);
2567     B.Insert(New);
2568     return New;
2569   }
2570 
2571   // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
2572   // floating point arguments.
2573   if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) {
2574     Module *M = B.GetInsertBlock()->getParent()->getParent();
2575     auto SmallSPrintFFn =
2576         M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf),
2577                                FT, Callee->getAttributes());
2578     CallInst *New = cast<CallInst>(CI->clone());
2579     New->setCalledFunction(SmallSPrintFFn);
2580     B.Insert(New);
2581     return New;
2582   }
2583 
2584   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
2585   return nullptr;
2586 }
2587 
2588 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
2589                                                  IRBuilderBase &B) {
2590   // Check for size
2591   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2592   if (!Size)
2593     return nullptr;
2594 
2595   uint64_t N = Size->getZExtValue();
2596   // Check for a fixed format string.
2597   StringRef FormatStr;
2598   if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2599     return nullptr;
2600 
2601   // If we just have a format string (nothing else crazy) transform it.
2602   if (CI->getNumArgOperands() == 3) {
2603     // Make sure there's no % in the constant array.  We could try to handle
2604     // %% -> % in the future if we cared.
2605     if (FormatStr.find('%') != StringRef::npos)
2606       return nullptr; // we found a format specifier, bail out.
2607 
2608     if (N == 0)
2609       return ConstantInt::get(CI->getType(), FormatStr.size());
2610     else if (N < FormatStr.size() + 1)
2611       return nullptr;
2612 
2613     // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2614     // strlen(fmt)+1)
2615     B.CreateMemCpy(
2616         CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1),
2617         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2618                          FormatStr.size() + 1)); // Copy the null byte.
2619     return ConstantInt::get(CI->getType(), FormatStr.size());
2620   }
2621 
2622   // The remaining optimizations require the format string to be "%s" or "%c"
2623   // and have an extra operand.
2624   if (FormatStr.size() == 2 && FormatStr[0] == '%' &&
2625       CI->getNumArgOperands() == 4) {
2626 
2627     // Decode the second character of the format string.
2628     if (FormatStr[1] == 'c') {
2629       if (N == 0)
2630         return ConstantInt::get(CI->getType(), 1);
2631       else if (N == 1)
2632         return nullptr;
2633 
2634       // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2635       if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2636         return nullptr;
2637       Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2638       Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2639       B.CreateStore(V, Ptr);
2640       Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2641       B.CreateStore(B.getInt8(0), Ptr);
2642 
2643       return ConstantInt::get(CI->getType(), 1);
2644     }
2645 
2646     if (FormatStr[1] == 's') {
2647       // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2648       StringRef Str;
2649       if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2650         return nullptr;
2651 
2652       if (N == 0)
2653         return ConstantInt::get(CI->getType(), Str.size());
2654       else if (N < Str.size() + 1)
2655         return nullptr;
2656 
2657       B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(3),
2658                      Align(1), ConstantInt::get(CI->getType(), Str.size() + 1));
2659 
2660       // The snprintf result is the unincremented number of bytes in the string.
2661       return ConstantInt::get(CI->getType(), Str.size());
2662     }
2663   }
2664   return nullptr;
2665 }
2666 
2667 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) {
2668   if (Value *V = optimizeSnPrintFString(CI, B)) {
2669     return V;
2670   }
2671 
2672   if (isKnownNonZero(CI->getOperand(1), DL))
2673     annotateNonNullNoUndefBasedOnAccess(CI, 0);
2674   return nullptr;
2675 }
2676 
2677 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
2678                                                 IRBuilderBase &B) {
2679   optimizeErrorReporting(CI, B, 0);
2680 
2681   // All the optimizations depend on the format string.
2682   StringRef FormatStr;
2683   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2684     return nullptr;
2685 
2686   // Do not do any of the following transformations if the fprintf return
2687   // value is used, in general the fprintf return value is not compatible
2688   // with fwrite(), fputc() or fputs().
2689   if (!CI->use_empty())
2690     return nullptr;
2691 
2692   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2693   if (CI->getNumArgOperands() == 2) {
2694     // Could handle %% -> % if we cared.
2695     if (FormatStr.find('%') != StringRef::npos)
2696       return nullptr; // We found a format specifier.
2697 
2698     return emitFWrite(
2699         CI->getArgOperand(1),
2700         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
2701         CI->getArgOperand(0), B, DL, TLI);
2702   }
2703 
2704   // The remaining optimizations require the format string to be "%s" or "%c"
2705   // and have an extra operand.
2706   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2707       CI->getNumArgOperands() < 3)
2708     return nullptr;
2709 
2710   // Decode the second character of the format string.
2711   if (FormatStr[1] == 'c') {
2712     // fprintf(F, "%c", chr) --> fputc(chr, F)
2713     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2714       return nullptr;
2715     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2716   }
2717 
2718   if (FormatStr[1] == 's') {
2719     // fprintf(F, "%s", str) --> fputs(str, F)
2720     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2721       return nullptr;
2722     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2723   }
2724   return nullptr;
2725 }
2726 
2727 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
2728   Function *Callee = CI->getCalledFunction();
2729   FunctionType *FT = Callee->getFunctionType();
2730   if (Value *V = optimizeFPrintFString(CI, B)) {
2731     return V;
2732   }
2733 
2734   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2735   // floating point arguments.
2736   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
2737     Module *M = B.GetInsertBlock()->getParent()->getParent();
2738     FunctionCallee FIPrintFFn =
2739         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2740     CallInst *New = cast<CallInst>(CI->clone());
2741     New->setCalledFunction(FIPrintFFn);
2742     B.Insert(New);
2743     return New;
2744   }
2745 
2746   // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
2747   // 128-bit floating point arguments.
2748   if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) {
2749     Module *M = B.GetInsertBlock()->getParent()->getParent();
2750     auto SmallFPrintFFn =
2751         M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf),
2752                                FT, Callee->getAttributes());
2753     CallInst *New = cast<CallInst>(CI->clone());
2754     New->setCalledFunction(SmallFPrintFFn);
2755     B.Insert(New);
2756     return New;
2757   }
2758 
2759   return nullptr;
2760 }
2761 
2762 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) {
2763   optimizeErrorReporting(CI, B, 3);
2764 
2765   // Get the element size and count.
2766   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2767   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2768   if (SizeC && CountC) {
2769     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2770 
2771     // If this is writing zero records, remove the call (it's a noop).
2772     if (Bytes == 0)
2773       return ConstantInt::get(CI->getType(), 0);
2774 
2775     // If this is writing one byte, turn it into fputc.
2776     // This optimisation is only valid, if the return value is unused.
2777     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2778       Value *Char = B.CreateLoad(B.getInt8Ty(),
2779                                  castToCStr(CI->getArgOperand(0), B), "char");
2780       Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2781       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2782     }
2783   }
2784 
2785   return nullptr;
2786 }
2787 
2788 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) {
2789   optimizeErrorReporting(CI, B, 1);
2790 
2791   // Don't rewrite fputs to fwrite when optimising for size because fwrite
2792   // requires more arguments and thus extra MOVs are required.
2793   bool OptForSize = CI->getFunction()->hasOptSize() ||
2794                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2795                                                 PGSOQueryType::IRPass);
2796   if (OptForSize)
2797     return nullptr;
2798 
2799   // We can't optimize if return value is used.
2800   if (!CI->use_empty())
2801     return nullptr;
2802 
2803   // fputs(s,F) --> fwrite(s,strlen(s),1,F)
2804   uint64_t Len = GetStringLength(CI->getArgOperand(0));
2805   if (!Len)
2806     return nullptr;
2807 
2808   // Known to have no uses (see above).
2809   return emitFWrite(
2810       CI->getArgOperand(0),
2811       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2812       CI->getArgOperand(1), B, DL, TLI);
2813 }
2814 
2815 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) {
2816   annotateNonNullNoUndefBasedOnAccess(CI, 0);
2817   if (!CI->use_empty())
2818     return nullptr;
2819 
2820   // Check for a constant string.
2821   // puts("") -> putchar('\n')
2822   StringRef Str;
2823   if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
2824     return emitPutChar(B.getInt32('\n'), B, TLI);
2825 
2826   return nullptr;
2827 }
2828 
2829 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
2830   // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
2831   return B.CreateMemMove(CI->getArgOperand(1), Align(1), CI->getArgOperand(0),
2832                          Align(1), CI->getArgOperand(2));
2833 }
2834 
2835 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2836   LibFunc Func;
2837   SmallString<20> FloatFuncName = FuncName;
2838   FloatFuncName += 'f';
2839   if (TLI->getLibFunc(FloatFuncName, Func))
2840     return TLI->has(Func);
2841   return false;
2842 }
2843 
2844 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2845                                                       IRBuilderBase &Builder) {
2846   LibFunc Func;
2847   Function *Callee = CI->getCalledFunction();
2848   // Check for string/memory library functions.
2849   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2850     // Make sure we never change the calling convention.
2851     assert(
2852         (ignoreCallingConv(Func) ||
2853          TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) &&
2854         "Optimizing string/memory libcall would change the calling convention");
2855     switch (Func) {
2856     case LibFunc_strcat:
2857       return optimizeStrCat(CI, Builder);
2858     case LibFunc_strncat:
2859       return optimizeStrNCat(CI, Builder);
2860     case LibFunc_strchr:
2861       return optimizeStrChr(CI, Builder);
2862     case LibFunc_strrchr:
2863       return optimizeStrRChr(CI, Builder);
2864     case LibFunc_strcmp:
2865       return optimizeStrCmp(CI, Builder);
2866     case LibFunc_strncmp:
2867       return optimizeStrNCmp(CI, Builder);
2868     case LibFunc_strcpy:
2869       return optimizeStrCpy(CI, Builder);
2870     case LibFunc_stpcpy:
2871       return optimizeStpCpy(CI, Builder);
2872     case LibFunc_strncpy:
2873       return optimizeStrNCpy(CI, Builder);
2874     case LibFunc_strlen:
2875       return optimizeStrLen(CI, Builder);
2876     case LibFunc_strpbrk:
2877       return optimizeStrPBrk(CI, Builder);
2878     case LibFunc_strndup:
2879       return optimizeStrNDup(CI, Builder);
2880     case LibFunc_strtol:
2881     case LibFunc_strtod:
2882     case LibFunc_strtof:
2883     case LibFunc_strtoul:
2884     case LibFunc_strtoll:
2885     case LibFunc_strtold:
2886     case LibFunc_strtoull:
2887       return optimizeStrTo(CI, Builder);
2888     case LibFunc_strspn:
2889       return optimizeStrSpn(CI, Builder);
2890     case LibFunc_strcspn:
2891       return optimizeStrCSpn(CI, Builder);
2892     case LibFunc_strstr:
2893       return optimizeStrStr(CI, Builder);
2894     case LibFunc_memchr:
2895       return optimizeMemChr(CI, Builder);
2896     case LibFunc_memrchr:
2897       return optimizeMemRChr(CI, Builder);
2898     case LibFunc_bcmp:
2899       return optimizeBCmp(CI, Builder);
2900     case LibFunc_memcmp:
2901       return optimizeMemCmp(CI, Builder);
2902     case LibFunc_memcpy:
2903       return optimizeMemCpy(CI, Builder);
2904     case LibFunc_memccpy:
2905       return optimizeMemCCpy(CI, Builder);
2906     case LibFunc_mempcpy:
2907       return optimizeMemPCpy(CI, Builder);
2908     case LibFunc_memmove:
2909       return optimizeMemMove(CI, Builder);
2910     case LibFunc_memset:
2911       return optimizeMemSet(CI, Builder);
2912     case LibFunc_realloc:
2913       return optimizeRealloc(CI, Builder);
2914     case LibFunc_wcslen:
2915       return optimizeWcslen(CI, Builder);
2916     case LibFunc_bcopy:
2917       return optimizeBCopy(CI, Builder);
2918     default:
2919       break;
2920     }
2921   }
2922   return nullptr;
2923 }
2924 
2925 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2926                                                        LibFunc Func,
2927                                                        IRBuilderBase &Builder) {
2928   // Don't optimize calls that require strict floating point semantics.
2929   if (CI->isStrictFP())
2930     return nullptr;
2931 
2932   if (Value *V = optimizeTrigReflections(CI, Func, Builder))
2933     return V;
2934 
2935   switch (Func) {
2936   case LibFunc_sinpif:
2937   case LibFunc_sinpi:
2938   case LibFunc_cospif:
2939   case LibFunc_cospi:
2940     return optimizeSinCosPi(CI, Builder);
2941   case LibFunc_powf:
2942   case LibFunc_pow:
2943   case LibFunc_powl:
2944     return optimizePow(CI, Builder);
2945   case LibFunc_exp2l:
2946   case LibFunc_exp2:
2947   case LibFunc_exp2f:
2948     return optimizeExp2(CI, Builder);
2949   case LibFunc_fabsf:
2950   case LibFunc_fabs:
2951   case LibFunc_fabsl:
2952     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2953   case LibFunc_sqrtf:
2954   case LibFunc_sqrt:
2955   case LibFunc_sqrtl:
2956     return optimizeSqrt(CI, Builder);
2957   case LibFunc_logf:
2958   case LibFunc_log:
2959   case LibFunc_logl:
2960   case LibFunc_log10f:
2961   case LibFunc_log10:
2962   case LibFunc_log10l:
2963   case LibFunc_log1pf:
2964   case LibFunc_log1p:
2965   case LibFunc_log1pl:
2966   case LibFunc_log2f:
2967   case LibFunc_log2:
2968   case LibFunc_log2l:
2969   case LibFunc_logbf:
2970   case LibFunc_logb:
2971   case LibFunc_logbl:
2972     return optimizeLog(CI, Builder);
2973   case LibFunc_tan:
2974   case LibFunc_tanf:
2975   case LibFunc_tanl:
2976     return optimizeTan(CI, Builder);
2977   case LibFunc_ceil:
2978     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2979   case LibFunc_floor:
2980     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2981   case LibFunc_round:
2982     return replaceUnaryCall(CI, Builder, Intrinsic::round);
2983   case LibFunc_roundeven:
2984     return replaceUnaryCall(CI, Builder, Intrinsic::roundeven);
2985   case LibFunc_nearbyint:
2986     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2987   case LibFunc_rint:
2988     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2989   case LibFunc_trunc:
2990     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
2991   case LibFunc_acos:
2992   case LibFunc_acosh:
2993   case LibFunc_asin:
2994   case LibFunc_asinh:
2995   case LibFunc_atan:
2996   case LibFunc_atanh:
2997   case LibFunc_cbrt:
2998   case LibFunc_cosh:
2999   case LibFunc_exp:
3000   case LibFunc_exp10:
3001   case LibFunc_expm1:
3002   case LibFunc_cos:
3003   case LibFunc_sin:
3004   case LibFunc_sinh:
3005   case LibFunc_tanh:
3006     if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
3007       return optimizeUnaryDoubleFP(CI, Builder, true);
3008     return nullptr;
3009   case LibFunc_copysign:
3010     if (hasFloatVersion(CI->getCalledFunction()->getName()))
3011       return optimizeBinaryDoubleFP(CI, Builder);
3012     return nullptr;
3013   case LibFunc_fminf:
3014   case LibFunc_fmin:
3015   case LibFunc_fminl:
3016   case LibFunc_fmaxf:
3017   case LibFunc_fmax:
3018   case LibFunc_fmaxl:
3019     return optimizeFMinFMax(CI, Builder);
3020   case LibFunc_cabs:
3021   case LibFunc_cabsf:
3022   case LibFunc_cabsl:
3023     return optimizeCAbs(CI, Builder);
3024   default:
3025     return nullptr;
3026   }
3027 }
3028 
3029 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
3030   // TODO: Split out the code below that operates on FP calls so that
3031   //       we can all non-FP calls with the StrictFP attribute to be
3032   //       optimized.
3033   if (CI->isNoBuiltin())
3034     return nullptr;
3035 
3036   LibFunc Func;
3037   Function *Callee = CI->getCalledFunction();
3038   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
3039 
3040   SmallVector<OperandBundleDef, 2> OpBundles;
3041   CI->getOperandBundlesAsDefs(OpBundles);
3042 
3043   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3044   Builder.setDefaultOperandBundles(OpBundles);
3045 
3046   // Command-line parameter overrides instruction attribute.
3047   // This can't be moved to optimizeFloatingPointLibCall() because it may be
3048   // used by the intrinsic optimizations.
3049   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
3050     UnsafeFPShrink = EnableUnsafeFPShrink;
3051   else if (isa<FPMathOperator>(CI) && CI->isFast())
3052     UnsafeFPShrink = true;
3053 
3054   // First, check for intrinsics.
3055   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
3056     if (!IsCallingConvC)
3057       return nullptr;
3058     // The FP intrinsics have corresponding constrained versions so we don't
3059     // need to check for the StrictFP attribute here.
3060     switch (II->getIntrinsicID()) {
3061     case Intrinsic::pow:
3062       return optimizePow(CI, Builder);
3063     case Intrinsic::exp2:
3064       return optimizeExp2(CI, Builder);
3065     case Intrinsic::log:
3066     case Intrinsic::log2:
3067     case Intrinsic::log10:
3068       return optimizeLog(CI, Builder);
3069     case Intrinsic::sqrt:
3070       return optimizeSqrt(CI, Builder);
3071     // TODO: Use foldMallocMemset() with memset intrinsic.
3072     case Intrinsic::memset:
3073       return optimizeMemSet(CI, Builder);
3074     case Intrinsic::memcpy:
3075       return optimizeMemCpy(CI, Builder);
3076     case Intrinsic::memmove:
3077       return optimizeMemMove(CI, Builder);
3078     default:
3079       return nullptr;
3080     }
3081   }
3082 
3083   // Also try to simplify calls to fortified library functions.
3084   if (Value *SimplifiedFortifiedCI =
3085           FortifiedSimplifier.optimizeCall(CI, Builder)) {
3086     // Try to further simplify the result.
3087     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
3088     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
3089       // Ensure that SimplifiedCI's uses are complete, since some calls have
3090       // their uses analyzed.
3091       replaceAllUsesWith(CI, SimplifiedCI);
3092 
3093       // Set insertion point to SimplifiedCI to guarantee we reach all uses
3094       // we might replace later on.
3095       IRBuilderBase::InsertPointGuard Guard(Builder);
3096       Builder.SetInsertPoint(SimplifiedCI);
3097       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) {
3098         // If we were able to further simplify, remove the now redundant call.
3099         substituteInParent(SimplifiedCI, V);
3100         return V;
3101       }
3102     }
3103     return SimplifiedFortifiedCI;
3104   }
3105 
3106   // Then check for known library functions.
3107   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
3108     // We never change the calling convention.
3109     if (!ignoreCallingConv(Func) && !IsCallingConvC)
3110       return nullptr;
3111     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3112       return V;
3113     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3114       return V;
3115     switch (Func) {
3116     case LibFunc_ffs:
3117     case LibFunc_ffsl:
3118     case LibFunc_ffsll:
3119       return optimizeFFS(CI, Builder);
3120     case LibFunc_fls:
3121     case LibFunc_flsl:
3122     case LibFunc_flsll:
3123       return optimizeFls(CI, Builder);
3124     case LibFunc_abs:
3125     case LibFunc_labs:
3126     case LibFunc_llabs:
3127       return optimizeAbs(CI, Builder);
3128     case LibFunc_isdigit:
3129       return optimizeIsDigit(CI, Builder);
3130     case LibFunc_isascii:
3131       return optimizeIsAscii(CI, Builder);
3132     case LibFunc_toascii:
3133       return optimizeToAscii(CI, Builder);
3134     case LibFunc_atoi:
3135     case LibFunc_atol:
3136     case LibFunc_atoll:
3137       return optimizeAtoi(CI, Builder);
3138     case LibFunc_strtol:
3139     case LibFunc_strtoll:
3140       return optimizeStrtol(CI, Builder);
3141     case LibFunc_printf:
3142       return optimizePrintF(CI, Builder);
3143     case LibFunc_sprintf:
3144       return optimizeSPrintF(CI, Builder);
3145     case LibFunc_snprintf:
3146       return optimizeSnPrintF(CI, Builder);
3147     case LibFunc_fprintf:
3148       return optimizeFPrintF(CI, Builder);
3149     case LibFunc_fwrite:
3150       return optimizeFWrite(CI, Builder);
3151     case LibFunc_fputs:
3152       return optimizeFPuts(CI, Builder);
3153     case LibFunc_puts:
3154       return optimizePuts(CI, Builder);
3155     case LibFunc_perror:
3156       return optimizeErrorReporting(CI, Builder);
3157     case LibFunc_vfprintf:
3158     case LibFunc_fiprintf:
3159       return optimizeErrorReporting(CI, Builder, 0);
3160     default:
3161       return nullptr;
3162     }
3163   }
3164   return nullptr;
3165 }
3166 
3167 LibCallSimplifier::LibCallSimplifier(
3168     const DataLayout &DL, const TargetLibraryInfo *TLI,
3169     OptimizationRemarkEmitter &ORE,
3170     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
3171     function_ref<void(Instruction *, Value *)> Replacer,
3172     function_ref<void(Instruction *)> Eraser)
3173     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
3174       UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {}
3175 
3176 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3177   // Indirect through the replacer used in this instance.
3178   Replacer(I, With);
3179 }
3180 
3181 void LibCallSimplifier::eraseFromParent(Instruction *I) {
3182   Eraser(I);
3183 }
3184 
3185 // TODO:
3186 //   Additional cases that we need to add to this file:
3187 //
3188 // cbrt:
3189 //   * cbrt(expN(X))  -> expN(x/3)
3190 //   * cbrt(sqrt(x))  -> pow(x,1/6)
3191 //   * cbrt(cbrt(x))  -> pow(x,1/9)
3192 //
3193 // exp, expf, expl:
3194 //   * exp(log(x))  -> x
3195 //
3196 // log, logf, logl:
3197 //   * log(exp(x))   -> x
3198 //   * log(exp(y))   -> y*log(e)
3199 //   * log(exp10(y)) -> y*log(10)
3200 //   * log(sqrt(x))  -> 0.5*log(x)
3201 //
3202 // pow, powf, powl:
3203 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
3204 //   * pow(pow(x,y),z)-> pow(x,y*z)
3205 //
3206 // signbit:
3207 //   * signbit(cnst) -> cnst'
3208 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3209 //
3210 // sqrt, sqrtf, sqrtl:
3211 //   * sqrt(expN(x))  -> expN(x*0.5)
3212 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3213 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3214 //
3215 
3216 //===----------------------------------------------------------------------===//
3217 // Fortified Library Call Optimizations
3218 //===----------------------------------------------------------------------===//
3219 
3220 bool
3221 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
3222                                                     unsigned ObjSizeOp,
3223                                                     Optional<unsigned> SizeOp,
3224                                                     Optional<unsigned> StrOp,
3225                                                     Optional<unsigned> FlagOp) {
3226   // If this function takes a flag argument, the implementation may use it to
3227   // perform extra checks. Don't fold into the non-checking variant.
3228   if (FlagOp) {
3229     ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
3230     if (!Flag || !Flag->isZero())
3231       return false;
3232   }
3233 
3234   if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
3235     return true;
3236 
3237   if (ConstantInt *ObjSizeCI =
3238           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
3239     if (ObjSizeCI->isMinusOne())
3240       return true;
3241     // If the object size wasn't -1 (unknown), bail out if we were asked to.
3242     if (OnlyLowerUnknownSize)
3243       return false;
3244     if (StrOp) {
3245       uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
3246       // If the length is 0 we don't know how long it is and so we can't
3247       // remove the check.
3248       if (Len)
3249         annotateDereferenceableBytes(CI, *StrOp, Len);
3250       else
3251         return false;
3252       return ObjSizeCI->getZExtValue() >= Len;
3253     }
3254 
3255     if (SizeOp) {
3256       if (ConstantInt *SizeCI =
3257               dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
3258         return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
3259     }
3260   }
3261   return false;
3262 }
3263 
3264 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
3265                                                      IRBuilderBase &B) {
3266   if (isFortifiedCallFoldable(CI, 3, 2)) {
3267     CallInst *NewCI =
3268         B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3269                        Align(1), CI->getArgOperand(2));
3270     NewCI->setAttributes(CI->getAttributes());
3271     NewCI->removeAttributes(AttributeList::ReturnIndex,
3272                             AttributeFuncs::typeIncompatible(NewCI->getType()));
3273     return CI->getArgOperand(0);
3274   }
3275   return nullptr;
3276 }
3277 
3278 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
3279                                                       IRBuilderBase &B) {
3280   if (isFortifiedCallFoldable(CI, 3, 2)) {
3281     CallInst *NewCI =
3282         B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3283                         Align(1), CI->getArgOperand(2));
3284     NewCI->setAttributes(CI->getAttributes());
3285     NewCI->removeAttributes(AttributeList::ReturnIndex,
3286                             AttributeFuncs::typeIncompatible(NewCI->getType()));
3287     return CI->getArgOperand(0);
3288   }
3289   return nullptr;
3290 }
3291 
3292 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
3293                                                      IRBuilderBase &B) {
3294   // TODO: Try foldMallocMemset() here.
3295 
3296   if (isFortifiedCallFoldable(CI, 3, 2)) {
3297     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
3298     CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
3299                                      CI->getArgOperand(2), Align(1));
3300     NewCI->setAttributes(CI->getAttributes());
3301     NewCI->removeAttributes(AttributeList::ReturnIndex,
3302                             AttributeFuncs::typeIncompatible(NewCI->getType()));
3303     return CI->getArgOperand(0);
3304   }
3305   return nullptr;
3306 }
3307 
3308 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI,
3309                                                       IRBuilderBase &B) {
3310   const DataLayout &DL = CI->getModule()->getDataLayout();
3311   if (isFortifiedCallFoldable(CI, 3, 2))
3312     if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3313                                   CI->getArgOperand(2), B, DL, TLI)) {
3314       CallInst *NewCI = cast<CallInst>(Call);
3315       NewCI->setAttributes(CI->getAttributes());
3316       NewCI->removeAttributes(
3317           AttributeList::ReturnIndex,
3318           AttributeFuncs::typeIncompatible(NewCI->getType()));
3319       return NewCI;
3320     }
3321   return nullptr;
3322 }
3323 
3324 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
3325                                                       IRBuilderBase &B,
3326                                                       LibFunc Func) {
3327   const DataLayout &DL = CI->getModule()->getDataLayout();
3328   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
3329         *ObjSize = CI->getArgOperand(2);
3330 
3331   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
3332   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
3333     Value *StrLen = emitStrLen(Src, B, DL, TLI);
3334     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
3335   }
3336 
3337   // If a) we don't have any length information, or b) we know this will
3338   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3339   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3340   // TODO: It might be nice to get a maximum length out of the possible
3341   // string lengths for varying.
3342   if (isFortifiedCallFoldable(CI, 2, None, 1)) {
3343     if (Func == LibFunc_strcpy_chk)
3344       return emitStrCpy(Dst, Src, B, TLI);
3345     else
3346       return emitStpCpy(Dst, Src, B, TLI);
3347   }
3348 
3349   if (OnlyLowerUnknownSize)
3350     return nullptr;
3351 
3352   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3353   uint64_t Len = GetStringLength(Src);
3354   if (Len)
3355     annotateDereferenceableBytes(CI, 1, Len);
3356   else
3357     return nullptr;
3358 
3359   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
3360   Value *LenV = ConstantInt::get(SizeTTy, Len);
3361   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
3362   // If the function was an __stpcpy_chk, and we were able to fold it into
3363   // a __memcpy_chk, we still need to return the correct end pointer.
3364   if (Ret && Func == LibFunc_stpcpy_chk)
3365     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
3366   return Ret;
3367 }
3368 
3369 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
3370                                                      IRBuilderBase &B) {
3371   if (isFortifiedCallFoldable(CI, 1, None, 0))
3372     return emitStrLen(CI->getArgOperand(0), B, CI->getModule()->getDataLayout(),
3373                       TLI);
3374   return nullptr;
3375 }
3376 
3377 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
3378                                                        IRBuilderBase &B,
3379                                                        LibFunc Func) {
3380   if (isFortifiedCallFoldable(CI, 3, 2)) {
3381     if (Func == LibFunc_strncpy_chk)
3382       return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3383                                CI->getArgOperand(2), B, TLI);
3384     else
3385       return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3386                          CI->getArgOperand(2), B, TLI);
3387   }
3388 
3389   return nullptr;
3390 }
3391 
3392 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
3393                                                       IRBuilderBase &B) {
3394   if (isFortifiedCallFoldable(CI, 4, 3))
3395     return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3396                        CI->getArgOperand(2), CI->getArgOperand(3), B, TLI);
3397 
3398   return nullptr;
3399 }
3400 
3401 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
3402                                                        IRBuilderBase &B) {
3403   if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
3404     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5));
3405     return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3406                         CI->getArgOperand(4), VariadicArgs, B, TLI);
3407   }
3408 
3409   return nullptr;
3410 }
3411 
3412 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
3413                                                       IRBuilderBase &B) {
3414   if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
3415     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4));
3416     return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs,
3417                        B, TLI);
3418   }
3419 
3420   return nullptr;
3421 }
3422 
3423 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
3424                                                      IRBuilderBase &B) {
3425   if (isFortifiedCallFoldable(CI, 2))
3426     return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI);
3427 
3428   return nullptr;
3429 }
3430 
3431 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
3432                                                    IRBuilderBase &B) {
3433   if (isFortifiedCallFoldable(CI, 3))
3434     return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
3435                        CI->getArgOperand(2), B, TLI);
3436 
3437   return nullptr;
3438 }
3439 
3440 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
3441                                                       IRBuilderBase &B) {
3442   if (isFortifiedCallFoldable(CI, 3))
3443     return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
3444                        CI->getArgOperand(2), B, TLI);
3445 
3446   return nullptr;
3447 }
3448 
3449 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
3450                                                       IRBuilderBase &B) {
3451   if (isFortifiedCallFoldable(CI, 3))
3452     return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3453                        CI->getArgOperand(2), B, TLI);
3454 
3455   return nullptr;
3456 }
3457 
3458 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
3459                                                         IRBuilderBase &B) {
3460   if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
3461     return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3462                          CI->getArgOperand(4), CI->getArgOperand(5), B, TLI);
3463 
3464   return nullptr;
3465 }
3466 
3467 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
3468                                                        IRBuilderBase &B) {
3469   if (isFortifiedCallFoldable(CI, 2, None, None, 1))
3470     return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3471                         CI->getArgOperand(4), B, TLI);
3472 
3473   return nullptr;
3474 }
3475 
3476 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI,
3477                                                 IRBuilderBase &Builder) {
3478   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
3479   // Some clang users checked for _chk libcall availability using:
3480   //   __has_builtin(__builtin___memcpy_chk)
3481   // When compiling with -fno-builtin, this is always true.
3482   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
3483   // end up with fortified libcalls, which isn't acceptable in a freestanding
3484   // environment which only provides their non-fortified counterparts.
3485   //
3486   // Until we change clang and/or teach external users to check for availability
3487   // differently, disregard the "nobuiltin" attribute and TLI::has.
3488   //
3489   // PR23093.
3490 
3491   LibFunc Func;
3492   Function *Callee = CI->getCalledFunction();
3493   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
3494 
3495   SmallVector<OperandBundleDef, 2> OpBundles;
3496   CI->getOperandBundlesAsDefs(OpBundles);
3497 
3498   IRBuilderBase::OperandBundlesGuard Guard(Builder);
3499   Builder.setDefaultOperandBundles(OpBundles);
3500 
3501   // First, check that this is a known library functions and that the prototype
3502   // is correct.
3503   if (!TLI->getLibFunc(*Callee, Func))
3504     return nullptr;
3505 
3506   // We never change the calling convention.
3507   if (!ignoreCallingConv(Func) && !IsCallingConvC)
3508     return nullptr;
3509 
3510   switch (Func) {
3511   case LibFunc_memcpy_chk:
3512     return optimizeMemCpyChk(CI, Builder);
3513   case LibFunc_mempcpy_chk:
3514     return optimizeMemPCpyChk(CI, Builder);
3515   case LibFunc_memmove_chk:
3516     return optimizeMemMoveChk(CI, Builder);
3517   case LibFunc_memset_chk:
3518     return optimizeMemSetChk(CI, Builder);
3519   case LibFunc_stpcpy_chk:
3520   case LibFunc_strcpy_chk:
3521     return optimizeStrpCpyChk(CI, Builder, Func);
3522   case LibFunc_strlen_chk:
3523     return optimizeStrLenChk(CI, Builder);
3524   case LibFunc_stpncpy_chk:
3525   case LibFunc_strncpy_chk:
3526     return optimizeStrpNCpyChk(CI, Builder, Func);
3527   case LibFunc_memccpy_chk:
3528     return optimizeMemCCpyChk(CI, Builder);
3529   case LibFunc_snprintf_chk:
3530     return optimizeSNPrintfChk(CI, Builder);
3531   case LibFunc_sprintf_chk:
3532     return optimizeSPrintfChk(CI, Builder);
3533   case LibFunc_strcat_chk:
3534     return optimizeStrCatChk(CI, Builder);
3535   case LibFunc_strlcat_chk:
3536     return optimizeStrLCat(CI, Builder);
3537   case LibFunc_strncat_chk:
3538     return optimizeStrNCatChk(CI, Builder);
3539   case LibFunc_strlcpy_chk:
3540     return optimizeStrLCpyChk(CI, Builder);
3541   case LibFunc_vsnprintf_chk:
3542     return optimizeVSNPrintfChk(CI, Builder);
3543   case LibFunc_vsprintf_chk:
3544     return optimizeVSPrintfChk(CI, Builder);
3545   default:
3546     break;
3547   }
3548   return nullptr;
3549 }
3550 
3551 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
3552     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
3553     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
3554